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Figure 22.  Probe trials: Short and long term memory retention. The 

percentage of time spent and percentage of distance travelled in the target zone 

and the average of the adjacent zones for RP, RP+CAT-SKL, Aβ and Aβ+CAT-

SKL treated groups for (A-B) Probe trial 1, day 12 and (C-D) Probe trial 2, day 

19. Means with different letters signify significance (Two-way ANOVA, Bonferroni 

post-test, p<0.05).  
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Figure 23. CAT-SKL reduces Aβ25-35 induced impairments in long-term 
reference memory. (A) The percentage of total time spent and (B) percentage 

of total distance traveled in the quadrant where the platform was located 24 

hours following the last spatial learning trial (Probe 1) and 8 days after the last 

spatial training trial (Probe 2) for RP, RP+CAT-SKL, Aβ and Aβ+CAT-SKL 

treatment groups. Data are presented as mean ± S.E.M. Different letters indicate 

significance (Two-way ANOVA, Bonferoni post hoc, p<0.05).  
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Figure 24. Cued learning during the Morris Water Maze (MWM). (A) Mean 

latency and (B) mean path length to find the cued platform in the MWM averaged 

over 8 trials for RP, RP+CAT-SKL, Aβ and Aβ+CAT-SKL treated rats. No 

differences in mean latency or distance traveled to reach the platform were seen 

between treatment groups. (C) Average swimming speed for all treatment groups 

over 8 cued learning trials. There were no differences in mean swimming speed 

between treatment groups. Data are presented as the mean ± SEM of the 8 cued 

learning trials (One-way ANOVA, Tukey’s post hoc, p<0.05). 
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The results of this investigation in a rat model of amyloid toxicity revealed 

two important findings. Firstly, the age of the animal plays a major role in the 

development of pathological changes in response to Aβ25-35 toxicity. Secondly, 

we have demonstrated for the first time that the targeted antioxidant CAT-SKL, a 

genetically modified catalase molecule, is effective in preventing the pathological, 

inflammatory and cognitive deficits induced by amyloid toxicity. In accordance 

with previous findings this study showed that a single icv injection of Aβ25-35 in 

male Wistar rats resulted in pathological changes in the brain 3 weeks after 

injection (Whitehead et al., 2005ab; Cheng et al., 2006; Zussy et al., 2011; 2013).  

Specifically, increased inflammation in the basal forebrain and thalamus, 

cholinergic loss in the MSN/VDB and loss of neuronal integrity in the 

hippocampus were shown. Moreover, this pathological response to Aβ25-35 

toxicity was shown to be greater in 6 and 9 months old animals than in 3 months 

old animals. This suggests that at the ages of 6 and 9 months, the rodent brain is 

already more vulnerable to Aβ25-35 toxicity than it was at 3 months. Additionally, 

this study was the first to use and demonstrate the beneficial effects of the 

targeted antioxidant CAT-SKL in reducing Aβ25-35 toxicity in an animal model. 

CAT-SKL was able to reduce cholinergic neuronal loss, decrease 

neuroinflammation and attenuate long-term memory deficits induced by Aβ25-35 

toxicity (Summarized in Figure 25).  

4.1 Neuroinflammation  

It has been well established that neuroinflammation plays a role in the 

pathogenesis of AD, and that Aβ in particular contributes to the 

neuroinflammatory response (Akiyama et al., 2000). The cellular mediators of 

inflammation, microglia and astrocytes, were detected using OX-6 and GFAP 

antibodies respectively, with increased microgliosis and astrocytosis being taken 

as correlates of inflammation in the brain. Astrocyte activation in response to Aβ 

toxicity has been repeatedly reported in cell culture and in animal models of AD 

(Glass et al., 2010). This study showed an increase in astrocyte density in the 

CA3 region of the hippocampus in Aβ25-35 administered 6 months old rats. 
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However, no differences, using optical density measurements, in astrocyte 

