
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-5-2013 12:00 AM

Collaborative Policy-Based Autonomic Management in IaaS Collaborative Policy-Based Autonomic Management in IaaS

Clouds Clouds

Omid Mola, The University of Western Ontario

Supervisor: Dr. Mike Bauer, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Omid Mola 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer and Systems Architecture Commons, Other Computer Engineering Commons,

Other Computer Sciences Commons, Software Engineering Commons, Systems Architecture Commons,

and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Mola, Omid, "Collaborative Policy-Based Autonomic Management in IaaS Clouds" (2013). Electronic
Thesis and Dissertation Repository. 1595.
https://ir.lib.uwo.ca/etd/1595

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1595?utm_source=ir.lib.uwo.ca%2Fetd%2F1595&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

COLLABORATIVE POLICY-BASED AUTONOMIC

MANAGEMENT IN IAAS CLOUDS

(Thesis format: Monograph)

by

Omid Mola

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Omid Mola 2013

Abstract

With the increasing number of “machines” (either virtual or phys-

ical) in a computing environment, it is becoming harder to monitor

and manage these resources. Relying on human administrators, even

with tools, is expensive and the growing complexity makes manage-

ment even harder. The alternative is to look for automated ap-

proaches that can monitor and manage computing resources in real

time with no human intervention. One of the approaches to this

problem is policy-based autonomic management. However, in large

systems having one single autonomic manager to manage everything

is almost impossible. Therefore, multiple autonomic managers will

be needed and these will need to cooperate in the overall manage-

ment. We propose a management model using multiple autonomic

managers organized in a hierarchical fashion to monitor and man-

age the resources in a computing environment based on provided

policies. We develop a communication protocol to facilitate collabo-

ration between different autonomic managers, define the core opera-

tions of these managers and introduce algorithms to deal with their

deployment and operation. We also introduce an approach for the

inference of the communication messages from policies and develop

several algorithms for joining and maintaining the management hi-

erarchy. We propose a deployment system that can discover relevant

resources in a computing environment automatically to facilitate the

deployment of autonomic managers at different levels of a physical

system. We then test our approach by implementing it in a small

private Infrastructure-as-a-Service (IaaS) cloud and show how this

collaboration of autonomic managers in a hierarchical way can help

to adopt to high stress situations automatically and reduce the SLA

ii

violation rate without adding any new resources to the environment.

Keywords: Cloud Computing, Autonomic Management, Policy-

Based Management, Collaborative Management.

iii

Dedication

This dissertation is lovingly dedicated to:

My lovely father, who encouraged me to continue my studies,

helped me migrate to Canada and taught me to never give up.

My beautiful mother, who prayed for me every day, missed me

but hid her tears and believed in me more than what I deserved.

The love of my life, Zeinab, who left her job so I can continue

my studies, stood by my side through difficult times and sup-

ported me in this life journey.

My little son, Mahan, who should know that it is always possi-

ble to learn and gain knowledge, even when you have a baby at

home!

iv

Acknowledgements

A big special thanks to the best supervisor I have ever had. Without

his patience, mentorship and support this work was not possible. I

wish I could thank him enough for being my supervisor. Thank you

Dr. Mike Bauer, now and always.

I would like to acknowledge and thank Dr. Hanan Lutfiyya, my

supervisory committee member, who were always more than gener-

ous with her expertise and time and helped me with her constructive

feedbacks to improve this work.

I wish to thank Dr. Mark Daley, my supervisory committee mem-

ber, Dr. Miriam Capretz, Dr. Mike Katchabaw and Dr. Patrick

Martin for being in the examining board. I appreciate your time,

insights and valuable comments.

I am very grateful to the Computer Science department staff mem-

bers, Ms. Cheryl McGrath, Ms. Janice Wiersma, Ms. Dianne Mc-

Fadzean and Ms. Angie Muir who always helped me specially when I

was teaching courses at Western. Thanks for making this experience

wonderful.

I would like to thank all of my friends in our research group

(DiGS) and Sharcnet administrators specially Mr. Nathaniel Sherry,

who devoted their time to discuss and brainstorm different ideas re-

lated to this thesis. Your constructive criticisms contributed in im-

proving this work.

v

Last but not least, thanks to all of my family members specially

my lovely smart brother, Amir, who was always kind, passionate and

keen about me. I love you all and feel blessed to have you around

me.

vi

Contents

Abstract ii

Dedication iv

Acknowledgements v

List of Tables xi

List of Figures xii

List of Algorithms xiii

List of Appendices xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Towards Autonomic Cloud Management 4

1.3 Contributions . 5

1.4 Roadmap . 7

2 Related work 9

2.1 Multiple Managers . 9

2.2 Coordination of Managers 12

2.3 Policy-Based Interactions 16

2.4 Cloud Management . 17

2.5 Summary . 20

vii

3 Scope and Challenges 22

3.1 Autonomic Management 23

3.1.1 Policy-Based Management 25

3.2 Cloud Architecture . 27

3.3 Challenges . 30

4 Approach and Model 34

4.1 Assumptions . 35

4.2 Hierarchical Model . 36

4.3 Defining Elements of the Model 42

4.3.1 Managed System 42

4.3.2 Events . 46

4.3.3 Policies . 47

4.3.4 Structural Relationship of Autonomic Managers 50

4.4 Summary . 51

5 Autonomic Manager Behaviour 53

5.1 Naming Scheme . 53

5.2 Communication Protocol 58

5.3 Start-up . 61

5.4 Processing . 65

5.5 Termination Detection 68

5.6 Inferring Messages From Policies 70

6 Autonomic Manager Deployment 77

6.1 Management Groups 79

6.2 Management Group Attributes 80

6.3 Management Group Members 83

6.4 Discovery Algorithm 85

6.5 Deployment Algorithms 90

viii

6.6 Deployment in IaaS Clouds 93

6.6.1 Sample IaaS Layout 94

6.6.2 Deployment Tables 95

6.6.3 Deployed Managers 98

7 Experiments and Evaluation 101

7.1 Evaluation: Performance Study 102

7.1.1 Experimental Setup 102

7.1.2 Policies . 106

7.1.3 Scenario 1: No Collaboration 109

7.1.4 Scenario 2: One Level Collaboration 111

7.1.5 Scenario 3: Two Level Collaboration 113

7.1.6 Discussion . 116

7.2 Case Study: High Frequency Trading 117

7.2.1 Management Architecture 119

7.2.2 Implementation 121

7.2.3 Policies . 125

7.2.4 Lessons Learned 127

7.3 Summary and Discussion 128

8 Conclusion 131

8.1 Summary . 131

8.2 Main Contributions . 133

8.3 Future Work . 135

Bibliography 137

Appendix A Managed Element Infos 146

Appendix B Technology Scripts 159

ix

Curriculum Vitae 161

x

List of Tables

6.1 Management Groups 80

6.2 Management Group Attributes 83

6.3 Management Groups Members 83

6.4 IaaS Cloud Management Groups 96

6.5 IaaS Cloud MGAttributes 97

6.6 Initial Iaas Members Table 98

6.7 Completed IaaS Members Table 99

6.8 Deployed AM Names 100

7.1 Experiment’s Management Groups 105

7.2 Experiment’s MGAttributes 105

7.3 Results of three scenarios 117

7.4 CTS Management Groups 121

7.5 CTS MGAttributes . 121

xi

List of Figures

3.1 Autonomic Manager Architecture (from [33]) 24

3.2 Eucalyptus Hierarchical Architecture (from [34]) 29

4.1 AMs hierarchy based on the cloud architecture 37

4.2 IaaS Cloud Structure 39

5.1 AMs hierarchy based on the cloud architecture 74

6.1 IaaS Cloud Layout . 95

6.2 AMs hierarchy after deployment on IaaS cloud 100

7.1 Experiments Cloud Physical layout 103

7.2 Hierarchy of managers based on physical layout 104

7.3 Apache response time with no manager collaborations 110

7.4 Apache response time with one level of collaboration . 112

7.5 Apache response time with two levels of collaboration . 114

7.6 Managers hierarchy after migration of VM2 to Server 2 115

7.7 Case Study Physical Layout 120

7.8 Management’s Hierarchy - two levels 121

7.9 Data flow for a host machine agent 124

xii

List of Algorithms

5.1 AM Startup . 62

5.2 Monitoring Loop . 66

5.3 Management Interval Loop 66

5.4 Policy Evaluation . 67

5.5 AM Termination Detection and Removal 69

5.6 ExecuteActions . 72

6.1 Member Discovery 87

6.2 Members Addition: Autonomic Manager Deployment 91

6.3 Members Removal 92

xiii

List of Appendices

Appendix A Managed Element Infos 146

Appendix B Technology Scripts 159

xiv

Chapter 1

Introduction

In recent years, there has been a lot of research into “Autonomic

Computing” [17], especially about how to build autonomic elements

and managers [19]. Autonomic managers (AMs) try to monitor

and manage resources in real time to ensure that the components

they manage are self-configuring, self-optimizing, self-healing and

self-protecting (so called “self-*” properties [36]).

1.1 Motivation

The basic idea behind a self-management system is inspired from the

autonomous nervous system of human body [39]. The need for hav-

ing such systems is becoming more obvious as the number of com-

puting machines (such as virtual or physical) is increasing. Data

centers are becoming larger and more complex, particularly those

focused on providing cloud services. The challenges of monitoring

and managing these cloud computing environments in order to meet

users’ expectations of highly available and responsive systems are

increasingly more difficult. Therefore, as the number of cloud users

1

2 Chapter 1. Introduction

are growing, having self-managed systems seems to be inevitable in

the future management of the computing infrastructures.

In the broader vision of autonomic computing, large complex data

centers and systems will consist of numerous autonomic managers

handling systems, applications and collections of services [20]. Some

of the systems and applications will come bundled with their own

autonomic managers, designed to ensure the self-properties of par-

ticular components. Other managers will be part of the general man-

agement of the computing environment. Therefore, the complexity

of managing a large system will entail a number of different auto-

nomic managers which must cooperate in order to achieve the overall

objectives set for the computing environment and its constituents.

However, the relationships between these managers and how they

cooperate introduce new challenges that need to be addressed.

More specifically, there are questions regarding how different au-

tonomic managers should be organized and how they should interop-

erate in a large computing environment, such as an Infrastructure-

as-a-Service (IaaS) cloud. There are questions on how they should

interact with each other to achieve a global goal in the system, how

and when this communication should happen, how to minimize asso-

ciated overhead, etc. Besides communication among managers, there

are other problems that need to be addressed: How each manager

gets deployed in the appropriate position of the management system,

how is the configuration and the deployment of the managers done

so that they can collaborate with each other in the system, how is

the management relationship among managers maintained as new

1.1. Motivation 3

managers start and others end in response to changes in the system?

In order to ensure that service level agreements are met and that

we use the infrastructure more efficiently, we have focused on the

following problems:

• How to deploy autonomic managers dynamically in a scalable

manner?

• How autonomic managers should collaborate with each other in

a large computing environment to achieve global goals?

• How to automate the configuration of autonomic managers and

the communication process itself, to minimize the administra-

tive costs of managers’ setup and maintenance?

• What should happen when a new autonomic manager gets added

or when an already running one stops working? How system re-

act to these changes dynamically?

We consider the use of policy-based managers [6] in addressing

these problems. The ultimate goal is to automatically monitor and

manage a large system by a collective of collaborating local auto-

nomic managers. In such an environment, we assume that each

local autonomic manager has its own set of policies and is trying to

optimize the behaviour of the elements that it manages by respond-

ing to the changes in the behaviour of those elements. We assume

some managers will also be expected to monitor multiple systems

and directly or indirectly to monitor other local AMs.

The focus of this research is on a management model for multiple

autonomic managers and in particular the collaboration and commu-

nication between different managers. We consider this initially where

4 Chapter 1. Introduction

the autonomic managers are organized into a hierarchy and inves-

tigate how they can communicate at different levels of a hierarchy

based on the active policies. Although there are other approaches

to communications between managers, such as peer-to-peer, multi

agent, etc. we have chosen a hierarchical approach since a) it is a

good starting point and has advantages over flat structures and it is

important to understand how it can be effectively utilized or where

there may be limitations and b) it has a natural alignment with an

IaaS cloud architecture - our particular system focus.

The core issues addressed are how these local managers should

communicate with each other, how they should be deployed auto-

matically across the computing environment and what information

they have to exchange to achieve global performance goals. We will

also focus on how to automate the collaboration process itself by

inferring the communication messages from the active policies in a

particular autonomic manager. In a hierarchical organization of au-

tonomic managers, policies are used at different levels to help man-

agers decide when and how to communicate with each other as well

as using polices to provide operational requirements. We assume

that one of the roles of a higher level manager is to aid other au-

tonomic managers when their own actions are insufficient to meet

operational requirements.

1.2 Towards Autonomic Cloud Management

A special focus of this thesis is on the management of IaaS cloud

environments. These cloud computing environments often depend

1.3. Contributions 5

on virtualization technology where client applications can run on

separate operating virtual machines (VMs). Such environments can

consist of many different host machines each of which might run

multiple VMs. As the number of hosts, virtual machines and client

applications grow, management of the environment becomes much

more complicated. The cloud provider must worry about ensuring

that client service level agreements (SLA) are met, must be con-

cerned about minimizing the hosts involved, and minimizing power

consumption.

As part of this thesis, we focus on how our management model

and approach can be applied to such environments (e.g. IaaS clouds)

and implement these ideas in a small cloud. We also explain the ap-

plication of our approach to a real world problem where we worked

with a private company to evaluate these ideas in a high frequency

trading cloud environment and tuned the general strategy based on

practical experiences.

1.3 Contributions

The main contributions of this work and the novel ideas are as fol-

lows:

• There has been generally a little work in the area of multi-

ple autonomic managers and how to handle dynamic changes.

Therefore, this work is to somewhat unique in this area.

• Cluster management typically has a focus on the cluster as a

whole often ignoring management of individual elements, such

6 Chapter 1. Introduction

as nodes. Our hierarchical approach in this thesis encompasses

a focus on local and intermediate managers as well as including

global cluster level managers which makes it unique in address-

ing this problem.

• The design of a hierarchical autonomic management model for

large computing environments with formal definition of different

elements in that model (Chapter 4).

• The design of a communication protocol between autonomic

managers that facilitates their collaboration in achieving global

goals (Section 5.2). Some of these communication messages can

be inferred from policies and therefore can help with automating

the collaboration between managers.

• Introduction of multiple algorithms that define the behaviour

of a specific autonomic manager and its relationship with other

managers in that management model. These algorithms include

the start-up, processing, termination detection and communi-

cation message inference from policies (Chapter 5).

• Design of a deployment system based on the management model

proposed to automate the deployment of different autonomic

managers across the computing environment with minimum ad-

ministrative efforts (Chapter 6).

• Creation of multiple algorithms as part of this deployment sys-

tem such as element discovery, members addition and members

removal (Section 6.4 and Section 6.5). The time complexity of

element discovery algorithm is O(n2) where n is the number of

AMs that should be deployed in the whole computing environ-

ment (e.g. number of nodes in the management tree). The time

1.4. Roadmap 7

complexity of members addition algorithm is O(log(n)) and the

members removal is O(n) in the worst case.

We also evaluated these ideas in two different experimental set-

tings. In one case, we implemented this approach in a small private

cloud and measured the potential advantages of a hierarchical ap-

proach. We also implemented some of our ideas and algorithms in

a real world setting involving a high frequency trading cloud infras-

tructure.

1.4 Roadmap

The structure of the remainder of the thesis is as follows: Chapter

2 presents a literature review and a summary of the most related

work. Chapter 3 explains some of the background information re-

quired and defines the scope of this research outlining the specific

challenges that are addressed throughout the thesis. Chapter 4 ex-

plains the basic assumptions in our approach, discusses the proposed

management model and introduces formal definitions of different ele-

ments in this model. Chapter 5 introduces and discuses the multiple

algorithms that are developed to explain the behaviour of an auto-

nomic manager and its relationship with other managers within the

scope of the proposed management model. Chapter 6 addresses the

issue of dynamic autonomic manager deployment in a large com-

puting environment and explains several algorithms that are used

inside the deployment system to make sure that managers are auto-

matically deployed to the right position with the right configuration

parameters. Chapter 7 describes the implementation and evaluation

8 Chapter 1. Introduction

of these ideas through a performance study and describes some prac-

tical experiences in using the ideas in this thesis in a private cloud

environment. Finally, Chapter 8 provides a summary of the thesis

and concludes by identifying some potential future work.

Chapter 2

Related work

There has been wide range of research dealing with the issues in-

volving multiple autonomic managers for managing large systems.

In this Chapter, we review some of the key works in this area and

discuss the similarities and differences with our work. We focus in

particular on previous work that looks at having multiple managers

and examine how the interactions or collaboration are addressed. We

also discuss some of the previous research that involves policy-based

management with multiple autonomic managers, cloud management

and general approaches towards coordination of multi-agent systems.

2.1 Multiple Managers

Some researchers have already begun to study how collaboration

among local autonomic managers can be done in order to achieve

a global goal. A hierarchical communication model for autonomic

managers has also been used by some researchers. In this section,

we describe some of the relevant research in this area and explain

the differences with our work.

9

10 Chapter 2. Related work

Famaey, et al. [14] used a policy-based hierarchical model for

network management. They showed how this model can be mapped

to the physical infrastructure of an organization and how this hier-

archy can dynamically change by splitting and/or combining nodes

to preserve scalability. They also introduced the notion of “context”

that needs to be accessible in the hierarchy. The “context” is the

information that is made available from a child to its father. Their

work focused on the network layer and studied the transmissions be-

tween autonomic elements by looking at the number of bytes trans-

mitted during communication. In this work, “context” is basically

the monitoring information that can be retrieved from standard pro-

tocols such as the Simple Network Management Protocol (SNMP).

The limitation of these protocols is that they only provide network

management information at the macro levels and they do not deal

with detailed organized information that is required for manage-

ment at higher levels. It is also difficult to perform request/response

type of communication due to protocol constraints. We have also

adopted the hierarchical approach used in this work, but we develop

a new protocol to exchange communication messages between auto-

nomic managers. We also use a mechanism to infer communication

messages from policies automatically and show when and how this

communication should happen.

Aldinucci, et al. [4] described a hierarchy of managers dealing

with a single concern (Quality of Service-QoS). In their work, each

manager is trying to pursue a goal defined in a QoS contract. There-

fore, the relationship between managers is bound to the contracts

2.1. Multiple Managers 11

they are pursuing. This means that policies are defined based on

these QoS contracts and that the topmost contract is the main QoS

for the whole system and other contracts within the hierarchy should

be derived from their parents. This is similar to policy decomposi-

tion process where one can define global policies for the root node

and then it gets decomposed to lower level policies and placed on to

the lower level components. They assume that if a lower level com-

ponent can not satisfy its QoS parameters, it will trigger a “contract

violation” message to its parent and enter a passive mode until it

receives a new contract. This means that the parent node should

be able to generate a new policy set upon QoS violations to pass it

down to its child. They used a simulator to evaluate the framework.

The communication between elements in this work is hard-wired

and the hierarchical structure is static which makes it difficult to

deal with dynamic environments. The focus of our work is not on

how the policies get distributed between different managers (though

for completeness we describe an approach in our work), we assume

that autonomic managers have the right policies in place and that

these policies can change over time if required. We focus on defining

a communication protocol between managers that is loosely-coupled

and on what should happen in case of adding/removing a manager

to the hierarchy which is not discussed in this paper. We consider

dynamic join and leave of autonomic managers to the management

hierarchy and design algorithms that can detect these changes and

adopt the hierarchy accordingly.

12 Chapter 2. Related work

2.2 Coordination of Managers

Mukherjee, et al. [32] used coordination of three managers work-

ing on three different parts of a system (Power Management, Job

Management, Cooling Management) in a flat structure to prevent a

data center from going to a critical state. The critical state is when

there is a possibility of the ambient temperature to reach the redline

temperatures. They showed how the three managers can cooperate

with each other to keep the data center temperature within a cer-

tain limit that is suitable for serving the current workload and at the

same time not using more power than required. They showed how

these three managers can be configured to work based on different

business policies. Their approach used three different strategies to

combine the three management tiers and preconfigured the system

to work based on these three strategies. The three management tiers

are fixed and adding new managers to this system will be challenging

both in terms of collaboration and scalability, particularly because

the coordination between management tiers depends on their con-

figuration and can not change dynamically.

The same approach as in [32] is used in [18, 49] to show the col-

laboration between a power and a performance manager (only two

managers) to minimize the power usage as well as maximizing the

performance. This method however does not seem to be general-

izable to a larger environment with more autonomic managers in-

volved because of the complexity introduced in terms of interactions

between managers. In contrast, we look to deal with multiple man-

agers and an environment where the managers can join and leave the

management system dynamically. The configuration of managers is

2.2. Coordination of Managers 13

not fixed and can be changed based on the active policies. The poli-

cies themselves can also change on the fly based on new demands

rising from time to time.

Schmelz, et al. [44] have proposed a coordination framework for

Self-Organizing Networks (SON). They use a coordinator (Align-

ment Function) to coordinate the decisions of multiple managers for

a specific network entity based on predefined high-level performance

objectives. This work is focused on resolving conflicting parameter

settings for the network entities because SON functions (managers)

are not necessarily aware of each other and may cause making mul-

tiple conflicting decisions for one specific element. This means that

one element can be managed by more than one manager and there-

fore each manager might change the settings of the element without

knowing about decisions of other managers. They used a policy de-

composition framework to map and distribute high level performance

objectives defined by network operators to cell-specific policies, SON

function-specific policies and SON coordinator-specific policies. The

SON coordinator will then resolve the conflicts based on these poli-

cies try to harmonise the control parameter changes towards the

operator policies. In our work, we assumed that each managed el-

ement is being managed by one and only one autonomic manager

and therefore the only possible way to have conflicting decision is

when there are conflicting policies in place. Each manager might

be involved in a relationship with its higher level manager and in

case of conflicts in enforcing policies at different levels, we assume

the higher-level manager has more authority and therefore its policy

should override the local lower level manager’s policy. However, the

14 Chapter 2. Related work

policy distribution and how policies are derived from higher level

objectives is not the focus of our work. If we assume the SON coor-

dinator as a higher level manager then this system can be considered

as part of the hierarchical system proposed in our work.

Tuncer, et al. [51] have developed a coordinated mechanism to

control the distribution of traffic load in the IP networks. Their

ultimate goal is to balance load in the network by moving traffic

away from busy nodes towards underutilized ones in order to adapt

to dynamic traffic changes. This work does not deal with autonomic

managers, but they have explored two different models for the or-

ganization of nodes. They used full-mesh and ring topology models

for organizing nodes in a decentralized way and developed an al-

gorithm for their coordination. However, the nodes in these two

models are fixed and they do not consider faulty/error situations.

They also used a message based means of communication between

nodes to facilitate the coordination. They created a structure for

messages and defined two types of messages that can be exchanged

(i.e. REQUEST, RESPONSE). This communication protocol can

only handle simple messages with a focus on networking (i.e. it is

not generalizable to another system). Our focus is on a hierarchical

organization of autonomic managers with a message based communi-

cation. The experiences in this work such as defining different types

of messages, and the communication protocol can be used in our

work. However, we extended the communication protocol to include

other types of messages such as NOTIFY message and also added

useful organized information in the body of messages. We also deal

with dynamic addition and removal of nodes in the system and pro-

2.2. Coordination of Managers 15

vide algorithms to handle these cases.

Multi-agent approaches toward autonomic manager collaboration

have been explored by some researchers. In these systems, each

autonomic manager is represented as an agent and multi-agent com-

munication techniques are used for their interactions. We explain

some of the most relevant ones to our work.

