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ABSTRACT 

A systematic and comprehensive study of hydrodynamics and reactor performance was 

conducted in a 76 mm i.d., 10 m high riser and a 76 mm i.d., 5.8 m high downer reactor under 

high density/flux operating conditions using fluid catalytic cracking (FCC) catalyst particles. An 

optical fiber probe was used to obtain a complete mapping of local solids holdup and particle 

velocity. Catalytic ozone decomposition reaction was employed to study the characteristics of 

reactor performance in the CFB riser and downer. The superficial gas velocity (Ug) and the solids 

circulation rate (Gs) were 3-9 m/s and 100-1000 kg/m2·s, respectively. Based on the spatial 

distributions of catalyst particles and gas reactant in the riser and the downer, hydrodynamics 

and reactor performance were fully characterized. 

Solids suspension having a solids holdup of up to 0.2-0.3 could be maintained throughout the 

entire high flux/density riser. A homogenous axial flow structure was observed at Gs = 1000 

kg/m2s. When Gs exceeded about 800 kg/m2s, the axial profile of the particle velocity became 

more uniform. The axial particle velocity was affected more significantly by high superficial gas 

velocity especially under high solids flux/density conditions. No net downward flow near the 

wall was one of the most important advantages of the high flux/density riser over the 

conventional low flux/density reactor, leading to a reduction of solids backmixing. Radial 

distributions of the solids holdup were nonuniform with a dilute region and a dense region. When 

Gs was higher than 700 kg/m2s, the dilute core region shrank to less than 20% of the cross-

sectional area. Solids holdups thereafter increased monotonically towards the wall which could 

be up to 0.59. Moreover, solids holdup remained higher than 0.4 over a wide cross-sectional area 

(r/R = 0.7-1.0, about 60% of the cross-sectional area) even at the top section of the riser. Radial 

distribution of solids holdup in the downer was much more uniform than that in the riser. Radial 

profiles of solids holdup were characterized by a flat value covering a wide region of the cross 

section and a relatively high value near the wall in the fully developed section. The uniform 

distribution of solids flow provided a nearly plug flow condition in the downer reactor. 

As to the ozone reaction in the CFB system, the axial and radial profiles of the ozone 
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concentration were consistent with the corresponding profiles of the solids holdups which 

indicated that ozone reaction in the CFB reactors was controlled by the gas-solids flow structure. 

Strong interrelation was observed between the distributions of solids and reactant concentration. 

Higher solids holdups would give higher ozone conversions. Most conversion occurred in the 

entrance region, that is, the flow developing zone of the riser and downer reactors. Overall ozone 

conversions in CFB riser and downer deviated from plug-flow behavior indicating that 

hydrodynamics affected CFB reactor performance. The extent of the deviation of the conversion 

could be attributed to the different gas-solids contacting efficiency. 

 

Keywords: Circulating fluidized bed riser/downer, high density, high flux, hydrodynamics, 

reactor performance, catalytic ozone decomposition, solids holdup, particle velocity, solids flux 
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CHAPTER 1 

Introduction 

Hydrodynamics and reactor performance of high solids flux/density gas-solids circulating 

fluidized bed riser and downer reactors are studied in this work. An introduction to the research 

background, objectives and thesis structure are presented in this chapter. 

1.1 Background 

Many chemical processes such as combustion, Fischer-Tropsch synthesis, partial oxidation, and 

fluid-catalytic cracking (FCC) have been utilizing gas-solids fluidized bed reactors (Bi and Fan, 

1992 and Zhu and Cheng, 2005). The reactor performance is influenced both by the 

hydrodynamics and the chemical reaction itself. Fluidization occurs when a gas is forced to flow 

vertically through a bed of particles at such a rate that buoyancy of the particles is completely 

supported by the drag force imposed by the gas (Zhu and Cheng, 2005). With increasing gas 

velocity, the bed behaviors are changed. There are at least six different fluidization regimes: 

particulate fluidization, bubbling fluidization, turbulent fluidization, slugging fluidization, fast 

fluidization, and pneumatic transport (Zenz, 1949; Yerushalmi et al., 1976; Grace, 1986; Hirama, 

1992 and Lim et al., 1995). The bubbling and turbulent fluidization are collectively considered 

as low-velocity or conventional fluidization. 

When the superficial gas velocity is increased beyond a critical value (Bi et al., 1995), significant 

amount of particles will be entrained. The entrained solid particles must be replaced or the bed 

empties rapidly. A circulating fluidized bed (CFB) system is often used to maintain continuous 

operation, with gas-solids separation devices capturing the solids and returning them to the 

bottom of the reactor (often called riser) via a return system (standpipe or downcomer).  

The commercial interest in CFB technology can be dated back to the 1940s, when the fluid 

catalytic cracking (FCC) process was first developed (Squires, 1986 and Grace, 1990). However, 

due to low catalyst reactivity and other technical difficulties, it was not until the 1970s when 

high velocity fluidized bed or CFB technology was “re-invented” (Yerushalmi et al., 1976). CFB 
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riser reactors provide many advantages over conventional bed reactors such as higher gas-solids 

contacting efficiency, reduced axial dispersion for both gas and solids and higher gas/solids 

throughput (Berruti et al., 1995 and Zhu et al., 1995). On the other hand, a CFB riser still suffers 

from severe solids backmixing, macro segregations of gas and solids due to the non-uniform 

flow structure in axial and radial directions, and micro segregations caused by particle clustering. 

Resulting from both gas and solids flowing against gravity (Zhu et al., 1995), these drawbacks 

reduce gas-solids contacting efficiency and lead to undesired distribution of products due to the 

reduced selectivity. 

The disadvantages of the riser reactor caused by the hydrodynamic effects could be overcome in 

a new type of reactor, a CFB downer reactor (Zhu et al., 1995; Bai et al., 1995 and Wei and Zhu, 

1996), where gas and solids flow co-currently downward, in the same direction with gravity. 

In a CFB downer, particles accelerate much more quickly since they gain momentum from both 

the gas and gravity. Hydrodynamic studies show that the radial distribution of flow parameters 

such as solids holdup and particle velocity in CFB downers is more uniform than those in the 

CFB risers (Wei et al., 1994; Zhang, 1999 and Qi et al., 2008). This radial uniformity leads to 

nearly plug flow for both phases in the downer (Zhang, 1999 and Manyele et al., 2003). With 

reduced axial dispersion and more uniform gas and solids residence times, CFB downer reactors 

become more advantageous over CFB riser reactors for reactions requiring short residence times 

(Wei and Zhu, 1996), especially where intermediates are the desired products, for example, fluid 

catalytic cracking process of heavy oil (Zhu et al., 1995 and Zhang et al., 1999). 

In spite of the numerous advantages of the high gas velocity riser and downer reactors, a 

common shortcoming of the two types of reactors is the low volumetric concentration (holdup) 

of solids. Conventional fluidized beds are also called dense phase fluidized beds, while 

circulating fluidized beds are regarded as dilute phase fluidized beds. Typically, a conventional 

fluidized bed operates with an average solids holdup of 30%-50%. A riser, on the other hand, 

only contains 1-3% solids by volume in the fully developed region. The solids holdups achieved 

in downers as shown by the previous studies (Jin et al., 1997; Herbert, 1998 and Wirth and 

Schiewe, 1998) are much lower (mostly below 1%). This represents a serious problem for 
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reactions where a high solids/gas ratio is required, since the reaction intensity is limited by the 

lower solids concentration. To overcome this weakness, Bi and Zhu (1993) proposed the concept 

of the high density circulating fluidized bed (HDCFB) riser. Subsequent studies on HDCFB have 

shown that solids holdups as high as 25% can be achieved in such a unit (Issangya et al., 1997-

2000 and Pärssinen et al., 2001) with carefully controlled operation. However, few attempts have 

been made to achieve high flux/density in a cocurrent downflow system. Therefore, there is an 

urgent need to study the characteristics of the downer operating at high density/flux for 

understanding the flow mechanics and increasing its industrial applications. 

Previous research works and practical applications have demonstrated that the CFB reactors 

could work with high efficiency under a very wide range of operating conditions, and 

hydrodynamics behavior which can significantly affect the performance of the reactors, e.g. mass 

and heat transfer, extent of reaction, gas and solids residence time distribution and mixing. So 

understanding the hydrodynamics is of prime importance for design and scale-up of efficient 

commercial fluidization processes. On the other hand, a study of a chemical reaction in a 

fluidized bed can supply more direct information on reactor performance. Grace and Bi (1997) 

pointed out that to better understand mass and heat transfer characteristics in reactors, to 

optimize the reactor design, and to develop and verify reactor models, hot-model (with reactions) 

studies providing axial and radial reactant concentration profiles are necessary. 

Among previous hot-model studies, ozone decomposition reaction, catalyzed by Fe2O3 has 

become a surrogate reaction for the characterization of gas-solids contact in CFB reactors 

(Kagawa et al., 1990; Jiang et al., 1990 and 1991; Bi et al., 1992; Pagliolico et al., 1992; Ouyang 

et al., 1993; Ouyang et al., 1995; Schoenfelder et al., 1996; Bolland, 1998; Bolland and Nicolai, 

2001; Fan et al., 2008 and Li et al., 2011and 2013). This reaction requires low concentrations of 

reactant, detection is rapid and accurate, and there is a measurable reaction rate at ambient 

temperature and pressure (Syamlal and O’Brien, 2003). To the best of our knowledge, few 

studies (Jiang, et al., 1990 and 1991; Ouyang et al., 1993 and 1995; Fan et al., 2008 and Li et al., 

2011 and 2013) reported on ozone decomposition in CFB reactors (usually less than 200 kg/m2s 

in risers and 100 kg/m2s in downers). Experiments should be conducted at a wide range of air 

velocities and high solids circulation rates. 
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1.2 Research objectives 

To comprehensively study hydrodynamics at high density/flux conditions in circulating fluidized 

beds and to map profiles of radial and axial reactant concentrations for reactor design and model 

development, based on literature review of previous studies on both hydrodynamics and ozone 

decomposition in CFB reactors, the objectives of this study are: 

To modify the experimental unit to further increase the solids circulation rate, enabling high 

density/flux operations in the riser and downer, 

To obtain the axial/radial solids holdup and particle velocity profiles in the riser under a wide 

range of operating conditions especially at high density/flux conditions, 

To obtain the axial/radial solids holdup and particle velocity profiles in the downer under a wide 

range of operating conditions especially at high density/flux conditions, 

To obtain the axial/radial profiles of ozone concentration in the riser under a wide range of 

operating conditions especially at high density/flux conditions, 

To obtain the axial/radial profiles of ozone concentration in the downer under a wide range of 

operating conditions especially at high density/flux conditions.  

1.3 Thesis structure 

This thesis follows the “Integrated-Article Format” as outlined in the UWO Thesis Regulation. 

Chapter 1 gives a general introduction followed by a detailed literature review in Chapter 2. 

Chapter 3 provides detailed descriptions on experimental setup, measurement techniques, and 

experimental procedures.  

Chapter 4 describes the experimental results on solids holdup in the high density CFB riser. 

Radial and axial profiles of solids holdup under various operating conditions are presented. A 

comparison between the flow structures in low density and high density CFB risers is provided.  
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Chapter 5 describes the experimental results on particle velocity in the high density CFB riser. 

Radial and axial profiles of solids holdup under various operating conditions are presented. A 

comparison between the flow structures in low density and high density CFB risers is discussed. 

Correlation between particle velocity and solids flux against solids holdup is also studied at low 

and high solids flux/density conditions.  

Chapter 6 describes the hydrodynamics in the downer reactor under high solids flux up to 300 

kg/m2s. A comprehensive study of solids holdup, particle velocity and solids flux is presented.  

Chapter 7 describes the experimental results from catalytic ozone decomposition in the high 

density/flux CFB riser. Radial and axial profiles of ozone concentration at various operating 

conditions are presented. Reactor performance is also discussed.  

Chapter 8 describes the experimental results from catalytic ozone decomposition in the high 

density/flux CFB downer. Radial and axial profiles of ozone concentration at various operating 

conditions are presented. Reactor performance is also discussed.  

Chapter 9 gives conclusions of this study and recommendations for future work. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

Particulate technology has played an important role in many industrial processes such as 

chemical processing, mineral processing, pharmaceutical production and energy-related process, 

etc and in particular, gas-solids fluidization has been extensively employed in recent decades 

(Grace, 1990 and Zhu and Cheng 2005). Particles contained in a column can be fluidized when 

gas is introduced via a gas distributor at the bottom of the column. Different hydrodynamic 

regime can be observed depending on the particle characteristics and the magnitude of the 

superficial gas velocity. With increasing gas velocity, these flow regimes are fixed bed, bubbling 

fluidization, slugging fluidization, turbulent fluidization, fast fluidization and pneumatic 

conveying regimes. The bubbling, slugging and turbulent fluidization regimes are considered as 

conventional fluidization. The main characteristic of the conventional fluidized beds is that the 

beds operate at relatively low superficial gas velocity (usually less than 1-2 m/s) with little solids 

entrainment.  

When the superficial gas velocity is increased beyond a critical superficial gas velocity Usc, 

significant entrainment of particles occurs and the column empties very rapidly unless the 

entrained solids are replaced (Issangya, 1998). A circulating fluidized bed (CFB) is usually used 

to maintain continuous operation, with gas-solids separation devices (e.g. cyclones) capturing the 

entrained solids and returning them to the bottom of the bed through a standpipe and a seal, (e.g. 

mechanical or non-mechanical valves). A CFB system operating in the fast fluidization flow 

regime is called a fast fluidized bed (Liu, 2001). Circulating fluidized beds are divided into two 

types: riser type, in which gas and solids flow upward, and downer type in which the two phases 

flow downward (Wei and Zhu, 1996). Circulating fluidized bed (CFB) riser reactors have been 

used successfully for several years in processes where gas-solids contact and mass transfer are of 

significant importance. Examples are combustion of low-grade fuels, mineral processing, and 

fluid catalytic cracking, etc. (Reh, 1999).  



Chapter 2 

10 

 

CFB risers allow a continuous operation and offer advantages with respect to mass and heat 

transfers. The overall efficiency of a riser is improved when a uniform distribution of the solid 

particles is obtained. At high solids fluxes (Gs > 200 kg/m2s, operating conditions at which most 

of the FCC units are operated), radial uniformity is disturbed by lateral segregation and 

backmixing phenomena resulting in core-annulus flow structure. Moreover, axial segregation 

phenomenon results in a distinctive dilute zone in the upper part and a dense zone in the bottom 

part of the riser (Zhu and Cheng, 2005 and van engelandt et al., 2007). 

The disadvantages of the riser reactor caused by the hydrodynamic effects of both gas and solids 

flowing against gravity can be overcome in a new type of chemical reactor - downer reactor. As 

both phases flow downwards in the same direction as gravity, axial solids dispersion and the 

non-uniformity of radial gas and solid flow are reduced (Bai et al., 1995; Bolkan et al., 2003 and 

Luo et al., 2007). 

Compared to a riser reactor, a downer reactor has many advantages such as much more uniform 

gas-solids flow with less aggregation, less gas and solids backing mixing, and shorter residence 

time (Wei et al., 1994; Zhang et al., 1999; and Qi et al., 2008). These characteristics are usually 

beneficial to the processes that require a short and uniform residence time distribution for gas 

and solid phases to decrease byproducts and overreacting. Downer reactors have therefore 

attracted many investigations in the past decade (Zhu et al., 1995). 

Experimental and measurement methods have been developed to study the hydrodynamic 

behavior in CFB riser and downer reactors, which are crucial for the understanding of the reactor 

performance. Although most of the experimental work has been devoted to hydrodynamic 

studies without reaction taking place in the system, which is called cold-model study, some hot-

model studies with reactions in CFB reactors have been done in order to obtain the reactor 

performance directly. Catalytic propane dehydrogenation (Gascon et al., 2005), cumene 

hydroperoxide decomposition (Huang et al., 2002), ammoxidation of propane to acrylonitrile 

(Fakeeha et al., 2000 and Wei et al., 2001), catalytic oxidation-dehydrogenation of butane to 

butadiene (Huang et al., 1999) chlorination of rutile (Zhou and Sohn, 1996), catalytic oxidation 

of n-butane to maleic anhydride (Pugsley et al., 1992), and catalytic ozone decomposition 
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(Bolland, 1998; Schoenfelder et al., 1996; Ouyang et al., 1995; Kagawa et al., 1990; Pagliolico 

et al., 1992 and Jiang et al., 1991) are some examples of reactions in circulating fluidized bed 

reactors. Ozone decomposition reaction is the most widely-adopted model reaction because it 

takes place at ambient temperature and is of first-order kinetic reaction.  

An introduction to the hydrodynamic characteristics of the CFB reactors including riser and 

downer and the experimental research with regard to ozone decomposition in CFB reactors are 

presented in the next section.  

2.2 Hydrodynamics in CFB riser 

Circulating fluidized bed (CFB) riser reactors have been used for a wide range of industrial 

applications over the past 50 years (Grace, 1990 and Zhu and Cheng, 2005). In a CFB riser 

system as shown in Figure 2.1, solids must be continuously fed into the bed bottom and entrained 

out of the reactor by high velocity gas flow to maintain the required solids holdup. Solids 

captured at the top are sent back to the bottom of the riser via the recirculation system. Fast 

fluidization is achieved and most reactions take place in the riser reactors (Zhu and Cheng, 

2005).  

Comprehensive reviews on fast gas-solids fluidization were reported by Grace (1990) and Lim et 

al. (1995). In recent years, extensive studies continued on the aspects of CFB risers, including 

flow structure (Yan and Zhu, 2005; Huang et al., 2007; Yan et al., 2008), gas and solids mixing 

(Westphalen and Glicksman, 1995; Gayán et al., 1997; Sterneus et al., 2000; Namkung and Kim, 

2000; Teplitskii et al., 2006; Johansson et al., 2007; Yan et al., 2009; Zhang et al., 2009), heat 

and mass transfer (Mansoori et al., 2005; Breault, 2006; Breault and Guenther, 2009), chemical 

reaction (Lyngfelt and Leckner, 1999; Fakeeha et al., 2000; Wei et al., 2001; Huang et al., 2002; 

Kersten et al., 2003; Gascon et al., 2005; Deng et al., 2005; Hakimelahi et al., 2006; Yin et al., 

2007; Liu et al., 2008), and numerical simulations (Lu et al., 2007; van de Velden et al., 2007; 

van engelandt et al., 2007; Wang et al., 2009). 



Chapter 2 

12 

 

 

Figure 2.1  Typical schematic of circulating fluidized bed riser (Zhu, 2005) 

 

Hydrodynamics are normally characterized by studies of solids holdup and gas and solids 

velocity. Knowledge of gas and solids distribution and flow behavior in CFB reactors is the key 

to successful design and operation of any CFB riser system as mass transfer, heat transfer, gas 

and solids interaction are often influenced by hydrodynamics (Grace, 1990).  

2.2.1 Axial profiles of solids concentration 

Previous studies demonstrate that there exists a dense phase at the bottom and a dilute phase at 

the top of the riser, which is called S-shape profile for bed voidage (Li and Kwauk, 1980; 

Schnitzlein and Weinstein, 1988 and Pärssinen and Zhu, 2001). With a transition section in-

between, the riser may be divided into three regions, a dense region at the bottom portion, a 

dilute region at the top part and a transition between the two. From Figure 2.2, it is seen that 

there may be other profiles such as C-shape and exponential shape, mostly due to the entrance 

and exit effects as well as the operation conditions. 
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Figure 2.2  Typical solids holdup profile (Zhu, 2005) 

 

In the exponential axial profile, the particles are being introduced into the riser and accelerated 

upwards by the fluidization gas very quickly to a certain point above the distributor, where the 

particle velocity becomes constant or to be more precise, the acceleration becomes negligible. A 

C-shape may be observed in a similar system with an abrupt exit. The S-shape profile is believed 

to be related to the high solids flux operation. Typical axial profiles in a CFB riser are shown in 

Figure 2.3. 
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Figure 2.3  Typical axial profiles of solids holdup for FCC particles (Issangya et al., 1999) 

 

The axial voidage or holdup profile can be affected by many operating variables such as solids 

circulation rate, superficial gas velocity, bed diameter, particle properties, like density and size 

distribution, total solids inventory, solids inlet configuration, riser exit structure, secondary air 

injection and the solids reintroduction level into the riser. With a higher solids flux, a more dense 

bed can be observed and the transition region between the dense bed and dilute phase occurs 

higher up in the riser. The lower the solids flux, the less solids holdup exists in the riser. The 

superficial gas velocity also affects the solids holdup. With an increase in Ug, the solids holdup 

decreases, or inversely, the axial voidage increases. Increasing the bed diameter would result in a 

higher voidage and more uniformity. The coexistence of a bottom dense region and an upper 

dilute region characterizes the solids flow in a riser where the solids holdup in the dense phase 

zone ranges from 0.1 to 0.3, while the holdup profiles in the dilute region can be approximately 

0.01 to 0.09 (Li and Kwauk, 1980, Schnitzlein and Weinstein, 1988, Pärssinen and Zhu, 2001). 

There are several acceleration regions when the system is in a fast fluidization mode. The initial 

acceleration zone within the dense phase bottom is before the particles move somewhat constant 

and the second acceleration period shows up when the particles enter the dilute regime. Some 
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arguments based on the length of the second acceleration region make the particle velocity 

profile be controversial (Bai et al., 1990). The experimental results that this second acceleration 

period is not very short but rather may extend well into the riser, while some particles may in 

fact still be accelerating at the top of the riser when they are forced to exit. Some experiments 

have shown that solids in fast fluidized beds are still in acceleration along most of the bed height, 

especially at low gas flow rate and high solids circulation rate (Bai et al., 1990). 

However, it has become widely accepted to assume the acceleration period to be very short (Bai 

et al., 1990). This acceleration region in effect becomes the guideline to determine the transition 

between dense and dilute phases, since in the dense phase particle velocity is very low compared 

to the velocity in the dilute region. Bai et al. (1990) indicated that this acceleration zone may 

occupy from 1/3 to 2/3 of the riser height.  

2.2.2 Radial profiles of solids concentration and particle velocity 

A core-annular type radial solids flow with a dense particle layer in the wall region and a dilute 

core region is known to exist in the riser as shown in Figure 2.4.  

 

Figure 2.4  Schematic profile of radial solids flow structure (Bai et al., 1988) 



Chapter 2 

16 

 

This can be described as a low density, high velocity gas-solids core region surrounded by 

slower moving or even downward flowing high solids concentration annular region (Bai et al., 

1995). Grace et al. (1997) suggested that particle exchanges occur between the dilute core and 

the dense wall region, as temporal and spatial accumulations of particles in the wall region form 

a transient dense particle layer or streamers. Non-uniform particle distributions or the presence of 

localized dense zones usually results from the existence of particle clusters and greatly 

influences the hydrodynamic characteristics of the system (Grace et al., 1997). 

Typical radial voidage profiles reported by Pärssinen and Zhu (2001b) are shown in Figure 2.5. 

A dilute central region and a denser wall region bed structures are observed. Solids holdup is 

seen to be low and relatively uniform in the central region up to about 70%-85% of the column 

radius, after which the solids concentration increases dramatically towards the wall, especially 

for the high solids flux conditions.  
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Figure 2.5  Radial solids holdup profile (Pärssinen and Zhu, 2001a) 



Chapter 2 

17 

 

Corresponding to the solids holdup profile, Pärssinen and Zhu (2001b) presented the particle 

velocity profile as seen in Figure 2.6. Particle velocities were directed upwards in the core of the 

column, with a magnitude similar to the superficial gas velocity at the column axis. The average 

velocity then fell as the radial position moves toward the wall, becoming negative in a layer 

adjacent to the wall. Ascending particles were dominant in the center of the column, whereas 

there were more descending than ascending particles near the wall. The magnitudes of the 

velocities of rising particles at the axis of the column were similar to the superficial gas velocity, 

while the magnitudes of downward velocities are significantly lower.  
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Figure 2.6  Radial particle velocity profiles (Pärssinen and Zhu, 2001b) 
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2.3 Effects on the flow structure 

2.3.1 Entrance and exit effect 

As mentioned earlier, the CFB riser, hydrodynamically, had featured by a high concentration of 

solids flowing near the wall with most of the gas passing through the core dilute region (Bai et 

al., 1995). A uniform distribution of solids along the riser was of importance in the successful 

design of riser reactors (Yan et al., 2008). Good understanding of the solids flow structure in 

riser reactors was critical for proper industrial design. It had been found that operating conditions 

(Bai et al., 1992), inlet and outlet structures (Jin, 1988), and riser diameters (Yan and Zhu, 2004) 

impact the axial and radial solids distributions. 

A large number of studies had examined the influence of entrance and exit geometry in CFB 

risers. Recent experimental results (Jin, 1988, Brereton and Grace, 1994, Gwyn, 1993, and 

Cheng et al., 1998) demonstrated that the geometry of the riser exit could greatly influence the 

performance of CFBs, by affecting pressure and solids holdup profiles, not only close to the roof, 

but also at a considerable distance down the column. There were two types of exit configurations 

categorized as abrupt exit and smooth exit. With an abrupt exit, a relatively high solids 

concentration and a low particle velocity were observed, while with a smooth exit, the restriction 

to the solids flow was much less, and the dense suspension zone disappears. Reviews by Lim et 

al. (1995) concluded that the exit design could affect the density profile over several meters in 

the upper region of a riser. Bai et al. (1992) compared the influence exerted by different exit and 

inlet structures of fast fluidized beds on the axial voidage distribution. They reported that with a 

restrictive exit design, the voidage profile had a C-shape, while the profile was S-shape when a 

very weakly restrictive entrance structure was employed. 

2.3.2 Scale-up effect 

Although the experimental study in laboratory or pilot scale circulating fluidized bed had solved 

great number of issues encountered in the design and operation of CFB reactors, simplified the 

experimental work and reduced the expense on research, CFB application was still facing 

challenges in scale-up. Yerushalmi and Avidan (1985) suggested that the effect of the column 
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diameter on gas dispersion coefficient was probably more than linear for small-diameter tubes, 

approximately linear for medium-size columns, and less than linear for large risers. Their 

observations appeared to agree with the above cited results (Yerushalmi and Avidan, 1985) of 

change in the turbulent intensity as a function of dp / le (le is length of turbulent eddies), under the 

assumption of le / D constant (Gore and Crowe, 1989). Yan and Zhu (2004) also studied the 

scale-up effect of riser reactors on the distributions of solids concentration, particle velocity and 

solids flux in a twin-riser CFB system with 0.076 and 0.203 m inner diameters. They concluded 

that the solids concentration increased with increasing riser diameter and the radial profiles of the 

solids concentration were steeper with larger-diameter risers.  It had also been found that the 

cross-sectional average particle velocity was somewhat lower for the larger riser with a steeper 

radial particle velocity profile. For the radial profile of the solids flux, a parabolic shape and a 

flat core shape profiles were found for the two risers respectively (Yan and Zhu, 2004, 2005 and 

Yan et al., 2005).  

2.3.3 Riser geometry effect 

Previous studies had indicated that the geometry of the riser has considerable influence on the 

hydrodynamics of circulating fluidized beds (Brereton and Grace, 1994; Brereton and 

Stromberg, 1986; Schnitzlein and Weinstein, 1988 and Zhou et al., 1994). Almost all of the cold-

model hydrodynamic research had been conducted in cylindrical column risers. However, risers 

of square and rectangular cross-sections were now widely employed in CFB applications such as 

combustor. Zhou et al. (1994) carried out experiments in square CFB risers to study the solids 

voidage and particle velocity profiles using optical fiber probes. They obtained both lateral and 

axial voidage profiles and also revealed the influence of the corner on the voidage profile. Their 

studies also indicated that the profiles of lateral and axial particle velocity were influenced by 

operating conditions. Comparing with the results obtained in cylindrical risers, they found that 

the profiles in square riser were not necessarily lowest at the axis of the riser, but may go through 

a minimum between the wall and the axis. As for rectangular risers, some of wide rectangular 

risers must be considered as 3-D risers. While the narrow rectangular riser, to some extent, can 

be considered as two-dimensional column, with the definition of the width being considerably 

greater than the thickness, and the fluidized particles were contained in the gap between two flat 
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transparent faces, separated by a distance which was usually in the range 10 to 25 mm (Grace 

and Baeyens, 1986).  

Rectangular two-dimensional and the conventional three-dimensional beds differed qualitatively 

and quantitatively. The differences arose from bubble properties, such as bubble velocities, 

bubble coalescence properties, bubble shapes and wake characteristics, and solids ejection into 

the freeboard in bubbling or turbulent beds (Fan, 1990; Gera and Gautam, 1995; Almendros-

Ibanez et al., 2006; Zhou et al., 2007 and Xu 2010). However, very few studies had been done in 

two-dimensional fluidized bed under fast fluidization conditions, in which the gas velocities are 

higher than 3 m/s (Xu 2010). 

To clarify the effects of riser geometry on the flow behaviors, Xu (2010) compared the results of 

the solids distribution in both the rectangular riser and the cylindrical riser under a wide range of 

conditions. In their study, both axial and lateral profiles of solids holdup showed that the 

operating conditions played important roles in influencing the flow structure, and controlled the 

flow properties in the rectangular riser in the same way as that in cylindrical risers: increasing Ug 

and reducing Gs resulted in a lower solids holdup. The solids concentration profile, within the 

range of their study, remained low at the riser centre throughout the whole riser compared with 

the solids holdup in the wall region. Comparing the rectangular riser with the other cylindrical 

columns, it was found that the general shapes of the axial and lateral profile of solids holdup in 

rectangular riser were quite similar to that in cylindrical risers, but more uniform (Xu and Zhu, 

2010; Xu et al., 2010 and Xu, 2010).  

2.4 Hydrodynamics in CFB downer 

A co-current gas-solids downward flow circulating fluidized bed, or a downer, is a new 

alternative flow arrangement for a high-velocity system. A downer reactor system has similar 

system configurations to a riser reactor system except that both the gas and the solid particles 

flow downward as shown in Figure 2.7. The co-current gas-solids downflow circulating fluidized 

beds were proposed in recent years (Shimizu et al., 1978; Gross, 1983; Wang et al., 1992; Zhu et 

al., 1995; Zhu and Wei, 1996; Johnston et al., 1999 and Li et al., 2012). As a relatively new gas-

solids reactor, it has been drawing more and more attentions due to its advantages over the 
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upflow riser reactors as stated by many of the researchers (Bai, et al., 1991; Wang et al., 1992; 

Herbert et al., 1994; Zhu et al., 1995 and Herbert et al., 1998) 

 

Figure 2.7  Conceptual of circulating fluidized bed downer  

 

Cocurrent downward flow of particles and gas reduces the residence time of solid particles 

because the downward flow is in the same direction as gravity (Zhu et al., 1995). More uniform 

radial gas and solids flow than those in a riser can be achieved. The downer leads to more 

uniform contact time between the gas and solids (Bai et al., 1995; Bolkan et al., 2003 and Luo et 

al., 2007). Because the gas and solids residence time is usually very short in the downer, the 

initial gas and solids flow development is very important in order to control the reaction 

selectivity and product distribution (Luo et al., 2007). With these advantages, downer reactors 

have been proposed for some processes such as fluid catalytic cracking (FCC), where short 

contacting time and uniform gas and solids residence time distribution are extremely important 

(Zhu et al., 1995). 
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2.4.1 Three-section axial flow structure 

In a downer reactor, gas and particles were fed from the top of the downer through separate gas 

and particle distributors. Upon entering the downer, gas immediately attained superficial velocity 

while particle velocity was initially close to zero (Zhang, 1999).  

 

 

Figure 2.8  Axial gas-solids flow structure in the downer (Zhu, 2005) 

 

As shown in Figures 2.8 and 2.9, solid particles were first accelerated both by gravity and drag 

force from the gas. As a consequence, pressure decreased continuously along the downer to 

compensate for the drag on the particles and the friction between wall and gas-solids suspension. 

When particle velocity became equal to the gas velocity, the gas drag acting on the particles 

became zero and the pressure reached a minimum. The section from the top to the position where 
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particle velocity was equal to the gas velocity had been referred to as the first acceleration 

section (Zhang, 1999). 

After acquiring the same velocity as the gas phase, solids were further accelerated by gravity 

while encountering drag in the upward direction exerted by the now slower moving gas phase. 

Therefore, particle velocity increased further until the slip velocity between the gas and particles 

reached a value where the drag force counter-balanced the gravitational force. This section had 

been referred to as the second acceleration section. In this section, particle velocity continued to 

increase but at a lower rate than in the first acceleration zone and pressure increased gradually. 

 

 

Figure 2.9  Axial distribution of pressure (Wang et al., 1992) 

 

When the drag was sufficient to balance the gravitational force, particles were not further 

accelerated and the remainder of the downer had been named the constant velocity section 
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(Wang et al., 1992). In this section, particles traveled faster than gas and both particle and gas 

velocities remained constant. Pressure increased linearly along the downer and the pressure 

gradient was equal to the cross-sectional bed density, if wall friction was neglected. 

This three-section axial flow structure had been confirmed by pressure and pressure drop 

measurements and the axial distribution of average particle velocity measured in a 140 mm 

downer (Wang et al., 1992). This flow structure was also consistent with the prediction by 

Kwauk (1964) in his generalized fluidization model. 

2.4.2 Radial gas and solids flow structure 

Measurements for radial profiles of gas and particle velocities and solids concentration in both 

downers and risers had been made in the 140 mm diameter riser-downer system (Wang, et al., 

1992; Cao, et al., 1994 and Zhu et al., 1999). Typical radial profiles of gas and particle velocities 

measured in downer and the radial profile of solids concentration measured in both downers and 

risers were given in Figures 2.10 and 2.11 (Zhu et al., 1999). 

 

 

Figure 2.10  Radial profiles of particle velocity and gas velocity in the downer and riser (Zhu et al., 1999) 
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Compared with the radial flow structure in the riser, the radial distributions of gas and particle 

velocities and solids concentration were all significantly more uniform in the downer. For the 

radial distribution of solids concentration in the downer, a similar phenomenon as that in the riser 

was found; the local bed voidage was a function of the radial position r/R only, with a given 

average voidage at any axial position, independent of the superficial gas velocity and the solids 

circulation rate (Wang et al., 1992).  

 

 

Figure 2.11  Radial distribution of solids holdup in the downer and the riser (Zhu et al., 1999) 

 

Examining the radial profiles of the gas and particle velocities and the solids concentration in the 

downer in Figures 2.10 and 2.11, it was found that in the downer, local particle velocity could be 

higher than local gas velocity and a higher local solids concentration always corresponded to 

higher gas and particle velocities. This was contrary to the situation in the riser, where local 

particle velocity was always lower than local gas velocity and a higher local solids concentration 

always corresponded to lower gas and particle velocities (Zhu et al., 1999). 
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Figure 2.12  Radial profiles along the riser and downer under different operating  
conditions (Zhang et al., 2001) 
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The radial distributions of time-averaged solids holdups in Figure 2.12 showed distinct 

differences between the riser and the downer. In the riser, the overall radial structure generally 

showed a non-uniform solids holdup distribution with a dilute core and a dense annulus, with the 

radial profile being relatively flat in the core and solids holdup increasing sharply toward the 

wall in the annulus with the highest solids holdup right at the wall. The radial distribution of 

solids holdup was affected by the operating condition. However, the shapes of the two profiles 

were very similar, both increasing gradually with increasing r/R, reaching a maximum value near 

the wall at about r/R = 0.95 and then decreasing towards the wall, although the gas and particle 

velocity profiles were quite different for the downer and the riser.  

