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ABSTRACT

This thesis is divided into two main parts. Each is related to the numerical simulation
of fluid flows. The first part is concerned with the treatment of pressure or vorticity
boundary conditions in the numerical solution of the Navier-Stokes equations; and the
second part is concerned with the numerical algorithm for simulating the dynamics of
capillary surface.

In Part I, two new accurate finite-difference algorithms for solving the two
dimensional, steady, incompressible Navier-Stokes equations are described. The
numerical algorithms can be easily adapted on a uniform grid for solving general flows.
The first approach, designated as Zero Perturbation Method, uses the combination of
the momentum and divergence equations at the boundary to provide the implicit
pressure boundary conditions. Its numerical solution procedure is discussed in
primitive variable formulation. The second approach, designated as Computational
Boundary Condition Method, utilizes a computational solution domain to avoid the
problems of no explicit boundary conditions for pressure or vorticity in the Navier-
Stokes equations. The pressure or vorticity boundary conditions are implicitly specified
on the computational boundaries by the overspecified velocity or strcam-function
conditions. Both stream function-vorticity and primitive variable formulations are
discussed in this case. Although the methods described in this thesis have revealed their
wide scope of applications to general flow problems such as three dimensional cases,
the primary concern is to provide some general solution procedures that offer reliable,

efficient, accurate simuiation for all dependent variables in the Navier-Stokes
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equations.

Numerical experiments were carried out by second-order finite difference
approach and alternating direction implicit (ADI) solution procedure. Al} tests were
performed on uniform grids by means of Zero Perturbation Method and Computational
Boundary Condition Method described in this thesis. The computed convergence rates
( root mean sqaure ) for all variables are in excellent agreement with the theoretical
prediction. Results for the classical driven cavity problem are found to be very accurate
in comparison to previous investigators. The new methods have not only theoretical
signiﬁc:;nce, but also wide scope of practical applications. In Part II , the analysis has
been made on the dynamics of liquids in a low gravity environment which is essentially
dominated by its capillary effects. There are two major difficulties in numerical
simulation. They are : i) accurate tracking of the curvature of an interface undergoing
large deformations, and ii) diagnosing the initiation break-up of an interface, i.e. break-
up of a liquid drop. Numerical simulation of these effects has to rely on algorithms
capable of handling moving boundary problems for the Navier-Stokes equations. A
successful resolution of these difficulties requires an algorithm capable of accurate
determination of pressure and velocities along the deformed interface. The required
algorithms are described in Part 1. This accurate and reliable algorithm for simulation
of moving capillary surfaces is given by using Zero Perturbation Method discussed and

tested in Part I.
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PARTI: BOUNDARY CONDITION METHODS
IN THE NUMERICAL SOLUTION OF
THE NAVIER-STOKES FQUATIONS




CHAPTER 1: INTRODUCTION

L1 _General Review

The numerical simulation of incompressible viscous flow using a discretized system of
equations to approximate the Navier-Stokes equations poses one of major difficulties
due to the lack of pressure or vorticity boundary conditions. The natural consideration
of the discretization of differential equations at the boundaries overdetermines the
discretized system. Many methods of determining the appropriate conditions for either
primitive variable or stream function-vorticity formulations have been proposed.
Unfortunately, there is still a lack of general algorithms favorable to both formulations.
In this thesis, two straightforward solution procedures are described which are suitable

for all normal discretization of the Navier-Stokes equations.

Finite difference methods for the Navier-Stokes equations can be classified into
three major types. These are: the method of staggered grid, the method of projection,
and the method of stream function-vorticity. The first approach, known as Mark-and-
Cell by Harlow and Welch (1965), uses the staggered grid for imposing the momentum
and incompressibility cquations. The treatment of the boundary conditions seems easier
when this grid arrangement is used, especially, for the pressure. Unfortunately, the lack
of pressure boundary condition problems remain unresolved. Instead of solving Poisson
equation for pressure, Patankar and Spalding (1977) derived an approximate equation
of pressure correction from the momentum equations to satisfy the incompressible
equations. The algorithm named as SIMPLE has been widely used in practice.

The second approach is the projection method for the primitive variable




formulation. This method, originally developed by Chorin (1967), sets up an auxiliary
vector field V' in which the momentum and incompressibility conditions are treated in
two fractional steps. At the second step, the Neumann conditicn for pressure is made
by projecting the vector field v’ onto its subspace with zero divergence, and satisfying

the appropriate boundary conditions. The method makes use of
1
(Vp)pom= —(V'p.- Vpen a-1)

as the pressure condition for solving the pressure Poisson’s equation. For this method,
Alfrink (1981) offered an explicit description of the required compatibility conditions
for practical use. In the context of the projection method, Stephens, Bell, Solomon and
Hac!-erman (1985) developed the finite difference Galerkin method for the numerical
solutions of steady, incompressible Navier-Stokes equatic . based on Chorin’s original
idea. A Galerkin solution procedure involves constructing a local basis for discretized
divergence-free vector field, and is used primarily for solutions in terms of primitive
variables. Recently, the finite difference Galerkin method has been extended to time
dependent incompressible flow. The details may be found in Bell, Colella and Glaz
(1990), Goodrich and Soh (1990).

The third approach is to solve the vorticity transport equation by eliminating the
pressure from the momentum equations, in which the vorticity is considered as a
primary unknown. This stream function-vorticity method has been widely used for
calculating the two dimensional flows. An accurate second-order form of implicit

vorticity condition was first suggested by Woods (1954). An excellent review for the




treatment of the boundary conditions in this formulation can be found in Roache (1972).
In this context, an interesting method that uses the integral type boundary conditions for
vorticity was initially given by Quartapelle (1982), and reviewed by Dennis and
Quartapelle (1989). The method makes uses of Green’s identity to transform locally
implicit boundary condition into a global integral constraint. Successful calculations
have been made for the flow around the circular cylinder problems as well as many
other flow problems.

In recent years, several other interesting methods have been proposed with
primitive variable formulation. Among them, the influence matrix method by Kleiser
and Schumann (1980) provides a perspective to the problem by introducing a
supplementary (linear) problem to determine the missing boundary values for the
pressure. This method is quite efficient and has been employed to compute the three
dimensional channel flow. The major contribution of Kleiser and Schumann is that their
method theoretically ensures the necessary enforcement of the divergence-free
constraint at the boundary in solving the pressure Poisson’s equation.

While these various methods for the numerical simulation of the Navier-Stokes
equations have shown their particular strengths in considering a variety of flow
problems, several difficulties still remain in the calculations. Open problems are: i) the
staggered grid may result in an inaccuracy in the pressure since both momentum and
incompressibility equations are not exactly satisfied at the boundary; ii) the discrete
Poisson equation is not strictly equivalent to the incompressibility equation and,

therefore, the enforcement of zero-divergence on the boundary may still remain as a

dominant issue for the practical use of a primitive variable solution procedure; iii)




because of the complexities of the numerical implementation, some methods are

cumbersome for solving problems with complicated geometry, especially, in three

dimensions.

1.2 The Navier-Stokes Equations
The equations of inotion of steady, viscous, incompressible flow are the Navier-Stokes

equations written in a nondimensional form

1
Re
Vev =0 (I1-3)

VeVV =-Vp+ V3V, (I-2)

where V is the velocity field, p is the pressure and Re is the Reynolds number

(Re = -qvé where v is the viscosity). Appropriate boundary conditdons include

ov
specification of V at rigid no-slip boundaries or specification of v, and ﬁt at no-stress
boundaries when n and t denote the normal and tangential directions. The pressure field

serves to preserve the incompressibility condition (I-3); the divergence of (I-2) gives a

Poisson equation for the pressure
Vip = -Ve(VeV)V. (I-4)

The most widely applicable and popular numerical methods for flow simulation
are based on finite difference approximation to (I-2) -(I-4). There are two numerical

formulations: one is to solve (I-2)-(I-4) directly in terms of the primitive variables V




and p; another is to solve in term the stream function-vorticity y and {. In the two space
dimensions, the stream function Y is related to the incompressible velocity V and

vorticity { by
-— .
V= (aa_y“‘,_g.ax"‘), L =-Viy a-s)

while the curl of (I-2) gives

1
v, - L, = V2L, (1-6)

The stream function-vorticity formulation is particularly appealing because
vorticity is generated locally near boundaries in high Reynolds nun.oer flows and
subsequently diffused and convected away. On the other hand, the pressure is governed
by the elliptic equation (I-4) so that it is affected instantaneously at all points of space.
Thus, with limited iterations, it should be easier to reach the convergence state using
the stream function-vorticity formulations. However, this expectation is not borne out
in pracrice. Primitive variable formulations tend to be slightly more accurately for
similar computational efforts (Orszag 1971) probably because (I-6) requires finite
difference approximation to more critical derivatives than does (I-2). Nevertheless, the
idea in the stream function-vorticity formulation is still useful for the determination of
boundary conditions in primitive variable formulations. The essential part of stream

function-vorticity formulation is the inversion of the Poisson equation Vz\y = -{ for

the stream function. It is now recommended that the direct methods such as Fast Fourier




Transformation and Poisson Solver, rather than iterative methods, be used wherever
possible. The development of direct methods in the last fifteen years has been one of
the big breakthroughs in the developments of efficient simulation codes.

Primitive variable formulations are increasingly widespread, especially in three
dimensional simulations. One of convenient methods of using the primitive variable
formulation is to replace the incompressible condition (I-3) by the zero-perturbed

divergence equation

VeV+ep, =0 I-7

and to let € = 0+ ( Chorin 1967 ). In this method of artificial compressibility, the fluid
is allowed to be slightly compressible and incompressibility is achieved by dynamical
relaxation. The technique has proved useful in a variety of flow problems, especially
steady state flows (Fortin, Peyret & Temam 1971). It should be pointed out here that the
iterative process for the implementation of the algorithm is very straightforward if the
treatment of boundary condition is correct. However, with inappropriate bcandary
conditions, the process may be tricky and lead to difficulties.

An alternative to solving the zero-perturbed divergence equation for the
pressure p is to use the Poisson equation (I-4). This approach has been generally
considered to be more efficient since it could be conveniently solved by the direct
methods referred to earlier. Techniques such as Mark-and Cell Method earlier
developed by Harlow & Welch (1965), Influence Matrix Method proposed by Kleiser

and Schumann (1980) and Finite Difference Galerkin Method described by Stephen,




Bell, Solomon and Hackerman (1985) have attracted many researchers for their

compliance with the incompr- . ibility condition.

13 _The Treatment of No-Slip Boundary Conditions
It is generally understood that vorticity is generated only at the body surface. For

example, a solid body moving in a viscous incompressible fluid under conservative
forces generates the vorticity. The generation of vorticity is related to the adherence of
the fluid to the solid boundary. This could be expressed mathematically by the no-slip
boundary condition V = V- at the body surface, where V- is the velocity of the body.
The implementation of the no-slip condition is straightforward when primitive variable
formulations are u :d as dependent variables. However, the no-slip boundary condition
in the stream function-vorticity formulation may require implicit expressions.

We now remark on some uses of the no-slip boundary conditions in primitive
variable formulations. The major issue involved in such formulation is the
determination of the pressure boundary conditions. In order to solve for pressure p, it is
necessary to know pr (the boundary values of the pressure p). First, a Poisson’s
equation (I-4) is supplemented by prescribed boundary conditions

pr =B () (I-8)

where I" denotes the boundary of the numerical simulation domain and B({) denotes an

unknown pressure distribution o~ the boundary. A general solution of (I-4) and (I-8) can

be represented as a superposition of an inhomegeneous solution p of (I-4) subject to

homogencous boundary condition and homogeneous solutions of (I-4) subject to the




inhomogeneous bouadary condition (I-8). Thus the pressure can be written -s
M
P=P+2AD (1-9)
i

where i denotes a discretization point along the boundary and the inhomogeneous
boundary conditions have been selected in the form (i.e., Cl. are the discrete points at

the boundary )

Prly., = 1 Prl;,, = O (1-10)

In the above, A; are the constants of superposition to be determined from the
incompressibility condition at the boundaries. It can be shown through the application
of Green’s theorem that this assures fulfillment of incompressibility condition in the
whole flow field. Equations for determination of A;, the influence matrix (Kleiser and

Schumann 1980), are constructed by representing velocity vector as
- 1 M
V=V+ R—eZA,.v,. a-11)
s

where V is a solution of a Stokes problem with inhomugeneous no-slip boundary
condition V = V- and V; are the solutions of the Navier-Stokes equation written in
Stokes form with homogeneous no-slip boundary conditions V = 0. Eq. (I-11) is used
to construct the divergence operator and enfoicement of the zero-divergence condition
at grid points along the boundaries gives the required equations for A;.

If the steady Navier-Stokes equations (I-2) are written in unsteady forms as

F=w+Vp,w= g-: where F denotes the convective, diffusive and external-force
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terms, then w and Vp are the solenoidal components, respectively, in the Weyl
decomposition of F (Ladyzhenskaya 1969). Since w and V p are determined uniquely
by F and specification of either the normal component wy, or the tangential component
w, along the boundary, it follows that exact solutions to the Navier-Stokes equations
must satisfy an auxiliary dynamical consisiency condition io permit specification of
both w, and w,. This is similar to the idea of Chorin (1968) that the momentum
equations can be split into a divergence free and rotational free part. If the explicit finite

differences are used, this yields the following scheme

V-

T+ VeV V" = RleVZV". I-12)
Ve V*
Vp= ——, (1-13)
n+l _
A4 - v* +Vp™l= . (I-14)

First of all, the momentum eguations excluding the pressure gradient are solved,
yielding an auxiliary velocity field, which contains the correct vorticity but has non-
zero divergence. The auxiliary velocity is then modified in such a way as to bring the
divergence to zero while preserving the vorticity. Using Eq.(I-14) the boundary

condition for pressure can be written here as
(Vp)r n= v r- Vr)on. a-15)
The scheme proposed has been used amongst others by Fortin er al (1971). The right

hand side of Eqs.(I-13) and (I-15) must satisfy the following compatibility condition,
obtained by applying Gauss’ theorem
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e

_ n+1l
dQ = fz—;r_ ondrl, (1-16}

where Q denotes the two dimensional domain under the consideration with its boundary

I'. In case there is conservation of mass, i.e., iV”* e ndI" = 0, Eq.(I-16) reduces to
5
l[(VoV‘)dQ = iv‘ endrl. a-17)

The specific example is given by Kim and Moin (1985). In the context of Galerkin
ideas, Stephens, Bell, Solomon and Hackerman (1984) use their finite difference
Galerkin method for the system (I-12)-(I-14). They begin with a discretization of
equations of motion, and then they manipulate the finite difference equations and their
solution space to obtain a convenient algorithm. The essential features of their method
are the expansion of the discrete velocity solution using a basis for the discretely
divergence free vector ficlds on the grid and derivation of equations for the expansion
coefficients by taking the inner product of the expansion vectors and the discrete
momentum equations. The only exceptional constraint is that the primitive variable
discretization for the divergence operator in the incompressibility equation must be the
adjoint (matrix transpose) of the discretization for the gradient operator applied to the
pressure in the momentum equations. If the discrete divergence and gradient operators
are the adjoints of each other, then the discrete pressure will drop out of the derived
equations. The essential problems in applying such method are to find a basis for the
null-space of the discrete divergence operator and to find a particular solution of the

discrete incompressibility equation that accounts for the velocity boundary values that
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are prescribed by the problem that is being solved.

The relevant ideas of the earlier work in the stream function-vorticity
formulation are easily introduced by a steady Stokes flow. In this case, the substitution
of a stream function gives the biharmonic equation

Viy = 0. a-18)

On a stationary rigid wall, the no-slip conditions are

-0 M.
y=0, =0 (-19)

where 7 is the coordinate normal to the boundary. Pearson (1965) showed that it is
computationally more efficient to split the fourth order equation into the coupled system
of Laplacian and Poisson equations

V(=0 {=-Vy. (1-20)

In order to solve for { from V2{ = 0, it is necessary to know {r (the boundary
values of the vorticity {). Various difference approximations for {r in terms of the
vorticity and stream function in the interior of the region have been suggested; when
the Lapalacians are also discretized a closed system linear equations for grid point
values results, which may be solved by relaxation. This procedure was used by Thom
(1933), Payne (1958), Jenson (1959), and many others.

When a time-dependent solution procedure is considered, the proper analogue
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of the biharmonic equation is

= VA,

==z = -V2y. (1-21)

Two approaches are possible now: explicit or implicit. In the explicit scheme,
{**! (the vorticity at the n+1 step) is computed first at all the interior grid points from

the equation
n+1 n _ At 2rn
§  -¢ = EZV (G (I-22)

The elliptic equation {**! = V2y"+1 s solved for ¥**! and then { is
updated. In the implicit method, one can use the Crank-Nicoison scheme

;"”-mAtC"“ e + 373 tV’C 1-23)
Cu-&-l = L(V"+1, cll+l)’ (1_24)

where L is a linear combination of its arguments, or the alternating-direction-implicit
(ADI) method due to Peaceman and Rachford. In both cases an iterative process is
required. If Cartesian coordinates (x,y) are used and the boundary is the y axis, it

follows that §. = (vzw) = (?—") because yy. = O implies that (;—7“2’) =0.A
r Z Jr Yy /r
second-order central difference approximation gives

{r = (21?) (V(Ax) - 2v(0) + W(-Ax) , a-25)

where Ax = —Ax is outside the region of computation but y(—Ax) can be computed



using the condition (g—:’)r =0.

Thus Fromm (1963) uses

- - (=
0= (3,) = (z3) (WO) - ¥(-Ax)) +0 (Ax),

so that since y(0) = 0

W(Ax)
&r = v +0(1).

Thom (1933) uses W(~Ax) = Y(Ax) + O (Ax’), which gives

_ 2y(AY)

Cr —F--PO(AI).

Woods (1954) obtained the equivalent of

_ 3y(ax) 1

b= — 7 ~30an+0(a%).
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(1-26)

(1-27)

(1-28)

1-29)

The truncation errors in the expressions were obtained by formal manipulation of the
Taylor series (Roache 1972). Similar ideas were employed by Ghia ez al (1982) who
used the third-order form of implicit condition in their efficient multigrid solution

procedure.

Another interesting treatment of the no-slip boundary condition is the idea of
the integral constraint which uses the integral type boundary conditions for vorticity
(Dennis and Quartapelle 1989). It makes uses of Green’s identity to transform locally
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implicit boundary condition into a global integral constraint. To illustrate the concept,
a model problem is constructed to analoguc the problems of the Navier-Stokes type.
Consider the functions y(x) and {(x) which satisfy the one-dimensional system

"+f()T = g(x) (1-30)
v =L, (I-31)

with boundary conditions:
v=y =0 whenx=0,1. (1-32)

Multiplying (I-31) by its fundamental solutions ( ¥ = 1 and ¥y = x ) in tum and
integrating with respect to x from x = 0 to x = 1, one obtains the two global conditions

for the vorticity,
1 1
ftax=0;  [stdx=0o. (1-33)
0 0

Equations (I-33) provides the relationship between the boundary vorticity {. and

interior values of the vorticity. However, the numerical implementation of such idea in

two-dimensional cases could lead to some difficulties (Dennis and Quartapelle 1989).

There are three particularly appealing methods in the modem development of
numerical simulations of the Navier-Stokes equations. These are: finite difference,

finite element and spectral method. Finite element method uses local, low-order
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polynomial basis functions to generate sparse algebraic equations in terms of nodal
unknowns; spectral method makes use of global, orthogonal basis functions to achicve
a high accuracy per degree of freedom; finite difference method, however, offers a more
direct approach to the numerical solution of the partial differential equations. In the
latter approach, one simply replaces the derivatives with finite difference expansion and
requires that the resulting algebraic equations be satisfied exactly at the grid points. The
finite difference method can be interpreted as a collocation method without a basis
solution. As we have discussed earlier, the difficulties in the finite difference method
arise in imposing boundary conditions, and low-order finite difference formulations are
often inaccurate and computationally expansive, particularly on coarse grids.

One of the major concerns in these methods is the computational efficiency. A
number of different ways of defining computational efficiency are discussed by Swartz
(1974). In the aspect of the influence of accuracy and economy on the computational

efficiency, the following simple definition may be used:
. . k
Computational Efficiency = P

where € is the error in the computed solution in some appropriate norm, and 7t is the
execution (CPU) time or operation count. Thus a solution of coarse grid that has a large
error but a small execution time is as computationally efficient as a solution on refined
grid that produce a small error but requires a large execution time. Since
computationally efficiency is a property of the method, the relative powers of € and ©
should be chosen so that the computational efficiency is independent of grid refinement.

The three categories of computational methods: finite difference, finite element
and spectral methods can be ranked in that order as far as economy per degree of
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freedom is concerned. This would be expected from the relative sparseness of algebraic
equations formed by methods if the same total number of degrees of freedom are
involved. From a consideration of the error estimates it would be expected that the
accuracy achieved by the various methods with the same number of degrees of freedom
could be ranked as follows: spectral, finite element and finite difference methods.
However, the relative computational efficiency of the various methods is not obvious
from fundamental considerations. The efficiency will depend on the particular problem
being considered, the order of the basis solution, the number of dimensions, and the
influence of the aspects of the computational algorithm. It is generally recognized that
for higher-order, higher-dimensional local methods the algebraic complexity is much
greater for the finite element methods than the finite differences. Consequently it may
be expected the economy to be significantly worse and require the accuracy to be
significantly higher if the computational efficiency is to be greater.

Now we make some remarks on simplicity of the programming codes and
flexibility. From the nature of finite difference method we would expect it to require
relatively little algebraic manipulation and relatively straightforward programming
codes, except that special procedures might be required for particular boundary
conditions. Generally, finite difference method is inflexible, since we would expect very
little of the existing program to be relevant to the next problem. However, the relative
simplicity of the programming applies to the second problem just as much as the first.
Finite element method requires some basic algebraic manipulation and more
programming effort than finite difference method. However, the modularity of the finite
clement method leads itself to efficient programming, and a lot of finite clement
packages exist. Flexibility is an important feature of the finite element method. In
solving a new problem relatively few changes need to be made in an existing package.
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Spectral method requires considerable amount of basic algebraic manipulation and
programming if an efficient code is to be generated. Also, the solution of 4 new problem
typically requires a new basis solution, new specification of boundary conditions.

Therefore, spectral method is relatively difficult to program and inflexible.

LS _Ouytline of Present Work

This thesis is divided into two main parts. Each is related to the numerical simulation
of fluid flows. The first part is concerned with the treatment of pressure or vorticity
boundary conditions in the numerical solution of the Navier-Stokes equations; and the
second part is concerned with the numerical algorithm for simulating the dynamics of
a capillary surface.