The “Unity” architecture [50] uses performance utility functions

that need to be calculated by each agent with the result being sent

to a central coordinator (“Arbiter”) for computing the globally op-

timal resource allocation. The same kind of approach is used in [12]

by having a coordinating agent that tries to coordinate power and

performance agents. This approach could be used as part of the hi-

erarchical approach that will be presented in this thesis, but it does

not seem to be scalable to a larger system just by itself, because

adding a new agent to this system will introduce challenges in agent

interactions and configurations. This can be considered as a special

case of the hierarchical approach proposed later in the thesis, but

with only one level of hierarchy.

Soares and Madeira [48] have used a multi-agent architecture for

autonomic management of virtual networks. In this architecture each

autonomic manager (agent) monitors part of the network and up-

dates its own knowledge base (KB). In order to facilitate the decision

making process, each agent should have access to the KB informa-

tion of other agents so that it can get a global view of the system

(network). Therefore, each agent should sync its own KB with all

16 Chapter 2. Related work

other agents in the system. The agents do not request information

on demand. This approach can lead to a major overhead in large sys-

tems and turn into a bottleneck itself. In our model, each manager

does not need to have information about all other managers mostly

because of the layered hierarchical architecture. It is also possible to

get updated information on demand if it is needed.

2.3 Policy-Based Interactions

Salehi and Tahvildari [41] published a survey article on self-adaptive

systems and the main research challenges. They proposed [40] a

policy-based orchestration approach for resource allocation to dif-

ferent autonomic elements. They suggested the use of a global or-

chestrator to coordinate the resource provisioning at a global level

between multiple autonomic elements. They used crisp action poli-

cies for non-competitive states where there is no conflict on resource

requests and fuzzy utility policies to resolve conflicts in competitive

states. In this work, the interactions between autonomic managers

and the orchestrator is limited to resource requests, the managers

are fixed and the communications are tightly coupled. This system

can be considered as one level of hierarchy that will be explained in

this thesis. However, we developed a new communications protocol

which includes different types of messages and considered the dy-

namic joining and leaving of managers from the system.

Schaeffer-Filho, et al. [42, 43] have introduced the interaction

between Self-Managed Cells (SMCs) that was used in building per-

vasive health care systems. They proposed “Role” based interactions

2.4. Cloud Management 17

with a “Mission” that needs to be accomplished during an interac-

tion. This mission is based on predefined customized interfaces for

each role. This approach is similar to interactions in ad-hoc net-

works and SMCs need to discover each other and try to accomplish

missions based on their defined role in the system. There are cer-

tain policies for each role which facilitate the interactions. In our

work, we deal with a hierarchy of managers and therefore each man-

ager needs to communicate with either its children or its parent and

there is no need to define “role” for each manager to make the in-

teractions possible. Although, this SMC role based approach might

also be applicable in a hierarchical fashion, the overhead in defining

unnecessary interfaces introduces a challenge. Another major differ-

ence is that we try to infer communication messages from policies

dynamically to the extent that is possible but in the SMC system

all interactions have to be specified beforehand through missions.

2.4 Cloud Management

Zhu, et al. [58] introduced an integrated approach for resource man-

agement in virtualized data centres. They used three controllers (e.g.

Node, pod and pod set controllers) to monitor physical nodes, a clus-

ter of nodes and the whole data center. Their approach is similar to

the hierarchical approach we used in our work, but the relationships

between different controllers are tightly coupled whereas we suggest

a loosely coupled communication style to better accommodate fail-

ures, heterogeneous autonomic managers and dynamic changes in

the system and managers. They also only focus on management of

the physical elements; i.e., they do not consider any controllers that

18 Chapter 2. Related work

could monitor the changes inside a virtual machine. In the applica-

tion of our model to a cloud environment, it is possible to have at

least one autonomic manager inside virtual machines which can join

and leave the management hierarchy dynamically. Another differ-

ence is that they use a polling mechanism with multiple time-scales

to do the monitoring at different levels. For example, they monitor

virtual machines in seconds, the “pods” in minutes and the “pod

sets” in hours or days. In our work, we proposed the use of notifi-

cation messages for communication between managers and therefore

managers can communicate based on demand rather than polling

which reduces the overall overhead. We also focus on policies and

how they affect the relationship between managers in a dynamic

structure where multiple autonomic managers can join and leave the

management system, but the number of controllers in their system

is limited to three with hard-wired connections between them which

limits the scalability of their approach.

Li, et al. [23] have developed an integrated and multi-layer ap-

proach towards automatic management of cloud environments. They

used three different controllers to monitor and manage cloud infras-

tructure at three different layers. The virtual machine controller

(VMC) uses a multi-input multi-output (MIMO) resource controller

and a model estimator to estimate the required resource allocations

of the applications running inside the VM to satisfy their service level

objects (SLOs). The node controller (NC) collects all VM resource

demands and satisfies these demands according to SLO differenti-

ation which means lower priority applications will be given fewer

resources if there are not enough resources available or when the

2.4. Cloud Management 19

total demands are more than available resources at the node level.

The global controller (GC) monitors all nodes in the cloud and uses a

statistical machine learning technique to rearrange virtual machines

among nodes. These migrations help to optimize virtual machine

placements and meet the SLOs. Basically they use different models

at each level to estimate the demands and adjust the environment

and as a result it is more complex to change the model dynami-

cally. In our work, we use the same Monitor-Analyse-Plan-Execute

(MAPE) loop/model at all levels of the hierarchy but policies can

change on the fly. In their work, the interactions between controllers

are tightly coupled. For example, the VMC sends resource requests

to NC and the NC responds to that request by using a resource

actuator to change the VM parameters. This also shows the tightly-

coupled relationship between controllers and can become an issue

for scalability of the approach when the number of virtual machines

and nodes increase. In our work, we develop algorithms to handle

dynamic joining and departure of managers to the hierarchy and the

message based communication protocol is loosely-coupled.

There has been some other research about management of the

virtual machines in a cloud environment. Pokluda, et al. [38] looked

into how to change VM’s memory allocation dynamically in stress

situations. Urgaonkar, et al. [53] developed an algorithm for dy-

namic resource allocations at the virtual machine level to adapt to

unpredictable changes. Researchers in [55, 45, 57] have developed

multiple algorithms for virtual machine migrations in data centers

to address stress situations. However, in all of these works the ap-

proach was based on a single centralized manager that gathered all

20 Chapter 2. Related work

required information from the virtual machines and made decisions

based on that information. This approach is limited in terms of

scalability and single point of failure. In our management model, we

consider multiple autonomic managers deployed at different levels of

the system. We consider dynamic joining and leaving of these man-

agers so that the system can still operate if one or some of them are

terminated. We also focus on a range of managed elements in the

data center, such as applications, virtual machines, physical servers

and so on but in these works the main focus is only on virtual ma-

chines. Overall, the algorithms developed in these works can be used

as part of our management model and inside some of the managers

that are responsible for managing virtual machines. These could be

embedded in to the policy sets defined for those managers.

2.5 Summary

We explored some of the work most relevant to this thesis and dis-

cussed some of their limitations and constraints. We also explained

how our work is different from each. In general, understanding of

the collaboration between policy-based autonomic managers is still

a relatively new area of research with a lot of research challenges

yet to be answered. It is still a work in progress in the autonomic

computing area; some areas where the previous work has not yet

studied include:

1. A good communication protocol between managers that is loosely-

coupled, can handle different types of interactions and can in-

clude detailed organized information as part of the communica-

2.5. Summary 21

tion.

2. An organizational model that can handle the dynamic joining

and leaving of managers and adapt to the changes in the infras-

tructure.

3. Methods that address scalability concerns as the number of el-

ements increase in the computing environment and automation

of communication between managers to the extent that is pos-

sible.

4. Means of deploying multiple managers to the right position and

keep them up to date and running with the least human admin-

istrative efforts.

We focus on these main issues in the rest of this thesis and explain

our approach in more detail.

Chapter 3

Scope and Challenges

In this Chapter, we cover some of the background information for

our work before describing our approach in more detail. This Chap-

ter is meant to give readers a clear view of the scope and challenges

addressed in this thesis.

We first explain the basic concepts of autonomic management and

associated techniques used in this thesis. We then describe the IaaS

(Infrastructure-as-a-Service) cloud architecture since it is the envi-

ronment we focus on to explore our approach and test our ideas.

This Chapter also provides some of the background behind why we

have initially chosen to focus on the hierarchical structure for orga-

nization of autonomic managers. Moreover, the cloud architecture

will be used in the evaluation of our approach and discussed fur-

ther in the description of our experiments. We also discuss the main

questions we have addressed in this thesis.

22

3.1. Autonomic Management 23

3.1 Autonomic Management

Autonomic Management has been a very active field of research in

the past decade [20, 36, 17] and a variety of research challenges have

been raised in this area [19]. It is used for service level guarantees

[28], aggregated information monitoring [26, 25] and many other

applications [27]. However, the main idea behind autonomic man-

agement is to build systems that are self-configuring, self-healing,

self-optimizing and self-protecting and it is inspired from the human

body’s Autonomous Nervous System (ANS) [39].

The ANS gives our bodies the ability to adapt to dynamic changes

in the environment around us automatically by sensing these changes,

deciding what actions the body should take and enforcing those ac-

tions. Similarly, an autonomic manager which is responsible for mon-

itoring and management of one or more elements of a computing

system (i.e. Managed Elements - MEs) should be able to sense the

changes in those elements, decide what actions need to be taken and

enforce those actions, to adapt the whole system automatically.

The general architecture of an autonomic manager looks like Fig-

ure 3.1. In this architecture [33], the managed element provides

some sensors and effectors/actuators to the manager. The auto-

nomic manager can then monitor available metrics through these

sensors and analyse the monitored information. It can then plan for

a series of actions that needs to be executed, if any, and then execute

those actions through the provided effectors. The manager will then

keep monitoring those metrics to see the effects of its decisions in

the previous management interval. This process is a feedback loop

24 Chapter 3. Scope and Challenges

called Monitor-Analyze-Plan-Execute (MAPE) loop.

There are various ways a manager can choose the best actions, but

we use policy-based management in this thesis. Policy-based man-

agement assumes that the knowledge base in the autonomic man-

ager includes defined policies and therefore it can look into those

provided policies to pick the appropriate actions that need to be

enforced. Policy-based management is explained in more detail in

section 3.1.1. The autonomic manager combined with one or more

managed elements is called Autonomic Element (AE). Therefore, in

order to be able to manage an AE itself, the AE can provide sen-

sors and effectors to the outside world. This will help forming multi

layers of autonomic management in a system.

Figure 3.1: Autonomic Manager Architecture (from [33])

In this work, we use the same basic architecture for building au-

tonomic managers and the MAPE loop can be configured to run on

3.1. Autonomic Management 25

different management intervals. That is, one manager can run its

MAPE loop every 100 millisecond whereas another manager can run

the loop every 10 minutes. This is useful for enforcing management

at different levels of the hierarchy while trying to minimize over-

head. At the lowest levels, monitoring is required more often as the

changes are very dynamic and happen more frequently, while man-

agers at higher levels need less frequent monitoring and therefore can

in principle operate at higher management intervals. This will result

in less traffic and processing overhead in the management system.

3.1.1 Policy-Based Management

Policy-based management is a well-known technique in the auto-

nomic management area. An overview of policy-based management

along with relevant standards and implementation techniques can

be found in [3, 6]. Many languages have been developed to express

policies however only some of them support Event-Condition-Action

paradigm [16]. Ponder [11] is one of the most famous policy lan-

guages that supports this paradigm.

An autonomic manager can have different types of policies which

can be useful for certain purposes. For example, it might rely on

configuration policies for self-configuration of managed elements, or

might utilize expectation policies for optimization of the system or

for ensuring that service level agreements (SLAs) are met. Elastic-

ity policies [15] can also be used to automatically add or remove

resources in a computing environment.

26 Chapter 3. Scope and Challenges

In this work, we use policies expressed as event, condition, action

(ECA) policies. In general, all of our policies are of the form:

OnEvent: E

if Set of Conditions then

Set of ordered actions

end if

Upon raising an event inside the autonomic manager, then any

policy which matches the event will get evaluated. If the conditions

in the policy are met, then the policy actions get triggered. We pro-

vide examples of policies in the following sections.

At AM start-up there are configuration policies that set up the

autonomic manager environment, identify the appropriate managed

elements and configure them. It is however possible to automatically

perform policy mapping [35] at start-up time and configure elements

based on other types of policies. A sample configuration policy ex-

plicitly defined in the policy set of an autonomic manager would look

like:

OnEvent: VMConfigurationEvent

if true then

VirtualMachineMEI.setRefreshInterval(4000ms)

end if

This policy happens on AM start-up and configures the refresh

interval for this AM. If we assume that this AM is responsible for

3.2. Cloud Architecture 27

checking the CPU utilization, then the intent of this policy is that

the AM will check the utilization every 4000 milliseconds and exe-

cute policies after each refresh.

These policies represent how the management system should react

to dynamic changes in the environment and might change from time

to time based on a strategy-tree approach [46, 47] or administrative

needs. However, the focus of our work is not on how the policies get

distributed between different managers (though for completeness we

describe an approach in our work), we assume that multiple auto-

nomic managers can retrieve their policy sets from a repository and

that these policies can change over time if required.

3.2 Cloud Architecture

The focus of this thesis is on autonomic management and commu-

nication among multiple autonomic managers. However, while the

focus is on autonomic management, we want to explore our ideas in

an environment that has some structure. Given the importance of

cloud computing environments, we choose to focus on this environ-

ment and, more specifically, we choose IaaS clouds to test our ideas.

The infrastructure of IaaS cloud providers is typically composed

of data centers with hundreds to thousands of physical machines or-

ganized in multiple groups or clusters. Each physical machine runs

several virtual machines and the resources of that server are shared

among the hosted virtual machines. There are a large number of

virtual machines that are executing the applications and services of

28 Chapter 3. Scope and Challenges

different customers with different service level requirements (via Ser-

vice Level Agreement (SLA) parameters).

To have a better understanding of a cloud provider environment

and architecture, we take a closer look at Eucalyptus [34] (an open

source software for building private and hybrid clouds). There are

three main distinct components that form the Eucalyptus architec-

ture in a hierarchical fashion and each of the components have a

different role in the system. These separate components can be

physically located on one single machine to form a cloud or can be

distributed over several machines. An overview of the Eucalyptus

architectural model is illustrated in Figure 3.2.

The main three components of the Eucalyptus architecture are

briefly described below:

• Cloud Controller (CLC): The CLC is the top level component

for interacting with users and getting the requests. It handles all

incoming requests and performs high level resource scheduling

and system accounting. The CLC makes the top level choices

for allocating new instances of virtual machines, authentication,

reporting and quote management. Only one CLC can exist in

each cloud.

• Cluster Controller (CC): The CC manages the virtual machine

execution and service level agreements. It decides which node

should run the VM instance. This decision is based upon sta-

tus reports which the Cluster Controller receives from each of

the nodes. CC has three primary functions: schedule incom-

ing instance run requests to specific nodes, control the instance

3.2. Cloud Architecture 29

Figure 3.2: Eucalyptus Hierarchical Architecture (from [34])

virtual network overlay, and gather/report information about a

set of nodes.

• Node Controller (NC): The NC runs on the physical machine

responsible for running virtual machines and the main role of

the NC is to interact with the OS and hypervisor running on

the node to start, stop, deploy and destroy the VM instances.

An NC makes queries to discover the node’s physical resources

the number of cores, the size of memory, the available disk space

as well as to learn about the state of VM instances on the node.

The information thus collected is propagated up to the Cluster

Controller in response to “describeResource” and “describeIn-

stances” requests.

30 Chapter 3. Scope and Challenges

This architecture shows a hierarchical relationship between dif-

ferent components of a typical IaaS cloud. A deeper look at the

cloud architecture and the management needs suggest that provid-

ing management capabilities in real time through a single centralized

manager is almost impossible, because of the hierarchical layers in

the architecture with different responsibilities at each layer. Also,

the dynamics of load changes and the need to react to these changes

in real time with increasing number of virtual machines and physi-

cal nodes makes it much more difficult to achieve these goals with a

traditional centralized manager.

We adopt the same hierarchical approach towards the autonomic

management of this infrastructure. We organize policy-based auto-

nomic managers in a hierarchical fashion which corresponds roughly

to the underlying infrastructure components. Hence, the overall

management of the system is then possible by having a set of collabo-

rating autonomic managers organized in this hierarchy. At the same

time, each manager in the hierarchy acts autonomously to manage

part of the cloud on its own, based on given policies.

3.3 Challenges

All of the specified components in the cloud architecture are needed

for instantiation of new images or destroying currently deployed vir-

tual machines and they have some minimal management capabili-

ties. The main job of these components is to pick the best host

to place a new VM (VM placement). There has been a lot of re-

search about VM placement [8, 37] which is usually relevant to the

3.3. Challenges 31

problem of server/VM consolidation [9, 22, 54]. However, the main

challenges in monitoring and managing the cloud environment occur

after the virtual machines are placed and start working and receiving

loads. After a virtual machine is placed with some specific service

level agreements and starts working, the clients can connect to it for

servicing. The number of clients and their interactions with the ap-

plications on the virtual machine will vary and create a dynamically

changing workload. There may be times that the traffic is too high

and the virtual machine gets overloaded or there may be some other

times that the traffic is too low so that the virtual machine is un-

derutilized. In the first case, SLA violations might occur whereas in

the second case the energy and allocated resources might be wasted.

One of the approaches to this problem is dynamic consolidation of

VMs which usually is a heuristic based approach and does not allow

explicit specification of QoS metrics [5].

In the context of an IaaS cloud, these problems are compounded

with multiple virtual machines, multiple different applications and

different service requirements. There are also many related man-

agement challenges that need to be addressed [56], including, how

to initially configure and deploy autonomic managers, how multiple

managers located at different parts of the system should communi-

cate, etc. In this thesis, we focus on the following problems:

• How should multiple autonomic managers collaborate in order

to manage the varying workloads in different virtual machines?

To answer this question we need to understand what should

happen to maximize the performance of a specific virtual ma-

32 Chapter 3. Scope and Challenges

chine (or an application inside it) according to the agreed SLA

while minimizing the resource usage. We should also know if

there is any way to get help from another manager while one

manager has reached its local limits (e.g. communication and

collaboration).

• How can we achieve autonomic elasticity in the cloud? Auto-

nomic elasticity happens when a virtual machine can grow and

use more resources if needed, and shrink back again and re-

lease resources if there is no demand for them. The answer to

this problem would show what autonomic managers are needed,

where they should be deployed and what kind of policies are re-

quired on each one.

• How to automate the collaboration of managers in the system?

In order to deal with a dynamic environment where applications

can start and stop and where virtual machines may come an go,

there is a need to ensure that managers can communicate and

collaborate. However, the interaction between managers must

be dynamic too. How can communication between managers

be defined in a changing environment as managers come and

go? How is the communication structured and what informa-

tion is exchanged (e.g. communication protocol). We look at a

means of inferring the communication messages needed between

different autonomic managers from their active policies.

• What is a scalable approach for the deployment of autonomic

managers? In an IaaS system, there will be many autonomic

managers that need to be deployed on different parts of the

cloud, each monitoring some number of managed elements, and

3.3. Challenges 33

the managers will change dynamically as applications and vir-

tual machines come and go. What is a good strategy for de-

ploying these managers so that it requires minimal manual ad-

ministrative efforts?

• How can autonomic managers detect the addition or removal

of different elements and automatically restructure their orga-

nization (e.g. hierarchy) without human intervention? In a

real cloud, applications, virtual machines and physical nodes

can join or leave the system at any time and thus their related

autonomic managers can also join or leave the management sys-

tem at any time. So, how does the organization of managers

(e.g. hierarchy) restructure on the fly to reflect these changes?

• How to automate the manager configuration and minimize the

administrative costs to setup autonomic managers? Each auto-

nomic manager needs to be configured before or upon start-up.

However, in a large system configuring all managers one by one

can become a challenging and error prone job for administra-

tors. How can this process be automated to help administrators

and reduce the costs associated with it?

These problems can basically be categorized into two main areas:

1) Dealing with multiple managers: What managers are needed?

How they are organized and communicate? What policies are re-

quired? When they should communicate? etc. 2) Management of

the managers: How to address concerns arising from the manage-

ment of the mangers: configuration, deployment, dynamic changes

to the collection of managed elements, etc.

Chapter 4

Approach and Model

In this Chapter, we explain our approach and assumptions towards

autonomic management of a large system (e.g. IaaS cloud) with

a particular focus on the challenges outlined in Section 3.3. We

propose a hierarchical model and provide definitions of different el-

ements in this model.

Based on the previous discussions, we propose to use a number

of different autonomic managers at different parts of the system. By

doing this, the problem of managing a large system entails a num-

ber of autonomic managers where each one is dealing with smaller

or more localized elements. Then each manager’s job is to focus on

managing that element (or small set of elements) efficiently based on

certain policies. For example, an autonomic manager for an Apache

web server should only focus on the behaviour of the web server itself

and not the performance of the machine that this server is running

on or, the autonomic manager for a Node Controller (NC) should

only focus on the performance and behaviour of that specific node.

34

4.1. Assumptions 35

4.1 Assumptions

In this Section we describe the general assumptions we have for a

management system that consists of multiple autonomic managers

working collaboratively to achieve certain goals.

We assume that inside each autonomic manager there is an event

handling mechanism for processing and generating events and no-

tifying the interested parties inside that manager. For example,

there could be an event bus and different components within the

autonomic manager (AM) subscribe to certain events and upon rais-

ing any of those events, the subscriber would get notified. This

event handling mechanism is useful for handling event-condition-

action policies and also for communication between managers.

We assume each autonomic manager operates based on a set of

policies provided to it. These policies could be a decomposition of

global business policies [13] down to operational policies as suggested

in [7, 10] or they could be given to different autonomic managers

manually. We assume that policies can change over time, if needed.

The focus of this research is not on exploring different approaches

for how policies are distributed to managers. Rather, we assume

one approach for our work, namely, that all policies are stored in

a central repository and can be retrieved by an AM upon request.

Each AM can retrieve its own set of policies on start-up and get

updates each time policies change in the repository. We assume that

each AM can evaluate these policies with a policy engine, which is

basically a rule engine that provides the tools to evaluate rules (e.g.

policies) based on available facts (e.g. latest values). Algorithm 5.4

36 Chapter 4. Approach and Model

shows the usage of this policy engine.

We assume that there is a central registry and that each AM will

contact this registry during its start-up process. This registry will

be used by each manager to find the contact information (e.g. ID

in Definition 6) of its parent in the management hierarchy and is

used to facilitate the process of adding new managers to the system

dynamically.

In order to remove the single point of failure for registry and pol-

icy repository and also to increase the availability of the system, one

can have backups (e.g. registry, repository) running at the same

time which can be replaced upon a failure. This is beyond the cur-

rent focus of this thesis.

We also assume that each manager should provide an interface

for receiving messages from other managers. This interface should

be able to receive different message types, parse them and do the

proper actions according to the specification of that message. The

message format and types are explained in more detail in Section 5.2.

4.2 Hierarchical Model

There are many ways to organize multiple autonomic managers in

a large computing system (e.g. peer-to-peer, ring topology, etc.),

but we focus on and explore a hierarchical management system to

organize autonomic managers which might appear as in Figure 4.1.

