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ABSTRACT
The use of lightweight roofs for long span structures has become popular.
Architects find these structures artractive because they allow for a wide scope of
innovative design, and can be cost effective and aesthetically pleasing. Although
extensive research has already been devoted to many aspects of lightweight
structures, this thesis examines the effects of wall openings on self-supported roofs
backed by cavities, the nature of the response of air-supported roofs to turbulent

wind, and theoretical methods for response prediction.

The first part of the sfudy comprises a free vibration analysis of self-
supported, lightweight roofs backed by cavities with openings. A simplified
theoretical approach is formulated to evaluate the modal parameters of the roof-
air system considering air leakage through the openings, the pneumatic stiffness,
and the structural and acoustical damping of the system. The accuracy of the
approximate formulae is assessed by comparison with a complex eigenvalue
analysis. An exact solution is derived to evaluate the modal parameters for a
circular membrane roof backed by a cavity with openings. Closed form solutions
are presented for the damped response of circular membrane roofs backed by

cavities with openings.

Free vibration laboratory experiments were conducted on two different
structural models to verify the theoretical approach. The first model had a

membrane roof, and the second had a flexible plate roof. The effects of wall



openings and volume scaling on the roof-air system were examined and the

experimental results were then compared with the theoretical ones.

The second part of the study is an examination of the behaviour of air-
supported structures. The free vibration of cylindrical and spherical air-supported
structures is investigated analytically for different internal pressures and enclosure

volumes and the results are compared with those obtained from a finite eleéept
v

solution.

Wind tunnel tests were conducted on an aeroelastic model of a
hemispherical, air-supported strucrure to investigate the wind-induced response and
the internal pressure fluctuations. Parameters considered in the aeroelastic
experiments included different gradient wind speeds, exposures, enclosure volumes

and internal pressures.

A semi-analytical approach is established for predicting the wind-induced
response of air-supported structures. This approach depends on external pressure
measurements and static deflections. A rigid hemispherical model was tested in
a boundary layer wind tunnel to measure the external pressures for different
exposure conditions. For different internal pressures, the static deflections were
calculated theoretically using the finite element method. The predicted response

results of the semi-analytical approach agree well with the experimental results.
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NOMENCLATURE

The following symbols are used

A = roof area;

A, = area of wall, (A,.);

A, A, = areas of the equivalent piston and openings, respectively;

A, = area of wall openings;

a = radius of roof;

a, ,a, = radii of the effective area of the roof and one opening, respectively;
B = constant;

b,, b, = arguments in the membrane equation;

C = constant;

C;, C, = local inverse slopes of fan and leakage pressures versus flow

characteristics, respectively;

Co = mean pressure coefficient;
C,’ = RMS pressure coefficient;
Cp = peak pressure coefficient;

v e .
Cp = minimum pressure coefficient;
c = damping constant;

ping

C,» Ci2 = acoustical damping constants for the roof and openings, respectively;
Cyy = structural damping constants of the roof;

Ce total damping constants of the roof, ¢ =c,+c,;;

Co = speed of sound in air;



dP

dv

= rigidity in the shell governing equation;

= in-plane projection of a circular cross-section;

= diameter of the model;

= excess pressure inside the enclosure;

= volume change inside the enclosure;

= Young’s modulus of elasticity;

= dynamic axial force;

= frequency in cycle per second (Hz);

= model and protorype frequencies, respectively;

= fundamental frequencies associated with the symmetrical modes
with no nodal lines;

= frequency of the ij mode where i = number of nodal lines and j =

order of the mode;

roof height;

= roof thickness;

= influence surface of displacement at point B;
= imaginary part of u;

= Bessel function of the first kind and k order;
= force at i due to unit displacement at j;

= pneumatic stiffness of the roof;

= generalized structural stiffness of the roof;

= frequency arguments in the membrane characteristic equation;



L = characteristic length of the structure;

L; = maximum potential energy of mode j;
Lo Lp = characteristic lengths of the model and prototype, respectively;
L = actual thickness of the wall opening;

= the effective length of the air mass at openings;

M = generalized mass of mode j;

m, m, = membrane mass and added mass per unit area, respectively;

m,, = mass per unit aflrea of the model and prototype, respectively;

mg, my = structural and virtual masses of the roof per unit area, respectively;

m,, m, = generalized mass of the roof and effective air mass at openings,
respectively;

m,’ = effective air mass at openings per unit area;

m = integer;

n = normal vector to the roof surface;

N = number of wall openings;

p(r,,1) = dynamic uniform, harmonic excitation in polar coordinates r and ¢
at time t;

P = mean pressure component;

P’ = fluctuating component of pressure;

P = load amplitude;

P = load amplitude;

P, P, = pressure and equilibrium pressure of the enclosure, respectively;



Ppaw Pmin = maximum and minimum wind pressures, respectively;

Q = strength of a source of acoustic fadiation;

q = dynamic mean wind pressure;

q(®) = generalized coordinate;

9o = internal pressure in air-supported structures;

R = radius;

R, = Reynolds number;

RMS = rool mean square;

Ryj = cross-correlation function of pressures on panel i and j;
Re {4) = real part of y;

r = radius;

R,(x) = frequency dependent function in the acoustical damping coefficient;
Se(H) = force spectrum;

Se(D) = pressure spectrum;

S..(f) = response spectrum;

s = area of the surface;

T = sampling period;

t = time;

Ta = kinetic energy of the air surrounding the structure;
Ty = kinetic energy of the structure;

T, = tension force per unit length of the membrane roof;
tw G = time in model and prototype, respectively;

U = gradient wind speed;



Vo Vo
V,(x,8,0)

J‘*chamber

-Vmodel

—

1
v,(1)

Vi, Vi

z(t)

= mean wind speed (gradient);
= mean wind speed at the top of the model;
= maximum wind speed;
= volume of the enclosure;
= equilibrium volume of the enclosure;
= velocity in model and prototype, respectively;
= dynamic displacement of the roof;
= volume of chamber;
= volume of model;
= average displacement of the roof;

= motion of the air mass through openings;

= acceleration and velocity of the piston, respectively;

= acceleration and velocity of the air mass at openings, respectively;
= modal amplitudes of the equivalent piston and the air mass at

openings in mode j, respectively;

= work done by the reof;

= work done by damping force P(s) in mode j;

= membrane displacement;

= mean component of response;

= fluctuating component of response;
=2 wal ¢,

= generalized coordinate;



S = ratio of opening areas to the effective area of the roof;

o = ratio of opening areas to the roof plane area;
oy, oy = dimensionless parameters;
8 = dimensionless ratio;

B8, i=1,4 = arguments in the equations;
¥ = air specific heat ratio;
a = determinant;

§(t), §(t) = effective displacement and velocity, respectively;

€ = dimensionless ratio = wy/wy;

€ = energy of pulsation of the acoustical surface;

€y = argument in the membrane equation, m,’/m;

Cac = acoustical damping;

$; = damping ratio of mode j;

Co = pneumatic damping;

Cs = generalized structural damping ratio;

Tis $ = damping ratios of the fundamental symmetrical modes with no nodal
lines;

$i = damping ratio of the ij mode where i = number of nodal lines and

j = order of mode;
n = dimensionless ratio;

] = an angle;



A A = frequency functions in the characteristic equation of cylindrical air-

supported structures;

AL = length scale;

AR = rigidity scalé;

ATo = tension per unit length scale;
Ay = velocity scale;

A = volume scale;

A = frequency scale;

Am = mass per unit area scale;

A = time scale;

As = structural damping scale;

A = density scale;

B = complex eigenvalue of mode j;
Pms Pp = model and prototype densities, respectively;
Ps = density of the structure;

Po = air density;

P = radius of curvature;

oy = RMS value of wind speed;

Ow = RMS value of response w;

r = time constant;

¢ = an angle;

#(8) = shape function in the angle ;



{g}
x1 (%)
(1)
¥(1,6)

wy

= complex mode vector;
= function in the added mass equation;
= shape function in polar coordinate r;
= shape function in polar coordinates r and ¢;
= Helmholtz frequency;
= undamped frequency of mode j;

= damped frequency of mode j;

natural frequency of vibration;

= pneumatic frequency of the roof;

= fundamental frequency of the roof in vacuum,;
= dynamic amplification factor;

= infinity; and

= Laplacian operator in the membrane equation.
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CHAPTER 1

INTRODUCTION, OUTLINE, AND PREVIEW
1.1 INTRODUCTION

During recent decades, the use of lightweight roofs has become increasingly

popular. Lightweight roofs, such as cable roofs and air-supported structures, can
cover long spans and are economical. With the current trend towards longer roof
spans for sporting facilities and special industrial buildings, lightweight roofs are
likely to remain the most economical alternative. Some well-known examples of
lightweight structures-include the German Pavilion at EXPO'67 and the Olympic
Stadiumn in Montreal, the Olympic Swimming Complex in Tokyo, the Munich
Pavilion at the 1972 Olympics, and the Calgary Olympic Coliseum (the
Saddledome). Examples of lightweight structures are shown in Plates (1.1) to

(1.3), and in Figure (1.1).

[he design of lightweight roofs involves many difficult problems; among
them are the potentally destructive vibration or flutter of the roof, and the effect
of gusting turbulent wind. Therefore, wind tunnel tests on scaled models are
recommended to investigate these effects and to test stiffening systems that might

mitigate the potentially destructive oscillations, should they occur.

The topic of lightweight structures is very broad; therefore, the present
study is limited to a narrow area and is focused on the roof-air interaction for two

different types of roofs: self-supported, large span roofs backed by cavities with



Plate (1.1): West Germany’s pavilion at EXPO'67 in Montreal (Dent, 1971)



Plate (1.2): Air inflated exhibition pavilion of the U.S. Atomic Energy
Commission (Dent, 1971)



Plate (1.3): Krupp’s air-supported exhibition pavilion at Hanover (Dent, 1971)
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openings; and air-supported structures.

1.2 OUTLINE:
1.2.1 Self-Supported, Large Span Roofs Backed by Cavities With Openings

This part of the thesis comprises a theoretical and experimental examination
of the effects of air leakage through openings, and the acoustical damping on the
free vibration characteristics of self-supported, lightweight roofs. The objectives
of the study are to understand the behaviour of these roofs for the condition of
still air, and to examine the effects of wall openings on the roof natural
frequencies and modal damping ratios. The outline of this investigation is

surnmarized below:

- To review the previous work done on the topic of lightweight roofs;

- To investigate the roof-air interaction and the effect of air leakage

through wall openings for the condition of still air;

- To develop a simplified theoretical approach to evaluate the modal
parameters of the roof-air system considering the structural and acoustical
damping from the roof and the openings;

- To formulate closed form solutions for the damped response of circular
membrane roofs backed by cavities with openings;

- To assess the accuracy of the approximate formulae for the roof modal

parameters;



. To review the similarity requirements and techniques for free vibration
and wind tunnel testing;

. To verify the theoretical approach by conducting free vibration laboratory
experiments on two structural models: one with a membrane roof and
the second with a flexible plate roof; and

. To examine the effects of volume scaling on the free vibration

characteristics of the roof for the condition of still air.

1.2.2 Air-Supported Structures

The second part of the thesis comprises a theoretical study and wind tunnel
tests on aeroelastic and rigid models of a hemispherical air-supported structure.
The objectives are to understand the nature of the response of the structure to
turbulent wind, and to establish a theoretical method for response prediction.

The outline of this part is as follows:

. To review the previous research done on the topic of air-supported
structures;

. To formulate analytical solutions for the modal parameters of both
cylindrical and spherical forms, and to compare the solutions with
those obtained using a finite element method;

. To examine the effects of different internal pressures and enclosure
volumes on the free vibration characteristics cf hemispherical air-

supported structures;



. To investigate the wind-induced response of an aeroelastic
hemispherical air-supported model;

- To investigate the internal pressure fluctuations of the aeroelasti;:
model for different wind speeds, exposures, enclosure volumes,
and internal pressures;

- To conduct pressure tests on a rigid mode! to measure the external
wind pressures acting on the hemispherical structure;

. To establish a semi-analytical procedure for predicting the wind-
induced response of air-supported structures; and

- To prove the applicability of the semi-analytical approach by
comparing the predicted wind-induced response results for the
hemispherical air-supported model with the experimental data

obtained in the aeroelastic tests.

1.3 PREVIEW
Chapter 2 is a brief review of previous research and basic considerations

for lightweight roofs.

In Chapter 3, the free vibration of self-supported, large span roofs backed
by cavities with openings is theoretically investigated for the condition of still air.
Formulae are derived for the evaluation of the modal properties and the response

to harmonic loading of circular membrane roofs backed by cavities with openings.



Chapter 4 describes an experimental free vibration investigation on two
structural models conducted to verify the theoretical approach formulated in

Chapter 3.

Chapter 5 is a brief review of previous research and basic considerations
for air-supported structures.

In Chapter 6, the free vibration of cylindrical and spherical air-supported
structures is theoretically studied. The analytical results are compared with those

obtained using a finite element method.

In Chapter 7, the results of an experimental investigation into the wind-
induced response and internal pressure fluctuations are presented for an aeroelastic

hemispherical air-supported model.

. Chapter 8 describes a semi-analytical approach for predicting the wind-
induced responses of air-supported structures based on pressure measurements on
rigid models. The predicted results are compared with the aeroelastic test results

for the hemispherical air-supported model.

Finally, conclusions and recommendations for further research are given in

Chapter 9.



CHAPTER 2
REVIEW OF BASIC CONSIDERATIONS FOR LIGHTWEIGHT ROOQOFS
2.1 REVIEW OF PREVIOUS WORK
Extensive research into the general mechanics of lightweight roofs such as
cable roofs has been conducted [e.g. (Zetlin, 1968), and (Krishna, 1978)].
However, few studies have considered the aerodynamics of such roofs, which is of
primary concern here. Some examples of studies that have considered

aerodynamic effects are summarized below.

Howell (1973) conducted some experiments to investigate the wind
response of a large suspension roof with a positive Gaussian curvature for both
open country and urban exposures. The effect of air leakage on the dynamic

behaviour of the roof was not considered in the analysis.

El-Ashkar (1974) investigated the initial nonlinear deflection of a flat
suspension roof under static loads. The dynamic behaviour of suspension rcofs
under aerodynamic and acoustical pressures was examined. The effect of the
enclosure under the roof was studied both theoretically and experimentally
considering wall openings. Visualization tests were conducted to predict the flow

characteristics near the model.

Tryggvason and Isyumov (1977) examined the requirement for scaling the
elastic properties of tensioned surfaces. For pneumatic structures, modifications

were developed for scaling the internal pressure that allow rational velocity scales



to be used. Tryggvason (1977) also emphasized the importance of scaling the
pneumatic stiffness and suggested the exaggeration of the internal volume by a
factor of 1/3, where ), is the velocity scale. This scaling was confirmed by the

studies due to Holmes (1979) and El-Ashkar (1983).

Holmes (1979) investigated the mean and fluctuating wind-induced
pressures inside buildings using experimental and computer simulation techniques.
The mean and RMS internal pressure coefficients were both found to be
monotonically increasing functions of the ratio of the windward to the leeward
opening areas. The case of a single windward opening was treated as a damped
Helmholtz resonator. Inertia effects were found to produce a resonant
amplification in the response of the internal pressure to turbulent external
pressures, and to a step change in the external pressure. [t was concluded that
these effects are unlikely to be of much practical significance except in the case of
a sudden large opening, such as that due to a window fajlure, occurring in a

somewhart rigid building.

Stathopoules, Surry and Davenport (1979) examined the wind-induced
internal pressures using models of low-rise rigid buildings of different geometries
and internal volumes. Three models for buildings with variable side-wall and end-
wall openings and three background porosities (opening area ratios of 0.0, 0.5 and
3.0% of the total surface area) were used. The results showed that the internal

pressures were dynamic but their magnitudes were generally lower than those of

i1



the local external pressures. For windward openings, the internal pressure
coefficients were generally positive except for cases with high background porosity
combined with small openings, where they became zero or slightly negative. The
results also showed that the lower the background porosity, the smaller the size
of the wall opening necessary to make the internal pressure insensitive to further

increase of the wall openings.

Irwin and Wardlaw (1979) investigated the effect of wind on the forces
imparted to the Montreal Olympic Stadium by the deployed retractable fabric roof
that is attached to the fixed part of the roof covering the stands. They found the
effects of the added mass and the acoustical damping to be important. The
measured deflections of the model roof due to wind were significant. No signs
of aerodynamic instability were observed on the model. They concluded that the

acoustical damping is an important factor in the vibration of membrane roofs.

Davenport and Surry (1983) showed that the interior pressures in buildings
are amenable to more detailed analysis and that useful information on them can
be easily derived from wind tunnel data on external pressures. The uncertainties
in the internal pressure can be expressed in statistical terms which are related to
the area of the opening and the interior volume. Davenport and Surry (1983)
referred to the importance of calculating the internal pressure in cases where a
building is in close proximity to a neighbour lying in its wake. The problem of

air-infiltration being controlled by the internal pressure regime was also discussed.

12



El-Ashkar and quak (1983) studied the behaviour of large circular cable
roofs with wall openings in turbulent wind. They found from free vibration
experiments that the first symmetrical mode is strongly dependent on the number
of wall openings. The kettledrum frequency was not identified in these
experiments. This could be attributed to the high damping associated with the
kettledrum frequency. El-Ashkar (1983) suggested that the behaviour of a cable
roof backed by a cavity with openings in still air could be similar to that of a
Helmholtz resonator. No signs of instability were observed at the wind velocities

considered.

Pneumatic effects in air-supported structures were investigated analytically
by Kind (1984), who considered an automatically ventilated model. Kind (1984)
indicated that the pneumatic damping (internal pressure increase directly
proportional to the rate of volume decrease) could become high for large air-
supported structures. A formula for the pneumatic damping of the volume-
displacing modes of motion, ¢,, considering only pressure and inertia forces, was
given as

$p = 1/(2 wy 1) (2.1)
In the above equation w, is the circular frequency of vibration and r is a time
constant that is a function of the internal pressure, the number of air changes
per hour, the enclosure volume, and the instantaneous fan and leakage volume
flow rates. Kind (1984) concluded that the pneumatic stiffness is expected to be

the dominant pneumatic effect in most small air-supported structures, uniess the
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air change rates are unusually high or the internal overpressure is unusually low.

Vickery (1986) studied the problem of internal pressures generated by wind
action for conventional structures. The objective was to examine the validity of
a "gust factor” approach for the evaluation of the peak internal pressures for both
nominally sealed but leaky buildings and buildings with diccrete oj2nings. The
dynamic internal pressure component was determined primarily by the time
constant of the building and the gust factor was determined by the turbulence
intensity. The uncertainties regarding the distribution of leakage paths and the
effects of openings caused by premature failures of doors and windows were

addressed.

Liu and Rhee (1986) examined the nature of wind-induced Helmholtz
oscillations of air pressure in building cavities by testing an impermeable rigid
building model. The model had a single room and a single windward opening of
four different sizes. The Helmholtz resonance was present in all the different types
.of flow studied. The spectral peaks showed that the internal pressure generated

by different flows fluctuated at the Helmholtz frequency.

Draisey (1987) investigated the influence of wall openings on the dynamic
behaviour of large span roofs under wind excitation. Both theoretical and
experimental studies showed that the main factors affecting the response were the
area of wall openings and the terrain roughness. The experimental observations

supported the general trend of the theoretical ones. The venting of the walls
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resulted in increases of the dynamic response by an order of magnitude. The
difference between the predicted and observed dynamic motions was about £ 25%.
This difference was attributed to the inappropriate discharge coefficients used for

the vents.

Recently, Vickery and Georgiou (1989) studied the problem of wall venting
on the dynamic response of roofs to wind excitation using an exact and a
simplified approach. The simplified approach included only the first volume
changing mode and N wall openings. The mass of the air passing through the
vents was ignored. Both the exact and simplified solutions were generally in good
agreement, with a maximum difference of about + 20%. For a large venting area
the system approaches a single degree of freedom system with a stiffness stemming
from the roof alone. At very small venting areas the system approaches a single
degree of freedom system with a stiffness stemming from both the elastic stiffness
of the roof and the pneumaric stiffness. In the theoretical evaluation of the wind-
induced response, the coefficient of damping, ¢, due to the pressure loss through
openings was evaluated by linearizing the flow equarion at the opening about the
mean values. This linearization yields

¢ = po Un A { c [8Gy] }* (2.2)
where p, is the air density; U, is the reference wind speed; A, is the area of the
j* opening; ¢, is the loss coefficient; and aC, is the difference between the mean
external and internal pressure coefficients, E,J- - Epo, across the j* opening. This

— —~
is adequate if |aCy| is large compared to aCy (the RMS coefficient of the
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fluctuations in the pressure difference), but is inadequate as [A—ij] approack.cs
zero. Linearization here was suggested to be approached in a fashion similar to
that used in the linearization of Morison’s Equation (Vickery, 1989). For the case

of IA_ij:l = 0, linearization by least squares was used.

In summary, previous work dealing with self-supported structures was to
investigate the effects of wall openings on the wind-induced response and the
internal pressure fluctuations, and to study the flow characteristics near the
openings. The effects of wall openings on the free vibration characteristics of
cable roofs were experimentally investigated by El-Ashkar (1983), but questions
remained unanswered about the transition from the kettledrum frequency to the

helmholtz frequency, and about the effect of wall openings on modal damping.

To answer these questions, a free vibration amalysis of self-supported,
lightweight roofs backed by cavities with openings is conducted in the first part
of this study. A simplified theoretical approach is formulated to evaluate the
modal parameters of the roof-air system considering air leakage through the
openings, pneumatic stiffness, and structural and acoustical damping of the system.
The accuracy of the approximate formulae is assessed by comparison with a
complex eigenvalue analysis. An exact solution is derived to evaluate the modal
parameters for a circular membrane roof backed by a cavity with openings. Closed
form solutions are presented for the damped response of circular membrane roofs

backed by cavities with openings.
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In addition, free vibration laboratory experiments were conducted on two
different structural models to verify the theoretical approach. The first model had
a membrane roof, and the second had a flexible plate roof. The effects of wall

openings and volume scaling on the roof-air system were examined.

2.2 THE ADDED MASS

Vibration of a structure in a fluid such as air is generally coupled to
motions of the surrounding air. This means that the natural frequencies of a
structure in a fluid must be found from the coupled structure-fluid analysis. When
the roof vibrates, it undergoes alternate accelerations and decelerations as does the
surrounding air. The total effective mass is therefore not just that of the roof, but
also an additional amount (the added mass) due to the surrounding air (frwin and
Wardlaw, 1979). The added mass may also be referred to as additional, induced,
hydrodynamic or aerodynamic mass. The virtual or apparent mass includes both

the actual mass of the structure and the added mass of air (Campbell, 1982).

The added mass depends on the shape of the roof, the nature of the motion
and the density of the fluid (Campbell, 1982). In most civil engineering
structures, the added mass is small in comparison to the structure mass, and so
can be ignored when computing the natural frequencies of the structure or
examining the structural response. For lightweight roofs, this is not so as the
added mass of the surrounding air is of the same order of magnitude as the roof

mass, if not greater (Irwin and Wardlaw, 1979).
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The added mass for a sphere of a surface area A, whose surface pulsates
with a radial velocity, uniform over the surface, can be obtained by working out
the kinetic energy imparted to the air, while ignoring the compressibility of air
(Milne-Thompson, 1968). This added mass of the outside air per unit surface area
is

m, = 0.282 p, A% (2.32)
where p, is the air density. Thus, if the surface is a membrane of mass per unit
area ms, the virtual mass, m,, per unit area is

my = mg + m, (2.3b)
[n the example used by Irwin and Wardlaw (1979), for a fabric membrane roof
covering a stadium of an area A = 18000 m? and ms = 2.2 kg/m?, the added mass
m, = 46.6 kg/m? which is an order of magnitude greater than the membrane
mass.

[rwin and Wardlaw (1979) presented a simple formula for calculating the
added mass of air for a membrane with respect to the membrane mass. For a
stadium with a membrane roof that is almost flat, it was suggested that the
problem be solved by determining the kinetic energy T, of rhe surrounding air,
assuming the membrane vibratons are small and the equilibrium position of the
membrane is flat. The kinetic energy of the air, T,, (which is equal to the work

done by the roof to generate the motion, W,) can be written as (Lamb, 1932)

Ta= Wo=-sp [f 425 s (2.4)
5
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where s is the surface area of the membrane, ¢ is the velocity potential and a¢/an
is the gradient of ¢ normal to the membrane surface. The kinetic energy, T., of

a membrane of uniform mass ms is
dw.
T.=hm[ (—CI 32 ds (2.5)
5 t

where w and dw/dt are the membrane displacement and velocity, respectively.
Expressions for ¢ and a¢/8n were evaluated (based on an assumed mode shape of
the membrane). This ratio of the kinetic energies was used as a measure of the
ratio of the added mass of the air on both sides of the membrane to the membrane
generalized mass ([rwin and Wardlaw, 1979). This ratio can be written as

TA — 51l' Po A'k
T. 32 m (2.63)

Substituting with A, m and . as before gives

Ta _

_T_m = 37 (2.6b)
Thus, the added mass effect can be large. Values of the added mass for different

types of cross-sections, bodies and plates with different boundary conditions are

given by Blevins (1979).