Compared to riser reactors, downer reactors had a much more uniform radial gas-solids flow 

pattern. This was likely due to the change of the direction of gas and solids flow from opposing 

gravity to following it. The following mechanism was provided to explain the more favorable 

radial flow structure in the downer (Bi and Zhu 1993). 

 

 

Figure 2.13  Radial flow structures in CFB riser and downer (Bi and Zhu, 1993) 
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As was shown in Figure 2.13, in both the downer and the riser, higher local solids concentration 

resulted in the reduction of drag coefficient (Zhang et al., 2001). In the riser (where the drag was 

the driving force for particle flow) reduction of drag decreases the upwards particle velocity, 

which in turn increased the tendency for particle aggregation (Bi and Zhu 1993). Increased 

particle aggregation then further reduced the drag and the local particle velocity, leading to 

steeper radial profiles for both gas and particle velocity. However, in the downer (flow in the 

direction of gravity so that gravity was the driving force), a reduction of the upwards drag force 

would result in increased downwards particle velocity, which in turn leaded to increased gas 

velocity. On the other hand, increased local gas and particle velocities in the downer tended to 

reduce the extent of particle aggregation, thus increasing the gas drag. Therefore, the system 

stabilizes by itself and a more uniform radial flow structure was present in the downer. 
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Figure 2.14  Effect of solids circulation rates and superficial gas velocity on the lengths of radial flow 
development for the riser and the downer. (Zhang et al., 2001) 
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The length of the flow development (LOD) was the length that is needed for both the radial 

solids holdup profile and radial particle velocity to become fully developed (Zhang et al., 2001). 

In a downer, the length of flow of development was comparable to that of a riser. In the core 

region of downer, the length of flow of development was longer than in the core of a riser. 

However, the total length of flow of development was approximately equal. Length of 

development in both reactors increased with increasing solids holdup and decreasing gas velocity 

as shown in Figure 2.14. In a downer the radial distribution of solids hold up and particle 

velocity was uniform than in a riser, therefore, it became a less important parameter in design 

compared to a riser. This LOD can be increased by increasing the solids circulation and holdup 

and also by decreasing the gas velocity. For catalytic or non-catalytic reactions, smaller LOD 

was favorable since the axial solids dispersion was less uniform in the development zone. This 

resulted in unfavorable flow patterns and non-uniform residence times. In the long run it may 

lead to over-conversion of the particle reactions and formation of undesired products in reactors 

with longer LOD. Therefore, downer was preferred due to smaller length of development (Zhang 

et al., 2001). 

In addition, heat transfer was generally considered to be affected by hydrodynamics. 

Investigations on heat transfer in the downer reactor were made by many researchers (Ma and 

Zhu, 1999 and 2001 and Kim et al., 1999). Ma and Zhu (2001) studied the heat transfer 

coefficient between the suspended surface and the gas-solids flow suspension in a downer of 9.3 

m high using a miniature cylindrical heat transfer probe. They found that bed suspension density 

was the most influential factor. The average heat transfer coefficient decreased with decreasing 

solids circulation rate due to the decreased solids holdup. On the other hand, the heat transfer 

coefficient did not always decrease with increasing the superficial gas velocity given the 

increased importance of gas convective heat transfer under high gas velocities and low solids 

holdup in downer reactors. They also compared the heat transfer coefficient in both riser and 

downer reactors (Ma and Zhu, 2001). In their studies, the axial heat transfer coefficient had 

negligible effect on the trend of the flow development. The radial heat transfer coefficient was 

nearly uniform but was higher at the top due to effect of the distributor on the solids distribution. 

The heat transfer radial distribution was uniform in the developed section compared to the riser 
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as the solids distribution in the downer was more uniform. In the riser, the radial heat transfer 

coefficient was non-uniform due to the solids holdup and formation of clusters especially at the 

wall. 

2.5 Ozone decomposition in CFB reactors 

2.5.1 Experimental researches with ozone decomposition 

In order to improve the design and operation of commercial fluidized beds, studies have been 

conducted in conventional fluidized bed systems for both bubbling and turbulent fluidized bed 

conditions, where the decomposition of ozone has been used as a model reaction. Chemical 

reaction gives the direct information on reactor performance in contrast to any other method 

(Frye et al., 1958 and Jiang et al., 1991). Reactor performance investigations have also been 

carried out in CFB systems using ozone decomposition as the model reaction. Recently, high 

density circulating fluidized beds have become a hot research topic, especially on 

hydrodynamics. However, there are only a few published research studies dealing with catalytic 

reactions and these were in small-scale circulating fluidized bed reactors (Jiang et al., 1991 and 

Pagliolico et al., 1992). 

Due to complex reaction kinetics and the accompanied heat transfer and catalyst deactivation 

effects involved in the fluidization bed reactors, it is hard to properly assess reaction mechanism 

and effects of transport parameters on the reactor performance. In 1955, Shen and Johnstone 

studied the kinetics of decomposition of nitrous oxide over an impregnated alumina catalyst in 

fixed and fluidized beds at temperatures ranging from 340°C to 430°C. A mass transfer 

coefficient between the two phases was used to evaluate the effectiveness of contact between the 

gas and solids. The reaction rate for the catalytic decomposition of nitrous oxide was determined 

in a fluidized bed of impregnated alumina particles and compared with the corresponding rate in 

a fixed bed. But this kind of knowledge of the contacting mechanism is insufficient to develop 

generalized correlations for reactor design. The design of large-scale fluidized bed reactors 

depends on empirical correlations developed based on kinetic data (Frye et al., 1958). 
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Later, Frye et al. (1958) developed an experimental method using ozone to investigate the 

kinetics of FCC in fluidized beds. They considered that ozone experimental method had the 

following characteristics: low concentrations of reactant; rapid and accurate analysis by simple, 

well established methods; and measurable reaction rates at low pressures and temperatures. They 

also found ozone decomposition was a desirable substitute reaction providing reactor design data 

for hydrocarbon synthesis. As an economical and convenient research method on fluidization 

reactors, meaningful results have been obtained (shown in Table 2.1). In these studies, different 

riser geometries and construction materials were used. The most commonly used particles were 

FCC catalyst particles impregnated with ferric oxide. UV-absorption principle is widely used to 

detect the concentration of ozone. Axial/radial ozone concentration and axial solids 

concentration profiles in the CFB were obtained. 



Chapter 2 

33 

 

 

 
Table 2.1  Studies of fluidized bed reaction by using ozone decomposition. (part 1) 

 

 

 

Reactor 

material 

Reactor 

diameter 

(mm) 

Reactor 

height 

(m) 

Ug 

(m/s) 
Reactor 

Gs 

(kg/m2s)

Temperature 

 ( C̊ ) 
Type of FCC 

Particle 

size 

(µm) 

Particle 

density 

(kg/m3) 

Reaction rate 

(1/s) 

Li et al., (2013) Aluminum 76 10 2-5 riser 50-150 20 
FCC+ ferric 

nitrate 
67 1370 4.0 

Li et al., (2011) Aluminum 76 5 2-5 downer 50-150 20 
FCC+ ferric 

nitrate 
67 1370 4.0 

Fan et al., 

(2008) 
Plexiglas 90 8.5 2.2-3.7 downer 8.4-28.8 - 

FCC 62 1747 0.098 

FCC+ferric 

nitrate 
72 1400 ml (g cat)-1 s-1

Bolland et al., 

(2001) 
Steel 411 8.5 5.6-7.2 riser 31-53 60 angular cast steel 117 3320 26-62 

Schoenfelder 

et al., (1996) 
- 400 15.6 2.4-4.5 riser 9-45 20 

aluminum 

hydro silicate 

+10% silica + 

Iron Oxide 

50 1420 
0.001-0.003 

M3/(s.kg) 

Ouyang et al., 

(1995, 1996) 
Steel 254 10.85 2.0-7.5 riser 10-206 20 

FCC+ 

ferric oxide 
65 1380 3.9-57.2 
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Table 2.2  Studies of fluidized bed reaction by using ozone decomposition. (part 2) 

 

 

Reactor 

material 

Reactor 

diameter 

(mm) 

Reactor 

height 

(m) 

Ug (m/s) Reactor 
Gs 

(kg/m2s)

Temperature 

( C̊ ) 
Type of FCC

Particle size 

(µm) 

Particle 

density 

(kg/m3) 

Reaction rate 

(1/s) 

Pagliolico 

(1992) 
- 50 4.5 3.8-8.8 riser 20.4-102 15 

γ-alumina+ 

ferric oxide 
82 2970 44.71 

Jiang et al., 

(1991) 
Plexiglas 102 6.32 1.5-2.5

riser+ 

baffle ring
5.1-28.9 23 

FCC+ferric 

nitrate 
89 1500 2.81-5.1 

Sun et al., 

(1990) 
Aluminum 100 2.6 0.06-1.8

bubbling, 

slugging, 

turbulent 

- - 
FCC+ferric 

nitrate 

Wide, 60; 

Bimodel, 60;

Narrow, 60 

- 1-9 

Fryer et al., 

(1958, 1976) 

Stainless 

steel +glass 
229 2 

0.024-

0.017 
bubbling - 20 

sand+iron 

oxide 
117 2650 - 
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2.5.2 Ozone decomposition in the CFB riser reactor 
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Figure 2.15  Axial ozone concentration profile (Ouyang et al., 1993 and 1995) 
 

Ouyang et al. (1993 and 1995) investigated the ozone decomposition in CFB riser and obtained 

the axial ozone concentration profiles at different radial positions at different operating 

conditions shown in Figure 2.15. The strong up and down movements of solids observed in the 

bottom region contributed to the axial gas backmixing resulting in the uniform axial ozone 

concentration distributions. In the upper region, the gas backmixing was not as significant. The 

decreasing trend of the axial ozone concentration profile corresponds roughly to that of the axial 

voidage profile. In fully developed section, ozone concentration varied axially from low to high 
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with the catalyst circulating rates, corresponding to the axial profiles of the solids holdup shown 

in Figure 2.16, which meant that the ozone conversion was proportional to the solids 

concentration. 
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Figure 2.16  Axial profile of solids holdup in the riser (Ouyang et al., 1995) 

 

Figure 2.17 showed the radial distribution of ozone concentration in CFB riser reactors, where kr 

was the apparent reaction rate constant, Ug was the superficial gas velocity, Gs was the solids 

circulation rate, and z was axial position of the sampling point from the gas distributor (Ouyang 

et al., 1995).  

Ozone concentration in the central region was much higher than that in the near wall region, 

producing a parabolic concentration profile in the radial direction at a given axial level. The 

radial concentration gradients persisted over the entire height of the CFB riser reactor, decreasing 

with increased axial positions. The suggested reason for such a radial concentration profile in the 

CFB riser was that in the wall region higher solids holdup resulted in higher reaction rates as 

compared to those in the dilute core region (Jiang et al., 1990). The ozone concentration 

difference between the core and wall regions decreased with an increase in the axial heights, 

which corresponded to a decrease in solids holdup. These data indicated that the trend of the 

radial ozone concentration profiles was essentially dominated by the flow structure, which was 
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represented by the axial and radial solids holdup profiles, showing strong correlation between 

hydrodynamics and ozone conversion. Effects of solids circulation rate on the radial ozone 

concentration profile was also can be found in Figure 2.16. The ozone concentration decreased 

with increasing solids circulation rates. Moreover, an increase in the solids circulation rate 

increased the ozone concentration difference between the wall and center regions.  
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Figure 2.17  Radial profiles of ozone concentration in the riser reactor (Ouyang et al., 1995) 

 

As shown in Figure 2.17, Ouyang et al. (1995) found that in the case of low values of solids 

holdup, the radial ozone concentration gradient between the riser wall and center was relatively 

high, and the profile became much smoother at a higher solids holdup. When solids circulation 

rate was 106 kg/m2s, the radial concentration gradient was much smaller than that for a solids 

circulation rate of 34 kg/m2s. This phenomenon was also reported by other researchers 
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(Schoenfelder et al., 1996; Jiang et al., 1990 and Bi et al., 1992). Higher solids circulation rate 

intensified radial ozone concentration gradient. Therefore, there was a factor of uncertainty in 

assessing how radial concentration profile correlated with solids holdup, or at different solids 

circulation rates. 
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Figure 2.18  Axial ozone conversion profiles in the riser (Schoenfelder et al., 1996) 

 

In addition, Figure 2.18 showed the axial profiles of radial distributions of ozone concentration 

(Schoenfelder et al., 1996). It was found that the ozone concentration in the centerline of the 

riser was almost constant with riser height. Only minor differences between the ozone 

concentration profiles at radial positions between r/R = 0.0 and r/R = 0.775 were found. Near the 

wall, a significantly lower ozone concentration had been observed. In this figure, a maximum of 

the ozone concentration had been measured at a medium height above the gas distributor. This 

result was corresponded well to the findings by Ouyang (1993) as shown in Figure 2.15. 

2.5.3 Ozone decomposition in the CFB downer reactor 

Downer reactors were intensively studied and widely accepted for fast selective reactions 

because of their uniform radial solids holdup profiles, good gas-solids contacting and no back 
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mixing (Zhang et al., 1999 and 2000). Ozone decomposition studies were conducted by Fan et 

al. (2008) in a downer reactor as shown in Figure 2.19. 
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Figure 2.19  Ozone conversions in CFB downer (Fan et al., 2008) 

 

Axial ozone conversion profiles in a downer suggested that most of the ozone was decomposed 

in the acceleration region, and the ozone concentration varied very little in the fully developed 

section (below z/H = 0.29) in the downer. Fan et al. (2008) concluded that the conversion was 

much faster in the acceleration region than that in the developed region because of the higher 

solids concentration and reactant concentration which increased the reaction rate of the first 

order ozone decomposition reaction. Ozone was absorbed or reacted quickly on fresh catalyst 

particles at the acceleration or entrance zone and then at fully developed sections ozone 

concentration nearly reached an equilibrium state due to the balance between absorbing and 

desorbing molecules.  
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Figure 2.20 Axial profiles of solids holdup in the riser and (Zhang et al., 1999) 

 

Comparing ozone decomposition on FCC in the riser shown in Figure 2.17 with that in the 

downer (Figure 2.19), the axial ozone conversion profiles of the riser had the same tendency as 

in the downer at very close circulating solids flux. In the acceleration zone of the riser, the ozone 

concentrations reduced quickly and leveled off at fully developed section. Although Fan et al. 

(2008) did not report their axial solids holdup profiles, the results of solids holdup could be 

inferred based on the study of the downer reported by Zhu and Zhang shown in Figure 2.20 and 

2.21. At entrance section gas-solids mixing was poor and became uniform and steady at fully 

developed section. All of these facts seemed to indicate that there was no back mixing in 

downers. 
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Figure 2.21  Radial profiles of solids holdup in riser and downer (Zhang et al., 1999) 

 

2.5.4 Contact efficiency of ozone decomposition reaction 

Different from hydrodynamics of fluidization, one goal of ozone decomposition was the contact 

efficiency. Unfortunately, only a few authors report their results on this topic (Jiang et al., 1991; 

Ouyang et al., 1993 and 1995 and Li et al., 2011and 2013). Based on the pseudo-homogeneous 

plug-flow, the contact efficiency, α, was defined as: 

'1 exp /  or 1 expr s g rX k H U X k              (2.1)

where ' = /r r s gk k H U  was Damköhler number, X was the conversion. Contact efficiency 

represented the fraction of the external surface area of the catalysts available for the diffused 

reactant from the gas phase (Jiang et al., 1991). It can also be regarded as the utilization 
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efficiency of catalysts in the CFB reactor compared to that in the plug flow reactor. The lower 

the contact efficiency, the poorer the reactor performance, the more the reactor deviated from a 

fixed bed with negligible axial dispersion (Sun, 1991). 
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Figure 2.22  Contact efficiency as a function of Damköhler number 

 

The contact efficiency of the reactor against Damköhler number was plotted in Figure 2.22. A 

typical contact efficiency value varied between 0.3-0.7 showing that the solids were not 

uniformly in contact with the gas stream. As shown in the Figure, the contact efficiency 

decreased with increasing Damköhler number. Considering the definition of the Damköhler 

number, it can be concluded that, the contact efficiency approached unity at very low solids 

holdup, indicating a good contacting conditions between gas and solids. But the general trend 

was that the contact efficiency of the reactor decreased as the solids holdup increased. It 

indicated that higher solids holdup seemed to be accompanied by a reduction in gas-solids 

contacting efficiency.  
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2.6 Conclusions and outlook 

(1) As to the axial flow structure, there exists a dense phase at the bottom and a dilute phase 

at the top of the riser following the so called S-shape profile for bed voidage. There is a 

transition section in-between, therefore the riser may be divided into three regions, a 

dense region at the bottom portion, a dilute region at the top part and a transition between 

those two parts. Other profiles such as C-shape and exponential shape have also been 

observed. 

(2) A core-annular type radial flow with a dense particle layer in the wall region and a   

dilute core region is known to exist in the riser. This can be described as a low density, 

high velocity gas-solids core region surrounded by slower moving or even downward 

flowing solid particles in the annular region. 

(3) It has been found that operating conditions, inlet and outlet structures, riser geometry and 

properties of the gas and solids affect the axial and radial solids distributions in the riser. 

(4) In the axial direction along the downer, there exist three sections: the first acceleration 

section at the top, where particles are accelerated by both gas drag and gravity; the 

second acceleration section where particles are accelerated by gravity but decelerated by 

gas drag; and the constant velocity section where both gas and particles travel downwards 

at constant velocities with a constant slip velocity due to the gravitational and drag forces 

being in equilibrium.  

(5) Radial distributions of gas and particle velocities and solids concentration are much more 

uniform in downers than those in risers, resulting in a more uniform gas-solids flow 

structure inside the downer.  

(6) In order to improve the production operation and design good commercial fluidized beds, 

reactor performance investigations have been carried out using ozone decomposition as 

the model reaction. 

(7) Nearly uniform axial profile in the bottom region, followed by a decrease in reactant 

concentration in the upper region was observed in some studies. More experimental 

studies are needed to characterize this trend in detail. 
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(8) Significant radial reactant concentration gradients exist between the core and near wall 

regions, persisting over the entire height of the CFB riser reactor. Considering the 

contradictory findings, the effects of superficial gas velocity and solids circulation rate on 

radial reactant concentration profile are not fully understood. 

(9) Contact efficiency was proposed to account for incomplete gas-solids contact due to the 

effects of hydrodynamics on reactor performance. It is of interest to know the contact 

efficiency at different reactor heights. 
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Nomenclature 

C ozone (reactant) concentration [ppm] 

C0 initial ozone (reactant) concentration [ppm] 

D column diameter [m] 

dp particle diameter [m] 

Gs solids circulation rate [kg/(m2·s)] 

H height of the reactor [m] 

kr reaction rate constant [s-1] 

k 'r Damköhler number, krε̄sH/Ug [-] 

r radial coordinate [m] 

le the length of the turbulent eddies 

LOD the length of the flow development  

R column radius [m] 

r/R reduced radial position [-] 

Ug superficial gas velocity [m/s] 

X conversion [-] 

z axial coordinate [m]  

Greek letters 

α gas-solids contacting efficiency [-] 

ε voidage [-] 

εs solids holdup, 1- ε [-] 

ε̄s cross-sectional average solids holdup [-]

Subscripts 

g gas 

p particle 
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r reaction 

s solids 
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CHAPTER 3 

Experimental Setup and Measurement Techniques 

3.1 Experimental setup 

The circulating fluidized bed setup used in the experiments is originally designed, constructed 

and operated at the University of Western Ontario by Li (2010). Figure 1 shows the schematic 

diagram of the experimental setup. The system includes three circulating fluidized beds, the left 

hand fluidized bed serves as a high flux/density circulating fluidized bed riser with an inner 

diameter of 76 mm and 10 m in height. The right hand fluidized beds are two circulating 

fluidized bed downers (co-current downflow circulating fluidized beds) of different diameters 

(inner diameter of 76 mm and 50 mm, respectively). A large downcomer with an inner diameter 

of 203 mm returns solids during riser operation. At its bottom, there is a solids storage tank with 

an inner diameter up to 457 mm. The two are used as general solids storage for the entire system. 

Total solids inventory of FCC particles in the downcomer and storage tank could be up to 450 

kg, equivalent to a solids height of approximately 6.0 m. This high solids level ensures high back 

pressure in the downcomer and enables high solids circulation rates and high solids 

concentrations in the CFBs. 

The multifunctional circulating fluidized bed (MCFB) can be operated as a CFB riser and 

downer. For CFB riser operations, particles in the storage tank are fluidized by aeration air and 

they flow into the bottom of the riser column. The particles obtain momentum from the air 

passing through the riser gas distributor made of perforated plates (2 mm×176 holes, 12% 

opening area) and are conveyed upward along the riser column. At the top of the riser, particles 

and gas are separated by primary, secondary and tertiary cyclones and most of the particles 

returned to the downcomer and further down to the storage tank. Fine particles leaving the 

cyclones are trapped by the bagfilter and returned periodically to the downcomer. 
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Figure 3.1  Schematic diagram of the multifunctional CFB system. 
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When the MCFB is under downer operating mode, solid particles are first lifted through the riser, 

separated by the primary cyclone fixed at the top of the downcomer and then fed into the 

downers. At the top of either downer is a gas-solids distributor (details shown in Figure 3.1) 

where the particles are uniformly distributed along with the downer air to flow down 

concurrently. After fast separation by gravity at the exit of either downer column, most particles 

are retained in the storage tank, with the remaining particles captured by two cyclones installed 

in series at the top of the exhaust pipeline and the common bagfilter. To eliminate the effects of 

solids inventory and other influencing parameters on the hydrodynamic characteristics, the whole 

experimental work in this study was carried out with a constant particle mass of 400 kg of FCC 

particles stored in the downcomer and the storage tank. 

The entire fluidized bed system uses aluminum as the main construction material with small 

portions made of Plexiglas for visual observation. In order to minimize possible electrostatic 

charges formed in the columns during the experiments, the whole fluidized bed system is 

electrically grounded. A measuring device for solids circulation rate is installed in the top section 

of the downcomer. By regulating the ball valve located in the solids feeding line connecting the 

storage tank and the riser column, the solids circulation rate can be adjusted and maintained at 

the desired level during each experiment.  

The original CFB system could be operated with solids circulation rates of up to about 400 

kg/m2s (Li, 2010). However, some of the important industrial processes are operated at much 

higher solids circulation rates. For example, a typical solids circulation rate in the commercial 

fluid catalytic cracking can be as high as 1200 kg/m2s (Zhu and Bi, 1995). Because of the limited 

capacity of the gas source and the high pressure drop of the gas-solids separation systems, such 

high solids fluxes could not be achieved in the previous work. Modifications were made to the 

original CFB unit to boost the solids flux towards this lever. The main modification work was as 

follows: 

(1) replaced the blower with a compressor of capacity 1000 standard cubic feet per minute 

(SCFM) at 100 psi; 
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(2) installed an additional air exhaust pipe at the top of the of the downcomer to discharge 

majority of the air flowing upward through the downcomer, with minimum downcomer air 

flowing into the primary cyclone, so that the pressure drop across the cyclone is significantly 

reduced (which efficiently increases the available pressure for the riser to achieve higher 

densities); 

(3) installed two small deflecting plates (see the left insert of Figure 3.1) in the solids inlet 

region, one vertically at the outlet of the inclined pipe covering 30% of the lower end of the 

inclined feed pipe joining the riser to prevent riser air from flowing into the solids feeding pipe 

which tends to restrict solids downflow, and the other half-way of the inclined pipe covering 

30% of the cross-sectional area of the inclined pipe to direct particles downwards so as to 

provide a quick “exit route” for the remaining air entering into the feed pipe so that solids 

movement in the inclined pipe is much faster and steadier. 

After modification, the riser could be operated much more steadily at solids circulation rates of 

up to 1000 kg/m2s much higher than 400 kg/m2s in the original system. This allowed us to 

operate the CFB system under a wide range of the operating conditions and obtain a 

comprehensive matrix of solids and gas flows. 

3.2 Preparation of particles 

 

Figure 3.2  Particles activation process. 
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Spent fluid catalytic cracking (SFCC) particles are activated as the catalyst for ozone 

decomposition by being impregnated with ferric nitrate solution at room temperature. The 

impregnation process is shown in Figure 3.2. 

FCC particles are impregnated with a 41% Fe(NO3)3 solution for about 12 hours and thereafter 

the wet particles are dried at 120°C for 6 hrs in the oven followed by calcination at 450°C for 4 

hrs. After calcination, iron nitrate is decomposed to iron oxide as the active component loaded on 

the particles. After breaking up the agglomerates formed during calcination using a ball mill, the 

resulting particles are sifted using a sieve with pore size 250 μm. Scanning electron microscopy 

(SEM) images of the SFCC particles at 500 magnifications shown in Figure 3.3 suggest that, 

particles before and after impregnation are similar in size distribution. 

 

Figure 3.3  SEM images of original and impregnated SFCC particles at × 500 magnification. 
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The activated and non-activated particles are mixed to control the overall activity of the particles. 

Chemical activity of the catalysts used in the experiments is measured before and after each run 

in a small fixed bed reactor. Particle size distribution shown in Figure 3.4 is measured using BT-

9300s laser particle size analyzer. The mean particle size of particles’ blend is determined to be 

76 µm. Two kinds of particles densities, the apparent particle density, ρp, and the bulk particle 

density, ρb, are determined for the particle blend. The particle density, ρp, is measured by the 

“wet cake” method (Sun, 1991). The bulk density, ρb, is determined after the bulk volume of a 

loosely packed bed of a preweighted sample of particles is determined using a graduated 

cylinder. Apparent particle density and bulk density is 1780 kg/m3 and 890 kg/m3, respectively. 
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Figure 3.4  Particles size distribution of FCC particles. 
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3.3 Measurements of Ug and Gs 

3.3.1 Measurement of superficial gas velocity 

Superficial gas velocities for both riser and downers are monitored by rotameters. They have 

been calibrated by the manufacturer with the same fluid media (air) under standard calibration 

condition (Pc = 101325 Pa, Tc = 293.15 K). When the rotameter is used under different 

conditions, the actual flow rate can be obtained using the following equation: 

c a
actual reading

a c

PT
Q Q

P T
  (3.1)

where Pa is the actual upstream pressure of the rotameter, Pa; Ta is the actual air temperature, K. 

3.3.2 Measurement of solids circulation rate 

Solids circulation rate is measured by a measurement column located at the top of the 

downcomer. The column is divided into two halves by a central vertical plate with two flapper 

valves fixed at the top and the bottom. By appropriately flipping over the top valve from one side 

to the other, particles falling into the column are introduced to pass through the other half of the 

column where the bottom is sealed by the bottom valve. Therefore, solids circulated through the 

system can be accumulated in one side of the measurement column for a given time period. The 

solids circulation rate can then be obtained knowing the time period for solids accumulation and 

the solids packed volume. The solids circulation rate is determined using equation 3.2.:  

b
s

V
G

A t

 


 
 (3.2)

where ΔV is the volume of the particles accumulated in the half section, ρb is the bulk density of 

the particles, A is the cross-sectional area of the column, and Δt is the time period when the 

particles accumulate in one side of the measurement column. 
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3.4 Measurement of pressure drop 

To obtain pressure drops along the three beds, 20 differential pressure transducers from Omega 

Engineering (PX162-027D5V, 8 sets, 0~27.68 inch H2O; PX164-010D5V, 4 sets, 0~10 inch 

H2O; PX163-005BD5V, 3 sets, -5.0~5.0 inch H2O; and PX164-005D5V, 5 sets, 0~5 inch H2O) 

are installed along the riser column. Excitation voltage required for these pressure transducers is 

8 VDC (at 20 mA each), giving a voltage output of 1 to 5 VDC over their respective pressure 

ranges. 

Manometers are employed to calibrate the pressure transducers: air source of 20 psig is 

connected to one end of the manometer and the high-pressure pin of the unidirectional 

differential pressure transducer. The other end of the U-tube and the other pin of the pressure 

transducer are open to surrounding air. The typical calibration data are well agreeable with a 

linear calibration curve. Differential pressure data are acquired with an on-line personal 

computer via a 16-bits A/D converter. The transducer output signals are linearly proportional to 

the pressure drop in the range of 0 to 10 kPa. For all experiments, the signals of the differential 

pressure fluctuations are sampled with a frequency of 1000 Hz and stored on a hard disk of a 

computer. The total acquisition time is 40 s and thus the maximum length of the time series is 

40,000 points. The locations of pressure taps along the fluidized bed are shown in Table 3.1. 
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Table 3. 1 Locations of pressure taps 

Transducer No. 
Measuring section (distance from distributor, [m])  

76 mm riser  76 mm downer 50 mm downer  

P01 0.11~0.57 -- -- 

P02 0.57~1.02 -- -- 

P03 1.02~1.48 -- -- 

P04 1.48~1.94 -- -- 

P05 1.94~2.39 -- -- 

P06 2.39~2.85 -- -- 

P07 2.85~3.31 -- -- 

P08 3.31~3.77 4.02~4.99 0.22~0.76 

P09 3.77~4.78 3.26~4.02 0.76~1.27 

P10 4.78~5.84 2.64~3.26 1.27~1.78 

P11 5.84~6.98 2.13~2.64 1.78~2.35 

P12 6.98~7.32 1.63~2.13 2.35~3.26 

P13 7.32~7.78 1.12~1.63 3.26~4.18 

P14 7.78~8.24 -- -- 

P15 -- 0.61~1.12 -- 

P16 8.24~8.69 -- -- 

P17 -- 0.22~0.61 -- 

P18 8.69~9.15 -- -- 

P19 9.15~9.61 -- -- 

P20 9.61~10.09 -- -- 
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3.5 Measurement of solids holdup and particle velocity 

The optical fiber probe used in this work is model PV6D, developed by the Institute of 

Processing Engineering, Chinese Academy of Sciences, Beijing, China. The probe and 

measurement procedure are schematically shown in Figure 3.5.  

 

Figure 3.5  Schematic diagram of the novel optical fiber probe and its working principle. 
 

The outer diameter of the probes is 3.8 mm with two subprobes. Each of the subprobes consists 

of 8000 fine quartz fibers. The effective distance (Oki et al., 1977) of the two vertically aligned 

subprobes is 1.51 mm, and the active tip area of each subprobe is 1×1 mm. Each subprobe 

consists of many quartz fibers with a diameter of 15 µm, for light-emitting and receiving, 

arranged in alternating arrays. In order to prevent particles from occupying the blind zone, a 

glass cover of 0.2 mm thickness is placed over the probe tip (the underlying theory is elaborated 

by Liu et al. (2003)). As shown in Figure 3.5, light from the source illuminates a measuring 

volume of particles through the light-emitting fibers. The received light reflected by the particles 
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is captured by light receiving fibers and processed by a photo-multiplier. The light intensity is 

then converted into voltage signals and the voltage signals are further amplified and fed into a 

PC. The voltage signal obtained by the probe is then converted into volumetric solids 

concentration using a calibration equation. The relationship between the output signals of the 

optical fiber probe and the local solids holdup (non-linear) is first established through a proper 

calibration. 

 

 

Figure 3.6  Schematic diagram of the apparatus for solids concentration calibration of optical fiber probes. 
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In this study, the calibration is based on the method developed by Zhang et al. (1998). The 

calibration is carried out in a downer calibration system (Figure 3.6), which can be divided into 

three parts: (1) the solids feed control system, (2) the solids concentration measurement system, 

and (3) the solids collection system (Zhang et al., 1998). The falling solids fed by a vibrating 

solid feeder are trapped by a couple of sling shot valves. Weighing the trapped solids allows the 

solids concentration to be determined since the suspension density can be calculated from the 

solids weight and the volume of the trap section. A back pressure control system is used to 

enhance the back pressure of the downer column to slow down the particles velocity and increase 

the solids concentration in the column. By adjusting the valve installed in the vibrating solids 

feeder, with the help from the back pressure control system, various solids mass flow rates can 

be achieved to provide solids holdups in the downer all the way from dilute to very dense 

conditions. Under each flow rate condition, the optical fiber probe is applied to measure the 

solids reflecting light intensity. This is matched with the calculated solids holdup, to build up a 

full calibration curve. The calibration curve for particle blend is shown in Figure 3.7. 
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Figure 3.7  Solids holdup calibration curve of the optical fiber probe for FCC catalyst particles 
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From the voltage time series V(t) and the calibration equation, local instantaneous solids holdup, 

εs(t), can be calculated: 

 
(3.3)

where, f is the calibration function. The time-mean solids concentration εs can be given by 

integrating εs(t) over the time period, T: 

 
0

1 T

s s t dt
T

    (3.4)

The cross-sectional average solids holdup s , can be calculated as follow: 

2 20 0

1 2
2 d d

R R

s s sr r r r
R R

   


    (3.5)

The particle velocity was measured simultaneously with the solids holdup. When particles pass 

though the tips of the two subprobes, they would produce two similar signals with a time delay τ, 

which can be calculated by cross-correlation method. Combining the time delay τ with the 

effective distance between two subprobes, Le, the instantaneous particle velocity, Vp can be 

calculated as follow: 

 
(3.6)

To obtain the particle velocities, an integration time of 12.80 ms is set after the optimization 

(Liu, et al., 2003). Because of the turbulent nature of gas-solids suspension in fluidized beds, a 

particle passing through the upstream subprobe may not be detected by the downstream 

subprobes, due to possible particle-particle and/or particle-probe interactions. This may lead to 

low or even indeterminate cross-correlation coefficients. Such poorly or uncorrelated data need 

to be eliminated. The correlation coefficients are set to be higher than 0.6 as the criteria to collect 

the acceptable results. The direction of the particle motion is determined based on the maximum 

   s t f V t    
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cross-correlation coefficient from the positive and negative correlation of the two channel signals 

(Nieuwland et al., 1996; Werther, 1999 and Zhu et al., 2001). 

The cross-sectional average particle velocity weighted by the local solids concentrations can be 

calculated as follows: 

2 0

2
d

R

p p s
s

v v r r
R




   (3.7)

3.6 Measurement of ozone concentration 

3.6.1 Ozone generation 

Due to its strong oxidation characteristic and the explosion hazard, ozone must be generated 

when used in the experiments (Kirschner, 2000). There are three main methods of ozone 

generation for laboratory and industrial applications: ultraviolet radiation, electrolysis and corona 

discharge (Wojtowicz, 2005). An ozone generator with electronic corona discharge method 

(Model AE15M, manufactured by Absolute Ozone Inc.) was used in this study. Using bottled 

oxygen as gas supply, it produces up to 30 g/h of ozone depending on the oxygen flow rate and 

electrical current settings. Its working pressure is 5-50 psig, with oxygen flow rate of 0.1-10 

standard liter per minute (SLPM). 