It is of interest that when the doctoral research was initiated the study was
concemned with a two dimensional free/moving surface problem in a cavity which is
described in Part II. However, after considering the existing numerical algorithm for
this problem, it was realized that the major difiiculties in accurately simulating the free
surface flow are: i) the correct treatment of the pressure boundary condition, and ii) the
use of the uniform discretization scheme to solve the Navier-Stokes equations in
primitive variable formulation. There is no appropriate algorithm suitable for solving
such kind of flows. This leads to an in depth study of boundary condition methods in
the numerical solution of the Navier-Stokes equations since there is no explicit pressure
or vorticity boundary condition. This analysis is discussed in Part I which has become
a major part of this doctoral work.

Qutline of Part |

In this part two new accurate finite-difference algorithms for the two dimensional,
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steady, incopressible Navier-Stokes equations are described. The numerical
algorithms can be easily adapted on uniform grid for solving general flows. The first
approach, designated as Zero Perturbation Method, uses the combination of the
momentum and divergence equations at the boundary to provide the implicit pressure
boundary conditions. The numerical solution procedure is discussed in primitive
variable formulation. The second approach, designated as Computational Boundary
Condition method, utilizes a computational solution domain to avoid the problems of
no explicit boundary conditions for pressure or vorticity in the Navier-Stokes equations.
The pressure or vorticity boundary conditions are implicitly specified on the
computational boundaries by the overspecified velocity or stream-function conditions.
The latter approach seems more natural for the general flow problems. In this case, both
stream function-vorticity and primitive variable formulations are discussed. In both
finite-difference approaches, the overdetermined system resulting from the Navier-
Stokes equations can be correctly reduced to a determined system. The methods in this
thesis have revealed their wide scope of applications to general flow problems such as
three dimensional cases. However, the general concern in this part is only to provide
some general solution procedures that offer reliable, efficient, accurate simulation for
all dependent variables in the Navier-Stokes equations.

Due to lack of the pressure or vorticity boundary conditions in the simulation,
the common solution procedure of discretizing equation at the boundary results in an
identity ( or algebraic dependence ) in the discretized equations. Therefore, the correct
boundary conditions for such a system is difficult to be found. This boundary value
problem in the Navier-Stokes equations has been studied by many researchers for more
than twenty years. The theory and numerical illustration of such an identity ( or
algebraic dependence) will be given and discussed later in chapter two and chapter four
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respectively. This has indicated that the major difficulties involved in solving flow
problems for both primitive variable and stream function-vorticity equations are
essentially similar. The difficulties can be easily removed by using the new approaches
proposed in this thesis. The proposed methods are designated as Zero Perturbation
Method and Computational Boundary Condition Method. The implementation of such
ideas is convenient and straightforward for the Navier-Stokes equations. The focus on
the first part of the thesis is to provide a correct determined system of equations that all
the difference equations could be imposed. In chapter iwo, the proof of equivalence
between the system of the Navier-Stokes equations and a modified Navier-Stokes
system is presented. A detailed description of its finite difference implementation is
also included. Chapter three presents the one dimensional illustrations for both stream
function-vorticity and primitive variable formulations for the Computational Boundary
Condition Method and then, the applications to general two dimensional flow problems
are followed. The numerical results are given in chapter four which carries out several
numerical experiments for both one and two dimensional model problems to show the

accuracy and capabilities of our new methods. The summary is given in chapter five.




CHAPTER 2: ZERO PERTURBED BOUNDARY
CONDITION METHOD

2.1 Second-Order Extrapolation
Let h be the uniform grid size of the discretization scheme in a one-dimensional

interval (g,b) and its boundaries @ and b; and let

{ x=a+(i-1)h, 1<i<M+1, where M =(b-a)/h } (I-34)

be the discrete points in [a,b].

We define the function fix) that f? (x) is continuous in [4, 5] , and f (x)
exists in (a,b) where { x defined on [a, b] } 2 { x; defined by (I-34) }. Their values at
discrete pointsx; are written as f; = f{x;). We notice that f; = f(a) represents the value
at the boundary a where a = x;.

Suppose the values f; = O(IP) (i = 2, 3 ) are given; Suppose f, = O(h®) is given.

Then i) the extrapolation to f given by f,, f3 written as
fi = 2y—f+Ch? (1-35)
is a second-order approximation, where C is a constant which is independent of f; (i =

1,2,3)
andii) f; = O (K?).

21
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Since f; (i =1, 2, 3) represent the values of f{x) at points x; ( i=1,2,3) one
may construct a parabolic interpolation by f; (i = 1, 2, 3) approaching to fix) in [x, x3]

written as

(x=x;)
P,(x) = 2‘, 1"[ [ =) S » (1-36)
ntk
and its error is determined by
3) 3
R =10 P00 =TS8 [T -xp =00, a-37)
: k=1

where x; S € <x;. Itis obvious that in the limit ofh—0: i) P,(x) tendsto f(x) and
ii) P, (x) exists.

f(z) (x) is continuous in [a, b] and f(3) (x) exists in (a,b). Therefore, from (I-
36) and (I-37) one may conclude that i) P 2 (x) is continuous in [x; x3} and ii)
Péz) (x) exists in (x; x3).

By taking the second-order differentiations of Eq. (I-36) with respect to x, it

becomes

hH=2+f

P2(2) (X) - h2

R in (Il. X3). (1-38)

Substituting the conditions f} = O(h%) and f; = O(K)(i=2,3)into (I-38), one

may obtain
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-2
P§2) (x) =fl ’-:;2+f3

= 0(h*"Y, in (x, x;). (1-39)

In the limit of h — 0, Eq. (I-38) states that Péz) (x) exists and therefore, the

possible value of P2 (x) inEq. (I-38) is

f1 _2f2+f3

c) =——3

, (1-40)
where the value of C (f;) depends on the value of f; (i=1,2,3).

Eq. (I-39) implies that i) P{2 (x) is given by f; (i=1,2, 3) and ii) ot must be
greater than or equal to 2 ( otherwise Péz) (x) will not exist ). In other words, the
constant C is independent of f; and exists in (x; x3). Thus solving Eq. (I-40) for f; one
may obtain Eq. (I-35).

We should point out that the conventional second-order extrapolation gives an
identical formula f; =2 f; - f + C(f; )#* which only provides an indefinite value of C
= C(f; ) in the equation. Therefore, f; may not be assured as O(h?) since the solutions

are indefinite. However, with the constraint f; = O(h®), this ensures that f; = O ( ®).

2.2 The Equivalence of Two Al ic Systems of E ion
The steady, two-dimensional Navier-Stokes equations for an incompressible viscous

flow in a domain 2 and its boundary I" are written as

VeVV = —Vp+Re 1V, 1-41)
Vev = 0. (1-42)
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The velocity V = (u,v) on the boundary I'" are usually given in forms of Dirichlet

boundary conditions associated with the Navier-Stokes equations. Namely

V = VI- . (I-43)

We define this set of governing equations which describes the general fluid
motion as problem A.

Problem A is equivalent to the following set of governing equations

VeVV = —Vp+Re 1V2y, inQ  (1-44)
Vev = 0; inQ  (I-45)
and
V = VI" onI’ (1-46)
Vev +w; (uux+vuy+px—ke-1 (uxx+“yy)) ,
+ wy (uvx-i-wy+py—ke—l (vxx+vyy)) =0, onT a-47n

provided that the velocity V, pressure p and their derivatives are continuous in domain
Q2 and its boundary I', where w), wy are arbitrary constants.

As a matter of fact, the system of equations (I-44)-(I-47) is the modified form
of problem A. For convenience, we define this modified system (I-44)-(1-47) as
Problem B. They are similar except the additional zero-perturbed type of boundary

conditions imposed at the boundary.
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If V and p are the solutions of problem A, V and p satisfy Eqs. (I-44)-(1-47).
Conversely, all the terms in momentum and incompressibility equations are continuous
since V, p and their derivatives are continuous in domain € and on boundary I". If V
and p satisfy problem B, the limits of Eqs. (1-44)-(1-45) to its boundary, which are the
momentum and incompressibility equations on the boundary, will hold on its boundary
I'. Therefore, V and p are also the solutions of problem A. The boundary condition (I-
47) of problem B furnishes the constraint of pressure derivatives on the boundary which
provides a unique way to overcome the difficulty of the lack of pressure conditions in
the numerical simulation of the Navier-Stokes equations, however, the equivalence of
problem A and problem B does not lead to a rigorous equivalence of their discretized
forms. We give the following discussion for the equivalence between the two discrete
systems.

Let h be the uniform grid size of the discretization scheme in x-, y- direction;

and let
QuUTh= { x=(-Dh, y=(-Dh, 1SiSM+1, 1SjSN+1} (1-48)

in a rectangular domain; then Eqgs. (1-4‘1 )-(1-42) approximated by the discretized system

of equations with second-order accuracy could be expressed as

-1 -

+D_v.) =0, (1-50)

ui'ijv‘.'.+v. D v..+D i.j* Pyy¥i

-1
jViPyVijtDypijmRET Dy
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(Dxui.j+Dyvi.j) = 0, (I-51)
which satisfy domain Q and its boundary I;. In the above, Dy, Dy, D), and Dy,
represent the difference operators. Egs. (I-49)-(I-51) with the velocity condition (I-43)
are defined as Problem A*,

We shall use Ru, (x;, ;). Rv, (x;,y;) and D, (x; y;) torepresent the residuals
(or the truncation error variations) of x-, y- momentum and incompressibility equations
respectively, which are defined as the difference between the equations of actual
solutions and the numerical solutions. Here, the subscript i denotes the size of uniform
mesh, x;, y; are the discretized space coordinates. It is understandable that Ru, (x;, y;) ,
Rv, (x;,y;) and D,(x;y;) are the functions of grid size h, the discretized space
coordinates x; , y; and their values also depend on the specification of discretization
scheme.

Problem A* is equivalent to the following set of discretized system of equations
defined as problem B*:

= -Re1 = .

= —Re~l - -
Rv, = ui.Jvai.j+vi,ijvi,j"'D)'pi,j Re (Dxxvi.j+Dyyvi.j) =0, (I-53)
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with the velocity condition (I-46), where w), wp are arbitrary constants with order of
o(1);
if i) thediscrete residual functions Ru, (x;,y;),Rv,(x,y,) and D, (x;,y;) arewell-
behaved functions near the boundary Ty,

ii) the difference equations in Problem B* are stable.

When the difference equations of Problem B* are convergent to Problem B, the
momentum and incompressibility equations at the boundary may not be necessarily
convergent as second-order accuracy. In other words, our uncertainty is whether or not
the higher values of cancellations occur among the residual functions Ru, (x;, yj) .
Rv, (x;,y j) and D, (x;, yj) in the numerical calculation of Eq. (I-55) at the boundaries.
However, this theorem climinates these possible exceptions which assures the equal
rate of convergence for both field and boundary.

First of all, the system of difference equations (I-52)-(I-55) in addition with
(I-46) is a closed system, in which, the number of difference equations is the same as
the number of the unknowns. For the rectangular domain £2,UT", defined by (I-48), the
difference scheme with uniform grid size in x- and y- directions gives (M+1)x(N+1)

points to determine the 3x(M+1)x(N+1) unknowns. Applying the momentum and
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incompressibility equations (I-52)-(I-54) in domain Dj, at the grid points yields 3x(M-
1)x(N-1) equations, leaving 6x(M+N) equations to close the system. The velocity
condition (1-46) at Iy provides 4x(M+N) equa‘ions. The additional 2x(M+N) equations
are supplied by Eq. (I-55). This leads to a determined system and therefore, problem
B* is a closed system. Secondly, in the limit of h — 0, the difference equations (I-52)-
(I-54) represent Navier-Stokes equations. Thus when the convergence state for
problem B* is reached, the enforcement of equations (I-52)-(I-54) ensures that: i) all
residuals Ru, (x;,y)), Rv,(x;,y;) and D, (x,y;) in domain Qj are accuracies of
O (k%) ; ii) all the unknowns in the difference system are determined since it is a closed
system. Therefore the residuals Ru, (x;, yj) » Ry, (x, yj) and D, (x,, yj) at the
boundaries are definite values. For example, one may write the order of x-momentum
residual Ruy(x;, ;) as O (h™). Thirdly, the residual is defined as the difference
between the equation of actual solution and the numerical solution. It is understandable
that it is a (n)th order differentiable function since the (n)th order polynomials are
utilized in the finite difference approach, and also, the actual solution is usually
assumad as a smooth function. Let f = f{x,y) be a continuous function in domain Q
where ((x,y) defined on Q UT} 2 {(x;, y)) defined by (I-48)}; let f (x;,y)) stand for
residual function Ru,(x,y;). Thus in the second-order difference approach,
a%:f (x,y) and %:-f (x,y) exist. We define f; as the value of residual Ru, (x,, y,-)
at the boundary I'y; f, and f3 as the residuals in domain Q which are close enough to
the boundary point f) such that the Taylor expansion is valid. We may assume that
f, = O (k™) where its value is given by the determined system as mentioned in the
above and also, f, = O (h?) and fy = O (k%) because of the uses of the second order
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difference approximation. From the conclusion of Section 2.1, one may conclude that
0. mu: ¢ be greater than or equal to 2. Thus the residual Ry, (x;, y;) at the boundary I',
is the order of O (hz). For example, the extrapolation to the boundary value
Ru,(x,,y;) could be approximated by the interior residuals Ru,(x,y;) and

Ruy (x5, yj) as follows

2
Ruy, (x1,¥;) = 2Ru,, (x5, y;) = Ruy, (x3,y;) +%Ru,. (x> ¥)) h?; (1-56)
and '
32
—Iaxz ?uh (x‘, y.l) < A‘l 0'57)

where %:—Ruh (x;, yj) denotes the second-order partial differentiation of Ru, (x,, yj)
with respect to x. The constant A, depends on grid size h, and its value could be given
by the discretized system. Condition i) states that the residual functions are well-
behaved near the boundaries which indicate their derivatives are small enough. This

ensures that the constant A, is definite. Therefore,
Ru,(x,,y) = O(K), Ruy(x3,y) = O(h"), = Ruy(x,,5) = O(h®); (I-58)
similarly, we have

Rvy(xpy) = O(h), Rv,(x3,y) = O(K), = Rv,(x,y) = O(h); (I-59)
D, (x5,y) = O(K), Dy(x3,y) = O(h}), = D,(x,,y) = O(h*) ; (I-60)



30

which give second-order approximations to momentum and incompressibility
equations at the boundaries. Similar proofs could be made for the residuals at other
boundaries. So the residuals Ru), (x;, y;)  Rv,, (x;,¥;) and Dy (x;, ¥;) at the boundaries
are the orders of O (h%) respectively. Finally, the difference equations in Problem B*
may NOT be stable if there are any higher values of cancellations than o) among
the residual functions Ru, (x;,¥;), Rv,(x;, y;) and D, (x;,y;) in Eq.(I-55) at the
boundary Ij. In other words, when the convergent state of Problem B* is reached,
then either all the residuals in Eq.(I-55) are the order of O(hz) or the difference
equations are numerically unstable. Suppose the subscript (1,j) (j=2,..,N) denote the

boundary points. If there are any higher values of cancellations, i.c., in
wiRY, (x;, 7)) +W,RV, (x1,¥)) + D, (%,,5,) = O (K , (1-61)

then their neighbor points (1,/-1) or (1,j+1) exist the higher value terms than O(hz)

since
Ruy (x4,¥; 1) +Rup(x4,5;_1)
Ruy(xy,y) = =I5 22T v0h , (1-62)
Rv,(x,y;,1) +Rv,(xy,¥;_)
Ry (xyyyp) = —— il 2 VIl o) 1-63)

Dy (x15¥j41) + Dy (x1,5;1)
Dylxyy) = =2 BIVIE L0 (). (1-64)
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Thus, this higher value of cancellation leads to another cancellation among one of its
neighbors since its residual functions are also restrained by Eqs. (I-55). Therefore, this
may affect the stability of the difference equations in Problem B*.

The equivalence of the two system relies on the appropriate discretization
scheme such that consistency and stability conditions for Problem B* are satisfied. The
stability conditions are related to the basis that the discrete residual functions
Ruy, (x;,¥;), Rvy(x;,y;) and D, (x;y;) are well-bechaved, especially, near the
boundery. Normally, it is difficult to have a strict definition of a well-behaved function.
Therefore, our assessments of stability are basically on the reliance of the numesical
evidence, i.c., the improper design of the discretization scheme may result in the
possible instability of difference equations in which the amplification of the round-off
errors may occur. A consistent discretization scheme near the boundary is preferred
because this type of approximations may generate relatively smooth values of residual
that assure the residual functions are well-behaved near the boundary. In regard to the
consistency of the discretization scheme, numerically we may use the following way
to evaluate the effectiveness of existing algorithms. For example, we may perform the
analysis of global convergence on the resulis to demonstrate the rate of its convergence.
In practice, the numerical tests have indicated that by using this finite difference
approach, the computed results are obtained within the expected accuracy. In other
words, the stability is not an essential problem in this approach.
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2.3 Zero Perturbation Method and Its Num 1 Implementation
We write the Navier-Stokes equations and the incompressibility equation in forms of
the artificial compressibility method in domain Q and its boundary I" where ¢ is an

arbitrary constant ( 1/c2<<1)

-1 _
ut+uux+vuy+px—Re (uxx+uyy) = 0, (1-65)
—Re ! =
vt+uvx+vvy+py Re (vxx+vyy) = 0, (1-66)
and
2 -
p,+c (ux+vy) = 0. d-67)

The principle of the method is to consider the steady solution as the limit when
t — o of the solution of unsteady equations associated with a perturbed
incompressibility equation. Temam (1968) proved that for 1/c2 fixed, Eqgs. (I-65)-(I1-67)
have an unique solution which tends to the solution of Navier-Stokes equations. If 1/c2
is small enough, the approximate solution would be made.

By constructing the linear combination of momentum and incompressibility
equations at the boundary I'" as pressure conditions given in Section 2.2, we replace Eq.

(I-67) by the following equation:
p‘+c2 (D+w1Ru+w2Rv) =0, onT. (1-68)

Here, D, Ru, and Rv represent the incompressibility, x- and y- momentum residuals at
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the boundary respectively; wy and w, are chosen as either 1 or -1 to ensure the
difference equations stable. We designate the present method as "zero perturbation
method” for solving Egs.(I-65)-(I-67) in domain Q and Eq. (I-68) on boundary T.
According to the theory discussed earlier, the numerical solution by zero perturbed
momentum and divergence boundary conditions will be the same as the numerical
solution of Navier-Stokes equations.

The system solved by zero perturbation method can be used with various
difference scheme. In the present case, we solve Egs. (I-65)-(1-67) in domain Q by
standard ADI solution procedure using second-order central difference for all the
derivatives except higher-order upwind scheme ( Fletcher 1988 ) ( based on four-point
difference scheme ) for the convective terms, i.e., the central difference formulae

written as,

Ui, jm Ui,
x%0j 2h

(1-69)

U =2u. U, _,;
Dxxui,j= i+l,j h;.j i-1j 1-70)

and the high-order upwind schemes,

iv1,j— % Wi j= 33Uy j+ 30U i~ Uiy ;

= i-1j }
U Pakij = i YA o . T

if uiJ>0;
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Ujpr,j= Wi, Uy, = U i+ 3 = Ui
iv1,j" Wi J"'q“i.j j J - j i a7

if u,-J<0;

u,-,iju,-’j = U ; T
where parameter g controls the size of the modification. Similar schemes arise
associated with the difference operators Dy and Dyy in Eqgs. (I-65)-(1-67). The u,v
boundary conditions are usually given in forms of Dirichlet ( i.c., condition (I-74) ) or
Neumann conditions; the pressure boundary conditions are supplied by Eq. (I-68) given
as an explicit form of Dirichlet condition from iteration to iteration. Specifically, we use

( written in a semi-discretized form )

(re3) _ (m-3), 5,02 1
p =p +Arc {ux+vy + wl(uux+vuy+px-Re (uxx+uyy))
Wy (uvx + vvy +py -Re™? (vxx + vyy) ) }
onI (I-73)

as pressure boundary conditions which ensures the momentum and incompressibility
equations satisfied. In Eq. (I-73), we use the one-sided derivatives with second-order
approximations for the difference operators D,, D), Dy and Dyy whenever necessary.
As shown in Figure 1.1, the dark region is where the velocities, pressure and their
derivatives are approximated by finite differences with second-order accuracies for
Egs. (I-65)-(I-67), and the pressure boundary conditions in bright region are obtained
by Eq. (I-73).

The overall solution procedure involves the following sequential steps:
i) construct the initial values of u®, v and p©@ ;

ii) solve Eq. (I-65) for advanced values of u at (n)th time step;
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Figure 1.1 Uniform Discretized Solution Domain

iii) solve Eq. (I-66) for advanced values of v at (n)th time step;

iv) solve Eq. (I-67) for p in the ficld at (n+3)th time step;

v) obtain p at the boundary by Eq. (I-73) at the same step as (iv);

vi) repeat ii) - v) at (n+1)st time step until the steady state is reached.

The numerical scheme in (I-73) is stable for At small enough, and is entirely
explicit. The coefficients w; , w, whi~h are chosen as 1 or -1 in the present calculation.
Their signs play roles similar to that of a parameter in upwind scheme, to diminish the
accumulation of truncation errors so that the system remains stable from one iteration
to another. The numerical experiments show that the signs of w; , w, are important at
the corners where the residual of incompressibility is zero or remains as a constant, i.e.,
at the comer point (1,1) adjacent to both walls, D, = (D,u; | +Dv, ) = Oiif

(43 (a-3

| R ”, then the signs of w, , w, have to be chosen to ensure

wiRuy y + waRvy g > 0, to prevent the computed values away from the real solutions.



Generally, the different signs will result in a different determined system that
approaches to the Navier-Stokes system. Our understanding is that w;,w, are arbitrary
other than corner points as long as the numerical scheme is stable, since the residual
D, (x;y;) is considered as the dominant term ( compared with residuals of

momentum) in the equation which changes about two digits ahead of those of

momentum residuals from iteration to iteration.




CHAPTER 3: THE COMPUTATIONAL
BOUNDARY CONDITION METHOD

3.1 _One Dimensional ustration
The basic idea of this approach is the use of implicit boundary conditions in Navier-
Stokes type equations. We will illustrate the method in two model problems which are
related to stream function-vorticity and primitive variable forms of the Navier-Stokes
equations.

The first model is a system of two second-order equations for two dependent
variables y and {, which has been used by Dennis and Quartapelle (1989). We write

'+ w) -8 =f(x V), : (1-74)
"=, 0sx<l1, (-75)

with boundary conditions for one variable y only

yv(0) =vy() =0, (I-76)
v'(Q0) =vy() =0, 77

where prime denotes the differentiation with respect to x, the function f and g could ei-
ther be given or depend upon one variable y in which case the problem carries nonlin-
ear nature. No explicit boundary conditions are given for the variable { while the

37
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boundary conditions for \ are overspecified.
The differential system (I-74)-(I-77) is a determined system in the sense that
four boundary constraints are given for two second order differential equations.