4.2. Hierarchical Model 37

AMCLC

AMCC2

AMNC1 AMNC2

AMCC3AMCC1

AMVM1 AMVM2

AMVM4AMVM3

Figure 4.1: AMs hierarchy based on the cloud architecture

38 Chapter 4. Approach and Model

We choose the hierarchical approach because it is straightforward

and a good starting point to explore collaboration between auto-

nomic managers. A hierarchy provides a simple, yet useful, struc-

ture and has several advantages over a flat structure (e.g. improved

scalability by reducing communication overhead that only happens

between parent and child). This hierarchical model is also in natu-

ral alignment with the architecture of a typical Infrastructure-as-a-

Service (IaaS) cloud which is our particular system focus.

The physical structure of a typical IaaS cloud would look like Fig-

ure 4.2. In this layout, every host machine is shared among multiple

virtual machines and there could be many applications running in-

side each virtual machine. The host machines are grouped together

to form a cluster and a combination of these clusters will form the

cloud.

The management hierarchy can be expanded into more levels if

needed. It can represent either the physical structure, logical struc-

ture or a combination of both in the computing environment. At

the lowest level of our example management hierarchy in Figure 4.1,

the autonomic managers are managing virtual machines and appli-

cations running inside them. It is, however, possible to have other

application specific autonomic managers which will be located under

these managers in the hierarchy, but for our initial work in explor-

ing communication among automatic managers in an IaaS cloud, we

have opted to consider autonomic managers of the virtual machines

as the lowest level.

4.2. Hierarchical Model 39

VM3VM1 VM2

Host1

VM9VM7 VM8

Host3

VM6VM4 VM5

Host2

Cluster1

.

.

.

VM12VM10 VM11

Host4

VM18VM16 VM17

Host6

VM15VM13 VM14

Host5

Cluster2

.

.

.

. . .

IaaS Cloud 1

Figure 4.2: IaaS Cloud Structure

The AMs at the node controller (NC) level monitor and manage

the physical nodes. An AM at the NC level can monitor the overall

performance of the physical node and adapt to stress situations as

much as possible. An AM at this level might have interactions with

the AMs running at the virtual machine level to get updated mon-

itored information or to request changes to happen inside virtual

machines. This AM is aware of virtual machines specifics that are

hosted by this node and it can allocate more resources (e.g. mem-

ory, cpu cores) to the stressed virtual machines based on availability

of local resources or service level differentiations (e.g. Gold virtual

machines get more resources than Silver ones in case of stress).

40 Chapter 4. Approach and Model

Then the AMs at the cluster controller (CC) level are responsible

for monitoring a cluster with all physical nodes inside it. These AMs

have a global view of the whole cluster and know which nodes are

overloaded with traffic and which nodes are underutilized. In case

of a virtual machine migration, these AMs can decide where should

be the destination of the candidate VM for migration and inform

the appropriate child AM to perform the migration to the selected

destination.

Similarly, the AM at cloud controller (CLC) level monitors and

manages all of the clusters. The overall monitoring of the whole

cloud can happen at this level. This AM is the main entry point

for defining business policies for the cloud. In case one cluster is

overloaded and there is an underutilized cluster, this AM can choose

that cluster and ask the overloaded child (Autonomic Manager) to

offset some of the load to the underutilized cluster by migrating a

few virtual machines to that cluster.

This is a logical organization of autonomic managers and does not

necessarily reflect the physical allocation of the AMs, i.e., they do not

necessarily need to be located on different physical machines. In a

large cloud they could be located on separate machines or some may

be located on the same machines. These AMs should then collec-

tively work together to ensure that policies are met, e.g. policies for

optimizing performance, minimizing resource usage, avoiding SLA

violations, etc.

For management to happen in this hierarchical model, the big or

4.2. Hierarchical Model 41

more complex tasks should be divided into smaller tasks and deliv-

ered to different responsible managers at lower levels. For example,

the AM at the Cloud Controller (CLC) level should take care of bal-

ancing the load between different clusters and the AM at the Cluster

Controller (CC) level should look after balancing the load between

different nodes inside that cluster. Similarly, the AM at the node

level should optimize the resource usage of that physical machine

among different VMs and while the autonomic manager inside a VM

should work on optimizing the applications performance. Assuming

that the management “tasks” are specified in terms of policies, this

means that we need policies with different granularity deployed at

different levels of the infrastructure and we need to ensure that AMs

can communicate properly with each other to enforce those policies.

These autonomic managers can be added or removed from this hi-

erarchy based on demands of the computing infrastructure. There-

fore, any particular hierarchy of AMs is not fixed and can change

over time depending on what managers get created or removed dy-

namically. Automatic deployment and removal of AMs is a very im-

portant feature in order to minimize the impact of the management

system on overall system performance and so that administrators do

not have to worry about the hierarchy configuration every time there

is a change in the infrastructure. The management system should

be able to adapt to the infrastructure changes and automatically re-

configure itself as changes happen. We will explain this process in

more detail in Chapters 5 and 6.

The policies for AMs can be defined via a repository, as we have

42 Chapter 4. Approach and Model

assumed, by the administrators directly or by some other process.

A good “rule of thumb”, however, would be to define similar sets

of policies for autonomic managers that manage the same kinds of

entities, e.g. the AMs that manage virtual machines would have

similar policies, those that manage physical nodes would have sim-

ilar policies. The rationale for this is that managers of the same

kind of entity will have many similar or identical policies, e.g. a

set of policies for managers of virtual machines might make use of

the same policy to handle the situation when a VM has insufficient

computing resources to meet an SLA. This way, sets of policies can

then be stored in the policy repository and be retrieved upon AM

start-up based on the kind of entity that the AM is managing.

4.3 Defining Elements of the Model

In this Section, we define various elements of our model. These def-

initions help to make concepts clear and we also use them in our

algorithms and operations introduced in subsequent chapters.

4.3.1 Managed System

Our managed system is composed of a set of elements that can be

monitored and managed automatically. Each autonomic manager is

typically monitoring and managing one or more managed elements

(ME). The managed elements could be equivalent to what is found

in ordinary cloud infrastructures such as a virtual machine, a phys-

ical node, a software resource, or a cluster.

4.3. Defining Elements of the Model 43

We assume the supported characteristics and operations of each

ME is defined in a ManagedElementInfo, which is used to define the

policies. For example, the AM responsible for managing a virtual

machine, could be provided information in a VirtualMachineMan-

agedElementInfo, which would include all supported metrics and ac-

tions of a general virtual machine. This is like a class definition for a

specific ME which is used by the manager for policy definition. An

instantiation of this class can then be used to evaluate the policies.

Definition 1 A ManagedElementInfo, MEI, is a tuple MEI=〈M,A〉,
where:

• M is a finite set of metrics, M={M1, ...,Ml}, where:

∀Mi ∈ M,Mi = 〈Ni, Ti〉 | Ni = Identifier(MetricName), Ti =

MetricType ∈ {String, int, double, ...}

• A is a finite set of possible actions, A={A1, ..., Am}.

We denote the finite set of MEI by MEISet={MEI1, ...,MEIn}

Actions are supported operations that can be done on that man-

aged element. For example, actions for a VirtualMachineMEI could

be Shutdown, StartService, etc. The metrics associated with a MEI

include both attributes like VirtualMachineName which is a string,

and metrics such as CPUUtilization and MemoryUtilization which

are floating point numbers (e.g. type double).

Moreover, an MEI can be “subclassed” from another MEI to

preserve reusability. For example, a KVMVirtualMachineMEI and

44 Chapter 4. Approach and Model

XENVirtualMachineMEI can both inherit actions and metrics/prop-

erties of a VirtualMachineMEI like virtual machine name, CPU uti-

lization, etc.

Once an MEI is defined, it can be instantiated several times based

on the need - an instantiation is referred to as a ManagedElementO-

bject, defined below. For example, after a change in CPUUtilization

or upon receipt of an event a VirtualMachineMEI can get instan-

tiated with the latest facts/values and be passed to the policies for

evaluation. This is done as part of the “Monitor” phase in MAPE

loop (see Section 3.1). Basically, in order to monitor (gather infor-

mation through sensors) a specific managed element the AM can

instantiate its MEI and update the metrics that are available for

that element.

Definition 2 Given a set MEISet, a ManagedElementObject (MEO)

is a tuple 〈m, a〉 where there is a MEI=〈M,A〉 ∈ MEISet such that

• a=A,

• m = {〈N1, V1, T1〉 , ..., 〈Nl, Vl, Tl〉} | M = {〈N1, T1〉 , ..., 〈Nl, Tl〉}
and Vi is the value of a metric.

We denote the set of managed objects by MEOSet={MEO1, ...,MEOn, ...}

A MEO is an instance of a MEI and represents actual values of

a managed element information in the system. The metrics in an

MEO are those in the definition of the class and the Vi are values

associated with those metrics. Each Vi would typically be a value

obtained by measuring some aspect of the actual managed element.

4.3. Defining Elements of the Model 45

These MEOi are used for policy evaluation from time to time.

The metrics and actions defined inside a ManagedElementInfo can

be used in defining policies. For example, a VirtualMachineMEI can

have a “CPUUtilization” metric and a “StopService(serviceName)”

action both defined in its MEI. CPUUtilization represents the CPU

utilization of the virtual machine which gets updated from time to

time and StopService action takes a service name and stop that ser-

vice from running. Therefore, an example policy to manage virtual

machine stress can be:

OnEvent: ManagementInterval

if VirtualMachineMEI.CPUUtilization > 85 then

VirtualMachineMEI.StopService(“XY”);

end if

This policy get executed at each management interval (e.g. upon

raising ManagementInterval event), and checks the CPUUtilization

of the virtual machine and if it is above 85%, it stops a service called

“XY”. Other possible ManagedElementInfos are: ApacheMEI, Host-

MachineMEI, ClusterMEI, etc.

Therefore at the time of policy definition, administrators use an

MEI (e.g. one can think of it as a “class”) to define policies but at

run time the instantiated MEI (e.g. MEO) is passed to the policy

engine to evaluate the policy’s condition and perform actions. It is

the job of the policy engine to match the MEO values with the right

MEI metrics defined in the policies. The policy engine is the rule

engine that evaluates the policies based on provided MEOs. This

46 Chapter 4. Approach and Model

happens inside the manager and Algorithm 5.4 described in Chapter

5 defines this policy evaluation process.

4.3.2 Events

We assume that inside each autonomic manager there is an event

handling mechanism for generating events and notifying the inter-

ested parties (such as policy evaluator) inside the AM. For example,

there could be an event bus and different subscribers to certain events

and upon raising those events any subscribers will get notified. This

event handling mechanism is useful for handling event, condition,

action policies and also for communication between managers. We

assume that for a given system and MEIs, that there are a finite

number of event types.

Definition 3 Given a set MEISet, an event type, Et, is a pair 〈N,M〉
where:

• N is the name of the event type,

• M={m1, ...,mo}, and mi is the name of a metric from an MEI

∈ MEISet.

We denote the finite set of event types by ET ={Et1, ..., Etz}.

Definition 4 Given a set ET, an event E is a pair 〈n,m〉 where

there is an event type Et = 〈N,M〉 ∈ ET and

• n is the name of the event n = N,

• m ={〈m1, v1〉 , ..., 〈mo, vo〉}, where M ={m1, ...,mo}, and vi is

the value of mi.

4.3. Defining Elements of the Model 47

We denote the set of events by EventsSet ={E1, ..., Ep, ...}.

For a given set of event types, there may be an infinite number of

possible events, depending on the values associated with the metrics

of that event type. In this respect, an event is an instantiation of an

event type with the associated metrics assigned values.

One sample event is ManagementInterval event, which is a simple

event with no metrics that gets triggered on a time interval to trigger

management loop.

E1 = 〈ManagementInterval, null〉

Another sample event is HelpRequest event, which can have one

or more metrics attached to it. In this example, CPUUtilization of

a virtual machine is attached to this event.

E2=〈HelpRequest, {〈V irtualMachineMEI.CPUUtilization, 95〉}〉

4.3.3 Policies

All of the policies are expressed as event, condition, action (ECA)

policies. In general, all of our policies are of the form:

PolicyName: N

OnEvent: E

if Set of Conditions then

Ordered Set of Actions

end if

48 Chapter 4. Approach and Model

Upon raising an event inside the autonomic manager, then any

policy which matches the event will get evaluated. If the conditions

in the policy are met, then the policy actions get triggered. We pro-

vide examples of policies in the following sections.

Definition 5 Given a set MEISet and a set of events types ET, then

a policy is a tuple 〈N,E,C,A〉 where N is the policy name, E ∈ ET

is one of the event types, C is a finite conjunction of conditions, and

A is an ordered set of actions defined in MEI ∈ MEISet. Therefore,

Pl=〈N,E,C,A〉, where:

• E ∈ ET,

• C={C1, ...Cp} and Ci=〈MName,Operator, T 〉 or “true”, where

MName is the metric name, Operator is a relational operator

and T is a constant indicating a threshold value,

• A={A1, ..., Aq}, ∀Ai ∈ A, ∃ MEIj ∈MEISet | Ai = MEIj.Ak

We denote the set of policies by PL={Pl1, ..., P lr}.

PL is the set of all available policies in the management system,

but each autonomic manager would have its own subset of policies.

Upon raising an event inside the AM, it checks all of its own policies

and if a policy event E matches the raised event type then policy

conditions will get evaluated based on the latest monitored metrics

available in the relevant MEO and if they satisfy to true then it will

take the policy actions based on the order in which they are defined.

A single “true” condition implies that the actions should always be

taken. A sample expectation policy for monitoring the Apache re-

sponse time is:

4.3. Defining Elements of the Model 49

Pl1 = { “ApacheResponseTimePolicy”,

ManagementInterval,

{ApacheMEI.ResponseTime > 500},
{ApacheMEI.IncreaseMaxClients(25)} }

In this policy, ManagementInterval is an event that gets triggered

in a certain time interval (e.g. every 1500ms) and it has no metrics

associated with it. ApacheMEI is the managed element information

for Apache and ResponseTime is one of the metrics defined in it.

IncreaseMaxClients is one of the actions defined in ApacheMEI and

will increase the MaxClient property of the Apache web server by a

certain number (in this case 25).

At AM start-up there are configuration policies that set up the

AM environment. A sample configuration policy would look like:

Pl2 = { “StartUpConfPolicy”,

Configuration,

{true},
{VirtualMachineMEI.RefreshInterval=5000} }

This policy happens on autonomic manager start-up (once the

Configuration event is raised) and configures the refresh interval of

the AM. The AM will then refresh available metrics every 5000 mil-

liseconds.

50 Chapter 4. Approach and Model

4.3.4 Structural Relationship of Autonomic Managers

In order to explain the relationship between autonomic managers,

we first need to define the AM itself.

Definition 6 Given a set MEISubSet ⊂ MEISet, a set of event type

ETSubSet ⊂ ET and a set of policies PLSubSet ⊂ PL, an Autonomic

Manager(AM) is a tuple

〈ID,Name,MEISubSet, ETSubSet, PLSubSet,MI,RI〉 where ID

is the AM’s unique identifier which other AMs can use for commu-

nication purposes, Name is the AM name, MI is the management

interval which determines the time interval for triggering the man-

agement loop and RI is the refresh interval which determines the time

interval to refresh metrics of the managed elements in MEISubSet.

We denote the set of AMs by AMSet={AM1, ..., AMt}

The autonomic manager ID is a globally unique identifier among

all AMs and can be changed from time to time. This can be a

URL or a physical IP and port where the AM can be accessed. The

autonomic manager Name is a string and is set as a configuration

parameter. This name is mapped to the AM ID and will be stored in

the registry to be used to dynamically discover AMs for connection

purposes. As part of the start-up process (Algorithm 5.1) each AM

should register its name and ID in the registry.

Since AMs are organized in a hierarchical manner to reflect differ-

ent authority levels, the structural relationship between them con-

sists of a tree.

4.4. Summary 51

Definition 7 Given an AMSet, a Hierarchy H of AMs is a tuple

〈AMSet, Edges〉 where AMSet is the set of autonomic managers as

the nodes of the tree and Edges={(AMi, AMj)|AMi, AMj ∈ AMSet}
is the set of edges connecting two AMs to each other. The following

properties exist in this hierarchy:

• ∃ AM ∈ AMS | @ AMi ∈ AMS, (AMi, AM)

• if (AMi, AMj) ∈ Edges ⇒ @ AMk | (AMk,AMj) ∈ Edges

• if (AMi, AMj) ∈ Edges ⇒ (AMj,AMi) /∈ Edges

This definition means that there is at least one root manager in

the hierarchy and for each AM there is only one parent. Also if a

manager is the parent of another AM, then it cannot be that AM’s

child (e.g. there are no loops).

4.4 Summary

We have introduced a hierarchical management model and explained

the assumptions for this system. We also defined different elements

that are part of this model. In order to address challenges explained

in Section 3.3, each autonomic manager needs to follow some com-

mon behaviour. In Section 3.1 we explained the general architecture

of an autonomic manager including the MAPE loop, however we are

dealing with a number of these managers running on different places

in the hierarchy and they need to be able to communicate with each

other to achieve common goals. The AMs might start or stop at

52 Chapter 4. Approach and Model

any time and therefore it is important to have mechanisms in place

to detect these dynamic changes and the impact they have on the

management hierarchy.

In the next Chapter we explain this general behaviour and mech-

anisms that each AM has to follow individually to work in collabo-

ration with other managers. We explain specific algorithms for AM

start-up, policy evaluation and termination detection and develop a

communication protocol that facilitates the managers’ communica-

tion and collaboration.

Chapter 5

Autonomic Manager Behaviour

This Chapter describes the general algorithms that each autonomic

manager has to follow individually to make the communication and

collaboration between managers in the hierarchy possible. We ex-

plain general behaviour of an autonomic manager and describe dif-

ferent algorithms that run inside it. These algorithms specify the

process of an AM start-up, how policy evaluation is done and how

termination detection is handled in the hierarchy. We also explain

how to infer certain kinds of communication messages from policies.

By having a collective of autonomic managers each following these

algorithms, it will be possible to build a hierarchical management

system and preserve it while dynamic changes happen in the system

(e.g. AMs start or stop working).

5.1 Naming Scheme

Each autonomic manager should have a name that can be resolved

to an ID at runtime. The name and ID for each AM is explained

in Definition 6. Separating name from ID, which is basically the

53

54 Chapter 5. Autonomic Manager Behaviour

main access point for each AM, helps autonomic managers to dy-

namically register themselves in the registry and also to search for,

identify and contact their parent manager in the hierarchy. An AM

ID might change over time (e.g. as result of an IP change on system

restart) but that manager will still be accessible after it updates its

new ID in the registry (e.g. as part of the start-up process).

An AM name is dynamically provided to it as a configuration

parameter by the deployment system explained in Chapter 6 and

theoretically can be anything, however we propose a naming scheme

in which this name includes the parent name of the manager. In

other words, instead of having two configuration parameters (one

for AM name and one for its parent name) we embed the parent

name as part of the AM name itself. This approach is based on the

assumption that each AM must be given its parent name as well

to be able to look it up in the registry and start the communication

process, because in the hierarchical system each manager is only able

to communicate with either its children or its parent. Therefore, in

this proposed naming scheme an AM name is acceptable as long as

an autonomic manager can extract its parent name from it. In this

section, as part of the proposed naming scheme we suggest a process

of naming different AMs at different levels of the hierarchy which

includes the parent name as part of it.

We suggest that an AM name depends on the location that AM

is running on (e.g. machine name) plus the kind of entity that it

manages. It should not be in conflict with other AM names (e.g.

should not be the same) because these names should be registered

5.1. Naming Scheme 55

in the registry. Therefore we use a hierarchical naming convention to

name AMs too. An AM name will be the name of its parent in the

hierarchy plus the location and managed element name separated by

a symbol (e.g. dot in this case).

AM Name = Parent Name“.”(Location[“-”Managed Element Name])

The location is a physical or virtual machine name that this AM

is running on and the managed element name is either the name of

the entity this AM is managing or is null. Therefore, the name of the

root manager responsible for the whole cloud can be “host1-cloud”

or simply “host1” and for a manager responsible for the first cluster

of that cloud can be “host1-cloud.host2-cluster1” or if it is running

on the same machine as the cloud AM it can be “host1-cloud.host1-

cluster1”. Similarly for the manager of a physical node in the first

cluster can be “host1-cloud.host2-cluster1.host3”, the managed ele-

ment name is not added to the location in this name (e.g. it is null).

This naming scheme helps the deployment system to automatically

deploy autonomic managers to the right place and the process of dy-

namically creating this name is explained in Algorithm 6.2 of Chap-

ter 6. Moreover, administrators have the ability to decide and choose

the structure of the managed element name and when it should be

null (through technology scripts explained in Section 6.2) based on

their administrative needs and their computing environment.

In a lower level, the name of the AM responsible for managing a

virtual machine can be “host1-cloud.host2-cluster1.host3.vm1” and

this approach is used for all managers running inside the virtual ma-

56 Chapter 5. Autonomic Manager Behaviour

chines. For example, the name of an AM managing Apache inside

vm1 will be “host1-cloud.host2-cluster1.host3.vm1.vm1-apache”. In

this way, it is possible to have another AM for managing Apache on

a different virtual machine with no naming conflict since the name

of that manager will be “host1-cloud.host2-cluster1.host3.vm2.vm2-

apache”. By having a name like this, each manager has straightfor-

ward access to the name of its parent (e.g. a prefix of its own name)

and it can easily use that for communication. For example, the AM

with name “host1-cloud.host2-cluster1.host3.vm1” can use “host1-

cloud.host2-cluster1.host3” to contact its parent in the hierarchy by

looking up its ID in the registry.

Another challenge will be how this name can be set as a configu-

ration parameter in an autonomic manager in a dynamic way. This

happens as part of the deployment process (see Chapter 6) but the

basic idea is that, at the time of deploying a new manager, one of

the required steps is to configure this name based on the level on

which that manager is being deployed; this is particularly relevant

in IaaS. For example, when a virtual machine is being placed into

a physical server, its manager should be configured with the right

name which includes both the physical and virtual machine names.

This process happens dynamically as part of the deployment system

(see Algorithm 6.2).

In the IaaS cloud environment, this name does not change very

often for most AMs, since after racks, chassis, physical servers and

other elements are installed and started working in a data center

they barely move around and therefore the AMs’ names that get

5.1. Naming Scheme 57

deployed on them do not change frequently. One exception to this

are virtual machines. It is possible to migrate virtual machines from

one node to another either as result of a policy or manually by an

administrator. If a virtual machine migrates from one node to an-

other the manager responsible for that virtual machine and all its

children should change their names to reflect this migration to a

new host (e.g. a new parent in the new host is now responsible for

these managers). This migration will be detected by the deployment

system automatically (see Algorithm 6.1 in Chapter 6) and as a re-

sult, all AMs on the migrated virtual machines get redeployed with

their new names. As part of this redeployment, AMs restart and go

through the start-up process explained in Algorithm 5.1 which will

result in registering the new names. The old names get invalidated

in the registry by the old parent after missing to receive a response

from the migrated child. This process is explained later as part of

the termination detection algorithm (Algorithm 5.5).

Therefore, we propose to use a hierarchical naming scheme for

different AMs and these names are configured automatically at the

time of deployment by the deployment system. If there is a change

in the infrastructure, the deployment system will detect that and re-

deploy managers automatically with their new names which will lead

to a change in the management hierarchy to reflect the changes in

the infrastructure. The autonomic manager deployment algorithm

which includes how to determine an AM name is explained later in

Algorithm 6.2.

58 Chapter 5. Autonomic Manager Behaviour

5.2 Communication Protocol

In the hierarchical model explained before there are multiple au-

tonomic managers deployed at different parts of the system. Each

manager should be able to communicate with its parent or children

and as part of this communication there needs to be a communica-

tion protocol that all managers agree on and understand.