density were identified in the thalamus or CA1 subfield of the hippocampus in 

rats regardless of treatment or age. The lack of differences seen in astrocyte 

activation could in part be due to the inefficiency of optical density measurements 

to detect changes in astrocyte reactivity. Astrocytes only occupy a portion of the 

area from which optical density measurements were taken. Thus, even a large 

increase in astrocytes would only result in a small change in optical density 

measurements. Additionally, work by Zussy et al., reported increased GFAP 

levels in the frontal cortex, amygdala and hypothalamus in response to Aβ 

injection, however no changes in GFAP levels were identified in the 

hippocampus (Zussy et al., 2013). Therefore, it may be that activation and 

proliferation of astrocytes did not occur in the regions of the brain (thalamus, 

hippocampus) examined in this study.  

 Six and 9 months old animals showed a significant increase in microglia 

in the thalamus in response to Aβ25-35 administration compared to 3 months old 

animals. The involvement of the thalamus in AD has not received the same 

amount of attention as other brain structures. However, amyloid deposits and 

neurofibrillary tangles have been shown to occur in almost all thalamic nuclei in 

the human AD brain (Braak and Braak, 1990). Moreover, structural imaging 

studies have shown reductions in thalamic volume in the brains of AD patients, 

with thalamic atrophy correlating with impaired cognitive performance (de Jong et 

al., 2008; Zarei et al., 2009). In animal models of the disease Aβ deposition, 

neuroinflammation and neurodegeneration have been shown to occur in the 

thalamus. Work by Miao et al., have shown in a transgenic mouse model of AD 

that with increasing age there is extensive deposition of Aβ in the thalamic 

microvasculature and that regions of the thalamus showing Aβ accumulation also 

demonstrate enhanced levels of inflammatory cells (Miao et al., 2005; Fan et al., 

2007). Thus, the increased microglia activation in this region is in accordance 

with the reported susceptibility of this region to AD pathology.  
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Aβ-induced toxicity elicited an age and dose-dependent increase in 

microglia in the MSN/VDB of the basal forebrain. Higher doses of Aβ25-35 

administration resulted in a significant increase in microglia in the MSN/VDB in 3, 

6 and 9 months old rats. Additionally, 6 and 9 months old rats had an increase in 

microglia activation in this region when compared to 3 months old treatment 

matched animals. This is in accordance with other studies in rodents that have 

demonstrated administration of Aβ1-40 and Aβ25-35 results in increased levels of 

reactive astrocytes and microglia in the basal forebrain (Scali et al., 1999, 

Giovannini et al., 2002). The MSN and VDB are part of the basal forebrain 

cholinergic system, which provides major cholinergic inputs to the hippocampus 

and neocortex (D’Hooge and De Deyn, 2001; Auld et al., 2002). 

Neuroinflammation has been shown to occur in susceptible regions of the AD 

brain, and basal forebrain cholinergic cells have been shown to be selectively 

vulnerable to AD pathology (Auld et al., 2002). Furthermore, these Aβ-induced 

inflammatory responses are thought to contribute to cholinergic hypofunction, 

which is a well described change associated with human AD pathogenesis.   

4.2 The basal forebrain cholinergic system 

A significant decrease in the number of chAT immunolabeled cholinergic 

neurons in the MSN/VDB of the basal forebrain was seen in Aβ25-35 500nmol 

administered animals 6 and 9 months of age. This is in agreement with previous 

studies that have demonstrated both single injection or prolonged exposure to Aβ 

peptides, including Aβ1-40, Aβ1-42 and Aβ25-35, induces degeneration of cholinergic 

neurons and results in memory impairment in rodents (Harkany et al., 1995; 

Terranova et al., 1996; Vaucher et al., 2001; Colom et al., 2010;). Most of the 

studies examining cholinergic loss in response to Aβ toxicity however, have 

directly injected Aβ peptides into various basal forebrain structures including the 

MSN and nucleus basalis of Meynert (Terranova et al., 1996; Colom et al., 2010). 

