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of cellular NFS1 depletion via small interfering RNA

(siRNA)-mediated gene silencing approaches and are of

particular interest (Biederbick et al. 2006; Fosset et al.

2006). In one study, depletion of mouse NFS1 (m-Nfs1)

in murine fibroblasts led to reduced activity of mitochon-

drial respiratory chain complex I and II and citric acid

cycle protein, aconitase (Fosset et al. 2006). Interestingly,

there was no change in mitochondrial malate dehydrogenase

activity or cytosolic lactate dehydrogenase, neither of which

contain Fe-S clusters (Fosset et al. 2006). The second

study showed severe growth retardation and morpho-

logical changes in mitochondria following NFS1 gene

Figure 1. Mapping and exome sequencing of autosomal recessive infantile mitochondrial complex II/III deficiency (IMC23D) family identifies a

highly conserved and destabilizing missense mutation, p.(Arg72Gln) in NFS1. (A) An Old Order Mennonite pedigree showing a union between

two healthy third cousins. Three out of four children are affected with IMC23D. Affected individuals are shown in shaded squares (male) and

circles (female). Diagonal lines across symbols indicate deceased individuals. A consanguineous marriage is shown by a double line between two

individuals. Horizontal dashes above symbols indicate individuals who underwent DNA analysis. Diamonds indicate unspecified genders. (B)

Genome-wide autozygosity mapping confirmed the autosomal recessive mode of inheritance by generating a long homozygous segment unique

to the affected individuals on chromosome 20p11.2-q13.1 with a highly significant location score of 1754. (C) Ideogram depicting the

homozygous segment unique to the affected individuals, Chromosome 20p11.2-q13.1, spanning 27.7 Mb. (D) The NFS1 gene consists of 13

coding exons with a nonsynonymous nucleotide change, c.215T>G in exon one. Nucleotide numbering reflects cDNA numbering with +1

corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (www.hgvs.org/

mutnomen). The initiation codon is codon 1. (E) The structure of the NFS1 protein contains one domain, aminotransferase class V domain, shown

from the N-terminal to C-terminal end. The amino acid (aa) p.Arg72 is harbored within the aminotransferase class V domain. (F) Multiple

alignments demonstrate high conservation of the aa residue p.Arg72 across a set of species-specific NFS1 homologs. A ClustalW analysis of the

NFS1 region encompassing the mutation site at residue p.Arg72 (highlighted in red) in aligned homologs with multiple divergent species is

shown. The residues shaded in blue indicate fully conserved residues. (G) DNA sequence analysis of p.Arg72Gln from genomic DNA of a normal

individual (IV-IV, top left electropherogram), a homozygous individual (IV-I, IV-II, IV-III, bottom left electropherogram), and a p.Arg72Gln

heterozygous individual (III-V, III-VI, right electropherogram). For each electropherogram, amino acid codes are shown in the top line with

nucleotide sequence and codon numbers below. The position of the mutated nucleotide is underlined.
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silencing in HeLa cells (Biederbick et al. 2006). Similarly,

it showed decreased activity in both mitochondrial and

cytosolic Fe-S proteins (Biederbick et al. 2006). Interest-

ingly, introduction of m-Nfs1 repaired growth and

restored Fe-S protein activity (Biederbick et al. 2006).

These findings are consistent with an NFS1-dependent

human deficiency state, as seen in our patients. Studies of

this type together with our findings shed light on the

physiological significance of proper Fe-S cluster biogenesis

and assembly and their role in human health particularly,

Fe-S cluster-related diseases.
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Figure 2. Pathological and cellular dysfunction in patients with infantile mitochondrial complex II/III deficiency (IMC23D). (A) Pathological findings

in patients with IMC23D. These electron micrographs show scattered lipid droplets (black arrows) and abundant glycogen (G), which are common

nonspecific findings. Note also the lack of capillaries (left) – there should be at least three but only one can be seen (C). The lipid droplets are

often close to directly or attached to the mitochondria (bottom right). There are a variety of mitochondrial abnormalities (white arrows), including

concentric cristae (top middle and right), a honeycomb arrangement of the cristae (top middle and right, bottom middle), vacuolated or ‘blown’

mitochondria reminiscent of artifacts but possibly also evidence of ‘metabolic fragility’ (bottom center), and finally scant cristae (bottom right).

Scale bars 2 lm (left), 1 lm (bottom center), 500 nm (top center and right, bottom right). (B) Depletion in NFS1 protein and transcript levels in

patients with IMC23D. Both (i) quantitative PCR and (ii) Western analysis show reduced NFS1 cellular expression in fibroblast cells of patients

affected with IMC23D. Bar graphs indicate means � standard deviations from two sets of experiments, showing the relative NFS1 expression in

affected individuals normalized to a healthy control quantified by densitometry. The autoradiographs provide a visual representation of NFS1

protein level. The upper blot shows decreased protein expression in NFS1 R72Q relative to NFS1 wild-type (WT). The lower blot shows the

constitutive expression of a-tubulin in both experiments.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. NFS1-ISD11 interaction is disrupted in patient

cells. Wild-type and patient fibroblast cells were subjected

to co-immunoprecipitation with an antibody against

NFS1. ISD11 was co-precipitated with NFS1 in wild-type

(NFS1 WT) but not patient cells (NFS1 R72Q).

Table S1. Additional rare coding variants (MAF < 5%)

identified within the autozygous region, chromosome

20p11.2-q13.1.

Data S1. Supplementary materials and methods.
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