AMs can start or stop working at any time and therefore other

relevant AMs need to get notified about these changes in the sys-

tem. Also, each AM works independently from others and the only

means of communication is through a protocol that other AMs can

understand too. AMs should not be dependent on a direct communi-

cation with each other, since they should act autonomously. There-

fore, we need a way of communication that is reliable, asynchronous

and loosely coupled. Considering all these facts we use a message-

based means of communication between different AMs. This means

that each AM can compose and send a message to another AM in a

loosely coupled fashion. The message gets delivered by underlying

layers but the AM does not wait for the delivery and moves on to its

own operations. We assume that underlying layers guarantee that

the messages will get delivered to the receiver (e.g. by using TCP

and message queues). In this section, we define a communication

protocol that is used between managers and explain different types

of messages in detail.

Definition 8 Given an AM ∈ AMSet, A message Msg is a tuple

〈Type, Info〉 where

5.2. Communication Protocol 59

• Type is the message type ∈ {NOTIFY, UPDATE REQ, INFO}
and

• Info = {m1, ...,mj}, ∀ 1≤ k ≤j ∃ MEI ∈ AM.MEISubSet | mk =

instance of MEI.m for UPDATE REQ and INFO types and

• Info = {e}, ∃ E ∈ AM.ETSubSet | e = instance of E, for NO-

TIFY messages.

Each manager should be able to receive messages from or send

messages to other managers. By using a message “Type”, we intro-

duce the possibility of different types of relationships between man-

agers (e.g. request, response) and based on the type of message, one

manager can expect the kind of information that would be available

in the Info section of the message. Three different types of messages

(NOTIFY, UPDATE REQ, INFO) are proposed for communication

between managers.

Having a small set of different types of messages also makes it

easy to define the operation of each AM. The form of each of these

types of messages is as follows:

• 〈NOTIFY, Info〉: When one manager wants to raise an event

in another manager it can be encapsulated inside a notify mes-

sage. The type and content (metrics) of the event is very system

specific and can be defined in the Info portion of the message.

Possible events would be a “HelpRequest”, “SLAViolation”,

“SystemRestart” or “ValueUpdate” event. When a manager

receives a notify message from another manager, it will publish

its event and deliver it to the interested subscribers (e.g. eval-

uate proper policies). This type of communication message can

60 Chapter 5. Autonomic Manager Behaviour

be either specifically declared in policies that used for a commu-

nication or it can be inferred automatically from policies (see

Section 5.6).

• 〈UPDATE REQ, Info〉: This is a message asking for the sta-

tus of the metrics declared in Info. Another manager can re-

spond to this message by sending an INFO message back. The

metrics are very dependent on the nature of the system and

can be different from one system or application to another. Ex-

amples of such information include CPU utilization, memory

utilization, number of requests/second, number of transactions,

available buffer space, packets per second, etc. One usage of this

message is illustrated in termination detection of child managers

as explained in Algorithm 5.5.

• 〈INFO, Info〉: This message can be used to send the latest

metrics of elements managed by a particular local manager

to another AM. This is a message that provides information

which can help the process of decision making in the higher

level manager. This message is usually sent in response to the

UPDATE REQ message from a higher level manager.

The UPDATE REQ message is sent from one AM to another

to request an update of information, e.g. from higher level man-

agers to lower level ones. INFO messages are sent in response to the

UPDATE REQ message and NOTIFY messages are sent from one

manager to another based on the need.

As noted, we assume that the underlying layer guarantees mes-

sage delivery. However, since communications are asynchronous, we

5.3. Start-up 61

also assume that after sending an UPDATE REQ message the au-

tonomic manager waits for a configurable amount of time to receive

an INFO message back. If it does not receive any response back

during this time period it assumes that the other manager has ter-

minated and raises an event inside the manager. We will explain in

more detail how we can use policies to generate NOTIFY messages

for communication among AMs. Since we are dealing with a hier-

archy of managers, each manager needs to communicate with either

its father or its children. However, it is also possible for an AM to

send NOTIFY messages to another AM in some other part of the

hierarchy based on a request.

5.3 Start-up

There are certain steps that need to be accomplished at each AM

start-up. This start-up can happen after a successful deployment

of the AM (Algorithm 6.2), after a failure/crash for any reason or

upon the request of the parent manager (e.g. based on a policy).

The start-up algorithm is shown in Algorithm 5.1. Each AM (see

Definition 6) is provided with two pieces of information at the time of

deployment: 1) AM name 2) Set of managed elements it’s supposed

to monitor in the form of ManagedElementInfos (e.g. MEISubSet).

Therefore, an AM has access to its parent’s name by extracting it

from its own name (using our current naming scheme). MEISubSet

helps the manager to load the relevant policies from the repository.

The AM identifier (AM ID) is a globally unique identifier that

gets created at AM start-up. This ID is the main access point of

the AM and can be a URL or an IP address etc. based on the

62 Chapter 5. Autonomic Manager Behaviour

actual implementation of the system. The AMName is configured

automatically through configuration parameters for each AM by the

deployment system (Algorithm 6.2).

Algorithm 5.1 AM Startup

Require: AMName,MEISubSet
1: ParentName← prefix(AMName)
2: AM ID ← Create unique ID (e.g. URL || IP)
3: PolicyLocation← Registry.register(AM ID,AMName)
4: Policies← LoadPolicies(PolicyLocation,MEISubSet)
5: KnowledgeBase.store(Policies)
6: StartManagementThreads()
7: if ParentName == null then . No parent is configured
8: return . Return and wait for child AMs to connect
9: end if
10: ParentID ← null
11: while ParentID == null do . Parent Name is configured, Beaconing starts
12: ParentID ← Registry.getID(ParentName)
13: Sleep(KeepAliveT imer)
14: end while . Beaconing ends
15: Event← 〈NewChildManager, {〈“Name”, AMName〉 , 〈“ID”, AM ID〉}〉
16: Msg ← 〈NOTIFY,Event〉
17: SendMessageTo(ParentID,Msg)

The autonomic manager starts by contacting the central registry

(see Section 4.1) and registers its own name with the unique ID.

The registry will then return the location of policy repository and

the manager loads all related policies from the policy repository

based on the set of ManagedElementInfos (e.g. MEISubSet) that

this AM is managing (see Definition 6). For example, if a manager

is responsible for monitoring a virtual machine, it loads all policies

that are related to a virtual machine. Similarly, if it is responsible

for monitoring Apache and MySql applications, it will only load all

policies defined for these two elements. After loading these policies,

they will be stored in the common knowledge base (e.g. Knowledge-

5.3. Start-up 63

Base.store()) of the autonomic manager (see Section 3.1) so that

other parts of the manager can access them.

It then starts other parts of this autonomic manager (e.g. Start-

ManagementThreads()) such as monitoring loop (Algorithm 5.2),

management interval loop (Algorithm 5.3), policy evaluation loop

(Algorithm 5.4) and termination detection loop (Algorithm 5.5). We

assume these algorithms will run on separate threads and since we

have adopted the event driven approach they can publish new events

to the system and will be notified about the events that they sub-

scribed to receive.

In case there is no parent name set up for an AM (e,g, Parent-

Name == null), it just waits for its child managers to contact it.

If there is a parent name available, it will look up its parent’s ID

by contacting the registry and providing the parent’s name. This

mechanism is very similar to phone book lookup, when someone can

lookup a person’s phone number by having his name. In this process,

when an AM gets started it knows the name of its father (through

the configuration parameters set by the deployment system) and will

look its ID up in the central registry and will be able to contact the

parent after that.

In the case there is a parent name configured and no parent ID

available in the registry, the AM will keep asking the registry in

a configurable time interval (e.g. KeepAliveTimer) until its parent

becomes available (e.g. register itself in the registry). We call this

process “beaconing” when an AM beacons out and looks for a par-

64 Chapter 5. Autonomic Manager Behaviour

ent in the management hierarchy. This case only happens if the

parent AM is not deployed yet or it is terminated because of an er-

ror. In both of these cases, the periodic discovery algorithm in the

deployment system (Algorithm 6.1) makes sure that the parent AM

gets deployed and starts running eventually. During the beaconing

period, other parts of the manager continues its job (e.g. running

on separate threads) and enforces its policies based on the latest

updated metrics. So, the manager continue its monitoring and man-

agement as well as periodically checking for its parent.

After a successful beaconing, the AM creates a new event (e.g.

NewChildManager event) and add its own name and identifier to it

to be sent to the parent. The manager will then wrap this event in a

NOTIFY message (see Definition 8 for details of a message format)

and send it to its parent which will result in getting added to the

children list of the parent.

Therefore, after an AM is deployed and during its start-up it will

find the right position in the hierarchy and will get added to the

management hierarchy automatically. Algorithm 5.1 shows this pro-

cess. After an AM starts-up it will be able to register itself and join

the management hierarchy and acquire its policies from the policy

repository for enforcement. We assume that there are policies de-

fined for different elements that need to be managed and they are

stored in this repository. For example, we assume that there are a

set of policies for virtual machines and that those managers who are

monitoring VMs will extract these policies for enforcement. There

are a set of policies for host machines, applications, etc.

5.4. Processing 65

5.4 Processing

After a successful AM start-up, the manager needs to monitor man-

aged elements and enforce loaded policies which are now stored in

the common knowledge base and all parts of the manager have ac-

cess to them. This essentially happens as part of the MAPE loop

explained in section 3.1 but different algorithms are involved as part

of this process. In this section we explain multiple algorithms that

are running separately (e.g. on separate threads) but can communi-

cate with each other, either through publishing events or accessing

elements in the common knowledge base as shown in Figure 3.1.

Algorithm 5.2 shows the monitoring loop (e.g. M in the MAPE

loop) which monitors all managed elements of this autonomic man-

ager in a configurable time interval (e.g. RI - see Definition 6).

It first instantiates all MEIs that are configured for this AM (e.g.

MEISubSet) and stores them in the common knowledge base (e.g.

KnowledgeBase.store(MEOSet)) so that other algorithms (e.g. threads)

can access them. It will then start refreshing the metrics available

in those MEOs in a loop on every RI time period. The new values

are automatically updated in the common knowledge base once the

refresh is done.

Algorithm 5.3 shows the management interval loop inside each

autonomic manager. This loop is triggered based on a configurable

management interval which can be in the milliseconds, seconds or

minutes time scale. Upon each management interval (e.g. MI - see

66 Chapter 5. Autonomic Manager Behaviour

Algorithm 5.2 Monitoring Loop

Require: RI,MEISubSet
1: MEOSet ← null
2: for all MEI ∈MEISubSet do
3: MEO ← new MEI . Instantiate MEI
4: MEOSet.add(MEO)
5: end for
6: KnowledgeBase.store(MEOSet)
7: while true do
8: for all MEO ∈MEOSet do
9: MEO.refreshMetrics()
10: end for
11: Sleep(RI) . Refresh Interval
12: end while

Definition 6) it raises a ManagementInterval event which will then

be received and processed by the policy evaluation loop (Algorithm

5.4). Since we use event-condition-action policies the policy evalua-

tion loop can subscribe to receive different events and this manage-

ment interval loop acts as a timer that trigger an event on each MI

to enforce relevant policies.

Algorithm 5.3 Management Interval Loop

Require: MI
1: while true do
2: Sleep(MI) . Management Interval
3: MgmtIntervalEvent ← 〈ManagementInterval, null〉 . No event metrics
4: Publish(MgmtIntervalEvent)
5: end while

The autonomic manager determines the set of actions that needs

to be executed in each management interval (e.g. A and P in the

MAPE loop) based on the latest monitored information of managed

elements (e.g. MEOSet - see Definition 2) which are available in

the common knowledge base (see Algorithm 5.2), raised events and

active policies (e.g. PLSubSet - see Definition 6).

5.4. Processing 67

Algorithm 5.4 shows the policy evaluation loop that happens

inside each autonomic manager. We adopted an interrupt-driven

(blocking) approach towards event-condition-action policy evalua-

tion. In this approach, the thread first subscribes to receive all

events that are related to the policies (e.g. Subscribe(ETSubSet))

and then waits silently until new events are published in the system.

This event could be a ManagementInterval event or a HelpRequest

event that was sent from a child manager. PLSubSet and ETSubSet

are defined in the Definition 6. PLSubSet is the set of policies that

this manager acquired from the repository during the start-up pro-

cess (Algorithm 5.1) and ETSubSet is the set of event types used in

those policies. MEOSet is the set of MEOs available in the common

knowledge base and are refreshed by Algorithm 5.2.

Algorithm 5.4 Policy Evaluation

Require: MEOSet, ETSubSet, PLSubSet
1: Subscribe(ETSubSet) . Subscribe to receive all policy events
2: while true do
3: Event ← Block and wait to receive new events
4: for all Pl ∈ PLSubSet do . Received new events
5: if Pl.E = Event then . Policy event is triggered
6: for all MEOi ∈MEOSet do . Latest monitored information
7: successful← PolicyEngine.evaluate(Pl,MEOi)
8: if successful = true then
9: ExecuteActions(Pl.A,MEOi)
10: end if
11: end for
12: end if
13: end for
14: end while

Upon receiving new events (e.g. Event), the AM checks all poli-

cies one by one to see if the event in the policy matches the published

68 Chapter 5. Autonomic Manager Behaviour

event. If for a specific policy, the event is triggered, then the pol-

icy engine matches the MEO values with the conditions defined in

the policy (in terms of MEI metrics) and if the policy condition is

satisfied, the AM then executes the policy actions in the same order

that are defined. The ExecuteActions method is explained in more

details in Algorithm 5.6. This process gets repeated for all active

policies in the policy set PLSubSet and after that it blocks and wait

for other events to get published.

5.5 Termination Detection

An AM might shut down at any time either because of a failure

or because of a normal termination, such as when the objects that

it manages terminate. When a particular AM shuts down, its par-

ent needs to detect that in order to take necessary actions. One of

these actions is to update the registry and invalidate the entry for

the dead child. Another action is to raise an event which leads to

enforcing those policies that are related to the termination of a child.

Algorithm 5.5 shows the process of termination detection inside a

manager. This algorithm also runs on a separate thread and starts

as part of the start-up algorithm (Algorithm 5.1). In order to detect

this termination, each AM has a configurable keep alive timer (e.g.

KeepAliveTimer) to check if its children are still alive or not. It will

send an “UPDATE REQ” message asking for an update and will

wait for an “INFO” message to come back. If it does not get any

response back, it will assume that the child is dead and will raise an

event (e.g. AMTerminationEvent- to be evaluated in the policies)

5.5. Termination Detection 69

and remove it from its ChildrenList.

Algorithm 5.5 AM Termination Detection and Removal

Require: ChildrenList
1: while true do
2: for each Child in ChildrenList do
3: Metrics← {〈“Name”, null〉 , 〈“ID”, null〉}
4: Msg ← 〈UPDATE REQ,Metrics〉
5: SendMessage(Child.AM ID,Msg)
6: if NoResponse then
7: ChildrenList.remove(Child)
8: Registry.InvalidateEntry(Child.Name,Child.AM ID)
9: Info← {〈“Name”, Child.Name〉 , 〈“ID”, Child.AM ID〉}
10: AMTerminationEvent ← 〈AMTermination, Info〉
11: Publish(AMTerminationEvent) . Raise the event
12: end if
13: end for
14: Sleep(KeepAliveT imer)
15: end while

If at a later time, the child starts communicating with this AM,

it will get added to the ChildrenList again. When an AM dies, its

parent will detect that and will raise the proper event for policy eval-

uation. Note that, if, for example, a virtual machine shuts down then

all the applications inside that VM are also shut down and therefore

all the children of the virtual machine AM are already dead. Hence,

sometimes if an AM in the hierarchy terminates, the whole subtree

rooted at that AM will be terminated too.

However, if one manager is terminated due to an error/fault, it is

possible that its children are still running and become disconnected

from the hierarchy temporarily. In this case, the deployment system

will detect the termination of that AM during its periodic checking

and will restart it. The AM then goes through the start-up process

70 Chapter 5. Autonomic Manager Behaviour

(Algorithm 5.1) and gets added to the management hierarchy again.

It will then be able to receive its children’s messages and also send

messages to its parent. This checking process is explained later in

Algorithm 6.1 in Chapter 6, but the idea is that as part of periodic

checking for changes in the infrastructure, the deployment system

will also check the running status of the deployed managers and if

they are terminated it will restart them. Therefore, for a short pe-

riod of time, the subtree rooted at the terminated AM might be

disconnected from the rest of the hierarchy but it will recover once

the manager is restarted. However, during this temporary discon-

nection those managers are still working and continue enforcing their

policies locally. The scaning period to dicover terminated AMs is a

configurable time interval in the deployment system. However, the

children of the terminated node can detect that their parent has been

terminated by checking the central registry - a terminated node’s

name is invalidated in the registry. This algorithm is linear (O(n))

in the number (n) of child managers for this autonomic manager.

5.6 Inferring Messages From Policies

One of the challenges in collaboration between managers is to deter-

mine when they need to send/receive a message from another AM in

the hierarchy. Since we are using a policy-based approach, one way

to specify when a message should be sent is to have a specific policy

that determines when an AM is to communicate. For example, one

could include a policy explicitly identifying a communication action

to send a help request event from a lower level to a higher level man-

ager; such as:

5.6. Inferring Messages From Policies 71

OnEvent: ManagementInterval

if ApacheMEI.ResponseTime > 1000 then

ApacheMEI.SendHelpRequestEvent = true

end if

This approach requires work by the administrators in order to

define all the policies needed. An alternative would be to automat-

ically infer from policies the right time for sending a message and

the content of that message. In the remainder of this section, we ex-

plain how autonomic managers can infer certain kinds of messages;

determine the right message type and the right time for sending a

message to another AM.

When a manager has detected an SLA violation it tries to exe-

cute the associated corrective actions. If one of those actions fails

or cannot be executed, e.g., an action to increase the value of some

parameter but has reached some limit in changing that parameter,

then it cannot make a local adjustment. Given the message types we

have described, it will then create a NOTIFY message and send it

to the higher level manager to ask for help. That is, as long as there

is something that can be done locally there is no need for further

communication unless it is an UPDATE REQ message.

Algorithm 5.6 is in fact the ExecuteActions method in Algorithm

5.4 and shows how an autonomic manager can infer a NOTIFY com-

munication message automatically at the time of executing actions

(e.g. E in the MAPE loop). This algorithm should run during a pol-

icy evaluation and the proper MEO and ActionSet are given to it at

that time. In other words, when policy conditions are met (e.g. be-

72 Chapter 5. Autonomic Manager Behaviour

Algorithm 5.6 ExecuteActions

Require: ActionSet,MEO
1: localLimitation← false
2: for all A ∈ ActionSet do
3: if Execute(A) == false then . An action failed to execute
4: localLimitation← true
5: break
6: end if
7: end for
8: if localLimitation == true then
9: Event← 〈HelpRequest,MEO.m〉 . Attach latest metrics
10: Msg ← 〈NOTIFY,Event〉
11: SendMessageTo(ParentID,Msg)
12: end if

cause of an SLA violation) a set of ordered corrective actions should

take place to fix the stress situations. At the time of performing

these actions if one of them fails due to reaching a limitation or an

error, it means that local adjustments are not possible and therefore

this manager should notify a higher level manager. So, after exe-

cuting these actions and if there is a failure in execution of one of

them, other actions will not be executed because of the “ordered”

property on this set of actions (see Definition 5) and the manager

will create a HelpRequest event and attach all of the latest metrics

of the proper MEO to it. It then creates a NOTIFY message and

sends it to its parent. Note that ParentID is retrieved at start-up

time (e.g. Algorithm 5.1) and is available in the common knowledge

base.

In order to better illustrate this process, we show several exam-

ples of policies that can be used at different levels of a hierarchy and

how these policies can influence the relationship between managers.

Assume that on a virtual machine there is a LAMP (Linux-Apache-

5.6. Inferring Messages From Policies 73

Mysql-PHP) stack that hosts web applications and that one AM is

managing the applications inside this virtual machine. We use event,

condition, action (ECA) policies to specify operational requirements,

including requirements from SLAs, and we also use policies to iden-

tify and react to important events. Assume that the following policy

is being utilized by AMvm1 (see Figure 5.1) and is a policy specifying

the requirements needed to meet an SLA. The policy indicates that

the Apache response time should not go above 500ms. This policy

gets evaluated once a “ManagementInterval” event happens.

OnEvent: ManagementInterval

if ApacheMEI.ResponseTime > 500 then

ApacheMEI.IncreaseMaxClients(25)

end if

This policy specifies that if the response time of the Apache server

goes beyond 500ms, then the manager should increase the Max-

Clients configuration parameter (inside Apache) by 25. Now, as-

sume that the limit for MaxClients is 200, which means that the

manager can not increase it to more than 200. The actual actuator

that performs the increase will be aware of this limitation. There-

fore, upon reaching this limit there is no further local adjustment

possible and the action execution will fail. This manager can then

automatically create a NOTIFY message and send it to its parent

manager. It basically means that after reaching the local limits of

any parameters or when other actions fail each manager can ask for

help from the parent manager in the hierarchy automatically. The

parent manager will then receive this help request and reacts to it

based on its own set of policies.

74 Chapter 5. Autonomic Manager Behaviour

AMCLC

AMCC2

AMNC1 AMNC2

AMCC3AMCC1

AMVM1 AMVM2

AMVM4AMVM3

Figure 5.1: AMs hierarchy based on the cloud architecture

5.6. Inferring Messages From Policies 75

Upon receipt of a HelpRequest notify message from another AM

(e.g. AMvm1), a HelpRequest event gets triggered inside the receiv-

ing manager and those policies that match that event get evaluated

by the manager. Another sample policy for an AM at the node con-

troller level (e.g. AMnc1) is:

OnEvent: HelpRequest

if VirtualMachineMEI.MemoryUtil>85 &

VirtualMachineMEI.CPUUtil>95 then

VirtualMachineMEI.IncreaseVMMemory(50)

end if

This policy specifies that when a HelpRequest event happens, if

the memory utilization of the VM in need is more than 85% and its

CPU utilization is more than 95%, then the manager should increase

its memory by 50 MB to help the stressed virtual machine. Again,

this can only be done to some limit. In this case, the maximum

limit can be determined at runtime by the actuator responsible for

increasing the memory.

Therefore, if there is no extra memory available to be added to

the stressed virtual machine, the actuator will fail, the action fails

and the manager will automatically create a NOTIFY message to

be sent to its parent in the hierarchy. In this case, it is basically

notifying its parent about a stress situation that can not be resolved

locally and asks for more help. This process is implemented and

illustrated in more detail in Section 7.1 of Chapter 7.

76 Chapter 5. Autonomic Manager Behaviour

In this way, an AM can determine exactly when it has reached

the local limits and create the NOTIFY message to be sent to the

higher level manager. Thus, the AM can infer automatically from

the policy when to send this type of message at run time. This

happens when the manager has reached the local limits in trying to

enforce actions specified in a policy. However, the need to have an-

other policy at the higher level manager to respond to these events

is not removed. The process of creating/inferring and sending of the

messages from one manager to another is automated but there still

should be another policy that react to these incoming events (e.g.

NOTIFY messages). Since there are a lot of possible ways to define

these policies and it is different from one organization to another, we

assume that administrators of each organization should define these

policies based on their needs. The UPDATE REQ and INFO mes-

sages are used to maintain the hierarchy and detect the termination

of an AM as explained in Section 5.5.

Based on this technique we can build a system with different AMs

working autonomously at different levels and interacting with each

other based on demand but the important point is that all these

AMs are collectively trying to adhere to a set of policies that mini-

mize the number of SLA violations (or maximize performance based

on SLA parameters), and minimize resource usage at the same time.

This happens while each manager has a local view of the system and

is trying to solve problems locally but when no further local adjust-

ment is possible it asks the higher level manager for help.

