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  Abstract 

Theories of grounded cognition emphasize the role of sensorimotor simulation in conceptual 

knowledge. With regard to action concepts, the motor system is hypothesized to play a central 

role in their representation and processing. The present study investigates whether patients with 

Parkinson’s disease (PD) who have greater upper versus greater lower limb impairments show 

different patterns of performance when processing action verbs. Patients and matched controls 

made action decisions on upper-limb (reach), lower-limb (kick), and psych verbs (think). The 

most important result was an interaction between PD dominance (PD upper vs. lower limb motor 

impairments) and verb type (upper- vs. lower-limb verbs). PD patients with greater upper limb 

impairment were slower in processing upper-limb versus lower-limb verbs, whereas those with 

greater lower limb impairment performed similarly on these verb types. The results support a 

relatively fine-grained functional role of the motor system in the conceptual representation of 

action verbs. 
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Parkinson’s Patients’ Upper and Lower Limb Motor Impairments Differentially Influence Action 

Verb Processing 

During the past couple of decades, a great deal of research in cognitive neuroscience has 

focused on the theoretical and empirical issues surrounding the neural and conceptual 

representation of word meaning. Although it is well established that the left inferior frontal and 

superior temporal cortices, Broca’s and Wernicke’s areas, respectively, play a major role in 

language processing, the role of sensory and motor systems in semantic processing in the brain 

remains controversial. There have been two main approaches to conceptual representation, 

amodal and modality-specific theories. In amodal theories, concepts such as apple or truck are 

represented in the brain in an abstract and symbolic form, stored independently of perceptual 

(e.g., visual, auditory) and motor (e.g., movement, proprioceptive) modalities that are used 

during experience (Barsalou, 2008). That is, perceptual and motor experiences are assumed to be 

important for learning, but these experiences are transduced into amodal symbols, resulting in 

memory representations that are distinct from the modal systems. In contrast, in modality-

specific theories, concepts are represented, at least in part, by the brain’s perceptual and motor 

systems (Barsalou, Simmons, Barbey, & Wilson, 2003). That is, the perceptual and motor 

experiences that are important during learning are also involved in the representation of the 

learned concept. 

There has been a great deal of debate among proponents of these views. As part of this 

controversy, researchers have investigated concepts and their relationships with perceptual and 

motor systems of the brain. For example, Goldberg, Perfetti, and Schneider (2006) investigated 

the neuroanatomical correlates of the perceptual processing of object concepts. In an fMRI 

experiment, participants were presented with words denoting concrete concepts (e.g. apple, 
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feather) and were asked to verify whether the item possessed a feature from one of four sensory 

modalities: colour (red), sound (loud), touch (soft), or taste (sweet). Goldberg et al. found 

activation of related modality-specific sensory areas of the brain during feature verification. For 

example, when a participant verified that a pillow is soft, tactile-related areas of the brain would 

be selectively activated. Goldberg et al.’s results suggest that modality-specific systems are part 

of how the brain represents and computes concepts. 

In addition to object concepts, another intensely researched area is action concepts and 

their relationship with the motor system. This is the focus of my thesis. Although the concept of 

action is typically regarded as physical movement, for the purpose of this thesis, it includes verbs 

that refer to both physical and mental actions, as in kick and think. Most of the research in this 

domain has been limited to physical action concepts (e.g., grasp, kick, and smile) because they 

can be relatively easily mapped along the body and have corresponding somatotopic 

representations in the brain. This enables fine-grained hypotheses to be derived from amodal and 

modality-specific theories. 

The motor system involves areas of the central nervous system that are responsible for 

movement. This includes cortical – primary, premotor, and supplementary motor cortex – and 

subcortical structures – basal ganglia. To study the parallels between physical action concepts 

and the motor system, researchers have explored how impairments in motor functioning such as 

those observed in amyotrophic lateral sclerosis (ALS), Huntington’s disease, and progressive 

supranuclear palsy, affect conceptual representation of physical actions during language 

processing (Cotelli et al., 2006; Grossman et al., 2008; Teichmann et al., 2008). 

The goal of the current study is to explore how Parkinson’s disease (PD), a movement 

disorder, influences linguistic processing of action concepts. Specifically, I tested whether PD 
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patients with either greater upper or greater lower limb impairment differentially process hand-

related (reach) and leg-related verbs (run). In addition, I explored how processing of mental 

action words such as think and admire are affected in PD. I found that arm-related action words 

are processed more slowly than leg-related action words in PD patients with greater upper limb 

impairment, whereas there was no difference in PD patients with greater lower limb impairment. 

Surprisingly, processing of physical and mental action words were not impaired in PD patients 

relative to controls. I interpret these results in terms of a functional and selective role of the 

motor system in language comprehension of body-part-specific action concepts. The results 

provide support for the view that conceptual representations are grounded in modality-specific 

experiences. 

The remainder of the Introduction is structured as follows. I begin by discussing a 

dominant view in conceptual knowledge, grounded cognition. Next, I discuss the relationship 

between the motor system and action concepts in language by presenting findings from 

neuroimaging (fMRI), transcranial magnetic stimulation, and motor-lesion patient studies. I then 

introduce Parkinson’s disease and discuss the PD literature regarding verb processing. Finally, I 

present some shortcomings from verb studies with PD patients that lead to the present study. 

Grounded Cognition 

In grounded cognition theories, concepts are represented and processed using sensory and 

motor experiences both with the world and within the body. That is, conceptual representations 

are ‘grounded’ in these modal experiences. Accounts of grounded cognition emphasize the role 

of simulation in cognition (Barsalou, 2008). Simulation involves the partial re-enactment of 

perceptual and motor states acquired during experience with the external environment, as well as 

bodily states. As experience is gained (e.g., playing with a soccer ball), the brain retains 
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perceptual and motor states, which are then integrated to form a multimodal representation (e.g., 

how to kick a ball, the way a ball looks and feels). Later when the concept (e.g. soccer ball) is 

brought to mind, a multimodal representation of the experience is simulated. 

With regard to action concepts, the functioning and integrity of the motor system is 

expected to play a crucial role in their representation. Because of the somatotopic representation 

in the motor cortex, examining the parallels between action concepts and the motor system has 

played a central role in grounded cognition studies. 

Neuroimaging Evidence 

Neuroimaging techniques have been used to assess the involvement of the motor cortex 

during language processing. For example, Hauk, Johnsrude, and Pulvermüller (2004) 

investigated the activity of cortical motor areas during processing of physical action words. 

Healthy individuals, while in an fMRI scanner, passively read single words such as lick, pick, 

and kick that denote actions of specific body parts. Consistent with grounded cognition theories, 

they predicted that when people read such words, the motor system should be activated. More 

specifically, when people read action verbs relating to the legs, hands, or face, then motor areas 

of the brain corresponding to those body parts should become active. First, Hauk et al. found that 

the motor cortex was activated from action words. Second, and more importantly, activity of 

neural regions responsible for movements of the foot, hand, and tongue overlapped with those 

involved in reading corresponding action verbs. Hauk et al. interpreted these results in terms of 

the motor system being directly involved in the neural representation of physical action concepts. 

Tettamanti et al. (2005) used fMRI to investigate whether selective cortical motor areas 

become active when people listen to sentences that denote bodily action. To locate somatotopic 

‘mirror neuron areas’ in the motor cortex, the researchers had participants observe actions of the 
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leg, hand, and mouth. Participants then listened to sentences expressing actions of related body 

parts. In the left motor cortex, areas activated during observation of bodily action overlapped 

with those activated by sentences describing related actions. Tettamanti et al.’s results suggest 

that language comprehension of physical action at the sentence level involves selective neural 

activity in the motor regions. 

In a similar fMRI study, Aziz-Zadeh, Wilson, Rizzolatti and Iacoboni (2006) investigated 

whether reading sentences describing body-part-specific actions involves motor areas crucial for 

executing and observing actions. Participants observed actions of the foot, hand, and mouth. 

They then read sentences describing actions of the same body parts. Aziz-Zadeh et al. found that 

in the left pre-motor cortex there was a clear congruence between areas that were active in action 

observation and those that were active when reading body-part-specific actions. The authors 

concluded that a key role of ‘mirror neuron areas’ was the re-enactment of sensory-motor 

representations during comprehension of language describing physical actions. 

Although selective cortical motor areas have been shown to be activated during linguistic 

processing of physical action concepts, such findings do not specify whether the role of the 

motor system is functional- or ancillary-related (Mahon & Caramazza, 2008). In other words, at 

least according to some researchers, activation of these cortical motor areas may be an intrinsic 

part of physical action concepts, or instead it may be a consequence of understanding the action 

concept, so that activation of these cortical areas is not part of the concept per se. 