Generator performance test was performed at 20°C by the manufacturer, with the generator 

powered on for more than 30 minutes. Different oxygen flow rates and potentiometer settings 

were tested, with the test results presented in Table 3.2. Higher oxygen flow rate and electrical 

current throughput will give higher ozone production, but when oxygen flow rate reaches 5 liter 

per minute (LPM), the increase of the ozone production is not very significant. The output ozone 

concentration (4-12% by weight) decreases with increasing oxygen flow rate. 
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Table 3.2  Test results for ozone generator performance 

Oxygen 
flow  

Gas 
pressure 

Current 
potentiometer

Ozone 
production

Ozone 
concentration 

[SLPM]  [psig] [%] [g/h]  [% wt] 

0.5 20 40 4.79 11.99 

1 20 50 8.27 10.35 

2 20 60 14.77 9.24 

3 20 70 19.86 8.29 

4 20 80 24.09 7.54 

5 20 100 26.99 6.76 

6 20 100 28.70 5.99 

7 20 100 30.09 5.38 

8 20 100 31.02 4.85 

9 20 100 31.29 4.35 
 

The O2-O3 mixture exiting from the ozone generator is mixed with the main fluidization air 

before entering the CFB riser or downer. With a fairly long flow path and several L-bends in the 

main air feeding lines, the mixing process is thorough. To ensure that the O2-O3 stream could be 

smoothly injected into the main air, an output pressure of 50 psig is used for the regulator 

installed on the oxygen gas cylinder, maintaining a much higher pressure for the O2-O3 flow than 

that of the main air with the pressure of less than 30 psig.  

The resulting initial ozone concentration (C0) with the main air before is set to 80-100 ppm, 

balancing various factors such as detection range of the ozone analyzer, oxygen consumption, 

and ozone concentration stability. 
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Figure 3.8  Stability of the inlet ozone concentration against time. 

 

To ensure that the data of ozone concentration in CFB riser or downers is reliable, it is necessary 

to maintain a stable inlet ozone concentration during the experimental run. Three factors may 

affect the stability of the initial ozone concentration: ozone production by the ozone generator, 

main air supply, and the mixing process. The ozone analyzer is firstly warmed up for about an 

hour before performing the experiments. Figure 3.8 shows the change of the initial ozone 

concentration (CFB riser or downer inlet ozone concentration) with the time under superficial 

gas velocity of 5.0 m/s and solids circulation rate of 100 kg/m2s. Ozone-air samples are taken 

from the windbox of the 76 mm riser. As can be seen from the magnified Figure for data in the 

first 25 min, it takes only 5 min before the initial ozone concentration can reach a steady state. 

When a stable concentration is reached, the ozone concentration fluctuations are within the range 



Chapter 3  

 

70 

 

of ± 3% around the mean value. Thereafter, this stable concentration can last for more than 3 

hours, long enough for each experimental run, which typically takes less than 2 hours. 

3.6.2 Ozone sampling 

To reduce ozone loss by decomposition during the sampling process, ozone-inert materials (e.g. 

stainless steel, Teflon, copper and aluminum) are used for sampling probes. Valves were made of 

copper and the 3 mm i. d. and 6 mm o. d. piping lines were made of Teflon. Gas samples are 

continuously drawn from the CFB column through a sampling system shown in Figure 3.9 using 

brass tubes (6 mm o.d. and 0.36 mm wall thickness) as the sampling probes. The tip of the probe 

is covered with a fine stainless steel mesh to prevent particles from being entrained into the 

sampling system. The velocity of gas sucked for sampling is 1.5 LPM, low enough to assure 

minimal disturbance of the flow structure in the CFB system. A high pressure purging air stream 

of 100 psig is introduced to blow away any particles potentially caked in the sampling probes. 

 

 

Figure 3.9  Ozone sampling and testing. 
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3.6.3 Ozone testing 

Many methods have been reported on how to measure ozone concentration (Kirschner, 2000 and 

Seinfeld and Pandis, 2006). Ethylene chemiluminescence and UV absorption are the two 

efficient techniques (Proffitt and McLaughlin, 1983; Butkevich et al., 1985; Sen et al., 1996; 

Wilson, 2005 and Li et al., 2006). Analysis of ozone by ethylene chemiluminescence is based on 

the gas-phase reaction between ozone and ethylene to produce formaldehyde and oxygen with 

emission of light. The intensity of this photoemission is proportional to the concentration of 

ozone, and is measured by a photomultiplier. The UV-absorption technique has been used more 

extensively to make in situ ozone measurements (Kirschner, 2000). 

In this study, an ozone analyzer (Model 49i, Thermo Electron Inc.) that employs the UV 

photometric method of measurement is used to measure the amount of ozone in the sample air. It 

is a dual-cell photometer, having both sample and reference air flowing at the same time. Each 

cell has a length of 37.84 cm and an inner diameter of 0.91 cm, with the internal surfaces coated 

with polyvinylidine fluoride (PVDF) to ensure that ozone undergoes no decomposition upon 

exposure to the internal surface of the cells (Thermo Electron Inc., 2004 and 2005). The UV light 

source used in ozone photometers is 253.7 nm from a low-pressure Hg discharge lamp. The light 

intensities in the sample air and the sample-free air are used to calculate ozone concentration 

according to the Beer-Lambert law: 

6 0 0

0

1
10 ln

PT I
C

PT l I
       

  
 (3.8)

where 

I0 intensity of the light beam with no ozone present [cd] 

I intensity of the light beam after passing through the sample [cd] 

l length of the light path through the sample [cm] 

C molar fraction of ozone in the sample [ppm] 
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σ specific absorption coefficient of ozone at wavelength 253.7 nm, 308 cm-1 

P pressure [mmHg] 

P0 standard pressure, 760 mmHg 

T temperature [K] 

T0 standard temperature, 273.15 K 

Figure 3.10 shows the schematic diagram of the TEI 49i ozone analyzer. The air sample is pulled 

through the analyzer by an air pump at the exit of the analyzer. Ozone concentration of the air is 

measured in the cells using UV radiation. The solenoid valves operating under computer control 

allow sample gas to pass through Cell A and reference gas (with ozone depleted in an ozone 

scrubber) through Cell B, or vice versa, depending upon which cycle the instrument is 

performing. The analyzer monitors temperature (accuracy ± 0.2°C), pressure (accuracy ± 0.3 

mmHg) and flow rates of the sample air in the cells. Temperature and pressure compensation 

features based on Equation (3.8). 

 

 

Figure 3.10  Schematic diagram of TEI 49i ozone analyzer. 
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3.6 Summary 

A multifunctional gas-solids circulating fluidized bed system is modified in order to obtain high 

flux/density operating conditions. An optical fiber probe, differential pressure transducers, and a 

UV ozone analyzer are used to measure local solids concentration and particle velocity, pressure 

drop, and ozone concentration in the CFBs, respectively. 

Spent FCC catalyst particles impregnated with iron oxide are employed as activated catalyst for 

ozone decomposition reaction in this study. The impregnation process did not change the 

particles density and size distribution much so that a mixture of non-activated and activated 

particles is used in the experiments. 

Ozone sampling probes made of brass tubes covered with fine wire mesh on the tip are 

developed to extract ozone samples from the CFB columns, providing very good representation 

of the actual ozone concentration in the CFBs. A high pressure purging air stream of 100 psig is 

introduced to blow away any particles potentially caked in the sampling probes.  

The stability check of the inlet ozone concentration over a long time period shows a stable air 

supply, good performance of the ozone generator, and thorough mixing of the fluidization air and 

the O2-O3 stream. 

 

 

 

 

  



Chapter 3  

 

74 

 

Nomenclature 

A Cross-sectional area of the column [m2] 

C molar fraction of ozone in the sample [ppm] 

C0 inlet (initial) ozone concentration [ppm]

Gs solids circulation rate [kg/(m2·s)] 

I intensity of the light beam after passing through the sample [cd]

I0 intensity of the light beam with no ozone present [cd] 

l length of the light path through the sample [cm] 

P pressure [mmHg] 

P0 standard pressure, 760 mmHg 

Pa standard pressure of the rotameter [Pa] 

Pc actual upstream pressure of the rotameter [Pa] 

Qa actual volumetric flowrate of the air [m3/s] 

Qr volumetric flowrate of the air reading from the rotameter [m3/s] 

R radius of the column [m] 

t time [s] 

T temperature [K], or time interval [s] 

T0 standard temperature, 273.15 K 

Ta actual air temperature [K] 

vp particle velocity [m/s] 

Ug superficial gas velocity [m/s] 

V voltage [volt] 

Greek letters 

εs solids holdup [-] 
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ε̄s cross-sectional average solids holdup [-] 

ρb, ρp bulk density, apparent particle density [kg/m3] 

σ specific absorption coefficient of ozone at 253.7 nm, 308 cm-1 

τ transit time between light-receiving fiber 1 and 2 [s] 

ΔV volume of the particles accumulated in the measurement column 

Subscripts 

0, 1 initial (inlet) and exit ozone concentration 

1, 2 subprobe of optical fiber probe

g gas 

p particle 

r reaction 

s solids 
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CHAPTER 4 

Hydrodynamics in a HDCFB Riser-Solids Holdup and  

Flow Development 

4.1 Introduction 

Circulating fluidized beds (CFBs) have been successfully and widely used in industrial 

operations such as combustion, Fischer-Tropsch synthesis, partial oxidation, and fluid-catalytic 

cracking (FCC) (Bi and L. Fan, 1992 and Zhu and Cheng, 2005). The FCC process has been 

considered as one of the most successful processes which are used to convert high molecular-

weight heavy oil stocks into lighter hydrocarbon products by utilizing a riser reactor, where the 

solids circulation rate could range from 400 kg/m2s to 1200 kg/m2s and the superficial gas 

velocity from 6 m/s to 28 m/s, increasing with the height (Zhu and Bi, 1995). Circulating 

fluidized beds operating under high solids flux and/or high solids holdup conditions can be 

referred to as high flux (HFCFB) and/or high density circulating fluidized beds (HDCFB), while 

those operating at low solids flux (e.g. 200 kg/m2s) and low suspension densities (3% in the 

developed region) are low density circulating fluidized beds (LDCFB) (Bi and Zhu, 1993). Good 

understanding of the gas and solids flow structures in CFB reactors is critical for proper 

industrial design and operation. Despite extensive researches dedicated to gas-solids fluidized 

bed over the past several decades, very limited work has been conducted under solids circulation 

rates beyond 500 kg/m2s (Azzi et al., 1991; Martin et al., 1992; Contractor et al., 1994 and 

Knowlton, 1995). 

Recently, studies under high solids flux (Issangya et al., 1999; Grace, 2000; Karri and Knowlton, 

1999; Parssinen and Zhu, 2001; and Yan and Zhu, 2004) have shown that the hydrodynamics are 

quite different compared to low flux and low density CFB risers operated with Gs of 200 kg/m2s 

or less. Issangya et al. (1999) conducted tests in a 6 m high riser under high superficial gas 

velocities (Ug = 4-8 m/s) and high solids fluxes (Gs = 200-425 kg/m2s) and reported that there 

was negligible net downflow of solids at the wall, and the cross-sectional mean solids holdups 
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ranged from 0.1 to 0.2, with little axial variation. Liu et al. (1999) studied gas dispersion in the 

same system used by Issangya et al. (1999) and found that gas backmixing became smaller for 

high-density operating conditions. More recently, Bi (2004) further investigated the gas and 

solids mixing in high density risers. His results illustrated that there existed a clear transition of 

both gas and solids axial mixing behavior when the operating conditions changed from LDCFB 

to HDCFB, corresponding to the disappearance of the solids downward flow near the wall. Grace 

et al. (1999) proposed a new flow regime named “dense suspension upflow” (DSU) to represent 

the flow dynamics inside a high density riser and claimed that this flow regime “clearly requires 

both high superficial gas velocity and high solids fluxes.” Compared to the results in DSU 

regime, Pärssinen et al. (2001) described that the axial solids holdup was clearly less than 0.1 in 

the upper section of the riser with a dense bottom region (εs ≈ 0.2) which clearly was different 

from solids holdups in the DSU regime. On the other hand, radial solids concentration profiles at 

high Gs (>300 kg/m2 s) were less uniform than that of lower Gs (<200 kg/m2 s) reported by 

Issangya et al. (1999). Solids holdups were found to be lower than 0.06 in the center region (r/R 

< 0.5) and increased to 0.4-0.44 at the wall region under high flux operating conditions. 

Understanding the fluid and particle dynamics is evidently of importance to successful modeling 

of CFB reactors. Flow dynamics also influences pressure drop across the riser, heat transfer 

(Grace et al., 1986) as well as erosion rate of surfaces (Zhu et al., 1989). Improved 

understanding of the flow structures in high flux/density circulating fluidized bed systems should 

enable better comprehension of the advantages and limitations of HDCFB reactors, in turn 

leading to more reliable scale-up and more cost-effective units (Issangya, 1998). Moreover, 

further increase of the solids flux and solids suspension density will be very useful for other 

applications requiring even higher solids/gas ratios and higher solids concentration. In addition, 

extension of risers to higher density conditions would be of considerable fundamental interest. It 

is possible to operate well beyond conditions which are usually considered to induce chocking 

with careful design of the equipment and for relatively fine (no-slugging) systems (Bi et al., 

1993 and Zhu and Bi, 1995). It has been shown that the dense region at the bottom can extend to 

the whole riser leading to a high density riser with overall solids holdup of 0.15-0.20 (Contractor 

et al., 1994 and Issangya et al., 1999). Based on these conditions, it is of interest to study flow 
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regimes, the mechanism of instability, local phase segregations and axial and radial dispersions 

under loading conditions and suspension densities which exceed those previous researches (Zhu 

and Bi, 1995). 

By using an optical fiber probe system, which can take the measurements of solids holdup and 

particle velocity simultaneously, this study was aimed at providing improved experimental 

investigation in high flux/density circulating fluidized bed riser, including local solids holdup 

distribution and its evolution with operating conditions. The fluctuations of the local flow 

structures were also investigated.  
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4.2 Experimental details 

4.2.1 CFB experimental setup 
 

   

   

Figure 4.1  Schematic diagram of the multifunctional CFB system. 
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All experiments were conducted in a multifunctional circulating fluidized bed (MCFB) system, 

schematically shown in Figure 4.1. The system includes three circulating fluidized beds, the left 

hand fluidized bed serves as a high flux/density circulating fluidized bed riser (76 mm i. d. and 

10 m high). The right hand fluidized beds are two circulating fluidized bed downers (co-current 

downflow circulating fluidized beds) of different diameters (76 mm i. d. and 5.8 m hight and 50 

mm and 4.9 m high, respectively). A downcomer with an inner diameter of 203 mm returns 

solids during riser operation. At its bottom there is a solids storage tank with an inner diameter 

up to 457 mm. The two are used as general solids storage for the entire system. Total solids 

inventory of FCC particles in the downcomer and storage tank could be up to 450 kg, equivalent 

to a solids height of approximately 6.0 m. This high solids level ensures high back pressure in 

the downcomer and enables high solids circulation rates and high solids concentrations in the 

CFBs. 

The multifunctional circulating fluidized bed (MCFB) can be operated as a CFB riser and 

downers. For CFB riser operations, particles in the storage tank fluidized by aeration air and then 

flow into the bottom of the riser and obtained momentum from the air passing through the riser 

gas distributor made of perforated plates (2 mm×176 holes, 12% opening area) and are conveyed 

upward along the column. At the top of the riser, particles and gas are separated by primary, 

secondary and tertiary cyclones and most of the particles returned to the downcomer and further 

down to the storage tank. Fine particles leaving from the cyclones are trapped by the bagfilter 

and returned periodically to the downcomer. When the MCFB is under downer operating mode, 

solid particles are first lifted through the riser, separated by the primary cyclone fixed at the top 

of the downcomer and then fed into the downers. At the top of either downer is a gas-solids 

distributor (details shown in Figure 4.1) where the particles are uniformly distributed along with 

the downer air to flow down concurrently. After fast separation by gravity at the exit of either 

downer column, most particles are retained in the storage tank, with the remaining particles 

captured by two cyclones installed in series at the top of the exhaust pipeline and the common 

bagfilter. To eliminate the effects of solids inventory and other influencing parameters on the 

hydrodynamic characteristics, the whole experimental work in this study was carried out with a 

constant particle mass of 400 kg of FCC particles stored in the downcomer and the storage tank. 
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The entire fluidized bed system uses aluminum as the main construction material with small 

portions made of Plexiglas for visual observation. In order to minimize possible electrostatic 

charges formed in the columns during the experiments, the whole fluidized bed system is 

electrically grounded. A measuring device for solids circulation rate is installed in the top section 

of the downcomer. By regulating the ball valve located in the solids feeding line connecting the 

storage tank and the riser column, the solids circulation rate can be adjusted and maintained at 

the desired level during each experiment. The fluidization gas used in this study is air at ambient 

temperature, supplied by a large compressor capable of delivering 1000 SCFM at 100 psi. 

Equilibrium FCC catalyst particles impregnated with ferric oxide (Fe2O3) are used in this study 

and other catalytic ozone decomposition experiments. The Sauter mean diameter and the particle 

density is 76 µm and 1780 kg/m3 respectively. The particle size distribution measured using BT-

9300s laser particle size analyzer is listed in Table 4.1. 

 

Table 4.1  Size distribution of the FCC particles. 

Particle Size (µm) Volume Fraction (%) 

0-20 0.61 

20-40 9.72 

40-60 26.32 

60-80 22.80 

80-130 33.24 

>130 7.31 

 

4.2.2 Measurements of solids holdup  
 

Experimental measurements include differential pressure, local solids concentration (solids 

holdup) and particle velocity. Twenty pressure taps were installed along the CFB column and 
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connected with 19 differential pressure transducers (Omega PX162) to measure axial profiles of 

pressure gradient. The pressure gradient was mainly used to double check the solids holdup 

measured by an optical fiber probe mentioned below. Local solids holdup and particle velocity 

were measured simultaneously using a novel reflective-type optical fiber probe which has been 

shown to be effective and accurate for measuring the local solids concentration and particle 

velocity in high velocity fluidized beds and thus has been widely used by many investigators 

(Patrose and Caram, 1982 and Zhou et al., 1995). It yields high signal-to-noise ratios and is 

nearly free from interference by temperature, humidity, electrostatics and electromagnetic field. 

Moreover, its small size does not significantly disturb the overall flow structure in CFB systems 

with proper design. The optical fiber probe used in this work is model PV6D, developed by the 

Institute of Processing Engineering, Chinese Academy of Sciences, Beijing, China. The probe 

and measurement procedure are schematically shown in Figure 2. The outer diameter of the 

probes is 3.8 mm and it has two subprobes. The effective distance of the two vertically aligned 

subprobes is 1.51 mm, and the active tip area of each subprobe is 1×1 mm. Each subprobe 

consists of many quartz fibers with a diameter of 15 µm, for light-emitting and receiving, 

arranged in alternating arrays. In order to prevent particles from occupying the blind zone, a 

glass cover of 0.2 mm thickness is placed over the probe tip. The underlying theory was 

elaborated by Liu et al. (2003). 
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Figure 4.2  Schematic diagram of the novel optical fiber probe and its working principle. 
 

As shown in Figure 4.2, light from the source illuminates a measuring volume of particles 

through the light-emitting fibers. The received light reflected by the particles is captured by light 

receiving fibers and processed by a photo-multiplier. The light intensity is then converted into 

voltage signals and the voltage signals are further amplified and fed into a PC. The voltage signal 

obtained by the probe is then converted into volumetric solids concentration using a calibration 

equation. The relationship between the output signals of the optical fiber probe and the local 

solids holdup (non-linear) is first established through a proper calibration based on the method 

developed by Zhang et al. (1998). 

From the voltage time series V(t) and the calibration equation, local instantaneous solids holdup, 

εs(t), can be calculated: 

 
(4.1)

where, f is the calibration function. The time-mean solids concentration εs can be given by 

integrating εs(t) over the time period, T: 

   s t f V t    
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 
0

1 T

s s t dt
T

    (4.2)

The cross-sectional average solids holdup s , can be calculated as follow: 

2 20 0

1 2
2 d d

R R

s s sr r r r
R R

   


    (4.3)

In order to map the entire cross-section of the riser, ten axial measuring ports (z = 0.59, 1.02, 

1.94, 2.85, 3.77, 4.78, 5.84, 7.78, 9.61, and 10.09 m above the gas distributor) are installed along 

the column. Measurements are conducted at six radial positions (r/R = 0, 0.316, 0.548, 0.707, 

0.837 and 0.950, where r is the distance from the center and R is the riser radius) on each axial 

level of the CFB riser system. These positions are determined by dividing the column cross-

section into five equal areas and determining the mid-point of each of these areas. For the 

hydrodynamic experiments in the current study, voltage signals from the optical fiber probe are 

sampled at a frequency of 100 kHz with 1,638,40 data points for each measurement under a wide 

range of operating conditions so that detailed dynamic nature of the flow structure can be fully 

collected. To get the valid and repeatable data, all measurements are repeated at least 5 times.
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4.3 Results and discussion 

4.3.1 Achieving high flux/density operating conditions in CFB riser 
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Figure 4.3  Characteristics of flow structure under extremely high flux/density in a CFB riser. 
 

Figure 4.3 compares local and cross-sectional mean solids holdup in the CFB riser for solids 

circulation rates ranging between 100 kg/m2s and 1000 kg/m2s. To the best of our knowledge, 

such a high solids flux has never been reported in a laboratory scale pilot plant experiments. 

Firstly, at Gs of 100 kg/m2s, the axial profile is approximately exponential shape with a constant 

solids holdup (lower than 0.01) in the upper section of the riser. By increasing the solids 
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circulation rate (Gs), the axial profile became non-uniform with solids concentration (solids 

holdup) decreasing gradually upwards to the top of the riser. When Gs is extremely high, 

especially high than 700 kg/m2s, the non-uniform axial flow structure is replaced by a 

homogenous axial profile with solids holdup higher than 0.2 in the entire riser. Interestingly, the 

radial distributions of the solids holdup are totally different under different operating conditions. 

At low solids flux, the radial profile is comparably more uniform and less sensitive to the change 

of the axial position. Increasing Gs the areas of the relatively dilute region continues decreasing. 

The solids holdup in the center of the riser is near to 0.1 under extremely high Gs. Moving 

outwards towards the wall, solids holdup increase monotonically. Solids holdup remained greater 

than 0.4 over a wide cross-sectional area (r/R = 0.7-1.0, about 60% of the cross-sectional area) 

even at the top section of the riser. Moreover, flow development was much slower under high 

flux as the radial profiles continued to change as seen in Figure 4.3. The above phenomenon 

suggests that low solids flux data has very limited usefulness to high solids flux reactor modeling 

and design, especially for solids fluxes within the industrial range (400-1200 kg/m2s) in FCC 

riser. Therefore, there is clearly a need to conduct more fundamental researches to study both 

axial and radial profiles of solids holdup and flow structures in CFB systems operating at higher 

flux and/or density. 

However, achieving high flux/density in a CFB system is extremely difficult in any experimental 

lab. While a few (only a few) research groups (e.g. University of British Columbian, UBC, 

Vancouver and University of Western Ontario, UWO, Ontario) have tried to obtain high 

flux/density operating, the solids fluxes are still far below the practical fluxes in industrial 

reactor processes. Theoretically, Bi and Zhu (1993) proposed that high densities and high solids 

fluxes could be accomplished by a combination of high solids inventories, large downcomer-to-

riser diameter ratio, a low pressure drop solids feeder, and minimizing pressure drops in solids 

separation devices and fittings along the CFB loop. Besides, a proper blower and suitable particle 

size/riser diameter combinations are also of importance. Based on their suggestion, a dual loop 

CFB was used to reduce total pressure drop of the recycle system at UBC which enabled a high 

solids flux of abound 400 kg/m2s to be achieved. A twin-riser CFB with a large downcomer-to-
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riser ratio was constructed at UWO which achieved high fluxes up to 500 kg/m2s. Building 

further upon the practical experience, we have: 

(1) installed a large diameter storage tank at the bottom of the downcomer; 

(2) replaced the blower with a compressor of capacity 1000 SCFM at 100 psi; 

(3) installed an additional air exhaust pipe at the top of the of the downcomer to discharge most 

of the air flowing upward through the downcomer, minimizing downcomer air flowing into the 

primary cyclone, so that the pressure drop across the cyclone is significantly reduced. This step 

increased the available pressure for the riser to achieve higher density; 

(4) installed two small deflecting plates (see the left insert of Figure 4.1) in the solids inlet 

region, one vertically at the outlet of the inclined pipe covering 30% of the lower end of the 

inclined feed pipe joining the riser to prevent the riser air from flowing into the solids feeding 

pipe which tends to restrict solids downflow. The other deflecting plate was half-way up in the 

inclined pipe covering 30% of the cross-sectional area of the inclined pipe. It directed particles 

downwards so as to provide a quit “exit route” for the remaining air entering the feed pipe so that 

the solids movement in the inclined pipe is much faster and steadier. 

After modification, the riser can be operated much more steadily at solids circulation rates of up 

to 1000 kg/m2s, much higher than 400 kg/m2s in the original system reported by Li (2010). This 

allows us to operate the CFB system under a wide range of operating conditions to obtain a 

comprehensive map of solids flow in the new solids recycle loop. An example is the data set 

plotted in Figure 4.3 and discussed above. 
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4.3.2 Axial profiles of solids holdup 
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Figure 4.4  Axial solids holdup distribution for various operating conditions. 
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Figure 4.4 displays the axial distribution of cross-sectional mean solids holdup in the CFB riser 

for superficial gas velocity, Ug, of 5, 7 and 9 m/s and solids circulation rate, Gs, up to 1000 

kg/m2s. The cross-sectional mean solids holdups are obtained by integrating local solids holdups 

measured at 5 radial positions (excluding the central region) measured by the optical fiber probe. 

As shown in Figure 4.4, significantly different axial profiles can be seen under various operating 

conditions. In general, as solids circulation rate (Gs) increases, the approximately exponential-

shaped axial profile is replaced by the relatively non-uniform axial profile with a dense region at 

the base and a dilute region at the top of the riser and then at even higher solids fluxes, by more 

uniform axial profiles. In Figures 4.4 (a) and 4.4 (b), when Ug is constant the solids holdup 

increases with increasing Gs, while for a constant solids circulation rate the solids holdup 

decreases with increasing Ug as plotted in Figure 4.4 (c). 

In details, relatively high solids holdups near the bottom of the riser are extensively affected by 

the particle acceleration and the gas distributor. Above this region, at the lowest Gs of 100 

kg/m2s, the solids holdup decreases exponentially, eventually approaching a constant value up to 

the riser exit. This exponential shape occurs when solids entering in the riser are immediately 

entrained so that there is no significant particle accumulation at the riser bottom. By increasing 

Gs gradually, a significant dense region formed at the bottom of the riser leading to a non-

uniform axial solids holdup profile. It can also be seen that the solids holdup along axial 

elevations is increasing with increasing Gs at a fixed superficial gas velocity. Meanwhile, the 

solids holdup is also increasing at each axial level with decreasing Ug when Gs is constant. The 

dense region occurs between 2 and 4 m heights with the high solids holdup raging from 0.1 to 

0.25. Above this region, relatively dilute regions are attained and the average solids holdup 

becomes independent of elevation. From this plot, it can be seen that the 2 m-elevation lies in the 

developing flow region with high solids holdups and a fully-developed region with relatively low 

solids concentrations begins at 5 m height. Interestingly, the shape of the axial profile is hardly 

changed with various operating conditions. It is apparent that the axial profiles move in parallel 

from low solids holdup towards high solids holdup with increasing Gs and/or decreasing Ug. The 

solids holdup and the flow development in both regions of the riser do not seem to depend on the 

height, but are expected to depend on gas velocity and solids loading. This may be partly 
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affected by the solids inventory due to the overall pressure balance in the loop of the riser and 

downcomer and by the configurations of the HFCFB/HDCFB system. The pressure at the riser 

bottom must be equal to the pressure at the bottom of the return system minus the pressure drop 

across the solids recycle valve. If the solids inventory is high, the pressure head in the return 

system would be sufficiently high. Therefore, it is easy to adjust the pressure in the return system 

to meet the requirement for pressure balance in the whole loop under various operating 

conditions. Moreover, this axial profile is different from the height-dependent S-shaped axial 

profile reported by other authors under high flux and/or high density operating conditions 

(Issangya et al., 1999; Pärssinen and Zhu, 2001 and Yan and Zhu, 2004).  

Further increasing Gs, significantly dense solids holdup in the entire height of the riser is 

achieved ranging from 0.23 to 0.38 when solids circulation rate is extremely high, particularly 

higher than 700 kg/m2s. The uniform and dense gas-solids suspension has been achieved along 

the whole column if ignoring the entrance effect. This homogenous axial structure is similar to 

other results reported by previous researchers. Contractor et al. (1994) reported that volumetric 

solids concentrations between 0.15 and 0.2 could cover the entire riser for a solids flux up to 685 

kg/m2s and gas velocity up to 5.7 m/s. Issangya et al. (1999) also found that the apparent solids 

holdup obtained from pressure drops could be maintained as high as 0.2 in the whole column at 

Ug = 8 m/s and Gs = 425 kg/m2s. In contrast to the non-uniformity axial profiles with solids 

circulation rate lower than 700 kg/m2s, the dense bed at the base riser of the can persist over the 

entire column under such high Gs. Axial distribution of solids holdup becomes very uniform. As 

already noted, it is clear that being able to achieve this kind of homogenous axial profile depends 

on being able to provide sufficient pressure drop. If the pressure head is high enough, the 

homogenous axial profile appears to be robust and self-sustaining over a considerable range of 

superficial gas velocity and solids flux. Information about the effect of solids circulation rate on 

the respective axial profiles in an industrial riser is very useful since the solids flux varies widely 

from 400 to 1200 kg/m2s in the industrial reactors. 

Bi and Zhu (1993) proposed the concept of the high-density operation to distinguish the high-

flux and high-density operating conditions from those low-flux and low-density one. Solids flux 

of over 200 kg/m2s is used to distinguish a high-flux operation. In their following work, Zhu and 
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Bi (1995) used Gs > 200 kg/m2s and εs > 0.03-0.05 in the developed section of the riser to 

demarcate high-density operation from the low-density one. It is clear that what we have seen 

here in the high flux riser does match the high flux and /or high density operating conditions 

suggested by Zhu and Bi (1995). In addition, the result is also comparable to the results (0.25-

0.30) in C-TFB reported by Zhu and Zhu (2008) with a special mode operated at low superficial 

gas velocity and high solids circulation rate, resulting in a highly dense suspension and uniform 

axial flow structure. The uniform high density structure stresses the importance to both uniform 

gas-solids contacting efficiency and uniform bed-to-wall heat transfer throughout the whole 

reactor.  

4.3.3 Radial profiles of solids holdup 
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Figure 4.5  Comparison of local solids holdup profiles in a CFB riser under different operating conditions. 
 

Typical radial profiles of solids holdup in the CFB riser are presented in Figure 4.5 where results 

are compared to the operating conditions (superficial gas velocity, Ug and solids circulation rate, 
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Gs) as well as different axial elevations. Under all operating conditions, radial distributions of the 

solids holdup are nonuniform with dilute and dense regions. The radial profile is relatively flat in 

the center of the riser and the solids holdup increased towards the wall with the maximum value 

right at the wall at 0.59. Operating conditions affect dramatically the radial solids holdup 

distribution. The riser became progressively denser away from the wall towards the center by 

feeding more solids at a fixed superficial velocity. The solids holdup and its radial distribution in 

the high density CFB riser are quite different from those in the low density systems. Obviously, 

the radial profile is a clear-cut “core-annulus” structure with a dilute and uniform core region 

surrounded by a dense annulus zone when Gs is low. The radial variation can be divided into 

three parts: a central region up to r/R ≈ 0.5-0.6 with a low and fairly constant value with a slight 

increase towards the wall, an intermediate region between r/R ≈ 0.5-0.6 and r/R ≈ 0.8-0.9, where 

solids holdup appreciably increases, and a wall region when r/R > 0.9 where the solids holdup is 

high but not more than 0.35. The results are similar to those reported by other researchers under 

comparable operating conditions. As Gs increases to higher than 700 kg/m2s, the dilute region 

shrinks (r/R = 0-0.2, less than 20% of the cross-sectional area). After this short region, solids 

holdup increase gradually towards the wall which can be up to 0.5. The “core-annuals” radial 

profile is replaced by the concave parabolic curve under extremely high Gs.  
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Figure 4.6  Radial solids holdup distribution for various operating conditions. 
 

Regarding the results in columns I, II and V in Figure 4.6, it is clear that the superficial gas 

velocity plays important roles in solids distribution in radial and axial directions. It is apparent 

that reducing the superficial gas velocity results in an increased solids holdup and thus an 

increased solids holdup profile. Additionally, superficial gas velocity influences the solids 

holdup not only in the near wall region but also in the center of the riser. For example, when 

superficial gas velocity increases from 5 to 9 m/s, the solids holdup decreases in the center 

region at different heights and drops more rapidly in the wall region especially at the bottom of 

the riser. Moreover, the solids holdup distribution was less uniform at lower superficial gas 

velocity. Through comparison between columns II, III and IV and/or between V, VI and VII, 

increasing solids circulation rate led to a higher solids holdup with a less uniform profile. Under 
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high solids circulation rates, the effects of the walls are more confined to the near wall region 

generating an increased solids holdup gradient. Lower Gs make the solids holdup distribution 

more even with lower local solids holdup at each radial position. In addition, the solids holdup 

distribution becomes more uniform as the axial level increases. Furthermore, the solids holdup is 

higher in the lower section than the upper section at almost all the operating conditions. In the 

upper section of the riser, when Gs is lower than 500 kg/m2s, the solids holdup in the wall region 

is lower than that in the bottom section. Similar phenomena are also reported by other 

researchers in the previous studies. Moreover, the solids holdup in the central region remains 

almost constant throughout the riser which had been also described by others (Yang et al., 

(1997), Wei et al., (1998), Issangya et al., (2000) and Parssinen and Zhu (2001)). Again, the 

axial variations of radial profiles of solids holdup changed very little under extremely high solids 

circulating rate of 1000 kg/m2s. 

4.3.4 Flow development of solids holdup 

The solids flow can be considered as fully developed if the radial solids distribution remains 

relatively unchanged with the axial location. A detailed review of Figures 4.3 and 4.6 shows that 

increasing the superficial gas velocity accelerates the solids flow development. When the solids 

circulation rate is increased from 300 kg/m2s to 500 kg/m2s and then to 700 kg/m2s at a constant 

superficial gas velocity (Ug = 7 m/s), the flow development becomes much slower. A similar 

tendency is also observed when the superficial gas velocity is 9 m/s. 
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Figure 4.7  Overall view of the solids hold up under different operating conditions. 
 

To facilitate the analysis of flow development, the three-dimensional profiles of solids holdup 

are given in Figure 4.7. It shows clearly that the solids concentration in the riser center remains 

nearly constant throughout the riser under each operating condition when Gs < 700 kg/m2s.  

Figure 4.7 further expresses that, even with the change of operating conditions, the solids holdup 

in the riser center hardly changes with the Gs lower than 700 kg/m2s. As a result, the flow 

development within such solids fluxes is mostly represented by the reduction of the solids holdup 

toward the riser top at values of r/R from about 0.50 to 1.00. Similar results are also reported by 

previous studies under high flux conditions (Issangya et al., 2000; Parssinen and Zhu, 2001; Yan 

and Zhu, 2004 and Huang et al., 2007). However, when Gs is up to or higher than 700 kg/m2s, 

the flow development becomes extremely slower with a reduced core region of relatively low 
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solids holdups, and the solids holdup is increasing gradually from the center to the wall region. 

