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2.2. Comparing Lognormal to a Sum of Lognormals 5

Figure 2.1: The parameters and the first four moments of a sum of n lognormally distributed,
ρ correlated, random variables. Parameters are fixed at (c,d)=(0,1) and the variance is allowed
to vary.
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Table 2.1: Initial values to solve equation (2.5)

ρ equation formula
0 x = n Υ

M2 + 1 ——
0.5 y2 + (n − 1)y − n( Υ

M2 + 1) = 0 by quadratic formula and y =
√

x
1 x = Υ

M2 + 1 ——

and the kurtosis also decrease as a function of n and increase as a function of = ρ, but this
is artificial because the variance follows the same pattern. We should be comparing the tails,
kurtosis, between variables with the same variance. To accommodate for the variance we now
look at the same plots but we use parameters such that the mean and variance are constant. If
we choose a and b to be the parameters for the n = 1 case and then find c and d to be the
parameters that produce the same mean and variance for any n, ρ pair.

First let M = µY1(a,b) and Υ = σ2
Y1(a,b), the constant first two moments that we wish to find

parameters to match for other values of n and ρ. Then we solve the system of two equations in
two unknowns:

M = ec+ d2
2 (2.4a)

Υ =
1
n

(ec+ d2
2 )2(ed2

+ (n − 1)eρd2
− n) (2.4b)

If we substitute (2.4a) into the equation (2.4b) then we get one equation in one variable:

Υ = 1
n M2(ed2

+ (n − 1)eρd2
− n)

nΥ
M2 = ed2

+ (n − 1)eρd2
− n

0 = ed2
+ (n − 1)eρd2

− n( Υ
M2 + 1)

(2.5)

Equation (2.5) can be solved by a root finding method. To do this an initial guess is required (a
simple way to do this is to use linear interpolation from the values of ρ for which the equation
can be solved analytically). So using the substitution x = ed2

and the initial guesses in Table
2.1 it can be solved by a root finding method, then given d, c = ln(M) − d2

2 .
In figure 2.2 we found the first four moments for a sum of n = 1, .., 250 with correlations

from 0.2 to 1. In the top two plots the changes required in the parameters to keep the means
and variance constant can be seen and in the middle two plots the resulting constant mean and
variance can be seen. The bottom two, specifically kurtosis, are the most interesting. It can be
seen that for a sum of sufficiently many positively correlated lognormal random variables the
third and fourth moments revert to a similar level as that of a single lognormal random variable.
It can also be seen that the closer to zero the correlation is the more random variables must be
included. The result is that if there are not enough stocks included, or one dominating stock, in
an index, especially with low correlation, then pricing and hedging as though the index follows
GBM has significantly more tail risk than is accounted for in the model.

There are a few other points to touch on briefly here that are discussed in more depth in
the appendices B and C. First, for insufficient correlation the kurtosis blows up with n, but the
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Figure 2.2: The parameters and the first four moments of a sum of n lognormally distributed, ρ
correlated, random variables. Parameters vary so that first two moments match the n = 1 case
with parameters (a,b)=(0,1).
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skewness also grows, though linearly, which distorts what the kurtosis tells us about the tails.
This must be examined through the use of QQ plots; see appendix A. Second, we see the same
behaviour in negatively correlated random variables even in the few points that can be calcu-
lated, even though only so many random variables can all have negative correlation to each
other1. Finally we note that the correlation that we refer to here is between the normal ran-
dom variables that drive the lognormal random variables, not between the lognormal random
variables themselves, they are a transformation on ρ with dependence on n. This is especially
prominent when ρ < 0.

Since indices are composed for some common attribute, geography, nationality, exchange,
or industry, they have common risk factors so their constituent stocks are unlikely to be uncor-
related or negatively correlated. Therefore these cases are not very relevant for our investigation
and will not be examined in depth here.

2.3 Empirical Results

Now we will take a quick look at some empirical results. We will look at the iShares S&P TSX
Capped Energy Index Fund (XEG)[3,4]. It is, currently, made up of 52 stocks in the Oil Gas &
Consumable Fuels sector traded on the TSX at various weightings. We will look at past data
for this index and its top ten constituent stocks by weight from January 1st, 2010 to February
28th, 2012.

2.3.1 Log Returns

We will first look at the daily log returns of these assets, not their prices. If we assume that
the assets follow a lognormal distribution, S t+1 = S tea+bZt , then the log returns follow a normal
distribution, rt ∼ N(a, b2). Motivated by the discussion in Section 2.1, which showed that
the log returns of a GBM model are normally distributed, in this section we investigate the
properties of the log returns of real stock data. The statistics we will look at are the first
four moments. Note that the first four moments of a normal distribution are Mean(Z) = µ,
Var(Z) = σ2, S kew(Z) = 0, and Kurt(Z) = 3. Refer to appendices A and B. Table 2.2 contains
the weights of the 10 stocks and the daily moments for the returns of each of the 10 stocks and
the index itself.