Chapter 6

Autonomic Manager Deployment

In large systems there are multiple elements that need to be man-

aged. For example, in a typical data center there are elements like

clusters, physical nodes, virtual machines and applications running

on them. Some of these elements can get added to or removed from

the system dynamically and therefore the management should be

able to adapt to these changes.

The deployment of autonomic managers at different parts of the

system can be a challenging task for administrators as the number of

elements grow. Deployment in our hierarchical management context

means installing an AM with correct set of ManagedElementInfos

(e.g. MEISubSet) in the right place and, in our case using our nam-

ing scheme, configuring the correct AM name which is prefixed with

the parent name in the hierarchy. We introduce a deployment sys-

tem that can automate the autonomic manager deployment process

and which can keep the management hierarchy up to date as changes

happen in the infrastructure.

There are two possible ways of autonomic manager deployment:

77

78 Chapter 6. Autonomic Manager Deployment

1)Manual: which is useful for monitoring and management of custom

applications running inside virtual machines and are not already in-

cluded in the VM image and 2) Automatic: which happens as part of

the deployment system explained here. For manual autonomic man-

ager deployment, an administrator can install the AM and configure

its name and therefore has to know the management hierarchy struc-

ture and the parent name of the AM to be installed. This process

is similar to the traditional way of installing AMs and configuring

them by an administrator. The naming scheme we introduced ear-

lier can help the administrator create these names. For automatic

deployment, the deployment system needs to be able to create the

AM name on the fly based on the location of that AM and there-

fore needs to have access to the list of different elements’ names in

the computing environment. For example, depending on the naming

convention being used and in order to deploy an AM in a virtual ma-

chine, the deployment system needs to know the virtual machine’s

name, its host physical machine’s name and the cluster’s name that

it is running on in order to be able to create a name for that AM.

The deployment system consists of several management tables

and each one holds some information that facilitates the automatic

deployment process. In this section we explain details of these ta-

bles and how each table should be filled. Throughout this section we

assume that the right credentials are put in place and the deploy-

ment system has authorized access to the physical nodes and virtual

machines located in the computing environment. In the rest of this

Chapter, we explain how a deployment system can be created to

automatically deploy AMs in the right position with the right name

6.1. Management Groups 79

and make sure that these AMs are running.

6.1 Management Groups

To be able to deploy AMs that are organized in a hierarchical fash-

ion the deployment system first needs to know what management

groups exist in the system and their relation to one another. These

management groups can correspond, for example, to the levels of

the hierarchy common in an IaaS cloud, e.g., application, virtual

machine, compute node, etc. Since we focus on a hierarchical orga-

nization of AMs, we assume that the management groups are defined

as a tree structure; the groups are defined as Management Groups

(MG) and get added to the deployment system manually by admin-

istrators.

Each management group is associated with one level of the hier-

archy and represents a group of elements that should be managed

in the same way (e.g. have the same policies). There is no limit

on the number of levels in the management tree or the number of

management groups at each level. Administrators of any computing

environment can decide on the number of levels and how to organize

their infrastructure into a hierarchical structure. These management

groups are stored in the MG table. Table 6.1 shows an example of

a management group table and the level column shows the level of

each group. We assume that Level 0 is the root level, level 1 is one

level below with all root’s children and so on. Another example of

this table in IaaS clouds is explained in Section 6.6.

80 Chapter 6. Autonomic Manager Deployment

Table 6.1: Management Groups
Level MG Name

0 MG1
1 MG2
2 MG3
2 MG4
3 MG5
...

...

In order to support different possible management approaches at

each level, one can define multiple management groups for each level

of the management hierarchy. For example, there might be multi-

ple nodes using different hardware at the node level and therefore

administrators need to manage them differently. They can define

multiple management groups in this table for that specific manage-

ment level (e.g. level 2 in Table 6.1). By defining different manage-

ment groups, we can now assign multiple attributes to each group in

order to facilitate the AM deployment for each level of the hierarchy.

6.2 Management Group Attributes

All attributes that belong to a certain management group are added

to another table. Note that this table and the previous table (e.g.

MG table) can both be combined into one table. However, for ex-

planatory reasons we split them into two tables to explain elements

more clearly.

One of the main attributes that has to be assigned to each group

is the set of elements that need to be managed in that group (e.g.

MEISubSet). Administrators have to specify what elements are im-

6.2. Management Group Attributes 81

portant to them to be monitored in each group by adding the de-

sired ManagedElemmentInfo to the correct group. This can be done

in MGAttributes table. This table helps the deployment system to

determine which MEIs should be included with a specific AM de-

ployment. For example, when deploying an AM responsible for a

cluster it might not be necessary to include an ApacheMEI or when

deploying an AM responsible for a virtual machine, some of the

application MEIs (e.g. MySqlMEI, ApacheMEI, etc.) as well as Vir-

tualMachineMEI might be included in the deployment process.

Another attribute is the name of a technology script that is used

at that level of the hierarchy. This could be the name of a predefined

supported script that is included with the deployment system (in

the form of executable scripts) or any new script that administrator

add to the system based on their computing environment technology

stack. For example, administrators can specify a script name that is

used at the Eucalyptus cloud level (e.g. management group). The

script name specified in this table is in fact the path and name of an

executable script. The scripts can also be stored on a specific folder

under the deployment system file structure to avoid including path

for each one (e.g. “/opt/deployment/scripts/”). This script helps

the deployment system to extract proper information (e.g. children

names) from each level of the management hierarchy. For example,

in order to get access to the physical machine names at a cluster level

(part of discovery process explained in Algorithm 6.1), the deploy-

ment system needs to know which technology is used in order to get

these names from the right place (e.g. a MySQL DB, a specific file,

etc.) and these scripts will help the deployment system to extract

82 Chapter 6. Autonomic Manager Deployment

this information.

These scripts are extensible and can be added or modified to sup-

port more technologies in the deployment system based on what

infrastructure this deployment system will be run on. The main

jobs of each script are 1) Check to see if a technology (or multi-

ple technologies) is available on a specific machine or not (e.g. the

technology is properly installed on it) and 2) Extract the children

names based on the logic that administrators have provided inside

the script and in compliance with the naming scheme explained in

Section 5.1 (e.g. “Location-Managed Element Name”). For example,

there might be a shell script named “Eucalyptus-0.sh” that provides

the functionality to check if a specific machine has Eucalyptus cloud

controller installed on it or not and also can extract the children

machine names (e.g. machines with Eucalyptus cluster controller)

from the Eucalyptus database based on the logic that is provided in

that script. Another shell script name might be “KVM.sh” which

can determine if KVM virtualization is available on a machine or

not and can extract the children names (e.g. virtual machine names

inside that host) based on the logic provided in that script (e.g. by

running KVM commands). These scripts can be written in differ-

ent scripting programming languages such as Python, Ruby, shell

commands, etc. Appendix B shows two examples of these scripts in

Ruby programming language.

In this way, administrators can add, remove or modify these

scripts to ensure that the deployment system supports proper tech-

nologies and fits with their requirements. After defining and adding

6.3. Management Group Members 83

Table 6.2: Management Group Attributes
MG Name MEI(s) Technology Script Name

MG1 MEI1 T1.sh
MG2 MEI2,MEI3 T2.py
MG3 MEI4,MEI5,MIE6 T3.rb

...
...

...

Table 6.3: Management Groups Members
Name MG Name Parent Name

Host1 MG1 null
Host2 MG2 Host1
VM1 MG3 Host2

...
...

...

these technology scripts, their names can be used in this table inside

the Technology Script Name field. Table 6.2 shows an example of

MGAttributes table. For example, MG1 has only one element to be

monitored (ME1) and the script used at this level is a shell script

named “T1.sh”. Another example of this table in IaaS cloud envi-

ronments is provided in Section 6.6.

6.3 Management Group Members

Each management group has members that are candidates for an

AM deployment at that level of the management hierarchy. Another

table, the Members table, is used for storing information related to

these members of management groups. Table 6.3 shows an example

of the Members table.

Each member belongs to a management group and represents a

location (e.g. virtual or physical machine) that an autonomic man-

84 Chapter 6. Autonomic Manager Deployment

ager should be deployed on and the names used in this table will be

used to configure the AM names at the time of deployment based

on the naming scheme explained in Section 5.1. Each member can

have child members associated with it which form the hierarchical

structure of the computing environment. The Name field in this

table is a name that uniquely specifies a machine (either virtual or

physical) to deploy an AM on it and the Parent Name field repre-

sents the member name of its parent. Names added to this table

have to be unique but they do not necessarily have to be only a

machine name. For example, a name can be “VM1” which is only

a virtual machine name and uniquely identifies that machine or it

can be “VM1-Apache” which also uniquely specify the same virtual

machine but is a different name than the first one (e.g. are not in

conflict). Having names that uniquely specify a machine and are

different (e.g. unique) at the same time will help us construct AM

names automatically (Algorithm 6) at the time of deployment based

on the naming scheme explained in Section 5.1.

The first entry to this table is the root member of the manage-

ment hierarchy which belongs to the first management group (e.g.

level 0) and must be added by administrators manually. However,

the other members (e.g table entries) can be discovered automati-

cally by the deployment system and the help of scripts in MGAt-

tributes table. Therefore, script writers (e.g. administrators) can

decide how to name different elements in their computing environ-

ment as long as these names uniquely identify a machine and is not

in conflict with other names. The deployment system uses this table

to discover other members automatically by starting from the root

6.4. Discovery Algorithm 85

member. This discovery process is explained in Algorithm 6.1. This

is a very important table because each entry that gets added to this

table means that a new AM deployment should take place and if an

entry is about to be deleted from this table, it means that a previous

deployment is no longer valid and therefore all children of that entry

should be deleted too.

Another key aspect of this table is that it represents the layout of

the computing environment and therefore has to be kept in sync with

the actual infrastructure layout (both physical and application-level

layout). This means that any changes in the infrastructure has to

be detected and get updated in this table. For example, if a virtual

machine is no longer running on a physical host (either because of

a migration or termination) then its entry to this table and all its

children has to be deleted to keep this table in sync with the actual

environment. This process of keeping this table up to date happens

as part of the discovery algorithm by a polling mechanism that is

explained in more details in Algorithm 6.1.

6.4 Discovery Algorithm

So far we have defined tables that hold important basic informa-

tion about the computing environment. We can now use this basic

information to automatically extract other information or discover

members in the infrastructure and start the deployment process.

Discovery of available members in the system is the heart of this de-

ployment system because it reduces the burden of defining all mem-

bers manually and helps administrators to automate the deployment

86 Chapter 6. Autonomic Manager Deployment

process.

The discovery process happens periodically in a configurable time

interval to ensure that all dynamic changes that happen in the in-

frastructure from time to time will be detected. It starts from the

root member and discovers all children members. Upon discovering

a new member/child, it adds the new member to the Members table

which then leads to a new AM deployment on that member. Simi-

larly, if it detects that an existing member is no longer available it

will remove it from the Members table which results in removing all

child members associated with it.

Algorithm 6.1 shows the discovery process. It performs the discov-

ery at every DiscoveryInterval which is a configurable time interval

and the overall process is a breatdh-first-search (BFS) of the com-

puting environment. It starts from the root member which belongs

to the first management group (MG.getFirstMG() returns the first

Management Group and Members.getMembers() returns the mem-

bers that belong to a specific MG) and uses a queue to discover new

members. It starts by checking the status of the autonomic man-

ager deployed on the current member (isAMDeployed()) checks the

AM deployment status on a specific member). If there is an auto-

nomic manager already deployed on that member then it should be

started. The StartAM method starts the AM if it is not running al-

ready, otherwise it does not do anything. This status checking acts

as a heartbeat polling mechanism to make sure that an AM is not

terminated due to a fault or error. If an AM is terminated for any

reason, then the discovery process ensures that it gets started again.

6.4. Discovery Algorithm 87

Algorithm 6.1 Member Discovery

Require: Members,MG,MGAttributes,DiscoveryInterval
1: while true do
2: Root←Members.getMembers(MG.getF irstMG())
3: Queue.enqueue(Root)
4: while !Queue.isEmpty() do . There are more members to discover
5: CurrMember ← Queue.dequeue()
6: if isAMDeployed(CurrMember) then . Check AM status
7: StartAM(CurrMember)
8: end if
9: CurrChildSet←Members.getChildren(CurrMember)
10: CurrMG←Members.getMG(CurrMember)
11: TechScript←MGAttributes.getTechnology(CurrMG)
12: DiscoveredChildSet← DiscoverChildren(CurrMember, TechScript)
13: AddSet← DiscoveredChildSet− CurrChildSet
14: RemoveSet← CurrChildSet−DiscoveredChildSet
15: Members.removeMembers(RemoveSet) . Update Members table
16: NextMGSet←MG.getNextMG(CurrMG)
17: for all MG ∈ NextMGSet do
18: MGTechScript←MGAttributes.getTechnology(MG)
19: for all member ∈ AddSet do
20: if isV alid(member,MGTechScript) then
21: Members.addMember(member,MG,CurrMember)
22: AddSet.remove(member)
23: end if
24: end for
25: end for
26: Queue.enqueue(Members.getChildren(CurrMember))
27: end while
28: Sleep(DiscoveryInterval)
29: end while

88 Chapter 6. Autonomic Manager Deployment

The discovery algorithm then gets the set of all current available

children of that member (e.g. Members.getChildren() method) which

is stored in the Members table (e.g. from previous discoveries) and

store it in CurrChildSet. This set can be calculated by a simple

search on the parent name field of the Members table but it might

be outdated due to the changes that happened in the environment

from the last discovery and therefore it might not represent the most

recent infrastructure layout. This is the current view of the infras-

tructure in the deployment system.

It then gets the management group which that member belongs

to and retrieves the technology script that is used on that manage-

ment group (e.g. MGAttributes.getTechnology(CurrMG) method).

At this point, it can connect to this specific member and perform

a discovery based on the technology script that is provided (e.g.

DiscoverChildren() method). The script will then retrieve a set of

children names and return it to be stored in the DiscoveredChildSet.

CurrChildSet represents the current view of the deployment system

about the infrastructure and DiscoveredChildSet represents the ac-

tual most recent infrastructure layout. Therefore, the two relative

complements of these two sets give us two other sets: one is the set of

members that are newly discovered and should be added to the sys-

tem (e.g. AddSet) and one is the set of members that are no longer

available and should be removed from the system (e.g. RemoveSet).

So far, the discovery process has calculated two separate lists

that need to be updated in the system. It can then update the

6.4. Discovery Algorithm 89

Members table based on these two sets. It first removes the obsolete

members from the table (e.g. Members.removeMembers(RemoveSet)

method) and then calculates the next management group (e.g. get-

NextMG(CurrMG) method) and since there might be multiple man-

agement groups for each level, it will return a set of management

groups for the next level (e.g. NextMGSet). It now needs to de-

termine the new members to be added belong to which manage-

ment group. This can be done with the help of the technology

script. One job of the technology script is to provide functional-

ity for determining that if the technology is available on a specific

member or not. Therefore, for each management group in the next

level, it will get the associated technology script name (e.g. MGAt-

tributes.getTechnology(MG)) from the MGAttributes table and check

to see if that technology is available on the newly discovered mem-

bers (e.g. isValid(member, MGTechScript)). If the technology is

available then this member belongs to that management group and

can be added to the Members table. The addMember method gets

a member to be added, the management group (e.g. MG) that it

belongs to and its parent member (e.g. CurrMember) and add this

member to the Members table. After adding a member to the table

it will be removed from the AddSet and the loop continue for other

members. The algorithm for adding or removing a member from the

Members table is explained in the next section. After updating the

table, it then retrieve the final list of children (most recent) for this

member and add them to the queue for further discovery (e.g. in

the lower levels) based on the same BFS approach.

This discovery algorithm should run from a machine inside the

90 Chapter 6. Autonomic Manager Deployment

administrative domain that has proper access (administrative priv-

ileges) to all members, we assume this is happening in a trusted

administrative network with proper authorizations in place.

The time complexity of this algorithm is O(n2) in the worst case

where n is the number of members in the Members table and is equiv-

alent to the number of AMs in the management hierarchy because it

performs a BFS of the computing environment (O(n)) and on each

iteration of the while loop it removes the obsolete members (Mem-

bers.removeMembers() method) which is another BFS of a subset of

the Members table (O(n) in worst case).

6.5 Deployment Algorithms

As explained in the previous section the output of the discovery pro-

cess is basically two sets, one is the set of members that have to be

added to the Members table (new discoveries) and one is the set of

members that have to be removed from this table (not available any

longer). In this section we explain what should happen after adding

an entry to or removing it from the Members table.

Each addition to the Members table means discovering a new

member and therefore a new AM deployment has to be performed

on it. In order to perform an AM deployment, the deployment sys-

tem needs to calculate two pieces of information: 1) The set of MEIs

that has to be installed with the AM and 2) the AM name which

includes the parent name as a prefix (See Section 5.1). Algorithm

6.2 shows this process and how to calculate this information on the

6.5. Deployment Algorithms 91

fly upon adding a new entry to the members table. This Algorithm

is called upon each addition to the Members table.

Algorithm 6.2 Members Addition: Autonomic Manager Deployment

Require: MemberName,Members,MGAttributes
1: CurrMG←Members.getMG(MemberName)
2: MEISubSet←MGAttributes.getMEIs(CurrMG)
3: AMName←MemberName
4: ParenName←Members.getParentName(MemberName)
5: while ParentName 6= NULL do . Not reached root member
6: AMName← ParentName + “.” + AMName
7: ParenName←Members.getParentName(ParenName)
8: end while
9: DeployAM(MemberName,AMName,MEISubSet)

During the AM deployment to a new member, the deployment

system can retrieve the appropriate MEIs by accessing the mem-

ber’s management group. The MGAttributes table can return the

set of MEIs that has to be shipped with this deployment. The parent

name however has to be added step by step by searching through the

Members table. It starts by adding the current member name to the

AM name and then while it has not reached the root member it keeps

adding the parent name of each member to the AM name. Basically,

it starts from the leaf of the management tree and goes one step up

the hierarchy each time and adds each parent’s name until it reaches

the root. The parent name is accessible in the Members table and

is set to null for the root member. The getParentName method re-

turns the parent name of a specific member from the Members table.

After extracting these two sets of information, the deployment

system can then access that member and deploy an autonomic man-

ager on it by shipping the right MEISubSet and configuring the right

92 Chapter 6. Autonomic Manager Deployment

name which will eventually result in getting added to the manage-

ment hierarchy through the start-up algorithm (Algorithm 5.1).

The time complexity of this algorithm is O(log(n)) where n is the

number of members in the Members table because it basically tra-

verses the height of the management tree from the leaf to the root,

one step at a time.

Another change in the Members table happens when removing

an entry from it. Removing a member means that this member is

no longer available in the computing environment as the child of a

specific member and therefore itself and all sub-tree rooted at this

member have to be removed. For example, if a physical server is

no longer available in the list of a cluster’s machines, then both the

server and all its previously discovered virtual machines inside it are

no longer available and have to be removed from the Members table.

Algorithm 6.3 Members Removal

Require: MemberName,Members
1: Queue.enqueue(MemberName)
2: while !Queue.isEmpty() do . There are more members to remove
3: CurrentMember ← Queue.dequeue()
4: ChildrenSet←Members.getChildren(CurrentMember)
5: for all child ∈ ChildrenSet do
6: Queue.enqueue(child) . Will be removed
7: end for
8: Members.remove(CurrentMember)
9: end while

Algorithm 6.3 shows the process of removing an entry from Mem-

bers table. This algorithm uses a queue and performs a breadth-

first-search of the sub-tree rooted at the member to be removed and

6.6. Deployment in IaaS Clouds 93

remove all these members.

For each member to be removed (e.g. CurrentMember), it first

get the set of its children from the Members table (e.g. Mem-

bers.getChildren(CurrentMember)) and add them to the queue and

then remove the member itself from the Members table (e.g. Mem-

bers.remove(CurrentMember)). It then repeat this process until there

is no further member in the queue for removal.

This algorithm is a BFS of a subset of the members in Members

table. Therefore, the time complexity of this algorithm in the worst

case is O(n) where n is the number of members in this table.

6.6 Deployment in IaaS Clouds

We first explain operations in a typical IaaS cloud to have a better

understanding of how the deployment system will integrate with this

environment. To set up an IaaS cloud, racks and physical servers are

installed in a data center. Then a host operating system will be in-

stalled on these machines which will later host virtual machines. In

a typical IaaS architecture (see Section 3.2), the cloud controller is

installed first, along with a cluster controller which is responsible for

all physical nodes in that cluster. After that, the cluster controller

gets a list of active physical nodes either by discovering them auto-

matically or by administrators who have to define them manually.

After a successful setup, cloud users can request one or more

virtual machines from cloud controller. Cloud controller will then

94 Chapter 6. Autonomic Manager Deployment

chooses the cluster and sends the request to its cluster controller.

The cluster controller chooses the nodes that should host these vir-

tual machines and places them on to those nodes. As part of this

virtual machine placement, it will configure the virtual machine with

the right customized information (e.g. credentials, application and

services, etc.) and then the user can connect to the virtual machine

and use it. Therefore, cluster controllers have access to the names

of physical machines that are available in that cluster. Physical ma-

chines have similar access to the virtual machine names running on

them. These lists can change over time and new servers added to or

removed from the system.

6.6.1 Sample IaaS Layout

In this section we explain the physical layout of a sample IaaS cloud

and explain how our deployment system can integrate with it to dis-

cover members and deploy autonomic managers. We assume that

this cloud consist of two clusters, each with two physical servers to

host virtual machines. Figure 6.1 shows the physical layout of this

cloud. There are two racks, each have four physical servers with an

operating system (e.g. Ubuntu) installed on them. Host1 is where

cloud controller is installed and the two cluster controllers are in-

stalled in Host2 and Host6. Let us assume that we use Eucalyptus

technology to create this cloud and that each cluster is using a dif-

ferent virtualization technology (e.g. KVM or Xen). Hosts in the

first cluster (e.g. Host3 and Host4) are using KVM and hosts in the

second cluster (e.g. Host7 and Host8) are using Xen.

6.6. Deployment in IaaS Clouds 95

VM1 VM2

Host4 (KVM)

Host2

VM3 VM4

Host3 (KVM)

Rack 1

VM5 VM6

Host8 (Xen)

Host6

VM7 VM8

Host7(Xen)

Rack 2

Host1

Cluster Controller 1 Cluster Controller 2

Cloud Controller

Host5

Deployment Server

Figure 6.1: IaaS Cloud Layout

6.6.2 Deployment Tables

In order to setup the autonomic management deployment system

for this sample cloud, there are several possible ways to define the

management groups and form the hierarchy and depending on the

actual management requirements administrators can pick one that

matches their needs better. However for illustration purposes let us

assume that the administrators define four management levels and

five management groups for this computing environment:

1. “CloudMG”: This group represents the members in the top

level of the hierarchy (e.g. level 0). This group will have only

one member which is the cloud controller machine (e.g. Host1).

96 Chapter 6. Autonomic Manager Deployment

Table 6.4: IaaS Cloud Management Groups
Level MG Name

0 CloudMG
1 ClusterMG
2 KVMServerMG
2 XenServerMG
3 VirtualMachineMG

2. “ClusterMG”: This group represents members running at the

cluster controller level (e.g. Host2 and Host6).

3. “KVMServerMG”: This group represents all physical machines

that uses KVM as their virtualization (e.g. Host3 and Host4).

4. “XenServerMG”: This group represents all physical machines

that uses the Xen as their virtualizations and should be man-

aged differently than KVMServerMG members (e.g. Host7 and

Host8).

5. “VirtualMachineMG”: which represents all virtual machine avail-

able in the cloud.