TMS and Motor-Lesion Evidence 

To elucidate the role of the motor system in language processing, transcranial magnetic 

stimulation (TMS) and motor-lesion patient studies have been conducted. Pulvermüller, Hauk, 

Nikulim, and Ilmoniemi (2005) investigated how depolarization of motor cortical activity affects 
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processing of physical action words. Single-pulse TMS was applied to hand and leg motor areas 

while participants performed a lexical decision (word/nonword) task on arm-related and leg-

related verbs. TMS applied to the hand area of the motor cortex led to shorter lexical decision 

latencies to arm-related than to leg-related action words, whereas stimulation over the leg area 

produced opposite results. Similarly, Papeo, Vallesi, Isaja, and Rumiati (2009) investigated 

whether the left primary motor cortical areas are automatically and necessarily involved in 

language comprehension of physical action verbs. They applied TMS to hand and non-hand 

areas of the motor cortex while participants performed a lexical decision task. TMS applied to 

the hand area resulted in shorter lexical decision latencies for hand-related action verbs over non-

hand-related action verbs. These results suggest that there is an interaction between language and 

motor areas, and that this dialogue is fast and automatic. 

Neininger and Pulvermüller (2003) tested for word-category deficits in patients suffering 

from right hemisphere lesions. Two groups of patients with right frontal and right tempor-

occipital lesions were assessed on their ability to process verbs and nouns using a lexical 

decision task. Patients with right frontal lesions showed the most severe deficits in processing 

action verbs (grasp), whereas patients with right tempor-occipital lesions showed the most 

severe deficits in processing of concrete nouns (table). This double dissociation suggests that 

frontal cortical areas are more involved in action processing, whereas temporal cortical areas are 

more involved in noun processing. 

Grossman, Anderson, Avants, Elman, and McCluskey (2008) studied a group of 

amyotrophic lateral sclerosis patients with cortical atrophy to investigate their ability to process 

verbs and nouns. Voxel-based morphometry was used to assess the degree of cortical atrophy. 

Performance on verb and noun processing was measured using a word-description matching 
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task. In this task, participants were presented with a phrase describing an action or object and 

then were asked to select the best of four available action verbs or object nouns that matched the 

description. Grossman et al. found that the degree of motor cortical atrophy was correlated with 

performance on the action verb judgements. 

The results from the studies presented in this section suggest at least a partly functional 

role of cortical motor areas in processing of physical action denoted by words. That is, the 

cortical motor areas appear to be crucial in the conceptual representation of physical actions. 

The importance of the motor system’s integrity in language processing has been 

emphasized (Fisher & Zwaan, 2008). However, the motor system is complex and involves more 

than just cortical motor areas (primary, pre-, supplementary motor cortex). It is well known that 

the basal ganglia, a group of subcortical nuclei, play a major role in the motor system, 

particularly in voluntary movement and learning of routine behaviour (Marsden & Obeso, 1994). 

It is well established that parts of the basal ganglia, in particular, the striatum, form circuits with 

the frontal lobe, and these circuits are instrumental in the functioning of cortical motor areas 

(Cardona et al., 2013). To assess the role of subcortical motor structures in linguistic processing 

of action concepts, researchers have studied patients with Parkinson’s disease. 

Parkinson’s Disease 

Parkinson’s disease (PD) is a disorder characterized by degeneration of dopaminergic 

cells in the central nervous system, specifically in the substantia niga, which leads to progressive 

impairments in motor function. The four cardinal symptoms of PD are tremor, rigidity, slowness 

of movement, and postural instability. It is well known that dementia can develop in later stages 

of PD. With regard to disease progression, the disease emanates from the brain stem and projects 
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superiorly to the basal ganglia during the early stages, and to the cerebral cortex in the later 

stages (Braak et al., 2003). 

For a long time, PD was defined as a disorder presenting with motor deficits only, and 

very little was known about how early stages of the disease affect cognition, particularly 

language comprehension. However, it is now well established that language impairments 

develop in early PD (Cummings, Darkins, Hill, & Benson, 1988; Grossman et al., 1991). 

Numerous studies have investigated the relationships between PD and verb processing 

(Bertella et al., 2002; Péran et al., 2003; Cotelli et al., 2007; Boulenger et al., 2008; Péran et al., 

2009). Péran et al. (2003) assessed language production of action and object concepts in PD. In a 

word generation task, PD patients were presented with a verb or noun and were required to 

generate a semantically related verb or noun. In the intracategory task, noun-to-noun and verb-

to-verb generations were made. In the intercategory task, noun-to-verb and verb-to-noun 

generations were made. Compared to controls, PD patients were impaired in verb generation 

tasks, regardless of whether the cue word was a noun or verb. However, performance of PD 

patients was similar to that of controls in the noun-generation task. This finding illustrates a 

selective verb retrieval deficit in PD patients. 

Boulenger et al. (2008) investigated the processing of nouns and verbs in PD patients 

‘on’ and ‘off’ medication using a priming paradigm. In priming experiments, it is expected that 

when the presented prime is closely associated with the target, response latency is shorter than 

when the prime is not associated with the target. This is called the priming effect. Priming effects 

were found in all conditions except when PD patients ‘off’ medication were presented with 

primes and targets that were verbs. Thus, a verb processing impairment was found again in PD 

patients. Note that PD patients ‘on’ medication showed priming effects in the verb condition, 
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suggesting that replenishing dopamine in the central nervous system can potentially alleviate 

verb processing effects in PD. However, this conclusion remains controversial. 

Cotelli et al. (2007) assessed action-verb and object-noun production in Parkinson’s 

disease using a picture naming task. The expected verb and noun responses were equated on 

lexical length and frequency. PD patients were presented with pictures and cued to name either 

the presented action or object. Compared with controls, patients showed a deficit in both action 

and object naming. In addition, PD patients, but not controls, made significantly more errors in 

action than object naming.  

These studies illustrate the main and recurring results in the literature concerning PD and 

verb processing. Thus, there exists a strong empirical case that the motor system, specifically at 

the subcortical level, plays a functional role in the conceptual representation of verbs. 

However, one shortcoming of these PD verb studies is that they compared processing of 

physical action verbs (e.g., kick, reach, and smile) to that of nouns. Thus, given these studies, it 

is unclear whether the subcortical motor area’s conceptual role can be generalized to all verbs, or 

is specific to certain semantic categories of verbs. 

Very recently, researchers have begun investigating PD patients’ processing of types of 

verbs (Herrera, Rodriguez-Ferreiro, & Cuetos, 2011; Fernandino et al., 2012; Kemmerer et al., 

2013). For example, in Herrera et al. (2011), PD patients were more impaired in naming action-

verbs with high motor content (dig) compared to those with low motor content (sleep). This 

finding suggests that the conceptual role of the motor system is not uniformly generalized to all 

verbs, but rather is specific to one aspect of verb semantics, particularly motion. However, these 

results may be more precisely explained by a somatotopic functional role of the motor system in 

the conceptual representation of physical action verbs. In other words, lesions to areas of the 
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motor system that result in deficits to hand movements may also lead to impaired conceptual 

processing of hand-related action concepts. This rationale would add depth to Herrera et al.’s 

results. Thus, it may be more precise to argue that the impaired performance on high motion 

verbs, such as swim and dance, was observed because these actions involve motor recruitment 

corresponding to impaired body parts, leading to verb processing difficulty. 

Cotelli et al. (2007) performed a post hoc analysis on the impact of the semantic variable 

of manipulability on naming performance. After finding a verb retrieval deficit in PD using an 

object and action picture naming task, they re-categorized the object and action stimuli into those 

which do or do not involve fine hand movements. The manipulable items included nouns and 

verbs such as screwdriver and squeeze, whereas the non-manipulable items included words such 

as tree and fly. Cotelli et al. found no significant difference between the two conditions and 

concluded that manipulability does not influence picture naming in PD patients. This finding 

suggests that the motor system in language processing is not selective to concepts that involve 

fine hand movements. 