We can see from table 2.2 that µ ≈ 0 and σ ≈ 0.3, which define the drift and volatility of
our stocks. We can also see that skew(S ) ≈ 0 and kurt(S ) ≈ 4.5. We can do a student-t test
with 10 degrees of freedom to confirm the skewness approximation at the 95%, or α = 0.05,

1See appendix C, section 2 for more detail.
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Table 2.2: Weights and moments of returns on XEG stocks, Jan 1, 2010 to Feb 28, 2012, daily
frequency

company name weight mean st.dev skew kurt
Suncor 17.32 −0.0139 0.3179 −0.0551 4.4681
CNR 11.35 −0.0040 0.3143 0.1159 4.0506
Cenovus 9.05 0.1727 0.3111 0.0287 4.0722
Encana 5.70 −0.2434 0.2912 0.2168 5.5635
Nexen 5.21 −0.0947 0.3285 −0.1308 4.0699
CresPt 4.66 0.1427 0.2149 −0.0031 4.7787
Talisman 4.55 −0.1531 0.3201 −0.2398 4.1782
ImperialOil 4.06 0.0815 0.2295 0.1567 4.4262
CanOilSands 3.67 −0.0683 0.3217 −0.4197 6.1212
Husky 2.8 −0.0182 0.2222 −0.0354 5.0617
Index 0.0021 0.2470 0.1776 6.6401

level[2]:
x̄ = average(skew(r)) = −0.124

s =
√

var(skew(r)) = 0.209
n = 11
µ0 = 0

H0 : µ = µ0 HA : µ , µ0

t =
x̄−µ0

s/
√

n
t = −1.974

1.974 = |t| < tα/2 = 2.228

So we do not reject our null hypothesis that our stocks have an average skewness of zero at the
0.05 level. This follows what we would like to see for the log returns to be normally distributed.
Now we will do two tests for kurtosis, first for what we were hoping for, µ0 = 3 and second for
µ0 = 4.5 (a more realistic value for the results we see):

x̄ = average(kurt(r)) = 4.818
s =
√

var(kurt(r)) = 0.925
n = 11
µ0 = 3

H0 : µ = µ0 HA : µ , µ0

t =
x̄−µ0

s/
√

n
t = 6.519

6.519 = |t| > tα/2 = 2.28

So we reject our null hypothesis that our returns have the same kurtosis as a normally dis-
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Table 2.3: Moments of returns on the top n XEG stocks, unweighted, Jan 1, 2010 to Feb 28,
2012, daily frequency

top n mean st.dev skew kurt
Top 2 −0.0089 0.2986 0.0782 4.0777
Top 3 0.0455 0.2858 0.0273 4.1394
Top 4 −0.0107 0.2699 −0.0772 4.1910
Top 5 −0.0229 0.2659 −0.0997 4.1530
Top 6 0.0103 0.2426 −0.1254 4.2664
Top 7 −0.0023 0.2425 −0.1492 4.3032
Top 8 0.0120 0.2325 −0.1336 4.2983
Top 9 0.0047 0.2324 −0.1362 4.4038
Top 10 0.0027 0.2267 −0.1340 4.4567

tributed random variable. Now we will test to see how close we are.

µ0 = 4.5

H0 : µ = µ0 HA : µ , µ0

t =
x̄−µ0

s/
√

n
t = 1.141

1.141 = |t| < tα/2 = 2.28

So we do not reject the null hypothesis that our returns have a kurtosis a little higher than
the normal at 4.5. We can also say that our returns have fatter tails than if they were normally
distributed. This means that empirically returns have fatter tails than normal anyway, so when
we add two assets together we get even fatter tails.

Next we will look at the moments for the returns of the sum of the top n stocks divided by
n ( returns of 1

n

∑n
i=1 S i) in table 2.3. This is not weighted as the real index is so it is not entirely

realistic, but comparing with the moments of the individual stocks we can infer something. We
see that the kurtosis is more affected by the kurtosis of the newly added stock’s returns than it
is by the number of total stocks included. This means that we are not seeing a reduction in the
kurtosis, or the fat tailedness of the returns as more stocks are included. Tails are discussed in
appendix A.

Finally, for the sake of being more realistic we will now look at the moments of the returns
of the weighted average of the top n stocks as they are weighted in the index in table 2.4. We
again see that the kurtosis does not decrease with the number of stocks included, it changes
more so with the kurtosis of the newly included stock’s kurtosis relative to its weighting.

The last measure of normality of our returns that we will look at is QQ plots. Figure 2.3
shows the QQ plots of each individual stock against a standard normal distribution. In this
figure we can see that there is a little discrepancy in our data from the normal distribution
between two and three standard deviations from the mean. Overall our data looks fairly normal
with slightly fat tails. Next is the QQ plots for the returns of the top n arithmetically averaged
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Figure 2.3: QQ plot of the stock returns on XEG’s top ten stocks and the whole index against
the normal distribution, Jan 1, 2010 to Feb 28, 2012, daily frequency.
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Table 2.4: Moments of returns on the top n XEG stocks, weighted, Jan 1, 2010 to Feb 28, 2012,
daily frequency

top n
weighted

mean st.dev skew kurt

Top 2 −0.0099 0.2994 0.0577 4.1379
Top 3 0.0290 0.2885 0.0223 4.1605
Top 4 0.0024 0.2792 −0.0359 4.1779
Top 5 −0.0047 0.2760 −0.0483 4.1613
Top 6 0.0102 0.2625 −0.0670 4.1809
Top 7 0.0037 0.2613 −0.0838 4.1875
Top 8 0.0104 0.2543 −0.0855 4.1852
Top 9 0.0070 0.2530 −0.0871 4.2478
Top 10 0.0062 0.2500 −0.0864 4.2739
INDEX 0.0021 0.2470 0.1776 6.6401

stock prices:
In figure 2.4We can see that these are also close to the normal distribution, but not quite.