However, when a standard finite difference approach is used to discretize this system as

D.L;+8:-DL; = £, (1-78)
D,v, = -t X SX;SXpy_ 1 1-79)
Y, =¥, =0, (1-80)
Dy, = D,y,, = 0. (1-81)

where D, and D, are the first and second difference operators. The difference system
(I-78)-(1-81) is not determined because no boundary conditions are available for {
values on the physical boundaries, i.e. x; (=0) and x,, (=1). Here we refer the physical
solution domain and boundaries as those for the original differential equations. If the
discretization of differential equation for { at physical boundaries is considered as the
boundary condition for {, it overdetermines the system.

Now we derive a determined system by our second new approach, the
Computational Boundary Condition method. First of all, a mesh system with uniform
grid size h and nodes x; = (i—1) A, i = 1,..., M is set up on the physical domain,
0 <x s 1. Then the domain from x, to x,,_, is defined as computational domain, i.e.,
one grid size into the physical domain. The computational boundaries are also moved

one grid size in as x, and x,,_,. [tis shown in Figure 1.2.

We should mention here that the computational domain is related to a certain
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discretized system obtained from system (I-74)-(I-77) on computational domain is

D §;+8i- D, = f» (1-82)
D.,v; = - X3SX;SXy_ o, (1-83)
Y=V =0 (1-84)
Dy, =Dy, =0, (1-85)
G2 = ~Du¥s (1-86)
Su—1 = DuVy_1» (I-87)

which is now a determined system. Eqs.(I-86)-(I-87) derived from differential equation
(I-75) for  provides the implicit boundary conditions for { while the discretization of
boundary condition (I-84)-(I-85) furnishes the equations for y at the computational
boundaries.

o i=l =2 i= ) isM-Z i=M-1 i=M

Computational Domain
Computational Boundaries
Physical Boundaries

Figure 1.2 Illustration of Setting up the 1-D Computational Domain.




Our second model problem is given as

vty +g(ny) -8 =fxv), (I-88)
v =¢-§+e,-§, (1-89)

with boundary conditions for one variable y only

v =y() =0 o  y(0) =y () =0 (1-90)

where fand g are functions of x or one dependent variable y and, €, and e, are small
constants. This one dimensional model is utilized as an analogue to the two or three
dimensional Navier-Stokes equations with primitive variable formulation. The choice
of small €, here is for the purpose of simulating the artificial compressibility
formulation when &, = 0. On the other hand, small parameter €, is to simulate the
penalty method when e, = 0. We are looking for the steady state solution of system
(I-88)-(1-90), i.e., §, = 0, that essentially approaches to the solution of the differential

system

V'+g(xy) -8 =f(xv), (1-91)
v =g,-§, (1-92)
y0) =y(1) =0 o (0 =y(1)=0. 1-93)
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Actually system (I-91)-(1-93) could be reduced to one equation for y by eliminating the
dependent variable {. However, it is useful to employ such a one dimensional model to
analogue the two or three dimensional cases in which this elimination may not be
possible in the uses of primitive variable formulation.

The finite difference approximation to system (I-88)-(I-90) can be written as

1 -

A—t(\v,’_‘l’? ) +Dxx‘v,-+8;'D,§,- = f;» (1-94)
el n-1

Dy, = 5; (&:=8 7)) +&8, X3 SX; S Xyg_ o (1-95)
Y, =V, =0 or Dy, =Dy, =0, (1-96)
D,v,+8;- D)L, = £y (1-97)
Dxx"’M-1+gM-1'DxCM—1 =fu-1- (1-98)
€6m-1 = ~D:¥Wy_;- (3-100)

As we have illustrated in the first model, the discretization forms (I-97)-(1-100) of the
differential equation (I-91)-(I-92) at the computational boundaries x, and x,,_,
provide boundary conditions for both dependent variables y and {. The difference from
the first model problem is the uses of both equations at the computational boundaries.
One-side difference formulae are introduced for the derivatives of { in (I-94) at
computational boundaries. We should point out that the one-side derivatives of { in

(I-94) at physical boundaries x, and x,, are not acceptable because the values of § at
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those nodes are neither constrained by the difference equations nor by the boundary
conditions. However, the derivatives at computational boundaries could be
approximated by the one-side derivative in which the values of § could be determined

by the difference Egs. (I-99)-(I-100).

3.2 Application to Two Dimensional Model Problem
in Stream Function-Vorticity Formulation

The computational boundary condition method developed in this thesis could be
generalized in two or three dimensional cases. Their formulations are straightforward
analog to one dimensional cases. In the following we will provide the details for two
dimensional driven cavity problem in stream-function vorticity formulation.

The Navier-Stokes equations for the steady, incompressible viscous flow could

be written in terms of vorticity { and stream-function y in the form of

= -{, (1-101)
2V =yt -t (I-102)

The boundary conditions generally associated with (I-101)-(I-102) are
v, = d(s), g%’ = n(s), 1-103)

where 7 is the outward unit normal to the boundary and s is measured along it, V2 is

the Laplacian operator.
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For the driven cavity problem, the physical solution domain is
Q{(x,y),0Sx,y<1}. Let 4 be the uniform grid size, a mesh system with nodes
(x; yj) WX = (i-l)h.yj= ¢-Dh,i=1,..,M,j = 1, ..., N. The computational domain
is defined as Q,{ (x;, yj), X3SX;SXpg 90 Y3 S ;S Yn-2} which is illustrated in
Figure 1.3. The system (I-101)-(I-103) is discretized on the computational solution

domain 2, instead of physical domain Q.

Physical Boundaries

___ Computational Boundaries___

Computational

Figure 1.3. llustration of Setting up the 2-D Computational Domain

The discretization system by using second-order central difference approach is

two discretized equations for { and y inside the computational domain,

1
o2 Gt it G ot G jan =48, ) = {-104)



4h?

1
7 Wiog ¥ Ve j* Vi + Vi = 4Y,) = =55
h

and the boundary conditions on the boundaries of computational domain

Caj = ’,,lz' (W3, ¥V 1 ¥ Vg g~ )0 & 5= -Viy,
Cu-1,j = ‘;li' (Wa_gjtVaoy,jo1 Y Vo1, o1 —4VWn-y,))

& Ly gy = ‘V:z.“’u-l.j
¥y = %Vj,j' @ Dy,;=0
Vi-1,j = %WM—Z.J’ < Doy, =0
j=2,..,N-1;
G2 = ";}i' (Vi3 +V¥i1,2+ Vi 2= 4,0, @ §,=-Viy,,

1
Gin-1="3 (Wino2+t Vi N1t Vs v-1—Vin-1)

pE

& o1 = Vi¥ina
V2= Zl;‘l’i.r & Dy, =0
Vin-1 5 %‘l’i.iv-z‘g' < Dy, =1

i=2.,M-1

—1" ( (‘l’,'_j+1 —Wi.j-l) (C,-H,j—c,--u) - (‘V,'+1_j-\|f,'- 1.1') (C,-,j”-C,-,,-_l)) ’

(1-105)

(1-106)

(1-107)
(1-108)
(1-109)

(I-110)

(I-111)

(I-112)
(I-113)

In the above, V2 is a discrete laplacian operator. The boundary equations for { are
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derived from (I-101) while y's boundary equations are the combinations of two
equations in (I-103) by using three point difference for the Neumann conditions.

In the above, all the equations and boundary conditions have second-order
accuracy, ie., O (k%) . For the computation of high Reynolds number flow, second-
order upwind scheme for convective terms is employed. The convective terms involved

in Eq.(I-104) are approximated by the type of difference scheme proposed by Ma

(1983), i.e., the single-step upwind scheme for «; D C ls given:
= L J -
4 DL =-1-a) z‘h (C”ll o D
—(1+e, ) fij =€ = 8y, ) if u,;<0; (I-114)

w DL =-(1-a) "’(c,“, L)

-(1+a;)) "’(c:';‘ P if u;;20; (I-115)

where u,;= D,\v‘. j
A similar difference form associated with the convective term v, P C could be

given, where v; ; = D, v, .. The truncation error of such scheme is
TE.= O (K, a, jh,. (I-116)

Here the parameter a.; 1s introdaced to eliminate the highly oscillating behavior due
to high Reynolds number. The values of o, jare chosen as the same order of the mesh

size such that the truncation errors remain as the second-order, i.e, @, j = h throughout



46

the solution domain.

The system (I-104)-(I-113) using Computational Boundary Condition method
can be solved with various difference schemes. In the present case we solve
Eqs.(I-104)-(I-105) in domain 2, by standard ADI solution procedure ( Peaceman and
Rachford 1955 ): only terms associated with a particular coordinate direction are treated
implicitly. To simplify the program, we retain the convective terms in Eq.(I-104) on the
right hand side where the second-order central difference formula is kept. A coupled
system of Poisson equations for y and { is solved by iterative solution procedure. For
the Reynolds number higher than 1000, Ma’s single-step upwind schemes (I-114) and
(I-115) are employed in the vorticity transport equation to avoid the divergence. In this
case, part of convective terms will be treated implicitly. This treatment is to stabilize
the difference scheme while the diffusive terms become less important in the equation
due to the high Reynolds flow. In any of these difference forms, the system (I-104)-(I-
105) leads to the coupled system of tridiagonal matrices which could be solved by
economical Thomas algorithm.

The general structure of the tridiagonal matrix is written as follows:

(whereL=Mor N)

_bz )

a3 bycs

5 b G - 117

a Lz bpacL,

81 bra_|
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It is always stable with no growth of rounding-off errors, if

i) a; <0, cij<0and b; >0,

i) b; > laj,y +cjyl fori=2,3,..,L-1,

iii) b; > la; + ¢l for i=2,3, ..., L-1.

The condition i) and ii) ensure that the forward elimination is stable, while the condition
i) and iii) ensure the back substitution is stable.

For solving the vorticity transport equation (I-104), over-relaxation is also
adopted in the single-step upwind scheme to increase the convergence. The overall
solution procedure involves the following sequential steps:

1. construct the initial values of { and v,
2. solve Egs. (I-104)-(I-105) for x-sweep to obtain the advanced values of { and y;
3. solve Egs. (I-104)-(I-105) for y-sweep to obtain the advanced values of { and v;

4. repeat step 2 and step 3 until the convergence criteria is reached.

3.3 Abpplication to Two Dimensional Model Problem
in Primitive Variable Formulation
In this section, we will generalize the computational boundary condition method to two
dimensional cases for primitive variable formulation. It is a straightforward analog to
one dimensional model. The details for the two dimensional driven cavity problem in
primitive variable formulation will be provided as follows.

We write the steady state Navier-Stokes Equations and divergence equation in

forms of the artificial compressibility method (Chorin 1967) in domain Q and its
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boundary I" where € is an arbitrary constant (¢ << 1)

V,+VVV+Vp-Re 'V = 0, in Q (I-118)
and

8p1+V0V =0. in Q (I-119)

The method could be applied for both Dirichlet and Neumann boundary conditions.
Namely

V=V or g—:—’ = SI‘ onT (1-120)

Since we are considering results for two dimensional driven cavity problem, we will
apply the Dirichlet boundary conditions in deriving the formulation. In cartesian

coordinatzs, the system is written as

1
u,— Re (uxx+“yy) +uux+vuy+px = 0, 1-121)
Vi~ Re (vxx+vyy) +uvx+vvy+py = 0, (1-122)
Uy+v,+Ep = 0, 0<sx,ysl (I-123)
u=v=0, aa x=0,1 and y=0,
u=1,v=_0, aa y=1 (I-129)

Similar as in stream-function vorticity formulation, the two momentum equations and




49
the divergence equation are discretized on the computational solution domain,
1 n-=1 l
AT R I ery C WAL TEWAL FRIRLIFNELUY
Ui t.J n-1
+ 57 (un-l g Ui 1;) + 53 (“u+l u-l) +Dxp‘-.j =0, (1-125)
1
_A—t( ) Re hz(vn l]+vc+11+vu l+v|.]+l 4vi.j)

W, . v;
* R Wi j=vio) v ap (i —vij-) +Dplj =0, (-126)
1
(P,] pn l)+2h(u:+11 i- .1)+ h( Lj+1~Vij-1) =0, (I-127)

28isM-1, 2<5jsN-1

uy,j=vy,; =0, j=2..,N~-1 (1-128)
Uy,j = Vy,j = 0, ji=2,..,N-1 (I-129)
iy =vi1=0, i=2,.,M-1 (I-130)
m,y=1, v,y=0, i=2..,M-1 (I-131)

where all the superscripts » for advanced time level are omitted. D ,p; jand D.p; ;are
discretized by central difference except at the computational boundaries where one-side
difference are used, i.e.,

3p, ;~4p, .+p, .
_ P27 P j7 P,
Dypy,;= - r—, -132)




_ 3”M-1,j_4pu-z,j+pu-3.]
DxpM—l.j = 2h »

3p;2=4Pi3+P; s

D,p‘-’z = h ’
D _3p;n-1—4PiN-2tPiN-3
yYiN-1 % 2h ’
i=2,..,M-1

difference at high Reynolds number calculations.
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1-133)

(I-134)

(I-135)

Thus no boundary condition is needed for pressure at the physical boundary. The
boundary conditions for velocity components are given at physical boundaries. Again

central difference is used for convective terms. It is replaced by second-order upwind

The system (I-125)-(I-131) using Coinputational Boundary Condition method

difference scheme) is introduced for the convective terms, i.e.,

D _ Mg,
LWjosti i = W 2h

Uiy, =304+ 3Misy,j = Uiv,j
i 3h ’

can be solved with various difference schemes. In this case, the standard ADI solution
procedure (Peaceman and Rachford 1955) also could be used to solve the momentum

equations. The higher-order upwind scheme (Fletcher 1988) (based on four-point

(I-136)
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_ Uipr,j= Wi, j
u jDyu; j = u; %
U;_» ;=3U;_, .+3u, .—u; ,
vqu 2l TITW TR By 20, (1137)

where parameter g controls the size of modification. Similar schemes arise associated
with other convective terms. The overall solution procedure involves the following
sequential steps:

1. construct the initial values of u,v and p;

2. solve Eqs.(I-125)-(I-126) for x-sweep to obtain the advanced values of u and v;

3. solve Eqs.(I-125)-(I-126) for y-sweep to obtain the advanced values of u and v;

4. solve Eq.(I-127) for advanced value of p;

5. repeat step 2-step 4 until the steady state is reached.



CHAPTER 4: NUMERICAL RESULTS AND
COMPARISONS

All numerical experiments were performed on uniform grids by means of Zero
Perturbation Method and Computational Boundary Condition method described in
chapter three and four respectively. In the first instance we provide a one dimensional
example corresponding to the first model in stream-function vorticity formulation. The
results are given based on uses of CBC method. The two dimensional exsmples are
given to solve for the driven cavity problems using both Zero Perturbation Method and
Computational Boundary Condition methods. For two dimensional illustrations,
calculations of convergence rate are made on the free surface problem with primitive
variable formulation in which the pressure singularity has been smoothed out by using
aregularized driven velocity profile. The methods are also used to solve for the classical

driven cavity problem. Comparisons of numerical accuracy are made with the available

results obtained by previous researchers.

First we start with a simple example which models the biharmonic equation in one
space dimension which is solved by CBC method. For this we consider
Eqs. (I-74)-(I-77) with the exact solutions

v = 222- 20410, (1-138)

() =1- §x+ 5%, (1-139)

52
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which satisfy the following equations with boundary conditions (I-76)-(1-77)

y" = {(x), (I-140)
£ = 30x, (I-141)

by choosing f{x)=30x and g(x)=0 in the one dimensional stream-function vorticity
illustration. We may obtain the analytical solutions by finding a solution for § of (I-
141), and then determine y afterwards by solving (I-140) subject to the boundary
conditions.

The primary goal in this test is to assess the accuracy and the convergence rates
of the numerical approximation of { and y compared with the analytical solutions using
CBC method. The numerical calculations were carried out using exactly the same
second-order finite difference formulae (I-82)-(I-83) with the boundary conditions (I-
84)-(1-87).

The computed results are shown in Table I-1 with A=0.05 and 4=0.1. It could be
confirmed that the results are obtained within expected digit accuracy of second-order.
To determine the convergence rates, we examine the root mean square errors (£,) as

function of grid sizes h by computing

E, = “Fa-Fcllz

I

4“2 ’ (1-142)

where E, = O (k™) . In the above, F , represents the values of the exact solutions of {
and y; F . represents their computational solutions; Il Il is the discrete L,-norm on the

discretized grid points and
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]
IFl, = llz /Z IFJ2, (1-143)
i=1

where [ being the number of points where the values are calculated. As shown in Table
I-1, the convergence rate o of { and y obtained by two different grid sizes on the

overlapped points of computed results are predicted second order.

TABLE I-1

Convergence Rate Analysis of 1-D model Problem

Computed Values of Diff. Grids

Globle Rate  Point Rate ( x=0.5)

(0<x<l) (x=0.5)

N=11 N=21 Exact

v 1.88 1.88 -0.0338 -0.0376 -0.0391

'Y 1.94 1.90 -0.5700 -0.6103 -0.6250

Note: The globle rate is calculated on L, norm;

In this case, it gave approximately the same results as the integral constraint
method, i.c., within a second order accuracy. However, the present formulations are

much simpler and could be easily extended to two and three dimensional cases.

4.2 N | Results of Pertur Meth

Three numerical test problems were performed on fully nonstaggered grids by means
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of zero perturbation method described in chapter two: a Stokes flow problem with
analytical solution, the free surface problem with a driven velocity at the bottom and a
classical driven cavity problem. Comparisons of accuracy, convergence rate are made
for these test problems. The domain for all the test problemsis ) Sx € 1,0 S y < .

Analytical Stokes Flow. First, the accuracy of the present method has been

tested on the exact solution

u(x,y) = -cos(arx) sin(amy) (1-144)
v(x,y) = sin(anrx) cos(ary) (I-145)
p(x,y) = - 2ar sin(arx) sin(ary) 1-145)
f = 4 @rPcos(arx) sin(ary), (1-146)

which satisfy the following equations for the Stokes flow

Uyx + Uyy = Dx +f (1-147)
Vix + Vyy =Py (1-148)
ug +v,=0. (1-149)

The purpose of this test is to assess the accuracy of the numerical approximation of the
velocities and pressure compared with analytical solutions. The calculations are carried
out from uniform grid size h = 0.05 to h = 0.0125 witha z% .

Figure 1.4 displays the maximum errors ( £, ) and the relative errors ( E )
versus the number of grid points N. It could be confirmed that the resuits were obtained
within expected digit accuracies of second-order. For example, the computed velocity

components ., V. and pressure p . along the horizontal centre line of the cavity
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Figure 1.4 Truncation Errors Convergence As a Function of the Number of Grid

Points N; Circles -- Errors of u Velocity; Black Diamond -- Errors of v Velocity;

Black Circles -- Errors of Pressure.
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located at (0.8,0.5) with uniform mesh h = 0,02 are

U, =-02185080, v, =0.6724985,  p,=-2.112716 (1-150)

and the corresponding analytical solutions are

U, =-02185082, v, =06725006,  p, = -2.112806, (I-151)

which have approximately 6-digit accuracy for the velocities and 4-digits for the
pressure. All the errors of u,v and p between (I-150) and (I-151) are roughly within the
truncation errors of 0(0.022). One may notice that the maximum error in 80x80 grid
is higher than 5050 grid in the present case. This may attribute to the higher frequency
of residual function in 80x80 grid, which results in extrapolated approximation being
less accurate than 50x50 grid, since the derivatives of residual function in 80x80 grid
may have higher values.

It should be pointed out that the errors of pressure are about one and half order
lower than the velocities in the present test problem as illustrated in Figure 1.4. This
may be attributed to: 1) the variations of truncation errors of pressure are greater than
the velocities; these could be confirmed by their analytical solutions; 2) the drawback
of finite difference method, in which a parabolic approximation for the second
derivative of velocities ( based on three points ) and a linear approximation ( based on
two points in the field) for the first derivative of pressure results in a better simulation

for velocities than pressure in Stokes flow.

The determination of the convergence rates could be done by examining the
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root mean square errors ( E,) as a function of grid sizes & by computing E, where
E, = O(h"). As shown in Table I-II, the convergence rates @ of velocities and
pressure obtained by two different grid sizes on the overlapped points of computed

results are the predicted 2.0.

TABLE I-1I

E, Convergence Rates for Test Problem with an Exact Solution

Conv. Rates for Velocities Conv. Rates for Pressures
Grid Pt. No. u v P Py Pp
G20-G49 1.99 1.98 1.93 1.90 1.97
G30-G40 1.97 1.98 2.04 2.06 2.02
G30-G50 2.00 1.99 1.94 1.96 1.92
G30-G80 1.99 1.99 1.94 1.95 1.92
G50-G§0 1.98 1.99 1.94 1.88 1.99

Note: u, v represent the convergence rates of velocity components in the solution

domain; P, Py and Py are the values in domain, field and boundaries
respectively.

The convergence rates for the pressure at the boundaries are also presented in
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this table. The velocity rates of convergence are approximately +0.02 accurate where
the pressure rates are about 10.05 accurate. This could be again attributed to the
different variations of their truncation errors. Therefore, the results provide an excellent

agreement with the theory discussed in chapter two.

y
T uy=v=0
/
/)
P /
P /
/
/) %
u=v=0 / /) ueve0
/]
P Y/
P Y/
P Y/
P Y/
/
4 v
N —» —e —»
/S 7 7 777777777 >
u=16{x(1-x)}%, v=0 x

Figure 1.5 Geom.:try and Boundary Conditions For Free Surface Problem

Free Surface Flow. The second test problem for the zero perturbation method
is a free surface problem. Figure 1.5 shows the geometry and boundary conditions for
the flow in a cavity with the appropriate nomenclature. There is a driven velocity
u=16[x(1-x))2 at the bottom of the cavity and a free surface at the top. The purpose of

this test is to assure the convergence rates of pressure and velocity approximations for



the viscous flow with Reynolds number. The analytical solutions are not available. For

this case, the first order singularities are smoothed out by the type of boundary

conditions specified for the driven velocity u at the bottom. So we cnuld avoid the

standard driven cavity problem where upper comer singulaniies may deteriorate the

convergence rates. The convergence rates are evaluated for u,v and p from the

numerica’ results obtained by three different grid sizes hy, hy and hy by the following

formula ( written as F for u, v or p variables )

"g_ "th—F‘H"z
= = F . {I-152)
hy = " hy "3“2
TABLE I-1II
E, Convergence Rates for the Free Surface Test Problem
Grid Point Re = 30
Number u v P P,
G20 - G30- G40 2.17 1.90 1.91 1.92
G20 - G40 - G80 2.04 2.00 1.92 1.85
G30 - G50 - G80 1.93 2.04 1.98 2.01
G30-GS0 - G100 1.91 2.05 2.07 1.98

Note: The first column is three different grid sizes in computing the convergence
rates; Py stands for the convergence rates of pressure at the boundaries.
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TABLE I-1V

Pointwise, Free Surface Conv. Rates and Its Computed Values
(Re=50)

Location (x,y) Cl:)r::sul{caw . Computed Values at Diff. Grids

of the Point P N =10 N=50 N = 100
(0, 0) 1.80 P=-13307 P=-13578 P=-.13707

(1,0) 1.79 P=0.28064 P=0.28428 P= 028600

©. 1) 2.17 P=.028631 P=.029575 P=.029936

(1, 1) 2.14 P=.016888 p=017702 P=.018017

0.5,0.5) 2.18 u=-0.14975 u=-0.15156 u=-0.15235
v=-002832 v=-0.02818 v=-002815

(0.5,1) 225 4=-0.00613 u=-006601 u=-0.06600

P=0.021482 P=0.02253¢c P=0.022855
Surface Line 2.26

Note: The computed values of pressure are normalized by assigning
p = 0 at (0.5,0.5) which is the centre of the cavity; The last line

is a global conv. rate at free surface.