This study was able to demonstrate cholinergic hypofunction in the MSN/VDB in 

response to icv Aβ25-35 administration, better demonstrating the selective 

vulnerability of this cholinergic neuronal population to Aβ toxicity, as amyloid was 
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not directly injected into this region. Zussy et al., have shown similar results with 

icv Aβ25-35 injections resulting in a decrease in cholinergic neurons in the basal 

forebrain when examined at 3 weeks and 6 weeks post icv Aβ administration 

(Zussy et al., 2011; 2013). Demonstrating a loss of cholinergic neurons in the 

basal forebrain is of significance since it is believed to be one of the earliest 

pathological events in AD and may contribute to the cognitive impairment 

associated with the disease process (Auld et al., 2002).  

The interplay between neuroinflammation and cholinergic neuronal loss in 

the basal forebrain has not been extensively studied. However, the Aβ-induced 

increase in microglia activation in this region accompanied by a decrease in 

cholinergic neuronal numbers demonstrated in this study suggests inflammation 

and cholinergic loss may be linked. The contribution of neuroinflammation to 

cholinergic degeneration is supported by in vitro work that showed brain 

inflammation, and in particular excessive microglia activation, selectively 

damages cholinergic neurons in primary rat basal forebrain mixed neuronal/glial 

cultures (McMillian et al., 1995). Additionally, infusion of lipopolysaccharide, a 

potent inflammatory molecule, into the basal forebrain of young rats has been 

shown to induce an extensive inflammatory response accompanied by a 

significant loss of cholinergic neurons (Wenk et al., 2000). It is thought that 

inflammatory processes that activate microglia and astrocytes results in the 

release of cytokines and ROS, which in excess can be detrimental to cellular 

functioning. Cholinergic neurons in the basal forebrain appear to be particularly 

susceptible to the damaging effects of such molecules. Therefore, the increase in 

microglia in the MSN/VDB in response to Aβ25-35 injection could be contributing to 

cholinergic dysfunction in this region.  

4.3 Neuronal integrity 

Aβ25-35 induced toxicity was also associated with histopathological 

changes in the hippocampus. The histological stains H&E and thionin revealed a 

loss of pyramidal cells in the CA3 region of the hippocampus in Aβ25-35 

administered 6 and 9-month-old animals. However, no changes in hippocampal 
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cell numbers were identified in the CA1 hippocampal subfield. Similar results 

have been demonstrated by other groups showing decreases in cell numbers in 

the CA1, CA2 and CA3 regions of the hippocampus (Stepanichev et al., 2004; 

Zussy et al., 2011; 2013). The loss of hippocampal cells as shown by histological 

stains suggests impairments in neuronal integrity, however cell counts alone do 

not confirm cell death. Work by others on the toxicity of the Aβ25-35 fragment 

indicates that hippocampal cell loss is most likely the result of apoptotic 

processes (Castro et al., 2010; Guo et al., 2013; Zussy et al., 2013). Cell death, 

and more specifically apoptosis, could be more thoroughly analyzed using 

alternative approaches including the labeling of apoptotic cells through dUTP 

nick end-labeling (TUNEL), or through examination of caspase-3 and caspase-6 

expression, both of which play a role in the execution phase of cell apoptosis. 

Alternatively, necrosis could be examined. Evaluation of apoptosis and necrotic 

cellular markers could confirm neurodegeneration in the regions examined, and 

furthermore delineate the way in which cells are dying.  

4.4 CAT-SKL  

This study was the first to use the targeted antioxidant CAT-SKL to try to 

reduce the toxicity induced by Aβ25-35 in the mature rat brain. CAT-SKL is a 

genetically engineered derivative of the antioxidant enzyme catalase. The SKL 

targeting sequence enables catalase to be more effectively targeted to 

peroxisomes, where its main function is to metabolize H2O2 to oxygen and water. 

Metabolism of H2O2 is critical, because it can react with Fe2+ to generate hydroxyl 

radicals, which are highly reactive species capable of inducing protein, lipid and 

DNA damage (Markesbery and Carney, 1999; Milton, 2004; Trippier et al., 2013). 