It is important to note that although many studies on verb processing in PD typically 

group patients into a single category, patients with PD display an array of phenotypic 

presentations, exhibiting motor symptom differences in rigidity and tremor, extent of unilateral 

and bilateral impairments, and extent of impairments in upper and lower limbs. Because all PD 

verb studies have grouped PD patients into a single category, very little is known about how the 

varying phenotypic disorders contribute to the verb processing impairment. With regard to 

Cotelli et al.’s (2007) findings, it may have been the case that poorer naming performance in the 

manipulable compared to the non-manipulable condition was not found because the PD group 

consisted of patients with varying phenotypic motor symptoms. If the effect of the central 
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nervous system on selective motor control is, in part, crucial to the processing of body-part-

specific action verbs, then patients who have poor motor control in their hands and arms would 

be predicted to show impaired processing of hand-related action words. Thus, an effect in fine 

hand movement condition may have been observed if PD patients with greater upper limb 

impairments were tested selectively. 

In summary, a major motivation for the present study is the assumption that treating PD 

patients as a homogeneous group potentially obscures important differences among individuals 

with PD with respect to their patterns of performance when processing specific types of verbs. 

That is, it remains unclear whether aspects of the varying phenotypic expression in PD 

differentially influence verb processing. In combination, it is possible that subtypes of PD 

patients may vary in their ability to process verbs that differ in important ways, such as those 

referring to upper-limb movement (reach), lower limb movement (kick), and abstract verbs of 

cognition (“psych” verbs such as think and consider). 

The Present Study 

The goal of the current study is to investigate how PD may differentially affect the 

processing of physical and mental action verbs. Physical action verbs have a clear bodily 

referent, and in this study consist of hand- and arm-related, and feet- and leg-related verbs (reach 

and kick, respectively). Mental action verbs are abstract, and do not have clear bodily referents; 

in this study, they consist of psych verbs (consider). The vast majority of past research on verb 

processing in PD has focused on differences between verbs and nouns. The present study instead 

assesses whether PD patients with varying motor symptoms along the upper and lower limbs 

show different patterns in their comprehension of hand-related, leg-related, and psych verbs. 
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If the integrity of the motor system is important in the representation of bodily action 

concepts in language, then early PD patients without dementia, a clinical population with 

degeneration mainly to subcortical motor structures, should show greater impairments in 

processing physical action words (kick) compared to mental action words (believe). On the other 

hand, if the subcortical motor structures play a more uniform and generalized role in the 

conceptual representation of verbs, then early PD patients should process physical and mental 

action words relatively the same. 

According to grounded cognition, motor simulation is at least partly crucial for 

processing action verbs. Therefore, deficits in physical motor control should impair processing of 

bodily motor verbs. More specifically, greater impairments to motor control of upper limbs than 

lower limbs should lead to greater deficits in processing hand- and arm-related compared to feet- 

and leg-related action verbs. Likewise, greater impairments to motor control of lower limbs than 

upper limbs should lead to greater deficits in processing of feet- and leg-related compared to 

hand- and arm-related action verbs. However, it may be the case that modality-specific theories, 

as they relate to bodily action concepts, are limited to cortical motor areas only. As such, early 

PD patients, who presumably have damage mainly, or only, to subcortical areas will not show 

selective impairments in verb processing related to their specific motor symptoms. This would 

suggest a limitation to the scope of modality-specific theories particularly as they relate to action 

concepts. That is, motor simulation alone may not be what is particularly important in the 

conceptual representation of concepts, but rather the deficit must occur at a particular level in the 

central nervous system for language impairments of action concepts to be observable. 
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Experiment 1: Limb-Relatedness Norming Study 

The purpose of this study was to determine the degree to which people believe that 

various physical action verbs (e.g., kick, punch, and dance) are related to the upper limbs 

(hands/arms) and the lower limbs (legs/feet). Participants were presented with a series of verbs 

and rated, on two scales, the extent to which each verb denotes actions of the upper and lower 

limbs. These results were used to select two sets of verbs that were as polarized as possible with 

respect to these ratings. These sets of verbs were then used as targets for Experiment 2. 

Method 

Participants  

Forty-two undergraduate students enrolled in an introductory psychology course at the 

University of Western Ontario participated for course credit. Each participant completed the 

study in one sitting on a computer with internet access. Seven participants gave random survey 

ratings and were therefore excluded from all analyses. Note that no participants took part in more 

than one of the experiments in this thesis. 

Materials 

Using lexical databases and a thesaurus, two sets of verbs involving actions of either the 

upper limbs or the lower limbs were constructed. There were 80 verbs that were assumed to be 

biased toward involving the upper limbs. These included verbs such as reach, grasp, and clap. 

Because there are far fewer English words describing actions of the lower limbs, there were only 

41 verbs that were assumed to be biased toward involving the lower limbs. These included verbs 

such as kick, run, and jump. 

To distinguish between participants who provided random ratings and those who 

provided informative ratings, 29 psych verbs were added (e.g. consider, believe, and admire). 
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These are mental action words with no bodily referent and therefore they should receive low 

relatedness ratings. 

The survey consisted of two 7 point-Likert scales, upper-limb relatedness and lower-limb 

relatedness. On the upper-limb relatedness scale, a rating of “1” indicated that the “upper limbs 

(arms/hands) are not involved in this action”, whereas a rating of “7” indicated that the “upper 

limbs (arms/hands) are critical for this action”. On the lower-limb relatedness scale, a rating of 

“1” indicated that the “lower limbs (legs/feet) are not involved in this action”, whereas a rating 

of “7” indicated that the “lower limbs (legs/feet) are critical for this action”. 

Procedure 

Participants completed the survey on a computer with internet access. The survey was 

administered online via Survey Gizmo. Both upper- and lower-limb relatedness scales were 

presented to each participant. The order in which the scales were presented was counterbalanced 

and the order in which the items were presented in each scale was randomly fixed and different 

for each scale. Participants were instructed to click a radio button corresponding to the 

appropriate relatedness rating for each item. The study took less than half an hour. 

Results 

Seven participants who produced average relatedness ratings for the psych verbs of over 

2 on either upper-limb or lower-limb 7-point scales were removed from all analyses. The goal 

was to select verbs that had high upper-limb or lower-limb relatedness ratings, and to remove 

those that had similar ratings on both scales. The specific criteria for choosing items was 

established post hoc because of the need to set criteria that were sufficient to establish that the 

verbs actually involved the upper or lower limbs, while maintaining a sufficient number of items 

in each set. 
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Average relatedness ratings for each of the 150 verbs were calculated. For the upper limb 

verbs, an average upper-limb relatedness score of at least 6 and an absolute difference between 

upper- and lower-limb ratings of 2 or greater were designated as appropriate relatedness cut-offs 

for experimental stimuli. Of the original 80 upper limb verbs, 56 were selected, with an average 

upper-limb relatedness rating of 6.37 (SD = 0.20) and an average absolute difference between 

ratings of 4.11 (SD = 1.08). For the lower limb verbs, an average lower-limb relatedness score of 

at least 4.85 and an absolute difference between ratings of 1.5 or greater were designated as 

appropriate cut-offs for experimental stimuli. Of the original 41 lower limb verbs, 32 were 

selected, with an average lower-limb relatedness rating of 6.02 (SD = 0.46) and an average 

absolute difference between ratings of 2.77 (SD = 0.82). Therefore, overall, because of the 

differences in both types of actions and numbers of English verbs, the upper-limb set was 

stronger. 

Experiment 2: Action Decision Norming Study 

The purpose of this study was to take a large group of undergraduate participants and 

collect decision latencies for upper-limb, lower-limb, and psych verbs using a semantic task. The 

upper- and lower-limb verbs were taken from Experiment 1. Using lexical databases and a 

thesaurus, a set of over 400 psych verbs was constructed. Words without a dominant psych verb 

meaning were removed (e.g., monitor, anger, and mirror). Using the British National Corpus 

(available online at: http://www.natcorp.ox.ac.uk/) and the English Lexicon Project (available 

online at: http://elexicon.wustl.edu/), lexical features (frequency and number of letters, 

phonemes, and syllables) of all verbs were retrieved. A set of psych verbs generally equated on 

lexical features of the upper and lower limb verbs was selected. 
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The following is my rationale for developing the implemented task and collecting 

decision latencies from a large group of undergraduate participants. In developing the task to 

assess word processing in PD patients, there were two major considerations. First, because two 

aims of the study included assessing processing of psych verbs and studying language 

comprehension at the semantic level, standard picture naming and lexical decision tasks were not 

used. In a picture naming task, participants are presented with a picture and asked to name the 

depicted object or action. Generating pictures that depict psych verbs would be extremely 

difficult. In a lexical decision task, participants are presented with a series of words and non-

words and must distinguish between the two. The task necessarily requires word processing at 

the orthographic level (and most likely the phonological level as well), but does not necessarily 

require the use of word meaning. In contrast, action decisions in a go/no-go task in which 

participants respond to targets that denote a mental or physical action (“go” trials) and refrain 

from responding on filler “no-go” trials, featuring adjectives (e.g., green) or noun targets 

referring to concrete objects (e.g., chair), accomplishes these two aims. By using printed words 

as stimuli and having participants respond only when presented items denote a mental or 

physical action, psych verbs can be tested, and responses unambiguously require processing of 

word meaning. Second, because PD patients with greater upper and greater lower limb 

impairment were to be tested, responses that required movements of the arms and hands or the 

legs and feet would create a potential confound. Thus, participants responded verbally. 