Finally we can look at the returns of a weighted average in the top n stocks.
We see the same result again in figure 2.5; the returns of the weighted average in the top n

stocks is close to normally distributed but with slightly fatter tails.
As a final note on the returns we offer the correlation matrix for the returns between each

individual stock in table 2.5. We can see that the returns of individual stocks are highly cor-
related but the correlation between individual stocks and the whole index are centered around
and close to zero. This means that it is possible for a stock to be negatively correlated with the
rest of the index so a dominant constituent stock could be negatively correlated with the rest of
the index, especially since that case only has two distinct assets so in theory they could be very
negatively correlated.

So we can see that even though this index is not evenly weighted, the weights decline
steadily, the returns of individual stocks and the returns of the index surprisingly seem to fol-
low a similar distribution. In practice most stock returns have fatter tails than the normal
distribution, so indices of such stocks do too, but this means that the GBM model is as appli-
cable to this index as it is to the individual stocks. In the following chapter we will look at
a dominated index as if it were made of two distinct, correlated assets: the dominating stock
and the rest of the constituent stocks combined into somewhat of a subindex that is sufficiently
evenly weighted to be well modeled by GBM.

We have shown that indices are well represented by GBM if they are made up of a large
number of positively correlated stocks that are relatively evenly weighted and follow GBM as
well. Since in practice this is usually the case, indices are reasonably evenly weighted, much
of our work is theoretical, although, if a single asset becomes overly dominant in an index, this
picture changes and more tension between the choice of GBM for stocks or for indices exists.
Choices must be made about how to model the resulting option pricing problems; next we will
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Figure 2.4: QQ plot of the stock returns on the sum of XEG’s top n = 2, 3, ..., 10 stocks against
the normal distribution, Jan 1, 2010 to Feb 28, 2012, daily frequency.
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Figure 2.5: QQ plot of the stock returns on the weighted sum of XEG’s top n = 2, 3, ..., 10
stocks against the normal distribution, Jan 1, 2010 to Feb 28, 2012, daily frequency.
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Table 2.5: Correlations between XEG stock returns, Jan 1, 2010 to Feb 28, 2012, daily fre-
quency

S uncor CNR Cenovus Encana Nexen CresPt
Suncor 1.0000 0.7840 0.7170 0.5860 0.6437 0.5854 ...
CNR 0.7840 1.0000 0.7222 0.6233 0.6565 0.6228 ...
Cenovus 0.7170 0.7222 1.0000 0.5535 0.5595 0.5804 ...
Encana 0.5860 0.6233 0.5535 1.0000 0.5128 0.5031 ...
Nexen 0.6437 0.6565 0.5595 0.5128 1.0000 0.4862 ...
CresPt 0.5854 0.6228 0.5804 0.5031 0.4862 1.0000 ...
Talisman 0.6515 0.6826 0.6002 0.6060 0.5716 0.5239 ...
ImperialOil 0.7070 0.6683 0.6631 0.5679 0.5816 0.5512 ...
CanOilSands 0.6347 0.6386 0.5826 0.4578 0.4900 0.5270 ...
Husky 0.6339 0.6407 0.6025 0.4571 0.5413 0.5352 ...

Index 0.0181 −0.0094 −0.0118 0.0099 0.0166 0.0417 ...

Talisman ImperialOil CanOilS ands Husky Index
... 0.6515 0.7070 0.6347 0.6339 0.0181
... 0.6826 0.6683 0.6386 0.6407 −0.0094
... 0.6002 0.6631 0.5826 0.6025 −0.0118
... 0.6060 0.5679 0.4578 0.4571 0.0099
... 0.5716 0.5816 0.4900 0.5413 0.0166
... 0.5239 0.5512 0.5270 0.5352 0.0417
... 1.0000 0.6003 0.5348 0.5301 0.0654
... 0.6003 1.0000 0.5726 0.5955 −0.0416
... 0.5348 0.5726 1.0000 0.5670 −0.0345
... 0.5301 0.5955 0.5670 1.0000 −0.0231
... 0.0654 −0.0416 −0.0345 −0.0231 1.0000
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develop methods, that we will later examine, to make this choice.



Chapter 3

Hedging Models for an Index of Two
Distinct Assets

In this chapter we will examine hedging methods for an index that fluctuates as if it is made
up of two distinct constituent assets: the dominant stock, A, and the rest of the index, B. We
will start by deriving a 1+1 dimensional PDE, that is one spatial dimension and one temporal
dimension, then we will derive the 2+1 PDE and finally develop a 1+1 PDE approximation to
the 2+1 PDE. We will later use the solutions to these PDEs to compare the pricing and hedging
merits of each solution.

Say that I = A + B where A and B follow GBM:

dA = µAAdt + σAAdW1
t (3.1a)

dB = µBBdt + σBBdW2
t (3.1b)

Where W1
t and W2

t are standard Brownian Motions and are correlated byρ, that is E[dW1
t dW2

t ] =

ρdt. The problem we want to solve is to price an option on the index, V.