‘Table 1-111 summarizes the calculation of « for u, v and p at Re=50 for the free
surface flow in the cavity. The results were obtained with the number of grid points N
= 20, 30, 40, 50, 80 and 100. The computed convergence rates for u,v and p once again
agree with the theoretical prediction. In regard to the convergence rates of computed
pressure at the boundary, it can be seen in the table that both accuracies are the same for
pressure in the field and at the boundary. Therefore, this experiment confirms the theory
of equal rates of convergence for both field and boundary discussed in Chapter 2.
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Additional convergence analyses are presented in Table I-IV and illustrate the point-
wise convergence rates for the pressure at the four corner singular points and along the
free surface line. For comparison, their computed values are also given. As seen in the
table, the computed pressures are convergent with second-order accuracy at the corner
singular points where the actual pressures are not infinite. So we may conclude that the
present algorithm has guaranteed the consistent convergence rates with order of two. In
the next test, we will also demonstrate that the method offers an effective

approximation to the Navier-Stokes equations, even with infinite pressures at the

singularities.
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Figure 1.6. Geometry of Driven Cavity Problem

Driven Cavity Flcw. The third test problem is the viscous flow in a driven
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cavity. Figure 1.6 shows the boundary conditions for the cavity flow with the
appropriate nomenclature. At the top of the cavity, the driving velocity u is a constant (
u = 1) along x-direction which generates several standing vortices inside cavity. The
problem is generally recognized as a standard test for the efficiency and accuracy in the
numerical simulation of Navier-Stokes equations, since it contains the general
characteristic of elliptic and nonlinear nature of many flow problems. The accurate
results for the flow have been published by many authors in the last ten years, i.e., the
results of Ghia et al (1982) are in good agreement with the studies by Schreiber and
Keller (1984) for Reynolds number up to 10,000; both results are considered as
standard solutions for this driven cavity flow problem. However, most of the accurate
solutions are obtained by stream function-vorticity formulation. The results of primitive
variable formulation are not quite satisfactory, especially, for the accurate solutions of
pressure field. The present technique is able to provide the accurate solutions for the
velocities as well as the pressure. We understand that the driven cavity flow contains
the infinite values of pressure at the two upper comers which would affect the
accuracies of these results. Therefore, the presented results in the following are chosen
away from the singularities which still maintain four digit accuracies for the velocities
and three digits for the pressure field on a 129x129 grid.

The computations are carried out for Re=100, Re=1,000, Re=5,000 and
Re=10,000 with a 129x129 grid. The results on 129x129 grid are computed for its
convenience to compare with available results, i.e., Ghia ez al. For Re=100 and
Re=1,000, the compressibility parameter ¢ = 1 and time step At = 0.005, At = 0.002
were used respectively. For Re=5,000, a smaller time step comnpared with Re=1,000

(i.e., At = 0.001) was required to stabilize the difference scheme from iteration to




iteration, In this case, the

TABLE I-V

Comparisons of S ream-Function and Vorticity at Center of
Primary Vortex for Different Reynolds Numbers

Minimum Stream-Function . and Prime Vorticity E,.

Present Ghia et al Schreiber & Keller

Re Ve & Ve & Ve &

100 -0.1033 -3163 -0.1034 -3.166 -0.1033 -3.182
(129x129) (129x129) (121x121)
1000 -0.1159 -2.025 -0.1179 -2.050 -0.1160 -2.026
(129x129) (129x129) (141x141)
5000 -0.1130 -1842 -0.1190 -1.860 --
(129x129) (257%257) --
10000 -0.1060 -1.793 -0.1197 -1.881 -0.1028 -1.622

(129%x129) (257x257) (180x180)

integration time for momentum equations was performed from zero to t = 60 which
takes about 30,000 iterations to reach the steady state. The accuracies of the present
method were assessed by available results in the literature. Table I-V clearly shows that

the present results for prime vortex and minimum stream function have at least three
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digits in agreement with the results obtained by previous investigators ( approximately

the same grid sizes ).

TABLE I-VI

Comparisons of u-Velocity along Vertical Line through Cavity Center (-;- , %)

Re

Grid Location 100 1000 5000

Point

Number vy Present Ghiaetal Present Ghiaetal Present Ghiaetal
129 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
126 09766 0.8431 0.8412 0.6511 0.6593 0.4354 0.4822
125 09688 0.7911 0.7887 0.5667 0.5749 0.4183 04612
124 09610 0.7401 0.7372 0.5034 0.5112 0.4171 0.4599
123 09531 0.6905 0.6872 0.4593 04660 0.4202 0.4604
110 0.8516 0.2358 0.2315 0.3282 03330 03133 0.3356
95 0.7344 0.0040 0.0033 0.1840 0.1872  0.1858 0.2009
80 0.6172 -0.1386 -0.1364 0.0547 0.0570 0.0707 0.0818
65 0.5000 -0.2086 -0.2058 -0.0618 -0.0608 -0.0369 -0.0304
59 0.4531 -0.2134 -0.2109 -0.1070 -0.1065 -0.0787 -0.0740
37  0.2813 -0.1572 -0.1566 -0.2772 -0.2781 -0.2256 -0.2285
23  0.1719 -0.1014 -0.1015 -0.3774 -0.3829 -0.3137 -0.3305
14 0.1016 -0.0642 -0.0643 -0.2843 -0.2973 -0.3865 -0.4044
10 0.0703 -0.0465 -0.0478 -0.2091 -0.2222 -0.3850 -0.4364
9 0.0625 -0.0419 -0.0419 -0.1893 -0.2020 -0.3675 -0.4290
8 0.0547 -0.0371 -0.0372 -0.1692 -0.1811 -0.3420 -0.4117
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1-VI and Table I-VII show the u velocity distributions along the vertical line

and v along the horizontal line through the geometric center of the cavity respectively

in the cases of Re=100, Re=1,000 and Re=5,000 on 129x129 grid. Comparisons of u




along the vertical line and v velocities along the horizonial line have shown that the
results do not quite agree for Reynolds number greater than 5000. The present results
differ from the stream functions and vorticities obtained by Ghia et al (1982). As

shown in Table I-VI and Table I-VII, it has about two to three digits in agreement

TABLE I-VII

Comparisons of v-Velocity along Horizontal Line through Cavity Center (%,—;—

Re

Gnd Location 100 1000 5000
Point
Number x Present Ghiaetal Present Ghiaetal Present Ghiaetal

129  1.0000 0.00GC 0.0000 0.0000 0.0000 0.0000 0.0000
125 09686 -0.0622 -0.0591 -0.2147 -0.2139 -0.4199 -0.4977
124 09609 -0.0778 -0.0739 -0.2766 -0.2767 -0.4852 -0.5507
123 09531 -0.0932 -0.0886 -0.3359 -0.3371 -0.5075 -0.5541
122 09453 -0.1083 -0.1031 -0.3896 -0.3919 -0.4978 -0.5288
117 09063 -0.1768 -0.1691 -0.5118 -0.5155 -0.3892 -0.4144
111  0.8594 -0.2331 -0.2245 -0.4204 -0.4267 -0.3430 -0.3621
104  0.8047 -0.2528 -0.2453 -0.3137 -0.3197 -0..863 -0.3002
65 0.50CO 0.0575 00545 0.0256 0.0253  0.0087 0.0095
31  0.2344 0.1790 0.1753 0.3185 0.3224  0.2554 0.2728
30 0.2266 0.1788 0.1751 0.3267 03308  0.2626 0.2807
21  0.1563 0.1642 0.1608 0.3653 03710 0.3285 0.3537
13 0.0938 0.1259 0.1232 0.3205 0.3263  0.3895 0.4295
11 00781 0.1114 0.1089 02980 0.3035 0.3894 0.4365
10 00703 0.1032 0.1009 0.2847 0.2901 0.3833 04333
9 00625 0.0945 0.0923 02695 02749  0.3729 04245
1 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0.0000

with the results of Ghia er a/ (1982) in cases of Reynolds number less than 1000. This
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may be attributed to the differences between the formulations of primitive variables in
the present method and stream function-vorticities of Ghia et al (1982) for solving the
Navier-Stokes equations, i.e., the corner singularities may affect the accuracies of the
results differently in these two formulations. It should be pointed out that, with the
present method in primitive variable formulations, we can obtain not only the correct
results of velocities and pressure but also the satisfactory results for stream function and

vorticity field ( within expected accuracy ). This indicates that the advantage of present

method may be better accuracy.

We solved the viscous flow in a driven cavity in forms of both stream-function
vorticities and primitive variables. The details could be found in the previous section.

Results on stream-function vorticities. The computations in this formulation
are carried out for Re=100, Re=1000 and Re=10000 with a 129x129 grid to compare
with the available results. For Re=1000 and Re=10000, the upwind scheme is used to
obtain the stability. Table I-VIII clearly shows that the present results for primary
vortex and minimum streamline have at least three digits in agreement with the resuits
obtained by previous investigators.

The calculations are also made on 65x65, 81x81 and 101x101 mesh points for
Re=100, and 1000 to calculate the convergence rate.Table I-IX presents the
cenvergence rates on the subsequentiai solutions that approach to the actual solution.
The stream-function and vorticity values have exactly second-order rate of convergence

to the solution.




TABLE I-VIII

Comparisons of Stream-Function and Vorticity at Center of Primary Vortex
for Different Reynolds Numbers

(Stream-function vorticity formulation)

Minimum Stream-Function . and Prime Vorticity §.:

Present Ghia et al Schreiber & Keller

Re Ve & Ve BV &

100 -0.1034 -3.1650 -0.1034 -3.166 -0.1033 -3.182
(129x129) (129x129) (121x121)
1000 -0.1167 -2.0290 -0.1179 -2.050 -0.1160 -2.026
(129x129) (129x129) (141x141)
10000 -0.1129 -1.7411 -0.1197 -1.881 -0.1028 -1.622
(129x129) (257x257) (180x180)

Resuits on primitive variables. The computations of this formulation are
carried out for Re=100 and Re=1000 with a 129x129 grid for its convenience to
compare the available results. In the convective terms, the higher-order upwind scheme
discussed in Section 3 is applied to the case of Re=1000, and the central difference
formula is kept for Re=100. For Re=100, the compressibility parameter e=1 and time
step At=0.01 were used. For Re=1000, a smaller time step (At=0.005) compared with
Re=100 was required to stabilize difference scheme from iteration to iteration. In the

case, the integration time for momentum equations was performed from t=0 to t=70



TABLE I-IX

Convergence Rates of Solution for Stream Function- Vortivities

- . ___________________________________________ ]

Convergence Rates
Grid Puint Number Re
v 4
G60-G80-G100 100 2.799 2.078
G60-G80-G100 1000 3.566 2.060

TABLE I-X

Comparisons of Stream-Function and Vorticity at Center of Primary Vortex
for Different Reynolds Numbers

(Primitive Variable formulation)

Minimum Stream-Function . and Prime Vorticity ..

Primitive Stream Function  Kim and Moin

Re Ve & ¥ E v g

100 -0.1033 -3.1632 -0.1034 -3.1650 -0.1034 -3.177
(129x129) (129x129) (65%65)

1000 -0.11640-2.0328 -0.1167 -2.0290 -0.1160 -2.026
(129x129) (129x129) (65%65)
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which takes about 14000 iterations to reach the steady state. The accurccies of the
solutions were assessed by the available results in the literature, i.e., Kim and Moin
(1985), and by our results obtained from stream-function vorticity formulation.

Table I-X presents the computed values of primary vortex and minimum
stream-function in comparison with our results obtained from stream-functicn vorticity
formulation, and Kim and Moin’s results made by projection method with staggered
grid. This illustration clearly shows the agreement with our stream-function vorticity
solutions as well as the results of Kim and Moin (1985). These results provide the
assurance of our new method to be extended to the three dimensional cases, and also
the superior accuracy of this new algorithm. Table I-XI provides the computed
convergence rates for Re=100, and Re=1000 obtained by grid size, 61x61,81x81 and
101x101. Once again, it agrees perfectly with our theoretical prediction which is

second-order accuracy.

TABLE I-XI

Convergence Rates of Solution for Primitive Variables

Convergence Rates
Grid Point Number Re

u v p
G60-G80-G100 100 1922 2034 1963

G60-G80-G100 1000 2035 2035 1879

Finally, TABLE I-XII provides additional information of the efficiency and
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accuracy of present algorithm of the CBC method. The comparisons have been made
with SIMPLE algorithm on SUN workstation for grid size equal to 61x61 and Reynolds
number 100. Both calculations were done using primitive variable formulation. The
evidence in TABLE I-XII indicates that the CBC method has far less CPU times,

programming codes as well as better accuracy in comparison with SIMPLE method.

TABLE I-XII

The Comparisons of CBC and SIMPLE method

Re =100, Grid = 61x61 CBC method SIMPLE method!
FORTRAN Codes 250 1200
Primary Vortex -3.134914 -3.015492
Minimum Streamline -0.102511 -0.0850
CPU time (sec.) 312.5 1907.5

Note: Both convergence criteria for the ~resent calculations was

|Ve Vi< 5x10-°, SIMPLE methoa uses staggered grids.
Both calculations were made on SUN microsystem Sparc 1*.

1SIMPLE method was programmed by Mr. Huaxiong Huang,
an engineering student at the University of British Columbia.
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4.4 The Characteristics of the Driven Cavity Flow

The driven cavity problem is generally considered to be a standard test for the
numerical algorithms since it contains 4 simple geometry and the boundary conditions
also can be easily implemented for the algorithm. This problem charactc. »ss the
general natural of many flow problems. For example, this problem reflects the elliptic
and nonlinear properties in the Navier-Stokes equations. Although there are a number
of numerical studies made for this problem, the difficulties still remain in the accurate
simulation of high Reynolds flows. In this casc, the flow is highly unstable.

Numerous results have been obtained with finite difference, finite element and
spectral approaches to this problem for the last two decades. A number of novel
techniques have been employed to obtain the accurate solutions for Reynolds number
up to 10,000. These excellent algorithms include the techniques of Benjamin and
Denny (1979), Ghia er al (1982), Schreiber and Keller (1984) and Kim and Moin
(19835). The first three methods use siream: function-vorticity formulation while the last
one using primitive variable formulation. The accurate results were obtained by Ghia
etal(1982) hoemployed the second-order form or implicit vorticity condition in their
efficient mulrigrid solution procedure. Their results for the driven cavity flow have been
considered as standard solutions for a decade. The idea of Schreiber and Keller (1984)
is to solve the biharmonic form of strcam-function equation by elimirating the vorticity
from the vorticity transport equation. The problem of vorticity boundary condition has
been completely eliminated by such an implementation. Their results seem in good
agreement with the studies of Ghia er al (1982). The coordinate transformation was

selected by Benjamin and Denny (1979) in such way that a greater density of nodal

points in the highly viscous boundary layer and secondary vcrtex (corner) regions than
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in the inviscid core. Their results, therefore, appear quite favorable for application to
high Reynolds number flows. The results of Kim and Moin (1985) were less accurate
than those using the stream function-vorticity formulation of the previous investigators.
It uses a fractional step method combined with the idea of a stag zered grid. Their results
were still considered to be reasonable for solving the problem in primitive variable
formulation. At least, it proves the concept of fractional step method to be correct.
The results for computed stream function and vorticity contours in the driven
cavity flow are presented in Figure 1.7 through Figure 1.14 for Reynolds numbers 100,
1000,5000, 10000. The computed results are compared with the avaiiable results of the
previous investigators, i.c., Ghia er al (1982), Schrciber and Keller (1984), in order to
validate of the numerical procedure. The stream function and vorticity contours are
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Figure 1.7 Stream function contours at Re = 100
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Figure 1.14 Vorticity contours at Re = 10,000

presented together with results of Ghia ez al (1982) in Figure 1.7 through Figure 1.14.
The plots obtained here used the results of Zero Perturbation Method in primitive variable
formulation whilc Giia er al used stream function-vorticity formulation. There is very
little good results available in primitive variable formulaton in the literature, especially
for Reynolds number up to 5,000.

As we may see from these presented figures ( i.c., Figure 1.7 through Figure
1.14), the motion of top wall in the driven cavity problem sets up a complex vortex
structure. At lower Reynolds numbers, the flow consists of a primary vortex and two
secondary vortices at the bottom upstream and downstream. As the Reynolds number is
increased beyond values of 1,000-2000, another vortex is formed at the upstream (left)
corner of the cavity. The comparison of cor..ours for both stream function and vorticity

have shown the agreement vith Ghia ef al (1982). These flow patterns are also in good
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agreement with the results of Schreiber and Keller (1984), Kim and Moin (1985). The
minor vortices embedded in the bottom corners are not plotted here because the contour
intervals were selected to be unifcrm, and the stream function in these location were of
the order of 105, The values of minimum streamline in the central vortex were provided
in the previous section which are also in excellent agreement with those earlier results.
Figure 1.15 through Figure 1,18 present the surface of vorticity distributions in
the cavity. The plots were also obtained using the results of Zero Perturbation Method
for Reynolds numbers 100, 1000, 5000, 10000. It is of interest that when the Reynolds
number goes up to 10,000 the vorticity distribution in the core region becomes more
and more flat. This indicates the higher Reynolds number of the flow, the stronger
singularity along the side of the cavity. Therefore, the center part of the cavity will be

a inviscid flow.
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As a final comment for this section, the use of laminar flow equations up to 10,000
is predicated on the fact that there is no conclusive experiment evidence available for
recirculating flow in two dimensional driven cavity. Therefore, no statement has been made
that a transition to turbulence occurs at a lower Reynolds number. Clearly, it would be
desirable for both experiments and flow stability analyses to be conducted to determine the
critical Reynolds number for this geomertry and flow situation. In any flow stability analysis,

reliable solutions for the laminar flow equations will be required.




CHAPTER §: SUMMARY

In this part of the thesis two new accurate finite-difference algorithms for the two
dimensional, steady, incompressible Navier-Stokes equations are described. The
numerical algorithms can be easily adapted on uniform grid for solving general flows.
The first approach, which is designated as Zero Perturbation Method, uses the
combination of the momentum and divergence cquations at the boundary to provide the
implicit pressure boundary conditions. The numerical solution procedure is discussed
in primitive variable formulation. The second approach, which is designated as
Computational Boundary Condition Method, utilizes a computational solution domain
to avo.. the problems of no explicit boundary conditions for pressure or vorticity in the
Navier-Stokes equations. The pressure or vorticity boundary conditions are implicitly
specified on the computational boundaries by the overspecified velocity or stream-
function conditions. The latter approach seems more naturai for the general flow
problems. In this case, both stream function-vorticity and primitive variable
formulations are discussed. In both finite-difference approaches, the overdetermined
system resulting from the Navier-Stokes equations can be correctly reduced to a
determined system.

All numerical experiments ~vere performed on uniform grids by means of Zero
Perturbadon Method and Computational Boundary Condition method described in
chapters three and four respectively. The accuracies of the two algorithms have been
tested on both one and two dimensional model problems. Calculations of convergence
rate are in excellent agreement with the rheoretical prediction. Results for the driven
cavity problem have found to b= very accurate in comparisons with the available results

81
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obtained by previous researchers. Although the numerical experiments are only carried
on one and two dimensional simple geometry problems, the methods are suitable for
solving problems with complex geometry, especially in three dimensional cases. With
solutions for all the dependent variables obtained by the same order of accuracy, the
methods have not only the theoretical significance, but wide scope of applications on

practice as well.




PART II: NUMERICAL SIMULATION OF
FREE/MOVING BOUNDARY PROBLEMS

83



CHAPTER 1: INTRODUCTION

L1 The Background

Liquids in a low gravity environment freely float rather than staying in a container.
Dynamics of liguids is dominated by free surface effects. It is the understanding of
these effects that becomes crucial for our ability to predict the behaviour of liquids in
the absence of gravity. £xperimental investigation of the free surface effects is difficult
in a terrest-ial environment since they are masked by much stronger gravitational
forces. One must therefore rely either on microgravity flight experiments or on
theoretical modelling coupled with numerical simulation. There are only limited
opportunities to use the former approach. The latter app-oach is more economical.
However, the success of luiter approach hinges on our capabilities of developing
reliable and accurate algorithms for the analysis of the so-called moving boundary
problems for the Navier-Stokes equations. The term "moving boundary problem"”
denotes here a problem where the domain of interest has an unknown boundary which
has to be determined as a part of the solution procedure. In the numerical simulation the
understanding of such physical process has to rely on algorithms capable of handling
moving boundary problems for the Navier-Stokes equations. The two major difficulties
involved in the simulation are: i) accurate tracking of curvature of an interface
undergoing large deformations, and ii) diagnosing of the initiation of the break-up of an
interface, i.c. break-up of a liquid drop. A successful resolution of these difficulties

requires an algorithm capable of accurate determination of pressure and velocities

along the deformed interface.
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Batchelor (1967) and Davies and Rideal (1963) described the physical
conditions of the moving boundary, which is a boundary between two immiscible
fluids. When the surface tension at the interface is considered to be uniform, there are
three interfacial boundary conditions: the kinematic condition, the tangential and

normal stress conditions. The kinematic condition V, en = Vg en, where V, and
Vg denote the velocity of two immiscible fluids A and B, expresses the fact that the
interface is a material surface. Expression V, ot = Vg et simply states that the

tangential velocity across an interface is continuous; t is a unit vertor tangent to the

interface. The force balance at the interface is described by ne (S, —S;) = 2xon.

Here, S5 and Sp are stress tensors of fluids A and B respectively, x is the mean surface
curvature and © is the surface tension.

One of the dominant factors affecting dynamics of liquids in a low gravity
environment is surface tension and suitability of any algorithm for simulation of motion
of liquids under such conditions could be judged based on its success in accounting
accurately for the surface tension effects. The variations of surface tension are usuzily
not taken into consideration in the simulation due to the fact that the mechanical
properties of an interface are not well understood in this kind of situation.

The contact line could be described as the interface comes into contact with a
solid lines. There are several choices of contact line conditions in the physical
modelling (Dussan 1979). Motion of fl.i< in the neighbourhood of a contact line
usually leads to a discontinuity at the contact point. The contact conditions could be

described as a fixed contact line condition which is suitable in the case of static contact



86

lines; a fixed contact angle condition which is suitable in the case of dynamic contact
lines; or a mixed condition of two previous cases.