Furthermore, to minimize inconsistent voice onset time among target words, a single verbal 

response was selected. Specifically, a verbal response of “go” was used because it begins with a 

hard consonant sound, making it easier for the microphone to detect, and the word is consistent 

with the concept of ‘action’. The task was named the action decision go/no-go task. 
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Collecting decision latencies with undergraduate participants was important for several 

reasons. First, because the action decision go/no-go task has not been used in published studies, 

it was necessary to examine whether a group in the general population could successfully 

complete the task. Second, target and filler items appropriate for the task needed to be identified. 

That is, Experiment 2 provided data regarding target and filler items to which participants 

consistently responded correctly. Finally, the results were used to select sets of items from the 

three verb groups equated on decision latencies for Experiment 3. 

Method 

Participants 

Forty undergraduate students from the University of Western Ontario participated for 

monetary compensation ($5). Each participant was tested individually in the lab. Three 

participants scored below chance and were removed from all analyses. The study took less than 

half an hour. 

Materials 

There were 160 target and 160 filler items. Target items consisted of 56 upper-limb, 32 

lower-limb, and 72 psych verbs. Filler items were non-verbs (e.g. nouns and adjectives such as 

rice and green) that did not denote a mental or physical action. Care was taken to avoid fillers 

that could potentially have a meaning denoting an action. The items were presented in the action 

decision go/no-go task. 

Procedure 

Participants were seated comfortably in front of a computer and microphone. The action 

decision go/no-go task was presented using E-prime v2.1 on a PC with a 15-inch colour monitor 

that has a 1 ms refresh rate. Letter strings were displayed in 24 Arial font and centered on a white 
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screen. Participants responded using a Psychological Software Tools serial-response box (Model 

200A), which provided millisecond accuracy. Instructions were read aloud by the experimenter 

and were also presented on the monitor for participants to read (see Appendix A). Participants 

were asked to either make the verbal response, “GO”, if the presented word (e.g., swim, enjoy) 

refers to either a physical or mental action, or make no response at all, if the presented word 

(e.g., kitten, short) does not refer to either a physical or mental action. 

Participants began with 20 practice trials which contained feedback after each trial. If 

participants made an error, the trial would continue to repeat until the participant made the 

correct response. Participants then completed the experimental trials, for which no feedback was 

provided. Participants were given short breaks after every 40 trials. The experiment took less 

than 30 minutes. 

On each trial, participants were presented with a fixation cross for 500 ms followed by a 

word stimulus for up to 3000 ms. When a participant made a verbal response, the microphone 

detected the onset of the verbal response, and the presented item immediately disappeared from 

the screen. If a participant did not respond, the item remained on the screen for 3000 ms. There 

was a 500 ms inter-trial interval blank screen after every trial, and then a new trial commenced 

with the fixation cross. 

Results 

The dependent variables were accuracy, as well as decision latency for correct trials only. 

I chose sets of upper-limb, lower-limb, and psych verbs that were equated as closely as possible 

on decision latency, and had as low error rates as possible. There were a sufficient number of 

items to allow 30 upper-limb, 29 lower-limb, and 30 psych verbs. Table 1 presents the 

characteristics of these item sets, and the verbs themselves can be found in Appendix B. Mean  
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Table 1. Mean Performance Scores, Lexical Features, and Relatedness Ratings of the Selected 

Sets of Verbs Established in Experiment 2 (standard error in parentheses). 

 

    Verb Groups 

 Upper-limb Lower-limb Psych 

      N 30 29 30 

Action Decision Go/No-go Task    

      Error Rate (%) 1.1 (0.3) 4.0 (0.8) 2.1 (0.4) 

      Decision Latency (ms) 876 (16) 877 (20) 880 (7) 

Lexical features    

      Number of Letters 4.7 (0.2) 4.9 (0.2) 5.9 (0.2) 

      BNC Frequency 3654 (1377) 2811 (1010) 2872 (799) 

      Number of Phonemes 3.87 (0.15) 4.28 (0.23) 4.73 (0.21) 

      Number of Syllables 1.13 (0.06) 1.17 (0.07) 1.87 (0.10) 

Relatedness Ratings    

      Upper-Limb Relatedness Rating 6.48 (0.04) 3.20 (0.14)  

      Lower-Limb Relatedness Rating 2.40 (0.20) 6.43 (0.08)  

      |Upper – Lower| Limb Relatedness     

            Rating 

4.08 3.23  
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decision latencies for the three groups did not differ by greater than 4 ms. Mean percent errors 

were slightly greater for the lower-limb verbs because there were fewer from which to choose, 

limiting the degrees of freedom in the selection process. Sets of upper and lower limb verbs 

chosen were better matched on both respective limb relatedness ratings and difference between 

ratings than the sets established from Experiment 1. These 89 verbs were used as the target items 

in Experiment 3. 

Experiment 3 – Parkinson’s Disease Verb Study 

Method 

Participants 

Eighteen PD patients (6 females) and 16 healthy adult controls (9 females) participated. 

PD patients ranged in age from 36 to 86 years (M = 64.6, SD = 10.8), and controls ranged in age 

from 48 to 76 (M = 62.9, SD = 6.1). PD patients attended school for an average of 15.7 years (SD 

= 2.0 years) and controls for an average of 16.6 years (SD = 3.2 years). Thus, the two groups 

were well matched on age and years of education. Matching for gender was not a primary 

concern because there is neither reason nor evidence to suggest that gender affects verb 

processing. PD patients were recruited from the Movement Disorder Clinic at University 

Hospital in London, Ontario, Canada. Healthy older adults were recruited either as spouses of 

PD patients, or as members of the London community. 

At their time of participation in the study, the average number of years since the patients’ 

PD diagnosis was 6.8 (SD = 5.6). Because I was particularly interested in patients with greater 

motor impairment in either the upper or lower limbs, scores from items (tremor at rest and 

rigidity) relating to both upper and lower limb motor symptoms were collected by the neurologist 

using the Unified Parkinson’s Disease Rating Scale (UPDRS; Fahn and Elton, 1987). Hoehn and 
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Yahr (1967) scores were collected to classify disease severity (M = 2.08, SD = 0.54). This scale 

ranges from 1 (unilateral involvement only usually with minimal or no functional disability) to 5 

(confinement to bed or wheelchair unless aided). To ensure that all participants were not 

demented and their cognitive functioning was adequate to complete the action decision go/no-go 

task, the Dementia Rating Scale (DRS; Brown et al., 1999) was administered. The cut-off for the 

PD patients was 127 and controls was 133 or below, out of 144. One patient that was categorized 

as having a mild cognitive impairment was excluded from the study (this patient is not part of the 

18 patients referred to above). The remaining 18 PD patients scored a minimum of 127 on the 

DRS (M = 139.3, range = 127 to 144). No controls were excluded based on the DRS. Although 

one control scored 127, which was below the control cut-off of 133, the participant was not 

excluded for two reasons. First, the participant was known to have hearing difficulties and the 

DRS is administered orally. Thus, errors made on the DRS were most likely not due exclusively 

to cognitive impairment, but rather were related to auditory deficits. Second, on the action 

decision go/no-go task, which was administered visually, the control had perfect accuracy with 

short decision latencies (M = 790 ms). With the exception of the one control, all controls scored 

a minimum of 133 on the DRS (including all controls: M = 139.6, range = 127 to 144).  

All PD patients were optimally medicated when completing the study. That is, PD 

patients were on their normal medication regimen when they participated. Of the 18 PD patients, 

17 were on medication and one had not yet begun taking medication. All participants were tested 

in the morning because general cognitive functioning has been shown to be better during this 

time of day (Bruguerolle & Simon, 2002; Factor et al., 1990; Struck, Rodnitzky, & Dobson, 

1990). All participants were native English speakers, attended school through at least grade 10, 
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and had no neurological or psychiatric disorders other than PD. Each participant was 

compensated $15 for taking part in the study. 