3.1 Hedging with the Index, One-Dimensional Solution
As always the simplest way to price an option is to assume that the underlying asset follows
GBM, in our case the index, and price it by the one-dimensional Black-Scholes PDE[5]. This
single asset approach ignores the fact that there are two separate underlying assets and therefore
only uses σI , which depends only on the movements of the index not the individual stocks, and
ignores that two separate volatilities may be observable; we will look at that case later. Here
we will derive the Black-Scholes one-dimensional PDE. First we assume that

dI = µI Idt + σI IdWt (3.2)

and start with a hedged portfolio containing one option and a countervailing hedge position
containing ∆I units of the underlying asset[5]:

Π = V − ∆I I (3.3)

17
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Where ∆I is the hedging ratio. We want to find a value for ∆I so that the value of the portfolio
changes in a completely predictable way with time: all risk is removed. So with equation (3.3)
we calculate dΠ:

dΠ = Vtdt + VIdI +
1
2

VII(dI)2 − ∆IdI (3.4a)

Notation: VS denotes the first derivative of V with respect to S, but S τ denotes S (τ), where
S = A, B, I and τ is any time.

From stochastic calculus and equation (3.2) we know that (dI)2 = σ2
I I2dt and we let ∆I =

VI , substitute in (dI)2 and simplify:

dΠ = Vtdt +���VIdI + 1
2VII(dI)2 −���∆IdI

dΠ = (Vt + 1
2VIIσ

2
I I2)dt (3.4b)

Since this is now a risk free portfolio it must grow at the risk free rate for there to be no
arbitrage:

dΠ = dΠ

rΠdt = (Vt + 1
2VIIσ

2
I I2)dt

0 = Vt + 1
2VIIσ

2
I I2 + rVI − rV

(3.4c)

So we get the one-dimensional Black-Scholes PDE

Vt +
1
2

VIIσ
2
I I2 + rVI − rV = 0 (3.5)

With the terminal condition V(I,T ) = G(IT ).

3.2 Hedging with Both Constituent Assets
Now we will look at hedging with both stocks; that is, we will derive the two-dimensional
Black-Scholes PDE. So we start with the portfolio:

Π = V − ∆AA − ∆BB (3.6)

Our goal is to find values for both deltas so that the change in the value of the portfolio in
equation (3.6) changes only with respect to time, not with respect to either of the Brownian
motions. So we find dΠ:

dΠ = dV − ∆AdA − ∆BdB (3.7a)

Where V = V(I, t) = V(A + B, t) = V(A, B, t), so:

dV = Vtdt + VAdA + VBdB +
1
2

VAA(dA)2 + VABdAdB +
1
2

VBB(dB)2 (3.7b)
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Now substitute dV (3.7b) into dΠ (3.7a) and set ∆A = VA and ∆B = VB to get the cancella-
tions:

dΠ = Vtdt +���VAdA +���VBdB + 1
2VAA(dA)2 + VABdAdB + 1

2VBB(dB)2...
−���∆AdA −���∆BdB

dΠ = Vtdt + 1
2VAA(dA)2 + VABdAdB + 1

2VBB(dB)2

dΠ = Vtdt + 1
2VAAσ

2
AA2dt + VABρσAσBABdt + 1

2VBBσ
2
BB2dt

(3.7c)

Since we now know that dΠ, equation (3.7c), only varies depending on time we know that it
is risk free, so we know that it must grow at the risk free rate dΠ = rΠdt for there to be no
arbitrage and obviously dΠ = dΠ so:

rΠdt = Vtdt +
1
2

VAAσ
2
AA2dt + VABρσAσBABdt +

1
2

VBBσ
2
BB2dt (3.7d)

Which gives us the PDE:

Vt +
1
2
σ2

AA2VAA + ρσAσBABVAB +
1
2
σ2

BB2VBB + rAVA + rBVB − rV = 0 (3.8)

With V(A, B,T ) = F(AT , BT ) = G(AT + BT ) = G(IT )
Since V(A, B, t) = V(I, t) = V(A + B, t) it is easy to think, incorrectly, that no matter what

the payoff function of V is VA = VB so ∆A = ∆B which would mean that there is only one,
not two, distinct delta values. Maybe we do not need to hedge with both assets individually.
Maybe we only need to hedge with the index. We look at this next.

3.3 Hedging with the Index, Two-Dimensional Approxima-
tion

If we use both the poor assumption that ∆A = ∆B = ∆I and let A = γI so B = (1− γ)I to reduce
our two-dimensional PDE, equation (3.8), becomes

Vt + 1
2σ

2
Aγ

2I2VII + ρσAσBγ(1 − γ)I2VII ...
+1

2σ
2
B(1 − γ)2I2VII + rγIVI + r(1 − γ)IVI −rV = 0

Vt +
1
2

(σ?)2I2VII + rIVI − rV = 0 (3.9)

With V(A, B,T ) = F(AT , BT ) = G(AT + BT ) = G(IT ) where

(σ?)2 = σ2
Aγ

2 + 2ρσAσBγ(1 − γ) + σ2
B(1 − γ)2

Equation (3.9) is a one-dimensional approximation to the two-dimensional PDE that de-
scribes the true solution to our problem. This approximation has its advantages and shortcom-
ings. The first and most obvious advantage is that it can be solved analytically for V and its
deltas. A second advantage is that it has a good value for (σ?)2 because varies depending on
how A and B make up I, and how σA and σB contribute to the index’s volatility. This is better
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than just pricing the option on the whole index and using σ2
I , the variance of I. Finally γ can

vary through time as the composition of I changes. The shortcomings are in the assumptions.
First, even though the functions that are VA and VB are the same, if σA , σB then their values
are not necessarily the same. These are not only used in the PDE but also to hedge, so the effect
is compounded. Second, the curvature of the pricing surface is lost when we go from VAA, VAB,
and VBB to only VII . Finally, dI does not actually follow GBM if both dA and dB do.