The governing equations of flow field are the Navier-Stokes equations
supplemented by the standard no-slip boundary conditions and no-penetration
conditions, by the inflow and outflow conditions when the flow through the domain of
interest occurs, and by the interfacial conditions described earlier. The system of
equations of motion is closed sufficiently by the number of interfacial boundary
conditions to determine the location of the interface. The available numerical solutions
have confirmed such problems are well posed. However, the mathematical properties
of these initial boundary value problems, i.c., the condition of existence, uniqueness are
still not clear. Several numerical methods involving the use of continuum models as
well as discrete particle simulation have fulfilled their success. Detailed review of
different numerical methods can be found in Floryan and Rasmussen (1989). Yeung
(1982) reviewed the algorithms developed for the analysis of surface waves while
Hyman (1984) and Laskey et al (1987) described methods for numerical tracking
interfaces. Other successful methods dealing with the moving boundary problems are
by Crank (1984), Bulgarelli ez al (1984), and Harlow (1969).

1.2 The Methods of Interface Tracking

The major difficulty in the numerical simulation of moving boundary problems is the
determination of interface. Therefore, the moving surface usually requires special
attention. Four major techniques for interface tracking are described here: surface-

tracking methods, moving-grid methods, volume-tracking methods, and gradient
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methods.

The_surface-tracking methods have been used by Glimm et al (1983) and Chren
et al (1986). It represents an interface as a connected series of interpolated curve
through points on the interface. At each time step, the points are saved in an array along
with the information about the sequence in which they are connected. These points are
advected with the flow field. In the simplest forms of surface-tracking methods for two
dimensions, the points are saved as a sequence of height above a given reference line.
The approach fails if the interpolated curve is multivalued or does not extend all the
way across the region. However, this problem may be avoided if the points follow a
parametric representation. This formulation is more complex, but it can represent fine
detail in the interface if enough points are used. The feature of surface-tracking methods
is that they can resolve features of the interface that are smaller than the cell spacing of
the macroscopic Eulerian grid on which the curves are overlaid. There is naturally a
price paid for storing this additional information. The time step for the entire calculation
can be limited by the amount of movement the interface can go during each time step.
There are some difficulties in this method, such as the problem of handling merging
interfaces or joining a part of an interface to itself; and the points can accumulate in one
segment of the interface leaving other segments without enough resolution. Tne first
one requires re-ordering the interface points, which could require significant
computational efforts. For the most accuracy, the best way is to limit the largest distance
between neighboring points to be something less than minimum size of che local
computation grid (Hirt and Nichols 1981) . Interface areas typically increase

continually in complex flows. Thus it is necessary to add points along the interface




automatically. Conversely, points should be deleted where there are too many. When
points must be added or deleted, the best way to interpolated new points, to represent
and to manipulate contours with changing lengths are major issues.

The grid is defined in such a way that the interface is always located on cell
boundaries. We call this the moving-grid method. Maintaining a cell boundary between
different fluids controls numerical smearing that can occur at the interface as the fluid
is transported. The interface is then a well defined continuous curve because it coincides
with cell boundaries. There several approaches to actually implementing this idea. One
is to maintain a grid of distorted quadrilaterals (Hyman and Larrouturou 1982). Another
approach is to use a generalized orthogonal grid that fits the form of the interface.

One of the popular interface tracking methods is the volume-tracking method,
which was first proposed by Harlow (1955). The method reconstructs the interface
whenever it is needed rather than store representation of the interface in the surface-
tracking approach. The carliest volume-tracking method used marker particles so that
the density of particles in each cell indicates the density of the material. In the Marker-
and-Cell or MAC method (Harlow and Welch 1965, Welch ez al. 1966) the particles are
tracers, marker particles with no mass.

We now ronsider some features of MAC method implemented by Amsden
(1966). It uses as Eulerian grid in which velocity, internal energy, and total cell are
defined at cell centers. In addition, the different fluids are represented by Lagrangian
mass points, the marker particles, that move through the Eulerian grid. The marker
particles each have a constant mass, a specific internal energy, and a recorded location

in the EBulerian grid, and are moved with local velocity. The particle mass, momentum,




89

and external energy are transported from one cell to its neighbor when a marker particle
crosses the cell boundary. Cells containing marker particles of both fluids contain the
interface. Since the interface can be reconstructed locally at any time, the problems
associated with interacting interfaces and large fluid distortions are eliminated. The
method generalizes to any number of fluids.

Marker-particle methods cannot resolve details of the interface which are
smaller than mesh size. It is expensive with respect to their requirements in computer
time and memory. Particles may accumulate in portions of grid, leaving other portions
not well resolved. Since mass, momentum, and energy are associated with each particle
in marker particle method, adding and deleting particles is not very straightforward.
Some fluctuations may not be acceptable if there are not enough marker particles and if
variation of the marker particles is too large.

One of the features of the volume-tracking method is the use of fraction of a cell
volume occupied by one of the materials as the marker for reconstructing the interface.
If this fraction is zero for a given cell, the material does not occupy the cell and there is
no interface in that cell. Conversely, if the fraction is one, the cell is completely
occupied by the material and again there is no interface present. An interface is
constructed only if the fractional marker is between zero and one.

In the simple line interface calculation method, each grid cell is partitioned by
a hcrizontal or vertical line such that the volume of the partitioned part of the cell equals
the fractional marker volume. The algorithm SLIC was first proposed by Noh and
Woodward (1976), and improved by Chorin (1980) who added a corner interface to the

straight horizontal and vertical lines and kept the same fractional cell volume as the




variable for locating the interface.

The VOF method described by Hirt and Nichols (1981) uses a straight line (with
any slope) to represent the interface within a cell. A numerical estimate of the x-
direction and y-direction derivatives of the volume of fluid occupying a cell are
obtained for a given cell. Given the slope of the interface and side of the interface on
which the fluid is located, then the position of the interface within the cell is set. The
process is done for every cell with the value of its occupied volume between zero and
one. Hirt and Nichols use values of the fractional volume of fluid averaged over several
cells to calculate the derivatives. Their method depends on the ability to advect the
volume fraction through the grid accurately without smearing from the numerical
diffusion. Hirt and Nichols have described a donor-accepter method to insure that only
the appropriate constituent fluid moves to or from a cell containing an interface. This
helps to avoid averaging that results in numerical diffusion.

The gradient method (Laskey er al 1987) represents the interface as relatively
continuous over several cells rather than to define the exact location of the interface
within a cell. By keeping the resolution at the limit of that of the numerical convection
algorithm, the amount of computer storage requirements and cost of interface tracking
can be reduced. Laskey has applied his idea to flame fronts, although it may be useful
for other types of interfaces. The method ensures that the right amount of reaction takes
place in the vicinity of the gradient, as defined by the macroscopic grid. Also, it treats
the effects of merging interface with relatively little difficulty. Adding other interface
processes, and eventually ignoring weakened interfaces results naturally from the

formulation. Because no additional variables zre needed, computer memory
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requirements are modest. The algorithm as implemented is fully vectorized. Finally, it
is straightforward to extend the two dimensional formulaticn to three dimensions. The
disadvantage of the gradient method is that the location of the reaction front is only
approximately known in comparison with the volume-tracking method. Thus if it is
necessary to track the curvature at the surface on scales comparable or smaller than the
Eulerian grid spacing, another method should be used. The gradient method is not
suited to simulate the dynamic droplet problem because the accurate curvature of a

surface is essential for the calculation the surface-tension effects (Fyfe et al 1987;.

1.3 The Finite Di inite El h

Finite difference method uses the direct substitution of the derivatives in the field
equations by their finite difference approximation which result in the difference
analogue of the original field equations. The application of this analogue to each of the
mesh points in the flow field will result in a system of difference equations which can
be solved to obtain the required nurerical solution. The finite element method divides
the solution domain into a finite number of subdomains or elements to solve the field
equations. These elements may be one, two or three dimensional according to problem
considered. The shape of element can be chosen either triangle, rectangle, quadrilateral,
etc. The degrees of freedom of an element depend on the number of nodes in that
clement and the number of variables associated with each node. Once the type of
element has been decided and the finite element mesh has been constructed, the
unknown variables on cach element can be approximated by continuous functions

expressed in terms of nodal values of the unknown vaiiables and their derivatives. This




92

also formulates a system of discrete equations and its numerical solutions can be
obtained.

One of the successful finite differe..ce methods for the steady, two dimensional
free surface flows was discussed by Ryskin and Leal (1984) which is essentially based
on the construction of boundary fitted orthogonal curvilinear coordinate system. The
scheme consists of a Picard type iteration on the normal stress boundary condition,
where for each approximation of the shape of the boundary a new boundary conforming
coordinate system is constructed numerically. The field equations are solved by the
ADI solution procedure using a stream function-vorticity formulation. The algorithm
was used to solve buoyancy-driven motion of a gas bubble through quiescent liquid and
to bubble deformation in an axisymmetric straining flow. Similar to the steady flow
problems, Kang and Leal (1987) propose a fully implicit, backward time differencing
procedure for the two dimensional, unsteady flows. The Picard solution procedure was
kept, while the flow field and location of the interface approximately predicted from the
information given by previous time step. The nonlinear algebraic equations describing
the flow field at a new instant in time are also solved by the ADI solution procedure.
The successful explicit approach using primitive variables was proposed by Miyata et
al (1987). The kinematic condition was used to determine the new location of the
interface which is defined in terms of a height function. In each iteration, the velocity
and pressure field are determined by the field equations and the simplified interfacial
conditions in which the viscous stress tensor is omitted. The calculation was made on
the analysis of flow around a ship hull.

The numerical solutions of thc viscous, steady flows with moving boundaries
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are commonly obtained by using finite element method in Galerkin forms. The field
equations are mostly expressed in terms of primitive variable approaches, and some are
solved by penalty or collocation approaches. The excellent descriptions of the finite
element procedures including some standard programs for the general flow problems
are provided by Becker ez al (1981) and Fletcher (1984). The finite element method
using Galerkin formulation to solve die swell problems with a free surface for zero
Reynolds number flow was studied by Nickell ez al (1974). They used the kinematic
condition to determine the free surface. Later, this approach was extended to the flow
problems in consideration of surface tension as well as Reynolds number up to 50
(Reddy and Tanner 1978) which agreed with the experimental results.

Another Picard type iteration in finite elements is the use of normal stress
boundary condition for the determination of the free surface. Omr and Scriven (1978)
applied the Galerkin approach to the rimming flow problem. Silliman and Scriven
(1980) used the bounda.y collocation coupled with Newton iteration in the treatment of
normal stress condition for die swell problem. Lowndes (1980) utilized the solution of
the Laplace-Young equation of the capillary dynamic hydrostatic in accounting of the
dynamic effects to analyse the creeping flow in a capillary tube in absence of gravity.

The determination of the free surface in finite element methods may also be
achieved by using the direct solutions in which the kinematic, tangential and normal
stress conditions are solved simultaneously with the field equations. Ruschak (1980)
proposed an effective method by considering the values of the parameters to be selected
in such a way that the surface line coincides with the grid line. The more general

approach was later given by Dupret (1982). Some comparisons of the solutions by



Picard and direct methods were discussed by Cuelier and Driessen (1986). For the
unsteady flows, cach finite clement is a region in both space and time dimensions.
Temporal discretization is obtained in a manner analogous to the spatial discretization.
This results in a fully implicit procedure. By means of space-time finite eleinent
Galerkin approach, Ferderiksen and Watts (1981) used a computational procedure
which consisted of predicting the flow field and location of the interface at the new time

sicp from information obtained previously. Their solutions, however, only applied to

the low Reynolds number flows.

There are many effective numerical methods in dealing with moving boundary
problems with small to medium deformations. With a specific set of conditions the
algorithms may work best but are not totally general purpose. There are no general
criteria to assess the exact level of accuracy in these algorithms, and only experience
indicates the capability of the accuracy achieved for the fixed boundary problems. For
medium or large deformations, the accuracy of these methods still remains doubtful.
The inaccurate simulation of moving boundary problems may attribute to the
fact that the numerical solution of the Navier-Stokes equations (in primitive variable
formulations) itself has been plagued with confusion regarding the appropriate velocity
and pressure conditions. It is now generally recognized that the staggered grid
introduced by Harlow and Welch (1967) in Marker-and-Cell is not quite an accurate
technique in solving the moving boundary problems because the normal stress



95

condition may not be used appropriately in the staggered grid. There are a large volume
of papers that contain the discussion of possible pressure boundary conditions ior the
Navier-Stokes equations. However, the difficulty still exists in the numerical calcultion
and the pressure problem remains unsolved.

Fortunately, the situation is not so0 hopeless as made above. There are still some
successful numerical methods in the last decade to obtain the accurate pressure
solutions. The influence matrix method by Kleiser and Schumann (1980) introduces a
supplementary (linear) problem to determine the lacking boundary values for the
pressure. Their method is quite efficient and has been employed to compute the three
dimensional channel flow. The improvement of Marker-and-Cell made by Patankar and
Spalding (1970) that an approximate equation of pressure correction is derived from the
momentum equations to satisfy incompressible equations, instead of solving Poisson
equation for pressure in Marker-and-Cell method. The projection method for the
primitive variable formulation originally developed by Chorin (1967) sets up an
auxiliary vector field V* in which the momentum and incompressibility conditions are
treated into two fractional steps. At the second step, the Neumann condition for
pressure is made by projecting the vector field V* onto its subspace with zero
divergence and satisfying the appropriate boundary conditions. The improvement of
Chorin’s method has been made by Stephens, Bell, Solomon and Hackerman (1984)
who developed the finite difference Galerkin method for the numerical solutions of the
steady, incompressible Navier-Stokes equations. A Galerkin solution procedure is
proposed by means of constructing a local basis for discretely divergence-free vector



field. Their method is quite appreciated by many researchers for the solutions of

primitive variable formulation.

13 Outline of Part II

Apart from the pressure problem in the numerical solus .n of the Navier-Stokes
equations, the difficulties in the simulation of a dynamic capilla:y surface include: 1)
accurate tracking of the shape and curvature of the interface, 2) accurate treatment of
singularities at the contact points, 3) decision algorithms determining existence or non-
existence of the dynamic capillary surface, and 4) decision algorithms permitting
separation of the physical and purely numerical interface instabilities. There are several
existing algorithms for this class of problems and they could be broadly classified as
cither Eulerian or Lagrangian. See Floryan and Rasmussen (1990) for a review. While
these algorithms in most instances reproduce the correct physics of flow, their accuracy
is uncertain. The main goal of this work is, theiefore to provide an accurate and religble
algorithm for the simulation of moving capillary surfaces by applying the Zero
Perturbation Method discussed and tested in Part I in which the pressure problem has
been completely eliminated. In chapter two we describe a model problem that is used
to test our algorithm. In chapter three we describe a solution procedure valid in the limit
of large susface tension. An algorithms used to solve field equations and some results

of our tests are presented in chapter four. Finally a summary is given in chapter five.




CHAPTER 2: PROBLEM FORMULATION

We consider a two-dimensional steady flow of an incompressible Newtonian liquid in
a caviiy of length L and heights Hy, Hg, as shown in Figure 2.1. The liquid has its
density p and kinematic viscosity v = ji/p; W is the dynamic viscosity. The upper surface
is free surface associated with a surface tension 6, and is bounded by a passive fluid of

negligible density and viscosity.

y
I free surface h(x)
t
H /
Vm Hp
\
NNy? = —> — » X

Figure 2.1. Schematic Diagram of the Model Problem

The x and y coordinate axes are horizontal and vertical, respectively, with origin
located at the low left of the cavity. Location of the surface is described by y=hA(x). The
corresponding components of the velocity are u and v, while the flow is driven by
specifying the tangential velocity component at the bottom of the cavity. In the absence
of gravity force, the motion of the liquid is governed by the equations
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-1
VeV =-p yp 4 uV2v, (I1-1)
VeV =0, (11-2)
where V = u i +v j is the velocity vector and p is the pressure of the liquid. These

equations are subject to the following boundary conditions:

x=0x=L: u=v=_0 (11-3)
y=0: u=16U{(1-x)x]2 (11-4)
v=_0 (11-5)

y=h(x): v=hu (I1-6)
S‘-jnjni = OK (I1-7)

Synit; = 0. (11-8)

In the above, h, is the first derivative of surface deformation h(x), x denotes the
curvature of the interface and, n;, t; stand for unit normal and tangential vector
respectively.

In Eq.(II-4) the driven velocity, which has its maximum value at the geometric
center, is chosen to smooth out the comer singularities. Eq. (II-6) is the kinematic
condition at the interface, i.e., a liquid-gas interface, which expresses the fact that the
velocity normal to the interfacial streamline should be equal to zero. Eqs.(II-7)-(11-8)
are the free surface stress boundary conditions, which sta.s the principles on the basis
that: i) stress S;; tangential to the free surface must be vanish; ii) stress S;; normal to the

surface must exactly balance any externally applied normal stress. The first principle




implies that the external gas be incapable of exerting a shear stress on the interface. The
second principle allows for the driven surface motions to be affected by the surface
tension, and by external pressure whose inertial contribution to the dynamics is
negligible. It implies that the surface tension, pressure variations in the gas are the
major effects of its dynamics.

The stress conditions resulting from the free surface boundary are complicated.
To illustrate these conditions explicitly, Let n, and ny, be components of a unit outward
vector n;, normal to the surface. Then,

h
z n,6 = 1 . (11-9)

e A (Y

If © represents the angle of the unit tangential vector to x-axis, we have tand = - n,/n,.

-

In addition, let py be the externally applied pressure. Then, within the fluid at its

interface, the tangential stress condition (II-8) becomes

sin 20 (vy - uy) + cos26(uy +v,) =0, (I1-10)

while that for the normal stress can be written

oxk=-(p-pg) +2u{ sinZ0 uy - cosOsin® (uy + vx) + cos20 vyl. 11-11)

It should be mentioned that the normal stress condition (II-11) that includes the surface

tension into the free surface boundary represents a class of problems, which are difficult
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to deal with numerically. In this thesis an effective way to incorporate this effect into
the numerical calculation has been found and is discussed later.

From the fundamental fluid mechanics theory, we may find that the stresses will
become infinite in the neighborhood of free surface that contacts to the end walls. In the
present case, we specify the type of contact as the liquid sticking to the sharp edge at

the end walls, i.e.,
h(0) =Hg , h(L)=Hg (11-12)

which corresponds to the case of fixed contact points at the walls.
Finally, to close the problem, it is clear that the liquid must also satisfy the mass
conservation constraint, i.e., its volume must remain constant.

L
[rxyax = v, (11-13)
0



CHAPTER 3: NUMERICAL SIMULATION OF
DYNAMIC CAPILLARY SURFACE

In this chapter we provide the numerical solution procedure based on asymptotic series
expansion. The general solution procedure described in this part of thesis is the zero
Reynolds number flow with large surface tension.

Before giving the details of the asymptotic solution procedure, we summarize
the algorithm as follows ( Some notations will be given in Section 3.2 ):
1) select the volume V in the cavity and velocity profile at the bottom.
2) determine the shape of the static free surface hy(x) by solving the following coupled

equations numerically (or analytically):

hOxx (x)
Py = — 75, (U-14)
(1+ hgx) 372
1
fhonydx = v. (II-15)
0

3) find the first order approximation of the flow by solving the Stokes equations

Uox + VO’ = 0, (Il-lﬁ)
Uoxx + Ugyy = Pox» 1I-17)
Voxe + Voyy = Poy» (1I-18)

101
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with the velocity boundary conditions at the solid walls, and the interfacial conditions

given earlier. The interface conditions include the leading terms of kinematic and

tangential conditions:

Vo = holg at y = hy(x),

(11-19)

2k, (Voy —tpy) + (1= h3) (Vo +up) =0, at y=hy(x). (I1-20)

This system of equations can be solved by introducing the transformation

Yy = z- hy(x) which is similar to Picard solution procedure of using the normal stress

condition to determine the location of the interface.

4) find the free surface correction A, (x) by solving

hlxx _ 3hﬂxh0xxhlx
2\ V2 2 V2
(1+hg,) (1+hy)

(1+h%)
in addition with

1
J'hl (x)dx = 0;
0

5) determine asymptotically the final shape of free surface as

(11-21)

(11-22)
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h = hy(x) +hy(X)E. @23

In the above, ug, Vg, Pg, hq are the first order of the series expansions; p, is the static
pressure due to the curvature; A, (x) is the second-order term of the moving surface;

and € is defined as the capillary number.

.1 _Mathematical Formulation of th |

We scale the model problem by introducing the following prime quantities:

x=Lx,y=Ly,h=Lhk

U .
u=Uu,v=Uv,p= BITP'

(1-24)

We notice that the pressure scaling is given as lubricant pressure scaling for the low
Reynolds numbe~ flow rather than the common use of dynamic pressure scaling. With
these scales, the dimensionless equations (with prime dropped) can be written in the

form:

ug+v, =0 (I1-25)
Re (uu, + vu’) = =p.+ (u, + u”) (I1-26)
Re (uv, + vv,) =-p,+ (Ve + v”) . (I1-27)

The Reynolds number has the standard definition

Re = —, (11-28)
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The boundary conditions (II-3)-(II-8) transform to

x=0x=1: u=v=0 (11-29)
y=0: u=16[(1-x)x]? (11-30)
v=_0 (I1-31)
y=hx): v=nhu (11-32)
vy hy) +h (v, )} = e 133

-p+ v,—hu,) +h (-v_+ = — -
P ey T TR T A a+r)>? 39
2h, (vy—i) + (1- 1Y) (v, +u) = 0. (11-34)

In Eq.(II-33), & is the surface tension number, given by
€ = —. (11-35)

The surface tension number measures the degree of deformation of the free surface
caused by the motion of the liquid; € — O implies a very strong surface tension and
small deformation of the free surface.

The dimensionless form of the mass constraint condition (II-13) is as follows:

1
[pyax=v, whee V=v,/L2 (11-36)
0
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and the contact line conditions are assumed the following form:
h(0) = h(1) =1, where H; = Hy = L. (W-37)

We will determine the solution to the flow problem described by Eqgs.(II-25)-(11-27)
subject to boundary conditions (II-29)-(II-34) and constraint conditions (II-36)-(II-37).

In the present chapter we will investigate only the Stokes approximation
Re — 0. The next section deals with the solution in the asymptotic limit of the small
surface tension number € — 0. The deformation of the interface decouples from the
flow equations then, and the flow reduces in principle to thr; flow in a cavity with upper
surface rigid. The deformation of the interface is determined as a higher order

correction in the asymptotic expansion.