All deployment tables are stored in Host5 located in the sec-

ond rack and the deployment algorithms will run from this machine.

Administrators can now define these management groups by sim-

ply adding their names to the management groups table. Table 6.4

shows the MG table for this cloud.

Note that both KVMServerMG and XenServerMG management

groups are defined to be in the second level of the hierarchy (e.g.

level 2).

6.6. Deployment in IaaS Clouds 97

Table 6.5: IaaS Cloud MGAttributes
MG Name MEI(s) Technology Script Name

CloudMG CloudMEI Eucalyptus0.py
ClusterMG ClusterMEI Eucalyptus1.sh

KVMServerMG KVMPhysicalMachineMEI KVM.rb
XenServerMG XenPhysicalMachineMEI Xen.sh

VirtualMachineMG VirtualMachineMEI, ApacheMEI Ubuntu.rb

After defining management groups, administrators can add proper

ManagedElementInfos to the MGAttributes table based on what el-

ements needs to be managed at each level of the hierarchy in cloud.

Table 6.5 shows an example of MGAttributes table for this cloud.

Based on available MEIs and technologies in the deployment sys-

tem they can define multiple entries in to this table. For example,

the Eucalyptus technology is used at the CloudMG level and the

autonomic manager should monitor cloud level elements based on

the CloudMEI. Eucalyptus0.py is the name of a Python script that

will extract the children names (e.g. Eucalyptus cluster controller

machine names) from the Eucalyptus cloud controller (level 0). Sim-

ilarly, KVM is used at the KVMServerMG level and members of

this group should monitor and manage physical servers based on

the KVMPhysicalMachineMEI. The KVM.rb is the name of a Ruby

script that can extract children names (e.g. virtual machine names)

from a KVM virtualized server.

The last step in configuring the deployment system is to add the

first entry of Members table, which is the root member of the hierar-

chy and is a member of the first management group. Table 6.6 shows

an example of the Members table for this cloud. Host1 is the root

machine that cloud controller is installed on and can be accessed

98 Chapter 6. Autonomic Manager Deployment

Table 6.6: Initial Iaas Members Table
Name MG Name Parent Name

Host1 CloudMG null

from the deployment server.

At this point the configuration of the deployment system is com-

pleted and administrators can run this service. After running the de-

ployment service, members discovery loop (see Algorithm 6.1) starts

running and the deployment process starts based on the Algorithm

6.2 and upon discovering new members they get added to this Mem-

bers table which causes other AM deployments to take place.

As explained in the Algorithm 6.1, deployment server can now

connect to the root member, extract children names by using the

technology script and add them to the Members table. It will then

continue this process until there is no member available in the queue.

Table 6.7 shows the completed Members table after running the

discovery algorithm. Note that the discovery algorithm runs period-

ically to detect dynamic changes in the environment and update the

Members table accordingly. It also checks the running status of the

currently deployed AMs to make sure that they are running.

6.6.3 Deployed Managers

As described before in Algorithm 6.2, upon adding a new member in

to Members table a new autonomic manager deployment happens.

This algorithm will calculate the AM name based on the naming

6.6. Deployment in IaaS Clouds 99

Table 6.7: Completed IaaS Members Table
Name MG Name Parent Name

Host1 CloudMG null
Host2 ClusterMG Host1
Host6 ClusterMG Host1
Host3 KVMServerMG Host2
Host4 KVMServerMG Host2
Host7 XenServerMG Host6
Host8 XenServerMG Host6
VM3 VirtualMachineMG Host3
VM4 VirtualMachineMG Host3
VM1 VirtualMachineMG Host4
VM2 VirtualMachineMG Host4
VM7 VirtualMachineMG Host7
VM8 VirtualMachineMG Host7
VM5 VirtualMachineMG Host8
VM6 VirtualMachineMG Host8

scheme explained in Section 5.1 and deploy an autonomic manager

on this member with proper MEISet and name.

Table 6.8 shows the AM names calculated for these managers

based on members available in the Members table. The first column

shows the member name that this AM is deployed on and the second

column is the AM name configured for that AM.

Upon each AM start-up, it will register its name in the registry

and contact its parent which will result in forming the management

hierarchy. It also gets the proper policies from the repository based

its MEISet and starts enforcing them. Figure 6.2 shows the manage-

ment hierarchy of these AMs after it starts working in our sample

cloud.

100 Chapter 6. Autonomic Manager Deployment

Table 6.8: Deployed AM Names
Member Name AM Name

Host1 Host1
Host2 Host1.Host2
Host6 Host1.Host6
Host3 Host1.Host2.Host3
Host4 Host1.Host2.Host4
Host7 Host1.Host6.Host7
Host8 Host1.Host6.Host8
VM3 Host1.Host2.Host3.VM3
VM4 Host1.Host2.Host3.VM4
VM1 Host1.Host2.Host4.VM1
VM2 Host1.Host2.Host4.VM2
VM7 Host1.Host6.Host7.VM7
VM8 Host1.Host6.Host7.VM8
VM5 Host1.Host6.Host8.VM5
VM6 Host1.Host6.Host8.VM6

AM:
Host1.Host2.Host3 AM:

Host1.Host6.Host7

AM:
Host1.Host2

AM:
Host1.Host6

AM:
Host1

AM:
Host1.Host2.Host4

AM:
Host1.Host6.Host8

AM:
Host1.Host2.Host3.VM3

AM:
Host1.Host2.Host3.VM4

AM:
Host1.Host6.Host8.VM6

AM:
Host1.Host6.Host8.VM5. . .

Figure 6.2: AMs hierarchy after deployment on IaaS cloud

Chapter 7

Experiments and Evaluation

In order to test our ideas, we evaluated elements of the hierarchical

management model proposed in the previous Chapters in different

settings. In the first setting, we used a private cloud environment and

performed several experiments to evaluate the hierarchical model. In

the second setting, we collaborated with a private company to ad-

dress their real life management issues and implemented portions of

our management model to manage their infrastructure which shows

a successful application of our ideas in practice. Section 7.1 explains

the details of a prototype cloud system and presents an evaluation of

the hierarchical model by implementing the communication proto-

col, autonomic manager algorithms, such as the message inference,

processing, event-condition-action policy evaluation. Section 7.2 ex-

plains the architecture and implementation details of the case study

in which the ideas related to a central policy repository, registry

techniques, start-up and termination detection algorithms were eval-

uated.

101

102 Chapter 7. Experiments and Evaluation

7.1 Evaluation: Performance Study

We performed experiments to evaluate the autonomic manager algo-

rithms explained in Chapter 5, including the collaboration between

different autonomic managers using the communication protocol and

including the message inference from policies. We implemented a

small experimental cloud environment and developed a hierarchi-

cal management system based on our approach and algorithms and

measured an application’s performance - in this case, Apache’s re-

sponse time against a service level agreement that was defined in the

policies. We measured the number of SLA violations that happened

during the experimental period in three different scenarios.

7.1.1 Experimental Setup

We built a small cloud with three servers, each server has 4GB of

memory with Intel core i7 CPU @ 3.4GHz (4 cores) and is connected

to a 10/100Mbps switch with a 100Mbps CAT5 Ethernet cable.

All servers are running a 64bit Ubuntu 11.04 and two of these

servers are configured to be able to host virtual machines (VMs)

using KVM virtualization [21]. We used Ubuntu Enterprise Cloud

software to build this cloud which is powered by Eucalyptus (see

Section 3.2). All VMs within a server can be monitored and man-

aged from a privileged VM (e.g. Domain 0).

There are applications, e.g. an Apache web server, a MySql

database server, running on the VMs. The privileged autonomic

7.1. Evaluation: Performance Study 103

manager runs in the physical server and its job is to manage (opti-

mize based on policies) the behaviour of that server by collaborat-

ing with the managers running inside each VM. We used two VMs

running on a single server with LAMP (Linux-Apache-Mysql-PHP)

installed on them and a two tier web application based on an online

store was configured to run on the VMs.

Guest virtual machines run Ubuntu 11.04 as well. “Domain 0” is

the first operating system that boots automatically and has special

management privileges with direct access to all physical hardware

by default. The manager running inside Domain 0 has the authority

to change the configuration of other VMs, such as allocated memory,

allocated CPU cores, etc. Figure 7.1 shows the physical structure of

the system. Server1 hosts two VMs each running a web application

that receive loads. We implemented the autonomic manager using

Java programming language and the Ponder2 [52] platform and used

Ponder Talk to implement communication between managers.

Domain0
Mem: 3GB

VM1
Mem: 400MB

AM1

Apache

AM3

Apache

VM2
Mem: 400MB

AM2 Domain0
Mem: 4GB

AM5

AM4

Physical Server 1
(KVM)

Physical Server 2
(KVM)

Physical Server 3

Figure 7.1: Experiments Cloud Physical layout

104 Chapter 7. Experiments and Evaluation

AM1 AM3

AM2 AM5

AM4

Figure 7.2: Hierarchy of managers based on physical layout

We used an open source online store called “Virtuemart” [2] as

the web application, a three tier application with a Model-View-

Controller (MVC) architecture, to measure the response time of

Apache web server running on VM1. We also used JMeter [1] to

generate loads to this virtual store and measured the response time

of Apache in three scenarios. We used two thread groups in JMeter

for generating HTTP requests to the online store. The first thread

group is configured to have 23 threads (representing users) with a

ramp up period of 55 seconds and loop count of 9. The ramp up

period tells JMeter how long it should take to run the full number

of threads chosen, e.g. If 100 threads are used, and the ramp-up

period is 1000 seconds, then JMeter will take 1000 seconds to get all

100 threads up and running. The loop count is the number of times

this test (e.g. thread group) should be repeated. The second thread

group has 20 threads with a ramp up period of 10 seconds and loop

count of 6. We used the same configuration for all test scenarios.

7.1. Evaluation: Performance Study 105

Table 7.1: Experiment’s Management Groups
Level MG Name

0 ClusterMG
1 PhysicalMahcineMG
2 VirtualMachineMG

Table 7.2: Experiment’s MGAttributes
MG Name MEI(s) Technology Script Name

ClusterMG NodeMEI Eucalyptus.rb
PhysicalMahcineMG VirtualMachineMEI KVM.rb
VirtualMachineMG ApacheMEI Ubuntu.rb

The ultimate goal of the whole system is to keep the response time

under a certain threshold (e.g. 500 ms) that we assumed was defined

in an SLA.

There are three different management groups for this cloud (see

Chapter 6) that are shown in Table 7.1 and at each level there are

certain MEIs (see Definition 1) that get deployed with the autonomic

manager. Table 7.2 shows the attributes of each management group.

Appendix B shows two technology scripts written in Ruby program-

ming language.“KVM.rb” is the name of a script that checks if the

machine has KVM virtualization or not (e.g. by checking “virsh”

command) and it can also provide the virtual machine names as the

list of its children. As it is shown in the scripts, “Ubuntu.rb” return

an empty list of children because this is used at the last level of our

hierarchy and there is no child after this level.

Each of the AMs has its own set of policies and tries to optimize

the performance of its local system. Manager AM2 (see Figure 7.1)

manages physical server “1”, trying to optimize its performance and

106 Chapter 7. Experiments and Evaluation

behaviour based on the policies given to it. This includes monitoring

the other VMs (VM1 and VM2) in order to help them when they are

in need. Because AM2 is running in Domain 0, which is a privileged

domain, it can change/resize VMs.

Although we have implemented this system for only three levels

of hierarchy, the architecture and concepts used are generalizable to

the larger systems such as an entire organization, a data center, etc.

Figure 7.2 shows the hierarchy and relationship between AMs in our

system.

7.1.2 Policies

In order to define our managed elements, we implemented multi-

ple ManagedElementInfos (MEIs-See Definition 1) as Java classes.

ApacheMEI, VirtualMachineMEI, SystemMEI and NodeMEI are de-

fined as the managed elements information. Therefore, an instanti-

ation of these MEIs will act as the MEOs (e.g. Java objects, Defi-

nition 2) in our system. Appendix A shows the metrics and actions

available in these MEIs.

After defining MEIs, we can define policies being used at different

levels of the management hierarchy. AM1 and AM3 are running at

the virtual machine level and therefore they have ApacheMEI. AMs

at this level are usually meant to preserve applications SLAs and

optimize the virtual machine’s performance. In our implementation,

AM1 is trying to keep Apache’s response time below 500ms as de-

fined in an SLA and has this policy:

7.1. Evaluation: Performance Study 107

OnEvent: ManagementInterval

if ApacheMEI.ResponseTime > 500 then

ApacheMEI.IncreaseMaxClient(25,200);

end if

This policy checks the Apache response time on every Manage-

mentInterval and if it’s above 500ms, it increases the MaxClients

property of the Apache web server by 25. The max limit for this

property is 200. Therefore, it can not be increased to more than

200 and if this action fails due to this local limitation the message

inference algorithm (e.g. Algorithm 5.6) will automatically create a

NOTIFY message and sends it to the parent manager.

At a higher level, AM2 and AM5 are running at the physical

machine level and try to optimize the performance of the physical

server by balancing the resources among virtual machines. They

have access to VirtualMachineMEI and SystemMEI and two impor-

tant policies that are used at this level are:

OnEvent: HelpRequest

if VirtualMachineMEI.MemUtil>85 &

VirtualMachineMEI.CPUUtil>95 then

VirtualMachineMEI.IncreaseMem(50, limit);

end if

This policy checks the memory and CPU utilization of a specific

virtual machine upon receiving a HelpRequest message and if they

108 Chapter 7. Experiments and Evaluation

are above certain thresholds (e.g. 85 and 95) it then increases the

memory assigned to that virtual machine by 50MB based on available

memory in the physical server. This available memory is included in

the “limit” variable. “limit” specifies the maximum possible memory

that this virtual machine can have (e.g. in this case 500MB) and it

can be changed over time. Note that this policy is running on AM2

at Domain 0 which is a privileged domain and therefore AM2 has

the authority to change virtual machine’s memory. Another policy

running at this level is:

OnEvent: Migration

if true then

VMName = SystemMEI.findBestVM()

SystemMEI.MigrateVMTo(VMName, Migration.NodeName);

end if

This policy shows that upon receiving a Migration event it should

migrate a virtual machine to the destination specified in the Migra-

tion event (e.g. Migration.NodeName).

This policy says that upon receipt of a Migration event at AM2

(Node Controller Level), find the best VM (e.g. least busy), and

migrate it to the node specified in the migration event. After a

successful migration, it increases the available free memory limit.

SystemMEI has access to all VMs running in this server and can

find the least busy VM and migrate it to another server.

AM4 is one level higher in the hierarchy. It is running at the

7.1. Evaluation: Performance Study 109

cluster controller level and has an overview of all physical machines

in that cluster. It has access to NodeMEI and SystemMEI. A policy

that is running at this level is:

OnEvent: HelpRequest

if NodeMEI.MemoryUtil > 50 then

BestNode = SystemMEI.findBestNode()

SystemMEI.sendMigrationNotifyMsg(NodeMEI.Name, BestN-

ode)

end if

This policy says that upon receipt of a HelpRequest event by AM4,

if the server asking for help has a memory utilization of more than

50% then find the best node in the cluster (e.g. the least busy) and

generate a Migration event and send it to the needy AM in a NO-

TIFY message. It basically finds the least busy node and notifies

the needy child to migrate one of its virtual machines to that node.

We use a greedy approach (e.g. least busy) both for finding the

best node and the best virtual machine for migration. We ran three

different experiments and measured the Apache response time SLA

violations in each scenario.

7.1.3 Scenario 1: No Collaboration

In the first scenario we disabled all communications between man-

agers. In this case, the local managers tried to optimize the system

only based on policies that they had and with no further communi-

110 Chapter 7. Experiments and Evaluation

cation with another manager. Figure 7.3 shows the response time of

the Apache web server in this case.

In this case, when the load increases the local manager tries to

adjust the web server by allocating more resources. For example at

points A, B, C and D in Figure 7.3 an SLA violation was detected

by the manager. In response to the SLA violation at points A, B,

C and D and based on the policies explained before, the autonomic

manager (AM1) increased the MaxClients property of the Apache

server that it was managing by 25. After point D it also detects an

SLA violation, but cannot increase MaxClients since it has already

reached the maximum value for the MaxClients property (i.e., 200).

Figure 7.3: Apache response time with no manager collaborations

7.1. Evaluation: Performance Study 111

As a result, the system will face more SLA violations and the

response time will get worse (see Figure 7.3). Thus, the load is more

than what this system can handle alone. This also causes a long

term violation of the SLA (e.g. Apache response time above 500

ms) which could mean more penalties for the service provider.

We calculate two performance measures in this case: the total

time that the system could not meet the SLA (T) and the percent-

age of time that the system spent in a “violation” (V). For these

experiments each time interval was 1 second and the x-axis in the

graph shows the time interval. Therefore, the results for Scenario 1

are:

T1 = 18 seconds

S1 = Total Experiment Time = 25 seconds

V1 = T1/S1 = 0.72 = 72%

7.1.4 Scenario 2: One Level Collaboration

In the second scenario, we consider the situation when the local

manager can request help. When the local manager can no longer

make adjustments to the system, it requests help from the higher

level manager. This is specified in the policies of AM1 and AM2, as

mentioned in the previous section.

The VMs starts with 400MB of memory already allocated to

them. The current limit for increasing memory is set to a default

value (e.g. limit = 500MB, meaning the max memory this VM can

have is 500MB) but it can change over time based on the changes in

112 Chapter 7. Experiments and Evaluation

the system. We will see an example of this in Scenario 3. Figure 7.4

shows the Apache response time in this case.

Figure 7.4: Apache response time with one level of collaboration

As in the previous scenario, the local manager (AM1) tries to ad-

just the web server to handle the increasing load at points A, B, C

and D. Eventually, there are no more local adjustments possible (af-

ter D) and so the local manager does nothing. In this case, however,

when the next SLA violation happens (point E), AM1 generates a

HelpRequest NOTIFY message and sends it to AM2. In response,

AM2 allocates more memory to VM1 (according to its own policies).

At this point, the response time starts decreasing, but since the load

is still high, AM1 detects another SLA violation at point F and asks

for help again, and AM2 allocates 50 more megabytes of memory to

VM1, which will reach the maximum allowed memory for the VM

(since limit is 500MB).

7.1. Evaluation: Performance Study 113

After the adjustment of memory at point F, there is a sharp spike

in the response time as the VM is adjusted to accommodate the

increase in memory allocated to it. Moreover, the load is also in-

creasing as well because of the ramp up period configured in JMe-

ter. Once this is completed, the response time decreases. There are

still subsequent instances where there are occurrences of heavy load

and occasional SLA violations still happen. In these cases, AM1

still sends the help request to AM2, but since AM2 has allocated

all available memory to VM1 (as per its policy), it cannot do more

and simply ignores these requests. To solve this problem, we add

another level of management to the system which is explained in

scenario 3. Based on the output for this scenario, we calculated the

same measures of performance:

T2 = 10.5 seconds

S2 = 25 seconds

V2 = T2/S2 = 0.42 = 42%

As is evident in the graph (Figure 7.4), the time that the system

spends in “violation” of the SLA is much less.

7.1.5 Scenario 3: Two Level Collaboration

In the third and final scenario, we use another level of management

to help reduce the occasional SLA violations that happened in Sce-

nario 2. Figure 7.5 shows the Apache response time in this case.

Like the previous scenarios, the local manager (AM1) tries to ad-

just the web server at points A, B, C and D. At points E and F, AM2

114 Chapter 7. Experiments and Evaluation

assigns 50 more megabytes to VM1 to solve the stress. At point G

there is another SLA violation. At this point, AM1 asks for help

from AM2 but since AM2 already assigned all the available mem-

ory as per its policy, it cannot provide more help and automatically

creates a help request NOTIFY message which it sends to its parent

(AM4; see Figure 7.1 and Figure 7.2).

Figure 7.5: Apache response time with two levels of collaboration

AM4, running at the cluster controller level, has a global view of

all physical servers and finds the least busy server. It then tells the

AM2 to migrate one of the VMs to that server based on the policies

explained before. AM2 can then use the host name passed to it in the

NOTIFY message to migrate one of its VMs and reduce some load in

the server again based on its policy explained in the previous section.

When AM2 receives the NOTIFY message on migration, it chooses

a VM to be migrated to the new server. In our implementation, we

adopted a greedy approach in both finding the best physical node

and finding the best VM for migration. We choose the least busy

(based on memory utilization) VM to be migrated. After this VM

7.1. Evaluation: Performance Study 115

is migrated, then there will be more memory available for the bus-

iest VMs. In this case, AM2 migrates VM2 (it had lower memory

utilization) to Server2 and removes it from the list of its children.

Note that VM1 is the virtual machine in stress situation but VM2

which was less busy (e.g. had lower memory utilization) was chosen

for migration. We used the live migration capability in KVM to mi-

grate this VM. Therefore, neither of the virtual machines stopped

working during migration.

AM1 AM3

AM2 AM5

AM4

Figure 7.6: Managers hierarchy after migration of VM2 to Server 2

Figure 7.6 shows the hierarchy of AMs after this dynamic change

in the VMs structure. In this case, after migration, there is more

memory available at the AM2 level and the memory limit is in-

creased. Therefore, at point H (Figure 7.5) when the load is getting

116 Chapter 7. Experiments and Evaluation

higher and another SLA violation happens, AM1 asks for help and

AM2 responds by adding 50 more megabytes to VM1. The same

process happens at point I where AM2 adds another 50MB to VM1

(reaching the total of 600MB) and after that the response time stays

below the SLA threshold although the load is still very high. The

calculation of our measures for this scenario is as follows:

T3 = 10.5 seconds

S3 = 43 seconds

V3 = T3/S3 = 0.24 = 24%

In this case, even with the migration of one of the VMs, the per-

centage of time in a “violated” state is much less than in Scenario 2.

7.1.6 Discussion

Table 7.3 summarizes the percentage in a “violated” state for the

three scenarios. Not surprisingly, having more AMs making changes

to the system and components decreased the impact of violations.

Most importantly, this happened automatically without administra-

tor intervention and without adding any new hardware which means

improvement in the current system efficiency.

The results show that there is definitely an advantage when AMs

can collaborate. A single autonomic manager cannot solve all per-

formance problems just by itself because it has only a local view of

the system with some limited authority to change things. Thus, the

current infrastructure can be used more efficiently and provide bet-

7.2. Case Study: High Frequency Trading 117

Table 7.3: Results of three scenarios
Scenario SLA Violation(%)

1: No collaboration between AMs 72
2: One-Level collaboration in the hierarchy 42
3: Two-levels collaboration in the hierarchy 24

ter services with less chance of violating SLAs without adding new

computational resources.

7.2 Case Study: High Frequency Trading

CTS is a private company that I had the opportunity to spend an

internship working with them on the application of some of these

ideas. They are interested in autonomic management of their in-

frastructure and the research area of this thesis is highly relevant to

their management requirements.

CTS develops automated trading technology for financial firms.

Their client base includes hedge funds, brokers, banks and profes-

sional traders. Their solutions enable the creation of trading algo-

rithms, co-located global deployment, custom connectivity and the

automation of entire strategies or portfolios across all asset classes.

They work closely with clients to deliver cutting-edge, competitive

and cost effective proprietary trading solutions. The company pro-

vides a high frequency trading framework for building and running

trading algorithms that can perform in real-time. This infrastruc-

ture will be referred to as Cloud Trader (CT). Cloud Trader is an

automated trading solution that enables development, testing and

global deployment of proprietary algorithmic trading strategies.

118 Chapter 7. Experiments and Evaluation

Clients can develop and test their algorithms using this framework

and then launch, monitor and control the algorithm’s behaviour. CT

is composed of several parts which are running in a distributed man-

ner across the company’s private cloud infrastructure. There are

thousands of different trading algorithms running at the same time

on different virtual machines.