Campbell (1982) carried out computations for calculating the added mass
of air for thin flat plates of rectangular and circular forms using distributions of
discrete sources and sinks, for a motion perpendicular to their planes or for a
rotation about a principal axis in an ideal fluid. The same method was used to

obtain the added mass of air for thin diaphragms with different normal velocity

distributions.
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Kinsler and Frey (1962) gave a formula for the added mass of air for a

piston as
m, = p, A (Co/w) x,(2wa/c,) (2.7)

where A is the piston area; « is the circular frequency; c, is the speed of sound in

the air; a is the piston radius and

_4 . x x X
xwX=Flg-55 +* g7 ~ ) (28)

where x = 2wa/c,. The function x,(x) is shown in Figure (2.1) for different values

of x. For small values of x (x << 1) this function can be approximated by the
first term of Equation (2.8). On the other hand when x is large, this function
converges such that x,(x)=4/(xx}). Thus, for low frequencies of vibration (x <<
1), the added mass as given by Kinsler and Frey (1962) becomes

m, = 8 p, a¥/3 2.9)

The added mass in Equation (2.9) is equivalent to that of an imaginary
cylinder of the medium having the same radius as the piston and a length az =

8a/(3x). Equation (2.9) is the same as given by Campbell (1982).

The result of the added mass loading is generally to decrease the resonant
frequency from the usual value given by w.? = K/ms 10 wo? = K/{ms+m,). Since
the added mass is usually significant for lightweight roofs, the decrease in the
resonant frequency resulting from the presence of the ai :nedium may be marked.
For high frequencies of vibration, the added mass is given by Kinsler and Frey
(1962) as

m, = 2 po G2 a/u? (2.10)
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Thus, the effect of the added mass is much less at high frequencies than it is at
low frequencies (Kinsler and Frey, 1962). To show this, computed values of the
mass loading for a piston of 0.1 m radius vibrating in water are plotted as a

function of the frequency in Figure (2.2) given by Kinsler and Frey (1962).

2.3 THE ACOUSTICAL DAMPING

Kinsler and Frey (1962) suggested a formula for calculating the damping
constants due to sound wave radiation for a piston assuming the sound waves
radiate from the piston in the same manner as they do for a simple source

mounted on an infinite baffle. This formula is

C. = po Co A Ry(2 —‘;i a) (2.11)
in which
_x x* x®
R =33-Z276* 2768 (2.12)

where x = 2wa/c., and a, A are the radius and the effective area of the piston,

respectively. The function R,(x) is also shown in Figure (2.1) for different values

of x.

Irwin and Wardlaw (1979) also estimated the magnitude of the acoustical
damping of an almost flat sealed membrane roof, assuming it behaves
approximately as a source of acoustic radiation, of strength Q, on an infinite
horizontal plane. The natural frequencies are usually low enough that the wave
length of the radiated sound is much larger than the roof dimensions (lrwin and

Wardlaw, 1979). The energy emitted per cycle of pulsation of the source, «¢,, is

21



= f Q?
Co

€ = po (2.13)
where f is the frequency in Hz (Rayleigh, 1945). The strength of the source is
related to the roof motion by

Q= {J‘ w ds (2.14)

where W is the normal velocity of the roof surface and the integral is over the
outside surface of the roof. The roof velocity of vibration could be expressed as
wxy,0 = ¥(xy) g(t) (2.15)
where x and y are the horizontal coordinates of a point on the roof; q is the
generalized deflection, q is the first derivartive of q with respect to time, and y is

the mode shape. Substituting Equation (2.15) into Equation (2.14) gives

&= ng_ 2 A (2.16)
where
% = (1/A)[f v ds (2.17)

and A is the roof area as before (Irwin and Wardlaw, 1979). The energy emitted

per cycle of pulsation, ¢,, must be equal to the work done by the roof per cycle

of oscillation
W=2rm¢, [[Wds (2.18)
S

where ¢, is the acoustical damping ratio. Substituting Equation (2.15) into
Equation (2.18) yields the following non-dimensional expression for the acoustical
damping ratio ¢,. as

PofA
Co

1 =2 -
Coe = 5= (v/¥) (2.19)

a
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Fig. (2.1): Functions R,(x) and y,(x) Piston impedance functions
(Kinsler and Frey, 1962)
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Fig. (2.2): Added mass of a vibrating piston radiating into water
(Kinsler and Frey, 1962)
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where

¥ = (1/A) {j‘ ¥t ds {2.20)
Thus, for the volume displacing modes of vibration (the antisymmetrical modes
in this thesis) ¢ = 0, the acoustical damping is zero. The value of ¢, is generally
between 0.02 to 0.8 depending on the parameters of Equation (2.19), and in most

fabric structures reaches a high value (Irwin and Wardlaw, 19793.

[rwin and Wardlaw (1979) also investigated the scaling of the acoustical
damping. They showed that to model the acoustical damping effect correctly, the
non-dimensional parameter ».fA/{c.m,) must be the same on the model as at full
scale. [n this parameter, o, is the air density, ¢, is the speed of sound in air, U is
the mean wind speed, { is the frequency in Hz, A is the roof area and m, is the
virtual mass per unit area art the full scale. It follows that the Mach number, U/c.,
should be the same at both scales. In many wind tunnels, Mach number scaling
cannot be achieved, but the use of wind velocities lower than those required by
Mach number scaling can be regarded as conservative (Irwin and Wardlaw, 1979).
This is shown from the following:

’_p.fﬁ L(oL
T 2em, 2 "m.

—) ( )(—)( ) (2.21)

s which U is the characteristic length of the roof. In the above equation each
uantity enclosed in brackets is a2 non-dimensional parameter. If U/c, is less than
that at full scale but the other non-dimensional parameters are the same as at full

scale. then the model value of ¢, becomes smaller which is conservative (Irwin
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and Wardlaw, 1979). For a roof with Jeakage around its edge (as for a roof of
a stadium with openings) under wind excitation, the acoustical damping may be
reduced due to the losses in the flow around the edge, but the aerodynamic

damping may be increased.



CHAPTER 3
THEORETICAL ANALYSIS OF FREE VIBRATION OF SELF-SUPPORTED,
LIGHTWEIGHT ROOFS BACKED BY CAVITIES WITH OPENINGS

3.1 INTRODUCTION

Self-supported, lightweight roofs over large unobstructed areas such as
sports arenas must have sufficient integrity to provide adequate safety. Such
structures must also have openings (usually located in the circumferential walls)
to allow for ventilation and for the movement of the incoming and departing
crowd. The presence of such openings has a2 marked influence on the dynamic
characreristics of the roof. The air enclosed in the cavity under the roof and its
leakage through the wall openings affect the internal pressure and accordingly
influence the dynamic behaviour of the roof. The roof behaviour is also affected
by the sound waves radiating from the vibrating roof that generate acoustical
damping. These effects are particularly important for lightweight roofs such as

cable roofs.

While many studies have been devoted to the dynamics of lightweight roofs,
only a few investigators have considered the roof-air interaction and the air
leakage. El-Ashkar (1983), and El-Ashkar and Novak (1983) studied a hyperbolic
paraboloid roof and a flat circular membrane in still air and under wind excitation.
Draisey (1987) investigated a circular plate roof exposed to wind and this study

was expanded by Vickery and Georgiou (1989).



The key difference between this study and that of Vickery and Georgiou
(1989) is that they were interested in the response of naturally ventilated roofs
due to wind, with the air flowing into the building from one side and leaking out
of the other side. Friction damping at openings was the main source of damping,
and the acoustical damping due to sound radiation from both the roof and the

openings was not considered.

This study is focused on the behaviour of lightweight roofs backed by
cavities with openings for the conditions of still air. The effects of wall openings,
internal pressure changes due to the roof vibration, and structural as well as
acoustical damping from both the roof and openings are accounted for. Free
vibration experiments were conducted on two different structural models to
examine these effects, and to investigate the effect of volume scaling on the modal
parameters of the roof-air system. The first model had a membrane roof, and the
second had a flexible plate roof. The opening areas were increased by increasing
the number of openings, keeping the area of each opening constant. This was
done to maintain a constant effective length of the volume of air at each opening
area ratio. The internal volume of each model was exaggerated by a factor of

1/22 where 2y is the velocity scale, as required by the pneumatic stiffness scaling

This chapter is focused on the theoretical analysis, while the free vibration

experiments and the comparisons between the theoretical and experimental results

are discussed in Chapter 4.
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In this chapter, the roof-air interaction and the effect of air leakage through
the openings in the building walls are theoretically investigated for the condition
of still air. Structural damping is accounted for and acoustical damping is
considered for the roof as well as the openings. Approximate formulae are derived
for the evaluation of the modal parameters of the roof-air system using a two-
mass theoretical model for a roof backed by a cavity. The accuracy of the derived
modal damping formula is assessed by comparisons with a complex eigenvalue
analysis and an exact solution of a circular membrane roof backed by a cavity with

openings.

The theoretical approaches are used in a parametric study of two roofs with
prototype properties. The first has approximately the basic parameters of the
Calgary Olympic Coliseum and the second roof is similar but has lighter mass per
unit area. The analysis presented can be extended to include moving air which
introduces pressure coefficients at the openings. Closed form solutions are also
derived for the damped response of circular membrane roofs backed by cavities

with or without openings. The accuracy of these formulae is assessed.

3.2 ASSUMPTIONS OF THE SIMPLIFIED ANALYSIS

Large span, lightweight roofs are often of complex shapes, e.g., hyperbolic
paraboloids. The vibration modes of such structures are, therefore, usually
analyzed using numerical techniques such as the finite element method. The roof

response is, in general, nonlinear but its dynamic part can be approximated as a
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linear, small amplitude oscillation about the deflection due to static loading.

The acoustical damping and the changes in the internal pressure depend on
the amount of air displaced, not on the exact shape of the moving surface.
Therefore, for the evaluation of these effects, the vibrating roof may be replaced
by an equiva'»nt rigid piston such that the product of its area and displacement
is equal to the air volume displaced by the actual roof. Given the complex shapes
of lightweight roofs, the solution of the governing equations of motion is difficult

and usually does not lead to closed form expressions.

In the analysis of the roof response formulated here, the roof is replaced by
an equivalent generalized piston in the individual vibration modes. The roof
motion in each individual vibration mode is described by one generalized degree-
of-freedom, and the motion of the air masses at the openings is described by
another degree-of-freedom. Thus, the roof backed by a cavity with openings is
replaced by a two-mass system as shown in Figure (3.1), with the same enclosed
volume. The air pressure is evaluated using the equivalent piston and introduced

into the governing equations of motion.

The displacement of the roof may be written in polar coordinates r and ¢
for each mode as
v(r,8,0) = ¥(r,8) q(©) (3.1)
where q(1) is the generalized coordinate, t is time and w(r,6) is the j* mode shape

relative to the static deflection normalized so that %(0,8)= 1. The generalized
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Fig. (3.1): Schematic of vibrating roof backed by cavity with openings and its
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mass associated with the mode ¥(r,8) is

m, = [ m(r,0) ¥(1,6) dA (3.2)

A
where A is the area of the roof, and m is its mass per unit area. This mass
comprises the actual mass of the roof and the added air mass thar accounts for the
inertia forces of the vibrating air. The generalized structural stiffness of the roof
is

K = m o (3.3)
where «, is the j* natural frequency of the roof. The effective area of the roof is

defined as

Ay =] ¢(r6) dA G4

A

The generalized structural damping ratio of the roof vibration in air is denoted by

G
Zﬂljwj

$:s = (3.5}

where ¢, is the structural damping coefficient.

[t is further assumed that the forces associated with the air movement and
the structural damping have only a small effect on tﬁe shape of the roof vibration
modes. This is a plausible assumption, because the internal air pressure is
uniformly distributed over the roof and the structural damping also can be
assumed to be proportional to either the mass or the stiffness matrices. The
undamped modes of the roof vibrating in a vacuum can first be established and
then substituted in Equations (3.2) to (3.5) to define the parameters of the

generalized piston. While this representation is applicable to any mode, the

31



numerical examples of this part are limited to the fundamental modes, since they

are most affected by the air in the cavity and the acoustical effects.

3.3 THE ROOQF-AIR INTERACTION SYSTEM
3.3.1 Masses

Using the previously outlined assumptions, the roof backed by a cavity with
openings is replaced by a two-mass system as shown in Figure (3.1b). In this
model, m, is the generalized mass of the roof, and m, is the effective air mass at
the openings. If the openings are assumed to be of equal areas, their effective
air mass can be expressed as

m = po Ay L (3.6)

where p, is the air density, A, is the total area of openings, and L' is the effective
length of the air mass at each opening. This effective length can be calculated as
(Kinsler and Frey, 1962)

L'=1L+5a (3.7
where L is the true thickness of the wall at the opening, 5 is an empirical constant
ranging from 0.8 t0 1.7, and a, is the radius of the typical opening. The constant

§ depends on whether the opening has flanged ends or not.

3.3.2 Pressures
When the roof vibrates, the enclosed air volume and the internal pressure
change. The alterations of the volume,¥; are assumed to be adiabatic, i.e., P V7

= P.V,7, where v is the ratio of specific heat of air at constant pressure to the
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specific heat of air at constant volume; Po and V., are the equilibrium pressure and
volume of the enclosure, respectively (Kinsler and Frey, 1962). Then, the excess
pressure inside the enclosure due to the motions v,(t) of the equivalent piston (the
generalized coordinate of the roof at its centre), and v,(t) of the air masses can

be written as

po -]
dp=-Tdv=- lvPT AV, + AVa) (3.8)

where A, and A, are the areas of the equivalent piston and openings, respectively.

3.3.3 Governing Equations of Free Undamped Vibration

The governing equations of free undamped vibration of the roof-air system

can be written as follows:

For the roof
m ¥, + (K + 1PAL v, + M? v, =0 (3.9a)
Ve Vo
and for the openings
e 2
mzvz+3—PiA,;/‘—A“v,+zp°—\}A3- v,=0 (3.9b)

Equations (3.9a) and (3.9b) can be written in a matrix form as

[m}{v} + (Kl{v} = {0} (3.10)

in which the dots indicate differentiation with respect to time, {, and the mass

matrix is

[m] = [g“ 0] (3.11)
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The stiffness matrix in Equation (3.10) is

ks + 'YP OAlz "IpoA!Aa

_ 72 72
k] = TPAA, PuA (3.12)
A Ve

3.4 FREE UNDAMPED VIBRATION

The solutions for the undamped displacements v,(t) and v,(t) in Equations
(3.9a) and (3.9b) can be written as
vi(t) = v, sin wt (3.13)
va(t) = v, sin ot (3.14)
Substituting Equations (3.13) and (3.14) into Equations (3.9a) and (3.9b) yields
Ky -medv, + Kv, = 0 (3.15a)
Kavi + (Kz = mpe®v, = 0 (3.15b)
Solving the eigenvalue problem, two natural frequencies of the roof-air system are
obtained as

1 Ku Kn
2 (m, +E)t[

2 =

Wy 2

1 KII _Kn 2 Klzz X
4 (ml mz ) +m1m2] (3‘16)

Substituting the two frequencies w; j = 1, and 2; into Equations (3.15a)
and (3.15b) one at a time, the two ratos v,/v, of the displacements can be

calculated. These ratios represent the associated undamped vibration modes which

are

- - .2
‘—;ﬁ Xe _ _ Ke-mef g i=1,2 (3.17)
z

K - m‘t’jz K
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To distinguish the vibration amplitudes of the two modes, double subscripts
are introduced. 'I'he‘ first subscript identifies the amplitudes of the masses m, or
m,; the second subscript indicates the frequency and mode with which the
amplitudes v, are associated. The two ratios in Equation (3.17) characterize the

vibration modes shown in Figures (3.2a) and (3.2b).

For a parametric study of the roof-air system the following dimensionless

ratios are defined: (denoting the pneumatic stiffness K, = yP.A*/V.)

1. o« = AJA, = the ratio of the opening areas to the effective area of the roof;
2. B = w./w, = the ratio of the natural frequency of the roof in air to the

pneumatic frequency, «. =(K,/m,)*. As 8 increases, the kettledrum frequency

of the system increases and vice versa.

Two other dimensionless parameters are used which are ¢ and n. The
parameter ¢ represents the ratio of the Helmholtz frequency (assuming that the
roof is very rigid) to the pneumatic frequency of the roof, ie., ¢ = w/w,. The
parameter n represents the ratio of the roof generalized mass to the air masses at
openings, i.e., » = m,/m,. These parameters depend on the opening area ratio,

@, and the pneumatic frequency, w,.

Dividing Equations (3.9a) and (3.9b) by m, and m, respectively, using the
parameters mentioned above, and substituting into Equation (3.16) yields the
following undamped frequency equation

wfw, = [2[8241+n7] & [2(82+1—9")"+ea’]}?} (3.18)
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Equation (3.18), which is another version of Equation (3.16), relates the
natural frequencies of the roof-air system to the four dimensionless parameters e,
8, ¢ and n in a closed form solution. The mosf important of these parameters is
the first parameter, «, as described in Section 3.6. Equations (3.16) and (3.18)
satisfy the three limiting cases of the problem. The first is the "kettledrum
frequency”, when there are no wall openings, i.e., e = 0. The second is when the
opening areas increase beyond any limit; i.e., A; » « and V, = =, which yields the
natural frequency of the roof vibrating in still air, w,. The last limiting case is
obtained when the roof is very rigid and « - 0 giving the well-known frequency

of a2 Helmholtz resonator, wy.

3.5 FREE DAMPED VIBRATION

In still air, the primary sources of roof damping are the structural damping,
¢, the acoustical damping arising from the wall openings, ¢.-. and the external
acoustical damping associated with the radiation of energy from the roof surface
in the form of sound waves, ¢,;. Kinsler and Frey (1962) indicated that in still air
friction damping at openings’ is small compared to the acoustical damping.
Therefore, friction damping at openings is not considered in this analysis. For
cases where there is flow through the openings due to wind, friction damping
becomes more importan:. Another source of damping is the pneumadc damping
in automatically ventilated, air-supported structures as reported by Kind (1982).
This damping is not applicable here as the structures considered are self-supported,

naturally ventlated structures.



3.5.1 Damping
o For the two mass system adopted, the structural damping coefficient of the
roof, ¢,, is

C, = 2¢, My o (3.19)

in which the structural damping ratio, ¢,, is usually estimated.

The damping constants ¢, and ¢, due to sound wave radiation can be
calculated for the masses m, and m,, respectively, using Equation (2.11) given by
Kinsler and Frey (1962). The main assumpion is that sound waves radiate from
the roof and the openings in the same manner that they do for a simple source
mounted on an infinite baffle. With this assumption, the acoustical damping

constants ,¢,, and c,,, are calculated as:

Cos = poCoAR;(2 —:‘:’- a,) (3.20)
Ca = poColR,(2 % a,) (3.21)

in which ¢, is the speed of sound in air; R,(x) is as given in Equation (2.12) and
Figure (2.1), where x = 2wa/c,, i = 1, 2; and a, and a, are the radii of the
effective areas of the roof and the openings, respectively. For a non-circular wall

opening with area, A,, the effective radius can be taken as a, = (Ay/n)"2
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With these damping coefficients considered, the governing equations of the

roof-air system free damped vibration can be written as follows:

For the roof
¥, e et (Kt Eityy e Bhifey, = g (3.222)

and for the openings

MV, +C V, + ’—P'VAﬁ’ v+ ’—%—A’-’- v,w=0 (3.22b)
in a matrix form
[mi{v} » [c}{v} + [ki{v} = {0} (3.23)
nt whach the damping matnx is
s _ T ere 0]
{cj = 0 a } (3.24)

The free dar:. 'd vibration is analyzed in two ways; accurately - as a

complex eigenvaiue prodier | and approximat: - - using energy considerations.

3.5.3 Compies Eipenvalue Aalvsis

= thae approach. the modal damping of the roof-air system is established
won che coopiex axgenvalues obtained by the solution of the homogeneous
growemng equacion of damped vibration, Equation (3.27°. Adding the identity
livd = [mei{e} ‘o Equation (3.23). the governing equation is obtained in the
sodaeeed TR, Lo,

MDY e WD wig) (3.25)
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in which
_[ [0 [m] ;
(R = [ m] (] ] (3:26)
_[=[m] [0} ]
= | (327)
(Z} = {f:‘g and {0} ={§8§ (3.28)

The solution to Equation (3.25) can be written as

{z(D} = e~ {¢} (3.29)
where 4 = the complex eigenvalue and {¢} = the complex mode vector, which is
also called the non-classical mode shape (Novak and El-Hifnawy, 1983).
Substituting Equation (3.29) into Equation (3.25), an eigenvalue problem is
obtained whese solution yields two pairs of complex conjugate eigenvalues, y, and
two pairs of complex conjugate eigenvectors. From the complex eigenvalues, the
approximate undamped frequency follows as

W = | # (3.30)
and the damped frequency as

w = Im (g) (3.31)

The modal damping ratio is

¢, =-Re(w)/ |yl and j=1,2 (3.32)

In this study, the EISPACK subroutne RGG was used to calculate the
complex eigenvalues from Equatons (3.25) to (3.28). [t is efficient and has
accuracy checks for ill-conditioned matrices. Other subroutines were also used for

comparisons such as the MATHLIB subroutine EIGZF.



3.5.4 Modal Damping from Energy Considerations

The modal damping ratios of a roof backed by a cavity with openings can
also be evaluated approximately using energy considerations. The basic
assumption is that the damped vibration modes can be represented by the
undamped modes. This is an acceptable assumption, at least for damping ratios
much smaller than the critical damping. The advantage of this approach is that
a very simple formula for the modal damping ratios from all damping sources is

obtained.

The work done during a period of steady-state vibration, T = 2x/u; by the
damping forces P(s) is, in general,

W= of P(s) ds(t) (3.33)
i: which ¢ is the effective displacement. For the roof-air system, shown in Figure
(3.1}, vibrating harmonically with the natural frequency «, and modal amplitudes
vy; and vy given by Equation (3.17), the displacements §; are defined as

S]j = 815 sin wjt

Sy = 621 sin wit (334)
where §,; = v;; and §; = v,. The damping force is
P(s) = [{e+cu)vy + CoVy] wj €OS wit (3.35)

in which the acoustical damping coefficients, c;, j = 1, 2 are related to the
motions of the roof and the mass in the openings, respectively, and ¢, is the
structural damping constant of the roof. With this damping, Equation (3.33)

yields the work done as
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W = xwy [(6+C)vy? + CaVaf] (3.36)

In free vibration, the maximum potential energy of the system is the same
as the maximum kinetic energy, i.e.,

L = % (mvy? + mav?) o? (3.37)
in which the generalized mass of the mode j is

M, = mVi? + myvy? (3.38)

The damping ratio of the j* mode is

W,
i = 47\'1-1 (339)

For structural damping stemming only from the roof, the damping constant
is, by Equation (3.19), ¢, = 2my¢w and M, is reduced to m; v,?. Then, the total

damping ratio of the j* mode of the roof-air system becomes

1
gj = 2ijj [(C,‘!‘CM)VUZ + cn2V2j2] (3°40)
in which ¢, is the structural damping ratio estimated for the roof in air; the
acoustical damping constants ¢,, and ¢, are given by equation (3.20); and v; is the
undamped modal amplitude chosen to arbitrary scale in the ratio specified by

Equation (3.17), i.e., for example, v,;; = 1 and v, = a,.

The advantage of the energy approach is that it uses the undamped modes
of vibration which can be obtained for instance by the subroutine NROOT or by
other means; also, frequency dependent damping such as the acoustical damping
can be readily accommodated. The energy approach is, however, approximate.

Its accuracy can be assessed by a comparison with the complex eigenvalue analysis
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previously formulated, which yields modal damping derived directly from the

damped vibration mode shapes.

3.6 APPLICATIONS AND DISCUSSION OF THE THEORETICAL RESULTS

AP LA L LN SN Lo D e e e e =

3.6.1 Free Undamped Vibration Results

To illustrate the effects of wall openings, an example using the basic
parameters of the hyperbolic paraboloid cable roof of the Calgary Olympic
Coliseumn (Bobrowski, 1987) is used. To this end, the fundamental vibration mode
of the roof, measured with regard to its staric deflection, is represented by the
vibration mode of a circular membrane having the same area, mass per unit area,
and tension per unit of length as the prototype. Such a simple representation was

found to be feasible by El-Ashkar (1983).