The radial solids holdup profiles are typically parabolic in shape as aforementioned. 
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Figure 4.8  Solids holdup distribution in different radial regions for various operating conditions 

 

In order to further examine the solids flow development, the axial profiles of the solids holdups 

in the three dimensionless radial regions r/R = 0.0-0.548, 0.548-0.837 and 0.837-1.0 are 

described in Figure 4.8. This figure describes the difference in the flow development in the three 

dimensionless radial regions. As is described in the left of the Figure 4.8, in the center (r/R = 0.0-

0.548, 40% of the cross-sectional area), the solids holdup is very low and nearly constant all the 

way from the riser bottom to the top with no significant difference in this region at various 

superficial gas velocities. In the middle region (r/R = 0.548-0.837, 40% of the cross-sectional 
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area), on the other hand, the solids holdup profile varies at the entrance region up to 

approximately 4 m and then becomes flat toward the riser top. Compared to the middle region, 

developing section of the wall region at the riser bottom experienced more changes. Most 

significant variations of the solids holdup happen in the wall region (r/R = 0.837-1.0, 20% of the 

cross-sectional area), where the solids concentration drops sharply with increasing height until 

approximately 4 m above the riser distributor. The solids holdup profile then becomes relatively 

flat till the top of the column. The speed of the flow development mainly depends on this region.  

A similar trend in flow development was observed when Gs is below 500 kg/m2s at superficial 

gas velocity, Ug, of 9 m/s. When Gs is higher than 700 kg/m2s, the solids holdup in the central 

region remained at about 0.1 in the whole riser. Solids holdup in the middle region is high up to 

0.4 and remains unchanged along the riser up to 4 m-level and then gradually decreases. 

However, the solids holdup still remained high value, up to 0.25, in this middle region. The 

solids holdup in the wall region is rather flat with a value up to 0.55 along all the axial elevations 

for Gs = 1000 kg/m2s. This insensitivity to the height levels suggests that the two-phase 

suspension density reaches a saturation state under extremely high solids circulation rate. In 

addition, Figure 4.8 also shows that increasing Gs significantly slows the flow development 

process whereas increasing Ug accelerates it. 

The flow development can also be shown by the radial nonuniformity index (RNI) which was 

proposed by Zhu and Manyele (2001). The RNI is defined for each given parameter as the 

standard deviation of its values in the radial direction, normalized by the maximum possible 

standard deviation for the same parameter with the same average cross-sectional value. The RNI 

can be used to distinguish exactly the structure of radial profiles on a quantitative basis at 

different locations and/or operating conditions.  

Figure 4.9 shows the RNIs (RNI (εs)) in terms of the solids holdup along the axial direction in 

the riser. In general, all RNI (εs) profiles are showing that the value of RNI (εs) is higher at the 

bottom of the riser followed by a relatively flat curve along the axial direction. Obviously, higher 

RNI (εs) values at the bottom are due to the development of solids flow. 
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Figure 4.9  RNI’s of solids holdup the riser under different operating conditions 

(a) RNI under different operating conditions and (b) Relationship between RNI and 
solids holdup. 

 

The effect of operating conditions on the RNI (εs) can be inferred from Figure 4.9(a). RNI (εs) 

decreases with increasing superficial gas velocity showing that the radial profiles of solids 
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holdup become more uniform. High gas velocity can enhance the gas-particle interactions. Solids 

flow development would be accelerated by high drag force impacted by high speed gas so that 

the solids flow structure became more uniform. At a given superficial gas velocity, high solids 

circulation rate results in higher RNI (εs) because of the increased solids holdup. Higher solids 

holdup induces the preferential formation of large clusters near the wall, thus increasing the 

radial nonuniformity. Moreover, Figure 4.9(b) shows a relationship between the RNI (εs) and 

cross-sectional average solids holdup. It shows that the RNI (εs) values increase with the cross-

sectional average solids holdup. This is consistent with the general understanding that radial 

solids concentration profiles become steepened with increased average concentration (Zhu and 

Manyele, 2001). It is noted the long distance for the RNI (εs) to become stabilized under higher 

Gs or lower Ug. This indicates a lengthy process for the radial flow structure to be fully 

developed in the riser. 

4.3.5 Flow fluctuation in the high flux/density riser 

From the foregoing analysis, it is clear that the local solids holdups vary against different radial 

positions under a wide range of operating conditions. In order to gain a better understanding of 

the local solids flow development, it is important to examine the flow fluctuations under 

different operating conditions especially in high density (HDCFB) and low density circulating 

fluidized beds (LDCFB). Fluctuations can be reflected quantitatively in the standard deviation 

and the intermittency indices (γ) of solids holdups. Definition of γ in detailed can be found in the 

previous paper (Brereton and Grace, 1993). Besides, the intermittency index can also be used to 

describe the phenomenon of segregation between gas and solids. The value of intermittency 

index is equal to one if the high-velocity flow in the riser consisted of “ideal cluster flow”. On 

the other hand, the value of intermittency index is zero if there is a “perfect core-annulus flow”. 

Figure 4.10 compares the radial profiles of local solids holdup, standard deviation and the 

corresponding intermittency index at two axial heights.  

Generally, the local solids holdup is lowest and has a relatively flat radial distribution under the 

low flux of 100 kg/m2s. With increasing solids flux or decreasing gas velocity, the solids holdup 

increases, and the radial distribution becomes steeper. The standard deviation and γ increase with 
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increasing Gs or decreasing Ug. This suggests increased flow fluctuation with the increase of Gs 

or decrease of Ug. 
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Figure 4.10  Radial profiles of local solids holdup, standard deviation and intermittency indices along the 
riser under different operating conditions. 

 

The fluctuation of low flux solids holdups increases outward, reaching maxima at the outer wall. 

For high flux conditions, the fluctuation increases gradually to a peak at r/R = 0.6-0.7 and 

decreases thereafter towards the wall. The greatest fluctuation always occurs in the middle region 

of the column under high flux operating conditions which are also reported under high density 
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operating conditions in many papers (Grace et al., 1999; Issangya et al., 2000; Zhu and Zhu 2008 

and Qi et al., 2009). This phenomenon has been considered as an important distinguishing 

feature of high density CFB risers. When Gs is lower than 500 kg/m2s, the standard deviation and 

the corresponding intermittency index remains a very low level around 0.02-0.05 up to r/R ≈ 0.4-

0.6. Considering its solids holdup profile, this indicates that a wide dilute region still occupies 

the center surrounded by a dense annulus region at the wall. Lower solids holdups in the center 

of the column and higher solids concentrations near the wall make fewer fluctuations. It is found 

that the standard deviations and intermittency indices under extremely high solids flux of 1000 

kg/m2s are much higher than those under other low high solids flux conditions at almost all radial 

positions. This highest magnitude of fluctuations may due to the relatively higher solids holdup 

suggesting that the gas-solids and inter-particle interaction in this particularly high flux CFB are 

more vigorous than those in relatively low solids flux CFBs operations. The dramatic 

fluctuations probably induce better gas-solids contacting and mixing, improving consequently 

the reactor performance.  

Additionally, for each solids circulation rates, there is a clear development with height, with 

standard deviation and γ tending to decrease with increasing axial level. This illustrates that the 

flow structure tends to change with increasing height from one where cluster-flow structures are 

more common to one where the core-annulus structure becomes predominant. The same results 

are also presented by Brereton et al. (1993). 
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4.4 Conclusions 

The current work presented a comprehensive insight into the solids holdup and flow 

development phenomena in a high flux/density (up to 1000 kg/m2s) riser, using a multipurpose 

optical fiber probe which is capable of simultaneously measuring local solids holdup and particle 

velocity. 

Solids suspension having a solids holdup of up to 0.2-0.3 can be maintained throughout the 

entire high flux/density riser. A homogenous axial flow structure is observed at Gs = 1000 

kg/m2s.  

Radial distributions of the solids holdup are nonuniform with a dilute region and a dense region. 

For Gs is greater than 700 kg/m2s, the dilute core region shrinks to about r/R = 0-0.2, less than 

20% of the cross-sectional area. Solids holdups thereafter increase monotonically towards the 

wall reaching up to 0.59.  

The radial profile of solids holdup under extremely high Gs is a concave parabolic curve.The 

solids holdup remains low and relatively constant at the riser center throughout the riser, 

suggesting very quick solids flow development in the riser center at the bottom section. In the 

wall region, however, the flow development is significantly slower, with the solids holdup near 

the wall decreasing slowly toward the riser top. Increasing solids flux prolongs the solids flow 

development.  

Better gas-solids contacting and mixing indicated by standard deviation and intermittency index 

of the solids holdup over the entire cross-sectional area under extremely high solids flux can 

greatly lead to vigorous interactions between gas and solids phases, improving the reactor 

performance. 

  



Chapter 4 

105 

 

Nomenclature 

f calibration function for optical fiber probe 

Gs solids circulation rate [kg/(m2·s)] 

Le effective distance between light-receiving fiber A and B [m] 

t time [s] 

T time interval [s] 

Ug superficial gas velocity [m/s] 

V(t) voltage time series [volt] 

z axial coordinate, or distance from gas distributor [m] 

Greek letters 

εs solids holdup [-] 

εs(t) local instantaneous solids holdup [-] 

ε̄s average solids holdup in the entire column [-] 

τ lag time [s] 

Subscripts 

1, 2 subprobe 1 and 2 of optical fiber probe 

g Gas 

p Particle 

s Solids 
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CHAPTER 5 

Hydrodynamics in a HDCFB Riser-Particle Velocity and Solids Flux 

5.1 Introduction 

Circulating fluidized bed as a representative solids circulation system is utilized by chemical, 

metallurgical, pharmaceutical as well as energy and environmental industries. It offers 

advantages with respect to effective mass and heat transfer, high solids/gas throughput, flexible 

gas-solids flow rate control and so forth (van der Hoef et al., 2004 and Kunii and Levenspiel, 

1991). The performance of CFB systems deeply depends on the hydrodynamics. The major 

hydrodynamic features of gas-solids CFB risers have been delineated with axial dense/dilute 

transition solids flow and a core-annulus structure in radial direction (Li and Kwauk, 1980; Bai 

et al., 1992; Nieuwland et al., 1996 and Smolders and Baeyens, 2001). This kind of nonuniform 

flow structure and the relatively dilute solids holdup (usually less than 0.10) hampers the CFB 

systems application to processes which require high solids processing capacities and high heat 

transfer rates (Zhu and Bi, 1995; Grace et al., 1999; Du et al., 2003 and Zhu and Zhu, 2008). The 

overall efficiency of a riser could be improved when a uniform distribution of the solids particles 

was achieved. Issangya et al. (1997, 1999 and 2000) reported that the axial homogenous flow 

with no downward flow near the wall could be achieved under high superficial gas velocity and 

high solids circulation rate. Liu et al. (1999) thereafter pointed out that gas backmixing became 

small for the same high density operating conditions. Zhu and Zhu (2008) proposed a novel 

circulating-turbulent fluidized bed (C-TFB), which operated with low superficial gas velocity 

and high solids circulation rate, resulting in a high-density flow with cross-sectional mean 

volumetric solids concentration of more than 0.25 through the entire C-TFB. The axial solids 

distribution profile was nearly uniform ranging from 0.25-0.29, and the uniformity of radial 

solids distribution had also been improved with local solids holdup around 0.15 at the axis and 

0.44 at the wall. There was no net downflow of solids and a good gas solids mixing was 

observed. 
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Solids holdup, particle velocity and solids flux are the key parameters of hydrodynamics in 

practical systems, determining the mass and energy distribution and reaction efficiency, which 

are the basis for modeling, optimization, and design of commercial-scale CFB systems. While 

there are a large number of papers reporting on the hydrodynamics only a few of them are 

dealing with the high solids flux/density conditions especially on particle velocities and/or solids 

flux (Wei et al., 1998; Pärssinen et al., 2001 and Qi et al., 2012). To the best of our knowledge, 

very few researches have been directed toward particle velocity and solids flux, especially to the 

latter one, over a high solids flux of 500 kg/m2s due to the limitations of experimental settings or 

measurement techniques. A better understanding of particle velocity and solids flux distribution 

has an enormous impact on practical use of the high solids flux/density circulating fluidized 

beds, which is also highly valuable for improving the traditional CFB reactors for industrial 

applications. To obtain more information on solids holdups, particle velocities and solids fluxes, 

a multipurpose optical fiber probe, which can take the measurement of the three parameters 

simultaneously was used in this research. A systematic research program in risers was conducted 

to determine axial and radial profiles of particle velocity and solids flux and the nature of the 

radial profiles with regards to these two parameters in the current study. Relationships between 

solids holdup, particle velocity and solids flux were also investigated. 
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5.2 Experimental details 

5.2.1 CFB experimental setup  

 

 

Figure 5.1  Schematic diagram of the multifunctional CFB system. 
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All experiments were conducted in a multifunctional circulating fluidized bed (MCFB) system, 

schematically shown in Figure 5.1. The system includes three circulating fluidized bed loops, the 

left hand fluidized bed loop serves as a high flux/density circulating fluidized bed riser with an 

inner diameter of 76 mm and the height of 10 m. The right hand fluidized bed loops are two 

circulating fluidized beds downer (co-current downflow circulating fluidized beds) of different 

diameters (76 mm i. d. and 5.8 m high and 50 mm i.d. and 4.9 m high, respectively). A 

downcomer with an inner diameter of 203 mm returns solids during riser operating and at its 

bottom there is a solids storage tank with an inner diameter of up to 457 mm which serves as a 

general solids storage for the entire system. Total solids inventory of FCC particles in the 

downcomer and storage tank could be up to 450 kg, equivalent to a solids height of 

approximately 6.0 m. This high solids level ensures high back pressure in the downcomer and 

enables high solids circulation rates and high solids concentrations in the CFBs. In order to 

obtain higher solids flux and steadier operating conditions, other modifications had been carried 

out in the CFB systems (details can be found in the chapter 4). The multifunctional circulating 

fluidized bed (MCFB) can be operated as a CFB riser and downer. For CFB riser operations, 

particles in the storage tank fluidized by aeration air entering into the bottom of the riser and 

obtained momentum from the air passing through the riser gas distributor made of perforated 

plates (2 mm×176 holes, 12% opening area). The particles are carried upward by the riser air 

along the column. At the top of the riser, particles and gas are separated by primary, secondary 

and tertiary cyclones and most of the particles returned to the downcomer and further down to 

the storage tank. Fine particles leaving from the cyclones are trapped by the bag filter and 

returned periodically to the downcomer.  

When the MCFB is under downer operating mode, solid particles are first lifted through the riser, 

separated by the primary cyclone fixed at the top of the downcomer and then fed into the 

downers. At the top of either one of the downers is a gas-solids distributor (details shown in Fig. 

5.1) where the particles are uniformly distributed along with the downer air to flow downward 

concurrently. After fast separation by gravity at the exit of either downer column, most particles 

are retained in the storage tank, with the remaining particles captured by two cyclones installed 

in series at the top of the exhausted pipeline and the common bag filter. To eliminate the effects 
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of solids inventory and other influencing parameters on the hydrodynamic characteristics, the 

whole experimental work in this study was carried out with a constant particle mass of 400 kg 

stored in the downcomer and the storage tank. 

The entire fluidized bed system uses aluminum as the main construction material with small 

portions made of Plexiglas for visual observation. In order to minimize possible electrostatic 

charges formed in the columns during the experiments, the whole fluidized bed system is 

electrically grounded. A measuring device for solids circulation rate is installed in the top section 

of the downcomer. By regulating the ball valve located in the solids feeding line connecting the 

storage tank and the riser column, the solids circulation rate can be adjusted and maintained at 

the desired level during each experiment. The fluidization gas used in this study is air at ambient 

temperature, supplied by a compressor capable of delivering 1000 SCFM at 100 psi. Equilibrium 

FCC catalyst particles impregnated with ferric oxide (Fe2O3) are used in this study for the 

catalytic ozone decomposition experiments. The Sauter mean diameter and the particle density is 

76 µm and 1780 kg/m3 respectively. The particle size distribution is given in Table 5.1. 

 

Table 5.1  Size distribution of the FCC particles 

Particle Size (µm) Volume Fraction (%) 

0-20 0.61 

20-40 9.72 

40-60 26.32 

60-80 22.80 

80-130 33.24 

>130 7.31 
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5.2.2 Measurements of solids holdup and particle velocity 

Experimental measurements include differential pressure, local solids concentration (solids 

holdup) and particle velocity. Twenty pressure taps were installed along the CFB column and 

connected with 19 differential pressure transducers (Omega PX162) to measure the axial profiles 

of the pressure gradient. The pressure gradient is mainly used to double check the solids holdup 

measured by an optical fiber probe mentioned below. Local solids holdup and particle velocity 

are measured simultaneously using a novel reflective-type optical fiber probe which has been 

shown to be effective and accurate for measuring the local solid concentration and particle 

velocity in high velocity fluidized beds and thus has been widely used by many investigators 

(Herbert et al., 1994; Johnson et al., 2001; Liu et al., 2003 and Ellis et al., 2004). It yields high 

signal-to-noise ratios and is nearly free of interference by temperature, humidity, electrostatics 

and electromagnetic field. Moreover, its small size does not significantly disturb the overall flow 

structure in CFB systems.  

 

Figure 5.2  Schematic diagram of the novel optical fiber probe and its working principle. 
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The optical fiber probe used in this work is model PV6D, developed by the Institute of 

Processing Engineering, Chinese Academy of Sciences, Beijing, China. The probe and 

measurement procedure are schematically shown in Figure 5.2. The outer diameter of the probes 

is 3.8 mm. The probe has two subprobes. Each of the subprobes consists of 8000 fine quartz 

fibers. The effective distance of the two vertically aligned subprobes is 1.51 mm, and the active 

tip area of each subprobe is 1×1 mm. Each subprobe consists of many quartz fibers with a 

diameter of 15 µm, for light-emitting and receiving, arranged in alternating arrays. In order to 

prevent particles from occupying the blind zone, a glass cover of 0.2 mm thickness is placed over 

the probe tip. The underlying theory is elaborated by Liu et al. (2003).  

As shown in Figure 5.2, light from the source illuminates a measuring volume of particles 

through the light-emitting fibers. The received light reflected by the particles is captured by light 

receiving fibers and processed by a photo-multiplier. The light intensity is then converted into 

voltage signals and the voltage signals are further amplified and fed into a PC. The voltage signal 

obtained by the probe is converted to volumetric concentration using a calibration equation. The 

relationship between the output signals of the optical fiber probe and the local solids holdup 

(non-linear) is first established through proper a calibration based on the method developed by 

Zhang et al. (1998). 

From the voltage time series V(t) and the calibration equation, local instantaneous solids holdup, 

εs(t), can be calculated: 

 
(5.1)

where, f is the calibration function. The time-mean solids concentration εs can be given by 

integrating εs(t) over the time period, T: 

 
0

1 T

s s t dt
T

    (5.2)

The cross-sectional average solids holdup s , can be calculated as follow: 

   s t f V t    
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The particle velocity can also be measured simultaneously with solids holdups. When particles 

pass though the tips of the two subprobes, they would produce two similar signals with a time 

delay τ, which can be calculated by cross-correlation method. Combining the time delay τ with 

the effective distance between two subprobes, Le, the instantaneous particle velocity, Vp can be 

calculated as follow: 

 
(5.4)

To obtain the particle velocities, an integration time of 12.80 ms is set after the optimization (Liu 

et al., 2003). Because of the turbulent nature of gas-solids suspension in fluidized beds, a particle 

passing through the upstream subprobe may not be detected by the downstream subprobes, due 

to possible particle-particle and/or particle-probe interactions. This may lead to low or even 

indeterminate cross-correlation coefficients. Such poorly or uncorrelated data need to be 

eliminated. The correlation coefficients are set to be higher than 0.6 as the criteria to collect the 

acceptable results. The direction of the particle motion is determined based on the maximum 

cross-correlation coefficient from the positive and negative correlation of the two channel signals 

(Nieuwland et al., 1996; Werther, 1999 and Zhu et al., 2001). 

The cross-sectional average particle velocity weighted by the local solids concentrations can be 

calculated as follow: 

2 0

2
d

R

p p s
s

v v r r
R




   (5.5)

By combining the results of local solids holdup and particle velocity obtained as mentioned 

above, the time-mean local solids fluxes can be expressed as:  

   ,
0

d
T

s L p p sG v t t t    (5.6)

e
p

L
v



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where ,s LG is the time-mean local solids flow rate, Vp(t) is the instantaneous particle velocity and 

εs(t) is the instantaneous solids holdup measured by the probe. Similarly, cross-sectional average 

solids fluxes can be defined as: 

,
0

2
R

s s LpG rG dr    (5.7)

By comparing the Gs measured by the flapper valves installed in the measurement tank and the 

sG calculated by Eq. (5.7), this measurement accuracy has been verified by Zhu and Zhu (2008). 

In order to map the entire cross-section of the riser, ten axial measuring ports (z = 0.59, 1.02, 

1.94, 2.85, 3.77, 4.78, 5.84, 7.78, 9.61, and 10.09 m above the gas distributor) are installed along 

the column. Measurements were conducted at six radial positions (r/R = 0, 0.316, 0.548, 0.707, 

0.837 and 0.950, where r is the distance from the center and R is the riser radius) on each axial 

level of the CFB riser system. These positions are determined by dividing the column cross-

section into five equal areas and determining the mid-point of each of these areas. For the 

hydrodynamic experiments in the current study, voltage signals from the optical fiber probe were 

sampled at a high frequency of 100 kHz with 1,638,40 data points for each measurement under a 

wide range of operating conditions so that detailed dynamic nature of the flow structure could be 

fully collected. To get valid and repeatable data, all measurements are repeated at least 5 times.
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5.3 Results and discussion  

5.3.1 Axial profiles of cross-sectional average particle velocity 
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Figure 5.3  Axial profiles of average particle velocity and corresponding solids holdup  
under different operating conditions. 
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Figure 5.3 shows the cross-sectional average particle velocities and the corresponding solids 

holdups on ten axial elevations obtained with the same optical fiber probe. The cross-sectional 

average particle velocity (average particle velocity for short) is given by averaging the local 

particle velocity weighted with the solids holdup at six radial positions. Overall, the particle 

velocities are lower at the bottom of the riser and increase gradually in the upper sections. Higher 

superficial gas velocity results in higher average particle velocity while higher solids circulation 

rate leads to lower average particle velocity in each axial position. The development of axial 

particle velocity is also described in Figure 5.3. When Gs is lower than 700 kg/m2s, there is no 

significant change of the shape of the axial profiles. Along the riser, these axial profiles could be 

divided into three sections. Firstly, the very bottom region with a short length of 2 m is the 

“distributor controlled” section where the average particle velocity is different under various 

operating conditions due to the entrance effect. Secondly, the middle section is around 2-4 m 

where there is a clear solids acceleration and particle velocity increased significantly especially 

at relatively low solids fluxes (lower than 300 kg/m2s). In this region, particle velocity ranges 

from 1-6 m/s depending on the operating conditions. The third is the top section where the 

particle velocities along the riser are nearly constant. Similar results were also reported by 

Pärssinen and Zhu (2001) with Gs up to 550 kg/m2s. It is noted that the shape of axial profiles 

under high flux conditions is different from that under relatively low flux conditions. Under 

extremely high solids circulation rate of 800 kg/m2s, the axial distribution of particle velocity 

becomes more uniform. In other words, the average particle velocity has almost no change along 

all axial levels if ignoring the entrance effecting region under such high solids flux. 

Three axial sections along the riser were identified as: the entrance influence zone at the very 

bottom of the riser, the dense region at the base of the riser and the relatively low solids holdup 

region in the upper sections (as shown in Figures 5.3(e), (f) and (g)). Such axial structures can 

also be observed in the axial profiles of the average particle velocity shown in Figures 5.3(a), 

5.3(b) and 5.3(c). 
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5.3.2 Radial profiles of particle velocity 
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Figure 5.4  Radial profiles of particle velocity and corresponding solids holdup. 

 

The radial profiles of particle velocity and the related solids holdup at z = 7.78 m under a wide 

range of operating conditions are plotted in Figure 5.4. Generally, the particle velocity has its 

maximum value at the riser axis and decreases with the radial position moving outward toward 

the wall. A clear change in the shapes of the radial profiles of particle velocity occurs when the 

solids circulation rate increases. When solids circulation rate is low (Gs = 100 kg/m2s), the radial 

profile of the particle velocity is typically “core-annulus” structure with a wide and rather flat 

core region. At the radial positions around 0.7 < r/R < 0.85, the particle velocities decrease 

sharply as the radial position shifts towards the wall. When r/R is larger than 0.85, particle 

velocities reverse downward and the negative values are nearly constant around 0.5-1 m/s. The 

flatter velocity regions in the axis and wall area correspond to the core and annulus region and 

the steeper velocity zone corresponds to the transition of the two regions. This kind of radial 

distributions is similar to the corresponding radial profiles of solids holdup shown in Figure 5.4 

(b). 

Increasing Gs up to 400 kg/m2s, the radial profiles of particle velocity show a great change from 

the “core-annulus” structure to a more parabolic shape with a maximum value at the centerline 

and decreases monumentally outer toward to the wall. The same trend was also observed by 
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Pärssinen and Zhu (2001). Further increasing Gs to extremely high Gs up to 1000 kg/m2s, the 

parabolic shape is transformed to a steeper and approximately linear radial profile. The same 

trend of change in shape with increasing Gs is consistent with profiles reported by Liu (2001). 

The particle velocities are higher in the center of the riser for extremely high solids flux 

compared to the low fluxes at a constant Ug of 9 m/s. The reason could be that more solids 

occupy the wall region and restrict the gas flow under high flux conditions. In order to maintain 

the superficial gas velocity of 9 m/s, the gas velocity has to be correspondingly higher in the riser 

center (Martin et al., 1992 and Liu et al., 1999) leading to higher particle velocity in the center. 

In addition, the particle velocity at each radial position of the riser is positive under high solids 

circulation rate which is totally different from that under low flux conditions where net negative 

particle velocities are often seen near the wall. The similar results had also been reported by 

other researchers (Grace et al., 1999 and Pärssinen and Zhu, 2001). Finally, the particle 

velocities at the wall region are all very small in magnitude at high Gs, no doubt affected by the 

non-slip condition on gas velocity. 

 

Figure 5.5  Radial particle velocity distribution for various operating conditions. 
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Figure 5.5 presents more details of radial profiles of particle velocity on different axial elevations 

under a wide range of operating conditions. As discussed above, the particle velocity is lower at 

the bottom than in the upper sections. Additionally, Figure 5.5 displays axial development with 

respect to the radial profiles of particle velocity under each operating condition. Clearly, the 

solids flow structures are different under various operating conditions. When solids circulation 

rate is the lowest (Gs = 100 kg/m2s), the flow development of particle velocity is faster with only 

slight changes in the shape of radial profiles up the riser. When solids circulation rate is 400 

kg/m2s, the development of particle velocity can be divided into three regions. In the “distributor 

controlled” region (below 2 m), the radial profiles vary without specific trend, showing either 

parabolic shape or approximately linear structure. In the middle elevations (2-4 m), the 

acceleration of solids leads to a steeper linear radial velocity profile. In the upper levels (above 4 

m), the linear-shaped profile of radial particle velocity distribution changed into parabolic-

shaped structure. Increasing Gs further, particularly higher than 700 kg/m2s, the linear-shaped 

radial profiles cover the whole riser elevations. The axial development of the radial particle 

velocities is almost independent of the height under such high solids fluxes. Moreover; the 

maximum in the axis and minimum particle velocities near the wall region of the column is 

nearly unchanged along the riser. The area of the low particle velocity region near the wall 

shrinks slightly as the axial elevation increases. Similar results were reported by Wei et al. 

(1998) in their high density riser. 
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Figure 5.6  Development of radial profiles of local particle velocities. 
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To further investigate the flow development of the radial profiles of particle velocity under low 

and high flux operating conditions, Figure 5.6 compares the flow structure at four heights under 

the same superficial gas velocity of 9 m/s. It is clear that under low solids flux, the radial profile 

is more uniform than that under higher Gs. When Gs is higher than 400 kg/m2s, the particle 

velocities at each radial positions are unchanged with the riser heights except the very bottom 

part (z = 1.94 m). On the other hand, negative velocities occurred near the wall, although the 

magnitudes were generally small (< 1 m/s) under low solids flux. With further increase in solids 

flux, the negative velocities at the wall disappear, as also shown in Figure 5.4 (a). The reason for 

this difference may be that the solids holdups in the high flux/density riser are higher than in the 

low flux/density system. The previous results (Grace et al., 1999; Liu et al., 1999; Zhu and Zhu, 

2008 and Qi et al., 2009) confirmed that higher solids holdup results in higher effective viscosity 

of the rising gas-solids suspension. Higher viscosity would impose more shear stress on the 

possible descending particles. Meanwhile, higher solids holdup would also provide more upward 

momentum to reduce the tendency for the descending particles by particle-particle interactions 

(Qi et al., 2009). No net downward flow near the wall is one of the most important advantages of 

the high flux/density riser over the conventional low flux/density reactor, leading to a reduction 

in axial dispersion of gas carried by the downflowing particles. 
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Figure 5.7  RNI’s of particle velocity the riser under different operating conditions. 
 

The axial development of radial particle flow can also be described by the radial nonuniformity 

index (RNI) which was proposed by Zhu and Manyele (2001). The RNI is defined for each given 

parameter as the standard deviation of its values in the radial direction, normalized by the 

maximum possible standard deviation for the same parameter with the same average cross-

sectional value. Meanwhile, the RNI can be used to distinguish exactly the structure of radial 

profiles on a quantitative basis at different planes and/or operating conditions. The values of RNI 

(Vp) along the axial direction in the riser are given in Figure 5.7.  

In general, the profiles had similar trend indicating two regions along the riser height with RNI 

(Vp) values between 0.1-0.75. Under a wide range of operating condition, RNI (Vp) increases 

sharply from the solids entry section and thereafter, the profiles start to be gradually flat. RNI 

(Vp) values were lower in the entrance region, probably because the particles were to be 

accelerated so that the particle velocities were low and didn’t vary much along the radial 

positions. Towards higher levels, the RNI (Vp) value tends to increase slightly with low 

superficial gas velocity or remain constant for high superficial gas velocity. It also shows that 
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increasing Ug at a given Gs lowers the RNI (Vp), but increasing Gs at constant Ug raises RNI (Vp). 

This is because higher Ug and /or lower Gs lead to flatter radial profiles of particle velocities. In 

addition, the length of the acceleration zone at the bottom (shown in the left of the dash line in 

Figure 5.7) becomes shorter when Ug is increasing and/or Gs is decreasing, which indicates a 

lengthy process for the radial flow structure to be fully developed in the riser. 
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Figure 5.8  Variation of RNI (Vp) with (a) reduced centerline particle velocity and (b) reduced wall 
particle velocity in the riser at different operating conditions. 

 

As discussed above, a strong velocity gradient with a maximum at the center and a minimum at 

the wall in the riser is the typical radial distribution of the particle velocity especially at high 

solids fluxes. In order to examine the changes of RNI (Vp) with particle velocity, Figure 5.8 

shows the relationships between RNI (Vp) and the particle velocity at the axis (r/R = 0.0) and 

near the wall (r/R = 0.950). Figure 5.8(a) displays the variation of RNI (Vp) with the reduced 
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centerline velocity, Vpc
*, (Vpc

* = Vpc/Ug), for different operating conditions. It shows that the RNI 

(Vp) values increase with Vpc
*. The reason is that when the reduced centerline particle velocity 

increases, the radial profile of particle velocity becomes steeper leading to a high RNI (Vp). 

Meanwhile, the relationship between RNI (Vp) and Vpc
* is linear with slightly affected by 

changing operating conditions. It can be concluded that RNI (Vp) is essentially proportional to 

the reduced centerline particle velocity. On the other hand, the varation of RNI (Vp) with the 

reduced wall velocity, Vpw
*, (Vpw

* = Vpw/Ug), is shown in Figure 5.8(b). The effect of both 

upward velocity and downward velocity near the wall on the RNI (Vp) is indicated clearly by a 

dotted vertical line through Vpw
* = 0. However, a universal relationship could not be found 

between RNI (Vp) and Vpw
* probably because of the wall effects on particle velocity in this 

region. 

5.3.3 Flow development profiles of solids flux 

 

Figure 5.9  Radial profiles of local solids flux under different operating conditions. 
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Figure 5.9 presents the results of the solids flux at eight axial positions under different operating 

conditions. Overall, the shape of the radial solids flux distribution can be divided into two types: 

the flatly radial uniform profile and the parabolic-shaped profile. When Gs is low (< 400 kg/m2s), 

the profile is relatively flat occupies more than 80% of the total cross-sectional area of the riser. 

The solids flux then decreases continuously towards the wall. Near the wall for low solids flux 

conditions, solids flux is negative because particles in the wall region move downward. When Gs 

increases to 700 kg/m2s, the profiles are roughly parabolic and an increase in Gs is accompanied 

by an increase in the solids flux in all radial positions. On the other hand, the net solids flux near 

the wall falls to close to zero, and changes the direction to upflow and continues to increase with 

the solids circulation rate once the solids flux is high up to 400 kg/m2s. The observed profiles are 

consistent with the early results of other researchers at lower Gs (Herb et al., 1992). However, 

they are different from the solids flux profiles in the dense region of the riser reported by Wei et 

al. (1997). The no slip condition at the wall means that the gas velocity approaches zero towards 

the wall. There is therefore a tendency for particles to fall downwards near the wall, especially 

when they form cluster or streamers. However, the high solids holdup found near the wall for 

high flux/density conditions results in increased momentum transfer from the upflow suspension 

in the interior of the column, meaning that there is relatively little downflow in the vicinity of the 

wall (Issangya et al., 1998). 
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Figure 5.10  Typical radial profile of solids flux under low and  high flux/density  

operating conditions. 
 

Figure 5.10 shows typical radial profiles of local solids flux. Again, the solids flux is highest at 

the axis, decreasing towards the wall. Toward the wall, the local solids flux decreases with 

different magnitudes with a wide range of flat area then gradually decreasing under low solids 

flux conditions and a more significant drop when Gs is high.  

The radial solids flux profiles presented in Figure 5.10(a) show clearly a transition in the shape 

of the profiles. At the lowest flux of 100 kg/m2s, the local solids flux profile is flat. The value of 
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solids flux remains nearly constant up to a dimensionless radial location of about 0.8. Local 

solids flux in this range is slightly higher than at the wall where solids were flowing downward 

at the wall. At the intermediate solids flux of 400 kg/m2s, the mass flux profile became slightly 

parabolic. Radial solids flux was constant from the centerline to a dimensionless radial position 

of about 0.6. Beyond that point, the solids flux decreased gradually becoming almost zero near 

the wall. When Gs rises to 700 kg/m2, the local solids flux profile was roughly parabolic. At this 

Gs, the solids flux showed a steeply decrease from the column axis to the wall region. The sharp 

decrease of solids flux with radial location corresponds to a sharp decline of local particle 

velocity as discussed in the above section. Moreover, the measured local solids flux at the center 

was about two times higher than external solids circulation rate when the parabolic-shaped radial 

profiles occurred.  