Putting the pros and cons aside we will now ensure that equation (3.9) is the PDE that we
would get from hedging arguments. We have the same option as above but we will only use
the index to hedge, so we have the portfolio:

Π = V − ∆I I (3.10)

and V = V(I, t) only with I = A + B. With this we calculate dΠ:

dΠ = Vtdt + VIdI +
1
2

VII(dI)2 − ∆IdI (3.11a)

But dI can not be written in the form dS = µS dt + σS dWt so it is not a GBM on its own, it is
a function of GBMs so we use Ito’s lemma:

I = A + B
dI = 1dA + 1dB + 0
dI = dA + dB

(3.11b)

Before we substitute in we also need (dI)2

(dI)2 = (dA + dB)2

(dI)2 = (dA)2 + 2dAdB + (dB)2

(dI)2 = σ2
AA2dt + 2ρσAσBABdt + σ2

BB2dt
(3.11c)

Now we let ∆I = VI , substitute in (dI)2 and simplify:

dΠ = Vtdt +���VIdI + 1
2VII(dI)2 −���∆IdI

dΠ = Vtdt + 1
2VII(σ2

AA2dt + 2ρσAσBABdt + σ2
BB2dt)

dΠ = (Vt + 1
2σ

2
AA2VII + ρσAσBABVII + 1

2σ
2
BB2VII)dt

(3.11d)

Again, since this is now a risk free portfolio it must grow at the risk free rate for there to be no
arbitrage:

dΠ = dΠ

rΠdt = (Vt + 1
2σ

2
AA2VII + ρσAσBABVII + 1

2σ
2
BB2VII)dt

0 = Vt + 1
2σ

2
AA2VII + ρσAσBABVII + 1

2σ
2
BB2VII + rVI − rV

(3.11e)

With the substitutions A = γI so B = (1 − γ)I this is the same as the equation (3.9), the
one-dimensional PDE that we derived by reducing the 2-dimensional PDE:

Vt +
1
2

(σ?)2I2VII + rIVI − rV = 0
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where
(σ?)2 = σ2

Aγ
2 + 2ρσAσBγ(1 − γ) + σ2

B(1 − γ)2

With V(A, B,T ) = F(AT , BT ) = G(AT + BT ) = G(IT ). We will refer to this one-dimensional
approximation model as the “gamma” model, the “gamma” approximation, or the “gamma”
solution going forward.

With these assumptions it appears that the GBM model can be perfectly hedged with either
the underlying stocks or the underlying index alone.

So now we have a two-dimensional pricing model and a one-dimensional approximation
as well as the simplest one-dimensional Black-Scholes pricing models that we need to com-
pare. To do this we need solutions to the PDEs. For Black-Scholes, and by extension the
one-dimensional approximation, we have analytic solutions, but we need to solve the two-
dimensional PDE numerically. In the following chapter we will look at two methods to acheive
this.



Chapter 4

Solving of the Two-Dimensional PDE

Now that we have derived the two-dimensional PDE (3.8) we need to find a solution for it. In
this chapter we develop two separate methods to solve the two-dimensional PDE. The first is a
finite difference method to solve the PDE and second, as a benchmark, a Monte Carlo Method.
The numerical method we use is the Alternating Direction Implicit (ADI) method[6], a finite
difference scheme; we start by simplifying equation (3.8) through a change of variables, then
derive the ADI method and discuss its implementation. Finally we will develop a Monte Carlo
simulation to solve the PDE.

4.1 ADI Method

This finite difference method, the Alternating Direction Implicit Method[6], is derived from
Crank-Nicholson and treats each spatial direction separately.

4.1.1 Reducing the PDE to a heat equation

To simplify our numerical solution we first reduce our PDE to a heat equation by some substi-
tutions. Here we present the short version of this transformation but the long, more intuitive
transformations are presented in appendix D.2.

We start with the partial differential equation, the two-dimensional Black-Scholes PDE,
equation (3.8). As an example, we show the case of a put option on an index with a dominant
constituent stock:

Vt +
1
2
σ2

AA2VAA + ρσAσBABVAB +
1
2
σ2

BB2VBB + rAVA + rBVB − rV = 0 (4.1a)

with the terminal condition:

V(A, B,T ) = f (A, B) = (K − A − B)+ (4.1b)

where (x)+ = max(x, 0)

22
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Table 4.1: Substitutions to Reduce 2D Black-Scholes PDE to Heat Equation

V(A, B, t) = Ke−rτν(x, y, τ) ν(x, y, τ) = 1
K er(T−t)V(A, B, t)

t = T − τ τ = T − t

A = Kexe−(r−
σ2

A
2 )τ x = ln( A

K ) + (r − σ2
A

2 )τ

B = Keye−(r−
σ2

B
2 )τ y = ln( B

K ) + (r − σ2
B

2 )τ

and the boundary conditions:

V(0, B, t) = g0(B, t) = Ke−r(T−t)N(−d2(B)) − BN(−d1(B))
V(A, 0, t) = h0(A, t) = Ke−r(T−t)N(−d2(A)) − AN(−d1(A))

V(∞, B, t) = g∞(B, t) = 0
V(A,∞, t) = h∞(A, t) = 0

(4.1c)

where

d1(∗) =
ln(∗/K)+(r+

σ2
∗

2 )(T−t)

σ∗
√

T−t

d2(∗) = d1(∗) − σ∗
√

T − t
∗ = A, B

(4.1d)

To simplify the problem we will use the substitutions in Table 4.1. Here is how the terms
of the PDE will change. First, the constant term:

V = Ke−rτν (4.2a)

Second, the derivative with respect to time. For this one we will need the chain rule because
ν = ν(x(τ), y(τ), τ) and later the product rule:

∂
∂t = ∂τ

∂t
∂
∂τ

+ ∂τ
∂t
∂x
∂τ

∂
∂x + ∂τ

∂t
∂y
∂τ

∂
∂y

= − ∂
∂τ
− (r − σ2

A
2 ) ∂

∂x − (r − σ2
B

2 ) ∂
∂y

∂V
∂t = ∂

∂t (Ke−rτν)
= rKe−rτν − Ke−rτ ∂ν

∂t

−∂V
∂t = −rKe−rτν + Ke−rτ ∂ν

∂τ
+ Ke−rτ(r − σ2

A
2 ) ∂ν

∂x + Ke−rτ(r − σ2
B

2 )∂ν
∂y

(4.2b)

Next, the first and second spatial derivatives:

∂
∂A = ∂x

∂A
∂
∂x

= 1
A
∂
∂x

∂V
∂A = Ke−rτ 1

A
∂ν
∂x

(4.2c)
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∂2

∂A2 = ∂
∂A ( 1

A
∂
∂x )

= 1
A
∂
∂A ( ∂

∂x ) − 1
A2

∂
∂x

= 1
A2

∂2

∂x2 −
1

A2
∂
∂x

∂2V
∂A2 = Ke−rτ( 1

A2
∂2ν
∂x2 −

1
A2

∂ν
∂x )

(4.2d)

∂
∂B =

∂y
∂B

∂
∂y

= 1
B
∂
∂y

∂V
∂B = Ke−rτ 1

B
∂ν
∂y

(4.2e)

∂2

∂B2 = ∂
∂B( 1

B
∂
∂y )

= 1
B
∂
∂B( ∂

∂y ) − 1
B2

∂
∂y

= 1
B2

∂2

∂y2 −
1

B2
∂
∂y

∂2V
∂B2 = Ke−rτ( 1

B2
∂2ν
∂y2 −

1
B2

∂ν
∂y )

(4.2f)

And the mixed derivative:

∂2

∂A∂B = ∂
∂A ( 1

B
∂
∂y )

= 1
A
∂
∂x

1
B
∂
∂y

= 1
AB

∂2

∂x∂y
∂2V
∂A∂B = Ke−rτ 1

AB
∂2ν
∂x∂y

(4.2g)

Now we substitute the results from equations (4.2) into the original PDE, equation (4.1):

−rKe−rτν + Ke−rτ ∂ν
∂τ

+ Ke−rτ(r − σ2
A

2 ) ∂ν
∂x + Ke−rτ(r − σ2

B
2 )∂ν

∂y

= 1
2σ

2
AA2Ke−rτ( 1

A2
∂2ν
∂x2 −

1
A2

∂ν
∂x ) + ρσAσBABKe−rτ 1

AB
∂2ν
∂x∂y

+1
2σ

2
BB2Ke−rτ( 1

B2
∂2ν
∂y2 −

1
B2

∂ν
∂y ) + rAKe−rτ 1

A
∂ν
∂x + rBKe−rτ 1

B
∂ν
∂y − rKe−rτν

Cancel out Ke−rτ from every term and then cancel −rν from both sides:

∂ν
∂τ

+ (r − σ2
A

2 ) ∂ν
∂x + (r − σ2

B
2 )∂ν

∂y

= 1
2σ

2
AA2( 1

A2
∂2ν
∂x2 −

1
A2

∂ν
∂x ) + ρσAσBAB 1

AB
∂2ν
∂x∂y

+1
2σ

2
BB2( 1

B2
∂2ν
∂y2 −

1
B2

∂ν
∂y ) + rA 1

A
∂ν
∂x + rB 1

B
∂ν
∂y

Simplify within each term:

∂ν
∂τ

+ (r − σ2
A

2 ) ∂ν
∂x + (r − σ2

B
2 )∂ν

∂y

= 1
2σ

2
A( ∂

2ν
∂x2 −

∂ν
∂x ) + ρσAσB

∂2ν
∂x∂y + 1

2σ
2
B(∂

2ν
∂y2 −

∂ν
∂y ) + r ∂ν

∂x + r ∂ν
∂y

Rearrange:

∂ν
∂τ

+ (r − σ2
A

2 ) ∂ν
∂x + (r − σ2

B
2 )∂ν

∂y

= 1
2σ

2
A
∂2ν
∂x2 + ρσAσB

∂2ν
∂x∂y + 1

2σ
2
B
∂2ν
∂y2 + (r − 1

2σ
2
A) ∂ν

∂x + (r − 1
2σ

2
B)∂ν

∂y
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Finally, cancel out the first derivative terms to get the simplified problem, the two-dimensional
heat equation:

∂ν
∂τ

= 1
2σ

2
A
∂2ν
∂x2 + ρσAσB

∂2ν
∂x∂y + 1

2σ
2
B
∂2ν
∂y2

Therefore solving our original problem is equivalent to solving the two-dimensional heat
equation:

∂ν

∂τ
=

1
2
σ2

A
∂2ν

∂x2 + ρσAσB
∂2ν

∂x∂y
+

1
2
σ2

B
∂2ν

∂y2 (4.3a)

with the initial condition:

ν(x, y, 0) =
1
K

f (A, B) = (1 − ex − ey)+ (4.3b)

and the boundary conditions:

ν(−∞, y, τ) = 1
K erτḡ0(Key−(r−

σ2
B

2 )τ, τ) = N(−d?2 (y)) − ey+
σ2

B
2 τN(−d?1 (y))

ν(x,−∞, τ) = 1
K erτh̄0(Kex−(r−

σ2
A

2 )τ, τ) = N(−d?2 (x)) − ex+
σ2

A
2 τerτN(−d?1 (x))

ν(∞, y, τ) = 1
K erτḡ∞(Key−(r−

σ2
B

2 )τ, τ) = 0

ν(x,∞, τ) = 1
K erτh̄∞(Kex−(r−

σ2
A

2 )τ, τ) = 0

(4.3c)

where

d?1 (•) =
•+σ2

∗τ

σ∗
√
τ

d?2 (•) = d?1 (•) − σ∗
√
τ = •

σ∗
√
τ

• = x, y and ∗ = A, B
(4.3d)

Now we have a two-dimensional PDE that has constant parameters, no first derivative terms
and no constant terms. These were all possible sources for numerical error in a numerical
method that will no longer contribute to our solution.

4.1.2 Developing the ADI Method
Here we will develop an ADI scheme to solve equation (4.3) numerically. Again the PDE is:

∂ν

∂τ
=

1
2
σ2

A
∂2ν

∂x2 + ρσAσB
∂2ν

∂x∂y
+

1
2
σ2

B
∂2ν

∂y2

Starting with the original stock prices and τ as parameters we will discretize as shown in
Table 4.2. This gives us the discretization for x and y:

x → X(p, n) = ln( p× f
K ) + (r − σ2

A
2 )n × k

y → Y(q, n) = ln( q×g
K ) + (r − σ2

B
2 )n × k
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Table 4.2: Discretization to Solve Equation (4.3) Numerically

cont. → descr. counter step size bounds
A → p × f p = 0...P f P = Amax/ f
B → q × g q = 0...Q g Q = Bmax/g
τ → n × k n = 0...N h L = T/h

The notation used is:

ν(x, y, τ) = ν(x(A, τ), y(B, τ), τ)→ u(X(p, n),Y(q, n), n) = un
p,q

We use the Peaceman-Rachford algorithm[6,7], which starts like Crank-Nicolson[6,8], by cen-
tering the difference scheme around τ = (n+ 1

2 )h. For the temporal derivative we use the central
difference:

∂u
∂τ

∣∣∣∣∣
τ=(n+ 1

2 )h
= δtun+ 1

2 =
un+1 − un

h
+ O(h2) (4.4a)

For the spatial derivatives we will use the central difference operator again, but first we will
use the average at τ = nh and τ = (n + 1)h to get τ = (n + 1

2 )h:

∂2u
∂x2

∣∣∣∣∣∣
τ=(n+ 1

2 )h

=
1
2

 ∂2u
∂x2

∣∣∣∣∣∣
τ=(n+1)h

+
∂2u
∂x2

∣∣∣∣∣∣
τ=nh

 =
1
2
δ2

x(u
n+1 + un) (4.4b)

∂2u
∂x∂y

∣∣∣∣∣∣
τ=(n+ 1

2 )h

=
1
2

 ∂2u
∂x∂y

∣∣∣∣∣∣
τ=(n+1)h

+
∂2u
∂x∂y

∣∣∣∣∣∣
τ=nh

 =
1
2
δxδy(un+1 + un) (4.4c)

∂2u
∂y2

∣∣∣∣∣∣
τ=(n+ 1

2 )h

=
1
2

 ∂2u
∂y2

∣∣∣∣∣∣
τ=(n+1)h

+
∂2u
∂y2

∣∣∣∣∣∣
τ=nh

 =
1
2
δ2

y(un+1 + un) (4.4d)

So our PDE is now:

un+1 − un

h
=

(
σ2

A

4
δ2

x +
1
2
ρσAσBδxδy +

σ2
B

4
δ2

y

)
(un+1 + un) + O(h2) (4.5a)

Then we bring all un+1 terms to the left and all the un to the right (except for the mixed
derivative, that all stays on the right):(