The automation framework has a Complex Event Processing(CEP)

system which is designed to analyze massive amounts of market data

in real-time, providing rapid identification and response to trading

opportunities. The multi-threaded engine separates tasks by differ-

ent threads on different cores, resulting in a highly scalable system

that can support thousands of algorithms running simultaneously.

Parallelization and load balancing further ensure consistent high per-

formance of all running algorithms.

Every client has at least one virtual machine which hosts their

trading algorithms and can be expanded to more VMs if there is

a demand for it. Due to the vast number of framework elements

and fast changes in the environment there needs to be a way of

managing the whole infrastructure in near real-time without human

intervention. The trading orders are being performed in the matter

of milliseconds and any change in the infrastructure can have a great

impact on a client’s revenue as they might lose a lot of money.

Since Cloud Trader is composed of several parts that are being

deployed separately and each has a certain role in the system, hav-

7.2. Case Study: High Frequency Trading 119

ing multiple managers each responsible for managing a particular

element seems to be a good solution for managing the whole infras-

tructure. The infrastructure is very similar to the IaaS clouds since

within the Cloud Trader architecture there are multiple layers that

require management: there is the algorithm layer which represents

trading algorithms that are running inside a virtual machine, there

is the virtual machine layer, there is the host machine layer and so on.

Given this, it seemed that an approach similar to our proposed

hierarchical system would be a good strategy towards management

of this infrastructure. AMs could be installed with the managed

elements in different parts of the system and would be started when-

ever their corresponding managed element was started. For exam-

ple, when a new virtual machine gets installed, its manager would

also be installed with it, or when a new application is installed its

manager would be installed with it. Therefore, upon starting up a

virtual machine the AM inside that virtual machine is automatically

started and will contact the registry to find the right position in the

hierarchy.

7.2.1 Management Architecture

The physical layout of the experimental system is illustrated in Fig-

ure 7.7. The virtual machine is running on a Windows server 2008

with hyper-v virtualization and has a Windows 7 installed on it. One

of the company applications called “Sliver” is deployed as a windows

service inside the virtual machine. Sliver is responsible for facilitat-

ing the communication between trading algorithms running inside

the virtual machine with the outside world. Both Sliver and the VM

120 Chapter 7. Experiments and Evaluation

have their own agent which is installed with them.

VM1 - Windows 7

Host1 - Windows Server 2008

(Hyper-V)

“Sliver” Windows
Service

Sliver
Agent

VM
Agent

Figure 7.7: Case Study Physical Layout

We implemented this system for two levels of the hierarchy (shown

in Figure 7.8). In the first level, there is an autonomic manager for

Sliver that monitors the Sliver behaviour. At the higher level, there

is an autonomic manager for a virtual machine which monitors the

health status of a typical VM. This manager can monitor metrics

like CPU utilization, memory utilization, service status, etc. and

enforce related policies.

Therefore there are two management groups (see Chapter 6) at

two different levels and Table 7.4 shows the management groups

in this system. Table 7.5 show the attributes of each management

group including the MEIs.

7.2. Case Study: High Frequency Trading 121

Figure 7.8: Management’s Hierarchy - two levels

Table 7.4: CTS Management Groups
Level MG Name

0 VirtualMachineMG
1 SliverMG

Table 7.5: CTS MGAttributes
MG Name MEI(s) Technology Script Name

VirtualMachineMG VirtualMachineMEI Windows.wsf
SliverMG SliverMEI Sliver.wsf

7.2.2 Implementation

We implemented a central policy repository and each manager can

retrieve related policies at start-up time. We also implemented the

central registry where managers are registered upon start-up and

tested the start-up (Algorithm 5.1) and termination detection (Al-

gorithm 5.5) algorithms.

We implemented these ideas within the CTS infrastructure. The

company also wanted the management framework to be consistent

122 Chapter 7. Experiments and Evaluation

and integrated with their internal software and therefore this was

considered during the design of the management framework. We

used the C# programming language for the autonomic managers

and used Microsoft’s BizTalk [24] rule engine for the policy evalua-

tion. All policies are defined using the BizTalk rule composer and

stored in a Microsoft SQL server as the central repository for all poli-

cies. We also used Windows server 2008 and Hyper-V technology to

host Windows 7 virtual machines. All ManagedElementInfos(MEIs)

are defined as C# classes.

In order to integrate this management system with the current

CTS infrastructure and deploy them easily across different parts of

the CTS infrastructure, we split each manager into two different

parts: 1) The monitoring and action execution part is implemented

in an “Agent” (the sensor/actuator part of the manager); 2) The

policy processing and decision making part is implemented and run

in a different process. By separating the sensor/actuator part of the

autonomic manager from the decision making part (policy evalua-

tion) we introduce a way for the agents to be installed and run in

a loosely-coupled manner which does not affect the functionality of

the rest of system. If the decision making part needs to get updated

or changed it will not affect the sensor/actuator elements in the core

part of the operational system. It also introduces the possibility of

detecting terminated elements. For example, if the virtual machine

shuts down, then the agent inside the VM will also shut down but

the manager is still alive and can detect this situation. Similarly,

if the virtual machine turns back on, the agent inside the VM will

start working again and the manager can now detect that and en-

7.2. Case Study: High Frequency Trading 123

force relevant policies. This facilitates the installation and removal

of managers in the hierarchy.

For example, a virtual machine autonomic manager would have a

virtual machine agent which will be installed and run inside of the

virtual machine. This agent is able to monitor different parts of the

VM and report them to the decision making part which is running

somewhere else in the system (outside of the VM). The agent is also

able to perform any action that its decision making component asks

it to do. The agents basically act as a sensor/actuator in the system.

Each agent is configured with the AM name and parent name. For

example, the AM name for an agent that is monitoring a virtual ma-

chine is the virtual machine name and can be obtained automatically

when the program starts running, however the parent name is the

host machine name in which the virtual machine is running and this

should be set as a configuration parameter. Each agent will contact

the central registry upon start-up and send a message to its manager.

Each agent gathers information and creates a ManagedElemen-

tObject(MEO) when a useful event happens. The MEO will then

be sent to its manager. The manager evaluates all relevant policies

against the received MEO, updates the output actions and returns

the MEO to the agent. The agent then inspects the received MEO

and executes code to satisfy the result actions.

The overall data flow for a sample host machine agent is illus-

trated in Figure 7.9:

124 Chapter 7. Experiments and Evaluation

1

4
3

2

HostMachine1
Registry

Policy
Repository

Host
Agent

Manager Name=
HostMachine1

GUI for
BizTalk Rule
composer

Figure 7.9: Data flow for a host machine agent

1. The host agent gets installed on the host machine through a

Microsoft MSI installer as a Windows service. It then register

itself in the central registry to contact its manager.

2. Registry will register the name and start the relevant manager

(if not running).

3. The Manager loads the policies related to this agent (e.g. if it

is a host agent, it would load host related policies) and evaluate

them. This includes running the configuration policies for the

first time.

4. The Manager then sends the result of that policy evaluation

back to the agent for enforcement, which includes the config-

uration parameters or actions that have to be performed on

that machine. After a successful agent configuration, the agent

starts monitoring the host based on the thresholds and config-

uration parameters and will notify its manager with the new

MEOs from time to time.

7.2. Case Study: High Frequency Trading 125

The central registry is also implemented in C# and uses some of

the libraries developed by the company. It receives incoming mes-

sages from agents and passes them on to the right manager. If the

relevant manager is dead, it will start it and pass the incoming mes-

sage. The manager will then add that agent to the list of its managed

elements and enforce the policies by sending a response message back

to the agent. When the agent contacts its manager for the first time,

the manager will enforce the configuration policies.

The system administrator can view, edit and deploy different poli-

cies at run time through the Biztalk rule composer GUI which will

then get updated in the policy repository and be used by the man-

agers.

7.2.3 Policies

There are two types of policies that are used in the system: configura-

tion policies and operational policies. An example of a configuration

policy used at the virtual machine level is the following:

OnEvent: VMManagedObjectReceived

if VirtualMachineMEI.getConfMode()= true then

VirtualMachineMEI.setCPUUtilizationThreshold(85);

VirtualMachineMEI.setRefreshInterval(2000);

end if

A VM agent sends the VMManagedObjects to the manager to

report the status of different metrics. Based on this policy, upon

receiving a new VMManagedObject, if the agent is in configuration

126 Chapter 7. Experiments and Evaluation

mode, it will then set the CPU utilization threshold to 85% and set

the refresh interval for monitoring the CPU utilization to 2000ms.

The VMManagedObject will then be sent back to the agent for en-

forcement. After a successful configuration, the agent will check the

CPU utilization every 2000ms and will report it to the manager only

if it goes above 85%.

An example of an operational policy used at the virtual machine

level is:

OnEvent: AMTermination

if V irtualMachineMEI.getServiceStopped() = “Sliver” then

VirtualMachineMEI.startService(“Sliver”);

VirtualMachineMEI.sendEmailTo(“x@company.com”);

end if

If the Sliver Windows service dies (as explained before, Sliver is

one of the applications of the company), its agent gets terminated

and its manager will also stop working because the TCP connection

of the registry and the agent will be terminated and the registry

will notify the manager about this termination. At this point, the

higher level manager (AM vm1) will detect removal of its child AM

(see algorithm 5.5) and raise an AMTermination event. In this pol-

icy, the manager checks to see if the name of the service stopped is

equal to “Sliver”. If the service stopped is in fact the Sliver service

it will then start that service by telling the virtual machine agent

which service to start and send an email to the responsible person to

report this failure. After a successful start of the Sliver service, its

7.2. Case Study: High Frequency Trading 127

agent starts working again and therefore its manager will get added

to the management hierarchy automatically (see Algorithm 5.1).

These policies are defined by using Microsoft Biztalk rule com-

poser graphical user interface (GUI) and stored in the SQL server

database. The system administrator can change and redeploy these

policies at any time on the fly. All traffic between agents and man-

agers are transmitted over TCP and a secure administrator network.

7.2.4 Lessons Learned

During the four months internship period, we were able to implement

and test managers at only two levels of the hierarchy, but have the

related machinery implemented, the registry, the policy repository,

etc. We were also only able to do limited testing and evaluation.

However, we can make some observations:

• While it did take some time to implement the underlying sup-

port mechanisms, the creation of AMs (the agent (sensor/ac-

tuator) part and decision making part) has gone well and is

straightforward. The decision making part is very similar across

the AMs and the real dependencies are in the metrics to collect

and actions to take for different management elements, i.e., the

specific sensors and actuators.

• Separating the sensor/actuator and decision making parts of the

AMs has worked well. Once decisions are made on what data

to collect and what actions can be taken, the sensor/actuator

part can be implemented and left. Different behaviours can be

128 Chapter 7. Experiments and Evaluation

accommodated through the policies specified.

• The start-up and termination detection algorithms work well in

the hierarchical approach and these algorithms run fast enough

in the context they were used; something very important to the

company given their domain.

• The central policy repository makes it easier for administra-

tor to manage different policies from a single point and modify

these policies on the fly based on new requirements and without

affecting the running autonomic managers.

• The naming registration and central registry worked well and

the communication between agents and managers was facili-

tated by this registry.

The main points tested in this implementation is the exploration

of central policy repository as well as testing the start-up, processing,

policy evaluation and termination detection algorithms explained

before.

7.3 Summary and Discussion

As part of the testing of the proposed management model, we im-

plemented a prototype in a small cloud environment and evaluated

hierarchical organization of managers, automatic message inference

mechanism and collaboration of multiple managers using the com-

munication protocol developed in this work. We also explained what

policies look like at different levels of this hierarchy and how one can

enforce policies at different authoritative locations. The important

point is that all of this is happening automatically with no human

7.3. Summary and Discussion 129

intervention.

We also explained a practical case study and applied our ideas

in developing a hierarchical management system for a private com-

pany. We tested central repository, registry techniques and start-up

and termination detection algorithms.

The communication protocol seems to be general enough in the

context that we tested it, which can cover various types of messages

with detailed information to be sent from one manager to another

and it can also be used in other types of organizations (e.g. it is not

only limited to a hierarchical organization).

Automatic message inference algorithm helps to automate the

communication process between managers which leads to faster re-

actions to dynamic changes in the environment.

Central policy repository and registry with start-up algorithm

helps to automate the process of policy distribution between man-

agers, facilitate the collaboration process and makes future policy

updates easier. It also helps building a dynamic hierarchy that can

restructure on the fly.

Overall, the autonomic management model proposed in this the-

sis seems to be a good approach for monitoring and management of

large computing environments where there are multiple managers in-

volved. This model helps building more automated clouds that use

their resources more efficiently while meeting their users’ require-

130 Chapter 7. Experiments and Evaluation

ments.

Chapter 8

Conclusion

8.1 Summary

We explored the use of multiple autonomic managers in a computing

environment to facilitate the autonomic management of that envi-

ronment. We addressed the problem of how different autonomic

managers should be organized in a large computing environment

such as an Infrastructure-as-a-Service (IaaS) cloud, how they should

interact with each other to achieve the goals of the system and when

this communication should happen [29, 31, 30]. We also explored

how different autonomic managers should be deployed across the in-

frastructure and how we could automate this deployment process.

However, a particular focus of this research was on IaaS clouds as a

good infrastructure to apply our ideas.

More specifically, we focused on the following problems:

• How should “multiple” autonomic managers collaborate with

each other in a large computing environment to achieve global

goals?

• How to automate the collaboration of managers in the system?

131

132 Chapter 8. Conclusion

In order to deal with a dynamic environment where applications

can start and stop and where virtual machines may come an

go, there is a need to ensure that managers can communicate

and collaborate. How can communication between managers be

defined in a changing environment as managers come and go?

How is the communication structured and what is exchanged?

• What is a scalable approach for the deployment of autonomic

managers? What is a good strategy for deploying these man-

agers so that it requires minimal manual administrative efforts?

• How can autonomic managers detect the addition or removal

of different elements and automatically restructure the hierar-

chy of managers without human intervention? How does the

management hierarchy restructure on the fly to reflect these

changes?

• How to automate the manager configuration and minimize the

administrative costs to setup autonomic managers? Each auto-

nomic manager needs to be configured before or upon start-up.

However, in a large system configuring all managers one by one

can become a challenging and error prone job for administra-

tors. How can this process be automated to help administrators

and reduce the costs associated with it?

We proposed a hierarchical approach towards management of

such systems and developed a communication protocol between au-

tonomic managers. We used policies as a means of describing op-

erational behaviour and SLA definitions and showed how some of

the communication messages can be inferred from these policies

automatically based on the demand. We focused on some practi-

8.2. Main Contributions 133

cal challenges in the management and use of multiple autonomic

managers and explained how multiple policy-based autonomic man-

agers organized in a hierarchical fashion can monitor and manage

an Infrastructure-as-a-Service type of cloud. We developed several

algorithms which describe the behaviour of a particular autonomic

manager and addressed issues of automatic deployment, termination

detection and configuration of managers and proposed a novel solu-

tion that is easy to maintain.

We tried to keep the number of messages that used for commu-

nication between two managers limited in order to keep message

overhead reduced to the extent that was possible. The measurement

of the actual overhead and the scalability testing of the management

system is part of the future work since testing the scalability of this

approach requires a lot of physical resources or should be considered

in a simulated environment which is beyond the scope of this thesis.

8.2 Main Contributions

The main contributions of this work and the novel ideas are as fol-

lows:

• There has been generally a little work in the area of multi-

ple autonomic managers and how to handle dynamic changes.

Therefore, this work is to somewhat unique in this area.

• Cluster management typically has a focus on the cluster as a

whole often ignoring management of individual elements, such

as nodes. Our hierarchical approach in this thesis encompasses

134 Chapter 8. Conclusion

a focus on local and intermediate managers as well as including

global cluster level managers which makes it unique in address-

ing this problem.

• The design of a hierarchical autonomic management model for

large computing environments with formal definition of different

elements in that model (Chapter 4).

• The design of a communication protocol between autonomic

managers that facilitates their collaboration in achieving global

goals (Section 5.2). Some of these communication messages can

be inferred from policies and therefore can help with automating

the collaboration between managers.

• Introduction of multiple algorithms that define the behaviour

of a specific autonomic manager and its relationship with other

managers in that management model. These algorithms include

the start-up, processing, termination detection and communi-

cation message inference from policies (Chapter 5).

• Design of a deployment system based on the management model

proposed to automate the deployment of different autonomic

managers across the computing environment with minimum ad-

ministrative efforts (Chapter 6).

• Creation of multiple algorithms as part of this deployment sys-

tem such as element discovery, members addition and members

removal (Section 6.4 and Section 6.5). The time complexity of

element discovery algorithm is O(n2) where n is the number of

AMs that should be deployed in the whole computing environ-

ment (e.g. number of nodes in the management tree). The time

8.3. Future Work 135

complexity of members addition algorithm is O(log(n)) and the

members removal is O(n) in the worst case.

We also evaluated these ideas in two different experimental set-

tings. In one case, we implemented this approach in a small private

cloud and measured the potential advantages of a hierarchical ap-

proach. We also implemented some of our ideas and algorithms in

a real world setting involving a high frequency trading cloud infras-

tructure.

8.3 Future Work

Cooperating autonomic managers for managing a cloud infrastruc-

ture seems to offer some promises. The hierarchical organization

of managers has advantages and seems to be a good approach in

the application domain in which we used it. However, there are

other means of organizing managers that need to be investigated

(e.g. peer-to-peer).

Specific items for future work include:

• Considering other types of organizations for autonomic man-

agers (e.g. peer-to-peer approach) and compare it with the cur-

rent hierarchical structure.

• There will be more autonomic managers deployed in the system

as the number of levels increase in the management hierarchy.

As part of the future work, it would be interesting to see what

is the overhead of this management model (e.g. in terms of

136 Chapter 8. Conclusion

network traffic due to communication messages) where there

are more levels of hierarchy involved.

• It would also be interesting to see what policies will look like

in higher level managers when the levels of the management

hierarchy increase.

• There has been a lot of research about policy decomposition.

Are those methods applicable to a management model like this?

or does the hierarchical organization of managers in this model

help to facilitate the decomposition process?

Further work on this approach can lead to more automated man-

agement of cloud environments enabling more efficient use of the

cloud infrastructure and as well as meeting SLA requirements while

using fewer resources.

Bibliography

[1] Apache JMeter Load Generator. http://jakarta.apache.

org/jmeter/. [Online; accessed Jan 2012].

[2] Virtuemart Online Shop. http://virtuemart.net/. [Online;

accessed Jan 2012].

[3] Dakshi Agrawal, Seraphin Calo, Kang-Won Lee, Jorge Lobo,

and Dinesh Verma. Policy technologies for self-managing sys-

tems. IBM Press, 2008.

[4] Marco Aldinucci, M. Danelutto, and P. Kilpatrick. Towards hi-

erarchical management of autonomic components: a case study.

In 17th Euromicro International Conference on Parallel, Dis-

tributed and Network-based Processing, pages 3–10. IEEE, 2009.

[5] Anton Beloglazov and Rajkumar Buyya. Managing Overloaded

Hosts for Dynamic Consolidation of Virtual Machines in Cloud

Data Centers under Quality of Service Constraints. IEEE Trans-

actions on Parallel and Distributed Systems, 24(7):1366–1379,

July 2013.

[6] Raouf Boutaba and Issam Aib. Policy-based Management: A

Historical Perspective. Journal of Network and Systems Man-

agement, 15(4):447–480, November 2007.

137

138 BIBLIOGRAPHY

[7] D.W. Chadwick, A. Basden, and J.a. Cunningham. Automated

Decomposition of Access Control Policies. In Sixth IEEE In-

ternational Workshop on Policies for Distributed Systems and

Networks (POLICY’05), pages 3–13. IEEE, 2005.

[8] Sivadon Chaisiri and Dusit Niyato. Optimal virtual machine

placement across multiple cloud providers. In 2009 IEEE Asia-

Pacific Services Computing Conference (APSCC), pages 103–

110. IEEE, December 2009.

[9] Antonio Corradi, Mario Fanelli, and Luca Foschini. VM consol-

idation: A real case based on OpenStack Cloud. Future Gener-

ation Computer Systems, June 2012.

[10] R. Craven, J. Lobo, and E. Lupu. Policy refinement: decompo-

sition and operationalization for dynamic domains. In Network

and Service Management (CNSM), 2011.

[11] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris

Sloman. The ponder policy specification language. In Policies

for Distributed Systems and Networks, pages 18–38. Springer

Berlin Heidelberg, 2001.

[12] Rajarshi Das, J.O. Kephart, and C. Lefurgy. Autonomic multi-

agent management of power and performance in data centers.

In Proceedings of the 7th Int. Conf. on Autonomous Agents and

Multiagent Systems (AA- MAS 2008)- Industry and Applica-

tions Track, pages 107–114. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2008.

[13] Yurdaer Doganata, Keith Grueneberg, John Karat, and Nirmal

Mukhi. Authoring and Deploying Business Policies Dynamically

BIBLIOGRAPHY 139

for Compliance Monitoring. In IEEE International Symposium

on Policies for Distributed Systems and Networks, pages 161–

164. Ieee, June 2011.

[14] Jeroen Famaey, Steven Latrea, John Strassner, and Filip De

Turck. A hierarchical approach to autonomic network manage-

ment. In 2010 IEEE/IFIP Network Operations and Manage-

ment Symposium Workshops, pages 225–232. Ieee, 2010.

[15] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, and

Gabriel Iszlai. Exploring Alternative Approaches to Implement

an Elasticity Policy. In IEEE 4th International Conference on

Cloud Computing, pages 716–723. Ieee, July 2011.

[16] Weili Han and Chang Lei. A survey on policy languages in net-

work and security management. Computer Networks, 56(1):477–

489, January 2012.

[17] Markus C. Huebscher and Julie a. McCann. A survey of auto-

nomic computingdegrees, models, and applications. ACM Com-

puting Surveys, 40(3):1–28, August 2008.

[18] J. O. Kephart, H Chan, R Das, D W Levine, G Tesauro, and

F R An C Lefurgy. Coordinating multiple autonomic managers

to achieve specified power-performance tradeoffs. In in IEEE

Intl. Conf. on Autonomic Computing, pages 145–154, 2006.

[19] J.O. Kephart. Research challenges of autonomic computing. In

27th International Conference on Software Engineering (ICSE),

pages 15–22. IEEE, 2005.

[20] J.O. Kephart and D.M. Chess. The vision of autonomic com-

puting. Computer, 36(1):41–50, January 2003.

140 BIBLIOGRAPHY

[21] Avi Kivity, Y. Kamay, D. Laor, Uri Lublin, and Anthony

Liguori. kvm: the Linux virtual machine monitor. In Proceed-

ings of the Linux Symposium, volume 1, pages 225–230, 2007.

[22] Sangmin Lee and Rina Panigrahy. Validating heuristics for vir-

tual machines consolidation. Microsoft Research Technical Re-

port MSR-TR-2011-9, 2011.

[23] Qiang Li, Qin-fen Hao, Li-min Xiao, and Zhou-Jun Li. An In-

tegrated Approach to Automatic Management of Virtualized

Resources in Cloud Environments. The Computer Journal,

54(6):905–919, November 2010.

[24] B. Loesgen, J. Charles Young, J. Eliasen, S. Colestock, A. Ku-

mar, and J. Flanders. Microsoft BizTalk Server 2010: Un-

leashed. Unleashed Series. Sams, 2011.

[25] R. Makhloufi and G. Doyen. SAAM: A self-adaptive aggregation

mechanism for autonomous management systems. In IEEE Net-

work Operations and Management Symposium, pages 667–670,

2012.