In Figures (3.3a) and (3.3b), the ratios w; /w, are plotted for both modes
versus the dimensionless opening area ratio « = Ay/A, and denoted as undamped.
The corresponding vibration modes by Equation (3.17) are shown in Figures
(3.2a) and (3.2b). The fundamental undamped frequency, wi, monotonically
decreases as the opening area decreases and vanishes with A, - 0. This
corresponds to the Helmholtz oscillator behaviour as is also indicated by the first
vibration mode, Figures (3.2a) and (3.2b), for which the two masses move in
phase and the roof movement, v,, vanishes with A, - 0. [n the second mode, the
two masses move in antiphase and the undamped frequency, w,, approaches the

kettledrum frequency as A, - 0.
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Fig. (3.2): Leakage effect on roof undamped vibration modes: (2) the simplified



For comparison, the roof is reanalysed with all its parameters the same as
before except the weight per unit plan area, which is taken as one third that of
the first example. Such a lighter roof may be applicable in regions of little or no
snowfall. The corresponding mode shapes and natural frequencies are shown for
the lighter roof in Figures (3.2b) and (3.3b), respectively. The trend of the

undamped frequencies is similar for both roofs.

3.6.2 Free Damped Vibration Results
3.6.2.1 Complex Eigenvalue Approach Results

Considering the structural damping ratio equal to 1%, the acoustical
damping due to the roof vibrarion, and the air leakage through the wall openings;
the damped frequencies of the Calgary Olympic Coliseum (simplified as a flat
membrane) and those of the lighter roof were caiculated using Equation (3.31)
and are plotted in Figures (3.3a) and (3.3b). For the heavier roof, Figure (3.32),
the first frequency is negligibly affected by damping while the second frequency
starts deviating from the undamped frequency quite rapidly once the opening area
ratio A,/A, exceeds abour 0.2 and ultimately drops to zero. For the lighter roof,
Figure (3.3b), similar behaviour occurs in the first mode; the behaviour of the

second mode becomes clear when the damping is examined.

The marked deviation of the damped frequencies from the undamped ones
is associated with the dramatic increases in modal damping thart results from the

wall openings. This is illustrated in Figures (3.4a) and (3.4b) in which the
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damping ratios, calculated by Equation (3.32), are plotted for the simplified
Calgary roof and for the lighter roof versus different opening ratics, « = A/A,.
For both modes, the damping rapidly increases with the increase of the opening
area ratio and may even lead to overdamped conditions for which the narural
frequency vanishes. For the heavier roof, Figure (3.4a), this is observed for the
second (kettledrum) mode and large opening ratios for which the damping ratio

of thé first (Helmholtz) mode is less than critical, but quite high.

For the lighter roof, Figure (3.4b), the damping ratio of first mode rapidly
increases with the opening area and reaches critical values of ¢, = 1 or more for
very large opening ratios. The damping of the second mode is more than critical
throughout, which corresponds to the absence of damped natural frequencies o,
in Figure (3.4b). Therefore, the kettledrum frequency of the .. oter roof vanishes
because this vibration mode is overdamped. This explains why in El-Ashkar’s free
vibration experiments (1983), the kettledrum frequency could not be found. This
was the case even for A, - 0, when high damping stems from the roof acoustical

damping.

In the study of El-Ashkar and Novak (1983), the transition from the
Helmholtz frequency to the kettledrum frequency was not established. The opinion
was that when the opening area becomes very small, causing the Helmholtz
frequency to approach zero, an abrupt jump to the kettledrum frequency should

occur as shown in dashed lines in Figure (3.5) given by El-Ashkar (1983).
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However, Figures (3.3b) and (3.4b) suggest that the Helmholtz and the kettledrum
frequencies follow two separate theoretical branches in the frequency versus
opening area plot. In Figure (3.5), the dimensioniess parameter 3, is equivalent

to the opening area ratio « in the present study.

In Table (3.1) the theoretical results are compared with the experimental
dara of El-Ashkar (1983), for a roof with several opening ratios. The natural
frequencies are shown as the ratio w,'/w, in which w," is the damped frequency of
the first symmetrical mode and w,=(K,/m,)* is the pneumatic frequency. The
agreement is excellent for the natural frequencies and poor for the damping ratios.
[t may be noted that because of the very light membrane used by El-Ashkar, the
damping ratios were not established accurately. Data for the second symmetrical

mode of the lighter roof are not shown because this mode is overdamped.

3.6.2.2 Comparison between Complex Eigenvalue and Energy Approaches

The damping ratios calculated for the roofs in the two examples by
Equation (3.40) with ¢, = 0.01 are plotted against the opening area ratio Ay/A,
in Figures (3.4a) and (3.4b). The damping ratios calculated rigorously from the
complex eigenvalues by Equation (3.32) are also shown. The damping ratios
established from energy considerations are in excellent agreement with the more
accurate values for all realistic opening ratios, i.e., A/A, < 0.30 (30%) and in
some cases even for larger opening ratios. For the first mode of the heavier roof

and for both modes of the lighter roof, almost perfect agreement is obrained for
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TABLE (3.1): COMPARISON OF THEORETICAL RESULTS WITH EXPERIMENTS

DESCRIBED IN EL-ASHKAR AND NOVAK (1983)

(FIRST SYMMETRICAL MODE)
Frequency Ratio w;'/w, Damping ratio {, (%)

Opening

Area Theory

Rato  Theory  Experiment Experiment

(%) Complex  Energy
Eigenvalue Approach

3.17 0.200 0.220 2.90 2.90 2.22
6.30 0.277 0.265 5.00 5.00 2.62

9.44 0.331 0.320 10.01 10.00 2.76
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the entire range of the A,/A, ratio. In the overdamped cases, no vibratory motion

exists.

3.7 CHARACTERISTIC EQUATION OF A CIRCULAR MEMBRANE RACKED BY

A CAVITY WITH OPENINGS
To assess further the accuracy of the approximate two-mass model of the
roof-air system, an exact solution is formulated for the free damped vibration of
a circular membrane roof, backed by a cavity with openings. The effects of the
air leakage through wall openings, the internal pressure changes due to the roof
vibration, and the structural as well as acoustical damping radiating from both

the roof and the openings are considered.

3.7.1 Free Damped Vibration

In this analysis, v, = v,(z,4,t) is the membrane dynamic displacement, v,
= v,(t) is the motion of the air mass through the openings, m is the mass per
unit of plan area, and T, is the tension force per unit length. The volume change
due to the membrane motion can be expressed by the average displacement of the

membrane, 1.e.,

‘-’1 (D=

1
- Aj v,(r,8,0) dA (3.41)

where a and A are the radius and plan area of the membrane. The pressure
increment in the enclosure caused by the two motions v, and v, can be written

as

P, ., — P, E,
dp=_7v_°(Av,+A2v =-% A,(%+v2) (3.42)
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iy which the opening aree ratio is «° = A/A. With this pressure increment, the
governing equetion of a circular membrane (Kinsler and Frey, 1962) backed by a
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in which C is a complex constant whose dimension is that of v, (i.e., length) and
£(r) is a dimensionless function which satisfies the boundary condition f(a) = 0.
Then, the value of v, becomes a constant equal to 8, C which can be obtained

from Equation (3.41). Thus, Equation (3.43b) can be rewritten as

_ . b, v,
Y = = T (G mA] (3.472)
or

Va _ b, 8,

C a’ [by+p?+(c./mylul (3.47b)
where b, = yP.A/(m,V.) and v, /C is the ratio describing how the motion of the

air masses at the openings relates to the roof motion at the centre of the
membrane. Substituting Equation (3.47) into Equation (3.45a) and allowing v, to

act in phase and in antiphase with the roof motion yields

d, 1 dv, b.m mb b Cha,
— e — — 4+ kY, - — - = .
dr? r dr Teo 8L o T-[by+u+{co/my)u) 0 (3.48)
where
kKi=—{mal+cu}/T. . c=c¢+¢, and b.=4P.A)/(mV.) {3.49)
T.oarien U3 4ARY can be wmiten i the form
S ‘. =Y. ~ - . ( bx C 1
T SR o .. 1.0 . . £3.30)
- s & . x> iv;b}‘l'*giﬂf ?ﬂ:;u;
“hw righs b wige of Sqmeton 1301 S 2 funchon of v and is Aqual i
s oWt T TRe rampiere wdnter of Squetere 735607 ¢ che e of Twee terTs,
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where J, is Bessel function of the first kind and zero order. Applying the boundary

conditions gives

w(a) = 0 = Ju(ka) + = (3.522)
or

G = -k? C J.(ka) (3.52b)
Substituting Equation (3.52b) into Equation (3.51) yields

vi(r) = C [Jo(kr) = Jo(ka)] (3.53)

With the mode shape as in Equation (3.53), after applying the boundary conditions
and rearranging the resulting expression, the characteristic equation for the free
damped vibration of a membrane backed by a cavity with openings can be written

as

1 Ja(ka)
{1 + (kia)/(aa’}}’ (ka)?

Jo(ka) = - o, [1 2 (3.54)

in which J,; i = 0, and 2; are Bessel functions of the first kind and order zero and
two respectively, and

ki =(m, W +cau/A)/T. and m; =my/A, (3.55a)

xm =P /TV, and o = A/A (3.55b}
n the above equation A is the total area of the roof. m, is the air mass ar
Mp&uﬁ:m;md.,aamﬁ&mww&hm:he
relxcive anportance of the resteing forces stemmmuing Sow the enclosed ar i the
arevty and the wnsion fortes apried T he membrane
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Equation (3.54) can be solved numerically by trial and error to obtain the
complex eigenvalues y for a specific opening area o’; then the damped frequencies
and modal damping of the roof-air system can be calculated from Equations (3.31)
and (3.32) in Section 3.5. This process is repeated for several opening area ratios.
The results of this procedure are shown as dots, circles and squares in Figures

(3.3) and (3.4).

3.7.2 Free Undamped Vibration

The free undamped frequencies of vibration can also be obtained with the
same procedure as in the free damped case, by neglecting the damping terms c,,
c., and ¢ in Equations (3.43a) and (3.43b). Denoting -,=m, /m and k* = ~*'m/T,,
the characteristic (frequency) equation of the membrane for the free undamped

case becomes

1 Ja(ka)

Joa) =~ [+ TGy GaT | ka: (3-59)

3.7.3 Limiting Cases of the Characteristic Equation

Equation (3.54) contains all the three limiting cases of the problem, which
are listed below:
1. For the opening atea A, - 0, m, - 0, and Equation (3.54) reduces to the well-

known equation of the kettledrum. ie..

3, {ka)
k@) = -, '3”1“ (3.5
I For e opemng arvs ol the emlosary ViwmE ncvasing beyond any umul.

Koo V. oo mmd Tpuaneyr 7Y Sed] cwigewn
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Jo(ka) = 0 (3.58)
wrich is the well known frequency equation for 2 membrane vibrating in air,
whose roots are ka = 2.405, 5.52, 8.654, 11.792, . .. ..

3. For a very rigid membrane, T, + @, @, = 0, k ~ 0, v, = 0, and the system

becomes a Helmholtz oscillator whose frequency is given by

2
i = 1Po‘f: (3.59)

Equation (3.59) yields the frequency of a Helmholtz oscillator with
openings, internal pressure, and volume similar to those of the structure. This
frequency is substantially higher than the fundamental frequency of the flexible

roof backed by a cavity with openings.

3.7.4 Comparison between Exact and Simplified Analysis

Using Equations (3.54) and (3.56) both the damped and undamped
frequencies were calculated for the simplified Calgary Olympic Coliseum roof and
the lighter roof. The resulting modal parameters are plotted in Figures (3.3a) and
(3.3b) and shown as dots, circles and squares. The results of the approximate
two-mass theory are generally in very good agreement with those of Equations
(3.16) and (3.31). However, the simplified theoretical approach gives somewhat
higher values of undamped frequencies of the second mode for opening area ratios
Ay'A. > 0.5. This difference is not of practical importance because such openings
ate urr==li iy lage and, in this ranyg2. the mof second frequency, £, tends 1o

varmsh baiiace § vedamping. 't may be mentioned that the estimated leakage
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through doors and windows for the Calgary Olympic Coliseum corresponds to an

opening area ratio of about 5% to 8%.

The damping ratios of the roof-air system, calculated from the complex
eigenvalues p,, Equations (3.31) and (3.32), for both roofs, are plotted in Figures
(3.4a) and (3.4b) and denoted as exact. The agreement with the values from the
two-mass model is very good except for higher values of AJ/A, for which the
"exact" damping ratios are lower than those calculated using the simplified
approach. Some of the differences observed, though not of great practical
importance,' are probably due to the approximate nature of the much simpler two-
mass model, the use of which is well-justified by the often complex shapes of

lightweight roofs and the associated computational effort.

3.8 HARMONIC RESPONSE OF A CIRCULAR MEMBRANE BACKED_ BY

A CAVITY WITH OPENINGS

A closed form solution is derived for the damped response of a circular
membrane backed by a cavity with openings. The effects of the wall operings,
the internal pressure changes due to the roof vibration, and the structural as well
as the acoustical damping for both the roof and the openings are accounted for in

the analysis. The derived solution and the assessment of its accuracy are described

below.

In the analvsis formulated below, the uniform narmonic loading is P(r.4,t)

= P exp (k) where P is the load amplitude, # = -1, and « is the circular
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frequency of the loading. Using the same symbols as in Section 3.7, the governing
equation of motion of a circular membrane (Kinsler and Frey, 1962) backed by a

cavity with openings under harmonic pressure can be written as

82\’, _To 32\’, 1 aV, 1_ 82V1 ’YPQAQ v1
a2 m(ar“+rar+raez)+vo (a.+v2)
(c,+¢n) 3w P,
+ em— e = gl »
i —e (3.60a)
The governing equation of motion of the air mass at the openings is

3V APAE Ca 3V2 _
Pro + v, (a,-i- vy) + T 0 (3.60b)

In equations (3.60a) and (3.60b), v, is an integral function of the mode of

vibration. The solution of Equation (3.60) can be written as

{v,(r,e,t) } - {vi(r,ﬁ) } eiwt (3.61)

v,(1) V2

For the symmetrical modes of vibration, the term 3%v, /34* vanishes. Substituting

Equation (3.61) into Equations (3.60a) and (3.60b) yields

To dzv 1 dv 'YpoA \7
2y -2t 28N 2L
VienlmE trR )tV Gt W
silaten) oo P (3.62a)
m m
P.A? LV, . (c,+c,
-V, + YT'S:- (;,’— +vy) +1 LC’T‘)— wy, =0 (3.62b)

From Equation (3.62b), the displacement of the air masses at openings, v;
can be written as
Y
2 o ta(e/m] (3.63)
where b, = yP.A/(m,V.). Equation (3.62a) can be arranged in the form

V:=->
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dwv, . 1 dv, P _bm. v
T TR =-Tor e (3.642)
or _
dv, 1 dv, __ Ps,
@ fra Tt (3640)
where
=1- (blm/P)( + V) (3.65a)
and
k* = (mw?® - 1cw)/To (3.65b)

The right hand side of Equation (3.64) is a constant. Thus, the complete
solution of Equation (3.64) can be written as

w(r) = C Jo(kr) - ifr (3.66)

Applying the boundary condition, v,{(a) = 0, gives the value of the constant C as

_ P, 1
¢ =T T (3.67)
Substituting Equation (3.67) into Equation (3.66) yields the amplitude of the

membrane displacement, i.e.,

PB3 [ Jo(kr)-J,(ka)

v,(r)= J.(ka) ] (3.68)

The average displacement of the membrane can be written as

- p«33 Jz(ka)
1 [Jo(ka) ] (3069)

Substituting Equation (3.63) into Equation (3.65) gives

8y = 1 - (&, To/P2®) B, V, (3.70)
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where
1 J.(ka)
= - J1
R ¢ g 7 Py (3.71)
and
k12 =(m2.(02 - icgzw/Az)/To (3.72)
Thus, the displacement of the membrane becomes
_ P3y Lok .
vl (r,t) - kz-ro [ Jo(ka) 1 ] € (3.73)

[t can be seen that the amplitude of vibration is frequency dependent and
that it is directly proportional to the amplitude of the harmonic loading P, and
inversely proportional to the tension T.. When the frequency « of the harmonic
loading corresponds to any of the free oscillation frequencies of the membrane, the
amplitude reaches a finite maximum value, depending on the damping of the
membrane. For undamped cases, the value of k? is real and equal to muw¥/T.,

instead of (mw? — icw)/T..

Limiting Cases

Equation (3.73) contains the two limiting cases of the problem, which

are listed below:

1. For the opening area A, - 0, m, = 0, 8, ~ 1, 8, - 85, and Equation (3.73)
reduces to Equation (3.74) for the response equation of a membrane backed
by a closed cavity under harmonic uniform pressure, which is

-};BS r JO(IQ') iwt
T, { 1.G<a) -1]e (3.74)

w(r,t) =
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where

8s = 1 - (yP.na?/PV.) w (3.75)

2. For the opening area increasing beyond any limit A; ~ =, Vo = =, 8, » 0,
By ~ 1, and Equation (3.73) reduces to that of 2 membrane vibrating in air
under uniform harmonic loading, which is

P Jo (ko) fut
BT, L k) L€ (3.76)

w(t) =

Equation (3.73) can be used to calculate the damping ratios at the natural
frequencies of vibration, we.. After calculating the resonant amplitude under
harmenic uniform pressure, the dynamic amplification at the roof centre is

= v (I'= osw:'.“-m)
v,(r=0,0=0) (3.77)

c
where

we = we (1 =2 ¢2)* (3.78)
The dynamic amplification factor also can be written as

= 1 = 1
(2¢(1-¢3)]* ~ 2¢ (3.79)

£
Thus, from Equation (3.76), the modal damping ratio is

¢ =0707[1-{1-(1/ }]*=1/(2) (3.80)

For a specific value of o', Equations (3.77) to (3.80) can be solved initially
by assuming w, = w., which can be calculated from either Equation (3.16) or

Equation (3.56). New values of w,, ¢, and ¢ are recalculated and the process is
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repeated untl convergence is reached. This procedure is followed for different

opening area ratios.

The damping ratios calculated in this way are also in very good agreement
with the values of the two mass model, Figures (3.4a) and (3.4b), except for
higher values of A;/A, for which the "exact” damping ratios are lower than those

calculated using the simplified approach.
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CHAPTER 4

EXPERIMENTS WITH FREE VIBRATION OF SELF-SUPPORTED,

LIGHTWEIGHT ROOFS BACKED BY CAVITIES WITH OPENINGS
4.1 INTRODUCTION

The design and construction of self-supported, large span, lightweight roofs

require an examination of their dynamic behaviour to secure a safe and serviceable
design. For most cases, an experimental study becomes necessary because either
the problem is too complex for theoretical treatment or the analysis is too
expensive. In addition, most theories are based on approximations and simplifying
assumptions. The experiments in this chapter are conducted to provide a method

of verifying the theory outlined in Chapter 3 and to further explore the behaviour

of these roofs.

Two structural models were used in this study. The first was a large span,
self-supported membrane roof and the second was a flexible large span,
lightweight plate roof. The main objective of the experimental free vibration
investigation is to study the effect of wall openings and volume scaling on the

dynamic behaviour of self-supported, lightweight roofs backed by cavities with

openings.

In this study, the similarity requirements, instrumentation and testing
procedure are described. Also, experimental observations and the comparison of

the experimental results with the theoretical results are givern.



4.2 SIMILARITY REQUIREMENTS

The basis of the experimental work on models is that all forces can be
scaled in the same proportion to those of the corresponding full-scale forces. The
dimensional analysis of all variables yields a proportionality constant which is a
funcrion of a dimensionless group of parameters. Once a unique relationship has
been established between the proportionality constant and its dimensionless group,
the value of the constant can be found for different dimensionless numbers. In
many cases, the scaling requirements for one dimensionless parameter make it
difficult to scale another one correctly. A continuation to this discussion is given
in the wind tunnel study of Chapter 7. Detailed data on aeroelastic modelling
and techniques to simulate free vibration of structures and the effects of wind on

them are given by Tryggvason and Isyumov (1977).

The length, mass, and time scaling parameters are defined as follows:

Length scale = %"— = A, (4.1)
P

Density scale = 2= = ), ‘4.2)
Pp
. Un

Velocity scale = T = M (4.3)
P

In the equations above, the subscript m refers to the model and the subscript p
refers to the prototype. The dimensions of the model are determined by the length
scale, x, which is constrained by the scaling of the boundary layer thickness and
the integral length scale of the wind turbulence. The length scale may also be

dictated by other constraints.
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The frequency scale, A, is

£, Av

M= I =N (4.4)

The reciprocal of the frequency scale is the time scale, A, which is given by

- M
p A\l

'—ll'—l
3

A = (4.5)

For a roof system that is attached to a rigid structure, the following physical
quantities may have significance in determining its behaviour: , s, &, €, U, 5., Ls,
E, and ¢, in which ¢, is the speed of sound in air; p, », and U are the density,
dynamic viscosity, and velocity of the air, respectively; g is the acceleration of
gravity; s, L., and E, are the density, typical dimension, and the modulus of

elasticity of the structure, respectively; and finally ¢, is the damping ratio of the

structure.

Using the Buckingham » theorem, a minimum of five non-dimensional

parameters are required, Whitbread (1965), which are:

pUL

1. Reynolds number Ro=—r (4.6)

2. Cauchy Number = -E—hz (4.7

3. Density ratio = -—:ji (4.8)

4. Froude Number - (4.9
gL

5. Damping ratio =, (4.10)

Another dimensionless parameter is the Mach number which is important
for scaling the pneumatic damping (Irwin and Wardlaw, 1979). In the free

vibration experiments in this chapter, Reynolds and Froude numbers are not

65



relevant. The discussions of Reynolds and Froude numbers is continued in Section

7.2.

Similarity of the inertial, elastic and damping forces for lightweight
structures requires the equality of the following non-dimensional quantities

(Tryggvason and Isyumov, 1977):

Similarity of inertial effects - ps/p
Similarity of elastic effects - EypU?
Similarity of structural damping - ¢s

4.2.1 The Mass Density Scaling

The mass density scaling parameter of the structure, which represents the

inertial similarity, requires that

(2. =02, (4.13)
I P
Hence,
t—j%]m = [;’“;], . (4.14)

where m is the mass per unit area. Thus, the mass per unit area scaling, ., Is

An =M/m, = ), (4.15)

4.2.2 The Elasticity Scaling

For pure membrane action, the elastic similarity implies the similarity of
tensile force per unit length. Allowing the non-dimensional parameter, E,/,U? to
be rewritten as Eh/pU?L, where h is the thickness of membrane and L is the

building characteristic dimension, then
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(T = (2, (4.16)
and with Pm = Pp = Pair, then
E—E‘—ﬁ—?]j"‘ = A A2 4.17)

In Equation (4.17) ) is the velocity scale, therefore, the scaling of the tension per
unit length scaling is

Aro = AL A2 (4.18)
Similarly, for a flexible plate roof the rigidity scaling, »,, requires that

E,h? - Eh?
[pUTLB Im = Lm]p (4.19)

Thus,
A = A7 A2 (4.20)

4.2.3 Dynamic Stiffness Scaling

The stiffness of lightweight roofs backed by cavities depends on the tension
force in the case of membrane roofs or the roof rigidity in case of plate roofs, and
the internal pressure resulting from the volumetric changes of the enclosed volume
underneath the roof. Correct scaling of the internal pressure changes due to the

roof motion is important for maintaining the dynamic similarity of the roof.

Tryggvason et al. (1977) showed that the similarity of fluctuating internal
pressures can be maintained for low wind tunnel speeds by distorting the internal
volume according to the following relation:

Ap = *Lm/% = .\LS sz (4‘-21)
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in which ». is the internal volume scaling. This volume scaling implies
exaggerating the model volume by 1/ beyond that required by the length scale.
[n practice it is not difficult to provide an additional volume (beneath the turntable

floor) to provide the distorted internal volume.

4.2.4 Damping Similarity
The structural damping ratio, ¢,, of the model is usually assumed to be
similar to that of the prototype, i.e., the structural damping scaling parameter,

A¢s, €quals one.

In most cases where the pneumatic forces of the internal volume play a role
{for volume changing motions of a sealed roof) the acoustical damping is also
important. Irwin and Wardlaw (1979) investigated the scaling of the acoustical
damping. It was shown that to model the acoustical damping effect correctly, the
Mach number, U/¢., should be the same at both model and fuil scales. However,

it was shown that relaxing Mach number scaling can be regarded as conservative.

Kind (1982 and 1984) analytically investigated the pneumatic effects in air-
supported structures. The analysis was limited to the volume displacing modes
of vibration. It was concluded that both the pneumatic stiffness (internal pressure
increase directly proportional to volume decrease) and the pneumatic damping
(internal pressure increase directly proportional to the rate of volume decrease) are
important for most air-supported structures. For such structures, it was suggested

that a non-dimensional pneumatic damping scaling parameter, A, should be
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maintained as

= L
' = CC) (423)

where G, and C, are the local inverse slopes of the fan and leakage pressure versus
flow characteristics, respectively. The fan effect is not considered in this study;
therefore the scaling by Equation (4.23) is not implemented. It should be
menrioned that the pneumatic damping is of much less importance in narurally

ventilated, self-supported structures.