Materials 

The action decision go/no-go task used 89 target verbs and 99 filler non-verbs (i.e., nouns 

and adjectives). There was a slightly greater number of no-go fillers due to an experimenter 

error, but presumably using 53% rather than 50% no-go trials did not influence the results in any 

manner. The target verbs consisted of 30 upper-limb, 29 lower-limb, and 30 psych verbs. The 

groups of verbs were equated on action decision go/no-go latencies and produced low error rates 

when undergraduate were used as participants, as shown in Experiment 2. Table 1 presents the 

Experiment 2 latencies and error rates, as well as other important measures for the stimuli. 

Finally, filler non-verbs with low error rates were chosen from Experiment 2 (M = 1.3%, SD = 

1.9%). There are no latencies for these items because they are no-go trials. 

Procedure 

During a clinical visit, the neurologist assessed each PD patient’s motor impairments 

using the UPDRS. Patients deemed as greater upper or greater lower limb impaired were invited 

to take part in the study. The study date was set to be within one month of the clinical visit. 

During the study, patients completed the Dementia Rating Scale and the action decision 

go/no-go task, with a short break in between. Task order was counterbalanced. All aspects of the 

action decision go/no-go task itself were identical to Experiment 2. The study took less than one 

hour. 

Finally, after all PD patients had been tested, they were called on average 8 weeks later 

and given a self-report motor impairment questionnaire. This questionnaire was administered 

over the phone and patients were asked to rate, on a 10-point Likert scale, their subjective 
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experiences with respect to motor impairments for each of their limbs (right hand/arm, left 

hand/arm, right leg/foot, and left leg/foot). A rating of “1” indicated that the “motor control in 

that limb was normal; similar to motor function before PD diagnosis”, whereas a rating of “10” 

indicated that the “motor control in that limb was extremely poor”. The questionnaire took less 

than 5 minutes. 

Results 

Two PD patients and three controls were removed from all analyses. Group descriptive 

statistics in the Participants section do not include these individuals. One PD patient was 

removed because their accuracy for target trials was 52%, which is essentially chance 

performance. A second PD patient’s accuracy for target trials was 73%. I removed this 

participant because there was a substantial break in the distribution of accuracy rates given that 

all other PD patients scored at least 92% correct. Thus, the data of 18 PD patients with accuracy 

for target trials of 92% or greater were analyzed. All 18 PD patients were at least 86% accurate 

on the no-go trials. 

Two controls’ accuracies for target trials were 76% and 75%. Parallel to the PD patients, 

they were both removed because all other controls scored at least 92% correct. One control 

scored an accuracy on target trials of 97%, but did so presumably because this participant had a 

strong tendency to respond “go”, given their 73% accuracy on fillers. That is, this control 

participant responded “go” on 27% of the non-verb filler items. Therefore, this participant was 

removed. Thus, the data of 16 controls with accuracy for target trials of 92% or greater were 

analyzed. All 16 controls were at least 86% accurate on the no-go trials. 

Decision latency data includes only correct trials. Decision latencies greater than three 

standard deviations above the group mean were replaced with those values (2.1% of PD patient 
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trials, 1.7% of control trials). For all analyses, the data were analyzed using participants (F1) and 

items (F2) as random variables. 

There are three analyses sections. The first includes group (PD patients and controls) and 

verb type with three levels (upper-limb, lower-limb, and psych). The second includes group and 

verb type with two levels (physical verbs using upper-limb and lower-limb combined, and psych 

verbs). Results from the first two analysis sections do not indicate anything particularly 

interesting because group and verb type do not interact, although, somewhat surprisingly, the PD 

patients and controls differ nonsignificantly. The final analyses, which are the most important 

given the goals of the study, use dominance of limb impairment (upper vs. lower dominant PD 

patients) and the two types of physical action verbs (upper-limb vs. lower-limb). Note that there 

is no basis for predicting differences in performance on psych verbs for upper versus lower limb 

dominant PD patients. The results of these analyses do show that PD patients’ performance on 

upper- versus lower-limb verbs differ in interesting ways. Decision latencies and error rates for 

all conditions are presented in Table 2. 

Analysis 1: Group (PD, controls) x Verb type (upper-limb, lower-limb, psych) 

Mixed analyses of variance were conducted. The independent variables were group (PD 

patients, controls) and verb type (upper-limb, lower-limb, psych). Group was between 

participants, but within items, whereas verb type was within participants, but between items. The 

dependent variables were decision latency and square root of the number of errors (Myers, 

1979). 

For decision latencies, the group by verb type interaction was not significant, F1(2,64) < 

1, F2(2, 86) < 1. I conducted pairwise comparisons to explore differences among conditions. For 

upper limb verbs, decision latencies were 18 ms longer for PD patients than for controls, which 
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Table 2. Mean Decision Latency and Percent Errors in Experiment 3 Action Decision Go/No-go 

Task (standard error in parentheses) 

 PD upper PD lower PD Controls All 

Participants 

Decision Latency (ms)      

      Physical-Action  897 (39) 849 (44) 875 (33) 866 (35) 871 (29) 

         Upper-Limb  924 (41) 850 (46) 891 (35) 873 (37) 882 (25) 

         Lower-Limb  869 (39) 847 (44) 859 (32) 859 (33) 859 (23) 

      Psych  973 (52) 922 (48) 950 (40) 964 (43) 957 (29) 

   All Verbs 922 (41) 873 (45) 900 (34) 899 (36)  

      

Error Percentages (%)      

      Physical-Action 1.4 (0.8) 0.6 (0.6) 1.0 (0.4) 1.8 (0.6) 1.3 (0.4) 

         Upper-Limb  1.3 (0.7) 0.4 (0.4) 0.9 (0.5) 1.9 (0.8) 1.3 (0.5) 

         Lower-Limb  1.4 (0.8) 0.9 (0.9) 1.1 (0.6) 1.7 (0.6) 1.4 (0.4) 

      Psych  3.3(1.3) 4.7(3.0) 3.9 (1.5) 5 (1.5) 4.5 (1.0) 

   All Verbs 2.0 (0.9) 2.0 (1.4) 2.0 (0.6) 2.9 (0.6)  

 

  



26 
 

was significant by items, F2(1, 86) = 5.62, p < .03, but not by participants, F1(1, 39) < 1. There 

were no group differences for the lower-limb, both F’s < 1, or psych verbs, both F’s < 1. For PD 

patients, decision latencies for psych verbs were 59 ms longer than for upper-limb verbs, 

F1(1,64) = 9.60, p < .003, F2(1,116) = 4.73, p < .04, and 91 ms longer than for lower-limb verbs, 

F1(1,64) = 22.83, p < .0001, F2(1,116) = 10.58, p < .002. PD patients’ decision latencies were 

nonsignificantly 32 ms longer for upper than for lower limb verbs, F1(1,64) = 2.82, p > .09, 

F2(1,116) = 1.20,  p > .2. For controls, decision latencies for psych verbs were 91 ms longer than 

for upper-limb verbs, F1(1,64) = 20.30, p < .0001, F2(1,116) = 9.62, p < .003, and 105 ms longer 

than for lower-limb verbs, F1(1,64) = 27.02, p < .0001, F2(1,116) = 10.81, p < .002. Finally, 

there was no difference between upper- and lower-limb verbs, both F’s < 1.  

Overall, PD patients (M = 900 ms, SE = 34 ms) were 1 ms slower than controls (M = 899 

ms, SE = 36 ms), which was significant by items, F2(1, 86) = 5.00, p < .03, but not by 

participants, F1(1, 32) < 1. There was a main effect of verb type, F1(2, 64) = 27.17, p < .001, 

F2(2, 86) = 7.15, p < .002, with lower-limb verbs having numerically the shortest latencies (M = 

859 ms, SE = 23 ms), followed by upper-limb (M = 882 ms, SE = 25 ms) and psych verbs (M = 

957 ms, SE = 29 ms). 

For error rates, the group by verb type interaction was not significant, F1(2, 64) < 1, F2(2, 

86) < 1. There was not a significant difference between PD patients (M = 2.0%, SE = 0.6%) and 

controls (M = 2.9%, SE = 0.6%), F1(1, 32) = 1.22, p > .2, F2(1, 86) < 1. There was a main effect 

of verb type, F1(2, 64) = 7.91, p < .001, F2(2, 86) = 8.11, p < .0007, with psych verbs having 

numerically the highest error rate (M = 4.5%, SE = 1.0%), whereas upper-limb (M = 1.3%, SE = 

0.5%) and lower-limb verbs (M = 1.4%, SE = 0.4%) were almost equal. 
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Analysis 2: Group (PD, controls) x Verb type (physical-action, psych) 

Mixed analyses of variance were conducted. The independent variables were group (PD 

patients, controls) and verb type (physical-action, psych). Group was between participants, but 

within items, whereas verb type was within participants, but between items. The dependent 

variables were decision latency and square root of the number of errors (Myers, 1979). 