Figure 5.10(a) also illustrates the effects of superficial gas velocity on local solids flux 

distribution. Firstly, the superficial gas velocity has barely any effects on the shape of radial 

profiles when Gs is 100 kg/m2s. Secondly, at a higher Gs (= 700 kg/m2s), the shape of the radial 

profile changes greatly with superficial gas velocity. Higher superficial gas velocity results to a 

much flatter and less parabolic shaped radial profile. At Ug = 9 m/s, the profile is flat across the 

riser with a small variation at r/R = 0.5. When Ug is decreased to 7 m/s, the magnitude of the 

local solids flux is much higher in the central region of the riser and undergoes a dramatic 

decrease at around r/R = 0.3. In addition, the profile indicates that under high gas velocity and 

high flux/density operating conditions, solids travel rapidly upward in the central region, while 

they move slowly upwards or nearly stagnant near the wall. 

From the above discussion, there is a trend that higher superficial gas velocity and lower solids 

circulation rate (low solids/gas loading) generate the more uniform radial (local solids flux 

remain constant within a wide cross-sectional area) profiles of local solids flux while high 

solids/gas loading produce parabolic-shaped radial profile of solids flux. The nature of the radial 

solids mass flux profiles could be attributed to the different interaction mechanisms between the 

gas and solids phases in the two sets of operating conditions.  



Chapter 5 

130 

 

Generally, the way solids are dispersed in a carrier gas is mainly affected by two factors 

including (1) particle-particle interaction (collisions and inter-particle forces) and (2) gas-solid 

interaction (Li, 2003; Li and Kwauk, 2003; Sundaresan, 2003 and Li et al., 2007). As discussed 

earlier, gas particle interactions (drag forces) play a more important role under low solids/gas 

loading conditions. If particles are fed into the gas stream at a low rate, particles can be carried 

up easily by gas and have little effect on the motion of the gas resulting in a velocity profiles 

very similar to that of the gas across the whole radial positions, only lagging by a certain “slip 

velocity” at the wall. Hence, the flat radial uniform profile occurs. On the other hand, if the 

solids flux is high enough, relatively high solids holdup would cover the entire cross-sectional 

area (same authors), affecting the motion of gas. Typical turbulent profiles of gas velocity for 

single gas phase flow would become more distorted with more gas tending to flow through the 

central region of the column (Zhu and Zhu, 2008). Besides, when solids in a large amount cannot 

be completely carried by the gas, solids downflow begins to form at the wall, leading to a 

parabolic shape in the radial solids flux distributions. Moreover, high solids concentration would 

tend to promote particle-particle interactions (collisions) which would control particle motion. 

Higher collision frequency is responsible for higher shear on the descending particles reducing 

the tendency for solids downflow. Considering the two reasons on the particles near the wall, it is 

found that particle velocity near the wall is positive as stated earlier. As a result, there is no 

negative solids flux under high solids/gas loading conditions. No net downward solids flux near 

the wall is another important advantage of the high flux/density riser reducing solids backmixing. 

Figure 5.10(b) compares local solids flux profiles at different axial elevations at Ug = 9 m/s and 

Gs = 1000 kg/m2s. It is obvious that the radial solids flux profiles overlap essentially. Such an 

independence of solids flux on the axial level seems to be understood by considering that gas-

solids suspension reached some kinds of “an equilibrium state”, or “a force balance” in the 

macro-scope. In addition, the improved collision (particle-particle interactions) under such 

extremely high flux leads to more uniform distribution of solids holdups and particle velocities 

along the column, and thereafter a more uniform axial solids flux distribution as suggested by 

Zhu and Zhu (2008). 
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5.3.4 Relationship between solids holdup, particle velocity and solids flux 
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Figure 5.11  Radial profiles of (a) solids holdup, (b) particle velocity, and (c) solids flux. 

 

According to the study, the three main hydrodynamic parameters in circulating fluidized bed 

systems were closely related to each other. Typical radial profiles of solids holdup, local particle 

velocity and solids flux based on Eqs. (5.3), (5.5) and (5.6) at z = 7.78 m under different 

operating conditions are plotted in Figure 5.11. Overall, higher solids holdup usually corresponds 
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to lower particle velocity under each operating conditions. Under low solids flux/density 

conditions, the curves of these three parameters are relatively flat. With increasing Gs, the shapes 

of the three parameters become steeper. Moreover, the shape of solids flux is not only influenced 

by solids holdup profile but also by particle velocity distribution. For Ug = 9 m/s and Gs = 400 

kg/m2s, the solids holdup profile remains relatively flat over a wide radial region before sharply 

increasing near the wall. The corresponding particle velocity profile is roughly parabolic in shape 

with a maximum at the centerline and decreasing toward to the wall. The corresponding solids 

flux profile is again relatively uniform in the core over a considerable radial distance, and then 

decreases gradually toward the wall.  

To further investigate the relationship between the local solids holdups, particle velocities and 

solids fluxes, Figures 5.12-5.15 compare the particle velocities against solids holdups, solids 

fluxes against solids holdups and particle velocities, under a wide range of operating conditions. 
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Figure 5.12  Relationship between solids holdup and particle velocity under low and  

high solids flux operating conditions. 
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Figure 5. 13 Relationship between solids holdup and particle velocity in the three axial 
 sections along the riser. 
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Figure 5.12 shows the relationship between solids holdup, particle velocity and solids flux 

comparing the low flux (where solids flux is lower than 500 kg/m2s) and high flux conditions. 

Figure 5.13 presents the relationship between particle velocity and solids holdup in three 

different axial regions according to the above discussion on the development of solids flow. As 

shown in Figures 5.12 and 5.13, local particle velocity and solids flux were exponentially related 

to the corresponding solids holdup. Local solids flux to some extent has a linear relationship with 

the particle velocity. Figures 5.12 and 5.13 also demonstrate the relationship between the main 

hydrodynamic parameters under low solids flux/density (LF/LD) and high solids flux/density 

(HF/HD) conditions. Figures 5.12 and 5.13 show the same trend that the particle velocity against 

solids holdup is well correlated under LF/LD conditions. Such a strong dependence under LF/LD 

conditions indicates that solids motion is mainly controlled by the gas-solids interactions in low 

flux/density CFB systems. However, the correlation is not good when solids flux/solids holdup is 

high especially under the lower part of the column. As is clearly shown in Figure 5.13, both 

solids holdups and particle velocities have wide distributions in HF/HD conditions. This suggests 

that a higher solids concentration could lead to stronger particle-particle interactions, as a result, 

the particle movement is to some extent controlled by the collisions between particles in the 

dense conditions. Meanwhile, it is clear that the correlation hardly varies with the height of the 

column except in the “distributor controlled zone” at the very bottom of the riser according to 

Figure 5.13, which suggested an inherent relationship between particle velocity and solids 

holdup. 
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Figure 5.14  Relationship between cross-sectional average solids holdup and particle velocity  
for different operating conditions. 
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Figure 5.15  Relationship between cross-sectional average solids holdup and particle 
 velocity in the three axial sections along the riser. 
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Figures 5.14 and 5.15 present the cross-sectional average particle velocity against the cross-

sectional average solids holdup under different operating conditions. Similar results are observed 

where high average solids holdup lead to low average particle velocity. Under low solids 

flux/density, the relationship between average solids holdup and particle velocity is more 

correlated than that for high solids flux/density operating conditions. For different axial 

positions, Figures 5.15(a), (b) and (c) describe the approximate pattern in three axial sections 

showing decreasing of the average particle velocity with the average solids holdup. The 

independence of the variation with the heights indicates again that the particle-particle 

interaction play a significant role on particle motions in the dense conditions. 
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5.4 Conclusions  

Detailed knowledge about flow structure and properties is crucial in better understanding of the 

hydrodynamics in a high flux/density circulating fluidized bed. Local flow structures and 

hydrodynamics were investigated for the first time at high solids fluxes up to 1000 kg/m2s using 

multipurpose optical fiber probes, which could measure the solids concentration and velocity at 

the same time.  

The shape of the axial particle velocity profiles depends on the operating conditions. When 

solids flux is lower than 700 kg/m2s, three axial sections are formed along the riser: “distributor 

controlled” zone at the very bottom, acceleration section at the base of the column, and the upper 

section with constant average particle velocity. Under extremely high solids flux of 800 kg/m2s, 

the axial profile of the particle velocity became more uniform. The axial particle velocity is 

affected more significantly by superficial gas velocity especially under high solids flux/density 

conditions. 

Radial profiles of particle velocity and solids flux had unique shapes under different operating 

conditions with radially uniform structure under low solids flux/density and roughly parabolic-

shaped under high solids flux/density conditions. No net downward flow near the wall is one of 

the most important advantages of the high flux/density riser over the conventional low 

flux/density reactor, leading to a reduction of solids backmixing. 

Relationships between solids holdups, particle velocity, and solids flux were studied. Correlation 

between particle velocity and solids holdup was stronger for low solids flux/density conditions 

than that of high/solids flux conditions. The results revealed that gas-particle interactions 

dominated in low solids flux/density CFBs while particle-particle interactions played a key role 

for the motion of particles in the high solids flux CFB systems. 

  



Chapter 5 

140 

 

Nomenclature 

f calibration function for optical fiber probe 

Fs solids flux [kg/(m2·s)] 

sG  cross-sectional average solids flux [kg/(m2·s)] 

,s LG  time mean local solids flux [kg/(m2·s)] 

Gs solids circulation rate [kg/(m2·s)] 

Le effective distance between light-receiving fiber A and B [m] 

r/R reduced radial sampling positions 

t time [s] 

T time interval [s] 

Ug superficial gas velocity [m/s] 

vp particle velocity [m/s] 

v̄p cross-sectional average particle velocity [m/s]

V voltage [volt] 

V(t) voltage time series [volt] 

z axial coordinate, or distance from gas distributor [m] 

Greek letters 

εs solids holdup [-] 

εs(t) local instantaneous solids holdup [-] 

ε̄s average solids holdup in the entire column [-] 

Subscripts 

1, 2 subprobe 1 and 2 of optical fiber probe 

g gas 

p particle 

s solids 
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CHAPTER 6 

Hydrodynamics in a High Flux CFB Downer 

6.1 Introduction 

Circulating fluidized bed (CFB) reactors have found extensive applications in the field of 

chemical, petrochemical, environmental and energy industries (Grace and Bi, 1997 and Zhu and 

Cheng, 2005). Compared to the conventional bubbling and turbulent bed reactors, CFB risers 

have such advantages as high gas-solids contact efficiency, high turndown ratios, high gas and 

solids throughput, etc (Wang et al., 1992; Zhu et al., 1995 and Zhang et al., 2001). However, the 

riser still suffers from non-uniform flow structure such as core-annulus flow structure, severe 

solids backmixing as well as radial segregation of gas and solids (Zhu et al., 1995 and Zhang et 

al., 2001). These disadvantages of the risers may be resulted from the flow of gas and solids 

against gravity. Thus, a concurrent downflow CFB reactor (downer) has been devised recently. 

In the downer reactor, both gas and solids flow in the direction of the gravity, and thus the radial 

gas and solids distributions are much more uniform than those in the risers. As a novel reactor, 

downer has drawn much attention in the past two decades (Wang et al., 1992; Wei and Zhu 

1996; Herbert et al., 1999; Johnston et al., 1999; Ma and Zhu, 1999; Schiewe et al., 1999; Zhang 

et al., 1999, 2000 and 2001; Deng et al., 2004; Luo et al., 2007; Wu et al., 2007; Qi et al., 2008; 

Abbasi et al., 2013 and Li et al., 2013). In spite of numerous advantages, it suffers a serious 

shortcoming: very low volumetric solids holdup (mostly less than 1%) which may result in 

severe problems for reactions where a high solids/gas ratio is required (Wang et al., 1992; 

Johnston et al., 1999 and Zhang et al., 1999). Although many studies on the hydrodynamics of 

downers have been carried out, only a few researches focus on the high density/flux CFB downer 

(Luo et al., 2001; Li et al., 2004 and Chen et al., 2004, 2005, and 2006). Certainly, studies are 

needed on high density/flux CFB downer to get a detailed and clear understanding of the flow 

structures in downer reactors. A comprehensive study of hydrodynamics in a high flux CFB 

downer under a wide range operating conditions is conducted in this study. 
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6.2 Experimental details 

6.2.1 CFB experimental setup 
 

 

Figure 6.1  Schematic diagram of the multifunctional CFB system. 
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All experiments were conducted in a multifunctional circulating fluidized bed (MCFB) system, 

schematically shown in Figure 6.1. The system includes three circulating fluidized bed loops, the 

left hand fluidized bed loop serves as a high flux/density circulating fluidized bed riser with an 

inner diameter of 76 mm and the height of 10 m. The right hand fluidized bed loops are two 

circulating fluidized beds downer (co-current downflow circulating fluidized beds) of different 

diameters (76 mm i. d. and 5.8 m high and 50 mm i.d. and 4.9 m high, respectively). A 

downcomer with an inner diameter of 203 mm for solids return during riser operating and at its 

bottom a solids storage tank with an inner diameter up to 457 mm were used as general solids 

storage for the entire system. Total solid inventory of FCC particles in the downcomer and 

storage tank could be up to 450 kg, equivalent to a solids height of approximately 6.0 m. This 

high solids level ensures high back pressure in the downcomer and enables high solids 

circulation rates and high solids concentrations in the CFBs. In order to obtain higher flux and 

steadier operating conditions, other modifications had been carried out in this CFB system 

(details can be found in the chapter 4). The multifunctional circulating fluidized bed (MCFB) can 

be operated as a CFB riser and downer. For CFB riser operations, particles in the storage tank 

fluidized by aeration air entering into the bottom of the riser and obtained momentum from the 

air passing through the riser gas distributor made of perforated plates (2 mm×176 holes, 12% 

opening area). The particles are carried upward by the riser air along the column. At the top of 

the riser, particles and gas are separated by primary, secondary and tertiary cyclones and most of 

the particles return to the downcomer and further down to the storage tank. Fine particles leaving 

from the cyclones are trapped by the bag filter and returned periodically to the downcomer.  

When the MCFB is under downer operating mode, solid particles are first lifted through the riser, 

separated by the primary cyclone fixed at the top of the downcomer and then fed into the 

downers. At the top of either one of the downers is a gas-solids distributor (details shown in 

Figure 6.1) where the particles are uniformly distributed along with the downer air to flow 

downward concurrently. After fast separation by gravity at the exit of either downer column, 

most particles are retained in the storage tank, with the remaining particles captured by two 

cyclones installed in series at the top of the exhausted pipeline and the common bag filter. To 

eliminate the effects of solids inventory and other influencing parameters on the hydrodynamic 
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characteristics, the whole experimental work in this study was carried out with a constant particle 

mass of 400 kg stored in the downcomer and the storage tank. 

The entire fluidized bed system uses aluminum as the main construction material with small 

portions made of Plexiglas for visual observation. In order to minimize possible electrostatic 

charges formed in the columns during the experiments, the whole fluidized bed system is 

electrically grounded. A measuring device for solids circulation rate is installed in the top section 

of the downcomer. By regulating the ball valve located in the solids feeding line connecting the 

storage tank and the riser column, the solids circulation rate can be adjusted and maintained at 

the desired level during each experiment. The fluidization gas used in this study is air at ambient 

temperature, supplied by a large compressor capable of delivering 1000 SCFM at 100 psi. 

Equilibrium FCC catalyst particles loaded with ferric oxide (Fe2O3) are used in this study and 

other catalytic ozone decomposition experiments. The Sauter mean diameter and the particle 

density is 76 µm and 1780 kg/m3 respectively. The particle size distribution is given in Table 6.1. 

 

Table 6.1  Size distribution of the FCC particles 

Particle Size (µm) Volume Fraction (%) 

0-20 0.61 

20-40 9.72 

40-60 26.32 

60-80 22.80 

80-130 33.24 

>130 7.31 
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6.2.2 Measurements of solids holdup and particle velocity 
 

Experimental measurements include differential pressure, local solids concentration (solids 

holdup) and particle velocity. Twenty pressure taps are installed along the CFB downer column 

and connected with 19 differential pressure transducers (Omega PX162) to measure the axial 

profiles of the pressure gradient. The pressure gradient is mainly used to double check the solids 

holdup measured by an optical fiber probe. Local solids holdup and particle velocity are 

measured simultaneously using a novel reflective-type optical fiber probe, which has been shown 

to be effective and accurate for measuring the local solids concentration and particle velocity in 

high velocity fluidized beds and thus has been widely used by many investigators (Herbert et al., 

1994; Johnson et al., 2001; Liu et al., 2003 and Ellis et al., 2004). It yields high signal-to-noise 

ratios and is nearly free of interference by temperature, humidity, electrostatics and 

electromagnetic field. Moreover, its small size does not significantly disturb the overall flow 

structure in CFB systems with proper design. The optical fiber probe used in this work is model 

PV6D, developed by the Institute of Processing Engineering, Chinese Academy of Sciences, 

Beijing, China. The probe and measurement procedure are schematically shown in Figure 6.2. 

The outer diameter of the probes is 3.8 mm and there are with two subprobes. Each of the 

subprobes consists of 8000 fine quartz fibers. The effective distance of the two vertically aligned 

subprobes is 1.51 mm, and the active tip area of each subprobe is 1×1 mm. Each subprobe 

consists of many quartz fibers with a diameter of 15 µm, for light-emitting and receiving, 

arranged in alternating arrays. In order to prevent particles from occupying the blind zone, a 

glass cover of 0.2 mm thickness is placed over the probe tip. The underlying theory was 

elaborated by Liu et al. (2003). 
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Figure 6.2  Schematic diagram of the novel optical fiber probe and its working principle. 

 

As shown in Figure 6.2, light from the source illuminates a measuring volume of particles 

through the light-emitting fibers. The received light reflected by the particles is captured by light 

receiving fibers and processed by a photo-multiplier. The light intensity is then converted into 

voltage signals and the voltage signals are further amplified and fed into a PC. The voltage signal 

obtained by the probe is converted to volumetric concentration using a calibration equation. The 

relationship between the output signals of the optical fiber probe and the local solids holdup 

(non-linear) is first established through proper a calibration based on the method developed by 

Zhang et al. (1998). 

From the voltage time series V(t) and the calibration equation, local instantaneous solids holdup, 

εs(t), can be calculated: 

 
(6.1)   s t f V t    
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where, f is the calibration function. The time-mean solids concentration εs can be given by 

integrating εs(t) over the time period, T: 

 
0

1 T

s s t dt
T

    (6.2)

The cross-sectional average solids holdup s , can be calculated as follow: 

2 20 0

1 2
2 d d

R R

s s sr r r r
R R

   


    (6.3)

On the other hand, the particle velocity can also be measured simultaneously with solids holdups. 

When particles pass though the tips of the two subprobes, they would produce two similar 

signals with a time delay τ, which can be calculated by cross-correlation method. Combining the 

time delay τ with the effective distance between two subprobes, Le, the instantaneous particle 

velocity, Vp can be calculated as follow: 

 
(6.4)

To obtain the particle velocities, an integration time of 12.80 ms is set after the optimization 

optimization (Liu et al., 2003). Because of the turbulent nature of gas-solids suspension in 

fluidized beds, a particle passing through the upstream subprobe may not be detected by the 

downstream subprobes, due to possible particle-particle and/or particle-probe interactions. This 

may lead to low or even indeterminate cross-correlation coefficients. Such poorly or uncorrelated 

data need to be eliminated. The correlation coefficients are set to be higher than 0.6 as the 

criteria to collect the acceptable results. The direction of the particle motion is determined based 

on the maximum cross-correlation coefficient from the positive and negative correlation of the 

two channel signals (Nieuwland et al., 1996; Werther, 1999 and Zhu et al., 2001). 

The cross-sectional average particle velocity weighed by the local solids concentrations can be 

calculated as follow: 

e
p

L
v



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


   (6.5)

By combining the results of local solids holdup and particle velocity obtained as mentioned 

above, the time-mean local solids fluxes can be expressed as:  

   ,
0

d
T

s L p p sG v t t t    (6.6)

where ,s LG is the time-mean local solids flow rate, Vp(t) is the instantaneous particle velocity and 

εs(t) is the instantaneous solids holdup measured by the probe. Similarly, cross-sectional average 

solids fluxes can be defined as: 

,
0

2
R

s s LpG rG dr    (6.7)

By comparing the Gs measured by the flapper valves installed in the measurement tank and the 

sG calculated by Eq. (6.7), this measurement accuracy has been verified by Zhu and Zhu (2008). 

In order to map the entire cross-section of the downer, nine axial measuring ports (z = 0.22, 0.61, 

1.12, 1.63, 2.13, 2.64, 3.26, 4.02, and 4.99 m below the gas distributor) are installed along the 

column. Measurements are conducted at six radial positions (r/R = 0, 0.316, 0.548, 0.707, 0.837 

and 0.950, where r is the distance from the center and R is the downer radius) on each axial level 

of the CFB downer system. These positions are determined by dividing the column cross-section 

into five equal areas and determining the mid-point of each of these areas. For the hydrodynamic 

experiments in the current study, voltage signals from the optical fiber probe are sampled at a 

high frequency of 100 kHz with 1,638,40 data points for each measurement under a wide range 

of operating conditions so that detailed dynamic nature of the flow structure can be fully 

collected. To get the valid and repeatable data, all measurements are repeated at least 5 times. 
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6.3 Results and discussion 

6.3.1 Radial profiles of solids flow 

Figure 6.3 shows the radial profiles of solids holdup at nine axial elevations under various 

operating conditions. The solids circulation rate are 100, 200, 300 kg/m2s and the superficial gas 

velocity 1, 3, 5, 7 m/s. 

 

Figure 6.3  Radial profiles of solids holdup along the downer under different  
operating conditions. 

 

In general, solids holdup is higher near the solids entrance region than that further down the 

column and is lower in the center compared to the wall region. Near the distributor (0.61 m 

below the distributor), the solids holdup is gradually increase towards the wall with a maximum 

value at the radial position r/R ≈ 0.8 and then decreases at the wall. Above this region, the shape 

of the radial solids holdup profile does not change significantly. A more uniform distribution of 
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the solids holdup covers a wide region of the dross sectional area from the centerline to r/R ≈ 

0.6-0.8 and thereafter solids holdup reaches the highest value right at the wall. In the fully 

developed region (2.64 m below the distributor), the profiles of solids holdup are normally 

characterised by a fairly uniform radial distribution. A similar trend was also reported by other 

researchers (Zhang et al., 1999; Johnston, 1999; Chen and Li, 2004 and Li et al., 2013).  

The uniform distribution of solids holdup in the downer reactor is one of the key advantages over 

the upflow riser reactor. This is mainly because particles are not supported by the gas flow, but 

flow down due to the gravity, either reinforced or resisted by the drag force between gas and 

solids in the downer reactor. In addition, the aggregation of particles at the wall region can also 

be prevented in the downer. When particle clusters are formed, the effective drag force on the 

cluster is reduced so that the slip velocity becomes higher leading to a high particle downwards 

velocity (Yang et al., 1993 and Zhang et al., 1999). The increased particle velocity in turn 

increases the instability of the clusters because of the increased shear force on the particles. 

Large particle cluster is easily broken down into smaller ones or even isolated particles. 

 

Figure 6.4  Overview of solids holdup along the downer under different  
operating conditions. 
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An overview of radial solids holdup profiles under different operating conditions are illustrated 

in Figure 6.4 where x and y axes are the radial and axial positions in the column, and z-axis is the 

solids holdup. The solids flow structure is clear to see that there is a “distributor controlled” 

region at the top of the downer where solids holdup is relatively high and fluctuation occurs. 

Further down the column, the flow structure becomes more uniform. It is also obvious that the 

distributions of solids holdup are significantly affected by the operating conditions. In general, 

higher solids flux and/or lower superficial gas velocity leads to higher solids holdup.  

At a fixed superficial gas velocity, increase solids circulation rate increases the solids holdup at 

all the radial position along all the axial levels. An increase of solids holdup in the development 

region (especially in the entrance of the column) is more significant than that in the developed 

zone. Maximum values of the solids holdup in the entrance of the downer often occur in the 

radial position of r/R ≈ 0.8-0.85. Compared with the low solids flux condition (Gs = 100 kg/m2s), 

the solids holdup can be greatly increased both in the central region and near the wall when 

solids flux is up to 300 kg/m2s. Therefore, it is possible to obtain a high density downer by 

improving the solids circulation rate. 

At a constant solids circulation rate, the increase in superficial gas velocity decreases the solids 

holdup in all radial and axial positions. In addition, with increase of Ug, the distribution of the 

radial solids holdup becomes more uniform. This is reasonable because the higher gas velocity 

leads to the higher acceleration rate and particle velocity move faster under the high gas velocity 

conditions. Moreover, the superficial gas velocity has different affects on the distribution of 

solids holdups under different circulation rate. Under low solids flux, superficial gas velocity has 

less influence on the profiles of the solids holdup where solids holdup in all position has a fairly 

uniform distribution. On the other hand, when solids flux is higher up to 300 kg/m2s, the shapes 

of the radial profiles of solids holdup are significantly changed. The non-uniform radial 

distribution covers the entire column when Ug is 1 m/s while the profiles are more uniform when 

Ug is up to 7 m/s. 
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Figure 6.5  Radial profiles of particle velocity along the downer under different  
operating conditions. 

 

All the radial profiles of particle velocity taken under the same operating conditions with the 

solids holdup discussed in the above section are shown in Figure 6.5. Generally, particle velocity 

is relatively low in the central region and increases slightly toward the wall followed by a 

decrease right at the wall under all operating conditions. With increasing distance from the 

entrance, radial profiles of the particle velocity further develop and remain almost unchanged. 

Relatively low particle velocity covers a wide cross-sectional area corresponding to 0 < r/R < 

0.6-0.8. The maximum particle velocity usually appears in the region of r/R ≈ 0.8. The same 

results had also been reported by others (Bai et al., 1990; Zhu et al., 1995; Cheng et al., 2008 

and Li et al., 2013). This radial profile of particle velocity is quite different from that in the riser. 

In the riser, the radial profiles of the particle velocity are characterized by the parabolic-shaped 

distribution with the highest particle velocity at the center and the lowest value near the wall. At 
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the wall region in the riser reactors, the formulation of clusters results in the slow motion of the 

collected particles, and even causes the backflow along the wall. 

 

Figure 6.6  Overview of particle velocity along the downer under different  
operating conditions. 

 

Figure 6.6 provides an overview of the particle velocity profiles along the downer under different 

operating conditions where x and y axes are the radial and axial positions in the column, and z-

axis is the particle velocity. Obviously, particle velocities are significantly affected by the 

operating conditions. Particle velocity increases with the increase of superficial gas velocity at a 

fixed solids circulation rate. The distribution of particle velocity across the column becomes 

more uniform when Ug is higher showing the same trend as solids holdup. On the other hand, 

solids circulation rate has only a minor effect on the radial profile of the particle velocity 

especially under high superficial gas velocity. 
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Figure 6.7  Radial profiles of solids flux along the downer under different  
operating conditions. 

 

Local solids flux is calculated base on Equation (6.7) shown in Figure 6.7. Solids flux 

distribution is affected dramatically by the operating conditions. Under low solids flux (Gs = 100 
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Under high Gs (higher than 200 kg/m2s), on the other hand, the distribution of the solids flux 

becomes less uniform. Both the operating conditions and axial positions affect the shapes of the 

local solids flux. For example, taking Gs = 300 kg/m2s, when Ug is relatively low (Ug = 1 and 3 

m/s), local solids fluxes are comparatively low in the central region with a slight increase out 
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measuring position is moved downwards along the column. The peak of the solids flux 

disappears at r/R ≈ 0.8 and the maximum value is right at the wall further downer the column. 

The phenomena indicate that the gas-solids flow is being developed. The development of the 

solids flow in terms of the solids flux distribution is faster for low Gs and high Ug. 

 

Figure 6.8  Overview of solids flux along the downer under different  
operating conditions. 

 

Figure 6.8 provides an overview of the local solids flux profiles along the downer under different 

operating conditions where x and y axes are the radial and axial positions in the column, and z-

axis is the local solids flux. As mentioned above, the local solids flux is relatively constant in the 

center, and thereafter changes begin to occur near the wall region depending on both operating 

conditions and axial locations. This trend of radial solids flux is quite different from that reported 
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in the riser. In the riser reactor, the shape of the radial solids flux is considered as a parabolic 

curve where the solids flux is highest at the center of the column and then decreases towards the 

wall. The general shape of the profiles does not change greatly with axial elevations in the riser. 

6.3.2 Development of solids flow 

As mentioned earlier, the flow structure in the downer is affected significantly by the operating 

conditions. The flow structure becomes more uniform when Gs is low and/or Ug is high. In order 

to further analyze the influence of the operating conditions on the development of the flow 

structure, based on Figures 6.3, axial development of radial profiles of solids holdup are plotted 

in Figure 6.9. 
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Figure 6.9  Axial development of radial solids holdup along the downer under  
different operating conditions. 
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Figure 6.9 shows the axial profiles of the solids holdup in the three radial regions (the central 

region, r/R = 0.0-0.548, the middle region, r/R = 0.548-0.837, and the wall region, r/R = 0.837-

1.0) along the downer under a variety of operating conditions. This figure reveals the difference 

in the flow development in the three radial regions. The flow developments of different radial 

regions are not simultaneous and the effects of the operating conditions on the flow development 

in the three regions are also different.  

At a constant Ug = 3 m/s, under low solids flux of 100 kg/m2s, the difference of the flow 

development in the three radial region is not obvious. The length of the development for the 

central and the wall regions is about 2.5 m and 3 m, respectively. The length of the development 

extends with increase of Gs. For example, when Gs is enlarged from 100 to 300 kg/m2s, the 

length of the development for the central and the wall regions extends to around 3 m and 4 m, 

respectively. It can be concluded that increasing Gs slows down the development of solids 

holdup profiles in both the core and the wall regions. The reason may due to the contribution of 

the gas momentum to the total solids flow in the downer. Increasing Gs, the gas momentum 

contribution on particles becomes smaller leading to a long particle acceleration length. 

On the other hand, for a fixed Gs of 300 kg/m2s, under very low superficial gas velocity (e.g. 1 

m/s), the length of the development for the central and the wall regions can extend beyond the 

downer column itself. With increase of the superficial gas velocity, the development length 

would reduce. Similar results can also be obtained under other operating conditions. Based on 

the discussed above, it is concluded that increasing Gs and/or decrease Ug can slow down the 

development of the solids holdup in downer reactors. 
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Figure 6.10  Axial development of RNI(εs) along the downer under  

different operating conditions. 
 

To quantify the flow development analysis, the following radial nonuniformity indices (RNIs) 

proposed by Zhu and Manyele (2001) are employed. The radial nonuniformity indices of solids 

holdup (RNI (εs)) and particle velocity (RNI (Vp)), are defined as follow.  
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For RNI (εs), 

max ,

( ) ( )
( )

( ) ( )
s s

s
s s s mf s

RNI
   

    
 


 (6.8)

where σ(εs) is the standard deviation of the radial solids holdup, σ(εs)max is the normalizing 

parameter, s is the cross-sectional average solids holdup, and εs,mf is the solids holdup at 

minimum fluidization. RNI (εs) is actually the normalized standard deviation for a particular 

cross-sectionally averaged solids holdup given that the solids holdup can only have values of 

either 0 or εs,mf. Therefore, RNI (εs) must vary between 0 and 1, with lager values indicating less 

uniform flow structure. 

For RNI (Vp), 

max ,min ,max
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 (6.9)

where σ(Vp) is the standard deviation of the particle velocity at different radial positions, σ(Vp)max 

is the normalizing parameter, pV is the cross-sectional average particle velocity, Vp,min is the 

minimum particle velocity (Vp,min = Gs/(ρpεs,mf)), and Vp,max is the maximum possible particle 

velocity (taken 2Ug by Zhu and Manyele, 2001).  Again, RNI (Vp) varies between 0 and 1. 

Figure 6.10(a) provides a comparison of RNI (εs) as a function of the axial distance from the 

downer top. Generally, the maximum values of RNI (εs) occurs in the entrance region and 

thereafter gradually decrease down the column to constant values indicating that the solids flow 

becomes more uniform along the axial elevations. The result corresponds to the higher solids 

holdup in the wall region in the entry of the downer and gradual transition to the uniform 

distribution of solids holdup in the fully developed region. This Figure also shows the influence 

of the operating conditions on RNI (εs). At constant Ug, higher values of Gs result in higher RNI 

(εs) intensifying the nonuniformity of the solids flow. As Ug increases, the RNI (εs) decreases for 

all Gs. Thus, a highly uniform flow structure occurs at a high Ug and low Gs. Figure 6.10(b) 

provides the RNI (Vp) values as a function of height under different operating conditions. In 
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general, the values of RNI (εs) decrease exponentially along the column with constant values 

near the exit of the downer illustrating that a transition from a nonuniform flow structure in the 

entrance to a relatively uniform solids flow close to the downer exit. It is also clear from Figure 

6.10 that the two RNIs can be used to characterize the flow development. The effects of the 

operating conditions on the flow development are comparable to the results discussed in the 

above sections. 

6.3.3 Axial profiles of solids flow 
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Figure 6.11  Axial profiles of cross-sectional mean solids holdup along the downer 
 under different operating conditions. 
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Figure 6.11 shows the axial distribution of the cross-sectional average solids holdup along the 

downer. The cross-sectional average solids holdup profiles decrease dramatically at the top of the 

downer column (1-2 m below the distributor), then decrease gradually and finally approaches a 

constant value further down the column. Similar trend had been reported by Zhang et al. (1999). 

As discussed in their paper, the cross-sectional average particle velocity increases rapidly in the 

1-2 m below the downer distributor due to the high drag force resulting from the large initial 

difference between the gas velocity and the particle velocity. Then the acceleration slows down 

and finally the particle velocity approaches a constant further down the downer. For most of the 

operating conditions in this study, the axial profiles of the cross-sectional average solids holdup 

have the same trends described above, except for the conditions where a very high solids 

circulation rate (Gs = 300 kg/m2s) combined with relatively low superficial gas velocity (Ug = 1 

and 3 m/s).  

As shown in Figure 6.11, the profiles of the cross-sectional average solids holdup are greatly 

affected by the operating conditions. Increase Gs at constant Ug significantly increases the solids 

holdup along the entire downer. Further increase in Gs from 200 kg/m2s to 300 kg/m2s would 

lead to an extension of the acceleration zone covering the whole axial elevations. From Figure 

11(a), it is clear that as Gs increases to 300 kg/m2s at superficial gas velocity of 3 m/s, the cross-

sectional average solids holdup decreases monotonically over the entire length of the column. 

The probable reason is that the cluster forming at high Gs reduces the effective gas drag on 

particles and thus slows down the particle acceleration (Zhang et al., 1999). In addition, the 

enhanced clustering probably results in a higher constant particle velocity in the fully developed 

zone which needs a longer acceleration section for particles to reach.  

For a constant solids circulation rate of 300 kg/m2s shown in Figure 6.11(b), an increase in Ug 

decreases the solids holdup along all axial elevations. Compared to the effect of Gs, the influence 

of Ug on the cross-sectional average solids holdup is less significant. This is probably because 

the particle velocity is not proportional to the superficial gas velocity but is the combination of 

the gas velocity and the effective gas-solids slip velocity. A doubled Ug does not double the  

particle velocity and thus does not reduce the cross-sectional average solids holdup by half, since 
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the gas-solids slip velocity does not increase with Ug because the clusters broken under high Ug 

(Zhang et al., 1999). 
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Figure 6.12  Axial profiles of cross-sectional mean particle velocity along the downer 

under different operating conditions. 
 