4.2.5 Summary of Aercelastic Scaling Requirements

The aeroelastic modelling requirements for the free vibration experiments

in this chapter can be summarized as follows:

1. All dimensions of the structure are scaled according to ..

2. The internal volume is scaled according to dw = A3/A2

3. The mass per unit area of the roof is scaled according to A, = A,.

4. The elasticity similarity for the membrane roof is scaled according to g =
MW, and the rigidity of the plate roof is scaled according to ax = A2

5. The similarity of the structural damping is based on A, = 1.
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4.3 CONSTRUCTION OF THE MODELS
4.3.1 The Prototypes
4.3.1.1 Prototype 1

The frst structure type considered is a stadium with a horizontal circular
membrane roof of 126.75 m in diameter and 42 m in height. The membrane of
the roof is considered to be 20 cm thick lightweight concrete panels supported by
a prestressed cable mesh anchored in a ring beam resting on a rigid circuiar wall.
The membrane action is obtained by grouting the lightweight concrete panels to

the pretensioned cables to form a monolithic membrane.

The total mass per unit area of prototype 1 is about 292.5 kg/m? which,
includes the masses of the lightweight concrete, the cable net and the plastic
waterproof cover. The structure enclosed volume is 5.40 x 10° m® and the

fundamental frequency of the roof is taken as 0.2C Hz.

4.3.1.2 Prototype 2

The second structure type considered is that of a similar stadium but with
a lightweight, flexible plate roof. This structure may be suitable for an area
subject to little or no snowfall. This type of structure might comprise a truss
system or any other supporting system that behaves in a flexural way resting on
the outside ring wall. Such a system may not be very practical but it is suitable
for the experiment. The roof total mass per unit area of prototype 2 is assumed

to be 58.5 kg/m? and the structure enclosed volume is the same as that of



prototype 1.

4.3.2 Models

The main considerations in designing the two models used in this
experimental study were easy construction, easy adjustment of the membrane
tension in model 1, and easy replacement of the roofs. ;I‘he length scale was
determined after an extensive study of the material properties of various

membranes and plates.

4.3.2.1 Roof of model 1

At first, 2 0.254 mm thick tetraflurcethylene membrane (teflon) was chosen.
However, this material was not used because of its nonlinear properties. Finally,
a 0.50 mm thick neoprene membrane was used. With this material, a geometric
scaling of A, = 1:390 was determined which allowed through elasticity scaling a
velocity scale of 1: 3, and the model was constructed to satisfy the various
similarity requirements mentioned earlier. The membrane roof wa:s attached to the
wall by a clamping ring and the membrane tension was adjusted using a moxlrable

aluminum clamping ring as shown in Figure (4.1).

A summary of the various scaling parameters of model 1 is presented in
Table (4.1). The numerical values for the membrane model and the corresponding
prototype scaling are also given in Table (4.2). A plan and a vertical cross-section
of this model showing the model set-up are given in Figures (4.1) and (4.2). Also,

a photograph of the model is given in Plate (4.1).
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TABLE (4.1): SUMMARY OF AEROELASTIC SCALING PARAMETERS OF

THE MEMBRANE STRUCTURE (MODEL 1)

No. Parameter Scaling Numerical value

1 length A =Lo/L, 2.564 x 102 (1 : 390)

2 Internal W=AY 02 1.517 x 107
volume

3  Mass/unit Am= AL 2.564 x 10% (1 : 390)
area

4  Weight/unit A=A 2.564 x 10° (1 : 390)
area

S  Time A=AL /Ay 7.69 x 10° (1 :130)

6  Frequency A=A/ AL 130 {130: 1)

7  Velocity W=V /V, 0.333 1:3)

8 Force A= A2 7.305 x 107

9 Pressure Ap=22 0.111 1:9

10 Tension/unit Are=A 0 2.849 x 10+

area
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(MODEL 1)

TABLE (42): AEROELASTIC SCALING OF THE MEMBRANE STRUCTURE

Prototype

No. Parameter

Model

Quantty Dimension

Quantity Dimension

1 Roof 126.75
diameter
2  Height 429

3 Mass/unit 292.5 kg/m?

area

4  Weight/unit 2869.4 N/m?

area

S Modulus of 46.53 MN/m?

elasdcity

6 Enclosed S.41 x 105 m?
volume

7 Fundamental 0.2 Hz

frequency

32.5 cm
11.0 cm
0.75 kg/m3
7.36 N/m?

.17  MN/m?

8.21 x 10¢ cm?

26.0 Hz
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Plate (4.1): The membrane roof model
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4.3.2.2 Roof of model 2

In the second model of this study, the roof was modelled as a clamped
circular lightweight plate. Several considerations governed the design of this
model. The most important were the linear behaviour of the roof material without
the possibility of creep, and the resonant frequencies of the roof (not to exceed
those which are the maximum measurable frequencies by the available
instruments). The roof material selected was 3.0 mm Rohacell 51 foam sheet.
This selection was based on its availability and on its deflection/thickness ratio
(which was less than 0.10), as linear bending deflections were desired. The roof
was fixed to the walls by a strong adhesive material (RTV glue). The fundamental

frequency of the model with the base open was 45.0 Hz.

A summary of the various scaling parameters of the model is presented in
Table (4.3). The numerical values for the model and the corresponding prototype
scaling are given in Table (4.4). A vertical cross-section of the mode] is given

in Figure (4.3). Also, a photograph of the model is given in Plate (4.2).

4.3.3 Other Parts of The Models

The walls of the two models were rigid and made from an aluminum
material 10 mm thick. To simulate wall openings (windows and doors in the
prototype), four groups of three symmetrical circular holes of 30 mm in diameter
each, were drilled in the circular wall at mid-height, spaced 90° apart, as shown

in Figure (4.4). The ratio of the opening areas to the wall area, o', could be
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TABLE (4.3): SUMMARY OF AEROELASTIC SCALING PARAMETERS OF

THE PLATE ROOF STRUCTURE (MODEL 2)

No. Parameter Scaling Numerical value
1  length A=Lo/Ly 2.564 x 102 (1 : 390)
2 Internal A=A A2 6.74 x 10°®
volume
3  Mass/unit A=Ay 2.564 x 10° (1 : 390)
area
4  Weight/unit A=A 2.564 x 10° (1 : 390)
area
5 Time A=A /Ay 513 x10% (1 :199)
6  Frequency A=A/ AL 195 (195 : 1)
7  Velocdrty W=V /V, 0.5 1:2)
8 Force Ar=A%02 1.644 x 10
9 Pressure A=A 0.25 1:49
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TABLE (4.4): AEROELASTIC SCALING OF THE PLATE ROOF STRUCTURE

(MODEL 2)

Prototype Model

No. Parameter

Quandty Dimension Quantty Dimension
1 Roof 126.75 m 32.5 crn
diameter
2  Height 42 m 11.0 cm
3  Mass/unit 58.5 kg/m? 0.1 kg/m?
area
4  Weight/unit  574.0 N/m? 147 N/m?
area
5 Modulus of 6.30 X 10®° N/m? 70X 107 N/m?
elasdeity
6 Enclosed 541 x10° m? 3.65x10* cm?
volume
7 Fundamental 0.23 Hz 45.0 Hz

frequency




Plate (4.2): The plate roof model
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varied from 0.0 % to 7.8 % by using a rigid aluminum circular band embracing
the walls. The circular band could cover one, two or three openings of each group
to give values of 5.2 %, 2.6 % or 0.0 %, respectively. For o’ = 7.8 % the band
was removed from the models. These opening area ratios were chosen on the
basis that, for the Calgary Olympic Coliseum, the estimated leakage rarte

corresponds to an opening area ratio of about 5% to 8%.

A chamber was mounted below the models to satisfy the corresponding
internal volume scaling as shown in Figures (4.1) and (4.3). The chamber was
sealed to prevent any air leakage from the models by inserting a rubber strip

between the model base and the chamber flange.

4.4 INSTRUMENTATION AND CALIBRATION

The instrumentation used in this study comprised six vertical displacement
sensors and one pressure transducer. The displacement sencors measure the
change in the reactance of the air gap between the vibrating surface and the
probe. These sensors allowed simultaneous deflection measurements at six
different locations. The displacement sensors were Kaman non-contact reactance
sensors and were locateci below the roof surface as shown in Figures (4.1) and
(4.3). Probe positioning holes were provided in the instrument plate to orient
the transducers normal to the roof surface. The sensors were calibrated rrior to

each experiment.
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The locations of the sensors are given in Figures (4.2), (4.3) and (4.4) for
both model 1 and 2. This arrangement facilitates the separation of the
symmetrical modes of vibrations from the antisymmetrical ones.  The
displacements at all probes were monitored to confirm the modé identification and

for comparison purposes.

Electrical leads for various semsors were passed through the side of the
chamber and carefully sealed. Small aluminum foil targets (0.015 mm thick and
of 9 mm diameter) were glued to the inner surface of the roof at the Kaman
probes. Baffles were placed into the pressure chamber to aveoid any acoustic
resonance. A further consideration was the complete sealing of the models on
tae mounting board as any small leakage may negate the results. An internal
pressure tap was connected to the instrument plate inside the model and, with the
openings closed, the model was pressurized and the resulting pressure was

monitored to detect any leakage.

4.5 TEST PROCEDURE

After calibrating the sensors, the membrane model was tuned by excitation
with a loudspeaker, having the base board and the opening band removed as
shown in Plate (4.1). This was done to simulate the membrane vibration without
an enclosed cavity. The tension in the membrane was uniformly adjusted in all
directions until a resonance occurred with the loudspeaker exciting the membrane

at 26.0 Hz which is equivaleﬁt to 0.2 Hz in the prototype scale.
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The test procedure was the same for both models. After setting up the
experiment for each model as shown in Figure (4.5), the wall opening area was
set to different ratios and for each ratio the models were excited in sdll air using
the loudspeaker. Two types of excitations were used: random and harmonic.
The random excitation generated using white noise with a frequency range of 0
to 100 Hz for the first model and 0 to 400 Hz for the second model. These
frequency ranges facilitated the determination of the narural frequencies of
vibration. Harmonic excitation was then applied stepwise and was used to identify

the mode shapes associated with the natural frequencies.

The establishment of the natural frequencies from the power spectra of
response to the white noise excitation utilized a Hewlett-Packard Structural
Dynamic Analyzer 5423A. The damping ratios and the auto-correlation of the
response at each probe location were also obtained using the analyzer. The HP
analyzer evaluates the damping by fitting an analytical function to the measured
peak of response, from which damping is obtained when convergence between the
measured and =nalytical peaks is reached. The damping ratios obtained represent
the total damping of the model. This process was repeated for different opening
areas. Examples of the established response spectra at the center of model 1 are
shown in Figure (4.6) for different opening ratios. The spectral peaks are very
narrow, facilitating a sufficiently accurate determination of the natural frequencies

of the system.
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Fig. (4.5): Free vibration experimental set-up
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When applying harmonic excitation, the positicning of the sensors indicated
in Figure (4.4) made it possible to identify the mode shapes, and to distinguish
between the frequencies of both the symmetrical and antisymmetrical modes. To
confirm the mode shape identification visually, a thin layer of fine white sand was
uniformly spread on the surface of the membrane roof. For the plate roof, a thin
layer of sawdust was used instead. The roof was then subjected to a harmonic
excit=tion at each natural frequency, previously established for each wall opening
ratio. The displacements at all six transducers were monitored while the sand or
sawdust travelled toward the points of minimum displacement delineating the
nodal lines and circles. Examples of the vibration modes indicated by the nodal

lines and circles visualized in this way are displayed in Plates (4.3) to (4.6).

4.6 TEST RESULTS AND THEIR COMPARISON WITH THE THEORY

The experimental and theoretical free vibration results are discussed in this
section. The frequency and damping results are plotted against the wall opening
ratio o' = A/Ay, where A, is the total area of the openings and A,, is the area
of the wall. In Figures (4.7) and (4.8), the results for no wall openings are
plotted at «' = 1073, and for the models with open bases and without the opening

band the results are plotted at o’ = 10°.
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Plate (4.3): The fundamental modes f, and f, of the membrane model
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Plate (4.4): The first antisymmetrical mode f;, of the

membrane model

90



Plate (4.5): The second symmetrical mode f,, of the membrane model
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Plate (4.6): The second antisymmetrical mode f,, of the membrane model
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DAMPING RATIOS
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Fig. (4.7): Effect of wali openings on (a) frequencies and (b) damping ratios of
the membrane roof.
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4.6.1 Frequencies of Free Vibration

The natural frequencies of the roof-air system were identified from the
power spectra of the roof response, such as those shown in Figure (4.6). For the
two models, Figures (4.7a) and (4.8a) show the variations in the natural

frequencies with the wall opening ratio <'.

The opening area ratio, o', significantly affects the fundamentat frequencies
f, and f, associated with the symmetrical modes having no nodal lines. These
frequencies were calculated using the generalized two mass system described in
Chapter 3. In these two modes, the roof and the air mass at the openings vibrate
in phase or in anti-phase,respectively. For the plate roof, the generalized mass,
and stiffness were calculated using the formulas for natural frequencies and mode

shapes given by Blevins (1979).

The first frequency, f,, can be interpreted as one of a Helmholtz oscillator
with a flexible wall. For comparison, the theoretical damped frequencies as well
as modal damping were calculated from the complex eigenvalues of the generalized
‘+~0-mass system. Both the structural and acoustical damping for the roofs and the
openings were considered. Theoretical natural frequencies of the two models
system f, and f, are plotted (in dashed lines) as shown in Figures (4.7a) and

(4.8a).
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The frequency f, diminishes with the decreasing the opening area ratio, o',

and its experimental values agree well with theoretical predictions for most

openings. Two extreme cases occur. For the opening area approaching zero, the

frequency, f;, vanishes which is consistent with the standard Helmholtz oscillator.
For the wall opening area increasﬁlg, the natural frequency approaches that of the

roof without the enclosure.

The second frequency of interest, f;, is also associated with a symmetrical
roof vibration mode without nodal lines, but the air mass at the openings moves
in and out in anti-phase with the motion of the roof. Therefore, the air pressure
on the roof is increased and the frequency, f;, is higher than f, for low values of
o'. The variation in the damped frequency, f,, with the opening area factor, «’, is
also shown in Figures (4.7a) and (4.8a). For o' approaching zero, i.e. with the
openings vanishing, and at very small o', the frequency, £, is controlled by the
pneumatic stiffness of the enclosure and approaches the "kettledrum” frequency.
Increasing the opening area produces a "leaking kettledrum” and has little effect
at first, but at a certain o' (0.015 for the first model and about 0.03. for the
second model) the damped frequency, f,, starts rapidly dropping. This drop is
caused by the loss of the pneumatic stiffness and is accelerated by a rapid increase

in damping. Those frequencies, f,, that could be reliably identified agree well

with the theoretical values.
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Other frequency notation used are f; in which i is the number of nodal
lines and j is the order of the mode. For symmetrical mode shapes, i equals zero.
The higher mode frequencies, denoted f; in Figures (4.7a) and (4.8a), are largely
insensitive to the magnitude of the wall openings for both symmetrical modes and
antisymmetrical modes. For these modes, the air in the enclosure is displaced from
one part of the cavity to another instead of undergoing volume changes that, in

turn, causes internal pressure changes.

4.6.2 Modal Damping of the Roof-Air System

For various wall opening ratios, o', the total damping ratios were
experimentally obtained from the peaks of the auto-spectrum of the roof response
to a white noise excitation by the HP analyzer. The analyzer establishes the
modal damping by fitting eleven theoretical points to each experimental spectral
peak for a chosen bandwidth until the theoretical and experimental spectral peaks
are matched. The damping ratios obtained for the two models are plotted in
Figures (4.7b) and (4.8b), along with the theoretically predicted values. The
damping ratio of the lowest mode shape with the frequency, f,, is denoted ¢,. This
diminishes with decreasing " and for most o' its experimental values agree very
well with the theorerical ones. For the theoretical evaluation, the structural
damping ratio was assumed to be 0.8 % for the membrane and 1.2% for the plate

roof.
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The second basic modal damping ratio, ¢,, corresponds to the mode shape
with the frequency, £, an1d for small «', the experimental values are in good
agreement with the theoretical values. Excellent agreement is also obtained for
the damping ¢., pertinent to the symmetrical mode with one nodal circle and a
frequency f.,. It should be noted that the upper limit of the «" scale corresponds
to the completely open base of the model. The modal damping of the higher
modes ¢oz, Sy aﬁd ¢, varies with o only slightly indicating a small growth with

the opening area.

Altogether, the experimentally established damping ratios are in good
agreement with the theoretical values. The differences observed are insignificant
from a practical point of view and at least part of the differences can be attributed
to the inaccuracy of the estimated value and characrer of the structural damping.
In other words, these differences may be due to the assumption adopted in the
theoretical model that the structural damping is viscous in character. This might
not be the case as much of the roof damping comes from the friction at the

supports and from the roof hysteresis damping which is frequency independent.

4.6.3 Effect of Enclosure Volume

The last series of experiments was devoted to the study of the effects that
the enclosure volume may have on the natural frequencies and damping ratios of
the roof-air system. The volume scale expressed by Equation (4.21) suggests that

such effects might be present. In this investigation, special attention was paid to
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the symmetrical modes of vibration f;, f,, and f,,, which are volume changing
modes. Both models were used. To study these effects, the volume of the
chamber under the model was changed in a few increments by inserting cylihders
of rigid styrofoam and the frequencies and damping ratios were established as

before.

For model 1, the resulis are plotted in Figures (4.9a) and (4.9b) for several
opening area ratios. The volume factor used to characterize the enclosure is the
ratio of the voluine of the chamber under the model base to the volume of the
cavity above the base. In Figure (4.9a), this ratio is shown as the factor
(Framber/ Vrmote)-  The fundamental frequency can be seen to vary markedly with the
chamber volume only with the wall openings absent (o' = 0), in which case the
frequency decreases with increasing the chamber volume. This is to be expected
because with «" = 0, the roof behaves as a kettledrum, whose fundamental
frequency, f,, depends on the pneumatic stiffness of the enclosure and thus on its

volume.

For " > 0, the fundamental frequencies are lower than those for o' = 0,
but increase with increasing opening area, and slowly diminish with increasing
chamber volume. This is consistent with the behaviour of the Helmholtz oscillator.
The effect of the model volume on the frequency f, is not significant for values of
o’ greater than zero because the effect of air compressibility in stiffening the

structure diminishes as the openings are introduced.
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The vertical dashed lines denoted by i, in Figures (4.9a) and (4.9b)
correspond to the actual volume scale of the model, with the auxiliary chamber
present. [t can be seen that if the internal volume was scaled according to A, =
AZ, the kettledrum frequency f; for o’ = 0 would be considerably overestin;ated

and the Helmholtz frequencies («' > 0) would be somewhat overestimated.

Figure (4.9b) shows the effect of the enclosure on the damping ratios of
the fundamental modes of model 1. The damping ratios increase with o', but
show only a marginal increase with decreasing chamber volume and thus only a
very small effect of the volume scaling. A similar trend was observed with the
second symmetrical mode f,, which has one nodal circle, but it was not as
pronounced as for the symmetrical modes f; and f,. This is because the volume
changes involved with the mode f., are small compared to those of modes f, and
f,. In general, all the effects of the enclosure volume diminish with increasing wall

openings because the internal pressure contribution diminishes.



CHAPTER S5
REVIEW OF BASIC CONSIDERATIONS FOR AIR-SUPPORTED STRUCTURES

5.1 INTRODUCTION

Air-supported structures have been in use since 1945. These structures are
now a common sight in most cities, where they cover exposition halls, tennis
courts, and greenhouses. Also, they can serve as inflatable forms in dome
construction. The advantages of such structures are speed of erection, low cost,
large span capabilities, and stability in seismic regions. The main drawbacks are
their vulnerability to snow load, instability in high winds, and accidental deflation
due to power or mechanical failure. The almost indefinite span capacity of these
structures is a potential advan:age and is a challenge to engineers. Examples of

air-supported structures are shown in Plates (5.1) and (5.2).

In this chapter, the basic considerations in air-supported structures are
briefly covered. These considerations include definitions, stages of construction,
loading, and applications of air-supported structures. The previous work on air-

supported structures is also reviewed.

5.1.1 Definitions of Pneumatic and Air structures

PNEUMATIC STRUCTURES

A pneumatic structure is a structure fabricated from a strong, flexible,
airtight material that is supported by maintaining a pressure differential across the

surface of the material (Bird, 1972). Pneumatic structures are classified as air-
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Plate (5.1): Birdair’s air-supported structure for U.S. Travel
Association Pavilion (Dent, 1971)
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supported structures (sometimes known as air structures), air-inflated structures,

and hybrid structures.

Air Structures
An air structure is a form of pneumatic structure used to enclose useful
space, i.e.,, a pneumatic structure that serves as a building or enclosure. Air

structures can be classified as follows (Bird, 1972):

1. Air-Supported Structures

An air-supported structure is an air structure in which the entire enclosed
space is maintained at a small pressure differential over the ambient atmospheric
pressure to support and pretension the membrane that serves as the enclosure.

Air-supported membranes can be categorized as:

A. Single Membranes

A single membrane air structure is one in which the structural envelope is
a single fabric or any other material that has essentially uniform structural

behaviour.

B. Reinforced Membranes

A reinforced membrane air structure is one in which the primary stresses
in the structural envelope are reduced by providing cable reinforcements which
carry a major share of the imposed loading. This reinforcement may serve to

reshape or stabilize the envelope.
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C. Multiple Membranes

Among the most innovative advances in air structures is the addition of one
or several secomiary membranes to the inner side of the primary load bearing
membrane. These éécondary membranes are usually suspended from various points
or lines on the structural membrane creating one or several somewhat stagnant air
spaces which can significantly reduce heat losses and gains. Typical multiple

membrane systems are displayed in Figure (5.1) given by the Architectural Fabric

Structures Institute (AFSI, 1977).

2. Air-inflated structures
Air-inflated structures are those in which inflated structural elements act

as columns, beams, or arches to support the enclosing membranes.

3. Hybrid air structures
Air structures that combine air-inflated and structural elements with each

other, or with other major structural supports are defined as hybrid air structures.

In air-supported structures, the internal pressure supports the structure just
like a column or a beam in a conventional building. All air-supported structures
include automatic inflation systems with continuous operation to maintain the
internal pressure in the structure. These systems must include primary and
secondary blowers to assure back-up inflation capacity, with each blower designed

for full capacity (Leonard, 1972).
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5.1.2 Advantages and Disadvantages of Air-Supported Structures
Some advantages of air-supported structure are listed below (Leonard,
1972):
1. They are light in weight and collapsible implying easy transportation and
erection of components;
2. The environmental loads are efficiently carried by direct tensile stresses without
bending;
3. The leakage of gases through punctures provides an early wamning of collapse
and repairs can be easily made by patching; and
4. The primary load carrying mechanism is a part of the habitable environment

itself, i.e., a pressurized mixture of gases.

The disadvantages of air-supported structures include (Leonard, 1972):
1. Susceptibility to large displacements and wrinkling under concentrated loads;
2. Strength requirements of the material used; and

3. The tendency to respond greatly to dynamic forces.

5.1.3 Applications of Air-Supported Structures as inflatabie Forms

Wwith advances in material technology and the capability to predict nonlinear
membrane behaviour, lightweight concrete is now being sprayed over the exterior
or the interior of inflated rubber membrane structures (Leonard, 1972). This

technique has several advantages:
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1. The formwork in its conventional sense is eliminated and less labour is
involved in the erection process;
2. If the concrete is sprayed on the interior, the plastic shell serves as a weather
protection during construction;
3. The plastic inflatable formwork is light and collapsible; and
4. It can be used to shape the complex formwork necessary for a "freeform"

shell.

5.2 STAGES OF CONSTRUCTION

The physical behaviour of an air-supported shell during the application of
loads can be divided into three primary phases. The first phase is the unfolding
phase. This occurs when the shell is inflated from its compact form into its initial
unstrained state. The behaviour of the shell in this phase is primarily a problem

in mathematical topology (Leonard, 1972).

The second phase in the inflation is the pressurization phase. This is the
phase in which the shell is deformed from the unstrained state into the final
shape. Since the displacements during this inflation process are large, this is a
nonlinear problem. Additional nonlinearities in the behaviour may occur because

of the nature of the material or the magnitude of the strains (Leonard, 1972).

The final phase is the in-service phase in which the shell is fully inflated by
the internal pressure and in use. The shell might be subjected to external loads

such as wind, ring loads, snow loads, or overpressures. This can be considered as
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the superposition of a small displacement problem on the previous nonlinear

problem. Large superposed displacement problems can be modeled as a sequence

of incremental displacements. Since these small additional displacements interact

with the stress resultants of the preceding pressurization phase, the equations

specifying the behaviour of the shell during the in-service phase are not completely

linear. In all phases of the inflatable shell behaviour, the structure is solely

subjected to membrane stresses (Leonard, 1972).

The analytical implications of the behaviour of an air-supported shell are

given by Leonard (1972) as follows:

A.

B.