For decision latencies, the group by verb type interaction was not significant, F1(1, 32) < 

1, F2(1, 87) < 1. Pairwise comparisons again were conducted. For physical-action verbs, the 9 ms 

advantage for controls was significant by items, F2(1, 87) = 5.03, p < .03, but not by participants, 

F1 < 1. The 14 ms advantage for PD patients for psych verbs was nonsignificant, both F’s < 1. 

Decision latencies were 75 ms longer for psych verbs for PD patients, F1(1, 32) = 22.44, p < 

.0001, F2(1, 118) = 9.78, p < .003, and 98 ms longer for controls, F1(1, 32) = 22.15, p < .0001, 

F2(1, 118) = 13.72, p < .0004. 

Overall, PD patients (919 ms, SE = 11 ms) were 18 ms slower than controls (M = 901 ms, 

SE = 13 ms), which was marginally significant by items, F2(1, 87) = 3.52, p < .07, and not 

significant by participants, F1(1, 32) < 1. Decision latencies for physical action verbs (M = 871 

ms, SE = 24 ms) were 86 ms shorter than for psych verbs (M = 957 ms, SE = 29 ms), F1(1, 32) = 

36.27, p < .001, F2(1, 87) = 13.89, p < .001. 

For error rates, the group by verb type interaction was not significant, F1(1, 32) < 1, F2(1, 

87) < 1. There was no significant difference between PD patients (M = 1.8%, SE = 0.5%) and 

controls (M = 2.6%, SE = 0.6%), F1(1, 32) = 1.05, p > .3, F2(1, 87) < 1. There were 3.2% more 

errors for psych verbs (M = 4.5%, SE = 1.0%) than for physical-action verbs (M = 1.3%, SE = 

0.4%), F1(1, 32) = 8.35, p < .008, F2(1, 33) = 16.40, p < .001. 
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Analysis 3: PD dominance (PD upper, PD lower) x Verb type (upper-, lower-limb) 

PD patients were categorized into either greater upper or greater lower limb impairment 

using the UPDRS and self-reported motor impairment questionnaire. Although there are a 

number of items on the UPDRS that measure severity of motor symptoms in the upper and/or 

lower limbs, I was interested only in the items that equally assessed both upper and lower limbs. 

These were items 20, tremor at rest, and 22, rigidity. All other items either do not provide a score 

specific to the limbs, or provide scores for the upper or lower limbs, but not both. 

The tremor at rest and rigidity items each provide 4 motor severity scores: for the right 

and left upper limb, and right and left lower limb. Motor symptom severity on each limb is rated 

along a 5-point Likert scale. A rating of “0” indicates that tremor or rigidity is “absent”. A rating 

of “4” indicates that the tremor is “marked in amplitude; present most of the time” and the 

rigidity is “severe, range of motion achieved with difficulty” (note that physicians also typically 

use 0.5 increments in their ratings). Thus, upper and lower limb scores were calculated as a 

proportion out of 16 from 4 scores for the upper limb and 4 scores for the lower limb. PD 

patients with greater upper limb proportion scores were categorized as having greater upper limb 

impairment and those with greater lower limb proportion scores were categorized as having 

greater lower limb impairment. Because only two items from the UPDRS were used and almost 

all scores were between 0 and 2.5 with increments of 0.5, the measure was not sensitive enough 

to dichotomize some patients with closer upper and lower motor impairment scores. Using the 

UPDRS, 12 patients were categorized into either greater upper or greater lower limb motor 

impairment. Six patients had the same proportion scores. Instead of using other items from the 

UPDRS which did not equally provide scores for both upper and lower limb motor impairments, 

I used a self-report motor impairment questionnaire to dichotomize the remaining 6 patients. The 
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self-report motor impairment questionnaire provided two functions. First, I wanted to ensure that 

the binary categorization from the UPDRS rigidity and tremor scores were fairly consistent with 

patient’s subjective experience of motor control. Second, the self-reported motor impairment 

scores allowed me to dichotomize with certainty any situations in which patients had very close 

upper and lower limb proportion scores. 

Using the UPDRS and self-report motor impairment scale, 10 PD patients were 

categorized as having greater upper limb impairment and 8 as having greater lower limb 

impairment. UPDRS proportion scores for upper and lower limb impairments consisted of 

respective limb-related ratings from tremor at rest and rigidity items. Upper dominance PD 

patients had a mean upper-limb proportion score of 0.28 (SE = 0.03) and a mean lower-limb 

score of 0.14 (SE = 0.03), whereas lower dominance PD patients had a mean upper-limb 

proportion score of 0.16 (SE = 0.04) and a mean lower-limb score of 0.23 (SE = 0.02).  

From the self-report motor impairment questionnaire, upper and lower limb impairment 

scores were calculated as sums of right and left upper limb ratings, and right and left lower limb 

ratings, respectively. Each upper and lower limb score ranges from 2 to 20. Upper dominance PD 

patients had a mean upper-limb score of 8.0 (SE = 1.2) and a mean lower-limb score of 6.4 (SE = 

1.3), whereas lower dominance PD patients had a mean upper-limb score of 5.0 (SE = 0.7) and a 

mean lower-limb score of 7.5 (SE = 1.3). 

A bivariate correlation analysis showed that the tremor-and-ridigity UPDRS scores and 

self-report motor impairment scores were positively correlated, although nonsignificant for both 

upper, r = .43, p < .08, and lower limbs, r = .42, p = .08. These results show that the motor 

clinical test and subjective experience of motor control move in the same direction. It also shows 

that the two measures are not providing completely redundant information, otherwise, the 
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correlations would have been higher. Therefore, using both sources of information to classify the 

patients was advantageous. 

Mixed analyses of variance were conducted on decision latency and square root of the 

number of errors. The independent variables were PD dominance (greater upper and greater 

lower limb impairment) and verb type (upper-limb, lower-limb). PD dominance was between 

participants, but within items, whereas verb type was within participants, but between items. 

For decision latency, the PD dominance by verb type interaction was significant by items, 

F2(1, 57) = 7.25, p < .01, and marginally significant by participants, F1(1, 16) = 3.64, p < .08. 

Planned comparisons revealed that for PD patients with greater motor impairments in their upper 

limbs, decision latencies were 74 ms longer for upper-limb than for lower-limb verbs, which is 

significant by items, F2(1, 57) = 11.10, p < .002, but not by participants, F1(1, 18) < 1. In 

contrast, for PD patients with greater motor impairments in their lower limbs, the difference was 

only 3 ms, both F’s < 1.  

Overall, due primarily to differences in the upper-limb verbs, decision latencies for PD 

patients with greater upper limb impairment (M = 897 ms, SE = 39 ms) were 48 ms faster than 

PD patients with greater lower limb impairment (M = 849 ms, SE = 44 ms), which was 

significant by items, F2(1, 57) = 15.20, p < .001, but not by participants, F1(1, 16) < 1. Decision 

latencies for upper limb verbs (M = 887 ms, SE = 31 ms) were 29 ms longer than for lower limb 

verbs (M = 858 ms, SE = 29 ms), which was marginally significant by participants, F1(1, 16) = 

4.23, p < .06, and not significant by items, F2(1, 57) = 1.04, p > .3. 

Error rates were similar and quite low in all conditions. The PD dominance by verb type 

interaction was not significant, F1(1, 16) < 1, F2(1, 57) < 1. Error rates did not differ between PD 

patients with greater upper (M = 1.4%, SE = 0.7%) and greater lower limb impairment (M = 
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0.6%, SE = 0.7%), F1(1, 16) = 1.08, p > .3, F2(1, 57) = 2.27, p > .1. They also did not differ 

between upper limb (M = 0.9%, SE = 0.5%) and lower limb verbs (M = 1.1%, SE = 0.6%), F1(1, 

16) < 1, F2(1, 57) < 1. 

Discussion 

There were three main findings in Experiment 3. First, and most importantly, there was 

an interaction between PD dominance (upper dominance, lower dominance) and verb type 

(upper-limb, lower-limb). That is, PD patients with greater upper and greater lower limb motor 

impairments showed different patterns in language processing for upper- and lower-limb verbs. 