Aβ25-35 toxicity was induced in 6 months old male Wistar rats. Animals 6 month of 

age were used based on the findings from aim 1 of this study that demonstrated 

significantly greater pathology and inflammation in 6 months old Aβ25-35 

administered animals in comparison to 3 months old treatment matched animals.  

In the present experiments, CAT-SKL was shown to reduce microglia 

activation in the MSN/VDB and thalamus of 6 months old Aβ25-35 administered 
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rats. Reduction in microglia activation is likely a secondary consequence of the 

anti-oxidant properties of the CAT-SKL molecule. By decreasing ROS production, 

the toxicity induced by Aβ would be lessend therby decreasing the activation and 

proliferation of inflammatory microglia and astrocytes. CAT-SKL may also have 

aided in reducing the production of inflammatory molecules. Previous studies in 

vitro have demonstrated the ability of CAT-SKL supplementation to reduce the 

expression of the inflammatory cytokine TNF-α in a human cell model of 

psoriasis (Young, 2008). Moreover, CAT-SKL has been shown to protect rat 

myocytes from hypoxia-reoxygeneation and ischemia reperfusion injury via 

reduction of oxidative stress in cell culture (Undyala et al., 2011).  

The demonstrated ability of CAT-SKL to reduce oxidative stress and 

inflammatory molecules is of particular relevance since Aβ is believed to exert its 

toxicity in part by increasing ROS production. This has been demonstrated in 

neuronal and astrocyte cell cultures where addition of Aβ results in increased 

levels of ROS, and in particular H202 levels (Behl et al., 1994; Goodman et al., 

1994; Manelli and Puttfarcken, 1995; Harris et al., 1996). Moreover, in vivo 

continuous infusion of Aβ1-40 has been shown to increase H2O2 formation, reduce 

the activity of H2O2 degrading enzymes and increase the activity of H2O2 

generating enzymes in the rat brain (Kaminsky and Kosenko, 2008). Thus, the 

ability of CAT-SKL to specifically metabolize H2O2 may be of importance in 

reducing Aβ mediated toxicity. Aβ is also known to upregulate the production of 

inflammatory molecules, and activate microglia and astrocytes. Thus, CAT-SKL 

may be exerting its beneficial effect by reducing Aβ-induced production of ROS 

and inflammatory molecules, which in turn results in decreased microglia 

activation and an overall reduction in the inflammatory response.  

Treatment with CAT-SKL was also able to decrease cholinergic neuronal 

loss in the MSN/VDB of the basal forebrain, and promoted neuronal survival in 

the CA3 region of the hippocampus. Presumably this reduction in neuronal loss 

is related to the decreased inflammation seen following CAT-SKL treatment. Aβ, 

inflammation and ROS work in a self-propagating cycle, with the result being 
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excessive neuroinflammation and oxidative damage that can disrupt normal 

cellular functioning and ultimately lead to neuronal death. Stimulation of ROS 

production and activation of inflammatory molecules in culture has been shown 

to induce neuronal death.  Moreover, Aβ has been shown to mediate cell death 

via its production of ROS (Kadowaki et al., 2005).  Therefore, the protective 

effect of CAT-SKL on neuronal functioning and survival could be via CAT-SKL 

mediated reduction in ROS and inflammation.  

Previous studies have investigated the role of catalase in maintaining 

oxidative equilibrium. Addition of catalase to neuronal cultures challenged with 

Aβ has been shown to reduce H2O2 levels and improve neuronal survival (Behl et 

al., 1994; Manelli and Puttfracken, 1995; Zhang et al., 1996). Moreover, inhibition 

of catalase activity has been shown to enhance the cytotoxicity of Aβ in neuronal 

cultures (by increasing ROS levels), indicating an important role of this 

antioxidant enzyme in maintaining oxidative balance (Behl et al., 1994; Milton, 

2001). Work in a transgenic mouse model of AD has demonstrated the beneficial 

effects of using a superoxide dismutase/catalase mimetic, EUK-207, to reduce 

Aβ pathology. EUK-207 was shown to reduce oxidation of nucleic acids and lipid 

peroxidation, and was able to decrease Aβ and tau accumulation (Clausen et al., 

2012). Moreover, the impact of ROS, and in particular H2O2 levels on longevity 

has been examined in a transgenic mouse line overexpressing human catalase. 