Bending rigidity can be neglected;

Only tensile principal stresses are admissible;

Care must be exercised in the design of the supports to ensure purely
membrane states without local instabilities;

Irrespective of constitutive relations, solution techniques for nonlinear
differential equations (direct, iterative, or incremental) must be used to treat
the pressurization phase;

Two options are available for the choice of the reference surface; the
unrestrained or the pressurized middle surface; and

Static or dynamic loads can be handled in a piece-wise fashion in that the

prior pressurization can be assumed to have stiffened the shell considerably.
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5.3 LOADING

In air-supported structures, the dead load of the membrane is usually very
small or even negligible compared to other loads. Snow loads vary considerably
from region to region. Air-supported structures subjected to abnormally heavy
snowfalls should be monitored untl the danger period is over. The AFSI (1977)
reco;:mzends that air-supported structures be dgsigned to withstand a triangular
distribu ﬁon of snow (based on the maximum rate of snowfall). This design snow
load has the maximum load at the apex, or a horizontal point, decreasing to zero
at the 30° slope point as shown in Figure (5.2). The AFSI (1977) also

recommends snow loads to be considered as follows:

Method A
Snow loads may be borme by virtue of the inflation pressure only by the

static equilibrium requ red for a given snow load.

Method B

Snowfall may be melted upon contact with the air-suppcﬁed structure by
virtue of the heat loss from the interior. This implies thar the interior is heated
to a temperature that will provide the heat flow necessary to melt the accumulated

SNIOW.

Method C
Snow accumnulations in excess of the structure bearing capacity defined by

a given inflation pressure may be removed manually, thus ensuring that the
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structure will not be overloaded.

Wind loading is primarily a function of wind velocity and the shape of the
building, and varies relative to the height above the ground and the dimensions
of the structure. Most building codes specify wind loads and pressure intensities
at different parts of the building. The wind load distribution on a cylindrical air-

supported structure is given by the AFSI (1977) as shown Figure (S.3).

Air-supported structures are known to be the structural type most resistant
to seismic forces and usually remain totally unaffected by earthquake loads due to
their ability to withstand large deflections and deformations without structural

failure (AFSI, 1977).

The membrane of an air-supported structure should be designed to
withstand the maximum stress resulting from all possible combinations of loads.
This maximum stress must be less than the allowable stress of the membrane, with

a considerable factor of safety, as may be required by local codes (AFSIL, 1977).

5.4 SPECIAL CONSIDERATIONS

5.4.1 Deflection Characteristics

Because air-supported structures are very flexible, deflections are
considerably larger than those in rigid structures. The AFSI (1977) suggests
limiting deflection coefficients (not to be exceeded in the design) for both

cylindrical and spherical air-supported structures as shown in Figure (5.4). These
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Where R = c¢ross-sectional radius
DEFLECTION AT a, b, or ¢ = (R) (C)
C = coefficient from table below

CYLINDRICAL SPHERICAL
H/¥ a - b c a b c
.3 .051 .017 .025. .043 .014 .024
.6 .074 .028 .41 .068 .022 .033
.5 .100 .040 - .060 .090 .032 .0s0

Based on inflation pressure at .5q for H/W<.5 and 1.0q for
H/W> .5 and for 80 ¥PH wind velocity. (1 MPH = 0.447m/sec)

Fig. (5.4): Deflection characteristics of air-supported structures
(AFSI, 1977)



115

deflection coefficients were derived from a combination of wind tunnel tests,

empirical data, and service experience.

5.4.2 Anchorage Systems

Unlike conventional structures, the foundations for air-supported structures
are designed primarily to withstand uplift forces developed by the inflation
pressure and the aerodynamic wind loads. Vertical walls above grade or ring
beams used to support an air structure must be designed to carry both vertical and
horizontal uplift components. The anchorage system securely attaches the
membrane to the ring beam or the ground and provides sealing around the

perimeter of its base (AFSI, 1977).

5.4.3 Access Doors

Air-supported structures require access openings depending on the
application, local codes, and the level of occupancy. Revolving doors are usually
used to maintain the internal pressure and to allow pedestrian access to air
structures. Another type of access doors is the air lock which has two sets of
doors with ap area between them large enough to fit any equipment (AFSI, 1977).
Entry occurs by passing through the external door with the pressure in the air lock
area equal to the exterior atmospheric pressuse. Then, the external door is closed
and the air lock pressure is then raised to that of the interior and the internal

doors are opened.
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5.4.4 Operation and Maintenance

Operation and maintenance are essential to assure the best possible service
life for an air-supported structure installation. All parts of the air-supported
structure musf always be maintained in good serviceable condition. Besides, the
entire air structure system is usually inspected at quarterly intervals to insure that

the installation is maintained in good operating condition (AFSI, 1977).

Air-supported structures have been shown to be inherently fire resistant.
However, it is desirable to control the selection of fabric to avoid the use of
flammable materials. Concrete sprayed fabrics or coated fabrics can meet the most
stringent flame resistance requirements that may be required by local codes

[Leonard (1972) and AFSI (1977)].

5.5 REVIEW OF PREVIOUS WORK

There is an extensive literature dealing with the general mechanics of shells
and air-supported structures (Kraus, 1967; Vol'mir, 1972; and Firt, 1983). Many
investigators studied the behaviour of these roof under static loads; however; only
a limited number of studies were devoted to the aerodynamics of such roofs. This

section contains a brief review of the previous studies dealing with air-supported

structures.

Uemura (1971) analyzed the membrane tension and deformations of a long
cylindrical, inflated single-wall tent under strong wind blowing on its broadside.

The analysis was based on finite deformation, membrane theory.
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Reitmeier and Punnett (1972) presented various features of the design of
large, air-supported spherical domes using cables as the major load-carrying
members. The optimization of the profile for minimum aerodynamic loading,
which was based upon a finite element method, indicated that a rise to span ratio

of 0.20 is most favourable.

For spherical membranes Fournier and Greenberg (1972) presented a
graphical superposition of the membrane stress resultants resulting from the dead
load, the snow load, and the internal pressure. Haug (1972) investigated the
static behaviour of pneumatic structures as elastic structures which undergo large

displacements using a finite element method.

The forced vibration of an infinitely long, cylindrical air-supported structure
under harmonic loading was analyzed by Firt (1983). The final deflections and
elongations of the membrane due to static loads were considered, and the
deformed cross-section of the structure was replaced with a system of circular arcs

and straight sectors.

Malcolm and Glockner (1978) examined the equilibrium of a central line
static load on a cylindrical inflatable structure. Spinelli (1978) described a method
to compute the displacements and the internal forces in a cylindrical air-supported
membrane under wind loads. Malcolm and Glockner (1979) investigated the

optimum cable form for cylindrical air-supported structures. This work was
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extended to cover the collapse by ponding of air-supported spherical caps,

assuming that the membrane is inextensible (Malcolm and Glockner, 1981).

Vinogradov et al. (1981) showed that the dynamic chamcteﬁsdc§ of cable-
reinforced, air-supported structures are strongly dependent on the internal pressure
.and static loading including the equivalent static wind pressure. The results
indicated that the changes in the natural frequencies can be considered as

proportional to the square root of the internal pressure.

Srivastava et al. (1984) conducted wind tunnel experiments on a series of
rigid and flexible spherical models to establish the wind pressure distribution. The
results suggested that the distribution of the wind pressure coefficient C, and the
displacements of the flexible model depend on the internal pressure g, and the

dynamic wind pressure g.

Mataki et al. (1985) dealt with the wind pressure affecting low-profile
cable-reinforced, air-supported structures and their structural characteristics. The
study was based on wind tunnel and forced displacement vibration tests on a
large-scale model. Williams (1985) described how numerical methods can be

used to produce geometrical forms for different classes of curved structures made

of fabric or cable nets.
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Maaskant and Rooda (1985) studied (both theoretically and experimentally)
the behaviour of cylindrical air-supported membranes subjected to a concentrated
line load. The results showed that the structure may bifurcate from the

symmetrical shape into a nonsymmetrical shape at loads less than the critical
buckling load. |

Ikoma and Sugizaki (1986} conducted a series of wind pressure
measurements and melting snow loading tests on full-scale, air-supported domes.
The reinforcing cable stress and the roof vertical displacement were measured

when the simulated snow load was applied to the roof model.

Daw (1987) conducted a wind tunnel study on a semicircular cylindrical
model to study the motion-dependent aeroelastic forces. A forced model oscillation
technique was used to study the dependence of the aeroelastic forces on the
turbulence intensity, the wind speed, the amplitude of oscillation, and on the
geometric details of the model. The results indicated that for semi-circular
structures in cross winds, the aeroelastic coefficients varied with the reduced
frequency. The aercelastic coefficients were independent of the turbulence

intensity and were not sensitive to the scaling effects of the Reynolds number.

Daw and Davenport (1989) found that for semi-cylindrical structures, the
aerodynamic stiffness was a negative term and reduced the total static stiffness.
The aerodynamic damping was positive and increased the resistance to the

dynamic movement of the structure. As the structure became heavier and stiffer,
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the relative influence of the aeroelastic forces on the response to turbulent wind
was reduced. [t was concluded that the resonant frequencies and the amplitudes

of the motion might be reduced due to the aercelastic forces.

5.6 SUMMARY

Previous work dealing with the mechanics of air-supported structures was
to analyze their static behaviour under concentrated and snow loads, and to study
the free undamped vibrations of cylindrical air-supported structures. Other
pervious work dealing with the aerodynamics of these structures was to find the
minimum internal pressure required to prevent local buckling, to establish wind
pressure distribution, to estimate wind-induced response using equivalent static

wind pressures, and to study the aerodynamic forces on the response to turbulent

wind.

In this study, closed form solutions are derived for the evaluation of natural
frequencies and modal damping of cylindrical and shallow spherical air-supported
structures, and the accuracy of these solutions is assessed by comparisons with
finite element solutions. The free vibration characteristics of a hemispherical air-

supported model are examined for different internal pressures and enclosure

volumes.

Wind tunnel tests were conducted on the hemispherical aeroelastic model
to investigate the wind-induced response and the internal pressure fluctuations for

different wind speeds, exposures, enclosure volumes, and internal pressures.
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A semi-anaiyﬁmlAappmach is established to predict the wind-induced
response of air-supporied structures, which is based on external pressure
measuraments and static deflections. A rigid hemispherical model was wind-
tunnel-tested to measure the external pressures for different exposure conditions.
Static deflections were calculated theoretically using a finite element method for

different internz! pressures.



CHAPTER 6
FREE VIBRATION OF AIR-SUPPORTED STRUCTURES
6.1 Introduction
The natural frequencies and modal damping ratios are very important in the
design of air-supported structures, as under dynamic loading every structure
vibrates in some of its natural modes. Knowledge of the natural frequencies and
modal damping ratios is necessary to investigate the forced vibration under

dynamic loads, particularly wind loads.

6.2 FREE VIBRATION OF CYLINDRICAL AIR-SUPPORTED STRUCTURES

The governing equations of air-supported structures represent a special case
of the equations of shells whose study has a long history. The vibraton of
cylindrical shells (with simplified equations) was first studied by Sophie Germaine
before 1821. This problem was also investigated by Lord Rayleigh in 1882 and
by Love in 1888 (Soedel, 1981). Subsequent developments to the problem were
made by Rayleigh (1945), Reissner (1955), Oniashvili (1957), Vlasov (1960),
Kalnins (1967), Sharama (1971), VoI'mir (1972}, Lissa (1973), Soedel (1981), and

others.

A solution to the free undamped vibration of an infinitely long, cylindrical
air-supported structure was given by Firt (1983). However, for air-supported
structures, the damping is rather high (compared to conventional structures) due

to the light weight of the structures. Total damping stems primarily from the
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structural and acoustical damping associated with the energy radiated from the
roof surface as sound waves. Another damping source is the pneumatic damping
which depends on the volume flow rate from fans into the structure, and the

leakage rate from the structure (Kind, 1984).

[n this section, both the structural and acoustical damping are included in
the governing equations of free vibration of cylindrical air-supported structures
extending the solution due to Firt (1983). A characteristic equation is derived for
the damped free vibration and used to evaluate the modal parameters of natural
vibrations. Comparisons are made between the results of the derived equation, a

finite element method, and those of Firt (1983).

6.2.1 Assumptions of the Analysis

In this analysis, natural vibrations of cylindrical air-supported structures

are investigated using the following assumptions:

1. The structure is infinitely long, and the influence of the ends is neglected.

2. The dynamic deflections of the membrane are small oscillations about the
static deflections.

3. The structural and acoustical damping are viscous in character and act

uniformly in the radial direction of the membrane.
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6.2.2 Differential Equations of Free Damped Vibration

Figure (6.1) shows an infinitely long cylindrical air-supported structure with
radius R and central angle «. Figure (6.2) represents an element of length ds
and of unit width, cut from the cy]indriéal air-supported membrane. The static
internal pressure is g, and the static axial force due to the internal préssure is q.R.
The tangential inertia force is m ds a*v/at?, where v(4,t) is the tangendal
displacement, and m is the mass per unit area. The radial inertia force is
m ds a*w/at3, where w(g,t) is the radial displacement, and ¢ is an angle as shown
in Figure (6.1). The dynamic axial forces acting on the element are F and

F+(aF/a6)ds.

Introducing the structural and acoustical damping terms to the governing
equations of a cylindrical air-supported structure, reduced from the shell equation

and given by Firt (1983), yields

for the tangential direction

3*v

m
at?

ds-(F+‘;—I;do+q°R)cosda+F+q°R=O (6.12)

and for the radial direction

2
mdsgat—:V+C,Zdes—(F+q¢>R)C°3(§'*d5)+qods=0 (6.1b)

In the above equations, ¢, = ¢, + ¢, where ¢, ¢, and ¢, are the total damping, the
structural damping, and the acoustical damping coefficients, respectively. As the

dynamic deflections are assumed to be very small, the following can be written
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Fig. (6.2) : Forces on an element of a cylindrical air-supported structure
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cosds =1

cos (—;- ds) =sin g ds
(6.2)

ds = p do

where ; is the instantaneous radius of curvature of the section. Substituting

Equations (6.2) into Equations (6.1a) and (6.1b) gives

F 2
J%g_g. _ %’ -0 (6.3a)
(6.3b)

F R 2
—+q°(-‘;—1)—m?- a_t

The following geometric relations hold for a cylindrical membrane with

circular cross-section (Soarce, 1967):

=

w = (6.4a)

R_q, 43

e 1+ (6.4b)
where

1l aw

v=g (5 +Jwds) (6.5)
Substituting Equation (6.5) into Equation (6.6b) gives

1.1, 1aw, 1

;_R(1+R392+Rw) (6.6)

Substituting Equations (6.5) and (6.6) into Equations (6.3a) and (6.3D),

and neglecting the higher order product of the quanrities F and w and their

derivatives yields

1 a*F Fw
R "ow - © (6.72)
2 2
oW W _ M=y (6.7b)

F Qo
gt ( 36° TW -moa -G
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Differentiating Equation (6.7b), and substituting into Equation (6.72), the
following linear partial differential equation of the radial deflection w of the free
vibration of the membrane is:

2 2 2 2
aw_*_i(w_mRaw_ c,Ralv)+mRaw

ag* = as? q. ar? Q. at qo 3t

=0 (6.8)

The inclusion of damping calls for a complex approach which is quite different

from that of Firt (1983). The radial deflection and the dynamic axial force are

assumed as
w(s,t) = w(s) e ¥t 6.9)
Fs,0) = F(s) e ©* (6.10)

where 4 is the complex frequency, w(s) is the amplitude of the radial deflection
w, and F(¢) 1s the amplitude of the dynamic force F. Substituting Equation (6.9)

into Equation (6.8) yields

d‘w d*w me c,R;; mR;;2

o T )t w=0 (6112)
or

dw dw C _

W+37[1—A(1+H)]+XW—O (6.11Db)
where

2
) = n‘:‘“ (6.12)

Substituting Equations (6.10) and (6.9) into Equation (6.7b) gives the dynamic

axial force, F, as

dz

=—q‘,[dg2 +w{1—A(1+——)}] (6.13)
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16.2.3 Solution of the Differential Equation
The solution of Equation (6.11b) follows from the standard approach to
homogeneous differential équations and can be writren as

4 B0
w(s) = TAe

i1

(6.14)
where A, i = 1, 2, 3, and 4, are constants. The parameters 8, are the roots of
the following characteristic equation:

g*+ B2 +2=0 (6.15)

where
M=1l-a(1+ =) (6.16)
mau
The parameters A, and 8 are functions of the internal pressure, the mass per unit
area, the radius of the section, and the structural as well as acoustical damping

coefficients. Equation (6.15) has two imaginary roots and two real roots, i.e.,

Bt.z=iL__[)\1 + (A2=-42 )] (6.17a)
J2
and
b= £ me [= A + (22— 42 )8 T (6.17b)
J2

where i = /= 1 ; a and A, are as given in Equations (6.12) and (6.16),
respectively. Thus, the general solution of Equation (6.11) may be written as

wie) = A& + A e+ A+ A Y (6.18)

According to Equation (6.5a), the amplitude of the tangential displacement

v in the direction of the tangent is given by

v(s) = [wds = A Db Ba By B o B8, B B (6.19)
B} Bz 33 B‘
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According to Equation (6.18)

3,8 Ba8 B8
%':'v= As ey as ey AsB; e + A B e

Then, the amplitude of the angle of rotation of the cross-section ¥ of the circular

8 (6.20)

secton is

3
il

1 B
R1P=A1(TBI‘;+31) +A2(E+Bz)ezo

8339

'*'As(%a'*'ﬁa) +A4(%:+B4)e‘9 (6.21)

Differentiating Equation (6.18) with respect to § gives

d*w 8,8

8
d_92'= Al Blze 5

38 B8

+ Aynrey apre® s A pze ™ (6.22)

Substituting Equation (6.22) into Equation (6.13) gives the amplitude of the
dynamic force as

Zf_=—A,(x,~1-fs,2)eﬁ‘g — A (a + 82) e

8

A (A +) e oA (a +a2)ed (6.23)

According to Figure (6.1), the boundary conditions of the cylindrical air-
supported structure are

w(0) =0, w() =0,v(0) =0 and v(e) = 0 (6.24)
Substituting Equations (6.24) into Equations (6.18) and (6.19) yields the following

four homogenous algebraic equations

A+A+A+A=0 (6.25a)
Ae® s p e p ey p B (6:250)
Ay b A A, (6.25¢)

Bl 32 B; BQ
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ﬁ B & Bz P& B 1}_._ B _ d
B‘e +Bze +133e +B‘e 0 (6.25d)

Equations (6.25) are linear with respect to A, i = 1, 2, 3, and 4. A

condition for the existence of a non-trivial solution is

1 1 “ 1 1
e B e Baax eBga e&a
A= 1 1 1 1 =0 (6.26)
B, 8; 8, Ba
1 B]Q 1 Bz& 1_ Bga 1_ B4a
B, e 5 e By e B. €

Some elements of the determinant in Equation (6.26) are complex, and
depend on the structural and acoustical damping coefficients. From Equation
(6.26), the characteristic equation for the free damped vibration of an infinitely
long cylindrical air-supported structure can be written as:

% ( B, - 8, )2 sinh (8, «) sinh (8; a) = O 6.27)

where 1, B, and 8, are given by Equation (6.17). Equations (6.26) or (6.27) can
be solved by trial and error, to get the complex ﬁ'c;.quency . Equation (6.26)
was solved numerically using the LINPACK subroutines CGEDI and CGEFA, and
compared with the results of Equation (6.27) to check the results. Substituting
the value of ) into Equation (6.12), gives pairs of conjugate eigenvalues for each
mode j as

= py 1oy (6.28)
From the complex eigenvalue g, the damped frequency is

(a)j’ = Im H = Py (6.29)
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and the modal damping ratio is

G=Rey/ |yl =py/ | m] (6.30)

It must be noted that for free undamped vibration, which is a special case
of the damped vibration, ¢, = 0 and the value of u, equals zero. To find the
damped mode shape, the value of the characteristic number »; is substituted into
Equations (6.25) and solved for the ratios A/A,, i = 2, 3, and 4. Also,
substituting the characteristic number A given by Equation (6.12) into Equations
(6.21) and (6.23) gives the amplitude of the angie of rotation y; and the dynamic

axia] force F; for mode j.

It may be mentioned that Firt (1983) studied the criteria for the overall
aerodynamic instability of a cylindrical air-supported membrane using an equation
formally identical with Equation (6.26). A similar approach was used to define
the critical frequency at which the aerodynamic instability occurs. However, the
parameters in Firt’s solution are quite different from those used in this study and

defined by Equation (6.17).

6.3 FREE UNDAMPED VIBRATION OF CYLINDRICAL STRUCTURES

Neglecting the damping terms in Equations (6.1) and (6.2) and following

a similar procedure, Firt {1983) derived the equation

bz__, az

2(1-cosacoshb) + =5

where

sinasinhb =0 (6.31)

a= Z-[1+a+(1+6r+22)]* (6.32a)

J2
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b= S—[-1-A+(1+6x+aH] (6.32b)

J2

and :
A=m§"” (6.33)

'The parameters a and b in Equation (6.31) are different from the
parameters 8, i = 1, 2, 3, and 4 in Equation (6.27), v»;hich are damping
dependent. The complex eigenvalue u; in Equation (6.28) has real and imaginary

parts, while the circular frequency w, in Firt’s solution, has only a real part.

6.4 EXAMPLE OF A CYLINDRICAL STRUCTURE
In this example, a cylindrical air-supported structure with a central angle

« = = is considered. The structure has the following parameters:

Internal pressure g, = 50 to 250 Pa
Radius R =10.00 m
Mass per unit area m = 1 kg/m?

In this study, the internal pressure was varied to investigate its effects on

the natural frequencies of the structure.

The finite element program ABAQUS, available on the UWO mainframe, can
solve nonlinear problems, such as the problem of pressurizing an air-supported
structure in which the displacements are large. The program uses Riks’ method
rather than the Newton-Raphson iteration solution. Riks’ method controls the

solutions by using increments of fixed size along the equilibrium path in the load-
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displacement space. The accuracy of the solution is cozitfoued by “specifying
tolerance values. The convergence criterion in the program is thar all force
residuals must be less than the specified tolerance valves and the analysis ends

when no increments exceed these specified values.

For comparison purposes, different types of elements were used in analyzing
the cylindrical air-supported structure. Among the used elements were a 3-node
beam element, B22 as shown in Figure (6.3); a 2-node beam element, B23, as
shown in Figure (6.4), and an 8-node membrane element, S8R, as shown in Figure

(6.5).

6.4.1 Static Analysis under Standard Snow Load

The AFSI (1977) recommends that air-supported structures be designed to
withstand a triangular distribution of snow as s'hown in Figure (5.2). The
maximum load at the apex decreases to zero at the 30° slope point. The
maximum design snow load for the roof was taken with a value of 360 N/m at
the apex as shown in Figure (6.6). The displaced shape of the cylindrical air-
supported structure under snow loads is shown in Figure (6.7). [t can be seen
that an internal pressure of 150 Pa is sufficient to stabilize the structure under the
standard snow load. The maximum displacement was about 1.0 meter at the
center, and the displaced shape becomes elliptical as shown in Figure (6.7). The
concentrated loads in Figure (6.7) are for a 1.0 m swip of the infinitely long

cylindrical air-supported structure.
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CYLINDRICAL AIR-SUPPORTED STRUCTURE

Il 77 \I7

Fig. (6.3): Finite element mesh of the cylindrical air-supported structure
(3 node element, B22)

CYLINDRICAL AIR SUPPORTED STRUCTURE

Fig. (6.4): Finite element mesh of the cylindrical air-

supported structure
(2 node element, B23)
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CYLINDRICAL AIR SUPPORTED STRUCTURE

Fig. (6.5): Finite element mesh of the cylindrical air-supported structure
(8 node element, S8R)

SNOW  LOAD

Fig. (6.6): The cylindrical air-supported structure under snow load
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Fig. (6.7): Displaced shape of the cylindrical air-
supported structure under snow load
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6.4.2 Free Vibration Results

The natural frequency results of the derived characteristic equation,
Equation (6.26), and those of the FEM are tabulated in Table (6.1). It can be
seen that the maximum difference between the results of the two approaches is
about 6%, for the element B22. This shows good agreement of the derived
frequency equation with the FEM models. With more elements the difference
could be less. However, the CPU computer time for the 8-node membrane

element, S8R, was about four times that for other elements.

The effect of varying the intemnal pressure on the natural frequencies of
the cylindrical air-supported structure is shown in Figure (6.8). As the internal
pressure increases, the natural frequencies increase. This is expected since the
stiffness of the structure depends on the internal pressure (as the pressure
increases the stiffness increases). The results of Equation (6.26) and the finite
element results are in very good agreement as shown in Table (6.1). The results
of Equations (6.26) and (6.27) for ¢, equals zero are the same as the undamped
frequencies calculated using Firt’s equation, Equation (6.31). It must be noted that
decreasing the internal pressure q, might lead to a loss of the membrane stiffness
due to partial inflation and subsequently cause substantial decreases in the natural

frequencies.