3.2 Yery Large Surface Tension
We seek a solution of the problem (II-25)-(II-37) in the asymptotic limit of small

surface tension number € — 0. We note that the capillary effects are dominant in this
limit and therefore, these effects determine the form of the interface at the leading order
of approximation. The dynamic effects associated with the motion of the liquid produce
deformation of the interface. However this deformation is of the lower order of
magnitude, where ratio of dynamic and capillary forces, i.c., the surface tension number
e, is used to define the appropriate ordering. Accordingly, we write the expansions
(Rybicki an.” Sloryan 1987)
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u = uy+ue+0(e?) (11-38)
v = vy+v,€+0(€?) (11-39)
p = €'p,+py+pie+0 () (11-40)
h = hy+he+0(e?). (11-41)

The first term in the pressure expansion corresponding to the capillary pressure due to
the surface tension and curvature of the interface. The magnitude results from the
rescaling of this component with the capillary pressure scale /L.

Substituting expansions (II-38)-(11-41) into the field equations (I1-25)-(I1-27),
boundary conditions (II-29)-(II-34) togethar with the constraint (II-36) and contact

condition (II-37), we find:

the problem of order !

Py =0 (11-42)
Psy = 0 (11-43)
with the boundary condition
hy,, (X)
-p, = _‘”"Tm; (11-44)
(1+hgy)
the problem of order TO:
uox"' VO’ =0 (11'45)

Re (ugug, + vouo,) = —Pox+ (Ug, t+ uo”) (I1-46)




with the boundary conditions:

x=0x=1: uy=vyg=0
y=0: uy=16[(1-x)x]?
vo=0
y = ho(x): vg = ho,ug
2hg, (Voy = g,) + (1= h3,) (Vo, +g)) =0

hl - 3ho.th()xxhlx

xXx

12 82
(1+h3) (1+h%)

=Py { (v()y - hOxuOy) + hOx (- Vog + hOxqu) }

t—

(1+hg,)
the volume constraint condition
1

[roxydx = v
0

and the contact conditions

hy(0) = hy(1) = 1.
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(11-47)

(11-48)

(11-49)

(11-50)
(I1-51)

(I1-52)

(I1-53)

(11-54)

(II-55)

We shall need the following constraint and contact conditions of order T! to

complete the system of equations:
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1
fmxde=0 (I1-56)
0

hy(0) = A, (1) = 0. (I1-57)

The solution of the leading order approximation is defined as a meniscus problem. This
approximation is described by Eqs.(II-42)-(II-44). We find from Eqs.(I1-42)-(11-43)
that the capillary pressure component is constant. We identify Eq.(II-44) as the Young-
Laplace equation written in a form suitable for two dimensional configurations. Only

interfaces of the constant curvature satisfy this equation. The function hy(x),

therefore, describes an clement of an arc or straight line. The particular forms of the
interface depend on the volume of the liquid and contact conditions, specified by
Eqs.(II-54)-(1I-55). Eqs.(I1-42)-(11-43) in addition with Eqs.(II-54)-(II-55) completely

determine the initial shape of the interface A, (x), therefore. With the shape of the

interface hy(x) determined, we proceed to the determination of the flow inside the
cavity.

The motion of the liquid is described by Eqs.(II-45)-(II-47) subject to boundary
conditions (I1-48)-(II-52). This is a closed system and we shall solve it numerically. Its
boundary conditions do not involve pressure and the flow structure. Therefore, the
motion can be determined with accuracy up to a constant in the pressure field. The
detailed description of the solution method will be given in next section.

We may notice that Eq.(II-53) is not required for the solution of the flow
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problem. This equation involves pressure p,, deformation of the interface h, (x) and

other quantities that have been determined in the meniscus problem and the flow
problem. We utilize this equation for the simultaneous determination of the
deformation of the interface and the free constant in the pressure field.

We write Eq.(II-53) as:

hyx+ G (x)hy, = H(x,pg) » (11-58)
2,71 2,32

where G (x) = —3hg,hg,, (1 +hg) and H(x,py) = —py(1+hg,)
+(1+h%) 172 { (voy— hogttgy) + hoy (= Vo, +ho lg,) } . This is a second-order,

linear differential equation for A, (x), involving an undetermined constant in the
pressure p,. We have a total of three arbitrary constants in the general solution and the

three required additional conditions are the volumatic constraint condition (II-56) and
contact conditions (1I-57). Eq.(II-58) forms a boundary value problem subject to the

constraint (II-56).

N 1 i vity Fl rface Ri mall
Reynolds Number Limi)
The governing equations (I1-45)-(1I-47) and the boundary conditions (1I-48)-(1I-52) for
the cavity flow with upper surface rigid have been discussed in Section 3.2. The present

section is devoted to the detailed analysis of the flow of motion in the Stokes limit (
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Re — 0 ). This case corresponding to the strong capillary effects, i.e., large surface
tension, with the flow of motion consequently being relatively small. Figure 2.2 shows
the geometry, boundary conditions for the cavity flow where the volume V is a given
condition in the numerical calculation. In the following, we drop the subscript of

leading approximation term for the purpose of conciseness.

upper rigid free surface and
~# condition given by (II-51)-(II-52)

h(x)

+L——>—>+

u=16[x(1-x))%, v=0

u=v=_0

Figure 2.2. Geometry, boundary condition for the cavity flow
We adopt the mapping method to transform the irregularly shaped flow domain onto a
regularly shaped computational domain. The mapping function h(x) appears

explicitly as a known function determined by the meniscus protiem. The

transformation is considered as

X=X, y = h(x)z, (11-59)

in which transforms the domain 0<x<1,0<y<h(x) onto the domain
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0<x<1,0<z< 1. The transformation facilitates application of the standard finite
difference discretization procedure. The governing equations (I1-45)-(I1-47), therefore,

lead to the form(Re = 0 ):

hu,—zhu,+v, =0 (11-60)
p.ht—zh hp, = Ku, + (h+ 1) u_ —2zh hu_,+z(2h*—h h)u, (II-61)
ph = Kv_+ (Z2H+1)v, —2zh hv_+z2 (2K~ h h)v, (I-62)

where the convective terms have been omitted for the flow motion in the Stokes limit

(Re — 0). The boundary conditions for system are now given as

x=0x=1: u=v=0 (1I-63)
z=0: u=16[(1-x)x])2 (11-64)
v=_0 (11-65)

z=1: v=hu (11-66)

2h, (v, = hu +zhu) + (1 - h2) (hv,—zhv,+u,) = 0. (O-67)

The above system of equations is to be solved for field variables u,v, and p.
After the transformation, right hand side of the normal stress condition (II-58)

H (x, p) which is used to determine the deformation of surface then becomes

2
H(x,p) = -p+ m {(v,—hou) +h (~hvy+zh v, +h (hu,—zhu))}
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(11-68)
The new equation (II-68) will replace H(x,p) in (II-58) to solve for the second-order

differential equation for the correction of surface deformation 4, (x) .

The reliability of the asymptotic approach relies on the accuracy of numerical
solution of the field equations (II-60)-(II-62). The main issue involves accurate
determination of pressure at the boundaries. Here, we apply artificial compressibility
method with modifications necessary to strictly enforce the incompressibility
conditions. The principle of artificial compressibility method is to consider the steady
solution as the limit when t — ocof the solution of unsteady equations associated with
a perturbed incompressibility equation. If the disturbance factor is small enough, the
approximate solution of the Navier-Stokes equations would be made. The effectiveness
of this method depends on the treatment of boundary conditions. We propose a
modification of the original artificial compressibility method that involves the use of
zero-perturbed momentum equations and incompressibility condition at the
boundaries, which leads to an implicit pressure boundary conditions for the system.
According to discussion in Part I, the algorithm has been confirmed for obtaining
accurate pressure solution.

The field equations in forms of artificial compressibility method are

uy+ (Ku+ (PR + 1) u,, - 2zh hu, +2 (22 - hohyu,) — (K ~zh.hp,) = O
(11-69)
v+ (Bve+ (PR +1) v, =22k hv, +2 (2K - hoh)v,) —p,h = 0 (11-70)
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p,+c? (hu,—zhu,+v,) = 0. (I1-71) |

The above equations have a physical meaning only when the state aa—' = 0 is reached.

The solution procedure is usually referred as to a pseudo-unsteady method because the
time involved has no physical meaning. The velocity boundary conditions for the
system are provided by (11-63)-(II-67). The velocity conditions at the top (z=1) could
be solved implicitly based on the velocity values from the previous iteration, i.e,

v**! = h_u. Following Part I of the Zero Perturbation Method, the implicit Dirichlet

pressure boundary condition from iteration to iteration are given as

a+l 2
p*t’ = p-Atc® (huy,-zhu,+v,)

swil (BPu,, + (PR + 1) u,,— 2zh hu_+ 2 (2h2 = h h)u,) — (p,h* —zh hp,) ]
+wol (hPv + (P#E+1)v,,—2zh hv_ + 2 (22— h_h)v,) —p,h]
a1-72)
at each boundary of domain 0<x<1,0<z< 1, where wy, wy are the parameters

chosen as -1 or 1 for the stability purpose. In the above, the superscripts (n) for all the
variatles are omitted for the sake of simplicity.
We discretize the field equations (II-69)-(II-71) and the boundary conditions

(II-66)-(11-67) and (II-72) on an uniform grid of constant step size using the standard

second order finite difference approximations. The formulae for an interior point are
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' _f‘l"'l—f‘l-l 2
i = 22l 0 (axd) (I-73)

fica=2fi+fi
2

fr= +0 (Ax?) (11-74)

where f,, f;, f"; denote a function and its first and second derivatives, respectively, and

subscripts i, { — 1, i + 1 denote values of the appropriate quantities at a grid point i and
its two neighbours i -1 and i+ 1, respectively. At the boundary, we employ the one-side

derivative approximations, i.c.,

af.. . +3f.—f;
f.=f4+1 fzf;

+2 2
; 3 Ax +0 (Ax%) (I1-75)

_ 4fi+2+2fi"5fi+l-fi+3
= 2

f +0 (Ax®)

(11-76)

where i may correspond to a boundary point. Part of the algorithm involves
differentiation of a function. This is done using (II-73)-(II-74) at the interior points and
(11-75)-(I1-76) at the boundaries whenever it is necessary.

The discretized equations are solved by means of ADI solution procedure
consisting of a sweep for u and v in the x-direction followed by a similar sweep in the
z-direction, which is then followed by updating the pressure and its derivatives using

the implicit form of pressure Dirichlet condition (II-72). The x-sweep for u utilizes x-



115

momentum (I1-69) combined with (II-73)-(1I-74) at interior points, and with (II-75)-

(11-76) and appropriate boundary conditions at the boundary points, to evaluate
U, u, u,, atanew time level (n + %). The x-sweep for v utilizes z-momentum (II-70)
combined similarly with the (II-73)-(II-76) and the boundary conditions to evaluate
V, V,, V,, at a new time level (2 + %). The z-sweep for u utilizes x-momentum (I1-69)

combined with (II-73)-(II-76) and appropriate boundary conditions, to evaluate

U, U, u,, at a next time level (n+1). The z-sweep for v is similar and leads to
determination of v, v,, v,, at time level (n+ 1). The pressure at time level (n+ 1) is

evaluated from (II-71) at the interior points and (II-72) at the boundaries.

The derivatives of p,, p, required for initiation of the next ADI step are

evaluated through numerical differentiation of p** !, This is done with the help of the
formulae (II-73) at the interior points and (II-75) at the boundary points. The parameter
At, c? are selected to assure the stability of the numerical process of fast rate of

convergence to a steady state. These may be referred to the results given in Part 1.

( pp.63 and pp.68 )




CHAPTER 4: NUMERICAL RESULTS

4.1 Numerical Algorithm and Its Accuracy

Accurate evaluation of interface deformation requires knowledge of pressure and
velocity at the interface (See Eq.(II-53)). The field equations (II-45)-(I1-47) are
supplemented by the Dirichlet-type boundary conditions for velocity while there are no
boundary conditions for pressure. As discussed earlier, this lack of the pressure
boundary conditions has been recognized as a major difficulty in numerical solution of
the Navier-Stokes equations in terms of primitive variables. The common way to
surmount this problem in finite difference method is to set up the staggered mesh in the
discretization scheme, i.e., Marker-and-Cell mesh introduced by Harlow and We
(1967), Projection method by Chorin (1968) and etc. These are among the many
methods characterized by the appropriate treatment of the pressure conditions.
However, these methods may not be applicable to the moving boundary flow problem
since both velocity and pressure at the interface need to be determined.

We have introduced an algorithm that involves primitive variable formulation
in which the equation of motion are solved directly for the unknown velocities and
pressure. T... pressure is determined using the concept of artificial compressibility
with its modified implicit boundary condition. The method is designated as Zero
Perturbation Method (see Part I). The principle of this method is to consider steady
solution as the limit when t —»e of the solution of unsteady equations associated with

a perturbed divergence equation.
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In our finite difference approach, the second-order discretization scheme is

utilized incorporated with the ADI solution procedure for solving field equations. The

parameters At, c? are selected to assure stability of the numerical process and fast rate of

approach to a steady state. The appropriate values depend on the curvature of the
interface. For a typical case of x =0, 21x21 grid, At =0.03 and At 2= 0.03. The

maximum divergence of the velocity field after 500 iterations was |Ve V| <5 x 10~> and

the maximum change of the velocity components were less than 1077 The algorithm

required 0.77 sec. of CPU time per full ADI step on SUN microsystems (Sparc 1*).

The Zero Perturbation Method described above has a consistent accuracy for all
solution variables. Table II-I reproduces the expected values of convergence rate ¢, i.c.,
for second-order approach @ = 2, based on three different grids. The value of x
represents the curvature of the initial interface.

The algorithm, as presented for small Reynolds limit, is easily upgraded to a more
general class of flows. There are some advantages of this asymptotic approach. First all,
its procedure of solving the field equations is completely the same as the Picard approach.
Picard method is suitable for the solution of the free surface flow with an arbitrary surface
tension. It involves an iterative process leading to the determination of the form of the
interface and flow field simultaneously which is slightly different from present approach
for solving the normal stress equation: in the Picard approach a form of the interface is
assumed, then the governing equations are solved without enforcing the normal stress
boundary condition at the interface which is subsequently used to deduce

a new guess for the form of the interface. Secondly, the more general consideration of
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TABLE II-1

Convergence Rates for Free Surface Flow with Curved Interface

Curved Interface
v P h
x=1.088
G20-G30-G40 1.97 1.98 2.14 2.00
G20-G50-G80 1.99 1.99 2.04 2.00
Flat Interface
x=0.0 u v P h
G30-G50-G80 1.99 2.01 1.96 2.00
G40-G80-G100 1.99 2.01 2.07 2.00
Curved Interface u v h
x= —1.088 P
G30-G40-G50 1.94 2.03 2.08 2.00
G20-G40-G80 2.00 1.99 2.11 2.00

Note: The first column gives the nubmer of grid points used in calculating
the convergence rate. The number of grid points in x and y directions

is the same.
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small or medium Reynolds number flows is not very difficult except the complication
of the algebraic system of equations involved. In that case, the solutions will not be
symmetric.

There is a limitation on the performance of the algorithm. The convergence was
difficult to obtain for the large curvature, i.e., x> 1.088 (where -2 < x < 2), where the
corner singularitics appear in the two upper corners at the contact points. This may
attribute to the fact that the shear stress is discontinuous at the contact point. The
alternative assumption of the contact line with the solid wall is necessary for this
problem since the local similarity analysis indicate the infinite pressure occurs at the
contact point if the contact point is attached at the wall. We may also use the local
analytical solutions to incorporate the numerical algorithm for the accurate and stable

solution.

4.2 The Flow Patterns
The system of the ficld equations (II-45)-(1I-47) and boundary conditions (II-48)-

(II-52) essentially involves with a meniscus problem in which the interface has to be a
surface of constant curvature. Consequently, this problem becomes a cavity flow
problem with the upper surface rigid. Physically, we may interpret it as the case of
strong capillary effects, i.e., large surface tension. The structures of such flow field will
be given below.

Streamlines associated with the flow field in the curvatures of x = 1.088, x =0.0

and x =-1.088 are shown in Figure 2.3. The flow is driven by a velocity of 16[x(l-x)]2
at the bottom from left to right. When the fluid approaches the right wall, it turns
towards the free surface and flows back along the surface line forming a vortex,



120

Streamiing Contours 1n Free Surdoce Fiow K=l OBS

OO NNONNIONNN NN
7777777777777 7/

(a) Surface Bulge-in

Streamiing Corlours in Free Surfocs Flow, Ku0.D Sireomhne S3MEas n Frae Surlace Flow am—® 028

)

N ™~
\ ~
7 N N\
/] N /) N
f; \ 7 :
/ N N
/] NZ N
/) t ? S~
7 N7 N
/ N N
/] /
/ b >
(b) Surface Flat (c) Surface Bulge-out

Figure 2.3 Streamline Flow Patterns for the Free Surface Flow with a

Rigid Top. K’s Represent the Constant Curvatures.




121

symmetric with respect to a vertical line passing through the centre. The centre of the
vortex is located approximately one fifth of its height above the bottom line.

Figure 2.4 and Figure 2.5 are the vorticity contours and surfaces respectively.
The maximum vorticity occurs at the bottom of the cavity. The maximum values are
Omax = 7.4013, Wpax = 7.2047 and Wy, = 7.0377 for the cases of x = 1.088, ¥ =0.0
and « = -1.088 respectively, in which the cases represent the interface of bulge-in, flat
and bulge-out. The vorticity distributions for the three cases are almost similar except
different near the top. The different geometry causes the different vorticity distribution
along the free surface line. The values of the vorticities on the free surface change from
negative to positive for the three cases, i.c., at the centre of the surface s, =-0.2365,
Wpigs = -0.0244 and ®yy = 0.0718. It can be seen from the contour figure that the zero
vorticity lines for bulge-out case are “open” along the surface line while others are
“closed”. The pressure contours and distribution surfaces are shown in Figure 2.6 and
Figure 2.7. The high variations of pressure occur at the bottom of the cavity. The
maximum pressure is at the right bottom comer and minimum at the left. Their
maximum values for three cases are Py, = 9.726, Py = 9.715 and Py = 9.727 while
the minimum values are the negative signs of the cases due to symmetry. Both pressure
distributions are higher when the constant curvature is not equal to zero. The pressure
distribution along the surface line are quite different with bulge-in and bulge-out. The
former has smaller variations and pressures decrease from right to left. However, in the
bulge-out case, its pressure changes are relatively higher and pressures increase from

right to left.
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4.3 The Deformation of Free Surface
Equation (II-58) describing surface deformation after transformation can be written in the
form of
Ry +G(X) by, = H(x,p) , -7
where
-1

G(x) = —3hghoy (1+h2) (I1-78)

and

2

H(up) = -p+é
(%p) P e

{ (vz— hx“z) + hx (- hvx + zhxvz + hx(’"‘x' ’hx"z) )}

11-79)
In the above, p stands for the pressure ficld determined numerically from the field equations.

There is an additive constant ¢ included in pressure p that still needs to be determined. The
appropriate boundary conditions are cither the fixed contact line conditions (II-57) or the
fixed angle conditions. In addition, the solution has to satisfy the volumetric constraint
condition (II-56) which gives the extra equation for the constant c. We note that (II-77) with
its boundary conditions (II-56)-(II-57) are valid for arbitrary Reynolds numbers. Our
conclusions regarding the qualitative form of the surface deformation are generally valid,
however our quantitative results are limited only to the case of Stokes flow, as discussed

throughout Part II. Our major interests are on the variations of surface deformation 4, as

function of the curvature x and the different values of the capillary numbers e (or T).
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The numerical algorithm involves the numerical determination of the surface
deformation A, incorporated with an integral equation (II-56) by discrete evaluation.
We have selected the trapezoidal rule to evaluate the integral. Numerical approximation
associated with such a procedure are second-order accuracy and is consistent with the
error of the algorithm used to determine the required flow fields.

Figure 2.8, Figure 2.9 and Figure 2.10 illustrate surface deformation of the
cavity flow with the cases of bulge-in, flat and bulge-out for two different capillary
numbers. The deformation is anti-symmetric with right side bulging out and left
buldging in. Such deformation is a result of three competing effects. The first one is a
dynamic effect associated with the motion of the liquid. The induced pressure gradient
gives rise to a higher pressure at the bottom from left to right which causes the fluid .0
circulate. The second effect is a constant effect of curvature pressure caused by the
curvature of the interface. This effect is relatively small in the present calculations. The
third effect arises due to variations in surface tension that results in a capillary pressure
gradient. The dynamic effect is strongest in the present case and leads to a bulge at the
left top of the free surface.

The present results are only providing the moderate cases of the capillary
number, curvature of the interface and driven velocities since the purpose of this thesis
is to test the accuracy of the numerical algorithm. It will be interesting to carry some
numerical calculations on the extreme cases in which it may be able to predict break-
up of the interface. The asymptotic approach is only valid for small capillary numbers,

therefore, direct solution is also necessary for solving this type of flow problems.




CHAPTER 5: SUMMARY

We have provided a detailed description of our accurate and reliable algorithm for

simulation of moving capillary surfaces by using the Zero Perturbation Method in
which the pressure problem has been completely eliminated. In chapter two we have
described a model problem that is used to test our algorithm. In chapter three we have
described a solution procedure valid in the limit of large surface tension. The algorithms
used to s;blvc field equations have been tested and its accuracies were verified through
convergence rate analysis. The numerical results were found to be in good agreement
with the corresponding theory discussed in Part 1.