The study demonstrated a significant enhancement in murine lifespan in mice 

overexpressing catalase when compared to wild type controls. This increased 

longevity was attributed in part to the reduction in H202 levels and oxidative stress 

(Schriner et al., 2005). Taken together these studies provide evidence for the 

protective role of catalase in aging, and in reducing Aβ toxicity. The CAT-SKL 

molecule may be of further benefit due to its unique targeting signal that directs it 

to the organelle where it can carry out its function- the peroxisome.  A model of 

Aβ associated free radical oxidative stress, and the proposed interference of 

CAT-SKL in the pathway are outlined in Figure 25.  
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Figure 25. Summary of pathology induced by Aβ25-35 toxicity with and 
without CAT-SKL treatment (A) Outline of pathology induced by Aβ25-35 icv 

administration in rats (B) Pathology in rats administered Aβ25-35 and treated with 

CAT-SKL. Boxes outlined in green were demonstrated in this study.  
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4.5 Behavior Testing: Morris Water Maze 

Spatial learning and reference memory was evaluated in rats using the 

MWM (D’Hooge and De Deyn 2001;Vorhees and Williams, 2006). No differences 

in performance were identified between RP, RP+CATSKL, Aβ and Aβ+CATSKL 

treatment groups during the spatial learning task in the MWM, indicating animals 

from all groups learned the task to the same degree. Other groups examining the 

learning capabilities of rats in the MWM following icv injection of Aβ peptides, 

including Aβ25-35, have shown deficits in spatial learning (Nabeshima and Nitta, 

1994; Chen et al., 1996; Delobette et al., 1997; Guo et al., 2013). The 

discrepancy between our finding and that of others could be attributed to 

differences in the time at which behavior testing was started, and/or due to the 

aggregation state of the Aβ peptide injected. Work by Delobette et al., showed 

that the physical state of the peptide, whether aggregated or soluble, at the time 

of injection influences animals performance in the spatial acquisition phase of the 

MWM (Delobette et al., 1997). Moreover, a study examining the time course 

based changes in response to Aβ25-35 toxicity showed that spatial acquisition in 

rats starting behavioral testing one-week post Aβ25-35 injection did not 

demonstrate spatial learning deficits. However, those animals beginning testing 2 

or 3 weeks following Aβ25-35 administration showed spatial acquisition 

impairments in the MWM (Zussy et al., 2011). Our study began spatial training 8 

days after Aβ25-35 injection, and thus the short time frame may not have been 

sufficient to allow for Aβ25-35 toxicity to impair spatial learning.  

Reference memory was assessed during the probe trials, with probe trial 1 

being used to evaluate short-term reference memory retention and probe trial 2 

as an assessment of long-term reference memory (Patil et al., 2009). Animals 

from all treatment groups successfully remembered the platform location during 

the first probe trial, as indicated by their preference for the target zone over 

adjacent zones. Additionally, no differences in performance between treatment 

groups was identified, indicating at this time point Aβ25-35 toxicity did not result in 

impairments in reference memory. During the second probe trial, 19 days after 
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Aβ25-35 injection, animals showed a significantly decreased preference for the 

target zone than animals from other treatment groups. Aβ25-35 injected animals 

also spent less time and travelled a shorter distance in the target zone during the 

second probe trial compared to the first probe trial. This decreased preference for 

the target zone during the second probe trial was not seen in Aβ25-35 

administered animals treated with CAT-SKL. Taken together this indicates that 

Aβ25-35 icv administration induces long-term reference memory deficits, and 

moreover treatment with CAT-SKL is able to attenuate Aβ25-35 induced long-term 

reference memory impairments. These results confirm that cognitive impairment 

develops approximately 3 weeks after the administration of amyloid peptides in 

rats (Zussy et al., 2011).  