Figure 6.12 shows the axial profile of the cross-sectional average particle velocity along the 

column under different operating conditions. The particle velocity increases rapidly in the 

entrance region of 1-2 m below the distributor, indicating a high solids acceleration rate in this 

section due to the large initial difference between the gas velocity and particle velocity as 
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mentioned before. The acceleration extends gradually further down the column. Effects of 

operating conditions on the cross-sectional average particle velocity follow the same trend as in 

cross-sectional average solids holdup. Increasing solids circulation rate and/or decreasing 

superficial gas velocity slow down the particle velocity in the entire downer column. Comparing 

with the effect of Gs, the influence of Ug on the cross-sectional average solids holdup is more 

significant.  

It has been reported by many researchers that there are three hydrodynamic flow regions along 

the axial directions in the downer: the first acceleration section, the second acceleration section 

and the constant velocity section (Kwauk, 1964; Yang et al., 1991; Zhu et al., 1995; Ma and 

Zhu, 1999 and Zhang et al., 1999 and 2001). In the first acceleration region near the distributor, 

gas velocity is high while particle velocity is near zero. Solids are accelerated by both gravity 

and gas drag force until the particle velocity is equal to the gas velocity. In the second 

acceleration, particles are farther accelerated by gravity, but resisted by the gas drag (in the 

upward direction against gravity). Particle velocity then over-takes the gas velocity and increase 

further until gas drag on the particle counter-balances the gravity. After this region, both particle 

and gas velocities remain constant downstream where particles travel faster than gas, but with a 

constant slip velocity between the two. The axial solids holdup and particle velocity variations 

also follow this three-section axial flow structure as shown in Figures 6.11 and 6.12. Both solids 

holdup and particle velocity decrease sharply in the first acceleration section (1-2 m at the 

entrance region of the downer), then the trend becomes much fatter further downer the column. 

In the constant velocity section, the solids holdup and particle velocity remain almost constant. 

Again, in very high flux up to 300 kg/m2s conditions, the acceleration sections can extend 

beyond the downer reactor itself. 
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6.4 Conclusion 

Hydrodynamics of a high flux gas-solids circulating fluidized bed downer were experimentally 

studied at superficial gas velocities of 1-7 m/s and solids circulation rates from 100 to 300 

kg/m2s. 

Radial distribution of solids holdup in the downer is much more uniform compared to the riser 

reactor. Radial solids holdup distribution is characterized by a flat shape covering a wide region 

of the column cross section and a relatively high value near the wall in the fully developed 

region. The uniform radial distribution of solids flow provides a nearly plug flow condition in the 

downer reactor.  

The radial solids holdup distribution is affected by the operating conditions. Under low solids 

circulation rate, the shape of the radial profiles is nearly unchanged along the entire downer. 

With increasing solids circulation rate, the shape of the radial solids holdup distribution changes 

along the column. Solids holdup usually reaches the highest value at r/R ≈ 0.8-0.9 under high 

solids circulation rates. 

Particle velocity in the downer rector is characterized by a relatively flat core and an annulus 

where the particle velocity slightly increases towards the wall. Compared to the riser reactor, 

radial profile of particle velocity in the downer reactor is more uniform. 

Radial profiles of the local solids flux in the downer are significantly influenced by operating 

conditions. The shape of the local solids flux is characterized by a relatively flat core and an 

annulus where the particles velocity slightly increases towards the wall. Increasing Ug and/or 

decreasing Gs lead to a more uniform distribution of radial solids flux. 

The flow development in the downer reactor is also significantly affected by operating 

conditions. Increasing Gs or decreasing Ug extends the length of the particles acceleration zone.
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Nomenclature 

f calibration function for optical fiber probe 

Fs solids flux [kg/(m2·s)] 

sG  cross-sectional average solids flux [kg/(m2·s)] 

,s LG  time mean local solids flux [kg/(m2·s)] 

Gs solids circulation rate [kg/(m2·s)] 

Le effective distance between light-receiving fiber A and B [m] 

r/R reduced radial sampling positions 

RNI(εs) radial nonuniformity index of solids holdup 

RNI(Vp) radial nonuniformity index of particle velocity 

t time [s] 

T time interval [s] 

Ug superficial gas velocity [m/s]

vp particle velocity [m/s] 

v̄p cross-sectional average particle velocity [m/s] 

V voltage [volt] 

V(t) voltage time series [volt] 

z axial coordinate, or distance from gas distributor [m]  

Greek letters 

εs solids holdup [-] 

εs(t) local instantaneous solids holdup [-] 

ε̄s average solids holdup in the entire column [-] 

Subscripts 

1, 2 subprobe 1 and 2 of optical fiber probe 

g gas 
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p particle 

s solids 
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CHAPTER 7 

Catalytic Ozone Decomposition in a High Density CFB Riser 

7.1 Introduction 

Circulating fluidized bed reactors are efficient gas-solid reactors and have been utilized widely in 

various commercial processes such as gasification of biomass, catalytic cracking of crude oil and 

coal combustion (Kunii and Levenspiel, 1991; Grace et al., 1997; van der Hoef et al., 2004 and 

Zhu and Cheng 2005). A number of fundamental researches have been conducted on the 

hydrodynamics (Li, Kwauk. 1980; Bai et al., 1992; Smolders; Nieuwland et al., 1996 and 

Baeyens, 2001) and heat transfer (Glicksman 1988; Wu et al., 1989; and Ma and Zhu 1999, 2000 

and 2001) in circulating fluidized beds. The major hydrodynamic features of gas-solids CFB 

risers have been delineated with axial dense/dilute transition solids flow and a core-annulus 

structure in the radial direction. This kind of nonuniform flow structure and the relatively dilute 

solids holdup (usually less than 0.10) hampers the CFB systems’ application to processes, which 

require high solids processing capacities and high heat transfer rates (Zhu and Bi, 1995; Grace et 

al., 1999; Du et al., 2003; and Zhu and Zhu, 2008). The overall efficiency of a riser can be 

improved when the distribution of the solids particles becomes uniform. Issangya et al. (1997, 

1999 and 2000) reported that the axial homogenous flow with no downward flow near the wall 

could be achieved under high superficial gas velocity and high solids circulation rate. Liu et al. 

(1999) thereafter pointed out that gas backmixing became small for the same high density 

operating conditions. Zhu and Zhu (2008) proposed a novel circulating-turbulent fluidized bed 

(C-TFB), which operated in a special mode with low superficial gas velocity and high solids 

circulation rate, resulting in a high-density flow with cross-sectional mean volumetric solids 

concentration of more than 0.25 through the entire C-TFB. The axial solids distribution profile 

was nearly uniform ranging from 0.25-0.29, and the uniformity of radial solids distribution had 

also been improved with local solids holdup around 0.15 at the axis and 0.44 at the wall. There 

was no net downflow of solids and a good gas solids mixing was observed. 
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Solids flow structure especially the solids holdup distribution in the CFB riser play a major role 

on reactor performance both when a catalyst is employed in a chemical reactor, or coal is 

combusted, and an inert solids is circulated as a heat carrier (Ouyang et al., 1995). Study of 

chemical reactions can provide direct information on reactor performance compared to other 

methods. Limited results have been reported on mass transfer dealing with catalytic reaction in 

circulating fluidized bed systems (Jiang, et al., 1990, 1991; Ouyang et al., 1993, 1995; Fan et al., 

2008 and Li et al., 2011 and 2013).Because of its simplicity in reaction kinetics (first order 

reaction) and negligible heat effect, catalytic ozone decomposition is usually employed as the 

model reaction in the study of reactor performance. However, the experiments of ozone 

decomposition reported in the literature were carried out under very low solids circulation rates 

(less than 200 kg/m2s). The purpose of this paper is to analyze the axial and radial ozone 

concentration profiles in a high density CFB riser with extremely high solids circulation rates up 

800 kg/m2s. The correlation between solids flow structure and reactor performance is also 

studied.
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7.2 Experimental details 

7.2.1 CFB experimental setup  
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Figure 7.1  Schematic diagram of the multifunctional CFB and ozone testing system. 
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The circulating fluidized bed reactor facility used in this study is shown schematically in Figure 

7.1. The system includes three circulating fluidized beds: the left hand fluidized bed serves as a 

high flux/density circulating fluidized bed riser (76 mm i. d. and 10 m high), and the right hand 

fluidized beds are two circulating fluidized beds downer (co-current downflow circulating 

fluidized beds) of different diameters (76 mm i. d. and 5.8 m hight and 50 mm and 4.9 m high, 

respectively). A large downcomer with an inner diameter of 203 mm returns solids during riser 

operation. At its bottom a solids storage tank with an inner diameter up to 457 mm were used as 

general solids storage for the entire system. Total solids inventory of FCC particles in the 

downcomer and storage tank could be up to 450 kg, equivalent to a solids height of 

approximately 6.0 m. This high solids level ensures high back pressure in the downcomer and 

enables high solids circulation rates and high solids concentrations in the CFB riser. To aid the 

fluidization of the downcomer, aeration points were provided at 2 m and 5 m above the 

distributor. In order to obtain higher flux and steadier operating conditions, other modifications 

had been carried out in the CFB system (details can be found in the chapter 4).  

The multifunctional circulating fluidized bed (MCFB) can be operated as a CFB riser and 

downer. For CFB riser operations, particles in the storage tank fluidized by aeration air entering 

into the bottom of the riser and obtained momentum from the air passing through the riser gas 

distributor made of perforated plates (2 mm×176 holes, 12% opening area). The particles are 

carried upward by the riser air along the column. At the top of the riser, particles and gas are 

separated by primary, secondary and tertiary cyclones and most of the particles returned to the 

downcomer and further down to the storage tank. Fine particles leaving from the cyclones are 

trapped by the bag filter and returned periodically to the downcomer. The gas is then discharged 

into the atmosphere. When the MCFB is under downer operating mode, solid particles are first 

lifted through the riser, separated by the primary cyclone fixed at the top of the downcomer and 

then fed into the downers. At the top of either one of the downers is a gas-solids distributor 

(details shown in Figure 7.1) where the particles are uniformly distributed along with the downer 

air to flow downward concurrently. After fast separation by gravity at the exit of either downer 

column, most particles are retained in the storage tank, with the remaining particles captured by 

two cyclones installed in series at the top of the exhausted pipeline and the common bag filter. 
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To eliminate the effects of solids inventory and other influencing parameters on the 

hydrodynamic characteristics, the whole experimental work in this study was carried out with a 

constant particle mass of 400 kg stored in the downcomer and the storage tank. 

The entire fluidized bed system uses aluminum as the main construction material with small 

portions made of Plexiglas for visual observation. In order to minimize possible electrostatic 

charges formed in the columns during the experiments, the whole fluidized bed system is 

electrically grounded. A measuring device for solids circulation rate is installed in the top section 

of the downcomer. By regulating the ball valve located in the solids feeding line connecting the 

storage tank and the riser column, the solids circulation rate can be adjusted and maintained at 

the desired level during each experiment. The fluidization gas used in this study is air at ambient 

temperature, supplied by a large compressor capable of delivering 1000 SCFM at 100 psi. 
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Figure 7.2  Schematic diagram of the novel optical fiber probe and its working principle. 
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7.2.2 Measurements of solids holdup 

Experimental measurements include differential pressure, solids concentration (solids holdup) 

and ozone concentration. Twenty pressure taps were installed along the CFB column and 

connected with 19 differential pressure transducers (Omega PX162) to measure the axial profiles 

of the pressure gradient. The pressure gradient is mainly used to double check the solids holdup 

measured by an optical fiber probe mentioned below. Local solids holdup and particle velocity 

are measured simultaneously using a novel reflective-type optical fiber probe which has been 

shown to be effective and accurate for measuring the local solids concentration and particle 

velocity in high velocity fluidized beds and thus has been widely used by many investigators 

(Herbert et al., 1994; Johnsson et al., 2001; Liu et al., 2003 and Ellis et al., 2004). It yields high 

signal-to-noise ratios and is nearly free of interference by temperature, humidity, electrostatics 

and electromagnetic field. Moreover, its small size does not significantly disturb the overall flow 

structure in CFB systems with proper design. The optical fiber probe used in this work are model 

PV6D, developed by the Institute of Processing Engineering, Chinese Academy of Sciences, 

Beijing, China. The probe and measurement procedure are schematically shown in Figure 7.2. 

The outer diameter of the probe is 3.8 mm. There are two subprobes of the probe. Each of the 

subprobes consists of 8000 fine quartz fibers. The effective distance of the two vertically aligned 

subprobes is 1.51 mm, and the active tip area of each subprobe is 1×1 mm. Each subprobe 

consists of many quartz fibers with a diameter of 15 µm, for light-emitting and receiving, 

arranged in alternating arrays. In order to prevent particles from occupying the blind zone, a 

glass cover of 0.2 mm thickness is placed over the probe tip. The underlying theory is elaborated 

by Liu et al. (2003). 

As shown in Figure 7.2, light from the source illuminates a measuring volume of particles 

through the light-emitting fibers. The received light reflected by the particles is captured by light 

receiving fibers and processed by a photo-multiplier. The light intensity is then converted into 

voltage signals and the voltage signals are further amplified and fed into a PC. The voltage signal 

obtained by the probe is converted to volumetric concentration using a calibration equation. The 

relationship between the output signals of the optical fiber probe and the local solids holdup 
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(non-linear) is first established through proper a calibration based on the method developed by 

Zhang et al. (1998). 

From the voltage time series V(t) and the calibration equation, local instantaneous solids holdup, 

εs(t), can be calculated: 

 
             (7.1)

where, f is the calibration function. The time-mean solids concentration εs can be given by 

integrating εs(t) over the time period, T: 

 
0

1 T

s s t dt
T

    (7.2)

The cross-sectional average solids holdup s , can be calculated as follow: 

2 20 0

1 2
2 d d
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s s sr r r r
R R

   


    (7.3)

7.2.3 Catalyst preparation 

Ozone decomposition is a thermodynamically favoured process. It decomposes slowly at room 

temperature in the absence of catalysts, so catalysts are necessary for ozone decomposition at 

lower temperatures (Cotton and Wilkinson, 1972; Dhandapani and Oyama, 1997; Lin and 

Nakajima, 2002 and Wojtowicz, 2005). The noble metals such as Pt, Pd Rh and transition metal 

oxides such as MnO2, Co3O4, CuO, Fe2O3, NiO and Ag2O etc, are the active catalysts for ozone 

decomposition reaction, (Dhandapani and Oyama, 1997). In view of the high cost of noble 

metals, the metal oxide catalysts are usually preferred for ozone decomposition reactions. 

Catalyst supports include γ-Al2O3, SiO2, TiO2, zeolite, activated carbon (or carbon fibrous 

materials) or a combination of these (Dhandapani and Oyama, 1997 and Kirschner, 2000).  

The equilibrium FCC particles, impregnated with ferric nitrate are used as catalysts. FCC 

particles, which are primarily composed of porous amorphous aluminum hydrosilicate are 

activated by impregnating in a 40% (wt) solution of ferric nitrate overnight. The soaked particles 

are then dried and calcinated in an oven with a hood at 450°C for 4 hours until no NO2 is 

   s t f V t    
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released. During the calcinations, the ferric nitrate is converted to ferric oxide, which is the 

active component for the ozone decomposition reaction. The agglomerates formed during this 

process are then grinded by a ball mill and sifted using a standard sieve with 250 µm pore size. 

The Sauter mean diameter and the particle density is 76 µm and 1780 kg/m3 respectively. The 

particle size distribution is listed in Table 7.1. 

 

Table 7.1  Size distribution of the FCC particles. 

Particle Size (µm) Volume Fraction (%) 

0-20 0.61 

20-40 9.72 

40-60 26.32 

60-80 22.80 

80-130 33.24 

>130 7.31 
 

7.2.4 Ozone generation and testing 

An ozone generator using the corona discharge method (Model AE15M, manufactured by 

Absolute Ozone Inc.) is used in this study. Using bottled oxygen as gas supply, it produces up to 

30 g/h of ozone depending on the oxygen flow rate and electrical current settings. Its working 

pressure is 5-50 psig, with oxygen flow rate of 0.1-10 standard liter per minute (SLPM). The 

oxygen flow rate into the generator was controlled by two rotameters (VWR, Catalog Number: 

97004-648) ranging from 0 to 10 liter per minute (LPM). The ozone/oxygen mixture exiting 

from the ozone generator is mixed with the main fluidization air before entering the CFB riser or 

downer. With a fairly long flow path and several L-bends in the main air feeding lines, the 

mixing process is thorough. To ensure that the ozone stream can be easily and smoothly injected 

into main air flow of the CFB riser/downer with a pressure of less than 30 psig (for safety 

reasons, the 100 psig air source is reduced to a maximum feeding pressure of 30 psig), an output 

pressure of 50 psig is used for the regulator installed on the oxygen gas cylinder, maintaining a 
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much higher pressure for the ozone flowing from the ozone generator. The resulting initial ozone 

concentration (C0) in the main air before ozone decomposition in the CFB columns is set to 80-

100 ppm.  

An ozone analyzer (Model 49i, Thermo Electron Inc.) that employs the UV photometric method 

of measurement is used to measure the amount of ozone in the ozone-air sample. It is a dual-cell 

photometer, having both sample and reference air flowing at the same time. Each cell has a 

length of 37.84 cm and an inner diameter of 0.91 cm, with the internal surfaces coated with 

polyvinylidine fluoride (PVDF) to ensure that ozone undergoes no decomposition upon exposure 

to the internal surface of the cells (Thermo Electron Inc., 2004 and 2005). The ozone analyzer 

has a measuring range of 0.0001-200 ppm with a resolution of 0.0001 ppm. The response time of 

the apparatus is 4 s. The ozone concentration output is displayed on an LCD screen. The UV 

source in the ozone analyzer is a 254 nm mercury lamp.  

Considering the fact that ozone is highly oxidative, to reduce ozone loss in the sampling pathway 

to ozone analyzer, ozone-inert materials (e.g. stainless steel, copper, aluminum and Teflon) are 

used for the sampling probes, valves, and piping lines (Teflon, 3 mm i.d., 6 mm o.d.). Gas 

samples are continuously drawn from the CFB column through a sampling system shown in 

Figure 7.1 using the brass tubes (6 mm o.d. and 0.36 mm wall thickness) as the sampling probes. 

The tip of the probe is covered with a fine stainless steel mesh to prevent particles from being 

entrained into the sampling system. The velocity of gas sucked for sampling is 1.5 LPM which is 

low enough to assure minimal disturbance of the flow structure in CFB system. A high pressure 

purging air stream of 100 psig is introduced to blow away any particles potentially caked in the 

sampling probes.  

When measuring ozone concentration in the CFB riser/downers, 4-5 g of particles are taken out 

from the column for catalytic activity check using the fixed bed reactor before and after each 

experiment. No significant change is observed in reaction rate constant (kr) before and after 

several hours of CFB run, so that the ozone concentration profiles obtained under the 

experimental period is assumed to be under the same particle catalytic reactivity. The average 

value from these two tests is taken as the reaction rate constant. 
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In order to map the entire cross-section of the riser, ten axial measuring ports (z = 0.59, 1.02, 

1.94, 2.85, 3.77, 4.78, 5.84, 7.78, 9.61, and 10.09 m above the gas distributor) are installed along 

the column. Measurements were conducted at six radial positions (r/R = 0, 0.316, 0.548, 0.707, 

0.837 and 0.950, where r is the distance from the center and R is the riser radius) on each axial 

level of the CFB riser system. These positions are determined by dividing the column cross-

section into five equal areas and determining the mid-point of each of these areas. For the 

hydrodynamic experiments, voltage signals from the optical fiber probe were sampled at a high 

frequency of 100 kHz with 1,638,40 data points for each measurement. To get the valid and 

repeatable data, all measurements are repeated at least 5 times. For the catalytic ozone 

decomposition, measurement is started after steady state has been reached in the CFB systems, 

which usually takes about at least 1 hour (Li, 2010). Ozone sampling is conducted for 1 min 

where the ozone concentration is fairly stable. 
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7.3 Results and discussion  

7.3.1 Axial and radial profiles of ozone concentration 
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Figure 7.3  Axial distributions of the average dimensionless ozone concentration  
and the corresponding solids holdup. 
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The cross-sectionally averaged ozone concentration profiles under different operating conditions 

in the riser are shown in Figures 7.3 and 7.4. The average ozone concentrations are obtained by 

averaging the ozone concentration at six radial positions for each axial level. Ozone 

concentrations in all figures are presented in the form of “dimensionless concentration” which is 

defined by dividing the actual ozone concentration by initial concentration at the riser inlet. The 

corresponding solids holdup profiles obtained from optical fiber probe measurements are given 

in Figures 7.3 (e), 7.3 (f) and 7.3 (g).  

From the axial distribution profiles of the ozone concentration, it is shown that the ozone 

concentration always decreases with increasing distance from the distributor. For all the 

operating conditions, the axial distribution profiles of the ozone concentration have a similar 

trend: except for the entrance region of the column where the ozone concentration decreases 

quickly, the ozone concentrations change more gradually and even have almost no change along 

the axial elevations. In other words, the conversion of ozone in the entrance section may 

accounts for most of the total conversion while the upper section of the riser contributes much 

less to overall ozone conversion. This indicates that the reaction is much faster in the 

acceleration region than that in the developed region, possibly due to the higher solids holdup 

and high gas-solids contact efficiency as well as higher reactant concentration, in the entrance 

region (shown in Figures 7.3 (e), 7.3 (f) and 7.3(g)). It should be pointed out that a dramatic 

change in the ozone concentration near the entrance region for all operating conditions may also 

be attributed to the entrance effect which is dependent on the design associated with this region. 

In addition, there is a clear difference in the axial distributions of ozone concentration between 

low and high solids concentrations. When Gs (Gs = 100 kg/m2s) is low, the axial profiles has a 

more uniform axial distribution with a very short entrance-section (less than 2 m) where the 

ozone concentration drops sharply. Above this region, the ozone concentration remains relatively 

constant. When Gs is higher than 200 kg/m2s, the dramatic decrease of ozone concentration 

covers much longer length which can be up to 6 m for Gs of 800 kg/m2s, leading to higher ozone 

conversion. The obvious reason is that the average solids holdup is much higher for high solids 

flux conditions than that for low solids flux cases. Under high solids concentration conditions, 

there would be more opportunity of contacting between gas and solids so that the reactant can be 
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converted as much as possible. It can also be seen that the operating conditions (superficial gas 

velocity and solids circulation rate) affect the values of the dimensionless ozone concentration. 

Low superficial gas velocities and/or high solids circulation rates lead to low ozone 

concentration (i.e. high ozone conversion) and vice versa.  
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Figure 7.4  Axial distributions of the dimensionless ozone concentration and the corresponding solids 

holdup at different radial positions. 
 

Figure 7.4 shows the typical axial ozone concentration profiles at different radial positions under 

Ug of 7 m/s and Gs of 700 kg/m2s. The corresponding solids holdup profiles are also given in the 

Figure. Different trends are observed for different radial positions. Ozone concentration in the 
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centreline of the riser is nearly linear and is almost constant along the riser height. In the middle 

section of the radial position (r/R = 0.548), the ozone concentration distribution becomes less 

uniform with a sharp decrease up to 5-6 m and thereafter remains almost unchanged in the upper 

sections. On the other hand, a significantly lower ozone concentration has been measured near 

the wall. The above trend is related to the solids holdup distributions, which are shown in Figure 

7.4 (b). At the central region, the solids holdup is low and remains nearly unchanged, so that the 

unconverted ozone concentration is relatively high and hardly changes with the axial elevations. 

In the middle section, the solids holdup changes dramatically with the axial level leading to the 

various ozone concentrations along the riser. However, the solids concentration near the wall is 

much higher up to 0.55 so that the conversion in this region is higher up to 90%. 
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Figure 7.5  Radial distributions of the average dimensionless ozone concentration 
and the corresponding solids holdup. 



Chapter 7 

187 

 

Typical radial distribution profiles of the ozone concentration at different axial bed positions 

under superficial gas velocity of 5 m/s and solids circulation rate of 400 kg/m2s in the column are 

shown in Figure 7.5 (a). The Figure shows that the distribution of the ozone concentration is not 

uniform along the radial direction, consistent with those profiles in Figure 7.4. At the lower bed 

section, ozone concentration changes more rapidly with the radial positions. The ozone 

concentration is highest at the axis, decreasing sharply towards the wall. With increasing bed 

height, the profiles of ozone concentration become more uniform across the bed, but still show a 

small decrease near the wall. The trends of the radial distributions are understandable, and can be 

explained by the radial flow structure. The radial distribution of solids holdup is shown in Figure 

7.5 (b). At the center of the riser, the solids concentration is low and uniform since solids can be 

easily carried up by the high-velocity gas. Near the wall, as the gas velocity is lower, the solids 

concentration remains at high values. This causes the radial distribution of unconverted ozone 

concentration to be high and more uniform in the central region and to have a significant 

decrease near the wall. The radial distribution of concentration is consistent with that reported by 

Li et al. (2011 and 2013). Moreover, the difference in ozone concentration between the core and 

wall region seems to decrease with the axial elevations reflecting the decrease in solids holdups.  

 

Figure 7.6  Overall view of the dimensionless ozone concentration under different operating conditions. 
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Based on the above discussion, Figure 7.6 provides an overview of the ozone concentration 

profiles in the CFB riser under various operating conditions, where x and y axes are the radial 

and axial positions in the column, and z-axis is the dimensionless ozone concentration. It is 

observed that with the increase of riser elevations, more ozone reactants are converted due to its 

extended contact with the catalyst particles, giving decreased ozone concentrations. Ozone 

concentration in the center region is higher than that in the near wall region, giving a parabolic 

radial profile of the concentration. The radial ozone concentration distribution also becomes 

uniform in the upper region of the reactor.  

The distribution of ozone concentration is affected by the operating conditions. Higher Ug and/or 

low Gs results in more uniform distribution of ozone concentration in both axial and radial 

directions. For example, at low solids circulation rate (Gs = 100 kg/m2s) and high superficial gas 

velocity (Ug = 9 m/s), the ozone concentration profiles are nearly constant along the column. The 

axial profiles become less uniform with increasing Gs. Moreover, an increase in Gs increases the 

ozone concentration difference between the central and wall region. Next we examine the effects 

of operating conditions on ozone concentration distributions.  
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7.3.2 Effect of operating conditions on ozone concentration 
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Figure 7.7  The effect of solids circulation rate on the local dimensionless ozone concentration. 
 

The effect of solids circulation rate on radial profiles of dimensionless ozone concentration at 

four axial levels at Ug = 5 m/s with solids circulation rates ranging from100 kg/m2s to 400 

kg/m2s is plotted in Figure 7.7.  

As discussed before, the radial profiles of ozone concentrations are parabolic-shaped, 

corresponding to the radial distribution of solids concentrations. At all axial levels, the 

dimensionless ozone concentration (unconverted ozone concentration) decreases with an 

increase in solids circulation rate for the same superficial gas velocity of 5 m/s. This is due to the 

solids holdups increase with increasing solids circulation rate. Under the high density operating 

conditions, the total gas-solids contacting area for reaction and mass transfer between gas and 

solids will also increase leading to significant rise of the ozone conversion. Therefore, ozone 
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concentration becomes much lower as solids circulation rate increases. At the same bed height, 

the radial distribution of the ozone concentration becomes more uniform with reduced Gs due to 

the increased radial uniformity of the solids flow structure.  
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Figure 7.8  The effect of superficial gas velocity on the local dimensionless ozone concentration. 

 

The effect of the superficial gas velocity on radial profiles of dimensionless ozone concentration 

at four axial levels at Gs = 400 kg/m2s with superficial gas velocities ranging from5 m/s to 9 m/s 

is plotted in Figure 7.8.  

Generally, the concentration of the unconverted ozone increases with increasing superficial gas 

velocity, at a fixed solids circulation rate. This may be attributed to the following mechanisms: 

when solids circulation rate remains constant, increasing superficial gas velocity reduces the 
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solids holdups. The decreased solids holdup would result in the decrease of total gas- solids 

contacting area which is not favourable for the reaction. On the other hand, increasing superficial 

gas velocity leads to a short residence time of both gas and solid phases, which is not beneficial 

to the total conversion of ozone. Considering the above two factors, the increase of superficial 

gas velocity will cause the decrease of the ozone conversion. In addition, increasing Ug can lead 

to a more uniform radial profile of ozone concentrations. 

7.3.3 Relationship between ozone concentration and solids holdup 
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Figure 7.9  Relationship between the conversion and solids holdup. 
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As stated before, the distribution of ozone concentration is essentially dominated by the flow 

structure, which can be partially represented by the solids holdup profiles in the CFB reactors. 

To further evaluate the effects of the solids holdup on ozone concentration, the overall 

conversion of ozone are plotted against the mean solids holdup in the entire column as shown in 

Figure 7.9. 

In general, the conversion of ozone increases with the solids holdup, as has been confirmed by 

other researchers (Jiang et al., 1991 and Li et al., 2011 and 2013). There appears to be a linear 

relationship between total ozone conversion and mean solids holdup as shown in Figure 7.9 (a). 

The influence of solids holdup on ozone conversion is nearly the same for Ug = 5 m/s and 7 m/s 

with almost the same slope of the fitting lines. On the other hand, effects of solids holdup on 

ozone conversion is more significant under high superficial gas velocity (Ug = 9 m/s). Higher 

solids holdup under higher superficial gas velocity plays a significant role in overall conversion. 

The reason is that at low superficial gas velocity, the increase of solids holdup probably leads to 

the increase of formation of clusters. The gas-solids mass transfer within the clusters is not as 

good as that between dispersed particles and the gas flow. Under high superficial gas velocity 

conditions, the high gas velocity can break down the clusters in addition to enhance the gas-

solids contacting efficiency. Therefore, the overall conversion of reactant can be increased 

rapidly with solids holdup under high superficial gas velocity.  

Figure 7.9 (b) shows the solids holdup influence on overall conversion under different solids 

circulation rates. Firstly, the increase of the overall ozone conversion with solids holdup seems to 

have different trends under different solids circulation rates. The relationship between overall 

conversion and solids holdup is almost linear under relatively low Gs (less than 300 kg/m2s). 

Secondly, the variation of the overall conversion with solids holdup also appears to follow 

different trends for low and high solids flux conditions. The overall conversion of ozone 

increases significantly under such low Gs. While under high Gs the changes of overall conversion 

becomes slower. As discussed above, the increase of Gs will lead to the increase of solids holdup 

causing easy cluster formation. The cluster formation results in the decrease of the gas-solids 

mass transfer, which leads to the overall conversion at high Gs being less sensitive to the 

variation of solids holdup. Overall, it seems that at higher superficial gas velocity and lower 
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solids circulation rate, the increase of solids holdup leads to more significant increase in overall 

reactant conversion than that at lower gas velocity and higher solids flux. These phenomena have 

not been well illustrated in the previous studies. 

7.3.4 Performance of the CFB reactor 
 

 

Figure 7.10  Effects of Damköhler number on overall ozone conversion. 

 

The performance of the CFB reactors is related to both hydrodynamics and the chemical 

reactions. To determine how strong the effects of hydrodynamics have on the chemical reaction, 

it is better to plot the results of two typical models: a plug-flow reactor (PFR) and the continuous 

stirred-tank reactor (CSTR). Both of the two model reactors have been idealized in 

hydrodynamics with perfect mixing between gas and solids phase. Formulas for the conversion 

in PFR and CSTR can be derived as follows (Levenspiel, 1998). 
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Plug flow reactor 

'1 exp( )PFR rX k    (7.4)

Continuous stirred-tank reactor 

'

'1
r

CSTR
r

k
X

k



 (7.5)

where '
rk is the Damköhler number (= krεs(1-εs)H/Ug).  

The overall conversion of ozone for the entire riser is plotted against Damköhler number in 

Figure 7.10. The calculated curves of PFR and CSTR are also shown in Figure 7.10. It seems 

that the conversion in the CFB system is generally lower than that in the two ideal reactor 

models. This demonstrates that the two models, which idealize bed hydrodynamics, cannot well 

predict the observed conversions, which implies in turn that hydrodynamics affects the chemical 

reaction in the CFB riser. Moreover, it is noted that the effects of Damköhler number on overall 

conversion are consistent with the effect of solids holdup on overall conversions. This indicates 

that the solids holdup is the main factor affecting the ozone reaction and increasing solids holdup 

would increase reactant conversion. In addition, the extent of the deviation of the conversion can 

be attributed to the different gas-solids contact efficiency which will be the subject of the future 

study. 
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7.4 Conclusions 

The axial and radial distributions of the ozone concentration and the effect of the operating 

conditions on ozone concentration are studied in a high density circulating fluidized bed riser 

with various superficial gas velocities and high solids circulation rate up to 800 kg/m2s. The key 

conclusions of this study are as follows. 

The axial and radial distribution profiles of the ozone concentration are consistent with the 

corresponding profiles of the solids holdups which indicate that ozone reaction in the riser is 

controlled by the gas-solids flow structure.  

High ozone conversion in the entrance of the riser indicating that the initial gas-solids contacting 

plays a key role in the reaction process and more attention need to be paid on the entrance 

design.  

Ozone conversion increases with the solids circulation rate under the same superficial gas 

velocity due to the increase of solids holdup. The conversion decreases with gas velocity at a 

fixed solids circulation rate due to the associated reduction in solids holdup. 

Solids holdup affects the overall ozone conversion with various trends. There is much more 

significant influence of solids holdup on overall reactant decomposition under higher superficial 

gas velocity and/or lower solids circulation rate. 

The values of calculated overall conversion are to some extent smaller than those obtained based 

on the two ideal reactor (plug flow reactor and continuous stirred tank reactor) models indicating 

that hydrodynamics affects the chemical reaction in the CFB riser reactor. The extent of the 

deviation of the conversion can be attributed to the different gas-solids contact efficiency.  
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Nomenclature 

C ozone concentration [ppm] 

C0 initial ozone concentration [ppm] 

C/C0 dimensionless ozone concentration [-] 

Gs solids circulation rate [kg/(m2·s)] 

H height of the reactor [m] 

kr reaction rate constant based on particle volume, first-order [s-1]  

k 'r Damkoehler number, krε̄s(1-ε̄s)H/Ug [-] 

r radial coordinate [m] 

R column radius [m] 

r/R reduced radial sampling position [-] 

Ug superficial gas velocity [m/s] 

z axial coordinate, or distance from the gas distributor [m] 

Greek letters 

εs solids holdup [-] 

ε̄s average solids holdup for the entire reactor column [-] 

Subscripts 

g gas 

p particle 

s solids 
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CHAPTER 8 

Catalytic Ozone Decomposition in a High Flux Gas-solids  

CFB Downer 

8.1 Introduction 

Gas-solid reactors have been utilized widely in many industrial operations such as coal 

combustion, fluid catalytic cracking (FCC) and Fischer-Tropsch process. Circulating fluidized 

bed (CFB) is one of the efficient reactors employed to handle a variety of gas-solids processes. 