Throughout this part of the thesis, we have carried out an asymptotic approach
oi the free surface flow in a driven cavity in the absence of gravitational forces in the
limit of small Capillary number. Such a situation arises when the surface tension is very
large as compared to all other physical variables. The flow motion is considered to be
steady in the present case. The small dcformation theory is applied to decouple surface
deformation from the field equations describing the motion of the liquid. The leading
order of the approximation for the Young-Laplace equation (or normal stress condition)
is obtained. The detailed analysis of the structure of the flow field as well as the surface

deformation with the variation of the capillary number are given.
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APPENDIX A: Programs for the Navier-Stokes Equations
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* MAIN PROGRAM FOR SOLVING THE DRIVEN CAVITY FLOW
* USING STREAM FUNCTION-VORTICITY FORMULATION
* MA’S UPWIND SCHEME IS USED FOR HIGH REYNOLDS FLOW
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (LN=21)
DIMENSION B(LN),D(LN),E(LN),XSIO(LN,LN),
1 PSIO(LN,LN),XSI(LN,LN),PSI(LN,LN),
1 FPSI(LN),FXSI(LN),X(LN),Z(LN)
DIMENSION B1(LN),D1(LN),E1(LN)
DATA EER,RE/1E-6,100/
OPEN(2,FILE="s.dat0")
M=21
N=21
WRITE(*,*) 'M=? N=? KITE=? RE=? AF=? W=""
READ(*,*) M,N KITE,RE, AF,W
DX=1D0/(M-1D0)
DZ=1D0/(N-1D0)
63 FORMAT(3F12.7,1X,E12.6)
WRITE(*,63)DX,DZ,RE,EER
DO 900 I=1.M
900 X(D)=(I-1)*DX
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DO 901 J=1,N

901 Z(J)=(J-1)*DZ
DX1=1D0/DX
DZ1=1D0/DZ
DX2=1D0/DX/DX
DZ2=1D0/DZ/DZ

DO 903 I=1. M
DO %04 J=1,N
PSI(1,7)=0D0
XSI(1.))=0DO0
904 CONTINUE
903 CONTINUE
c
C DO9%SIJ=1N
C DO9%SI=IM
C READ(2,*)PSI(1J),XSI(1,J)
C905 CONTINUE
DO 911 I=1M
D1(D=0D0
BI(D)=0D0
E1()=0D0
D(D=0D0
B()=0D0
911 ED=0D0

90 CONTINUE



134

MOD2=MOD(ITE, KITE)
IF (MOD2.EQ.0) THEN
DO 737 I=1.M
DO 738J=1N
PSI0(1,))=PSI(.])
XSIOI))=XSI(LJ)

738 CONTINUE

737 CONTINUE
ENDIF

MB=2
NB=2
NE=N-1
ME=M-1

C BOUNDARY CONDITIONS: J=2 OR N-1
DO 1005 I=2,M-1
XSI(1,2)=-(-2D0*PSI(1,2)+PSI(1,1)+PSI(1,3))*DZ2
1 -(-2DO*PSI(1,2)+PSI(I-1,2)+PSI(1+1,2))*DX2
PSI(1,2)=PSI(1,3)/4D0
1005 CONTINUE

DO 1777 I=3,M-2
D(D=DX2
B(D)=-2D0*DX2-2D0*DZ2
E(M)=DX2

1777 CONTINUE

DO 1001 J=3,N-2
IMi=]-1
JP1=3+1
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DO 2001 I=3,M-2
Pl=I+1
IM1=I-1
U=(PSI(LJP1)-PS1(1,JM1))*DZ1/2D0
V=-(PSI(IP1.J)-PSI(IM1,)))*DX1/2D0
IF (U.GE.0) THEN
D1(D=DZ2
B1(I)=-2D0*DZ2-2D0*DX2-RE/W+(1-AF)*RE*DX1*U/2D0
E1(1)=DZ2-(1-AF*RE*DX1*U/2D0
FXSI(I)=-(XSI(1,JP1)+XSI(1,JM1))*DZ2-RE*XSI(L,J)/W
1 +(1+AF)*RE*DX1*U*(XSI(1,J)-XSI(IM1,1))/2D0
ELSE
E1()=DZ2
B1(D=-2D0*DZ2-2D0*DX2-RE/W-(1+AF)*RE*DX1*U/2D0
D1()=DZ2+(1+AF)*RE*DX1*U/2D0
FXSIM)=-(XSKLIP1)+XSI(1,JM1))*DZ2-RE*XSIIJYyW
1 +(1-AF)*RE*DX1*U*(XSI(IP1,J)-XSI(,J))/2D0O
ENDIF
FXSI(D=FXSI()
1 +(1-AF)*RE*DZ1*V*(XS1(1,JP1)-XSI(1,]))/2D0
1 +(1+AF)*RE*DZ1*V*(XSI(1J)-XSI1(1.JM1))/2D0

FPSI(D)=-(PSI(I,JP1)+PSI(I,IM1))*DZ2
1 -XSIA))
2001 CONTINUE
D(2)=0D0
B(2)=-2D0*DX1
E(2)=DX1/2D0
D(M-1)=-DX1/2D0
B(M-1)=2D0*DX1
E(M-1)=0D0
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FPS1(2)=0D0
FPSI(M-1)=0D0
CALL THOMSX(D,B,E ,FPSLJ,M,N,MB ,ME,PSI)
D1(2)=0D0
B1(2)=1D0
E1(2)=0D0
D1(M-1)=0D0
B1(M-1)=1D0
E1(M-1)=0D0
FXSI(2)=-(-2D0*PSI(2,7)+PSI(1,1)+PSI(3,1))*DZ2
1 -(-2DO*PSI(2,))+PSI(2,J-1)+PSI(2,J+1))*DX2
FXSI(M-1)=-(-2D0*PSI(M-1,1)+PSI(M J)+PSI(M-2,1))*DZ2
1 -(-2DO*PSI(M-1,))+PSI(M-1,J-1)+PSI(M-1,J+1))*DX2
CALL THOMSX(D1,B1,E1,FXSLJ,M,N,MB ME, XSI)
1001 CONTINUE
C
DO 1006 I=2,M-1 °
XSI(N-1)=-(-2D0*PSI(I,N-1)+PSI(I,N-2)+PSI(I.N))*DZ2
1  -(-2DO*PSI(I,N-1)+PSI(I-1,N-1)+PSI(I+1,N-1))*DX2
PSI(IN-1)=-DX/2D0+PSI(I,N-2)/4D0
1006 CONTINUE

C Z-SWEEP:

DO 1778 J=3,N-2
D(J)=DX2
B()=-2D0*DX2-2D0*DZ2
E()=DX2
1778 CONTINUE
DO 1007 J=2,N-1
XSI1(2,1)=-(-2D0*PSI(2,1)+PSI(1,))+PSI(3,)))*DZ2
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1 -(-2D0*PSI(2,))+PSI(2,J-1)+PSI(2,J+1))*DX2
PSI(2,))=PSI(3,1)/4D0
1007 CONTINUE

C
DO 3010 I=3,M-2
IP1=I+1
IM1=]-1
DO 4100 J=3,N-2
JP1=]+1
M1=J-1
U=(PSI(1,J+1)-PSI(1,J-1))*DZ1/2D0
V=-(PSI(I+1,))-PSI(I-1,)))*DX1/2D0
IF (V.GE.0) THEN
D1(J)=DX2
" B1(J)=-2D0*DZ2-2D0*DX2-RE/W+(1-AF)*RE*DZ1*V/2D0
E1(5)=DX2-(1-AF)*RE*DZ1*V/2D0
FXSI(D=-(XSI(IP1,))+XSI(IM1,1))*DX2-RE*XSI(L.J)/W
1 +(1+AF)*RE*DZ1*V*(XSI(1,J)-XSI(1,JM1))/2D0
ELSE
E1()=DX2
B1(J)=-2D0*DZ2-2D0*DX2-RE/W-(1+AF)*RE*DZ1*V/2D0
D1(N)=DX2+(1+AF)*RE*DZ1*V/2D0
FXSI())=-(XSI(IP1,J)+XSI(IM1,)))*DX2-RE*XSI(L,])/W
1 +(1-AF)*RE*DZ1*V*(XSI(I,JP1)-XSI{1J))/2D0
ENDIF
FXSI())=FXSI(J)
1 +(1-AF)*RE*DX1*U*(XSI(IP1,J)-XSK(LJ))/2D0
1 +(1+AP)*RE*DX1*U*(XSKI,J)-XSI(IM1,)))/2D0
FPSI(J)=-(PSI(IP1,J)+PSI(IM1,)))*DZ2
1 -XSIA))




4100 CONTINUE

1

1

D(2)=0D0

B(2)=-2D0*DX1

E(2)=DX1/2D0

D(N-1)=-DX1/2D0

B(N-1)=2D0*DX1

E(N-1)=0D0

FPSI(2)=0D0

FPSI(N-1)=-1D0

CALL THOMSY(D,B.E,FPSL,ILM,N,NB,NE,PSI)

D1(2)=0D0

B1(2)=1D0

E1(2)=0D0

DI1(N-1)=0D0

B1(N-1)=1D0

E1(N-1)=0D0

FXSI(2)=-(-2D0*PSI(1,2)+PSI(I,1)+PSI(L,3))*DZ2
-(-2D0*PSI(1,2)+PSI(I-1,2)+PSI(1+1,2))*DX2

FXSI(N-1)=-(-2D0*PSI(IN-1)+PSI(I,N-2)+PSKI,N))*DZ2
-(-2DO*PSI(I,N-1)+PSI(I-1,N-1)+PSI(I+1,N-1))*DX2

CALL THOMSY(D1,B1,E1,FXSIIM,N,NB,NE,XSI)

3010 CONTINUE

1

DO 1008 J=2,N-1
XSI(M-1,J)=-(-2D0*PSI(M-1,0)+PSI(M,J)+PSI(M-2,]))*DZ2

-(-2D0*PSI(M-1,0)+PSI(M-1,J-1)+PSI(M-1,J+1))*DX2
PSIM-1,))=PSI(M-2,1)/4D0

1008 CONTINUE

c

C

IF (ITE.EQ.1) SE=1D0
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[F (MOD2.EQ.0) THEN
SE=0D0
DO 727 I=2,M-1
DO 728 J=2,N-1
SE1=DABS(PSI(1,J)-PSIO(,)))
IF (SE1.GT.SE) SE=SE1

728 CONTINUE

727 CONTINUE
DO 127 I=2,M-1
DO 128 J=2,N-1
SE1=DABS(XSI(L))-XSIXLJ))
IF (SE1.GT.SE) SE=SE1

128 CONTINUE

127 CONTINUE.
END IF
IF (MOD2.EQ.0) THEN
WRITE(6,81)SE,ITE

81 FORMAT(10X,’SE="E16.10,20X,'ITE=",19)
END IF
IF (SE.LT.EER) GOTO 95

MOD3=MOD(ITE,10*KITE)
IF(MOD3.EQ.0) THEN
DO 7223 J=1,N
WRITE(2,’(10X)")
DO 7222 I1=1. M
WRITE(2,4141)PSI(1,J),XSI(L,J)
7222 CONTINUE
7223 CONTINUE
REWIND 2
END IF



ITE=ITE+1

GOTO %0
Cc
c
95 CONTINUE
DO 420 I=2,M-1
XSI(1,1)=(2D0*XSI(1.2)-XS1(,3))
XSILM)=(2D0*XSI(,M-1)-XSKL,M-2))
420 CONTINUE .
DO 430 J=1,N
XSI(1N)=(2D0*XSI(2.1)-XSI(3.))
XSI(N,J)=(2DO*XSI(N-1,1)-XSI(N-2,1))
430 CONTINUE

DO 9223 J=1,N

WRITE(2,’(10X)")

DO 9222 I=1,M

WRITE(2,4141) PSI(LT).XSI(J)
9222 CONTINUE
9223 CONTINUE
4141 FORMAT(10X,D20.14,3X,D20.14)

STOP
END

SUBROUTINE THOMSX(D,B.E,FUV,J,M,N,MB,ME,UV)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (LN=21)

DIMENSION D(LN),B(LN),E(LN),FUV(LN),UV(LN,LN),
1 R(LN),S(LN)




FMB=FUV(MB)
FME=FUV(ME)
FUV(MB)=FMB-D(MB)*UV(MB-!,])
FUV(ME)=FME-E(ME)*UV(ME+1,])
R(MB)=FUV(MB)/B(MB)
S(MB)=-E(MB)/B(MB)
DO 2543 K=MB+1,ME
KMI1=K-1
RS=B(K)+D(K)*S(KM1)
R(K)=(FUV(K)-D(K)*R(KM1))/RS
2543  S(K)=-E(K)/RS
UVMME,)=R(ME)
DO 2544 11=MB,ME-1
K=ME-1+MB-I1
254 UVEKD=UV(K+1,DH*SK)+R(K)
RETURN
END

SUBROUTINE THOMSY(D,B,E . FUV,,M,N,NB,NE,UV)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (LN=21)
DIMENSION D(LN),B(LN),E(LN),FUV(LN),UV(LN,LN),
1 RALN),SILN)
FNB=FUV(NB)
FNE=FUV(NE)
FUV(NB)=FNB-D(NB)*UV({i,NB-1)
FUV(NE)=FNE-E(NE)*UV(I,NE+1)
R(NB)=FUV(NB)/B(NB)
S(NB)=-E(NB)/B(NB)
DO 2543 K=NB+1,NE

141




142

KM1=K-1
RS=B(K)+D(K)*S(KM1)
R(K)=(FUV(K)-D(K)*R(KM1))/RS
2543 S(K)=-E(K)/RS
UV(,NE)=R(NE)
DO 2544 11=NB,NE-1
K=NE-1+NB-I1
2544 UV K)=UV(IK+1)*S(K)+R(K)
RETURN
END



APPENDIX B: Programs for Free Surface Flows
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* MAIN PROGRAM FOR SOLVING THE FREE SURFACE FLOW
* LARGE SURFACE TENSION AND SMALL REYNOLDS LIMIT CASE
* NUMERICAL METHOD : ASYMTOTIC APPROACH

* T --- CAPILLARY NUMBER

* H --—-- INITIAL POSITION OF INTERFACE

* H1l ---- CORRECTION OF SURFACE DEFORMATION

* Vm ---- GIVEN VOLUME TO DETERMINE INITIAL INTERFACE H

* PSQO ---- CURVATURE OF THE INITIAL INTERFACE
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IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (N1=21,M1=21)
DIMENSION B(N1),D(N1),E(N1),HI(M1),
1 FAN(M1),FBN(M1),FCN(M1),FU(N1),FV(N1),
1 US(M1,N1),VS(M1,N1),PS(M1,N1)
COMMON /U/UMI1,N1)/V/V(M1,N1)
1 /H/MAM1),HHM1)/HX/HX(M1), HXX(M1),HXHX(M1),
1 HXXH(MI1),HXH(M1)/P/P(M1,N1)
1 /XZ/X(M1),Z(M1)/DXZ/DX,DZ/WW/W
1 /DPB/PX1J(M1),PXMI(M1),PZ1J(M1),PZMI(M1),
1 PXI1(M1),PXIN(M1),PZI1(M1),PZIN(M1)
DATA HL,HR,W,CP,CN,KX,M,N/1D0,1D0,1D0,1D0,1D0,0,21,21/
OPEN(1,FILE="s.dat0")
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WRITE(6,1)

1 FORMAT(15X,” T=?DT=? EER=? VM=? KITE=""/))

13 FORMAT(15X,’ DX=? T=? DT=? ERR=? Vm=? KITE="/))
WRITE(2,13)

63 FORMAT(2F14.7,1X,E12.5,5X,F10.5,2X,E10.4/)
READ(*,*)T.DT.EER,VM,KITE
DX=1D0/(DBLE(M)-1D0)
DZ=1D0/(DBLE(N)-1D0)
WRITE(2,63)DX,CPDT,EER,W,VM
WRITE(6,63)DX,CP.DT,EER,W,VM
WRITE(2,’(25X,3HKK=,19//)")KITE
KMM=INT(1D-1/DX)

DO 900 I=1 M

900 X(D=(I-1)*DX
DO 901 J=1,N

901 Z(N)=(J-1)*DZ
LI=(M-1)/2+1+KX
LJ=(N-1)/2+14KX
PI=4D0*DATAN(1D0)

DX1=1D0/DX
DZ1=1D0/DZ
DX2=1D0/DX/DX
DZ2=1D0/DZ/DZ
H(1)=

HM)=HR

DO 119 1=2M-1

119 H()=1D0
PS0=0D0
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* SUBROUTINE HOPS SOLVES H(I) AND £S0 WITH GIVEN VALUES
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* OF HL,HR (HIGHT OF THE CAVITY) AND VM (VOLUME COF LIQUID)
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CALL HOPS(H,PSO,VM,HL.,HR, DX M)
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*  READ INITIAL U,V,P FROM FILE OR CALCULATED BY ITSELF
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DO 903 J=1,N
DO 904 I=1M
READ(1,*)U(L)),V(L)).P(L)
904 CONTINUE
903 CONTINUE

c

¢ DO9%03I1=1,M

¢ UL0=16D0*X{M)*X(M)*(1D0-XD)*(1D0-X(1))
¢ DO9%04I1=1N

¢ U@n=uno

¢ V(@1)=0D0

¢ PALN=1DO

c904 CONTINUE

¢903 CONTINUE
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*  CALCULATE THE INITIAL VALUES, LE., PRESSURE DERIVATIVES
* THE DERIVATIVES OF H(I) ARE FIXED THROUGHOUT
* THE ITERATION.
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ITE=0
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CALL PRESSURE(DTM,N,CPDX1,DZ1,ITE)

ITE=1

HX(1)=(4DO*H(2)-3D0*H(1)-H(3))*DX1/2D0
HX(M)=(3DO*H(M)+H(M-2)-4D0*H(M-1))*DX 1/2D0
DO 347 I=2,M-1
HX(D=(H(1+1)-H(I-1))*DX1/2D0
HXX(T)y=(H(I+1)-2DO*H(D+H(I-1))*DX2
347 CONTINUE
HXX(1)=(2D0*H(1)-SDO*H(2)+4D0*H(3)-H(4))*DX2
HXX(M)=(2D0*H(M)-SDO*H(M-1)+4D0*H(M-2)-H(M-3))*DX2
DO 348 I=1,M
HH(D=HO*H)
HXHI)=HI)*HX(I)
HXHX(T)=HXT)*HX(T)
HXXH(D=HXX@)*H(D)
FAN(D=(1D0-HXHX(D)*HXXH(T)
FBN(D)=-(1 DO+ HXHX (D))*HXH(T)
FCN(D=(1D0+HXHX(D))*(1D0-+HXHX(T))
348 CONTINUE
C
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*  LOOP STARTS HERE
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90 CONTINUE
C

DO 737 I=1 M
DO 738 J=1,N
US(LDH=U(L))
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PS(L.N)=P(LJ)

VS(LND=V(J))
738 CONTINUE
737 CONTINUE
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«  X-SWEEP:
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MM1=M-1
DO 1001 J=2,N-1
Z2)=Z2()*Z()
Ml=J-1
JP1=J+1
DO 2001 I=2,MM1
IP1=[+1
IMi=l-1
UXZU=(U(P1,JP1)+UAM1,JM1)-U(IP1,J]M1)-U(IM1,JP1))/DZ/DX/4D0
VXZU=(V({IP1,JP1)}+V(IM1,JM1)-V(IP1,]M1)-V(IM1,/P1))/DZ/DX/4D0
PXU=(P(IP1,J)-P(IM1,3))*DX1/2D0 '
PZU=(P(I,JP1)-P(I]M1))*DZ1/2D0
E1=HH(T)*DX2
E2=ZJ*HXHX(I)*DZ2+DZ2
E3=(2D0*Z(J)*HXHX(I)-Z(J)* HXXH(I))*DZ1
E4=HH(I)*U(LJ)/DT-PXU*HH()+
1 Z()*HXH®@*PZU-2D0*Z()*HXH()*UXZL
ES=HH(*V(LJ/DT-PZU*H{)-
1  2D0*Z(Jy*HXH()*VXZL
D(D)=-El
B(I)=HH(I)/DT+2D0*E1+2D0*E2
E(l)=-E1
AU=(-E2+E3/2D0)*U(I,]M1)
=(-E2-E3/2D0)*U(LJP1)




AV=(-E2+E3/2D0)*V(I,]M1)
CV=(-E2-E3/2D0)*V(1,JP1)
FU()=E4-AU-CU
FV(D=ES-AV-CV
2001 CONTINUE
CALL THOMASX(D,B E.FU,JM.N,U)
CALL THOMASX(D,B.E.FV.J,M,N,V)
1001 CONTINUE
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*  BOUNDARY CONDITIONS
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c
c J=r
c
DO 6122 I=2,M-1
E1=(HXHX(I)+1D0)*DZ1/H(I)/2D0
Va=(V(I+1,N)-V(I1-1,N))*DX1/2D0
VZ=(3D0*V(ILN)+V(I,N-2)-4D0*V(I,N-1))*DZ1/2D0
D(D=-HX()*DX1
B(D=-3D0*E1
E(D=HX(D*DX1
FU(D=E1*(U(I,N-2)-4D0*U(1,N-1))+2DO*HX(T)*VZ/H(I)
1 +(1D0-HX(I*HX[D)*(VX-HX(I)*VZ/H())
c  UM=(DO*Ud-1,N)+E@)*Ud+1,N)-FUD)/BD)
6122 CONTINUE
CALL THOMASX(D,B,E ,FU,N.M,N,U)
DO 2015 I=1.M
2015  VIN)=HXM*U(,N)
c
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*  Z-SWEEP:
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DO 3010 I=2,MM1
IP1=[+1
M1=l-1

DO 2100 J=2,N-1
JP1=]+1
Ml=J-1
UXZU=(U(P1,JP1)+U(IM1,JM1)-U(IP1,JM1)-U(IM1,IP1))/DZ/DX/4D0
vVXZU=(V(IP1,JP1)+V(IM1,M1D)-V(IP1,JM1)-V(IM1,JP1))/DZ/DX/4D0
PXU=(P(IP1,])-P(IM1.J))*DX1/2D0
PZ1J=(P(1,JP1)-P(1JM1))*DZ1/2D0
El=HH()*DX2
E2=Z()*Z(J)*HXHXT)*DZ2+DZ2
E3=(2D0*Z(J)*HXHX(D)-Z(J)*HXXH(I))*DZ1
E4=HH(D)*U(1,J)/DT-PXIJ*HH(T)+

1  Z@)*HXH(I)*PZIJ-2D0*Z(J)*HXH(I)*UXZl)
ES=HH(D*V(1,J)/DT-PZU*H()-
1 2DO*Z()*HXH()*VXZl
D())=-E2+E3/2D0
B()=HH(I)/DT+2D0*E1+2D0*E2
E(J)=-E2-E3/2D0
DU=-E1*U(IM1,))
EU=-E1*U(IP1,))
DV=-E1*V(IM1,])
EV=-E1*V(IP1,))
FU())=E4-DU-EU
FV())=ES-DV-EV
2100 CONTINUE

Bl o s b s e o e o e ol o e e o e o o o o 3 s e o e o e o o o e o e o e o

*  BOUNDARY CONDITIONS
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U@, D=16*XD)*X(1)*(1D0-X(1))*(1D0-X (1))
FU(2)=FU(2)-D)*U(,1)
El=HX{D*HX(D)+1D0)*DZ1/H()/2D0
VX=(V(@+1,N)-V(I-1,N))*DX1/2D0
VZ=(3D0*V(I,N)+V(I,N-2)-4D0*V(I,N-1))*DZ1/2D0
DN=-El
BN=4D0*E]
EN=-3D0*E1
FUN=-HX@*(U(I+1,N)-U(-1,N))*DX 1+2D0*HX (T)* VZ/H(T)
1 +(1DO-HXI*HXD)*(VX-HX{D)*VZ/H())

DV=D(N-1)
BV=B(N-1)
D(N-1)=EN*D(N-1)-DN*E(N-1)
B(N-1)=EN*B(N-1)-BN*E(N-1)
FU(N-1)=EN*FU(N-1)-FUN*E(N-1)
CALL THOMASY(D,B.E,FUIMN,U)
U(.N)=(FUN-DN*U(I,N-2)-BN*U(I.N-1)/EN
VAN)=HXM*U{IN)
V(1,1)=0D0
FV(N-1)=FV(N-1)-E(N-1)*V(I,N)
D(N-1)=DV
B(N-1)=BV
CALL THOMASY(D,B,E,FVILM,N,V)