After determining the natural frequencies, the undamped mode shapes were

calculated using Equations (6.18) and (6.19). The first symmetrical mode was



TABLE (6.1): ANALYTICAL AND FEM RESULTS FOR NATURAL FREQUENCIES OF

THE CYLINDRICAL AIR-SUPPORTED STRUCTURE

Element w, wy ws Wa

Type (rad/sec)
3-Node (B22) 5.15 9.06 14.34 17.10
FEM 2-Node (B23) 4.99 9.13 13.79 16.93
8-Node (S8R) 4.87 8.90 12.97 16.75
Analytical 5.06 9.46 14.00 18.11

138
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Fig. (6.9): Mode shapes of the cylindrical air-supported structure
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obtained by considering the radial displacement alone, and the value of its
frequency, w., was 3.74 rad/sec. These mode shapes of vibration are shown in

Figure (6.9).

The structural damping ratio was taken equal to 10% since the structure
mass is very small. The acoustical damping due to the roof vibration was
calculated according to Equation (2.11). With these structural and acoustical
damping values, the damped frequencies and the modal damping of the cylindrical
air-supported structure were calculated using Equations (6.29) and (6.30). These

modal ﬁarameters are given in Table (6.2).

In order to examine how long a cylindrical air-supported structure should
be to be considered of infinite length, several finite element meshes were analyzed
assuming the cylinder is fixed at both ends. A typical mesh of 4-node membrane
elements, S4R, is shown in Figure (6.10). The cylindrical air-supported structures
were of the same diameter but with variable lengths; the ratio L/D varied from 0.5
to 7, where D is the lateral projection cf the structure. It was found that the
fundamental frequency decreases as the ratio L/D increases. This reflects the effect
of the two ends in stiffening the membrane causing it to behave as a two-way
membrane. As the ratio L/D increases, the frequency starts to approach the
frequency values calculated from the characteristic equation derived in Subsection
6.2.1. This is because the effect of the two ends of the structure becomes merely

local for high values of L/D. From Figure (6.11), it is concluded that cylindrical
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TABLE (6.2): MODAL PARAMETERS OF THE CYLINDRICAL AIR-SUPPORTED
STRUCTURE (e = 180°)

Frequency Wy wy s "Wy

Undamped
Frequencies 5.06 9.46 14.00 18.11
(rad/sec)

Damped
Frequencies 5.00 9.28 13.84 17.82
(rad/sec)

Damping
Rado 10 14.41 10 12.81
(%)
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Fig. (6.11): Effect of varying the L/D ratio on the fundamental frequency
of the cylindrical air-supported structure
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Fig. (6.12): A shallow spherical air-supported structure
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air-supported structures of L/D ratios greater than about 4 can be considered as

infinitely long.

6.5 FREE VIBRATION OF SHALLOW SPHERICAL AIR-SUPPORTED STRUCTURES
oot VIDRA LN U oRALLOW SPHERICAL AIR-SUPPORTED STRUCTURES
6.5.1 Introduction

Many studies have been devoted to the free undamped vibration of spherical
shells. Rayleigh (1945), Reissner (1955), Oniashvili (1957), Vlasov (1960),
Nowacki (1963}, Kalnins (1967), Vol’mir (1972), Soedel (1973), and Lissa (1973)

are among the pioneers in this subject.

[n this section, the tension force due to the internal pressure, the enclosure
volumetric changes due to the roof vibration, and the structural as well as
acoustical damping are introduced into the governing equations of motion of
shallow spherical shells. Closed form solutions are derived for the free damped
vibration, and used to evaluate the modal parameters of natural vibration. A
comparison is made between the results of the derived solutions and on FEM

analysis.

The main assumptions of the analysis are as follows:

1. The rise of the structure, H, is less than 1/5 the lateral projection of the
structure, 2a, and the membrane is thin, Figure (6.12). Therefore, the
deformation during vibration is dominated by the motion perpendicular to
the membrane surface, and only the inertia associated with the normal

deformation is accounted for in the analysis.
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2.  The total damping is viscous in character and acts in the radial direction of

the membrane.

6.5.2 Governing Equations of Free Damped Vibrations

The governing equations of free undamped vibration of a shallow spherical

shell according to Nowacki (1963) are

ph%+é—v=z-‘+p *w=0 (6.34)
- vzp-‘%l ?w=0 (6.35)

where

w = transverse motion perpendicular to the membrane surface;
F = F(r) = Airy stress function;

h = thickness of membrane;

p = mass density;

R = radius of the spherical shell, Figure (6.12);

E = Young’s modulus of Elasticity.

p = Eh¥/12(1-v%); v is Poisson’s ratio; and

V2 = g¥/sr® + (1/1)(a8/8r) + 8%/36%

For a pure membrane action, the shell rigidity is zero, '.e.,

p=20 (6.36)
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With both the tension, T, = 3 q. R, due to the internal pressure q., and the total
damping term (¢ = ¢, + ¢,) added, the equations of free damped vibration of a

shallow spherical air-supported structure can be written as

Fw 1 . W _
ph—af’"‘fv F=Ts Vw+ Qat—o (6.37)
2 vzr—EEh w=0 (6.38)

Substituting Equation (6.38) into Equation (6.37) gives

2
ph%+q‘%’+%{w—ch2w=o (6.39)

6.5.3 Solution of the Governing Equations
The radial displacement w of the shallow spherical air-supported structure

can be assumed as

w(r,0) = wir) e (6.40)
where p is the complex frequency, and w(r) is the amplitude of radial
displacement. For axisymmetrical vibration, the terms with 3/86 vanishi.
Substituting Equation (6.40) into Equation (6.37) yields

Vw+kRw=0 (6.41)
where

’=-.—}:(ph#2+cgn+% (6.42)

Equation (6.41) is the well-known Bessel differential equation, and the

solution can be written as

w=AJ, (kr) + BY, (kr) (6.43)
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where A and B are constants, J, (kr) is a Bessel function of the first kind and zero
order, and Y, (kr) is a Bessel function of the second kind and zero order. Since,

Y, (kr) becomes infinite for r = 0, B must be zero to satisfy the limitation of small
displacements, thus,
w=AJ, k) . (6.44)
The boundary condition at the edge of the membrane is w(a) = O, ie.,
J,(ka) = 0, therefore »; = ka = 2.405, 5.52, 8.865, etc., which upon substitution

into Equation (6.42) gives

A 1 Eh
—a—2L=—T°(php2+C,p+—R-; (6.45)

Thus, the complex frequency of vibration, p;, can be expressed as

C( 3 To A ijz E c‘z ;2

By = 2,h 1 [p_h‘ Py + pRz_ 4,2 h? ] (6.46)

where 1 and j are the numbers of radial nodal lines and circles, respectively. The

complex frequency u; can be rewritten as

By = &k 1 J778 (6.47a)
where
and
— lo Aijz E _ C,z bs
P2 = [ ph az + pR2 492 h2 ] (6-47C)

Thus, the damped frequency is

2 3
w? = [ Wogg® = ﬁ ] (6.48)

where

To A E %
woy = [ oh an + pRz] (6.49)
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and the modal damping ratio is

— G
9 = 2 P h Way (6.50)

Substituting Equation (6.44) into Equation (6.38) gives the function, F(r), as

) = -E—f’R— A I, (ko) (6.51)

To include the volumetric changes of the cavity due to the roof vibration,
and the associated changes in the internal pressure, the change in the volume of
the enclosed air is assumed to be dV = S w, where S is the surface area of the
shallow spherical membrane sad W is the average displacement of the roof.
Following the procedure adopted in Subsection 3.3.2, the excess pressure dp inside

the structure is

— _ 7% — _ 19
dp = V. dv A Sw (6.52)

where q, and V, arz the equilibrium pressure and volume of the structure,
respectively. Introducing this force to Equation (6.39) and using Equation (6.40)
give

2 2 = 700 - ¢
Zw+ kw TV, Sw (6.53)

where k? is as in Equation (6.42). Equation (6.53) is satisfied by a function of
the form
w(r) = A [Jo(kr) - Jo(ka)] (6.54)

where A is a constant. This solution satisfies the boundary condition that wi(a)=0.
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Substituting Equation (6.54) into Equation (6.53), and taking S = 2 = R H, gives

the following frequency equation

5, (ka) = - o {E—k;k;l (6.552)
where
oy = 2—7,1,901\1;:;}1 x a2 (6.55b)

In equation (6.55b) R and H are the radius and rise of the structure, respectively.
Equation (6.55a) is numerically solved to get the value of k, then the damped
frequencies and modal damping are determined according to Equations (6.42),

(6.48) and (6.50).

To include the antisymmetrical modes into the solution of Equation (6.39),
the displacement function is assumed to be
ut
w = y(1) 4(6) e (6.56)
where 4 is the complex frequency. Substituting Equation (6.56) into the governing
equation of free damped vibration of shallow spherical air-supported structures,
Equation (6.39), and rearranging gives

2y 1 dy __1 &4
(dr2 +rdr)+k2r=_- 5 (6.57)

Y

where k? is given by Equation (6.42). Since each side of Equation (6.57) is a
function in a different parameter, and because the two sides are equal, 2ach side

must be equal to a constant, m 2 The complete solution of Equation (6.57) is
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w=Cl,(k)e®? e | 2-0123... (6.58)

where C is a constant. The boundary condition w(a,s,t) = 0 leads to
J. (ka) ¢ =0 (6.59)

The roots, x;, of Equation (6.59) where i and j are the numbers of radial
nodal lines and circles, respectively, can be found elsewhere (Blevins, 1979).
Substituting the values of ; into Equations (6.48) and (6.50) gives the damped

frequencies and modal damping, respectively.

Inspection of Equation (6.49) shows that a powerful analogy exists between
the natural frequencies of flat circular membranes and shallow spherical
membranes. The term To32%/(pha®) in Equation (6.49) represents the natural
frequency of a flat circular membrane. Therefore, if a flat circular membrane and
a shallow spherical membrane have the same thickness; dimensior., on a plane;
homogeneous isotropic material; and the same boundary conditions, the mode
shapes governing the deformation normal to the surface are identical and the

natural frequencies of mode ij are related by

E b
= 2 —_— ¢
Woij) [ wo + JRE ] (6.60)
shallow flat
spherical circular
membrane membrane

Equation (6.60) satisfies the limiting case of a flat rircular membrane for

which 1/R = 0. This analogy is similar to the analogy made by Soedei (1973)
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between the natural frequencies and mode shapes of flat plates and spherically
curved panels (D » 0). It is also possible to relate the natural frequencies and
mode shapes of flat rectangular membranes to the natural frequencies of similar

shallow cylindrical membranes.
6.6 EXAMPLE OF SHALLOW SPHERICAL STRUCTURES
In this example, a shallow spherical air-supported structure features the

following parameters:

Internal pressure g, = SO0 to 250 Pa

Radius R =23.66m
Mass ner unit area m = 2 kg/m?
Central angle 24 = 30° -~ 90°

The internal pressure was varied similar to what was done in the cylindrical
air-supported structure discussed earlier. With these data, a comparison between
the natural frequencies calculated by the derived frequency equation, Equation
(6.49), and the results obtained using the program ABAQUS is made. The finite
elements used were 3 node axisymmetrical membrane elements, type SAX2. Both
the axisymmetrical and antisymmetrical modes of vibration were calculated using
the finite element meshes shown in Figures (6.13) and (6.14). The results of the

derived frequency equation, Equation (6.49), and the finite element resuits are in



| 2195

/
10.0 : |

l
\ 50 /

Fig. (6.13): Finite element mesh of the shallow spherical air-supported
structure (axisymmetrical modes)
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Fig. (6.14): Finite element mesh of the shallow spherical air-supported
structure (antisymmetrical modes)
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good agreement, as shown in Figures (6.15a) and (6.15b). With more elements,

the agreement would be better.

The effect of varying the internal pressure on the natural frequencies is
shown in Figures (6.15a) and (6.15b). It can be seen that as the internal pressure
increases, the natural frequencies increase as expected. After determining the
natural frequencies, the undamped mode shapes were calculated using Equations
(6.44), and (6.58). Similar mode shape results were obtained using the finite
element program ABAQUS. The axisymmetrical and antisymmetrical mode shapes

are shown in Figure (6.16).

The damping ratios of the shallow spherical air-supported structure were
calculated using Equation (6.50) and (6.51) derived before, and tabulated in Table
(6.3). The structural damping ratio was taken equal to 10% and the acoustical
damping due to the roof vibration was calculated according to Equation (2.11).
The first axisymmetrical mode shape has the highest damping ratio compared to

other modes, because of the high acoustical damping associated with this mode.

To further determine how shallow the spherical air-supported structure
should be to use the derived frequency equation, Equation (6.49), different finite
element meshes were used with different ﬁentral angles ranging from 30° to 90°.
The results of both Equation (6.49) and those of the FEM analysis are shown in
" Figures (6.17a) and (6.17b). The agreement between the two approaches is good

for ¢ up to 30° (¢ is half the central angle of the cross-section). For ¢ greater
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TABLE (6.3): MODAL PARAMETERS OF THE SHALLOW SPHERICAL

STRUCTURE (¢ = 25°)

Mode Axisymmetrical Antisymmetrical
Modes Modes
01 02 11 21

Undamped
Frequencies 11.12 17.27 12.50 16.13
(rad/sec)
Damped
Frequencies 10.66 16.94 12.37 15.97
(rad/sec)
Damping
Rato 21 13 10 10

(%)
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than 30°, the derived frequency equation underestimates the natural frequencies,
since the tangential deformation becomes significant, and the membrane is no
longer shallow. Therefore, it is concluded that the frequency equation derived for
shallow spherical air-supported structures is only valid for cross-sections with

central angles 24 up to 60°, or with rise 1o lateral projection ratios less than 1/5.



CHAPTER 7
WIND TUNNEL EXPERIMENTS WITH A HEMISPHERICAL
AIR-SUPPORTED STRUCTURE

7.1 INTRODUCTION

Air-supported structures are increasingly being used as permanent building
forms; however, since they are very light, there is a potential for strong interaction
between the structure and the wind. A survey of failures of air-supported
structures indicated that, apart from rain and snow accumulartions, the most
common causes of failure are inadequate anchorage details, and the instability of
the structures at high wind speeds (Malcolm and Glockner, 1978). Therefore, to
ensure safe and serviceable design of large span, air-supported structures, an

examination of their dynamic behaviour under turbulent wind is necessary.

The general lack of design procedures that consider the dynamic wind
effects on air-supported structures or unusual aspects of these roof systems, such
as aerodynamic instability, make wind tunnel testing even more desirable. The
concern for aerodynamic instabilities calls for aeroelastic testing as oppesed to

pressure measurements on rigid models, which are used to estimate wind forces

on such structures.

In the study described here, an aeroelastic model of a large span,
hemispherical, air-supported roof was designed and tested. Construction of the

model, its instrumentation, and free vibration as well as wind tunnel testing



161
procedures are described. The main objectives were to determine the free
vibration characteristics of hemispherical air-supported structures, and to find the
roof response and the internal pressure fluctuations due to wind loading. Different
gradient wind speeds, exposures, enclosed volumes, and internal pressures were
employed in the wind tunnel experiments. The internal pressure, as defined in this
study, is the differential between the mean pressure within the hemispherical

model and the mean ambient outside static pressure.

Comparisons of the experimental free vibration results with the theoretical
results are made, along with the aeroelastic test observations. A proposed semi-
analytical procedure to predict the wind-induced response of air-supported
structures is formulated in Chapter 8. Predicted rec~- ::z5 of the hemispherical,
air-supported model and their comparisons with the measured ones from the

aeroelastic tests are also presented in Chapter 8.

7.2 SIMILARITY REQUIREMENTS

In Section 4.2, it was stated that the scaling requirements for one
dimensionless parameter can make it difficult to scale another one correctly. Iris
rarely possible to simultaneously satisfy the five non-dimensional parameters in

Equations (4.6) to {4.10). For example, Reynolds number, R,, scaling requires

UL UL
[&=1.=[&=), (7.1)
B B
where L is the structure characteristic dimension; p, g, and U are the density,

viscosity, and velocity of air. With both the model and prototype in air under
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atmospheric conditions, this equation scomes

w = 1/, (7.2)

where A, and ), are the length and velocity scales, respectively. This condition is
very difficult to achieve practically in the wind tunnel; therefore the Reynolds
number scaling is often relaxed, and tests for transcritical Reynolds numbers are
rare. This simplification leads to model R, values in conventional boundary layer
wind tunnels that are typically two to three orders of magnitude lower than full
scale values. For structures with corners, this disparity is generally of little
practical importance as the resuiting flow-induced forces are not sensitive to R,
variations. This is so because the positions of the flow separation are fixed by the

edges.

For curved structures, such as the hemispherical roof, the Reynolds number
effect can be significant. However, the wind tunnels available to the author do
not allow the very high Reynolds numbers required for proper modelling of a large
roof prototype. Therefore, the model was tested at iow R, i.e. under subcritical
flow conditions. This may be justified, at least partly, by the following reasons:
the tests are not meant to verify the behaviour of an actual prototype to be
erected, rather, they aim at studying the pattern of roof behaviour, and the
verification of the proposed semi-analytical method of response prediction. In
addition, experiments with circular cylinders indicate that at very high R., in the

transcritical region in Roshko’s terminology, the wake characteristics are closer



163
to those in the subcritical region than to those in the supercritical region (Roshko,

1961).

The similarity of Froude number, U%/gL, requires that
S i
[';:_L}m"[gL]P (7.3
Since the acceleration of gravity, g, is the same for both the model and prototype,

this equation reduces to
w= (7.4)

which is also difficult to achieve in the wind tunnel. Froude number scaling is
important where gravitational forces are important. n the current tests, similarity
of Froude number was not maintained because the gravitational forces at full scale
tend to be small in comparison to the aerodynamic forces in high winds, as a
result of the light weight of the air-supported structure. This is an important
simplification, since it eliminates the use of the low wind speeds that would be

required to match the Froude number in model tests.

In Chapter 2, it was mentioned that to model the acoustical damping effect
correctly, the Mach number (U/c, where ¢, is the speed of sound in air) should
be the same at both scales. This cannot be achieved in many wind tunnels;
however, Irwin and Wardlaw (1979) stated that the use of wind velocities lower
than that required by Mach number scaling can be regarded as conservative. For
these reasons, the Mach number scaling was not maintained in the current tests.

It should be noted that in wind tunnel tests with air-supported models the
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acoustical damping may be decreased due to the wind interaction and the

aerodynamic damping may be dominant.

Simulation of aerodynamic damping does not need any additional similarity
parameters beyond those already considered in this section and in Section 4.2

(Irwin and Wardlaw, 1979).

In summary, the aeroelastic modelling similarity relationships (with the
notation used in Chapter 4) for the wind tunnel study of hemispherical air-

supported structures are as follows:

1. The turbulent boundary layer flow properties are scaled at a length scale »,.
2. The dimensions of the structure are scaled according to A,

3. The internal volume is scaled according to i = A3/\A

4. The mass per unit area of the roof is scaled according 0 i, = .

5. The elasticity similarity for the roof is scaled according to ir. = A2

€. The internal pressure is scaled according to A = A

7. The similarity of the structural damping is based on A, = 1.

The determination of the actual scales used is described below.

7.3 MODEL_SCALING
The choice of length scales is generally governed by the available roof
materials and the scale of the boundary layer wind tunnel. The Boundary Layer

Wind Tunnel Laboratory at The University of Western Ontario, London, Ontario,
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Canada, can model the atmospheric boundary layer at length scales ranging from
1:300 to 1:500. Within these bounds, the choice of the length scale is determined
through the mass scale by the materials available to simuiat_e the structure type

considered.

7.3.1 The Prototype

Th«; structure considered is a hemispherical air-supported structure with a
projected horizontal circular plan of 120 m in diameter and a mass per unit area
of 2.5 kg/m?. This type of structure may be employed to cover a baseball stadium
or an exhibition hall. The membrane of the roof is supported by an internal

pressure, and anchored in a ring beam resting on a rigid circular wall, or directly

on the ground.

7.3.2 The Model

An extensive study of suitable materials for fabricating the model roof was
made. As a result, a 0.05 mm thick polyethelyne material was chosen to simulate
the prototype. This material satisfied the mass scaling at a geometrical scale of

. = 1:400, which through the elasticity scaling permitted a suitable velocity scale

of 1:3.

The stiffniess of the air-supported membrane stems primarily from the static
membrane tension, and depends on the changes of the internal pressure resulting
from the wind-induced volumetric changes of the enclosed volume. Thus, the

volume scaling is very important. To satisfy the internal volume scaling, a



166

Topour [eanotdsiuaY o) JO UOMDDS-SSOND [EdNIA (1°4) ‘Sul

ww 1g¢ -
—_ — N sbnig  aqqny
ppue € g - ¢
saqoid 10j awes 3
3
saquoyy |~ (" A Hﬂ\ 37UD102])
pajoag —1 7 u._w. wolog
al0ig ' 4_ a|qoiuIny
Auawnsu) —_— ww goh
b £
al0|g asog -

ajqoing,




167

epows (eapaydspway syl Jo uefd (euoNdIS-ss01) H(TL) 314

— ——

—
II.

P - RN ~
~
_
7 (6] / //
4 \
\\ 0o 0
JuaWNISy| K ~ o \
& < \
/ < &/0 \
! £ \ \
Q.\r/ Z
O

!
! S i
| |
e ConD® 0 dp)
1

!
—_ Sv O O omv \

17

\
\ £ /
IX 2 ) > /
aln|d 3sog \ N 4 /
\ : /
laquoy) S 7
a4nssald . = ,
~ \\.
abup| 4 /L -
~ = —

agqnj] oJnssald

sJOSUaS
juawaop|dsiq



168

chamber was mounted below the model, as shown in Figures (7.1) and (7.2), to

provide the additional volume needed.

A summary of the various scaling parameters of the aeroelastic model is
presented in Table (7.1). The numerical values for the model and the prototype
scaling are also given in Table (7.2). A plan and a vertical cros;-section of the
model showing the transducer locations are given in Figures (7.1) and (7.2). Also,
a photograph of the model is displayed in Plate (7.1). It must be noted that all
results given here are in model scale units, which can be converted to full scale

values using the scaling parameters in Table (7.1).

7.4 CONSTRUCTION OF THE MODEL

The membrane model was formed to the required hemispherical shape under
pressure and elevated temperature, using a plexiglass mold. Heat was uniformly
applied to the circular membrane sheet by a fabricated cylindrical furnace through
which heat guns were directed. Simultaneously, a vacuum pump was used to
draw the membrane as it expanded to form the required hemispherical shape. This
process of baking the hemisphere was a considerable portion of the overall
experimental effort. The membrane roof was attached to the base by a clamping

ring.

The chamber, below the model, was sealed to prevent any air leakage from
the model by inserting a rubber strip between the model base and the chamber

flange. Baffles were placed into the chamber to avoid acoustic resonance. To



TABLE (7.1): SUMMARY OF AEROELASTIC SCALING PARAMETERS OF
THE HEMISPHERICAL AIR-SUPPORTED ROCF

No. Parameter Scaling Numerical value
1  length =L/l 2.50 x 10® (1 : 400)
2 Internal M=2 A2 1.41 x 107
volume
3 Mass/unit Am=AL 2.50 x 10° (1 :400)
area
4  Weight/unit A=Ay 2.50 x 102 (1 : 400)
area
5 Time A=A /Ay 7.52 x 10 (1 :133)
6 Frequency A=A Xy 133 (133:1)
7  Velocity Aawv=U/U, 0.33 1:3)
8 Force Ae=A30W2 6.941 x 107
9 Pressure Ao =M 0.11 1:9
10  Tension/unit A=A 2.78 x 10*

area

169
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TABLE (7.2): AEROELASTIC SCALING OF THE HEMISPHERICAL AIR-

SUPPORTED ROCF

Prototype Model
No. Parameter
Quantity Dimension Quantdty Dimension
1 Roof 120.00 m 30.0 cm
diameter
2  Height 60 m 15.0 cm
3  Mass/unit 2.50 kg/m? 6.25 x 10° kg/m?
area
4  Weight/unit  24.53 N/m? 0.0613 N/m?
area
S Modulus of 1.35 X107 N/m? 1.5X10° N/m?
elastcity
6 Enclosed 452 x10° md 0.0636 m?
volume
7 Fundamental 1.00 Hz 133.0 Hz
frequency
8 Gradient 45 m/sec 15 m/sec

wind speed
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Plate (7.1): The aeroelastic hemispherical air-supported model
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facilitate any adjustments inside the model or any change in the positioning of the

displacement probes, a sealable circular access door was made in the chamber

walls.

7.5 INSTRUMENTATION

The internal volume of the model was pressurized by a high pressure air
supply controlled by two needle valves in series. A vacuum pump, controlled by
a needle valve, was used to bleed the chamber when needed. A manometer was
attached to the chamber 1o monitor the mean internal pressure and to detect any
possible leakage. All pressures were measured with respect to the mean ambient
static pressure within the boundary layer wind tunnel. A Setra pressure transducer
was connected to the instrument plate inside the model to monitor the internal

pressure fluctuations caused by the movement of the roof due to wind pressure.