1 − hσ2
A

4 δ2
x −

hσ2
B

4 δ2
y

)
un+1 =

(
1 +

hσ2
A

4 δ2
x +

hσ2
B

4 δ2
y

)
un

+h
2ρσAσBδxδy(un+1 + un) + O(h3)

(4.5b)



4.1. ADI Method 27

Now we will define operators for our equation:

D1 =
σ2

A
2 δ

2
x

D2 =
σ2

B
2 δ

2
y

(4.5c)

And our equation becomes:(
1 − h

2 D1 −
h
2 D2

)
un+1 =

(
1 + h

2 D1 + h
2 D2

)
un

+h
2ρσAσBδxδy(un+1 + un) + O(h3)

(4.5d)

To be able to factor we add h2

4 D1D2un+1 to both sides and on the right side add and subtract
h2

4 D1D2un. The factorization we use is:

1 ± d1 ± d2 + d1d2 = (1 ± d1)(1 ± d2)

So we get: (
1 − h

2 D1

) (
1 − h

2 D2

)
un+1 =

(
1 + h

2 D1

) (
1 + h

2 D2

)
un

+h2

4 D1D2(un+1 − un) + h
2ρσAσBδxδy(un+1 + un) + O(h3)

(4.5e)

But un+1 − un = O(h) so h2(un+1 − un) = O(h3) and that term can be absorbed into the existing
O(h3) term. (

1 − h
2 D1

) (
1 − h

2 D2

)
un+1 =

(
1 + h

2 D1

) (
1 + h

2 D2

)
un

+h
2ρσAσBδxδy(un+1 + un) + O(h3)

(4.6a)

This can be split to give the Alternating Direction Implicit method for our PDE:

(
1 − h

2 D1

)
ũ =

(
1 + h

2 D2

)
un + h

2ρσAσBδxδyun(
1 − h

2 D2

)
un+1 =

(
1 + h

2 D1

)
ũ + h

2ρσAσBδxδyũ
(4.6b)

Which, as before, is O(h3). When we define our spatial differential operators then we will get
error bounds with respect to our spatial discretizations.

Note that in equation (4.6b) at time n + 1 everything on the right-hand side of the first step
is known and the left side is unknown; after the first step everything on the right-hand side is
known and the left side is unknown; after the second step un+1 is now known.

Equation (4.6b) is a single step scheme, so we must only have an initial condition at the
first time step, and no priming is needed to start using our algorithm. u0

p,q is known for all p, q.
But before we get too confident about the high accuracy of our scheme we should check

that our original scheme, equation (4.6a), and our two part ADI scheme, equation (4.6b), are
equivalent. We start with the second part of our ADI scheme and operate on it with

(
1 − h

2 D1

)
(
1 −

h
2

D1

) (
1 −

h
2

D2

)
un+1 =

(
1 +

h
2

D1

) (
1 −

h
2

D1

)
ũ
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+
h
2
ρσAσBδxδy

(
1 −

h
2

D1

)
ũ + O(h3)

substituting in the first part of our ADI scheme we get:(
1 −

h
2

D1

) (
1 −

h
2

D2

)
un+1 =

(
1 +

h
2

D1

) ((
1 +

h
2

D2

)
un +

h
2
ρσAσBδxδyun

)

+
h
2
ρσAσBδxδy

((
1 +

h
2

D2

)
un +

h
2
ρσAσBδxδyun

)
+ O(h3)

which simplifies to:(
1 −

h
2

D1

) (
1 −

h
2

D2

)
un+1 =

(
1 +

h
2

D1

) (
1 +

h
2

D2

)
un

+
h
2
ρσAσBδxδy

[(
1 +

h
2

D1

)
+

h
2
ρσAσBδxδy +

(
1 +

h
2

D2

)]
un + O(h3)

which only matches our original scheme if we allow our error term to absorb the other h
terms. So our scheme has an order of accuracy O(h) not O(h3).

If we allow our new error term O(h) to absorb the h terms before we start this re-arrangement
we see that the two schemes do match with first order accuracy. Our original scheme is now
only O(h), (

1 −
h
2

D1

) (
1 −

h
2

D2

)
un+1 =

(
1 +

h
2

D1

) (
1 +

h
2

D2

)
un + O(h) (4.7a)

and the ADI scheme is also only O(h),

(
1 − h

2 D1

)
ũ =

(
1 + h

2 D2

)
un + O(h)(

1 − h
2 D2

)
un+1 =

(
1 + h

2 D1

)
ũ + O(h)

(4.7b)

To show that equations (4.7a) and (4.7b) are equivalent we start with the second part of our
ADI scheme and operate on it with

(
1 − h

2 D1

)
(
1 −

h
2

D1

) (
1 −

h
2

D2

)
un+1 =

(
1 +

h
2

D1

) (
1 −

h
2

D1

)
ũ + O(h)

and substitute in the first part of our ADI scheme to get(
1 −

h
2

D1

) (
1 −

h
2

D2

)
un+1 =

(
1 +

h
2

D1

) (
1 +

h
2

D2

)
un + O(h)

which is our original scheme. Therefore the ADI scheme in equation (4.7b), with the mixed
derivative, is only first order accurate in time.

Boundary conditions: On the boundaries we know un for any n, that is we know un
0,q, un

p,0,
un

P,q, and un
p,Q, but we don’t yet have any boundary values of ũ. From our scheme we can get ũn

0,q