  During cued learning no differences in swimming speed, path length, or 

latency to reach the cued platform location were identified between treatment 

groups. Cued learning served as an important control procedure, as the task 

requires many of the same basic abilities (intact eyesight, swimming ability) basic 

strategies (learning to swim away from the wall, learning to climb on the platform) 

and the same motivation (escape from the water) as the spatial version of the 

task. If animals are not capable of performing the cued task it casts doubt on the 

ability of animals to learn using distal cues in the spatial task (Vorhees and 

Williams, 2006). Since animals from all treatment groups were found equally 

competent at completing the cued task, differences in memory retention can 

more reliably be attributed to differences in treatment.   

The deficits seen in long-term reference memory could be a consequence 

of cholinergic neuronal loss in the MSN/VDB of the basal forebrain induced by 

Aβ25-35 toxicity. Moreover, the ability of CAT-SKL to reduce long-term reference 

memory deficits in Aβ25-35 injected rats could be due in part to the ability of CAT-

SKL to rescue cholinergic neurons. Previous studies have demonstrated that 

lesions of the MSN and/or nucleus basalis of the basal forebrain impair MWM 

performance in rodents (D’Hooge and De Deyn, 2001). Intracerebroventricular 

injection of Aβ25-35 in mice has also been shown to induce MWM memory 
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impairments that were reversed by the cholinergic agents tacrine and nicotine. 

Tacrine is an acetylcholinesterase inhibitor, and nicotine is an acetylcholine 

receptor agonist, both of which exert their effects by promoting cholinergic 

functioning.  The ability of tacrine and nicotine to reverse the behavioral deficits 

induced by Aβ25-35 administration suggests that cholinergic dysfunction 

contributes to spatial learning and reference memory impairments (Maurice et al., 

1996). The Aβ25-35 induced cholinergic deficits accompanied by impairments in 

long term reference memory seem to be in accordance with the well-described 

cholinergic dysfunction and memory impairments reported in AD.  

4.6 Limitations and Future Directions  

There are several limitations to this study, most of which are likely to be 

resolved with further investigation. This study only examined the pathology 

induced by Aβ-toxicity 21 days following icv administration. Evaluation of 

pathology at additional time points would allow for a better understanding of the 

time course of Aβ25-35 induced pathological changes in the brain and moreover 

could help determine if Aβ-induced pathology is progressive in this model. 

Additionally, this model only replicates some of the Aβ-induced pathological 

changes associated with AD pathogenesis. AD is a complex disease and the 

sequence of events causing it is not fully understood. Thus, no animal model is 

able to fully simulate all aspects of the human AD condition. This does not 

negate the usefulness of modeling aspects of the human disease in animals as 

investigations in such models can help dissect out the complexity of the human 

condition and provide useful information on the pathogenic impact and underlying 

mechanisms of specific components of the disease process. 

Intracerebroventricular administration of Aβ25-35 in older animals provides an 

adult-onset model of Aβ toxicity that demonstrates pathological changes 

representative of the early stages of the disease process. Such a model is of 

particular use when evaluating co-morbid conditions as has been done in our lab 

in the past (Whitehead et al., 2005ab; 2007ab).  
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This study was able to demonstrate the beneficial effect of CAT-SKL in 

reducing Aβ25-35 toxicity in the rat brain, however numerous questions remain 

unanswered and warrant further investigation in regards to the mechanism by 

which CAT-SKL is reducing Aβ toxicity. Ongoing work in our lab is currently 

investigating lipid peroxidation and DNA oxidation levels, both indicators of 

oxidative stress, in the brains of rats treated with and without CAT-SKL. This 

combined with more rigorous analysis of oxidative damage in the brain via the 

use of biochemical assays will help elucidate whether CAT-SKL is exerting its 

effect by reducing oxidative stress and increasing catalase levels in the rat brain. 