There are two basic flow modes: co-current upflow in a riser and co-current downflow in a 

downflow CFB or downer. For the riser reactor, both gas and solids are fed at the bottom and 

flow upwards. Compared to the conventional fluidized beds (bubbling and turbulent fluidized 

beds), risers have such advantages as high gas-solids contact efficiency, high solids throughput, 

flexible operation and unique heat and mass transfer characteristics. On the contrary, relatively 

significant axial dispersion of solids, which can greatly influence selectivity and irregular 

distribution of the desired products, is the main disadvantage of the CFB riser. It has been 

suggested that the axial back mixing in the riser is largely due to the particle aggregation which, 

in turn, is due to the gas and solids flow against gravity (Zhu and Wei, 1995 and Wei and Zhu, 

1996). 

The downer reactor, in which gas and solids move downward in a concurrent fashion, has drawn 

much attention in recent years due to its unique features such as shorter residence time, narrow 

residence time distribution, little or no solids backmixing (Zhu et al., 1995 and Cheng et al., 

2008). These features of downer reactors can potentially lead to its application for ultra rapid 

reactions such as the highly selective and fast catalytic conversion of residual oil or other 

hydrocarbons (Bassi et al., 1994; Shaikh et al., 2008 and Guan et al., 2011 and Abbasi et al., 

2012), biomass and coal pyrolysis.  

In chemical reactors, reactor performance is determined both by the process itself and by the 

hydrodynamics. The design, optimization and scale-up of a downer reactor require more precise 
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and quantitative understanding of both the flow behavior and the chemical reaction. Many 

studies on the hydrodynamics of downers have been carried out in recent years (Wang et al., 

1992; Wei and Zhu, 1996; Herbert et al., 1999; Johnston et al., 1999; Ma and Zhu, 1999; 

Schiewe et al., 1999; Zhang et al., 1999, 2000 and 2001; Deng et al., 2004; Luo et al., 2007; Wu 

et al., 2007; Qi et al., 2008; Abbasi et al., 2013 and Li et al., 2013). However, few researches 

have been reported on heat transfer, mass transfer and chemical reactions (Ma and Zhu, 1999 and 

2000; Fan et al., 2008 and Li et al., 2011). Study of chemical reactions in the downer can 

provide direct information on reactor performance. In this study, the objective is to obtain the 

axial and radial ozone concentration profiles and investigate the downer reactor performance at 

high flux operating conditions. Because of the simplicity of reaction kinetics and negligible heat 

effect of reaction, the ozone decomposition reaction is chosen as a model reaction in the current 

work. In order to explain the ozone profiles in the downer reactor, the flow structure of the 

downer under corresponding operating conditions is also determined. 
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8.2 Experimental details 

8.2.1 CFB experimental system 

 

 

Figure 8.1  Schematic diagram of the multifunctional CFB and ozone testing system. 
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The circulating fluidized bed reactor facility used in this study is shown schematically in Figure 

8.1. The system includes three circulating fluidized beds: the left hand fluidized bed serves as a 

high flux/density circulating fluidized bed riser (76 mm i. d. and 10 m high), and the right hand 

fluidized beds are two circulating fluidized beds downer (co-current downflow circulating 

fluidized beds) of different diameters (76 mm i. d. and 5.8 m hight and 50 mm and 4.9 m high, 

respectively). A large downcomer with an inner diameter of 203 mm returns solids during riser 

operation. At its bottom a solids storage tank with an inner diameter up to 457 mm were used as 

general solids storage for the entire system. Total solids inventory of FCC particles in the 

downcomer and storage tank could be up to 450 kg, equivalent to a solids height of 

approximately 6.0 m. This high solids level ensures high back pressure in the downcomer and 

enables high solids circulation rates and high solids concentrations in the CFB riser. To aid the 

fluidization of the downcomer, aeration points were provided at 2 m and 5 m above the 

distributor. In order to obtain higher flux and steadier operating conditions, other modifications 

had been carried out in the CFB system (details can be found in the chapter 4).   

The multifunctional circulating fluidized bed (MCFB) can be operated as a CFB riser and 

downer. For CFB riser operations, particles in the storage tank fluidized by aeration air entering 

into the bottom of the riser and obtained momentum from the air passing through the riser gas 

distributor made of perforated plates (2 mm×176 holes, 12% opening area). The particles are 

carried upward by the riser air along the column. At the top of the riser, particles and gas are 

separated by primary, secondary and tertiary cyclones and most of the particles returned to the 

downcomer and further down to the storage tank. Fine particles leaving from the cyclones are 

trapped by the bag filter and returned periodically to the downcomer. The gas is then discharged 

into the atmosphere.  

When the MCFB is under downer operating mode, solid particles are first lifted through the riser, 

separated by the primary cyclone fixed at the top of the downcomer and then fed into the 

downers. At the top of either one of the downers is a gas-solids distributor (details shown in 

Figure 7.1) where the particles are uniformly distributed along with the downer air to flow 

downward concurrently. After fast separation by gravity at the exit of either downer column, 

most particles are retained in the storage tank, with the remaining particles captured by two 
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cyclones installed in series at the top of the exhausted pipeline and the common bag filter. To 

eliminate the effects of solids inventory and other influencing parameters on the hydrodynamic 

characteristics, the whole experimental work in this study was carried out with a constant particle 

mass of 400 kg stored in the downcomer and the storage tank. 

The entire fluidized bed system uses aluminum as the main construction material with small 

portions made of Plexiglas for visual observation. In order to minimize possible electrostatic 

charges formed in the columns during the experiments, the whole fluidized bed system is 

electrically grounded. A measuring device for solids circulation rate is installed in the top section 

of the downcomer. By regulating the ball valve located in the solids feeding line connecting the 

storage tank and the riser column, the solids circulation rate can be adjusted and maintained at 

the desired level during each experiment. The fluidization gas used in this study is air at ambient 

temperature, supplied by a large compressor capable of delivering 1000 SCFM at 100 psi. 

8.2.2 Measurements of solids holdup 

 

Figure 8.2  Schematic diagram of the novel optical fiber probe and its working principle. 
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Experimental measurements include differential pressure, solids concentration (solids holdup) 

and ozone concentration. Twenty pressure taps were installed along the CFB column and 

connected with 19 differential pressure transducers (Omega PX162) to measure the axial profiles 

of the pressure gradient. The pressure gradient is mainly used to double check the solids holdup 

measured by an optical fiber probe mentioned below. Local solids holdup and particle velocity 

are measured simultaneously using a novel reflective-type optical fiber probe which has been 

shown to be effective and accurate for measuring the local solids concentration and particle 

velocity in high velocity fluidized beds and thus has been widely used by many investigators 

(Herbert et al., 1994; Johnsson et al., 2001; Liu et al., 2003 and Ellis et al., 2004). It yields high 

signal-to-noise ratios and is nearly free of interference by temperature, humidity, electrostatics 

and electromagnetic field. Moreover, its small size does not significantly disturb the overall flow 

structure in CFB systems with proper design. The optical fiber probe used in this work are model 

PV6D, developed by the Institute of Processing Engineering, Chinese Academy of Sciences, 

Beijing, China. The probe and measurement procedure are schematically shown in Figure 8.2. 

The outer diameter of the probe is 3.8 mm. The probe has two subprobes. Each of the subprobes 

consists of 8000 fine quartz fibers. The effective distance of the two vertically aligned subprobes 

is 1.51 mm, and the active tip area of each subprobe is 1×1 mm. Each subprobe consists of many 

quartz fibers with a diameter of 15 µm, for light-emitting and receiving, arranged in alternating 

arrays. In order to prevent particles from occupying the blind zone, a glass cover of 0.2 mm 

thickness is placed over the probe tip. The underlying theory is elaborated by Liu et al. (2003). 

As shown in Figure 8.2, light from the source illuminates a measuring volume of particles 

through the light-emitting fibers. The received light reflected by the particles is captured by light 

receiving fibers and processed by a photo-multiplier. The light intensity is then converted into 

voltage signals and the voltage signals are further amplified and fed into a PC. The voltage signal 

obtained by the probe is converted to volumetric concentration using a calibration equation. The 

relationship between the output signals of the optical fiber probe and the local solids holdup 

(non-linear) is first established through proper a calibration based on the method developed by 

Zhang et al. (1998). 
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From the voltage time series V(t) and the calibration equation, local instantaneous solids holdup, 

εs(t), can be calculated: 

 
             (8.1)

where, f is the calibration function. The time-mean solids concentration εs can be given by 

integrating εs(t) over the time period, T:  

 
0

1 T

s s t dt
T

    (8.2)

The cross-sectional average solids holdup s , can be calculated as follow: 

2 20 0

1 2
2 d d

R R

s s sr r r r
R R

   


    (8.3)

8.2.3 Catalyst preparation 

Ozone decomposition is a thermodynamically favoured process. It decomposes slowly at room 

temperature in the absence of catalysts, so catalysts are necessary for ozone decomposition at 

lower temperatures (Cotton and Wilkinson, 1972; Dhandapani and Oyama, 1997; Lin and 

Nakajima, 2002 and Wojtowicz, 2005). The noble metals such as Pt, Pd Rh and transition metal 

oxides such as MnO2, Co3O4, CuO, Fe2O3, NiO and Ag2O etc, are the active catalysts for ozone 

decomposition reaction, (Dhandapani and Oyama, 1997). In view of the high cost of noble 

metals, the metal oxide catalysts are usually preferred for ozone decomposition reactions. 

Catalyst supports include γ-Al2O3, SiO2, TiO2, zeolite, activated carbon (or carbon fibrous 

materials) or a combination of these (Dhandapani and Oyama, 1997 and Kirschner, 2000).  

The equilibrium FCC particles, impregnated with ferric nitrate are used as catalysts. FCC 

particles, which are primarily composed of porous amorphous aluminum hydrosilicate are 

activated by impregnating in a 40% (wt) solution of ferric nitrate overnight. The soaked particles 

are then dried and calcinated in an oven with a hood at 450 °C for 4 hours until no NO2 is 

released. During the calcinations, the ferric nitrate is converted to ferric oxide, which is the 

active component for the ozone decomposition reaction. The agglomerates formed during this 

   s t f V t    
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process are then grinded by a ball mill and sifted using a standard sieve with 250 µm pore size. 

The Sauter mean diameter and the particle density is 76 µm and 1780 kg/m3 respectively. The 

particle size distribution is listed in Table 8.1. 

 

Table 8.1  Size distribution of the FCC particles. 

Particle Size (µm) Volume Fraction (%) 

0-20 0.61 

20-40 9.72 

40-60 26.32 

60-80 22.80 

80-130 33.24 

>130 7.31 
 

8.2.4 Ozone generation and testing 

An ozone generator using the corona discharge method (Model AE15M, manufactured by 

Absolute Ozone Inc.) is used in this study. Using bottled oxygen as gas supply, it produces up to 

30 g/h of ozone depending on the oxygen flow rate and electrical current settings. Its working 

pressure is 5-50 psig, with oxygen flow rate of 0.1-10 standard liter per minute (SLPM). The 

oxygen flow rate into the generator was controlled by two rotameters (VWR, Catalog Number: 

97004-648) ranging from 0 to 10 liter per minute (LPM). The ozone/oxygen mixture exiting 

from the ozone generator is mixed with the main fluidization air before entering the CFB riser or 

downer. With a fairly long flow path and several L-bends in the main air feeding lines, the 

mixing process was thorough. To ensure that the ozone stream could be easily and smoothly 

injected into main air flow of the CFB riser/downer with a pressure of less than 30 psig (for 

safety reasons, the 100 psig air source is reduced to a maximum feeding pressure of 30 psig), an 

output pressure of 50 psig is used for the regulator installed on the oxygen gas cylinder, 

maintaining a much higher pressure for the ozone flowing from the ozone generator. The 
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resulting initial ozone concentration (C0) in the main air before ozone decomposition in the CFB 

columns is set to 80-100 ppm.  

An ozone analyzer (Model 49i, Thermo Electron Inc.) that employs the UV photometric method 

of measurement was used to measure the amount of ozone in the ozone-air sample. It is a dual-

cell photometer, having both sample and reference air flowing at the same time. Each cell has a 

length of 37.84 cm and an inner diameter of 0.91 cm, with the internal surfaces coated with 

polyvinylidine fluoride (PVDF) to ensure that ozone undergoes no decomposition upon exposure 

to the internal surface of the cells (Thermo Electron Inc., 2004 and 2005). The ozone analyzer 

had a measuring range of 0.0001-200 ppm with a resolution of 0.0001 ppm. The response time of 

the apparatus is 4 s. The ozone concentration output was displayed on an LCD screen. The UV 

source in the ozone analyzer is a 254 nm mercury lamp.  

Considering the fact that ozone is highly oxidative, to reduce ozone loss in the sampling pathway 

to ozone analyzer, ozone-inert materials (e.g. stainless steel, copper, aluminum and Teflon) are 

used for the sampling probes, valves, and piping lines (Teflon, 3 mm i.d., 6 mm o.d.). Gas 

samples are continuously drawn from the CFB column through a sampling system shown in 

Figure 8.1 using the brass tubes (6 mm o.d. and 0.36 mm wall thickness) as the sampling probes. 

The tip of the probe is covered with a fine stainless steel mesh to prevent particles from being 

entrained into the sampling system. The velocity of gas sucked for sampling was 1.5 LPM and 

low enough to assure minimal disturbance of the flow structure in CFB system. A high pressure 

purging air stream of 100 psig is introduced to blow away any particles potentially caked in the 

sampling probes.  

When measuring ozone concentration in the CFB riser/downers, 4-5 g of particles are taken out 

from the column for catalytic activity check using the fixed bed reactor before and after each 

experiment. No significant change is observed in reaction rate constant (kr) before and after 

several hours of CFB run, so that the ozone concentration profiles obtained under the 

experimental period is assumed to be under the same particle catalytic reactivity. The average 

value from these two tests is taken as the reaction rate constant. 
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In order to map the entire cross-section of the downer, ten axial measuring ports (z = 0.22, 0.61, 

1.12, 1.63, 2.13, 2.64, 3.26, 4.02, and 4.99 m below the gas distributor) are installed along the 

column. Measurements were conducted at six radial positions (r/R = 0, 0.316, 0.548, 0.707, 

0.837 and 0.950, where r is the distance from the center and R is the downer radius) on each 

axial level of the CFB downer system. These positions are determined by dividing the column 

cross-section into five equal areas and determining the mid-point of each of these areas. For the 

hydrodynamic experiments, voltage signals from the optical fiber probe are sampled at a high 

frequency of 100 kHz with 1,638,40 data points for each measurement. To get the valid and 

repeatable data, all measurements are repeated at least 5 times for each location. For the catalytic 

ozone decomposition, measurement is started after steady state has been reached in the CFB 

systems, which usually takes about at least 1 hour (Li, 2010). Ozone sampling is conducted for 1 

min where the ozone concentration is fairly stable. 
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8.3 Results and discussion 

8.3.1 Radial profiles of ozone concentration 
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Figure 8.3  Radial profiles of dimensionless ozone concentration and the corresponding solids holdup. 

 

Figure 8.3 shows the typical radial distribution of ozone concentration and the corresponding 

radial solids holdup profiles along the column at the superficial gas velocity of 5 m/s and solids 

circulation rate of 300 kg/m2s. Ozone concentrations are presented in the form of “dimensionless 

concentration” which is defined by ratio of the actual ozone concentration (C) measured at a 

certain radial position to the initial concentration (C0) at the downer inlet. Ozone concentration is 

not very uniform along the radial direction. Near the entrance of the downer, the radial profile of 

the ozone concentration is almost flat in the central region, and decreases gradually near the wall. 

With increasing the bed height down the column, the radial profiles become more uniform in the 
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central region followed by a small decrease near the wall. These radial profiles are well 

correlated with the radial distribution of solids holdup shown in Figure 8.3. The solids radial 

flow structure is nonuniform with higher solids holdup near the wall leading to high gas-solids 

interactions, so that the unconverted ozone concentration is lower near the wall than that in the 

central region. With the flow development along the column, the radial distributions of the solids 

holdup become more uniform, consistent with the radial profiles of ozone concentration. 

8.3.2 Axial profiles of ozone concentration 
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Figure 8.4  Axial profiles of the average dimensionless ozone concentration and the  

corresponding solids holdup. 
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The cross-sectionally averaged ozone concentration profiles under different operating conditions 

in the downer are shown in Figures 8.4 and 8.5. The average ozone concentrations are obtained 

by averaging the ozone concentration at six radial positions for each axial level. In general, the 

unconverted ozone concentration decreases significantly near the entrance of the column and 

gradually approach a nearly constant value further down the downer. These axial distribution 

profiles are consistent with those of solids holdup. From Figure 8.4, it can also be seen that larger 

axial gradient of ozone concentration occurs when the solids circulation rates are higher and/or 

when the superficial gas velocities are lower. This is reasonable since a higher solids circulation 

rate and/or lower gas velocity can results in higher solids holdup and thus higher ozone 

conversion. 

There are three different solids flow regions along the axial direction in the downer: 1) first 

acceleration zone, 2) second acceleration zone and 3) the constant velocity zone (Kwauk, 1964; 

Yang et al., 1991; Zhu et al., 1995; Ma and Zhu, 1999 and Zhang et al., 1999 and 2001). In the 

first acceleration zone near the distributor, gas velocity is high while particle velocity is near 

zero. Solids are accelerated by both gravity and gas drag force until the particle velocity is equal 

to the gas velocity. In the second acceleration, particles are farther accelerated by gravity, but 

resisted by the gas drag (in the upward direction against gravity). Particle velocity then over-

takes the gas velocity and increase further until gas drag on the particle counter-balances the 

gravity. After this region, both particle and gas velocities remain constant downstream, where 

particles travel faster than gas, but with a constant slip velocity. The axial ozone concentration 

and solids holdup variations also follow this three-section axial flow structure as shown in Figure 

8.4. Both ozone concentration and solids holdup decrease sharply in the first acceleration zone, 

then the trend becomes much wider further down the column. In the constant velocity section, 

the ozone concentration and solids holdup remain almost unchanged. 
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Figure 8.5  Axial profiles of dimensionless ozone concentration and the corresponding  

solids holdup at different radial positions. 
 

Figure 8.5 shows the axial ozone concentration profiles at different radial positions. The 

corresponding solids holdup distributions are also given in the Figure. Compared the ozone 

changes at the three different radial positions, it is seen that smaller differences between the 
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ozone concentration profiles at r/R = 0.0 and r/R = 0.548, which correspond to the solids holdup 

variation against axial elevation. Moreover, ozone concentrations at all radial positions decrease 

sharply along the axial direction in the first region. The variation becomes less dramatic in the 

second section and finally becomes nearly negligible in the third section. 

 

Figure 8.6  Overall view of the dimensionless ozone concentration and the corresponding  
solids holdup at different operating conditions. 

 

Based on the above discussion, Figure 8.6 provides an overall view of the ozone concentration 

profiles in the downer under various operating conditions, where x and y axes are the radial and 

axial positions in the column, and z-axis is the dimensionless ozone concentration. It is observed 
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that with the increase of downer elevations, more ozone reactants are converted due to its 

extended contact with the catalyst particles, giving decreased ozone concentrations. Ozone 

concentration in the central region is a little bit higher than that in the near wall region. The 

radial ozone concentration distribution also becomes uniform further down along the reactor. 

The variation of the ozone concentration is consistent with that of the solids holdup shown in the 

righthand of Figure 8.6. 

The distribution of ozone concentration is affected by the operating conditions. Higher Ug and/or 

low Gs results in more uniform distribution of ozone concentration in both axial and radial 

directions. For example, at low solids circulation rate (Gs = 100 kg/m2s) and high gas velocity 

(Ug = 5 m/s), the ozone concentration profiles are nearly constant along the column. 

8.3.3 Effect of operating conditions on ozone concentration 
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Figure 8.7  Effects of superficial gas velocity on the dimensionless ozone concentration. 
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The effect of superficial gas velocity on ozone conversion is presented in Figure 8.7. Generally, 

the concentration of the unconverted ozone increases with increasing the superficial gas velocity, 

at a fixed solids circulation rate of 200 kg/m2s. This may be attributed to the following 

mechanisms: when solids circulation rate remains constant, increasing superficial gas velocity 

reduces the solids holdups. The decrease in solids holdup would result in the decrease of total 

gas-solids contacting area which is not favourable for the reaction. On the other hand, increasing 

superficial gas velocity leads to a short residence time of both gas and solid phases, which is not 

beneficial to the total conversion of ozone. Considering the above two factors, the increase of 

superficial gas velocity will cause the decrease of the ozone conversion. In addition, increasing 

Ug can lead to a more uniform radial profile of solids holdup and therefore of ozone 

concentrations. 
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Figure 8.8  Effects of solids circulation rate on the dimensionless ozone concentration. 
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The effect of solids circulation rate on radial profiles of dimensionless ozone concentration at 

four axial levels under Ug = 3 m/s is shown in Figure 8.8. At all axial levels, the dimensionless 

ozone concentration decreases with an increase of solids circulation rate under the same 

superficial gas velocity of 3 m/s. This is due to the solids holdups increase with increasing solids 

circulation rate. Under the high density operating conditions, the total gas-solids contacting area 

for reaction and mass transfer between gas and solids will also increase leading to significant rise 

of the ozone conversion. Therefore, ozone concentration becomes much lower as solids 

circulation rate increases. At the same bed height, the radial distribution of the ozone 

concentration becomes more uniform with reduced Gs due to the increased radial uniformity of 

the solids flow structure. Interestingly, that the effect of solids circulation rate on ozone 

conversion seems to be much more significant in both second acceleration and fully developed 

regions than that in the first acceleration zone (near the distributor). The possible reason is that 

solids holdup is usually relatively high near the distributor. A change in solids circulation rate 

may not results in a significant change in solids holdup in the first acceleration region. On the 

other hand, in the following two regions, particle velocity is high and solids holdup is relatively 

low. Increasing solids circulation rate will lead to a more dramatic increase in solids holdup 

which in turn causes high ozone conversion in those zones.  

8.3.4 Relationship between solids holdup and ozone concentration 
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Figure 8.9  Relationship between overall ozone conversion and solids holdup. 
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As stated before, the distribution of ozone concentration is essentially dominated by the flow 

structure, which can be partially represented by the solids holdup profiles in the CFB reactors. 

To further evaluate the effects of the solids holdup on ozone concentration, the overall 

conversion of ozone is plotted against the mean solids holdup in the entire column as shown in 

Figure 8.9. 

In general, the conversion of ozone increases with the solids holdup, as confirmed by other 

researchers (Jiang et al., 1991 and Li et al., 2011 and 2013). There appears to be a linear 

relationship between total ozone conversion and mean solids holdup as shown in Figure 8.9. The 

influence of solids holdup on ozone conversion is nearly the same with almost the same slope of 

the fitting lines under different superficial gas velocities. This phenomenon is different from that 

in the riser, where the effects of solids holdup on ozone conversion are more significant under 

high superficial gas velocity compared to low gas velocity cases (details can be found in chapter 

7). This might be due to the different hydrodynamics in the two kinds of CFB reactors.  

In CFB riser, higher solids holdup under higher superficial gas velocity plays a much more 

significant role in the overall conversion. The reason is that at low superficial gas velocities, the 

increase of solids holdup probably leads to the increase of cluster formation. The gas-solids mass 

transfer within the clusters is not as good as that between dispersed particles and the gas flow. 

Under high superficial gas velocity conditions, the high gas velocity can break down the clusters 

in addition to enhancing the gas-solids contact efficiency. Therefore, the overall conversion of 

reactant can be increased rapidly with solids holdup under high superficial gas velocity.  

On the other hand, the uniform distribution of solids holdup in the downer reactor is one of the 

key advantages over the upflow riser reactor. This is mainly because particles are not supported 

by the gas flow, but flow down due to the gravity, either reinforced or resisted by the drag force 

from the gas flow. In addition, the aggregation of particles at the wall region can also be 

prevented in the downer. When particle clusters are formed, the effective drag force on the 

cluster is reduced so that the slip velocity becomes higher leading to a high particle downwards 

velocity (Yang et al., 1993; Zhang et al., 1999). The increased particle velocity in turn increases 

the instability of the cluster because of the increased shear force on them. Large particle cluster 
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is easily broken down into smaller ones or even isolated particles in CFB downer reactors. 

Therefore, the increase in solids holdup will enhance the gas-solids contacting efficiency leading 

to higher reactant conversion. 

8.3.5 Reactor performance 
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Figure 8.10  Effects of Damköhler number on overall ozone conversion. 

 

The performance of the CFB reactors is related to both hydrodynamics and the chemical 

reactions. To investigate the effects of hydrodynamics on the chemical reaction, it is better to 

plot the results of two typical reactor models: a plug-flow reactor (PFR) and the continuous 

stirred-tank reactor (CSTR) for comparison. Both of the two model reactors have been idealized 

in hydrodynamics with respect to mixing between gas and solids phases. Equations for the 

conversion in PFR and CSTR can be derived as follows (Levenspiel, 1998). 

Plug flow reactor 

'1 exp( )PFR rX k    (8.4)

Continuous stirred-tank reactor 
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'

'1
r

CSTR
r

k
X

k



 (8.5)

where '
rk is the Damköhler number (kr

' = krεs(1-εs)H/Ug).  

The overall conversion of ozone for the downer is plotted against Damköhler number as well the 

calculated curves for PFR and CSTR models are shown in Figure 8.10. It seems that the 

conversion in the CFB system is generally less than that in the ideal plug flow reactor but could 

be larger than that in the continuous stirred-tank reactor. This demonstrates that the two ideal 

models, which idealize bed hydrodynamics in the reactor, cannot well predict the observed 

conversions, which implies in turn that hydrodynamics affects the chemical reaction in CFB 

downer. Moreover, the overall conversion increases with increasing Damköhler number, which 

is consistent with the effects of solids holdup on the overall conversion. This indicates that the 

solids holdup is the main factor affecting the ozone reaction and increasing solids holdup would 

increase reactant conversion. In addition, the extent of the deviation of the conversion can be 

attributed to the different gas-solids contacting efficiency requiring more investigation. 
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8.4 Conclusions 

Ozone decomposition is experimentally studied in a high flux gas-solids circulating fluidized bed 

downer at superficial gas velocity of 3-7 m/s and solids circulation rates from 100 to 300 kg/m2s. 

The axial and radial distribution profiles of the ozone concentration are consistent with the 

corresponding profiles of the solids holdups which indicate that ozone reaction in the downer is 

controlled by the gas-solids flow. 

High ozone conversion at the entrance region of the downer indicating that the initial gas-solids 

contact plays a key role in the reaction yield and more attention needs to be paid on the downer 

distributor design, which is important to gas-solids mixing. 

Ozone conversion increases with the solids circulation rate under the same superficial gas 

velocity due to the increase of solids holdup. The conversion decreases with gas velocity at a 

fixed solids circulation rate due to the associated reduction in solids holdup. 

The values of calculated overall conversion are smaller than those obtained based on the ideal 

plug flow reactor model indicating that hydrodynamics affects the chemical reaction in the CFB 

downer reactor. The extent of the deviation of the conversion can be attributed to the different 

gas-solids contacting efficiency.   
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Nomenclature 

f calibration function for optical fiber probe 

Fs solids flux [kg/(m2·s)] 

sG  cross-sectional average solids flux [kg/(m2·s)] 

,s LG  time mean local solids flux [kg/(m2·s)] 

Gs solids circulation rate [kg/(m2·s)] 

Le effective distance between light-receiving fiber A and B [m] 

r/R reduced radial sampling positions 

RNI(εs) radial nonuniformity index of solids holdup 

RNI(Vp) radial nonuniformity index of particle velocity 

t time [s] 

T time interval [s] 

Ug superficial gas velocity [m/s]

vp particle velocity [m/s] 

v̄p cross-sectional average particle velocity [m/s] 

V voltage [volt] 

V(t) voltage time series [volt] 

z axial coordinate, or distance from gas distributor [m] 

Greek letters 

εs solids holdup [-] 

εs(t) local instantaneous solids holdup [-] 

ε̄s average solids holdup in the entire column [-] 

Subscripts 

1, 2 subprobe 1 and 2 of optical fiber probe 

g gas 
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p particle 

s solids 
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CHAPTER 9 

Conclusions and Recommendations  

 

9.1 Summary comments on experimental setup and measurements 

Hydrodynamics and performance of high density circulating fluidized bed riser/downer reactors 

are experimentally investigated. Solids fluxes of up to 1000 and 300 kg/m2s are reached in the 

high density riser and downer, respectively. Ozone decomposition reaction is selected as the 

model reaction in the experiments. Spent fluid catalytic cracking (FCC) particles impregnated 

with ferric oxide and activated at high temperature are used as the catalyst for the ozone 

decomposition reaction. Particles used in this study are the blend of spent FCC particles and 

activated catalysts. The rate of the reaction can be adjusted by changing the ratio of activated 

catalyst and spent FCC particles. Catalyst stability can be affected by humidity of the fluidized 

beds, so that relative humidity and temperature of the feeding air were carefully monitored using 

a hygrometer, and the air supply was maintained at a constant temperature of 21.9°C and a 

constant relative humidity of 19%. The reaction rate constant of the catalyst is regularly checked 

during CFB riser and downer experiments, using a fixed bed reactor installed on side. 

All the experiments were carried out in two gas-solids CFB reactors, a CFB riser of 76 mm inner 

diameter and of 10.2 m high and a 76 mm CFB downer of 5.8 m in height. To minimize ozone 

loss resulting from contacting with column walls, the main construction materials used for the 

fluidized bed assembly were ozone-inert aluminum and Plexiglas. The entire fluidized bed 

system was electrically grounded to remove electrostatic charges formed in the columns. 

An optical fiber probe was calibrated and used to measure solids holdup and particle velocity in 

the riser and downer reactors. To ensure data accuracy, measurements of solids holdup and 

particle velocity were repeated at least 5 times for each location.  

Effort was made to improve ozone sampling and measurement. Brass tubes with fine wire mesh 

covering the tip were used to extract ozone gas sample from the CFB reactors. Purging by high 
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pressure air was adopted to blow away particles possibly adhered to the wire mesh, preventing 

fine particles from blocking it. With these measures taken, data of ozone concentration in the 

CFB reactor was reproducible and reliable. 

Stability of the initial ozone concentration before entering the reactors over a long period of time 

showed good performance of the ozone generator, and thorough mixing of the main air with 

O3/O2 flow from the ozone generator. 
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9.2 Conclusions 

In this study, a comprehensive investigation was conducted on hydrodynamics and reactor 

performance in a gas solids circulating fluidized bed system to systematically identify the 

hydrodynamic characteristics of high density/flux CFB riser and downer on the performance of 

the CFB reactors, by examining the axial and radial profiles of solids holdup, particle velocity 

and solids flux and the axial and radial ozone concentration profiles. 

To obtain a comprehensive insight into the solids flow structures in a high flux/density (up to 

1000 kg/m2s) riser, solids holdup, particle velocity and solids flux distributions and flow 

development were studied under a wide range of operating conditions. 

Solids holdup of up to 0.2-0.3 can be maintained throughout the entire high flux/density riser. A 

homogenous axial flow structure is observed at Gs = 1000 kg/m2s. Radial distributions of the 

solids holdup in the riser were non-uniform with a dilute region and a dense region. When Gs 

exceed about 700 kg/m2s, the dilute core region shrinks to less than 20% of the cross-sectional 

area. Solids holdups thereafter increase monotonically towards the wall which can be up to 0.59. 

Moreover, the solids holdup remains higher than 0.4 over a wide cross-sectional area (r/R = 0.7-

1.0, about 60% of the cross-sectional area) even at the top section of the riser. The radial profile 

of solids holdup under high Gs is a concave parabolic curve.The solids holdup remains low and 

relatively constant at the riser center, suggesting very quick solids flow development in the riser 

center at the bottom section. In the wall region, however, the flow development is slower, with 

the solids holdup near the wall decreasing slowly toward the riser top. Increasing solids flux 

prolongs the solids flow development.  

Better gas-solids contacting and mixing indicated by standard deviation and intermittency index 

of local solids holdups at high solids fluxes can lead to vigorous interactions between gas and 

solids phases, improving the reactor performance. 

Particle velocity and solids flux are also the important parameters in the study of hydrodynamics, 

crucial in the better understanding of the flow structure in a high flux/density circulating 

fluidized bed. Local particle velocity and solids flux are investigated at Gs = 1000 kg/m2s, along 
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with the study of solids holdup, using an optical fiber probe, which can measure the solids 

concentration and velocity simultaneously. 

For all operating conditions, the cross-sectional average particle velocity increases up the riser. 

The shape of the axial particle velocity profiles depends on the operating conditions. Three axial 

sections are formed along the riser: “distributor controlled” zone at the very bottom, acceleration 

section at the base of the column, and the upper section with constant average particle velocity. 

When Gs is of up to 800 kg/m2s, the axial profiles of the particle velocity become more uniform. 

Radial profiles of particle velocity and solids flux have unique shapes under different operating 

conditions with radially uniform structure under low solids flux/density and roughly parabolic 

shape under high solids flux/density conditions. No net downward flow near the wall is one of 

the most important advantages of the high flux/density riser over the conventional low 

flux/density reactor, leading to a reduction of solids backmixing. 

Relationships between solids holdups, particle velocity, and solids flux are studied. Correlation 

between particle velocity and solids holdup is stronger for low solids flux/density conditions than 

that of high solids flux/density conditions. The results revealed that gas-particle interactions 

dominated in low solids flux/density CFBs while particle-particle interactions played a key role 

for the motion of particles in the extremely high solids flux CFB systems. 

Studies of hydrodynamics show that better gas-solids contacting is achieved, and the solids 

backmixing can be reduced under high density operating conditions. Because backmixing in the 

riser is due to particle aggregation which, in turn, is due to the gas and solids flow against 

gravity, an alternative to the riser, the downer reactor in which gas and solids move downward in 

a concurrent fashion, is an also experimentally studied at superficial gas velocity of 1-7 m/s and 

solids circulation rates from 100 to 300 kg/m2s. 

As expected, radial distribution of solids holdup in the downer is much more uniform than in the 

riser reactor. Radial solids holdup distribution is almost flat covering a wide region of the cross 

section. The uniform radial distribution of solids flow provides a nearly plug flow condition in 

the downer reactor. The radial solids holdup distribution is affected by the operating conditions. 

Under low solids circulation rate, the shape of the radial profiles is nearly unchanged along the 
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entire downer. With increasing solids circulation rate, the shape of the radial solids holdup 

distribution changes axially. Particle velocity in the downer rector is characterized by a relatively 

flat core with slightly increase towards the wall. Compared to the riser reactor, the downer 

reactor has a much more uniform radial profile of particle velocity. Radial profiles of the local 

solids flux in the downer are also influenced by operating conditions significantly. Increasing Ug 

and/or decreasing Gs can lead to a more uniform distribution of radial solids flux. 

In both riser and downer reactors, the reactor performance is determined by both the chemical 

reaction itself and the hydrodynamics. The design, optimization and scale-up of a CFB reactor 

require more precise and quantitative understanding of both the flow behavior and the chemical 

reaction. Reactor performance in both riser and downer is investigated using catalytic ozone 

decomposition reaction. 

The axial and radial distribution profiles of the ozone concentration are consistent with the 

corresponding profiles of the solids holdup, which indicate that ozone reaction in the riser and 

downer reactors is also controlled by the gas-solids flow structure.  