Five displacement sensors were used in the tests to measure deflections
simultaneously at five different locations. The displacement sensors were Kaman
non-contact reactance sensors, mounted below the roof surface as shown in Figures
(7.1) and (7.2). A transducer positioning frame was fabricated to orient the
transducers normal to the membrane surface. This arrangement allowed the

identfication of both the axisymmetrical and asymmetrical modes of vibrations.

Electrical leads for various sensors were passed through the side of the
chamber and carefully sealed. Small aluminum foil targets were glued to the outer

surface of the roof at the Kaman probe locations to provide electrical conductivity.
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The added mass of the targets was small. The measured membrane displacements

were instantaneous values averaged spatially over the area of the probe surface.

7.6 FREE_VIBRATION TESTS

An experimental investigation of free vibration was conducted on the
hemispherical aeroelastic model to find the natural frequencies, damping ratios and
mode shapes of the structure in still air. The objective was to study the effects of
internal pressure and volume scaling on the dynamic behaviour of the

hemispherical air-supported structure for the condition of still air.

7.6.1 Test Procedure

The aeroelastic model was excited in stll air using a loudspeaker. Two
types of excitation were used: random and harmonic. The random excitation was
generated using white noise with a frequency range of 0 to 400 Hz. Harmonic
excitation was then applied stepwise at each natural frequency, and was used to
identify the associated mode shapes similar to what was done in Section 4.5. A
parametric study was conducted in which three different internal pressures and

three different enclosure volumes were considered.

7.6.2 Test Results

7.6.2.1 Frequencies of Free Vibration

Using the HP analyzer, the natural frequencies of the hemispherical air-
supported model were identified for all of the internal pressures considered. For

comparison, the theoretical damped frequencies were calculated using the finite
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element program ABAQUS mentioned previously in Chapter 6. The finite element
used in the analysis was a 4 node membrane element, S4R, as shown in Figure
(7.3). The first four mode shapes determined theoretically for the hemispherical
air-supported structure are shown in Figure (7.3). The experimental and
theoretical results of the model frequencies are shown in Figure (7.4), in which
the theoretical values are plotted in dashed lines. The frequency notation used
here is f; in which i is the number of nodal lines, and j is the order of the mode;

for axisymmetrical mode shapes i equals zero.

The aeroelastic mode! fundamental frequency was 130 Hz at an internal
pressure of about 40 Pa. The frequencies most affected by the internal pressure
are the fundamental frequencies f;, and f, associated with the first two
axisymmetrical modes. The first frequency, f;, can be interpreted as one of a
curved, pressurized "kettledrum”. It is the most affected by varying the intemnal
pressure, since it is the most volume-changing mode. This frequency decreases
with diminishing internal pressure, and its experimental values agree well with the
theoretical predictions for most internal pressuras. The ex:reme case occurs when
the internal pressure inside the structure approaches zero, which causes the
membrane stiffness to decrease, and therefore the frequency £,, to approach zero.
As the internal pressure increases, the natural frequency of the system increases

as the roof becomes stiffer.
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4 node element, S4R

MODE 02 MODE 21

Fig. (7.3): Mode shapes of the hemispherical air-supported structure
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7.6.2.2 Modal Damping of Free Vibration

For various values of internal pressure, the total damping ratios were
experimentally established for the model using the HP analyzer, as mentioned in
Section 4.5. The modal damping ratios of the first four modes are plotted in
Figure (7.5). The damping ratio of the fundamental mode with frequency, fo, is
denoted ¢, Figure (7.5) shows that the damping is relatively insensitive to the
internal pressure for the internal pressure range tested. However, there is a

tendency for the damping to be slightly increased by the increase in the internal

pressure.

The damping of the axisymmetrical mode f, is higher than that of the
second axisymmetrical mode fy,, as a result of the first mode being the most
volume changing mode. The total damping ratios of the axisymmetrical modes
f, and f,, are higher than those of the antisymmetrical modes f,, and f,,. This is

so because of the acoustical damping associated with the axisymmetrical modes of

vibration.

7.6.2.3 Effect of Enclosure Volume

The volume of the pressure chamber underneath the model was changed
in three steps by inserting cylinders of rigid styrofoam. The frequencies and
damping ratios were then established as before. The internal pressure was kept

constant for the various volumes considered for each test series.
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The volume factor used to characterize the enclosure is the ratio of the
volume of the chamber under the model base to the volume of the cavity above
the base. The measured frequencies and damping ratios are presented in Figure
(7.6} and Table (7.3). The fundamental frequency varies with the chamber
volume quite markedly and decreases with increasing chamber volume. - This is to
be expected because the roof behaves as a curved pressurized "kettledrum" whose
fundamental frequency, f,, depends on the pneumatic stiffness of the enclosure,

and thus on its volume.

Figure (7.6) shows that if the model design was based only on the lengin
scale (i.e., if the volume of the chamber under the model was zero), the
fundamental axisymmuetrical frequency f;, would be considerably overestimated.
A similar trend was observed for the second axisymmetrical mode f;,, but was not
as pronounced as for the first axisymmetrical mode f;,, because the volume changes

involved are small in comparison.

The damping ratios of the fundamental modes of the model for different
enclosure volumes are given in Table {7.3). It can be seen that there is a small
increase in the damping ratio, ¢, and ¢p, of the axisymmetrical modes with
decreasing chamber volume, and that the enclosure volume has little effect on

the antisymmetrical modes, ¢,, and ¢.,.
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40 129 85 . 120 8.9
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40 14.0 87 125 9.0
533 80 12.8 9.1 12.0 8.3
120 129 S0 125 8.9
40 145 990 128 8.3
2.66 80 15.0 9.1 12s .0
120 14.0 88 125 8.9
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7.7 WIND TUNNEL AEROELASTIC TESTS

7.7.1 Flow Modelling

The experimental work was conducted at the Boundary Layer Wind Tunnel
Laboratory (BLWT II) at Thé University of Western Ontario, London, Ontario,
Canada. The experiments were conducted in the high speed tunnel section that
has cross-sectional dimensions of 3.4 m high, 2.5 m wide, and is 39 m long. The
tunnel is equipped with adjustable-height roughness elements to produce boundary
layers appropriate to a wide variety of terrain roughnesses. The tunnel is also

equipped with noise dampers to reduce acoustic noise.

Three terrain exposures were simulated in these tests by varying the height
of the roughness elements; open country, suburban and urban exposures. The
roughness elements have an across flow width of 0.10 m and an along flow depth
of 0.05 m, and are distributed with 0.40 m center to center spacing in both
directions, upstream and downstream of the test area. The open country,
suburban and urban exposures were achieved with the elements in the upstream
fetch with heights of 20, 55 and 125 mm, respectively. The wind properties at
different heights was measured using a hot wire device mounted on a vertical
transversing gear at the model location. The wind tunnel was automatically

controlled by an on-line PDP 11/73 computer that also took the measurements.

The properties of the flow measured include the vertical variation of the

mean wind speed U(z), and of the standard deviation of the wind velocity
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fluctuation, o4(2) at the test section. Spectra of the wind velocity at the top of the
model, the vertical profiles of the mean wind speed, and the longitudinal local
turbulence intensity (o4(z)/U(2)) in the test section are shown in Figures (7.7) to
(7.12) for different exposures. The local turbulence intensities at the top of the
model were about 18:9%, 22.5% and' 33.9% for the open country, suburban, and
urban exposures, respectively. The heights at the edge of the boundary layer were
1.19, 1.33, and 1.48 m for the open country, suburban, and urban exposures,
respectively. The properties of the flow were measured at a gradient wind speed
(wind speed at the top of the boundary layer) of about 15 m/sec, R. = 3.0 x 10°

based on the diaimeter of the model.

7.7.2 Experimental Procedure
The aeroelastic model was tested in turbulent boundary layer flow
conditions simulating natural wind as described above. The model testing was

carried out for all combinations of the following four parameters:

1. Exposure: open country, suburban and urban exposures.
2. Internal pressure: 40, 80, and, 120 Pa.
3. Gradient wind speed: 6, 9, 12, and 15 m/sec.

4. Volume of the enclosure: volume ratios of 9:1, 6:1, and 3:1.

The volume of the model was varied in order to investigate the effects of air
compressibility on the wind-induced response and the internal pressure

fluctuations. The model was also rotated to check the reliability of the results and
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to cover a large number of points on the roof surface. The angles of rotation were

22.5° 45°, 90°, 270°, and 315°.

The hemispherical aeroelastic model was instrumented 1o permit quantitative
measurements of the mean and dynamic wind-induced membrane deflections and
internal pressure fluctuations. The perpendicular displacements of the roof were
measured at the five locations shown in Figure (7.2) using Kaman probes. In all
cases, the measured deflections were perpendicular to the roof surface, and are
given with respect to its initial geometry for a particular internal pressure. To
study the internal pressure fluctuations within the model cavity due to the
membrane movement under turbulent wind, a Setra pressure transducer was used.
The outputs of both the displacement and pressure transducers were passed
through a filter and an oscilloscope, then connected either to the on-line computer
or to the HP analyzer. The arrangement of the testing procedure is shown in

Figure (7.13).

The digital data acquisition system was used to obtain the maximum,
minimum, mean, and RMS values of both the roof response and the internal
pressure. Also, it was used 0 obtain the auto-spectra of both the membiane
responses at the five locations, and the dynamic internal pressure. The deflections
at all probe locations and the internal pressure fluctuations were simultaneously
measured over an averaging period corresponding to approximately one hour in

full scale for all test series. The HP analyzer was employed for the computation
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of the auto-spectra, cross-spectra, auto-correlation and cross-correlation of the roof
deflections at all probe locations. A photograph of the aeroelastic model in the

wind tunnel is displayed in Plate (7.1).

7.8 AEROELASTIC MODEL RESPONSE

The aeroelastic model remained aerodynamically stable for all of the
different internal pressures and wind speeds tested. Measured mean and RMS
membrane deflections, and internal pressure fluctuations for the various test

configurations are discussed below.

7.8.1 Effect of Wind Speed

Typical variations of the mean and RMS membrane deflections with wind
speed for all internal pressures are presented in Figures (7.14a), (7.14b), and
(7.15). It can be seen thar the mean response is proportional to the square of the
wind speed, and the RMS response increases almost linearly with the wind speed.
This shows that the structural response is due only to gusting wind, and that there
is no effect of vortex shedding or aerodynamic instability in the range of the
internal pressures and wind speeds considered. The RMS deflections were typically

small in comparison with the mean deflections.

The vortex shedding frequency (calculated on the basis of a Strouhal
number equals 0.20) is about 10 Hz, which is well below the fundamental
frequency of the model for the internal pressure range considered. Therefore,

vortex shedding had no effect on the model response. It is important to emphasize



188

that vortex shedding may be a problem in air-supported structures if the internal
pressure suddenly drops for any reason. The drop in the internal pressure causes
the fundamental frequency of the structure to fall and approach the vortex

shedding frequency, which may lead to destructive oscillations and flutter.

The power spectra of the roof response at various locations and for different
conditions were measured using the on-line computer and the HP analyzer.
Examples of the power spectra of response are shown in Figures (7.16), (7.17),
and (7.18) for the open country exposure, gradient wind speed of 15 m/sec, and
an internal pressure of 40 Pa. Spectra of response for other exposures and
internal pressures are given in Appendix A. Examining the power spectra of the
membrane response, the dynamic deflections were broad band random processes
with no indication of pronounced resonant components at the natural frequercies.

This may be because of the high damping.

An overlay of the response and external pressure spectra at probe 5, and
the wind velocity is given in Figure (7.18) for open country exposure, gradient
wind speed of 15 m/sec, and an internal pressure of 40 Pa. It can be seen that
the energy is similarly distributed in all spectra and that the spectral values start
to decrease gradually at high frequencies. The response of the structure is mainly
at frequencies well below the fundamental frequency of the structure, which may

be because the structure is heavily damped.
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7.8.2 Effect of Exposure

It can be seen that the open country exposure gives higher mean and
smaller RMS deflections as shown in Figures (7.14a), (7.14b), and (7.15) for an
internal pressure of 40 Pa. Similar trends were found at the other locations. This
could be because for the open country exposure, the mean wind speed at roof
height is higher than those for other exposures, yielding higher values of mean
response. In contrast, the urban exposure has more turbulence at roof height than
the other exposures, yielding higher RMS deflections. Examples of the measure
spectra of response for different exposures are given in Figures (7.16), (7.17),

(7.18), and in App=ndix A.

The normalized mean response of the roof center is plotted versus the wind
speed at the top of the model, Uy, as shown in Figure (7.14b) for different
exposures and an internal pressure of 40 Pa. It can be seen that the mean
response for different exposures is proportional to the square of Uy. This trend

is similar to that of the response of conventional structures to gusting wind.

It can also be seen from Figure (7.14b) that the normalized mean response,
plotted versus the mean wind velocity at the top of the model, Uy, is independent
of the terrain roughness. This is because the mean response basically depends on
the mean wind speed at the top of the model, Uy, and for the same Uy the

response is the same, regardless of the exposure condition.
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7.8.3 Internal Pressure Effect

To study the effect of the internal pressure on the measured wind-induced
response, three values of internal pressures were used: 40, 80, and 120 Pa. The
measured mean and RMS deflections at roof center for these three internal
pressures are presented in Figures (7.19a), (7.19b), and (7.20). Examples of the
response spectra for open country exposure; U = 15 m/sec and q, = 40 Pa are
shown in Figures (7.16), (7.17), and (7.18). Spectra of other exposures and

internal pressures are given in Appendix A.

It can be seen from Figures (7.19a), (7.199), and (7.20) that there is a
tendency towards reduced mean and dynamic deflections at the center of the roof
with increasing internal pressure for a specific wind speed. The mean response,
in particular, was affected by the variation of the internal pressure over the range
considered. This may be attributed to the reduction in the roof stiffness
accompanying low values of internal pressure. The mean and RMS deflections at

all other locations showed the same trend.

The normalized mean responses at the roof center (for different internal
pressures and the condition of open country exposure) are plotted versus the
nondimensional parameter Uy/(f,,d) as shown in Figure (7.19b), where £, is the
fundamental frequency of the model and d is the model diameter. The
fundamental frequency ., is used to normalize the resulis as it represents the total

stiffness of the model for different internal pressures. It is important to emphasize
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that the total stiffness in air-supported structures stems from the elastic stiffness
due to the temsion of the membrane, the internal pressure q,, and the

compressibility of the enclosed air.

It can seen from Figure (7.19b) that the mean response results for different
internal pressures fall on one curve. This means that the aerodynamic mean
response of the model can be estimated for different internal pressuras once the
fundamental frequency of the model at that specific internal pressure is known, or
in other words once a rélation between the fundamental frequency of the model
and the internal pressure is established. This relation can be estatlished either
theoreticailly using a finite element method or experimentally using an elastic
model as discussed in Sections 7.5 and 7.6. It can also seen from Figure (7.19b)
that the normalized mean response for different internal pressures is proportional

to the square of Uy.

To observe the buckled shape, the internal pressure of the model was
adjusted to about 13 Pa, and the wind speed was increased gradually until a part
of the membrane on the windward side buckled. The buckled area increased as
the wind spesd was further increased. A photograph of the buckled shape of the

membrane is displayed in Plate (7.2).
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Local buckling of model on the windward side

Plate (7.2)
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7.8.4 Effect of Volume Scaling of Enclosure

In Chapter 4, it was mentioned that to achieve the dvnamic stiffness scaling,
the internal volume of the prototype needs to be exaggerated by a factor of 1/,>
in excess of that indicated by direct geometric scaling. The tests described in this
section were conducted to investigate the error that might arise from an inco.rect
volume scaling of the structure enclosure, and to examine the role of air
compressibility. To study these effects, the volume of the chamber under the
model was changed in three steps, as done in the free vibration tests. In these
steps, the iziios of the chamber volume to the model volume were 8:1, 5.33:1 and

2.66:1.

The effect of the volume scaling on the measured wind-induced mean and
RMS deflections of the model is shown in Tables (7.4} and (7.5), for the open
country exposure and an internal pressure of 40 Pa. It can be seen thar there is
a tendency towards decreased static and dynamic deflections with decreasing
chamber volume over the volume range tested, for a particular wind speed. This
may be attributed to the increase in the roof stiffness accompanying smaller
volume ratios. This increase in stiffness is due to a smaller volume of air being
available to be compressed. This suggests that air compressibility plays a major
role in increasing the overall stiffness of the roof for small enclosed air volumes.
This effect, however, is less pronounced than that of increasing the internal

pressure.



TABLE (7.4): MEAN RESPONSE AT MODEL CENTER FOR DIFFERENT
ENCLOSED VOLUMES

r
(qo = 40 Pa and open counay exposure)

Model Mean deflection x (1 x 107 ) mm

Tunnel
Wind
Speed Fonamder / Fenode)
{m/sec)
8.00 5.33 2.66

9 240 230 220
12 475 470 460
15 765 750 740

261

TABLE (7.5): RMS RESPONSE AT MODEL CENTER FOR DIFFERENT
ENCLOSED VOLUMES

(go = 40 Pa and open country exposure)

Model RMS deflection x (1 x 1072 ) mm

Tunnel
Wind
Speed Fnarmber /Fomodel
(m/sec)
8.00 5.33 2.66
9 25.00 22.50 20.00
12 47.50 45.00 40.00
62.50 57.50

15 65.00
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7.9 INTERNAL PRESSURE FLUCTUATIONS
A Serra pressure transducer was mounted inside the model to monitor the
internal pressure flucruations induced by the membrane vibration. The internal
pressure fluctuations were dependent on the distribution of the external pressures

over the roof and the associated roof movement due to wind loading.

Examples of the power spectra of the internmal pressure fluctuations for
different internal pressures are presented in Figures (7.21) and (7.22). Appendix
A includes spectra of internal pressure fluctuations for other conditions.
Comparing the internal pressure spectra with those of the aeroelastic response at
a specific point, it was found thar the internal pressure spectra decrease rapidly
at high frequencies than the response spectra do. This may be because the
internal pressure fluctuations depend on the integrated external pressures over the
roof surface and not on the external pressure or the roof response at a certain

point.

The effects of the wind speeds, exposure conditions, and internal pressures
on the RMS values of the internal pressure are also plotted in Figures (7.23) and
(7.24). It can be seen from Figure (7.23) that the RMS values of the internal
pressure increase as the wind speed increases, and that they monotonically
increase with the changing of the exposure from open country to urban exposure,

due to the accompanying turbulence intensity increase.
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The RMS values of internal pressure decrease with the increase of the mean
value of the internal pressure as shown in Figure (7.24). This is similar to what
was seen with the response, and is due to the increased stiffness and decreased

motion of the roof under higher internal pressures.

The internal pressure fluctuations were also measured for different volume
ratios. It was found that the RMS values of internal pressure slightly increase as
the enclosure volume increases as shown in Table (7.6) for an internal pressure
of 40 Pa and urban exposure. This is likely due to the effect of air

compressibility, as discussed in Subsection 7.8.4.

In summary, the internal pressure fluctuations were generally small, being
less than about 4 Pa for a gradient wind speed of about 15 m/sec. The peak
departure of the model internal pressure from its mean value for this wind speed

was in the order of 12 Pa for an internal pressure of 40 Pa.

It must be mentioned that the RMS internal pressure results in this section
were corrected as they had zero intercepts when they were originally plotred.
The zero intercepts are probably a combination of electronic noise and acoustic
noise from the pressure regulator. The data were corrected by fitting a polynomial
to the RMS internal pressure results from which the zero intercepts were
determined. The corrected RMS internal pressure data are shown in Figures

(7.23) and (7.24).



TABLE (7.6): RMS INTERNAL PRESSURE OF THE MODEL FOR DIFFERENT

ENCLOSED VOLUMES

(go = 40 Pa and urban exposure)

Tunnel RMS Internal Pressure ( Pa)
Wind
Speed Fehamber /Vinodel
(m/sec)
8.00 5.33 2.66
9 1.90 1.70 1.20
12 2.60 2.30 A 2.00

15 3.70 3.42 2.90
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CHAPTER 8
PREDICTION OF WIND-INDUCED RESPONSE OF HEMISPHERICAL
AIR-GUPPORTED STRUCTURES

8.1 INTRODUCTION

In this study, a semi-analytical procedure for the prediction of wind-induced
response of air-supported structures is formulated. This procedure is based on
measurements of the external pressures using a rigid model, and also on the use
of the influence surfaces of deflection, that can be determined analytically or

experimentally using an elastic model.

A rigid model of the hemispherical air-supported roof (described in Chapter
7) was built and tested in The Boundary Layer Wind Tunnel Laboratory (BLWT
II) at The University of Western Ontario, London, Ontario, Canada. The objective
is to examine the applicability of the proposed semi-analytical approach for
response prediction. The static and dynamic wind pressures were measured for
different exposures. The influence surfaces of deflection were calculated using a
finire element static analysis. The analytical results were compared to the
experimental results that were previously obtained from the aercelastic tests

described in Chapter 7.
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8.2 REVIEW OF PREVIOUS WORK ON DOME STRUCTURES

Models of domes and- air-supported structures have previously been wind-
tunnel tested to find the minimum internal pressure to prevent buckling. In wind
tunnel tests on a model radome consisting of a three-quarter sphere on a
cylindrical tower, the necessary internal pressure required to prevent buckling was
equal to the full wind dynamic pressure g, while for a hemisphere mounted on the
ground, the necessary internal pressure was only 0.7 g, (Beger, 1967). These tests
were made in uniform flow which does not represent the boundary layer

conditions in the natural wind.

A number of studies have dealt with hemispheres and domes immersed in
turbulent boundary layers, but most of them were conducted at much lower
Reynolds numbers than similarity would require for prototype structures.
Taniguchi et al. (1982) studied a few hemispheres to establish a relationship
between the distribution of tk:2 mean pressure coefficients, the aerodynamic forces,

and the characteristics of the boundary layer.

Toy et al. (1983) investigated the flow around a hemisphere immersed in
two turbulent boundary layers of different turbulence intensities and velocity
profiles. The three-dimensional nature of the mechanism of separation and
reattachment of the air flow was examined. Both the separation region and the
reattachment points moved downstream with increasing turbulence intensity in the

boundary layer.
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Savory and Toy (1986) conducted a comprehensive study of the near wakes
of hemispheres in three different boundary layers. The effects of changes in the
flow or model geometry on the vorticity distributions and the development of the
separated shear layers were assessed. The generation and development of vortex
structures associated with the flow around the hemisphere were ascertained from

water channel observations.

Newman (1984) studied the flow over three inflated domes with height to
radius ratios of 0.5, 0.74, and 1.0, in a sparsely wooded area. The pressure
distributions on the inflated domes were measured in a boundary layer wind
tunnel, and a finite element analysis for thin shells was used to find the tension
and shear forces in the ricmivrane. Both rigid and flexible models were tested

for all geometries at low leymolds numbers.

Johnson and Surry (1985) studied the wind actions on five classes of small
tent structures. The results for a dome with a height to radius ratio of 0.5 were
slightly dependent on the Reynolds number, while the results for a hemispherical

tent were strongly dependent on the Reynolds number.

Tamura et al. (1989) studied the unsteady flow patterns and pressures
around a hemisphere situated on the ground at high Reynolds numbers. The study
concentrated on the near wake of the hemisphere, and the unsteady flow patterns

were investigated by computer simulation technique. Three-dimensional numerical
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solutions of the flow were obtained by direct integration of the Navier-Stokes

equations.

In summary, models for domes were wind-tunnel tested to estadlish a
relationship between the distribution pf the mean pressure coefficients and the
characteristics of the boundary layer; and to study the nature of separation,
reattachment of the air flow, and the near wakes of the domes for different

Reynolds numbers.

In this study, a hemispherical rigid model was tested in a turbulent
boundary layer flow to measure the external pressures. Pressure measurements
were made for different exposure conditions (open country, suburban, and urban).
These measurement were used for predicting the wind-induced response of a
hemispherical air-supported model. The nature of the flow around the hemisphere

is outside the scope of the study.

8.3 MEASUREMENTS OF SURFACE PRESSURES

Measurements of the wind-induced surface pressures were done using
methods developed at The Boundary Layer Wind Tunnel Laboratory (BLWT II) at
The University of Western Ontario, London, Ontario, Canada. A summary of the
experimental technique used in pressure measurements is given in Appendix B.

The Reynolds numbers achieved were low for reasons discussed in Chapter 7.
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8.3.1 The Pressure Model

A 2.5 mm thick plexiglass hemispherical model was used, with the same
dimensions as those of the aeroelastic model described in Chapter 7. The model
was attached to a clamping ring before it was mounted to the wind tunnel
turntable. The model surface was divided into thirty-two equal areas, (each with
6 pressure taps) and a total of 192 pressure taps were used in the pressure
measurements. A plan of the model showing the 32 panels and the pressure tap
distribution is given in Figure (8.1). A vertical cross-section of the pressure
model showing the pressure tap locations is given in Figure (8.2). Also, a

photograph of the pressure model is displayed in Plate (8.1).