Second, surprisingly, verb decision latencies of PD patients and controls differed 

nonsignificantly. Third, psych verbs had significantly longer decision latencies than both types of 

physical-action verbs in both PD patients and controls. 

Most accounts of grounded cognition emphasize the role of simulation in cognition 

(Barsalou, 2008). With respect to physical action concepts, the motor system is expected to play 

a crucial role in their representation. I tested PD patients with greater upper and greater lower 

limb impairments. My goal was to determine whether these subsets of patients showed different 

patterns in their processing of upper- and lower-limb verbs. Consistent with theories of grounded 

cognition, I hypothesized that if motor simulation is fundamental to comprehending bodily 

action concepts, then PD patients with greater upper limb impairment might take longer to 

process words that denote actions of the arms and hands relative to those denoting actions of the 

legs and feet. Likewise, PD patients with greater lower limb impairment might take longer to 

process words that denote actions of the legs and feet relative to those denoting actions of the 

arms and hands. 
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PD dominance and verb type interacted in that PD patients with greater upper limb 

impairments had significantly longer decision latencies for upper-limb than lower-limb verbs, 

whereas those with greater lower limb impairments had a difference of only 3 ms. Results from 

PD patients with greater upper limb impairments were consistent with the hypothesis derived 

from grounded cognition theories. This provides evidence that motor impairments in arms and 

hands influence processing of upper-limb verbs. However, results from PD patients with greater 

lower limb impairments were not consistent with my hypothesis. One potential reason for this 

may relate to differences between bodily motor involvement in the upper and lower limb verbs. 

Obviously, upper and lower limb verbs denote actions of mainly different body parts. In 

addition, the physical actions that are described by upper- and lower-limb verbs differ in their 

motor distribution along the body. In essence, upper limb verbs such as reach and grasp are 

thought of as requiring movements almost exclusively of the arms and hands. In other words, to 

perform a reach or a grasp, the entire body is often quite still while the arm and hand perform the 

action. That is, a person often performs a reach while sitting, with their lower body completely 

still, as in reaching for a glass while sitting at a table. In contrast, although lower limb verbs such 

as run, jump and even kick can be considered as requiring mostly the legs and feet, the arms and 

torso are also typically involved. That is, running or jumping without moving one’s arms is 

almost impossible, although the primary movements involve the legs and feet. Thus, upper- and 

lower-limb verbs can be viewed as differing in their motor distributions along the body; whereas 

upper-limb verbs denote movements that can easily be executed exclusively using the hands and 

arms, lower-limb verbs denote movements that are often more distributed along the body. 

Evidence of this verb type difference can be observed in the relatedness ratings of upper- 

and lower-limb verbs in Table 1. Although the upper- and lower-limb verbs both have high 
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biased upper- and lower-limb-relatedness ratings, respectively, they are not equally biased. There 

is a larger difference between ratings for upper- than for lower-limb verbs, which indicates that 

people are sensitive to the fact that upper limb verbs require less of the legs and feet than the 

lower limb verbs require of the hands and arms. 

With respect to this upper- and lower-limb verb difference, it may be the case that actions 

denoted by lower limb verbs are not only subserved by leg and feet areas of the motor system, 

but also, to an extent, subserved by arm, hand, and torso areas. Thus, damage to leg and feet 

areas of the motor system does not lead to an observable deficit in processing of lower-limb 

relative to upper-limb verbs. In contrast, actions denoted by upper limb verbs are more likely to 

be subserved by mostly, if not entirely, arm and hand areas of the motor system. Thus, damage to 

arm and hand areas leads to an observable deficit in upper-limb verb processing. 

One issue concerns the fact that language processing of hand- and leg-related action 

concepts does differentially activate corresponding brain areas in neuroimaging studies (Hauk, 

Johnsrude, & Pulvermüller, 2004; Tettamanti et al., 2005; Aziz-Zadeh et al. 2006). It is 

important to note that many of these studies use sentences or phrases to depict actions, which 

allow for fine tuning of the involvement of specific body-parts. For example, verbs such as kick 

can denote actions of just the legs and feet, or may involve a greater motor distribution along the 

body. Phrases such as “the boy kicks the ball” and “the athlete kicks the ball”, can affect the 

motor distribution involved; where the former would more likely involve just the legs and feet 

and the latter would more likely involve a greater motor distribution along the body. Thus, the 

use of sentences and phrases can refine the localization of motor areas required during language 

processing of physical action concepts. 



34 
 

In one neuroimaging study, single verbs were used to denote actions of body parts (Hauk, 

Johnsrude, & Pulvermüller, 2004). The researchers indicated that the areas important in physical 

leg movements are also involved when reading leg-related verbs. However, the fMRI results 

show that areas activated during reading of leg-related words did not only activate parts of leg 

motor areas, but surrounding motor regions were activated as well. This suggests that processing 

of lower-limb verbs in isolation may evoke a greater motor distribution along the body than 

previously thought. In addition, studies such as Hauk et al. mainly reported results concerning 

the areas of the brain that are most activated by a type of verb, relative to other types. Finding 

differential activations does not mean that other areas are not involved. Involvement of other 

brain regions can have different consequences for a patient study than for an imaging study using 

normal participants. 

Past studies on verb processing have consistently demonstrated that overall, PD patients 

process verbs more slowly than do controls (Péran et al., 2003; Cotelli et al., 2007; Boulenger et 

al., 2008; Fernandino et al., 2012; Kemmerer et al. 2013). However, this group effect was not 

observed in the present study. There are two potential reasons as to why this may have occurred. 

First, there may simply be a great deal of variability in the performance of older adults in the 

action decision go/no-go task. There was substantial variability in the controls’ mean decision 

latencies, which ranged from 678 ms to 1211 ms. And thus, by random chance, I may have 

happened to recruit a number of controls who were on the slower end of the distribution. 

Second, due to the manner in which controls were recruited, there may have been 

essentially two control populations. As mentioned in the Participants section, controls were 

recruited either as spouses of PD patients, or as members of the community. I first tested the 

spousal controls and then community-member controls. After testing the community-member 
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controls, there was a substantial decrease in mean decision latencies. When comparing these 

groups, spousal controls (M = 980 ms, SE = 65 ms) were 164 ms slower than community-

member controls (M = 816 ms, SE = 31 ms), and this trend was consistent across all verb types. 

This difference suggests that the two control populations may very well be different. It is 

possible that this difference is related to the burden and demands on spousal controls due to 

caring for their partner. Such emotional pressures and changes to daily routines may potentially 

result in subtle changes in cognitive functioning. Regardless of the potential causes of the 

underlying differences between spouses and general community members, their performance 

differed substantially in this experiment. 

Recently, two PD studies have compared the processing of psych and physical action 

verbs. Although motor-deficit based explanations of PD patients would appear to predict faster 

processing of psych verbs because they do not describe physical actions, Fernandino et al. (2012) 

and Kemmerer et al. (2013) found that psych verbs were processed more slowly than physical 

action verbs in PD patients, and this difference was comparable in controls. In the present study, 

although the three sets of verbs were equated on undergraduate participants’ decision latencies 

collected in Experiment 2, decision latencies for psych verbs were also significantly longer than 

for physical-action verbs in both PD patients and controls. In addition to equating the three verb 

sets on decision latency, I also tried as much as possible to equate them on lexical variables 

(frequency and number of letters, phonemes, and syllables; see Table 1). However, in the English 

language, psych verbs tend to be longer than upper- and lower-limb verbs, and they were in this 

experiment. Therefore, one potential reason for the longer decision latencies for psych verbs is 

word length. Consistent with this hypothesis, it has been shown that word length influences 

reading latencies more strongly for older than for younger adults. For example, Allen, Maddem, 
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Weber, and Groth (1993) found an interaction between age and word length in a lexical decision 

task such that word length increased older adults’ decision latencies more substantially than it 

did for younger adults. Thus, longer latencies for psych verbs in both groups of older adults may 

have been due, at least in part, to the psych verbs being longer than the physical-action verbs. 

General Discussion 

The present study was novel in two major ways. It was the first to investigate verb 

processing in Parkinson’s patients who were divided into groups based on whether their motor 

functioning was biased toward their upper versus lower limbs. In addition, it was the first study 

to investigate upper- and lower-limb verbs separately. The verbs were selected carefully using 

ratings and a preliminary experiment that incorporated the same procedure as the PD experiment, 

but with undergraduates as participants. These innovations led to the novel result that action 

decision latencies for PD patients with predominantly upper-limb motor impairments were 

longer for upper-limb verbs, whereas there was no difference in upper- versus lower-limb verb 

decision latencies for PD patients with predominantly lower-limb motor impairments. 