[26] Rafik Makhloufi and Guillaume Doyen. Towards self-adaptive

management frameworks: the case of aggregated information

monitoring. In Network and Service Management (CNSM),

2011.

[27] Patrick Martin, Andrew Brown, Wendy Powley, and Jose Luis

Vazquez-Poletti. Autonomic management of elastic services in

the cloud. In 2011 IEEE Symposium on Computers and Com-

munications (ISCC), pages 135–140. IEEE, June 2011.

BIBLIOGRAPHY 141

[28] Nader Mbarek, M.A. Chalouf, and Francine Krief. To-

wards global service level guarantee within autonomic comput-

ing systems. In Integrated Network Management (IM), 2011

IFIP/IEEE International Symposium On, pages 446–453. Ieee,

May 2011.

[29] Omid Mola and M.A. Bauer. Collaborative policy-based auto-

nomic management: In a hierarchical model. In Network and

Service Management (CNSM), 2011 7th International Confer-

ence on, pages 1–5, 2011.

[30] Omid Mola and Mike Bauer. Policy-Based Autonomic Collab-

oration for Cloud Management. In The Seventh International

Multi-Conference on Computing in the Global Information Tech-

nology (ICCGI), number c, pages 288–293, Venice, Italy, 2012.

[31] Omid Mola and Michael A. Bauer. Towards Cloud Management

by Autonomic Manager Collaboration. Int’l J. of Communica-

tions, Network and System Sciences, 04(12):790–802, 2011.

[32] Tridib Mukherjee, Ayan Banerjee, Georgios Varsamopoulos,

and Sandeep K.S. Gupta. Model-driven coordinated manage-

ment of data centers. Computer Networks, 54(16):2869–2886,

November 2010.

[33] Richard Murch. Autonomic Computing. IBM Press, 2004.

[34] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano

Obertelli, Sunil Soman, Lamia Youseff, and Dmitrii Zagorod-

nov. The Eucalyptus Open-Source Cloud-Computing Sys-

tem. 2009 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, pages 124–131, 2009.

142 BIBLIOGRAPHY

[35] A. Ouda, Hanan Lutfiyya, and Mike Bauer. Automatic Policy

Mapping to Management System Configurations. In 2010 IEEE

International Symposium on Policies for Distributed Systems

and Networks, pages 87–94. IEEE, 2010.

[36] Manish Parashar and Salim Hariri. Autonomic computing: An

overview. Unconventional Programming Paradigms, 3566:257–

269, 2005.

[37] Indrani Paul, Sudhakar Yalamanchili, and Lizy K. John. Per-

formance impact of virtual machine placement in a datacenter.

In 2012 IEEE 31st International Performance Computing and

Communications Conference (IPCCC), pages 424–431. IEEE,

December 2012.

[38] Alexander Pokluda, Gaston Keller, and Hanan Lutfiyya. Man-

aging dynamic memory allocations in a cloud through golond-

rina. In 4th International DMTF Academic Alliance Workshop

on Systems and Virtualization Management (SVM), pages 7–14.

Ieee, October 2010.

[39] Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya. A

taxonomy and survey on autonomic management of applications

in grid computing environments. Concurrency and Decomposi-

tion: Practice and Experience, (May):1990–2019, 2011.

[40] Mazeiar Salehie and L. Tahvildari. A policy-based decision mak-

ing approach for orchestrating autonomic elements. In 13th

IEEE International Workshop on Software Technology and En-

gineering Practice (STEP’05), pages 173–181. IEEE, 2005.

BIBLIOGRAPHY 143

[41] Mazeiar Salehie and L Tahvildari. Self-adaptive software: Land-

scape and research challenges. ACM Transactions on Au-

tonomous and Adaptive Systems (TAAS), 4(2), 2009.

[42] Alberto Schaeffer-Filho, Emil Lupu, Naranker Dulay, Sye Loong

Keoh, Kevin Twidle, Morris Sloman, Steven Heeps, Stephen

Strowes, and Joe Sventek. Towards Supporting Interactions be-

tween Self-Managed Cells. In First International Conference on

Self-Adaptive and Self-Organizing Systems (SASO 2007), num-

ber Saso, pages 224–236. IEEE, July 2007.

[43] Alberto Schaeffer-Filho, Emil Lupu, and Morris Sloman. Re-

alising management and composition of self-managed cells in

pervasive healthcare. In Pervasive Computing Technologies for

Healthcare, 2009. PervasiveHealth 2009. 3rd International Con-

ference on, pages 1–8. IEEE, 2009.

[44] Lars Christoph Schmelz, Mehdi Amirijoo, Andreas Eisenblaet-

ter, Remco Litjens, Michaela Neuland, and John Turk. A Coor-

dination Framework for Self-Organisation in LTE Networks. In

12th Integrated Network Management (IM), 2011 IFIP/IEEE

International Symposium On, pages 193–200, 2011.

[45] Vivek Shrivastava, Petros Zerfos, Kang-won Lee, Hani

Jamjoom, Yew-Huey Liu, and Suman Banerjee. Application-

aware virtual machine migration in data centers. In 2011 Pro-

ceedings IEEE INFOCOM, pages 66–70. IEEE, April 2011.

[46] Bradley Simmons, Hamoun Ghanbari, Sotirios Liaskos, Marin

Litoiu, and Gabriel Iszlai. Hierarchical Self-Optimization of

SaaS Applications in Clouds. In Software Engineering for Self-

144 BIBLIOGRAPHY

Adaptive Systems II, pages 354–375. Springer Berlin Heidelberg,

2013.

[47] Bradley Simmons and Hanan Lutfiyya. Achieving High-Level

Directives Using Strategy-Trees. In Modelling Autonomic Com-

munications Environments, volume 5844, pages 44–57. Springer

Berlin Heidelberg, 2009.

[48] M.A. Soares and E.R.M. Madeira. A multi-agent architec-

ture for autonomic management of virtual networks. In IEEE

Network Operations and Management Symposium, pages 1183–

1186, 2012.

[49] Malgorzata Steinder and Ian Whalley. Coordinated manage-

ment of power usage and runtime performance. In IEEE Net-

work Operations and Management Symposium(NOMS), pages

387–394. IEEE, 2008.

[50] Gerald Tesauro, D.M. Chess, W.E. Walsh, Rajarshi Das, Alla

Segal, Ian Whalley, J.O. Kephart, and S.R. White. A multi-

agent systems approach to autonomic computing. In Proceed-

ings of the Third International Joint Conference on Autonomous

Agents and Multiagent Systems-Volume 1, pages 464–471. IEEE

Computer Society, 2004.

[51] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang. DA-

CoRM: A coordinated, decentralized and adaptive network re-

source management scheme. In IEEE Network Operations and

Management Symposium, pages 417–425. IEEE, April 2012.

[52] Kevin Twidle, Naranker Dulay, Emil Lupu, and Morris Sloman.

Ponder2: A Policy System for Autonomous Pervasive Environ-

BIBLIOGRAPHY 145

ments. 2009 Fifth International Conference on Autonomic and

Autonomous Systems, pages 330–335, 2009.

[53] Rahul Urgaonkar, Ulas C. Kozat, Ken Igarashi, and Michael J.

Neely. Dynamic resource allocation and power management in

virtualized data centers. 2010 IEEE Network Operations and

Management Symposium - NOMS 2010, (Vm):479–486, 2010.

[54] Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidating vir-

tual machines with dynamic bandwidth demand in data centers.

Proceedings of IEEE INFOCOM, (L):71–75, 2011.

[55] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and

Mazin Yousif. Sandpiper: Black-box and gray-box re-

source management for virtual machines. Computer Networks,

53(17):2923–2938, December 2009.

[56] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing:

state-of-the-art and research challenges. Journal of Internet Ser-

vices and Applications, 1(1):7–18, April 2010.

[57] Xiangliang Zhang and Z.Y. Shae. Virtual machine migration in

an over-committed cloud. IEEE Network Operations and Man-

agement Symposium, (Vm):196–203, 2012.

[58] Xiaoyun Zhu, Donald Young, Brian J. Watson, Zhikui Wang,

Jerry Rolia, Sharad Singhal, Bret McKee, Chris Hyser,

Daniel Gmach, Robert Gardner, Tom Christian, and Ludmila

Cherkasova. 1000 Islands: an Integrated Approach To Resource

Management for Virtualized Data Centers. Cluster Computing,

12(1):45–57, November 2008.

Appendix A

Managed Element Infos

Listing A.1: LocalMEI.java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/

public abstract class LocalMEI extends P2Object{

private static Logger logger =

Logger.getLogger(LocalMEI.class);

private String name;

private String amName;

public LocalManagedObject(String name , String amNameInside) {

this.name = name;

this.amName = amNameInside;

}

@Ponder2op("getAMName")

public String getAmName () {

return amName;

}

public void setAmName(String amName) {

this.amName = amName;

}

public String getName () {

return name;

146

147

}

public void setName(String name) {

this.name = name;

}

protected abstract void refreshMetricValues ();

@Override

public P2Object readXml(TaggedElement xml ,

Map <Integer , P2Serializable > read)

throws Ponder2OperationException ,

Ponder2ArgumentException {

// TODO Auto -generated method stub

return null;

}

}

Listing A.2: ApacheMEI.java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/

public class ApacheMEI extends LocalMEI {

private static Logger logger =

Logger.getLogger(ApacheMEI.class);

/**

* MEI Metrics

*/

public float responseTime;

public float totalAccesses;

public float totalKBytes;

public float cpuLoad;

public float upTime;

public float reqPerSec;

public float bytesPerSec;

public float bytesPerReq;

public float busyWorkers;

public float idleWorkers;

public boolean runningStatus = false;

148 Chapter A. Managed Element Infos

@Ponder2op("runningStatus")

public boolean isRunning () {

return runningStatus;

}

@Ponder2op("responseTime")

public float getResponseTime () {

return responseTime;

}

/**

* MEI Attributes

*/

private float maxClients;

private float maxKeepAliveRequests;

private float keepAliveTimeout;

private float minSpareThreads;

private float maxSpareThreads;

private float threadsPerChild;

@Ponder2op("maxClients")

public float getMaxClients () {

return maxClients;

}

@Ponder2op("maxClients:")

public void setMaxClients(float maxClients) {

this.maxClients = maxClients;

writeProperties ();

restartServer ();

}

private String apachePath;

private String confFilePath;

/**

* Constructor

*/

public ApacheMEI(String name , String amName) {

super(name , amName);

apachePath = "/etc/apache2";

149

if (apachePath == null) {

throw new RuntimeException("No path for Apache set.");

}

confFilePath = apachePath + "/apache2.conf";

readProperties ();

}

/**

* MEI Actions

*/

public void startServer () {

if (Common.executeCommand("/etc/init.d/apache2 start")

== null)

logger.error("Could not start apache");

else

logger.info("apache started successfully");

readProperties ();

}

public void stopServer () {

if (Common.executeCommand("/etc/init.d/apache2 stop")

== null)

logger.error("Could not stop apache");

else

logger.info("apache stoped successfully");

}

@Ponder2op("restart")

public void restartServer () {

if (Common.executeCommand("/etc/init.d/apache2 restart", true)

== null)

logger.error("could not restart apache");

else

logger.info("apache restarted successfully");

readProperties ();

}

@Ponder2op("increaseMaxClients:max:")

public void increaseMaxClients(float amountToIncrease , float max){

if (this.maxClients + amountToIncrease <= max)

setMaxClients(this.maxClients + amountToIncrease);

else {

150 Chapter A. Managed Element Infos

String ponderTalkString =

"root/event/SendHelpReqEvent create";

String result;

try {

String p2xml = P2Compiler.parse(ponderTalkString);

P2Object value = new XMLParser (). execute(

SelfManagedCell.RootDomain , p2xml);

} catch (Exception e) {

e.printStackTrace ();

}

}

}

/**

* Private and protected methods (Helper methods)

* removed to save space

*/

}

Listing A.3: VirtualMachineMEI.java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/

public class VirtualMachineMEI extends LocalMEI{

private static Logger logger =

Logger.getLogger(VirtualMachineMEI.class);

/**

* MEI Metrics

*/

private float cpuUtilization;

private float memoryUtilization;

private String ip;

private int memoryMB; // In MB

@Ponder2op("getIP")

public String getIp() {

return ip;

}

151

public float getCpuUtilization () {

return cpuUtilization;

}

@Ponder2op("memoryUtil")

public float getMemoryUtilization () {

return memoryUtilization;

}

public int getMemoryMB () {

return memoryMB;

}

@Ponder2op("setIP:")

public void setIp(String ip) {

this.ip = ip;

}

private static final int CONVERSION_MB_TO_KB = 1024;

/**

* Constructor

*/

public VirtualMachineMEI(String name , String amName) {

super(name , amName);

readProperties ();

}

/**

* MEI Actions

*/

@Ponder2op("setMem:")

public void setMemoryMB(int mbMem) {

int kbMem = toKB(mbMem);

if (Common.executeCommand("virsh -c qemu :/// system setmem "

+ this.getName () + " " + kbMem) == null) {

logger.error("Could not set memory to " + kbMem + " KB");

return;

} else {

logger.info("set memory Successfully to: " + kbMem + " KB");

this.memoryMB = mbMem;

}

152 Chapter A. Managed Element Infos

}

@Ponder2op("increaseMem:max:")

public void increaseVMMemory(int amountToIncrease , int max) {

if (this.memoryMB + amountToIncrease <= max) {

setMemoryMB(this.memoryMB + amountToIncrease);

logger.info("Increased memory to: " + (this.memoryMB));

} else {

String ponderTalkString = "root/event/SendHelpReqEvent create";

String result;

try {

String p2xml = P2Compiler.parse(ponderTalkString);

P2Object value = new XMLParser (). execute(

SelfManagedCell.RootDomain , p2xml);

} catch (Exception e) {

e.printStackTrace ();

}

}

}

public void startVM () {

if (Common.executeCommand("virsh -c qemu :/// system start "

+ this.getName ()) == null)

logger.error("Could not start VM " + this.getName ());

else

logger.info(this.getName () + " VM started successfully");

readProperties ();

}

/**

* Private and protected methods (Helper methods)

*/

private void readProperties () {

BufferedReader domainInfoReader;

String line = null;

try {

domainInfoReader = Common

.executeCommand("virsh -c qemu :/// system dominfo "

+ this.getName ());

while ((line = domainInfoReader.readLine ()) != null) {

if (line.startsWith("Used memory:")) {

memoryMB = toMB(Integer.parseInt ((line.split(" ")[5])));

}

153

}

domainInfoReader.close ();

} catch (IOException e) {

logger.error("Problem reading domain info", e);

} catch (NumberFormatException e) {

logger.error("Could not parse", e);

}

}

private void writeProperties () {

int kbMem = toKB(memoryMB);

if (Common.executeCommand("virsh -c qemu :/// system setmem "

+ this.getName () + " " + kbMem) == null)

logger.error("Could not set memory");

}

@Override

protected void refreshMetricValues () {

try {

RMIReceiveInterface pt = (RMIReceiveInterface) Naming

.lookup("rmi://" + ip + "/" + this.getAmName ());

memoryUtilization =

pt.executePonderTalk("root/am/system memUtil")

.asFloat ();

cpuUtilization = pt.executePonderTalk("root/am/system cpuUtil")

.asFloat ();

} catch (Exception e) {

logger.error("Getting MemUtil from: rmi ://" + ip + "/"

+ this.getAmName ());

e.printStackTrace ();

memoryUtilization = 0;

cpuUtilization = 0;

}

}

private int toMB(int kbMem) {

return kbMem / CONVERSION_MB_TO_KB;

}

private int toKB(int mbMem) {

return mbMem * CONVERSION_MB_TO_KB;

}

154 Chapter A. Managed Element Infos

}

Listing A.4: NodeMEI.java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/

public class NodeMEI extends LocalMEI{

private static Logger logger =

Logger.getLogger(NodeMEI.class);

/**

* MEI Metrics

*/

private float cpuUtilization;

private float memoryUtilization;

private String ip;

public float getCpuUtilization () {

return cpuUtilization;

}

@Ponder2op("memoryUtil")

public float getMemoryUtilization () {

return memoryUtilization;

}

@Ponder2op("getIP")

public String getIp() {

return ip;

}

@Ponder2op("setIP:")

public void setIp(String ip) {

this.ip = ip;

}

public boolean helpReq = false;

/**

* Constructor

155

*/

public NodeMEI(String name , String amName) {

super(name , amName);

}

/**

* Private and protected methods (Helper methods)

*/

@Override

protected void refreshMetricValues () {

try {

RMIReceiveInterface pt =

(RMIReceiveInterface) Naming.

lookup("rmi ://"+ip+"/"+this.getAmName ());

memoryUtilization =

pt.executePonderTalk("root/am/system memUtil"). asFloat ();

cpuUtilization =

pt.executePonderTalk("root/am/system cpuUtil"). asFloat ();

} catch (Exception e) {

logger.error("Getting MemUtil from: rmi ://"+ip+"/"+

this.getAmName ());

e.printStackTrace ();

memoryUtilization = 0;

cpuUtilization = 0;

}

}

}

Listing A.5: SystemMEI.java

package net.ponder2.managedobject;

/**

* imports removed to save space

*/

public class SystemMEI{

private static Logger logger = Logger.getLogger(SystemMEI.class);

/**

* MEI Metrics: All other MEOs

156 Chapter A. Managed Element Infos

* in this system

*/

private HashMap <String , LocalMEI > managedObjects;

@Ponder2op("create")

public SystemMEI () {

managedObjects = new HashMap <String , LocalManagedObject >();

PropertyConfigurator.configure("src/resource/logger.properties");

}

@Ponder2op("remove:")

public void removeManagedObject(String name) {

managedObjects.remove(name);

}

@Ponder2op("refresh")

public void refreshAll (){

for (LocalManagedObject mo : managedObjects.values ()) {

mo.refreshMetricValues ();

}

}

/**

* MEI Actions

*/

/**

* Greedy approach: find the least busy node.

* @return NodeName

*/

@Ponder2op("findBestNode")

public String finsBestNode (){

float minMemUtil = Float.MAX_VALUE;

String bestNode = "";

for (LocalMEI mo : managedObjects.values ()) {

if(mo instanceof NodeMEI){

if(((NodeMEI) mo). getMemoryUtilization ()

< minMemUtil){

minMemUtil =

((NodeMEI) mo). getMemoryUtilization ();

157

bestNode =

((NodeMEI) mo). getName ();

}

}

}

logger.info("The best node to mirate to is:" + bestNode);

return bestNode;

}

@Ponder2op("sendMigrationNotifyMsg:bestNode:")

public void sendMigrationNotifyMsg(String toNode , String bestNode){

String ponderTalkString = "root/event/MigrationEvent create";

try {

String p2xml = P2Compiler.parse(ponderTalkString);

P2Object value = new XMLParser (). execute(

SelfManagedCell.RootDomain , p2xml);

} catch (Exception e) {

e.printStackTrace ();

}

}

/**

* Greedy Approach: find the least busy VM to migrate.

* @return

*/

@Ponder2op("findBestVM")

public String findVMToMigrate (){

float minMemUtil = Float.MAX_VALUE;

String bestVM = "";

for (LocalMEI mo: managedObjects.values ()) {

if(mo instanceof VirtualMachineMEI){

if(((VirtualMachineMEI) mo). getMemoryUtilization ()

< minMemUtil){

minMemUtil =

((VirtualMachineMEI) mo). getMemoryUtilization ();

bestVM = ((VirtualMachineMEI) mo). getName ();

}

}

}

logger.info("The best VM to mirate is:" + bestVM);

return bestVM;

}

158 Chapter A. Managed Element Infos

@Ponder2op("migrate:To:")

public void migrate(String vmName , String destIP){

if(vmName == null || vmName.isEmpty ()){

logger.error("No VM has chosen to be migrated.");

return;

}

String destURI = "qemu+ssh ://" + destIP

+"/system --migrateuri tcp://" + destIP + ":49154";

if(Common.executeCommand("virsh -c qemu :/// system migrate --live"

+ vmName + " " + destURI) == null){

logger.error("Could not migrate " + vmName

+ " To "+destURI);

return;

}else{

logger.info("Successfully migrated " + vmName

+ " To "+destURI);

}

}

}

Appendix B

Technology Scripts

Listing B.1: KVM.rb

#!/usr/bin/ruby

def hasKVM

if ‘which virsh ‘. include ?("no virsh in")

return "no"

else

return "yes"

end

end

def listVMs

return [] if not hasKVM ()

return ‘virsh list ‘. split("\n")[2.. -1].

map{|line| line.strip (). split(" ")[1]}

end

command = ARGV [0]

puts hasKVM () if command == "isvalid"

puts listVMs () if command == "childrenlist"

Listing B.2: Ubuntu.rb

#!/usr/bin/ruby

def isUbuntu

if ‘lsb_release -a 2>/dev/null | grep ID ‘.

159

160 Chapter B. Technology Scripts

split(":")[1]. strip ()=="Ubuntu"

return "yes"

else

return "no"

end

end

def listChildren

return []

end

command = ARGV [0]

puts isUbuntu () if command == "isvalid"

puts listChildren () if command == "childrenlist"

Curriculum Vitae

Name: Omid Mola

Post-Secondary Amirkabir University of Technology
Education and Tehran, Iran
Degrees: 2001 - 2005 B.Sc.

Amirkabir University of Technology
Tehran, Iran
2005 - 2007 M.Sc.

University of Western Ontario
London, ON, Canada
2008 - 2013 Ph.D.

Related Work Teaching Assistant
Experience: The University of Western Ontario

Sep. 2008 - Sep. 2011

Lecturer
CS1026, CS1027, CS3342
The University of Western Ontario
Sep. 2011 - Dec. 2012

Publications:

• O. Mola, M. Bauer, “Policy-Based Autonomic Collaboration for

Cloud Management”, ICCGI , pp. 288-293, June 2012 (Best

paper award).

• M. Bauer, N. S. McIntyre, N. Sherry, J. Qin, M. Suominen

161

162 Chapter B. Technology Scripts

Fuller, Y. Xie, O. Mola, D. Maxwell, D. Liu, and E. Matias.

“Experimenter’s portal: the collection, management and anal-

ysis of scientific data from remote sites”, In Proceedings of the

10th International Workshop on Middleware for Grids, Clouds

and e-Science (MGC ’12). ACM, NY, USA, 2012.

• N. Sherry, J. Qin, M. S. Fuller, Y. Xie, O. Mola, M. Bauer, N.

S. McIntyre, D. Maxwell, D. Liu, E. Matias, and C. Armstrong,

“Remote internet access to advanced analytical facilities: A new

approach with web-based services,” Analytical Chemistry Jour-

nal, 2012.

• O. Mola, M. Bauer, “Towards Cloud Management by Auto-

nomic Manager Collaboration”, International Journal of Com-

munications, Network and System Sciences, special issue on

cloud, Dec 2011.

• O. Mola, M. Bauer, “Collaborative Policy-Based Autonomic

Management in a Hierarchical Model”, IEEE CNSM, October

2011.

• O. Mola, P. Emamian, M. Razzazi, “A Vector Based Algorithm

for Semantic Web Services Ranking”, IEEE, Proc. of ICTTA08,

2008.

• O. Mola, M. Razzazi, “Design and Architecture of a Search

Engine for Grid Services Discovery”, 2nd International Con-

ference on Information Systems Technology and Management

(ICISTM), 2008.

• M. Razzazi, T. Ghasemi, O. Mola, H. Ghasemalizadeh, “A New

Solution For Generalized Search in Grid Environment”, IEEE,

163

Proc. of ICTTA06, P. 1233, April 2006.

	Collaborative Policy-Based Autonomic Management in IaaS Clouds
	Recommended Citation

	tmp.1378752239.pdf.UZSuX