3010 CONTINUE

C

C

c

C
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*  UPDATING THE NEW PRESSURE USING ARTIFICIAL
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*  COMPRESSIBILITY METHOD WITH MODIFIED
*  BOUNDARY CONDITION FOR PRESSURE
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CALL PRESSURE(DTM,N,CP,DX1,DZ1,ITE)
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*  CHECKING CONVERGENCE
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SE=0D0
DO 727 I=2,M-1
DO 728 J=2,N
SE1=DABS(U(J)-US(L)))
IF (SE1.GT.SE) SE=SE1
728 CONTINUE
727 CONTINUE
DO 127 I=2,M-1
DO 128 J=2,N
SE1=DABS(V(LJ)-VS(L)))
IF (SE1.GT.SE) SE=SE1
128 CONTINUE
127 CONTINUE
DO 227 1=1,M
DO 228 J=1,N
SE1=DABS(P(I.J)-PS(1J))
IF (SE1.GT.SE) SE=SE1
228 CONTINUE
227 CONTINUE
MOD3=MOD(ITE KITE)
IF (MOD3.EQ.0) THEN
WRITE(6,81)SE,ITE
81 FORMAT(10X,’SE=",E16.10,20X, ITE=",19)
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END IF

IF (SE.LT.EER) GOTO 95

MOD2=MOD(ITE,10*KITE)
IFAMOD2.EQ.0) THEN
DO 7223 J=1,N
WRITE(1,’(10X)")
DO 7222 1=1, M
WRITE(1,211 DU, VAD,PLY)
7222 CONTINUE
7223 CONTINUE
REWIND 1
END IF

ITE=ITE+1

GOTO 90

kR RBEhbkk kbbb bk bbb Rkt h bbb kb bk bk kbbb bbb b kbbb hhb bbb

. CALCULATING H1 CORRECTION OF SURFACE DEFORMATION
*  USING SUBROUTINE HORDER2 WHICH IS A SECOND
* ORDER O.D.E.

khhkkhhbhkh kbbb hhhkkbhb bbbk kb kbbb hhk kb kbbb kbbb k kb kkk

95 LM=(M-1)/2+1
PIN=P(LM,N)
DO 422 1=1 M
PPIN=P(I,N)
P(I,N)=PPIN-PIN

422 CONTINUE
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CALL HORDER2(H1,M,N.CN)
DO 500 I=1, M
PPIN=P(I,N)
P(",N)=PPIN+PIN
500 CONTINUE
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*  WRITING RESULTS
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REWIND 1
DO 5223 J=1,N
WRITE(1,’(10X)")
DO 5222 I=1, M
WRITE(1,211 HUAD, VAP
5222 CONTINUE
5223 CONTINUE
DO 301 I=1. M
WRITE(1,’(10X,F15.7)")H(T)
301 CONTINUE
WRITE(1,’(//10X,7HRESULT=/))")
WRITE(1,’(10X,3HDX=,F15.7)")DX
WRITE(1,’(/5X,4F15.7/))")T,5D0*T, 10D0*T,50D0* T
DO 4223 I=1, M
- WRITE(1,210)YHO+HI(D*T),H(D+H1D)*T*5DO),
1 HO-+H1(1)*T*10D0), H(D+H1T)*T*50D0)
4223 CONTINUE
2101 FORMAT(3X,4F15.9)
2111 FORMAT(10X,D20.14,3X,D20.14,3X,D20.14)
STOP
END
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* SUBROUTINES START HERE
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SUBROUTINE COEFF(W,A,B,K0)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /DXZ/DX,DZ

[F (K0.EQ.1) THEN
A=(2D0*DX-2D0*W)/(DX*DX)
B=-(DX-2D0*W)/(2*DX*DX)
END IF

IF (K0.EQ.-1) THEN
A=-(2D0*DX-2D0*W)/(DX*DX)
B=(DX-2D0*W)/(2*DX*DX)
ENDIF

RETURN

END

SUBROUTINE PRESSURE(DTM,N,CP,DX1,DZ1,ITE)
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (N1=21M1=21)
COMMON /U/UM1,N1)/V/V(M1,N1yYHHM1),HHM]1)
1 /HX/HX(M1)HXX(M1) HXHX(M1) HXXHM1), HXH(M1)
1 /P/P(M1,N1)/XZ/X(M1),Z(N1)/WW/W/DXZ/DX,DZ
1 /DPB/PX1J(N1),PXMIJ(N1),PZ1J(N1),PZMIJ(N1),
¢ PXI1(M1),PXIN(M1),PZI1(M1),PZIN(M1)
LM=INT(0.5D0*DX1+1D0)
IF (ITE.EQ.0) GOTO 125
DO 400 I=2,M-1
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DO 210 J=2,N-1
LLD=(UI+1,0)-U(1-1,]))*DX1/2D0
UZJ=(U(1,J+1)-U(LJ-1))*DZ1/2D0
VZU=(V(1J+1)-V(1,J-1))*DZ1/2D0
BCO=-UXU+(ZJ)*HX[D*UZLJ-VZII)/H()
PC=P(1,J)+BCO*CP*CP*DT
P(L))=PC

210 CONTINUE

400 CONTINUE

c :

c I=1:

CALL COEFF(W,A1,B1,1)

DO 420 J=1,N

TF (J.NE.N.OR.I.NE.1) THEN

UXZ=(4D0*U(2,J+1)-3D0*U(1,J+1)-U(3,J+1))*DX1*DZ1/4D0
1 -(4D0*U(2,J-1)-3D0*U(1,]-1)-U(3,J-1))*DX1*DZ1/4D0

VXZ=(4D0*V(2,J+1)-3D0*V(1,J+1)-V(3,J+1))*DX1*DZ1/4DO
1 -(4D0*V(2,J-1)-3D0*V(1,J-1)-V(3,J-1))*DX1*DZ1/4D0

END IF

IF (JJEQ.N) THEN
UXZ=3D0*(4D0*U(2,N)-3D0*U(1,N)-U(3,N))*DX1*DZ1/4D0

1 +(4D0*U(2,N-2)-3D0*U(1,N-2)-U(3,N-2))*DX1*DZ1/4D0

1 -4D0*(4D0*U(2,N-1)-3D0*U(1,N-1)-U(3,N-1)'*DX1*NZ1/4D0
VXZ=3D0*(4D0*V(2,N)-3D0*V(1,N)-V(3,N))*DX1*DZ1/4D0

1 +(4D0*V(2,N-2)-3D0*V(1,N-2)-V(3,N-2))*DX1*DZ1/4D0

1 -4D0*(4D0*V(2,N-1)-3D0*V(1,N-1)-V(3,N-1))*DX1*DZ1/4D0
END IF
IF J.LEQ.1) THEN
UXZ=4D0*(4D0*U(2,2)-3D0*U(1,2)-U(3,2))*DX1*DZ1/4D0
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1 -(4D0*U(2,3)-3D0*U(1,3)-U(3,3))*DX1*DZ1/4D0

1 -3D0*(4D0*U(2,1)-3D0*U(1,1)-U(3,1))*DX1*DZ1/4D0
VXZ=4D0*(4D0*V(2,2)-3D0*V(1,2)-V(3,2))*DX1*DZ1/4D0

1 -(4D0*V(2,3)-3D0*V(1,3)-V(3,3))*DX1*DZ1/4D0

1 -3D0*@D0*V(2,1)-3D0*V(1,1)-V(3,1))*DX1*DZ1/4D0
END IF

VXX1J=(4D0*V(3,])+2D0*V(1,])-5D0*V(2,J)-V(4,1))*DX1*DX1
VZI=W*(PZ1XJ)/H(1)+2D0*Z(J)*HX(1)*VXZ/H(1)-VXX1J)
UXD=B1*U3.))+A1*U(2.))-(A1+B1)*U(1,))

1 -W*(PX1I(D-Z()*HX(1)*PZ1IJ)/H(1)

1 +2D0*Z()*HX(1)*UXZ/H(1))

BCO=-UX1J-VZIJ
PC=P(1,])+BCO*CP*CP*DT

420 P(1,)=PC

C
c
c

I=M:

CALL COEFF(W,A2,B2,-1)
D0 430 J=1,N
IF (J.NE.N.OR.J.NE.1) THEN
UXZ=(3D0*U(M,J+1)+U(M-2,J+1)-4D0*U(M-1,J+1))*DX1*DZ1/4D0
1 -(3DO0*UM,I-1)+UM-2 J-1)-400*U(M-1,]J-1))*DX1*DZ1/4D0
VXZ=(3D0*V(M,J+1)+V(M-2 J+1)-4D0*V(M-1,J+1))*DX1*DZ1/4D0
1 -(3D0*V(M,J-1)+V(M-2,]J-1)-4D0*V(M-1,J-1))*DX1*DZ1/4D0
END IF
IF (J.EQ.N) THEN
UXZ=3D0*(3D0*U(M,N)+U(M-2,N)-4D0*U(M-1,N))*DX.*DZ1/4D0
1 +(3D0*U(M,N-2)+U(M-2,N-2)-4D0*U(M-1,N-2))*DX1*DZ1/4D0
1 -4D0*(3D0*U(M,N-1)+U(M-2,N-1)-4D0*U(M-1,N-1))*DX1*DZ1/4D0
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VXZ=3D0*(3D0*V(M,N)+V(M-2,N)-4D0*V(M-1,N))*DX1*DZ1/4D0

1 +(3D0*V(M,N-2)+V(M-2,N-2)-4D0*V(M-1,N-2))*DX1*DZ1/4D0

1 -4D0*(3D0*V(M,N-1)+V(M-2,N-1)-4D0*V(M-1,N-1))*DX1*DZ1/4D0
END IF
IF (J.EQ.1) THEN
UXZ=4D0*(3D0*U(M,2)+U(M-2,2)-4D0*U(M-1,2))*DX1*DZ1/4D0

1 -(3D0*U(M,3)+U(M-2,3)-4D0*U(M-1,3))*DX1*DZ1/4D0

1 -3D0*(3D0*U(M,1)+U(M-2,1)-4D0*U(M-1,1))*DX1*DZ1/4D0
VXZ=4D0*(3D0*V(M,2)+V(M-2,2)-4D0*V(M-1,2))*DX1*DZ1/4D0

1 -(3D0*V(M,3)+V(M-2,3)-4D0*V(M-1,3))*DX1*DZ1/4D0

1 -3D0*(3D0*V(M,1)+V(M-2,1)-4D0*V(M-1,1))*DX1*DZ1/4D0
END IF

VXXMI=(4D0*V(M-2,J)+2D0*V(M,))-SD0*V(M-1,J)-V(M-3,1))*DX1*DX 1
VZII=W*PZMI(QYHM)+2D0*Z(J)*HX(M)*VXZ/H(M)-VXXM))
UXU=B2*U(M-2,0)+A2*UM-1,))-(A2+B2)*UM,J)

1 +WPXMI(D)-ZJy*HX(M)*PZMI(T)/H(M)

1 +2D0*Z(J)*HX(M)*UXZ/H(M))

B(C0=-UX1J-VZIJ
PC=P(M,])+BCO*CP*CP*DT
P(M,))=PC

430 CONTINUE

c

c I=1:

C

DO 452 I=2,M-1
UZZI1=(4D0*U(1,3)+2D0*U(L,1)-SD0*U(1,2)-U(1,4))*DZ1*DZ1
IF (LLT.LM) THEN
UXD=-W*PXI1(D)-UZZI1/HH(D))

1 +B1*U(i+2,1)+A1*U(1+1,1)-(A1+B1)*U(l,1)
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END IF
IF (I.GE.LM) THEN
UXD=W*PXI1(I)-UZZI1/HH(I))

1 +B2*U(I-2,1)+A2*U(1-1,1)-(A2+B2)*U(1,1)
END IF
VZIJ=B1*V(1,3)+A1*V(1,2)-(A1+B1)*V(l,1)

1 -W*HD*PZI1(I)

BCO=-UX1J-VZI/H()
PC=P(1,1)+BCO*CP*CP*DT
P(L,1)=PC

452 CONTINUE

c

¢ =N:

DO 450 I=2 M-1
UXZ=(3D0*U(1+1,N)+U(I+1,N-2)-4D0*U(+1,N-1))*DX1*DZ1/4D0
1 -3D0*U(I-1,N)+U(I-1,N-2)-4D0*U(I-1,N-1))*DX1*DZ1/4D0
VXZ=(3D0*V(I+1,N)+V(I+1 N-2)-4D0*V(I1+1 ,N-1))*DX1*DZ1/4D0
1 -(3D0*V(I-1,N)+V(I-1,N-2)-4D0*V(I-1,N-1))*DX1*DZ1/4D0
UZZIN=(4D0*U(I,N-2)+2D0*U(I,N)-5DO*U(I,N-1)-U(I,N-3))*DZ1*DZ]1
UZIN=(3D0*U(I,N)+U({,N-2)-4D0*U(I,N-1))*DZ1/2D0
VZIN=(3D0*V(I,N)+V(I,N-2)-4D0*V(I,N-1))*DZ1/2D0
E1=(HXHX(T)+1DO0)/HH(T)
E2=2D0*HXHXA)/HH()-HXX1)/H()
XMR=E1*UZZIN+E2*UZIN-2DO*HX(D*UXZ/H(D)
IF (LLT.LM) THEN
UXD=B1*U(I+2,N)+A1*U(1+1,N)-(A1+B1)*U(I,N)
1 -WHPXIN)-HX(D)*PZIN(I/H(I)-XMR)
END IF
IF (1.GE.LM) THEN
UXU=B2*U(I-2,N)+A2*U(I-1,N)-(A2+B2)*U(I,N)
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1 +WH*PXINMD-HX(D)*PZND/H(D-XMR)
¢  UXD=(U(I+1,N)-U(-1,N))*DX1/2D0

END IF
IF (I.LT.LM) THEN
VXXIN=(4D0*V (1+2,N)+2D0*V(I,N)-5SD0*V(1+1,N)-V(1+3,N))*DX1*DX1
END IF
IF (I.GE.LM) THEN
VXXIN=(4D0*V(1-2,N)+2D0*V(I,N)-5D0*V(I-1,N)-V(I-3,N)»*DX 1*DX 1
END IF
ZMR=VXXIN+E2*VZIN-2DO*HX ()*VXZ/H(D)
VZ1J=B2*V(I,N-2)+A2*V(I,N-1)-(A2+B2)*V(I,N)

1 +W*(PZINO)/H(I)-ZMR)/E1
UZJ=UZIN

BCO=-UXU+HX(I)*UZU-VZIJ)/H(I)
PC=P(I,N)+BCO*CP*CP*DT
PAN)=PC

450 CONTINUE

c

c

125 DO 123J)=1,N
PX1J(1)=(4D0*P(2,)-3D0*P(1,J)-P(3,J))*DX1/2D0
PXMI()=(3D0*P(M,1)+P(M-2,1)-4D0*P(M-1,)))*DX1/2D0
[F (J.NE.N.AND.J.NE.1) THEN
PZ1J(N=(P(1,J+1)-P(1,J-1)*DZ1/2D0
PZMI(J)=(P(M,J+1)-P(M,J-1))*DZ1/2D0
END IF
IF (J.EQ.N) THEN
PZ1J(2)=(3D0*P(1,N)+P(1,N-2)-4D0*P(1,N-1))*DZ1/2D0
PZMI(J)=(3D0*P(M,N)+P(M,N-2)-4D0*P(M,N-1))*DZ1/2D0
END IF
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IF J.EQ.1) THEN
PZ1J(J)=(-3D0*P(1,1)-P(1,3)+4D0*P(1,2))*DZ1/2D0
PZMI(J)=(-3D0*P(M,1)-P(M,3)+4D0*P(M,2))*DZ1/2D0
END IF
123 CONTINUE
(o4
Cc
DO 124 I=1.M
PZI1(I)=(4D0*P(1,2)-3D0*P(1, 1)-P(1,3))*DZ1/2D0
PZIN(I)=(3D0*P(I,N)+P(I,N-2)-4DO*P(I,N-1))*DZ1/2D0
[F (LNE.1.AND.LNE.M) THEN
PXI1(D=(P(I+1,1)-P(-1,1))*DX1/2D0
PXIN(D=(P(I+1,N)-P(I-1,N))*DX1/2D0
END [F
IF (LEQ.1) THEN
PXT1(T)=(-3D0*P(1,1)-P(3,1)+4D0*P(2,1))*DX1/2D0
PXIN(D=(-3D0*P(1,N)-P(3,N)+4D0*P(2,N))*DX 1/2D0
END IF |
IF (LEQ.M) THEN
PX11(D)=(3D0*P(M,1)+P(M-2,1)-4D0*P(M-1,1))*DX1/2D0
PXIN(D=(3D0*P(M,N)+P(M-2,N)-4D0*P(M-1,N))*DX 1/2D0
END IF
124 CONTINUE
RETURN
END
SUBROUTINE HOPS(H.PS,VM,HL.HR,DX,M)
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (N1=21M1=21)
DIMENSION H(M),A(N1),B(N1),C(N1),D(N1),
1 E(N1),HX(N1),HO(N1),W(N1),G(N1)
77 DO ST I=1M




161

57 HO(D=H()
PS0=PS
DO 5 I=2M-1
HX([D=(H(+1)-H(-1))/DX/2D0
S CONTINUE
DO 10 [=2,M-1
I1=I-1
SO=HX(I)*HX(I)
S1=SQRT(1D0+S0)
$2=1.5DO*HX(I)*S1*PS*DX
S3=51*51*S1
A(1)=-1-82
B(I1)=2D0
Cd1)=-1+82
E(I1)=DX*DX*S3
D(I1)=3*S0*PS*DX*DX*S1
10 G(1)=DX
D(1)=D(1)-A(1)*HL
D(M-2)=D(M-2)-C(M-2)*HR
B(M-1)=0D0
DM-1)=VM-DX*(HL+HR)/2D0
CALL DIAG(A,B,CE,G.D,WM-2)
DO 47 I=1 M-2
47 H(I+1)=W()
H(1)=HL
HM)=HR
PS=W(M-1)
S=0D0
DO 67 1=2,M-1
67 S=S+DABSHO(I)-H(I))
S=S+DABS(PS0-PS)
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WRITE(6,87)PS

87 FORMAT(30X, Ps=",E25.15/)
IF (S.GE.5D-6) GQTO 77
DO75I=1M
WRITE(6,(6X,2HH=,F12.7)")H(D)

.75 CONTINUE

RETURN
END
SUBROUTINE HORDER2(H1,M,N,CN)
IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (N1=21,M1=21)
DIMENSION H1(M),A(N1),B(N1),C(N1;,D(N1),
1 E(N1),W(N1),G(N1)

. COMMON /U/UM1,N1)/V/V(M1,N1)
1 /H/HMI1),HHM1)/HX/HX(M1),HXX(M1), HXHX(M1),
1 HXXH(M!1),HXH(M1)/P/P(M1,N1)
1 /XZ/X(M1),Z(N1)/DXZ/DX.DZ

H1(1)=0D0
H1(M)=0D0
DO 10 =2 M-1
I1=]-1

UZ=(3D0*U(I,N)+U(I,N-2)-4D0*U(I,N-1))/LZ/2D0

VZ=3D0*V(I,N)+V(I,N-2)-4D0*V(I,N-1))/DZ/2D0

UX=(U(I+1,N)-U(I-1,N))/DX/2D0

VX=(V(I+1,N)-V(-1,N))/DX/2D0

UVXY=VZ-HXM*UZ+HXT)*(-H(D)* VX+HX(D)*VZ+HX (1)*(UX*H(I)
1 -HX(D)*U2))

SO=HXM*HX()

S1=SQRT(1D0+S0)
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S2=-3D0*HX(I)*HXX(1)/S1

S3=51*S1*S1

S4=-P(I,N)*S3+2D0*S1*UVXY/H(®}

A(11)=-14+0.5D0*S2

B(11)=2D0

C(11)=-1-0.5D0*S2

E(11)=DX*DX*S3

D(I1)=-S4*DX*DX

10 G(@1)=DX

D(1)=D(1)-A(1)*H1(1)

DM-2)=D(M-2)-C(M-2)*H1(M)

B(M-1)=0D0

D(M-1)=0D0

CALL DIAG(A,B,C.E,G,D,WM-2)

DO 47 I=1 M-2

47 H1{d+1)=W()

CN=W(M-1)

RETURN

END
SUBROUTINE DIAG(A,B,C,H,G,D,U,N)
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (N1=21)
DIMENSION A(1:N+1),B(1:N+1),C(1:N+1),D(1:N+1),

1 H(1:N+1),G(1:N+1),U(1:N+1),V(1:N1)

Note: we need (A(K),K=2,N),(B(K),K=1,N+1),(C(K),K=1,N-1),
(H(K).K=1,N),(G(K),K=1,N),(D(K),K=1,N+1)

O O o O

DO 12 K=2,N
Cl=-A(K)/B(K-1)
B(K)=B(K)+C1*C(K-1)
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H(K)=HXK)+C1*H(K-1)

12 D(K)=D(K)+C1*D(K-1)

<
DO 22 K=1,N-1
C2=-C(K)/B(K)

22 G(K+1)=G(K+1)+C2*G(K)
S1=0D0
$2=0D0
DO 32 K=1,N
C3=G(K)/B(K)
$1=S1+C3*H(K)

32 $2=S82+C3*D(K)
V(N+1)=(S2-D(N+1))/(S1-B(N+1))
DO 42 K=1,N

42 V(K)=OD(K)-HK)*V(N+1))/B(K)
U(N)=V(N)

U(N+1)=V(N+1)
DO 52 K1=1,N-1
K=N-K1
C4=-C(K)/B(K)

52 UK)=V(K)+C4*U(K+1)
RETURN
END .
SUBROUTINE THOMASX(D,B.E,FUVJM,N,UV)
IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER (N1=21M1=21)
DIMENSION D(M),B(M),E(M),FUV(M),UV(M,N),

1 R(NI1),S(N1)
MM1=M-1
R(2)=FUV(2)/B(2)
$(2)=-E(2)/B(2)




DO 2543 K= MM1
KM1=K-1
RS=B(K)+D(K)*S(KM1)
R(K)=(FUV(K)-D(K)*R(KM1))/RS
2543  S(K)=-E(K)RS
UV(M-1,J)=R(MM1)
DO 2544 1=2,M-2
K=M-I
2544 UVEK.D=UV(K+L)*S(K)+R(K)
RETURN
END
SUBROUTINE THOMASY(D,B.E,FUV,IM,N,UV)
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (N1=21,M1=21)
DIMENSION D(N),B(N).E(N),FUV(N),UV(M.N),
1 R(N1),S(N1)
NM1=N-1
R(2)=FUV(2)/B(2)
S(2)=-E(2)/B(2)
DO 2543 K=3,NM1
KM1=K-1
RS=B(K)+D(K)*S(KM1)
R(K)=(FUV(K)-D(K)*R(KM1))/RS
2543  S(K)=-E(K)YRS
UV(I,NM1)=R(NM1)
DO 2544 11=2,N-2
K=N-I1
2544 UV{IX)=UV(IK+1)*S(K)+R(K)
RETURN
END
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