8.3.2 Model Instrumentation

The hemispherical plexiglass model was drilled with 1 mm diameter holes
for the pressure taps. The holes were connected with pressure tight brass stub
tubes on the inside of the model that, in turn, provided the connection to plastic
pressure tubing leads. The leads were connected to scanivalve pressure switching

devices after being pneumartically averaged through pressure manifolds.

Pressure taps were distributed with 6 taps for each of the 32 panels as
shown in Figures (8.1) and (8.2). Each hole was checked to ensure that the
frequency content for a given pressure input was not distorted by the measuring
techniques. The pressure taps of each panel were connected to a manifold to be

pneumatically averaged, and the time history of the external wind pressure on
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Distribution in the ¢ direction

Group Distribution = Total pressure
number  in § direction taps
1 1@ 45° 3 * Angles ¢ and ¢
2 1@ 22.5° 16 are shown
3 1@ 15° 24 -
4 l@ 15:: 24 m Flg' (8-3)
S 1@ 15° 24
6 1@ 7.5° 48
7 1@ 7.5° 48
192

Fig. (8.2): Vertical cross-section showing the pressure tap locations

Fig. (8.3): Coordinates of a point on the hemisphere
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Plate (8.1): The pressure model
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each panel was obtained using an on-line computer, (PDP 11/73 computer). The
HP analyzer was also used in the pressure measurements. The pressure tests were
carried out at a gradient wind speed of 15 m/sec (R, = 3 x 10%). This Reynolds
number is in the critical range, and is calculated with the length parameter equals

0.30 m which is the model diameter.

8.4 RESPONSE TO WIND LOADING

In Chapter 7, the response of the hemispherical, aercelastic, air-supported
model in turbulent wind showed no resonance effects, because of the associated
higﬁ damping, and because the response occurred at frequencies well below the
fundamental frequency of the model. Therefore, the influence surfaces of
deflection were used together with the panel external pressure measurements to
predict the wind-induced response of the hemispherical, air-supported model. The
assumptions used in the analysis, i.e., that external pressures on the roof are
independent of roof displacement, and that the internal pressure is independent of

spatial location, are well-justified.

The response w at any point on the surface of a hemispherical roof (with
radius R) at a time t due to random wind pressures can be represented in the
form:

wW=w + w' (8.1)

where w is the mean response and w' is the fluctuating component of the

response w. The coordinates of any point, (4,4), on the surface of the hemisphere
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is shown in Figure (8.3).

In this -analysis, the total pressure at any point is P(6,¢,t), the mean
pressure component is P(s,4), and the fluctuating component is P’ (6,4,t). The
infiuence surface defining the response w at point B due to a unit load is I; (6,4)
applied at a point with coordinates (4,6). For a quasi-static state, the response
at point B can be given as

W = { P(,¢,1) Lz (8,¢) dA (8.2)
where A is the surface area of the roof. The mean response can be written as

Wy = [ Plo,s,0) Ls (4,¢4) dA (8.3)

The mean square response is

w2 = J;f P’ (81,¢1,t) P'(82,62,0) s (61,61) Ts (62,62 dA, dA; (8.4)

where P’ (6,,¢,,1) and P (6,,4,,0) are the pressures at points 1, (6,,¢1), and 2,

(84,¢2), respectively.

In this study, the surface of the pressure model was discretized into 32
panels of equal arez. All time histories and spectra of the external pressures were
experimentally measured as mentioned earlier. Therefore, the problem of the
response of the hemispherical air-supported structure is dealt with as a discrete
system with 32 input forces which are correlated. The response at point B on
the surface due to wind pressure can now be written as

W, = z B, (6pd) A Is (6,9 (8.5)

where A, and P, are the area and the pressure of panel j, respectively.



The mean response is
Wy = z Py Ay Ty (6,4)
and the mean square response is

n

V-;":'z =z 5 PP AAL (6,80 Is (8,4)

=1 =1
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(8.6)

8.7)

In the above equations i and j are panel numbers, and n is the total number cf

panels. The influence surfaces of deflection account for different internal pressures

and accordingly different stiffnesses. The correlation function of any two

fluctuating pressures P, and P;’ can be written as

Rpy(r) = P, (81,61,0) Py (82,82t +7)

1 1., ,
=57 J P/ (6u6u0) B (fugat+r) dr

T=a

N

The spectrum of the external pressure can be written as

—2xfri

SPij(f) = _f Rﬁj(f) € dr

and the spectrum of response at a point B is

S.(H = g "z Spi 0 A A L (660 I (656

=1 j=1
or

SuD =% TSy 0L (B0 Ib (Bpé)

jwl  je1
where

(8.8a)

(8.8b)

(8.9)

(8.10a)

{(8.10Db)

Sw; () : spectrum of external pressure (auto-spectrum for i = j and cross-

spectrum for i #j );
Se; (f)  : spectrum of force;

S. (£ : spectrum of response w at point B;

I, {6,4) : deflection at point B due to unit load at panel i; and

Is (4,¢;) : deflection at point B due to unit load at panel j.
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The spectra Sg; (f) and Sy (f) are related as

Sy ® = fAf Spy () dA, dA; (8.11a)

= Sy (O A A (8.11b)

The variance of the response at point B can also be written as
w2 =8, (f) df (8.12)
o

where S, (f) is given by Equation (8.10). Thus, the semi-analytical procedure
can predict the mean, RMS, and spectrum of the wind-induced response at any
point on the roof surface for different exposures and internal pressures. The wind
pressures were measured in a wind tunnel using the rigid model for different
exposures, and the influence surfaces of deflection were calculated theoretically for

different internal pressures using a finite element static analysis.

8.5 INFLUENCE SURFACES OF DEFLECTION

The deflections of the roof due to a load at any point on the surface were
theoretically calculated using the finite element program ABAQUS for different
internal pressures considered. A static analysis was made to determine the roof
deflections. In the finite element analysis, the roof surface was discretized into 4-
node membrane elements and the deflections were evaluated for each value of the
internal pressures corresponding to those of the aeroelastic model (40, 80, and 120
Pa). Vertical and horizontal cross-sections in a typical influence surface of
deflection at point B is displayed in Figures (8.4a) and (8.4b). The deflections in

these figures are normalized by the deflection at point B.
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For comparison purposes, a few deflections were measured at the probe
locations of the aercelastic model described in Chapter 7. After calibrating the
displacement transducers and setting up the required internal pressure, the
hemispherical aeroelastic model was mounted on a shaker table to measure the
roof deflections at the transducer locations. A load cell was calibrated and used
to apply a load at several locations on the surface of t1:1e aeroelastic model. The
load cell was mounted on a stand and was kept always perpendicular to the
surface of the aeroelastic model as shown in Plate (8.2). The displacements of the
five Kaman transducers were obtained using an on-line computer. Then, the model
was rotated stepwise and the roof deflections at the transducer locations were
accordingly monitored. The initial positions of the displacement transducers are
shown in Figures (7.1) and (7.2). A comparison between the theoretical and
experimental deflection results are given in Table (8.1). The agreement between
the two approaches is good enough to confirm the theoretical deflection values

obtained using the finite element method.

8.6 WIND TUNNEL PRESSURE TESTS

8.6.1 Flow Modelling

Three =xposures were simulated in the wind tunnel; open country,
suburban, and homogeneous urban exposures. The wind velocity at the top of the
model was measured using a hot wire device. The measured flow properties which

include the variation of the mean wind speed U(z), and the standard deviation of
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a)

b)

Fig. (8.4): Influence surface of deflection at point B
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Plate (8.2): Measurements of influence surfaces of deflection



TABLE (8.1): COMPARISON BETWEEN THEORETICAL AND MEASURED
STATIC DEFLECTIONS

(qo = 40 Pa)
Probe Measurements Analydcal
Number (1 x 10® mm)
1 7.62 6.70
2 5.08 4.30
3 2.54 2.10
4 2.54 2.10
5 5.08 4.30
P 1,2,5

Probes 2,3,4and 5
are 45° with the
Horizontal

\ A5/

Sensor and Load Locations
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the wind velocity fluctuation #,(z) at the test section, were the same as those of

the aeroelastic tests, Chapter 7.

8.6.2 Experimental Procedure

Pressure measurements were made for all three exposures. The model was
also rotated; and the external pressures were measured to be used in the response
prediction, and to check the reliability of the pressure measurements. The model

was tested at rotation angles of 22.5°, 45°, and 90°.

The output signals of the pressure transducers were passed through a filter
and monitored on an oscilloscope, and connected either to the on-line digital data
acquisition system (PDP 11/73 Computer) or to the Hewlett-Packard Structural
Dynamic Analyzer 5423A. The external wind pressures on the model were
measured at a gradient wind speed of 15 m/sec. The on-line computer was used
to obtain the time histories of the thirty-two panel pressures, each sixteen at a
time. The pressure data of quarters 1 and 2, quarters 3 and 4, quarters 1 and 4,
and quarters 3 and 2 were taken at an angle of attack o° as shown in Figure
(8.1). To obtain the data of quarters 1 and 3, and quarters 2 and 4 the model
was rotated 90°. From the pressure time histories the mean, RMS, and spectral
information were calculated using the program CROSS on the wind tunnel
mainframe computer. Also, the HP analyzer was used to measure the auto-spectra

and cross-spectra of the external pressures directly for different panels.
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The terrain roughness affected the panel external pressures. The mean
external pressures for the open country exposure were higher than those for the
other exposures. This is because the mean velocity at model height is higher for
the open country exposure than it is for other exposures. The urban exposure
resulted in higher RMS pressure values than other exposures due to the associated
high turbulence intensity. The unsteady pressufes and suctions are due to the
natural gustiness of the wind and the unsteady character of the flow within the
wake formed by the structure. Examples of the auto-spectra of external pressure

for different exposures are shown in Figures (8.5) to (8.10).

8.7 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESPONSE RESULTS

The wind-induced response at any point on the surface of the hemispherical
air-supported model can be predicted as explained in Section 8.4. The influence
surfaces of deflection were calculated using the FEM analysis and used with the
pressure measurements to predict the wind-induced response of the hemispherical,
aeroelastic model. It may be mentioned that the prediction of response required
considerable time and computational effort, as can be seen from Equations (8.6),
(8.7), and (8.10). The calculation of the mean and RMS values of response as
well as the response spectrum at a point (for a certain exposure and a specific

internal pressure) required the use of the corresponding external pressures and

deflecticn data.
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Examples of the predicted and measured (mean and RMS) deflections
calculated using equations (8.6) and (8.7) are given in Tables (8.2) and (8.3} for
different internal pressures and exposure conditions. [t can be seen that the
analytical results compare reasonably well with the experimental ones for the

internal pressures and exposures considered.

The formulated semi-analytical procedure was also used to predict the
spectra of response of the hemispherical air-supported model due to wind load
using Equation (8.10). Examples of the analytical and experimental spectra of
response are displayed in Figures (8.11) to (8.13) for different exposure

conditions. The internal pressure of the aeroelastic model in this case was 40 Pa.

An overlay of the analytical and measured response spectra indicates that
the analysis is adequate for predicting the wind-induced response of air-supported
roofs. The analytical and measured response spectra show that the dynamic
deflections are broad band random processes with no indication of resonance

effects.

[t can be seen from Tables (8.2) and (8.3) that the open country exposure
gives slightly higher mean deflections than other exposures, as the mean wind
speed at the model top is higher than those for other exposures. The urban
exposure resulted in higher RMS deflections due to the associated high turbulence
intensity. Both the measured and predicted response results showed that as the

internal pressure of the model increases, the mean and RMS deflections decrease.



TABLE (8.2): MEAN RESPONSE AT POINT B FOR DIFFERENT EXPOSURES

AND INTERNAL PRESSURES

Model Mean deflecdon x (1 x 10*) mm

Internal Exposure
pressure
Open Suburban Urban
(Pa)
Anal. Exp. Anal. Exp. Anal. Exp.
40 760 740 730 720 710 670
80 665 670 625 600 605 570
460 440

120 560 500 470 480
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TABLE (8.3): RMS RESPONSE AT POINT B FOR DIFFERENT EXPOSURES
AND INTERNAL PRESSURES

Model RMS deflecdon x (1 x 10*) mm

Internal Exposure
pressure
Open Suburban Urban
(Pa)
Anal. Exp. Anal. Exp. Anal. Exp.
40 74.10 65.00 85.70 £0.00 96.50 110.00
80 69.20  62.50 78.70 72.50 86.40 90.00
120 62.70 55.00 72.40 65.00 78.70 82.50
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This is so because as the internal pressure increases, the roof stiffness increases.

It can be seen from Figures (8.11) to (8.13) and from Tables (8.2) and
(8.3) that the agreement is quite good between the predicted and measured
deflection values. Thus, the semi-analytical approach is a good estimate of the
mean and RMS deflection values as well as the wind-induced response spectra.
The maximum difference between the analytical and experimental results is about
14% which is acceptable in engineering practice. This difference might be because
the external pressures on the aeroelastic model are somewhat different from those

on the rigid model, being affected by the roof motion.

Finally, to improve the reliability of the suggested semi-analytical procedure,
studies may be needed to find the distributions of the external pressure coefficients
and the correlation functions for different terrain exposures and wide ranges of

Reynolds numbers, particularly for very high Reynolds numbers.

The good agreement between the experiment and the theoretical results
proves the applicability of the proposed semi-analytical approach. The great
advantage of this approach is that the external pressures can be established on
rigid models and then be used repeatedly to predict the response of different
hemispherical roofs featuring various flexibilities, masses, internal pressures, and
damping. This procedure reduces the need for aeroelastic testing, which is

desirable because the aeroelastic models are costly and difficult to make.



CHAPTER 9
CONCLUSIONS AND RECOMMENDATIONS

In the first part of the study, free vibration of self-supported, large span
roofs backed by cavities with openings was investigated. A simplified theoretical
approach was formulated to evaluate the roof modal parameters, considering the
structural and acoustical damping for the roof and the openings. The accuracy of
the approximate formulae for the evaluation of roof modal properties was assessed
by comparisons with a complex eigenvalue analysis and with an exact solution for
a circular membrane. The theoretical approach was verified by conducting free
vibration tests on two different structural models: a membrane roof and a plate
roof. Closed form solutions were also derived for the damped response of a

circular membrane backed by a cavity with openings.

The second part of the study was devored to air-supported structures. Free
vibration of cylindrical and spherical structures was theoretically investigated and
the results were compared with those of a finite element solution. Wind tunnel
tests were conducted on an aeroelastic model of a hemispherical air-supported
structure to study the wind-induced response and the accompanying internal
pressure fluctuations. The aeroelastic model was tested for different gradient wind
speeds, exposures, enclosure volumes and internal pressures. A semi-analytical
approach to predict the wind-induced response of air-supported structures was
established. This approach is based on external pressure measurements conducted

on a rigid model in the wind tunnel. The theoretical wind-induced response was
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compared with the measured response established from the aeroelastic tests.

The conclusions of the study can be summarized as follows:

9.1 SELF-SUPPORTED ROOFS BACKED BY CAVITIES WITH OPENINGS

The main conclusions of the free vibration analysis of self-supported,

lightweight roofs backed by cavities with openings are:

1. The free vibration of lightweight roofs in fundamental symmetrical modes is
governed by the area of wall openings and by the pneumatic stiffness of the
cavity, together with the shape, mass and elastic stiffness of the roof.

2. The pneumatic stiffness of the enclosure depends on the opening areas.

3. The lowest fundamental frequency of the roof-air system incre. ses with the
increase in the opening areas, as in a Helmholtz oscillator, and ultimately
reaches the frequency of a roof vibrating in a vacuum.

4. The effects of wall openings on the second symmetrical mode are much less
pronounced than on the first symmetrical mode and are very small for the
antisymmetrical mode shapes.

S. The total damping of large span, lightweight roofs vibrating in still air stems
from the structural and acoustical damping.

6. Theoretically predicted frequencies and damping ratios are in very good
agreement with experimental values. This shows that the suggested
generalized rwo-mass analytical model can provide reasonable estimates of

the natural frequencies and modal damping of the roof-air system.
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7. In stll air, the volume of the enclosure under the roof significantly affects the
frequency of the fundamental symmetrical modes of vibration in the absence
of wall openings, but has little effect when wall openings are present. This

effect is much less pronounced for the second symmetrical mode of vibration.

9.2 AIR-SUPPORTED STRUCTURES

9.2.1 Free Vibration Analysis of Cylindrical and Shallow Spherical Structures

The free vibration of cylindrical and spherical air-supported structures was
theoreticaily examined for the condition of still air. Closed form solutions for the
modal parameters of such structures were derived. The results were compared

with the theoretical ones obtained using the finite element method.

The main conclusions are:

1. For both the cylindrical and spherical air-supported structures, the natural
frequencies calculared analytically using the derived closed form solutions and
using the finite element method are in goed agreement.

2. As the internal pressure of the structure increases, the natural frequencies
increase because of the accompanying increase in the stiffness of the structure.
Conversely, decreasing the internal pressure may lead to a loss of the
membrane stiffness, which subsequently leads to a substandal decrease in the
natural frequencies.

3 Cylindrical air-supported structures with length to lateral projection ratios

greater than 4 can be considered as infinitely long, as the effects of the ends
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diminish. The damped frequencies and modal damping ratios of such
structures can be evaluated using the derived closed form solutions.
4. Spherical air-supported structures with rise to lateral projection ratios less
than 1/5 can be considered as shallow. The modal parameters of such
structures can be estimated using the derived closed form solutions, which

address the analogy between shallow spherical and flat circular membranes.

9.2.2 Free Vibration Analysis of Hemispherical Structures

The free vibration of hemispherical air-supported structures was examined

both theoretically and experimentally. The main conclusions are:

1. The free vibration of air-supported structures is governed by the internal
pressure, the mass, and the elastic stiffness of the roof.

2. The pneumatic stiffness is proportional to the internal pressure and inversely
proportional to the enclosure volume.

3. The total damping of large span air-supported structures vibrating in still air
is higher than that of conventional structures and stems from the structural
damping and acoustical damping.

4. The enclosure volume under the roof significantly affects the frequency
of the fundamental axisymmetrical mode of vibration for a particular internal
pressure. This effect is much less pronounced for the second axisymmetrical

mode of vibration.
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9.2.3 Wind Tunnel Tests

Wind Tunnel tests were conducted on both aeroelastic and rigid models of
a hemispherical air-supported structure. The parameters in these tests were the

wind speed, the exposure, the internal pressure and the enclosure volume.
The main conclusions are:

1. The mean membrane deflections of the hemispherical air-supported structure
in strong winds are very large compared to conventional structures and are
mostly outward except the windward side, where the deflections are inward.

2. Dynarnically, the membrane responds instantaneously and locally to wind

induced pressure fluctuations.

1<

The dynamic response is broad band in character, typical of a quasi-steady

excitation or low frequency buffeting referred to as the backgroand turbulence

response, without resonance contributions. in this reg-rd, the response of the

hemispherical membrane is typical of a highly damped structure.

4. The dynamic response is generally small compared to the mean deflections.

5. The open country exposure gives higher mean and smaller RMS deflections
thaa those for other exposures. [n contrast, the urban exposure has more
turbulence than other exposures, and produces higher RMS deflections.

6. Variations in the mean internal pressure have a significant effect on the roof

response. A marked increase of the wind induced response occurs when the

internal pressure is reduced.
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7. Variations in the volume scaling affect the mean and RMS values of the roof
response. Reductions of the roof responses occur when the model volume is
significantly reduced.

8. The RMS internal pressure fluctuations are generally small. The RMS values
of internal pressure grow with the wind speed and increase with changing the
exposure from open country to urban, with the associated turbulence intensity
increase. The RMS values of internal pressure are also inversely proportional
to the internal mean pressure and proportional to the volume of the enclosure.
This is similar to what was seen with the response.

9. The open country exposure gives higher mean and smaller RMS external
pressures than other exposures. This is because the mean velocity ar roof
height is higher and the turbulence intensity is lower for the open country
exposure than it is for rougher exposures.

10. The predicted mean and RMS deflections compare well with the
experimental ones for the internal pressures and exposures considered.
This indicates that the proposed semi-analytical approach can provide

reasonabie estimates of the wind-induced response of air-supported structures.

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Several recommendations may be made for future research into free
vibration and the dynamic response of more complex shapes of large span,
lightweight roofs. Paraboloids and double curved shapes are among the complex

shapes requiring further research. Dynamic analysis is also needed for air-
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supported structures of more complex shapes such as cylindrical shapes with

spherical or parabolic ends.

The terrain roughness has significant influence on wind loading. A derailed
study may be needed to investigate the transition from local roughness introduced
by one or two obstacles surrounding the structure, to general roughness introduced
by a homogeneous urban environment. A full-scale study is needed to clarify the
roof behaviour for high Reynolds numbers and to examine other features of wind-

induced response of air-supported structures.

To improve the reliability of the semi-analytical approach formulated for
predicting the wind-induced response of air-supported structures, further research
into the distributions of external pressure coefficients and their correlation
functions for different terrain exposures and high Reynolds numbers is needed.

Finally, the analysis should be extended to allow for structural non-linearities.



APPENDIX A
SPECTRA OF RESPONSE AND INTERNAL PRESSURE FLUCTUATIONS
This appendix contains the power spectra of response as well as the internal
pressure fluctuations due to turbulent wind for the aeroelastic hemispherical air-
supported mode! described in Chapter 7, for different terrain exposures and

internal pressures.
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APPENDIX B
MEASUREMENTS OF SURFACE PRESSURES *

Measurements of the wind-induced surface pressure at a point are
accomplished by allowing the surface pressure to act on 2 transducer which
provides an electrical analogue of the pressure. The electrical signal is processed
using standardized instrumentation techniques and digitized to allow the on-line

analysis by a small computer and peripherals.

In practice, the transmission of the surface pressure to the pressure
transducer is complicated in two ways. First, there are usually a large number of
measuring positions requiring the use of multiple pressure switches - in this case
scanivalves - to provide a reasonable trade-off between a large number of
transducers and a lengthy testing time. Second, the model is generally too small
to allow the pressure switches and transducers to be very close to the measuring
locations. The resulting use of long lengths of pneumatic tubing leads to the
modification of the pressure at the transducer compared to that at the model
surface. These problems are dealt with as follows: pressure taps on the model are
connected pneumatically to one of several scanivalves, each is capable of handling
48 different taps. Each scanivalve contains a pressure transducer 1o which

individual taps are connected on computer command. The pneumatic connection

* This appendix is adopted from a standard appendix to reports issued by the

Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario,
London, Ontario, Canada.
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between the model and the scanivalve is typically 1.50 mm ID plastic tubing
containing a restricting insert of small bore at a specific point along its length.
The function of the restrictor is to add damping to the resonant system made up
of the pressure tube and the connecting volume adjacent to the pressure
transducer. The resulting pressure system with 0.60 m long tubes, responds with
negligible atrtenuation or distortion to the surface pressure fluctuations with

frequencies up to about 100 Hz.

The on-line digital data acquisition system, consisting of a PDP 11/73
computer and peripherals, simultaneously samples the signal from each of the
pressure transducers at a rate of about 500 times per second for sixteen inputs.
Typically, sampling is continued for one minute in real time during which the
computer records, for each input the time history, maximum and minimum values
that occur, and computes the mean and the RMS pressure values. This sampling
period was sufficiently long to provide statistically stable estimates of the mean
and RMS pressures. The reference dynamic pressure, usually measured in the free
stream above the boundary layer, is monitored similarly. After the sampling
period, the measured maximum, minimum, mean and RMS pressure values for each
channel are converted to pressure coefficients by dividing each by the reference
dynamic pressure. These are stored on a disk for later analysis. Besides the
sampling and the on-line calculations, the computer controls the experimental
hardware such as the stepping of the scanivalves, the roraticn of the wind tunnel

turntable on which the pressure model is mounted and the wind speed.



255

Definition of the Pressure Coefficients

Pressures are usually measured with respect to the mean static pressure in
the wind tunnel test section. Pressure coefficients are obtained by normalizing the
measured pressures by the mean dynamic pressure measured at a convenient
reference height, usually selected to be somewhat higher than the top of the
boundary layer. The pressure coefficients are defined as follows:
Mean pressure coefficient

1

=15 PO d]/g (B.1)
RMS pressure coefficient

G =1 +[{(PO-Frdl/q (8.2)

Maximum pressure coefficient

~

C=Pmu/q (B.3)

and the minimum pressure coefficient is

C'=Pun/ g (B.4)
where P(1) is the instantaneous surface pressure measured with respect to the
mean static reference pressure; t is the time; P is the temporal mean surface
pressure defined with respect to the mean static reference pressure; and P, and
P, are the maximum and minimum values of the surface pressure P(t) for the
sampling period T, respectively. The reference mean dynamic pressure q is

q=3pe [ig (B.5)
where p, is the air density and U is the reference wind speed, normally measured

in the free stream above the boundary layer in which case it corresponds to the

hourly mean gradient wind speed at full scale.
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