Furthermore, since this was one of the first studies to use CAT-SKL in vivo and 

information regarding the pharmacokinetics and pharmacodynamics of CAT-SKL 

are limited, the optimal quantity and dosages of CAT-SKL are uncertain and 

warrants further investigation. Finally, this was a proof-of principle study with 

CAT-SKL administration beginning a week prior to Aβ25-35 icv injection; therefore, 

the neuroprotective effects of CAT-SKL may be due to prevention rather than 

treatment of Aβ25-35 toxicity. Future studies are needed to elucidate whether CAT-

SKL would be beneficial in reducing pre-existing Aβ-induced pathology.  
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 This study demonstrated the importance of considering the age of the 

animal when modeling Aβ toxicity. Intracerebroventricular administration of Aβ25-

35 in animals 6 and 9 months of age resulted in increased pathology compared to 

Aβ25-35 induced pathology in 3 months old animals. Older animals showed 

increased microglia activation in the thalamus and MSN/VDB, decreased number 

of cholinergic neurons in the basal forebrain, and loss of neuronal integrity in the 

hippocampus. The majority of studies investigating Aβ toxicity in non-transgenic 

models of the disease administer Aβ in 2-3 month old animals. However, AD is a 

disease of the elderly, with the most important non-genetic risk factor for late-

onset AD being age. A number of changes occur in the brain with age, including 

increased levels of ROS, increased production of inflammatory mediators, 

reduced functioning of antioxidant enzymes, and accumulation of modified lipids 

and proteins. While these changes alone may not manifest themselves as 

impairments, the progressive accumulation of them over time may alter the brain 

in such a way that renders it vulnerable to age-associated disease processes. 

Interestingly, even at 6 and 9 months we were able to show increased Aβ 

induced pathology, speaking to the important role that even these ages plays in 

rendering the brain vulnerable to insult. Although 6 and 9 months is not 

considered old for a rat, these ages provide a more physiologically relevant 

equivalent to an adult brain than that of a 3 month animal (Quinn, 2005; 

Sengupta, 2011). Therefore, icv administration of Aβ in animals 6 or 9 months of 

age provides a model for adult-onset Aβ toxicity with pathological changes that 

reflect the early stages of AD pathogenesis.  

Using this adult-onset model of Aβ25-35 toxicity, we then investigated 

whether the targeted antioxidant, CAT-SKL could reduce Aβ25-35 induced 

pathology. Treatment with CAT-SKL decreased Aβ-induced microglia activation 

and reduced cholinergic loss in the MSN/VDB of the basal forebrain. Moreover, it 

decreased astrocyte activation and promoted neuronal survival in the CA3 region 

of the hippocampus. CAT-SKL treatment also attenuated long-term reference 

memory deficits induced by Aβ25-35 administration. The precise mechanism by 

which CAT-SKL was able to reduce Aβ toxicity in vivo is unknown; however, the 
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neuroprotective effects of the molecule are likely attributed to its antioxidant and 

anti-inflammatory properties. This preclinical data provides support for the use of 

CAT-SKL in reducing neuroinflammation and long-term reference memory 

deficits induced by Aβ25-35.  

Substantial evidence exists implicating oxidative stress and 

neuroinflammation in the pathogenesis of AD. However, whether oxidative stress 

is an initiator of AD pathogenesis or is a mediator of the disease process remains 

to be answered. Nonetheless, oxidative stress appears to occur during the early 

stages of the disease process, before the appearance of amyloid plaques and 

neurofibrillary tangles in both humans and in animals models of the disease 

(Dumont and Beal, 2011). Therapeutics aimed at restoring or maintaining the 

homeostatic balance between production and elimination of ROS, and thus 

reducing oxidative stress and inflammation during the early stages of the disease 

may help in slowing disease progression and may aide in the protection of at-risk 

individuals from the development of AD. The antioxidant molecule, CAT-SKL, 

may therefore be a viable therapeutic approach for reducing oxidative stress and 

neuroinflammation during the beginning stages of AD pathogenesis.  
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