In the remainder of this thesis, I first discuss implications of past research on verb 

processing impairments in PD in terms of the neural connectivity between the basal ganglia and 

cortical regions. Next, I discuss how my main results may add to ideas regarding the 

organization of these basal ganglia connections. Finally, I provide a few speculations regarding 

the manner in which psych verbs may be represented in the brain. 

For a long time, the basal ganglia were viewed as a secondary component of the motor 

system (Penfield & Rasmusen, 1950). It was believed that the basal ganglia played a role only in 

motor function in terms of voluntary movement, as well as selection and inhibition of competing 

motor templates (Mink & Thach, 1992). Given this view, damage to the basal ganglia, as in 

Parkinson’s disease, led only to motor control impairments. However, it has now been 
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established that the basal ganglia are involved in non-motor functions including implicit 

learning, habit formation, and reward processing (Yin & Knowlton, 2006). Furthermore, 

researchers have found that the basal ganglia are involved in higher cognitive functions 

underlying language comprehension (Kotz et al., 2009; Cardona et al., 2013). For example, 

studies have demonstrated the role of the basal ganglia in syntactic and semantic processing 

(Friederici et al., 2003; Kotz et al., 2009). 

It is now known that the basal ganglia have profuse connections with the cerebral cortex, 

as established by studies that used diffusion tensor imaging (DTI) with human participants (Saur 

et al., 2008). Co-activation of the basal ganglia and motor cortical regions during action-semantic 

tasks have led researchers to suggest that these two areas work together to integrate motor-

semantic information (Crosson et al., 2003). 

To explain the recurring finding of action verb processing impairment in PD (Péran et al., 

2003; Cotelli et al., 2007), Cardona et al. (2013) proposed a model in which the motor and 

language areas of the brain interact to process action concepts. The circuits between the basal 

ganglia and cerebral cortex are thought to interact with language processing areas. Specifically, 

this circuitry modulates the motor-language integration observed in action verb processing. 

Relevant to semantic processing of actions, there are two main areas in which the basal ganglia 

interact with the cerebral cortex: frontal (inferior frontal gyrus, primary motor cortex, and 

supplementary motor areas) and temporal lobes (anterior temporal lobes and superior temporal 

sulcus). The basal ganglia’s connections with the frontal areas are involved in the processing of 

motor simulation and action patterns. Specifically, the basal ganglia play a role in the automatic 

selection (and inhibition) of motor templates, which are then processed by cortical motor 

regions. 



38 
 

The basal ganglia’s interaction with temporal areas are involved in processing abstract 

conceptual information. It is thought that the basal ganglia’s role in implicit learning and action 

selection modulates and directly influences semantic processing in those temporal areas. In 

addition, connections exist between the frontal and temporal regions (Saur et al., 2008). These 

connections allow temporal areas to directly access action-semantic knowledge in frontal regions 

during semantic processing. Thus, in this model, the basal ganglia influence both frontal and 

temporal processing of action verbs. The basal ganglia’s role in action selection primes 

simulation in the frontal lobes during language processing of action concepts. Also, the basal 

ganglia and motor cortex provide motor knowledge that enriches the more abstract level of 

conceptual processing in the temporal areas. 

Results of impaired verb processing in PD would suggest that it is specifically the 

connections between the basal ganglia and motor regions of the frontal lobe, which are known to 

be responsible for movement, that are involved in processing action concepts. The interaction 

between PD motor dominance and upper- versus lower-limb verbs in the present study can be 

viewed as adding important insight into our understanding of the dialogue between the basal 

ganglia and frontal motor regions. It suggests that, in linguistic processing of action concepts, the 

connections between the basal ganglia and frontal regions is sufficiently fine-grained so that 

disturbances to the basal ganglia that lead to motor impairments of the arms and hands, also lead 

to selective impairments in processing upper-limb, but not lower-limb related actions. This 

would suggest that connections between the basal ganglia and motor cortex that are involved in 

carrying out specific physical actions overlap with those that are involved in processing physical 

action verbs of specific types. Thus, this motor-language coupling is fine-tuned to specific motor 

functions. 
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Interestingly, psych verbs, which are abstract and do not have bodily referents, are not 

predicted to be subserved by the connections between the basal ganglia and motor cortex. 

Consistent with the motor-language coupling model, psych verbs would be expected to be 

represented in temporal regions that are responsible for processing abstract concepts. 

Neuroimaging data have shown that comprehension of abstract, compared to concrete, language 

content has higher selective activation of the anterior temporal regions (Sakreida et al., 2013). 

There is no evidence in the present study that processing of psych verbs was impaired in PD 

patients relative to controls. This finding is consistent with the two previous studies that 

investigated psych verbs (Fernandino et al., 2012; Kemmerer et al., 2013). This might suggest 

that the connections between the basal ganglia and temporal areas are relatively intact, allowing 

for processing of this type of abstract concept. 

Temporal regions also have been implicated in the processing of object concepts. For the 

most part, studies of PD patients have demonstrated that object noun processing is relatively 

intact. However, Cotelli et al. (2007) did find that PD patients were slightly impaired on noun 

processing compared to controls. This would suggest that there may be slight or no disturbances 

in the connections between the basal ganglia and temporal areas. Nonetheless, in Parkinson’s 

disease, the main damage exists between the basal ganglia and motor regions, which appear to be 

responsible for both physical motor function and related action verb processing. Results from the 

present thesis indicate that this motor-language interaction may have a somatotopic relationship. 
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Conclusion 

The present study took a new approach to investigating Parkinson’s disease by taking 

into consideration the varying phenotypic expressions within the disorder, specifically 

differences in the degree of upper and lower limb motor impairments. Parkinson’s patients with 

greater upper and greater lower limb impairments demonstrated differential processing of action 

verbs. These novel results suggest that the motor system may play a functional and selective role 

in the conceptual representation of action concepts. Furthermore, they provide insight into the 

communication between the basal ganglia and motor regions, and how the two interact with 

language areas of the brain. Finally, my experiments also provide support for grounded cognition 

views of conceptual representation and processing, and are inconsistent with amodal theories in 

which sensorimotor information plays no role, or solely an ancillary role, in cognitive functions 

such as language comprehension. 
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Appendix A 

Instructions for Action Decision Go/No-go Task 

In this experiment, you will be asked to make decisions on each of a series of words. For each 

trial, the following is the sequence of events: 

 

First, a + will appear on the screen for a brief period. 

 

Following the +, a word will appear. Your task is to read this word in your mind, and then say 

“Go” if the word refers to either a physical or mental action (for example, "swim" or "enjoy"), or 

make no response at all if the word does not refer to either a physical or mental action (for 

example, "kitten" or "short"). 

 

On trials when you do respond, please say “Go” relatively loudly and clearly into the 

microphone that is in front of you. Please respond as quickly as you can while remaining highly 

accurate in your decisions. 

 

This is not meant to be a difficult task in that we are not trying to trick you in any way. 

It should be quite obvious if the word refers to an action or not. 

 

However, people often think about “action” as physical actions only, like "swim". But please 

remember that you also say “Go” if the word refers to an “action” that happens in your mind, 

such as "enjoy" or "think" or "consider". 

 

You will begin with 20 practice trials in order to get used to the task. Note that you will be given 

feedback during the practice trials, but not the actual testing trials. 

 

If you have any questions, please ask the experimenter now.  

 

Are you ready to begin? 

  



47 
 

Appendix B 

 

Sets of Upper-Limb, Lower-Limb, and Psych Verbs Equated on Action Decision Latencies  

 

Upper-limb 

 

Lower-limb Psych 

build dropkick admire 

carry flee adore 

chop hike agonize 

clap hop agree 

clench jog amaze 

dial jump annoy 

dig kick appraise 

dissect kneel approve 

draw leap believe 

flick lunge deny 

grab march despise 

grip patrol dream 

hold prance envy 

jab roam forgive 

juggle run frighten 

knit sidestep grieve 

knock skate hate 

lift skip ignore 

point sprint insist 

pour stand justify 

pull step learn 

punch stomp ponder 

reach stride praise 

scribble stroll pretend 

scrub strut regret 

slap tiptoe scare 

smack tread tolerate 

snatch walk wish 

sweep wander wonder 

wash  worry 
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Appendix C 

Thesis Ethics Approval Notices 
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