Ozone conversion increases with the solids circulation rate under the same superficial gas 

velocity due to the increase of the average solids holdup. The conversion decreases with gas 

velocity at a fixed solids circulation rate due to the associated reduction in solids holdup. Most of 

the ozone conversion occurs in the entrance region of the reactors indicating that the initial gas-

solids contacting plays a key role in the reaction process so that more attention needs to be paid 

on the distributor design.  

The values of calculated overall conversion based on the experiments are to some extent smaller 

than that obtained based on the ideal plug flow reactor model indicating that hydrodynamics 

affects the performance of CFB reactors. The extent of the deviation of the conversion can be 

attributed to the different gas-solids contacting efficiency in the CFBs. 

Strong correlation between reactant concentration distribution and hydrodynamics especially the 

solids holdup is observed in both the riser and downer reactors. Solids holdup affects the overall 

ozone conversion with various trends. There is much more significant influence of solids holdup 

on overall reactant decomposition under higher superficial gas velocity and/or lower solids 
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circulation rate in the riser, while in the downer reactor solids holdup influence on reactor 

performance follows different trend and needs more investigation.  
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9.3 Recommendations 

This dissertation provides comprehensive experimental results and systematic understanding on 

hydrodynamics and reactor performance in riser/downer reactors in a wide range of solids flux. 

However, there are areas which require further work: 

Due to the limitation of the storage tank capacity, the solids circulation rate for downer 

experiments is limited to 300 kg/m2s. It will be useful to study higher flux conditions in the 

downer reactor. 

Hydrodynamics of the CFB riser/downer is greatly influenced by physical properties of solid 

particles. Particle properties also affect the reactor performance, therefore experiments using 

different solid particles can provide more insight into their impacts in both CFB riser and downer 

reactors hydrodynamics and performance.  

The results in this study are obtained in a 76 mm CFB riser and downer reactors. Scale-up of 

fluidized bed reactors is quite challenging and therefore further experimental works may need to 

be carried out in large size riser/downer reactors. 

Riser/downer reactors in this study are cylindrical in shape. Riser/downer reactors of different 

geometry have been used commercially. Therefore, the effect of geometry of the bed might need 

to be investigated through additional experiments in non-cylindrical CFB reactors. 

In this study, only one type of distributor was employed throughout the experiments, however, in 

riser/downer reactors distributor region plays a key role in chemical conversion of the gaseous 

reactants as well as hydrodynamics. Therefore, experiments with different distributors may be 

carried out to study the effects of distributors on hydrodynamics and reactor performance. 

Although ozone decomposition reaction is an ideal choice for experimental work in this study 

due to its simplicity and compatibility, real world complex reactions may results in gaseous 

products which may affect the hydrodynamics and reactor performance. Therefore, the results 

obtained for ozone reaction should be carefully applied for other reacting systems and further 

experiments with other chemical reactions would be required. 
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All the experiments were carried out at room conditions, however, experiments at different 

temperatures and pressures will be useful to investigate their impacts on hydrodynamic and 

reactor performance. 

This study mainly focuses on experimental works, which are labor intensive and time consuming 

due to the relatively large scale of the experimental setup and the number of variables to be 

controlled and measured. Therefore, no model was developed. However, the available 

experimental hydrodynamics and reactor performance data can be used for the purpose of 

empirical and mathematical modeling in different areas. 
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Appendix 1. Raw data of solids holdup, particle velocity, and solids flux 

in the CFB riser 

1.1   Ug = 5.0 m/s, Gs = 100 kg/m2s 

 
Solids holdup, [-] 

Ug5Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0071 0.0090 0.0134 0.0286 0.0326 0.0737 0.0274 
z=1.02 0.0083 0.0102 0.0132 0.0212 0.0384 0.0744 0.0273 
z=1.94 0.0077 0.0081 0.0107 0.0159 0.0283 0.0489 0.0198 
z=2.85 0.0080 0.0090 0.0106 0.0139 0.0406 0.0393 0.0212 
z=3.77 0.0086 0.0089 0.0101 0.0120 0.0322 0.0342 0.0181 
z=4.78 0.0099 0.0103 0.0106 0.0130 0.0316 0.0369 0.0189 
z=5.84 0.0101 0.0103 0.0100 0.0116 0.0316 0.0270 0.0173 
z=7.78 0.0101 0.0100 0.0105 0.0116 0.0308 0.0249 0.0169 
z=9.61 0.0081 0.0103 0.0107 0.0116 0.0216 0.0326 0.0158 
z=10.09 0.0081 0.0104 0.0107 0.0116 0.0260 0.0314 0.0167 

Particle velocity, [m/s] 

Ug5Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 6.12 5.96 4.48 1.19 1.11 -0.57 2.66 
z=1.02 6.42 5.91 5.05 2.43 1.49 -0.56 3.16 
z=1.94 7.29 6.97 5.60 3.35 1.98 -0.78 3.79 
z=2.85 7.45 6.94 5.83 4.67 2.04 -0.02 4.24 
z=3.77 7.33 6.89 6.14 5.74 1.95 -0.55 4.46 
z=4.78 7.52 7.36 6.86 6.06 2.01 -0.06 4.87 
z=5.84 7.72 7.47 7.17 6.44 2.47 -0.04 5.15 
z=7.78 7.81 7.63 7.01 6.31 2.51 -0.01 5.13 
z=9.61 9.00 7.43 7.21 6.51 3.49 -0.96 5.29 
z=10.09 9.41 7.49 7.42 6.62 3.22 -1.18 5.29 

Solids flux, [kg/m2s] 

Ug5Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 77.86 95.73 106.71 60.40 64.18 -75.13 63.07 
z=1.02 94.57 107.53 118.54 91.94 101.75 -73.98 83.89 
z=1.94 99.26 100.62 106.98 94.42 100.03 -67.46 80.75 
z=2.85 106.33 110.78 110.53 115.56 147.55 -1.59 106.81 
z=3.77 111.53 108.90 110.72 122.20 111.91 -33.62 96.21 
z=4.78 132.46 135.06 128.90 140.55 113.05 -3.74 113.51 
z=5.84 138.45 136.36 128.14 133.02 138.94 -2.05 117.89 
z=7.78 139.78 136.02 131.06 130.69 137.98 -0.40 117.97 
z=9.61 129.23 135.78 137.22 133.87 133.74 -55.70 112.63 
z=10.09 136.32 138.96 141.58 136.42 149.00 -66.13 117.06 
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 1.2   Ug = 5.0 m/s, Gs = 200 kg/m2s 

Solids holdup, [-] 
Ug5Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.0131 0.0287 0.0396 0.1296 0.1460 0.2547 0.1072 
z=1.02 0.0111 0.0235 0.0665 0.0522 0.2409 0.2646 0.1176 
z=1.94 0.0128 0.0163 0.0516 0.0380 0.2001 0.3090 0.1055 
z=2.85 0.0131 0.0182 0.0204 0.0258 0.0596 0.0975 0.0391 
z=3.77 0.0115 0.0159 0.0141 0.0368 0.0550 0.0926 0.0381 
z=4.78 0.0125 0.0153 0.0164 0.0263 0.0511 0.0841 0.0342 
z=5.84 0.0130 0.0127 0.0147 0.0158 0.0416 0.0871 0.0292 
z=7.78 0.0130 0.0129 0.0132 0.0155 0.0442 0.0791 0.0284 
z=9.61 0.0118 0.0131 0.0115 0.0154 0.0438 0.0897 0.0292 

z=10.09 0.0119 0.0130 0.0159 0.0154 0.0439 0.0828 0.0294 

Particle velocity, [m/s] 
Ug5Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 6.39 3.88 2.26 1.02 0.97 0.09 1.75 
z=1.02 9.29 5.30 1.62 1.56 0.54 0.03 1.89 
z=1.94 9.97 7.95 2.59 2.95 0.67 0.14 2.98 
z=2.85 10.75 8.07 6.16 4.09 1.95 0.24 4.41 
z=3.77 10.92 8.60 7.66 3.28 1.86 0.61 4.71 
z=4.78 10.75 9.10 7.95 4.48 2.16 0.54 5.21 
z=5.84 10.94 9.53 8.28 6.97 2.05 0.47 5.90 
z=7.78 10.93 9.92 8.74 7.08 2.05 0.56 6.12 
z=9.61 10.99 10.38 9.68 7.63 2.58 0.74 6.70 

z=10.09 10.93 9.98 8.63 7.64 2.05 0.81 6.26 

Solids flux, [kg/m2s] 
Ug5Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 148.49 198.32 159.48 235.94 252.90 40.74 191.29 
z=1.02 183.56 221.50 192.38 145.07 231.04 15.89 175.11 
z=1.94 227.89 231.38 237.48 199.38 238.79 74.92 208.77 
z=2.85 250.12 261.97 224.10 187.73 206.76 42.46 197.80 
z=3.77 223.22 243.22 192.58 214.92 182.52 100.78 194.29 
z=4.78 239.73 248.25 232.62 209.93 196.72 80.66 204.47 
z=5.84 252.88 214.96 217.09 196.66 152.20 72.38 180.37 
z=7.78 253.20 227.25 205.76 194.77 160.93 78.40 182.29 
z=9.61 230.19 241.51 197.45 209.05 201.46 117.64 200.04 

z=10.09 230.91 231.41 244.81 209.26 160.19 119.27 200.32 
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1.3   Ug = 5.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug5Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0156 0.0302 0.1258 0.2102 0.3305 0.4310 0.2086 
z=1.02 0.0148 0.0268 0.0598 0.1824 0.3201 0.3490 0.1739 
z=1.94 0.0185 0.0360 0.0884 0.1846 0.3252 0.3529 0.1846 
z=2.85 0.0159 0.0233 0.0393 0.1068 0.1206 0.1563 0.0836 
z=3.77 0.0176 0.0248 0.0344 0.0917 0.1289 0.1303 0.0781 
z=4.78 0.0214 0.0240 0.0356 0.0982 0.1266 0.1395 0.0803 
z=5.84 0.0167 0.0211 0.0331 0.0947 0.1141 0.1239 0.0737 
z=7.78 0.0185 0.0213 0.0330 0.0575 0.1100 0.1169 0.0635 
z=9.61 0.0147 0.0197 0.0339 0.0574 0.0922 0.1789 0.0667 

z=10.09 0.0146 0.0194 0.0332 0.0493 0.1012 0.1019 0.0576 

Particle velocity, [m/s] 

Ug5Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 7.95 5.69 1.24 0.51 0.32 0.34 1.62 
z=1.02 10.77 7.02 3.72 0.85 0.49 0.33 2.58 
z=1.94 10.64 5.09 2.31 1.00 0.56 0.41 1.93 
z=2.85 12.15 9.11 5.08 1.85 1.08 0.40 3.67 
z=3.77 12.17 9.07 5.99 1.76 1.05 0.41 3.85 
z=4.78 12.70 9.49 6.29 1.82 1.17 0.41 4.04 
z=5.84 13.53 10.62 6.84 2.18 1.26 0.53 4.51 
z=7.78 14.78 11.70 6.45 3.08 1.46 0.41 4.86 
z=9.61 14.87 11.71 6.55 3.48 1.82 0.59 5.08 

z=10.09 15.40 10.34 6.52 4.37 1.64 0.33 4.94 

Solids flux, [kg/m2s] 

Ug5Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 221.28 305.79 276.80 189.16 190.13 257.90 240.77 
z=1.02 284.66 334.88 396.21 276.24 279.83 206.67 308.66 
z=1.94 350.04 325.98 362.85 329.23 326.32 255.38 327.24 
z=2.85 344.66 378.03 355.31 352.07 232.41 111.35 302.51 
z=3.77 380.39 400.41 366.67 287.14 241.76 94.28 294.87 
z=4.78 483.41 405.11 398.32 318.79 263.76 100.92 316.22 
z=5.84 402.66 399.20 403.23 367.92 255.00 116.29 327.24 
z=7.78 487.32 444.76 379.35 315.16 286.16 84.57 321.61 
z=9.61 390.44 410.72 395.01 355.34 298.10 188.11 342.82 

z=10.09 400.53 357.14 385.42 383.55 294.72 59.00 320.64 
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1.4   Ug = 5.0 m/s, Gs = 400 kg/m2s 

Solids holdup, [-] 

Ug5Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0131 0.0281 0.0794 0.1924 0.3211 0.4747 0.1962 
z=1.02 0.0118 0.0400 0.0967 0.2796 0.3917 0.3694 0.2258 
z=1.94 0.0184 0.0329 0.1294 0.3395 0.4411 0.4869 0.2708 
z=2.85 0.0168 0.0279 0.0891 0.2021 0.3534 0.2863 0.1857 
z=3.77 0.0216 0.0280 0.0292 0.1214 0.2536 0.3842 0.1422 
z=4.78 0.0201 0.0278 0.0271 0.1066 0.2368 0.3282 0.1280 
z=5.84 0.0266 0.0281 0.0297 0.0910 0.1969 0.3195 0.1151 
z=7.78 0.0176 0.0230 0.0288 0.0811 0.1404 0.2667 0.0927 
z=9.61 0.0249 0.0224 0.0278 0.1134 0.1317 0.3086 0.1027 

z=10.09 0.0217 0.0219 0.0255 0.1049 0.1305 0.3151 0.1006 

Particle velocity, [m/s] 

Ug5Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 7.79 6.33 1.29 1.34 0.10 0.01 1.85 
z=1.02 10.38 6.56 1.92 0.95 0.52 0.01 2.05 
z=1.94 15.80 8.57 2.10 0.59 0.50 0.05 2.40 
z=2.85 15.47 11.03 3.09 1.24 0.59 0.02 3.27 
z=3.77 14.71 11.32 7.92 2.42 0.92 0.04 4.82 
z=4.78 15.27 11.68 8.52 2.88 0.98 0.03 5.15 
z=5.84 14.62 11.56 8.56 2.75 1.20 0.05 5.16 
z=7.78 16.35 12.68 9.35 2.87 1.72 0.39 5.75 
z=9.61 14.80 13.48 9.54 2.29 1.92 0.25 5.84 

z=10.09 15.89 13.58 9.86 2.33 2.01 0.24 5.96 

Solids flux, [kg/m2s] 

Ug5Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 181.82 316.23 183.10 459.03 54.57 12.55 222.27 
z=1.02 217.41 467.71 330.38 475.26 360.22 8.26 358.35 
z=1.94 517.19 501.16 483.22 355.49 395.74 45.24 386.32 
z=2.85 461.47 547.97 489.62 444.50 372.77 7.91 407.47 
z=3.77 564.69 564.84 410.84 522.70 413.55 24.29 420.82 
z=4.78 547.26 578.41 411.07 546.24 412.30 17.97 427.80 
z=5.84 692.90 578.39 452.22 445.69 419.98 29.70 417.88 
z=7.78 510.77 519.53 479.75 414.25 430.06 184.49 426.52 
z=9.61 655.24 538.51 472.74 462.74 449.21 138.74 438.41 

z=10.09 614.06 528.88 447.66 435.28 465.99 132.18 427.36 
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1.5   Ug = 7.0 m/s, Gs = 100 kg/m2s 

Solids holdup, [-] 

Ug7Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0077 0.0094 0.0214 0.0561 0.0600 0.0642 0.0407 
z=1.02 0.0108 0.0120 0.0175 0.0416 0.0695 0.0642 0.0391 
z=1.94 0.0072 0.0086 0.0101 0.0068 0.0137 0.0315 0.0124 
z=2.85 0.0084 0.0090 0.0112 0.0115 0.0192 0.0385 0.0159 
z=3.77 0.0073 0.0074 0.0083 0.0094 0.0171 0.0346 0.0135 
z=4.78 0.0075 0.0079 0.0093 0.0106 0.0124 0.0310 0.0126 
z=5.84 0.0069 0.0074 0.0083 0.0100 0.0145 0.0306 0.0126 
z=7.78 0.0072 0.0077 0.0090 0.0104 0.0144 0.0305 0.0128 
z=9.61 0.0074 0.0078 0.0083 0.0091 0.0116 0.0296 0.0116 

z=10.09 0.0071 0.0072 0.0080 0.0083 0.0112 0.0268 0.0109 

Particle velocity, [m/s] 

Ug7Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 6.38 4.73 2.49 1.47 1.04 -0.20 2.05 
z=1.02 5.83 4.49 2.78 2.50 1.09 -0.47 2.28 
z=1.94 7.27 6.81 6.67 6.72 4.44 -0.30 5.38 
z=2.85 8.88 7.97 6.31 5.51 3.33 -0.44 4.98 
z=3.77 9.46 8.95 7.68 6.42 3.37 -0.78 5.67 
z=4.78 9.87 9.10 7.40 6.07 4.57 -0.31 5.88 
z=5.84 10.44 9.63 7.97 6.01 4.44 -0.27 6.08 
z=7.78 10.63 9.96 8.70 6.04 4.54 -0.72 6.29 
z=9.61 10.98 10.37 9.08 6.98 5.18 -0.84 6.80 

z=10.09 11.05 10.94 9.25 7.71 5.32 -0.77 7.16 

Solids flux, [kg/m2s] 

Ug7Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 87.78 78.68 95.10 147.25 110.80 -23.21 93.34 
z=1.02 111.67 95.79 86.24 185.40 134.68 -53.82 104.94 
z=1.94 93.65 104.83 120.35 81.08 108.05 -16.91 89.49 
z=2.85 132.03 127.20 125.96 112.64 113.80 -30.15 102.02 
z=3.77 123.05 118.16 113.91 107.36 102.34 -47.77 91.56 
z=4.78 131.87 127.31 122.12 114.22 100.51 -17.28 100.01 
z=5.84 128.85 127.38 118.41 106.73 114.66 -14.97 100.90 
z=7.78 136.30 137.11 139.62 111.62 116.22 -38.93 106.45 
z=9.61 145.01 144.57 133.43 112.93 107.27 -44.46 104.04 

z=10.09 140.60 141.02 132.57 113.50 106.61 -36.61 104.06 
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1.6   Ug = 7.0 m/s, Gs = 200 kg/m2s 

Solids holdup, [-] 

Ug7Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0097 0.0185 0.0721 0.1782 0.3174 0.4356 0.1840 
z=1.02 0.0101 0.0116 0.0187 0.0349 0.2062 0.1925 0.0837 
z=1.94 0.0101 0.0152 0.0203 0.0202 0.2230 0.1203 0.0767 
z=2.85 0.0119 0.0138 0.0161 0.0204 0.0415 0.1073 0.0331 
z=3.77 0.0109 0.0122 0.0132 0.0229 0.0443 0.1037 0.0329 
z=4.78 0.0127 0.0133 0.0124 0.0199 0.0367 0.0960 0.0296 
z=5.84 0.0116 0.0125 0.0111 0.0118 0.0305 0.0969 0.0260 
z=7.78 0.0129 0.0129 0.0116 0.0111 0.0266 0.0968 0.0252 
z=9.61 0.0106 0.0115 0.0125 0.0164 0.0291 0.0901 0.0261 
z=10.09 0.0112 0.0129 0.0125 0.0168 0.0238 0.0895 0.0252 

Particle velocity, [m/s] 

Ug7Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 6.76 3.50 2.01 1.09 0.28 -0.22 1.44 
z=1.02 9.99 7.52 6.75 3.13 0.52 -0.44 3.83 
z=1.94 10.08 7.58 6.61 3.04 0.69 -0.34 3.84 
z=2.85 11.15 9.61 7.45 6.01 2.65 0.74 5.67 
z=3.77 11.98 10.03 9.36 6.53 3.15 -0.92 6.24 
z=4.78 12.00 10.86 10.12 7.25 3.54 0.47 6.99 
z=5.84 12.69 11.11 10.74 9.94 3.56 0.67 7.82 
z=7.78 12.52 11.78 10.10 9.84 3.69 1.12 7.87 
z=9.61 13.60 11.91 10.40 8.92 4.12 0.38 7.76 
z=10.09 13.90 11.54 10.97 7.94 4.34 0.76 7.69 

Solids flux, [kg/m2s] 

Ug7Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 116.95 115.42 258.17 344.98 158.58 -170.65 177.41 
z=1.02 180.03 155.32 224.35 194.41 191.87 -150.45 152.74 
z=1.94 180.97 204.68 238.83 109.60 273.34 -73.67 173.82 
z=2.85 235.79 236.35 213.94 218.56 196.29 142.10 206.85 
z=3.77 232.23 216.91 219.72 265.89 248.20 -169.12 190.17 
z=4.78 270.99 257.45 223.36 256.64 231.44 79.79 222.34 
z=5.84 262.60 247.56 212.41 209.39 192.77 116.04 202.69 
z=7.78 288.05 271.45 208.52 195.06 174.80 193.45 208.20 
z=9.61 256.90 244.66 231.81 260.91 213.81 60.63 216.63 
z=10.09 276.64 264.23 243.24 237.81 183.97 120.45 218.22 
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1.7   Ug = 7.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug7Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0107 0.0157 0.0715 0.1996 0.3234 0.4142 0.1869 
z=1.02 0.0116 0.0181 0.0687 0.1773 0.2363 0.3880 0.1590 
z=1.94 0.0142 0.0233 0.0547 0.1629 0.1282 0.3797 0.1281 
z=2.85 0.0127 0.0144 0.0270 0.0543 0.1720 0.1854 0.0821 
z=3.77 0.0136 0.0141 0.0293 0.0588 0.1019 0.1014 0.0579 
z=4.78 0.0146 0.0133 0.0211 0.0422 0.0629 0.1154 0.0449 
z=5.84 0.0111 0.0129 0.0178 0.0366 0.0501 0.1151 0.0398 
z=7.78 0.0165 0.0131 0.0161 0.0282 0.0567 0.1297 0.0408 
z=9.61 0.0131 0.0146 0.0168 0.0229 0.0572 0.1061 0.0374 

z=10.09 0.0125 0.0115 0.0199 0.0215 0.0617 0.0690 0.0338 

Particle velocity, [m/s] 

Ug7Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 8.20 8.85 3.04 0.97 0.21 0.26 2.72 
z=1.02 13.31 8.96 2.19 0.95 0.39 0.25 2.58 
z=1.94 13.13 9.07 3.19 1.05 1.06 0.23 3.01 
z=2.85 13.34 12.02 6.46 2.99 0.88 0.19 4.75 
z=3.77 14.43 13.63 6.70 3.08 1.22 0.50 5.25 
z=4.78 15.04 14.95 9.63 3.67 2.10 0.56 6.54 
z=5.84 16.83 16.75 10.60 4.95 2.47 0.57 7.49 
z=7.78 15.76 15.87 11.95 5.93 2.74 0.30 7.89 
z=9.61 16.95 15.91 12.79 6.70 2.05 0.69 8.17 

z=10.09 17.62 17.97 12.03 7.82 1.90 0.59 8.59 

Solids flux, [kg/m2s] 

Ug7Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 155.46 246.55 386.48 343.07 119.71 189.66 266.50 
z=1.02 274.19 288.98 267.93 301.17 163.29 172.68 244.75 
z=1.94 332.11 376.93 309.93 305.65 241.17 158.22 288.47 
z=2.85 301.04 307.29 310.09 289.35 268.80 61.58 266.23 
z=3.77 350.38 343.09 349.38 322.55 221.35 90.26 282.71 
z=4.78 390.49 353.47 362.45 275.15 234.99 115.61 283.12 
z=5.84 333.16 384.54 334.83 321.92 220.48 116.10 289.93 
z=7.78 463.86 370.60 343.18 297.46 276.69 68.79 290.74 
z=9.61 396.24 413.16 381.40 272.63 208.59 131.04 294.41 

z=10.09 393.18 366.31 426.56 298.72 208.49 73.01 295.20 
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1.8   Ug = 7.0 m/s, Gs = 400 kg/m2s 

Solids holdup, [-] 

Ug7Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0165 0.0259 0.0825 0.1630 0.2868 0.4996 0.1851 
z=1.02 0.0250 0.0369 0.0726 0.1562 0.2477 0.4746 0.1715 
z=1.94 0.0328 0.0219 0.0552 0.1008 0.2442 0.4095 0.1435 
z=2.85 0.0192 0.0195 0.0299 0.0536 0.2327 0.3384 0.1153 
z=3.77 0.0179 0.0195 0.0261 0.0507 0.2573 0.4503 0.1325 
z=4.78 0.0187 0.0208 0.0253 0.0570 0.1920 0.3422 0.1065 
z=5.84 0.0175 0.0205 0.0237 0.0519 0.1392 0.2536 0.0826 
z=7.78 0.0154 0.0192 0.0234 0.0487 0.1070 0.2096 0.0691 
z=9.61 0.0154 0.0164 0.0242 0.0420 0.1069 0.1264 0.0574 

z=10.09 0.0153 0.0163 0.0249 0.0449 0.1119 0.1090 0.0573 

Particle velocity, [m/s] 

Ug7Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 8.73 8.49 3.04 1.38 0.56 0.35 2.84 
z=1.02 13.22 8.89 3.09 1.21 0.75 0.25 2.92 
z=1.94 10.20 11.09 4.72 2.29 0.86 0.33 4.00 
z=2.85 14.59 12.43 6.84 4.33 0.91 0.53 5.27 
z=3.77 15.98 13.12 9.07 4.96 0.79 0.15 6.00 
z=4.78 16.19 12.87 9.86 4.24 1.04 0.36 6.06 
z=5.84 17.33 13.19 9.96 4.78 1.51 0.54 6.40 
z=7.78 17.88 13.92 10.38 5.11 2.24 0.77 6.90 
z=9.61 17.29 15.68 10.94 5.84 1.98 0.39 7.43 

z=10.09 17.44 16.17 10.77 6.04 1.67 0.26 7.45 

Solids flux, [kg/m2s] 

Ug7Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 256.84 391.25 446.99 401.74 286.20 315.15 374.29 
z=1.02 587.26 584.17 399.33 336.41 331.02 212.92 383.23 
z=1.94 595.92 431.29 464.11 409.97 374.06 237.06 398.47 
z=2.85 497.31 432.69 363.79 413.37 375.52 321.16 385.89 
z=3.77 510.04 455.27 420.64 447.63 363.24 122.84 385.37 
z=4.78 539.59 477.25 444.15 430.29 356.40 217.99 400.94 
z=5.84 540.90 482.16 420.88 442.19 374.26 245.32 406.30 
z=7.78 488.82 475.64 433.27 443.17 427.25 286.29 424.96 
z=9.61 474.93 457.60 470.57 435.99 375.94 88.34 393.84 

z=10.09 475.60 470.50 476.40 483.25 331.66 50.89 394.05 
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1.9   Ug = 7.0 m/s, Gs = 500 kg/m2s 

Solids holdup, [-] 

Ug7Gs500 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0111 0.0122 0.0164 0.0456 0.2612 0.4793 0.1319 
z=1.02 0.0193 0.0347 0.0508 0.0620 0.2867 0.4096 0.1457 
z=1.94 0.0215 0.0217 0.0454 0.0590 0.3354 0.4270 0.1542 
z=2.85 0.0219 0.0255 0.0406 0.0782 0.3434 0.4308 0.1604 
z=3.77 0.0206 0.0231 0.0407 0.0720 0.3359 0.3407 0.1462 
z=4.78 0.0232 0.0220 0.0413 0.0696 0.1512 0.3292 0.1027 
z=5.84 0.0226 0.0224 0.0352 0.0679 0.1429 0.3269 0.0988 
z=7.78 0.0227 0.0218 0.0330 0.0618 0.1169 0.2810 0.0855 
z=9.61 0.0225 0.0227 0.0364 0.0574 0.1101 0.2199 0.0767 

z=10.09 0.0223 0.0224 0.0363 0.0500 0.1012 0.2526 0.0769 

Particle velocity, [m/s] 

Ug7Gs500 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 8.20 8.76 3.14 1.75 1.03 0.31 3.10 
z=1.02 9.04 9.94 4.64 2.48 0.40 0.22 3.69 
z=1.94 16.26 14.57 6.56 4.74 0.74 0.60 5.67 
z=2.85 15.82 13.86 7.70 3.84 0.60 0.60 5.58 
z=3.77 15.95 14.20 7.93 3.97 0.62 0.68 5.74 
z=4.78 16.19 14.94 8.08 3.86 1.86 0.88 6.19 
z=5.84 16.62 14.47 8.95 3.91 2.39 0.98 6.45 
z=7.78 17.31 14.24 9.55 4.26 2.33 0.87 6.60 
z=9.61 17.86 14.04 8.35 4.83 2.66 0.98 6.50 

z=10.09 18.02 14.01 8.44 4.97 2.30 0.87 6.45 

Solids flux, [kg/m2s] 

Ug7Gs500 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 161.58 190.94 91.43 141.76 478.76 261.67 229.19 
z=1.02 310.40 614.31 419.55 273.63 204.51 160.06 344.91 
z=1.94 623.39 562.53 529.78 498.04 444.70 456.61 501.10 
z=2.85 616.67 628.70 555.76 534.64 369.75 460.73 511.94 
z=3.77 585.55 584.57 574.44 509.24 369.08 413.61 496.43 
z=4.78 669.83 584.27 593.83 478.27 500.10 513.03 535.16 
z=5.84 668.86 576.44 561.72 472.84 608.63 568.13 555.69 
z=7.78 698.55 552.94 560.38 468.77 484.62 434.65 506.29 
z=9.61 716.31 567.74 541.26 493.28 521.74 382.55 512.35 

z=10.09 715.24 557.34 545.82 442.44 413.47 390.81 476.52 
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1.10   Ug = 7.0 m/s, Gs = 600 kg/m2s 

Solids holdup, [-] 

Ug7Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0126 0.0143 0.0251 0.0903 0.2108 0.4013 0.1240 
z=1.02 0.0222 0.0311 0.0651 0.1021 0.1573 0.4659 0.1350 
z=1.94 0.0232 0.0244 0.0546 0.0761 0.2836 0.5399 0.1624 
z=2.85 0.0211 0.0257 0.0544 0.0759 0.2835 0.5400 0.1626 
z=3.77 0.0241 0.0305 0.0436 0.0956 0.2523 0.4211 0.1444 
z=4.78 0.0213 0.0294 0.0429 0.0783 0.1916 0.5257 0.1388 
z=5.84 0.0216 0.0283 0.0426 0.0722 0.2542 0.4516 0.1424 
z=7.78 0.0225 0.0233 0.0397 0.0788 0.2442 0.5022 0.1460 
z=9.61 0.0218 0.0232 0.0395 0.0748 0.2118 0.4790 0.1350 

z=10.09 0.02092 0.02083 0.04290 0.08452 0.21067 0.40672 0.1288 

Particle velocity, [m/s] 

Ug7Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 13.50 10.04 7.26 3.08 0.98 1.14 4.71 
z=1.02 13.47 10.51 6.83 3.04 1.06 0.33 4.61 
z=1.94 13.98 11.03 7.03 3.66 0.87 0.33 4.86 
z=2.85 15.53 13.47 7.06 4.09 1.00 0.33 5.46 
z=3.77 16.86 13.16 7.95 3.87 1.11 0.63 5.62 
z=4.78 17.51 13.00 8.66 4.53 1.31 0.33 5.92 
z=5.84 17.36 13.60 8.92 4.29 1.22 0.46 6.04 
z=7.78 17.33 15.63 9.21 4.64 1.35 0.33 6.59 
z=9.61 17.68 15.97 9.32 4.91 1.63 0.21 6.79 

z=10.09 18.78 17.99 8.84 4.36 1.73 0.33 6.98 

Solids flux, [kg/m2s] 

Ug7Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 302.44 254.89 324.74 495.00 367.62 811.85 417.07 
z=1.02 532.32 582.88 791.39 552.08 297.89 269.69 524.44 
z=1.94 578.58 478.38 683.06 495.49 441.07 312.53 502.99 
z=2.85 584.52 616.48 683.32 552.72 503.77 312.56 556.70 
z=3.77 722.55 713.51 616.69 657.99 498.68 469.54 600.77 
z=4.78 663.68 679.47 661.51 631.37 446.27 304.32 567.56 
z=5.84 668.45 684.22 676.25 551.04 553.55 366.68 585.24 
z=7.78 692.87 649.32 650.53 651.61 587.89 290.71 593.99 
z=9.61 685.43 658.95 655.33 652.96 612.75 180.28 589.85 

z=10.09 699.05 667.13 675.00 655.72 648.74 235.44 611.33 
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1.11   Ug = 7.0 m/s, Gs = 700 kg/m2s 

Solids holdup, [-] 

Ug7Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0250 0.0407 0.1189 0.2677 0.5072 0.5557 0.2765 
z=1.02 0.0290 0.0503 0.1205 0.2205 0.4764 0.5594 0.2615 
z=1.94 0.0373 0.0851 0.1696 0.2981 0.5541 0.5600 0.3151 
z=2.85 0.0324 0.0479 0.0955 0.2698 0.3958 0.3941 0.2287 
z=3.77 0.0452 0.0616 0.0900 0.1483 0.3328 0.5473 0.2063 
z=4.78 0.0520 0.0628 0.0834 0.1381 0.3161 0.5456 0.1987 
z=5.84 0.0423 0.0505 0.0666 0.1099 0.2736 0.5280 0.1743 
z=7.78 0.0500 0.0567 0.0684 0.1086 0.2633 0.5241 0.1729 
z=9.61 0.0548 0.0572 0.0634 0.1071 0.2834 0.5136 0.1747 

z=10.09 0.0523 0.0543 0.0607 0.1085 0.2813 0.5127 0.1733 

Particle velocity, [m/s] 

Ug7Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 11.08 9.47 3.01 1.87 0.12 0.09 3.00 
z=1.02 16.36 9.71 3.22 1.96 0.03 0.09 3.09 
z=1.94 16.84 9.00 3.21 1.76 0.09 0.10 2.93 
z=2.85 16.96 10.63 7.84 1.93 0.18 0.13 4.40 
z=3.77 16.55 12.06 8.00 1.59 0.35 0.16 4.68 
z=4.78 17.75 12.42 8.38 2.61 0.67 0.02 5.13 
z=5.84 17.95 14.06 8.99 2.77 0.53 0.13 5.60 
z=7.78 18.13 14.34 8.94 2.80 0.54 0.16 5.66 
z=9.61 18.44 15.71 9.73 3.39 0.62 0.22 6.27 

z=10.09 19.37 16.14 9.89 3.32 0.72 0.19 6.39 

Solids flux, [kg/m2s] 

Ug7Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 492.30 686.40 637.98 892.52 107.72 86.73 520.72 
z=1.02 845.56 869.16 691.17 769.40 21.98 91.20 521.83 
z=1.94 1117.62 1363.26 969.77 931.28 86.00 102.15 735.53 
z=2.85 978.43 907.32 1332.40 927.69 127.49 91.99 741.46 
z=3.77 1330.44 1321.45 1280.78 419.67 209.66 154.45 719.40 
z=4.78 1641.33 1388.08 1245.29 640.31 378.15 15.14 795.28 
z=5.84 1351.63 1262.98 1065.34 541.51 256.19 121.13 691.08 
z=7.78 1612.83 1447.44 1088.66 540.59 253.85 147.89 734.52 
z=9.61 1797.24 1600.05 1098.36 646.65 314.77 199.13 809.98 

z=10.09 1802.64 1558.76 1068.09 641.19 360.65 169.59 800.43 
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1.12   Ug = 9.0 m/s, Gs = 100 kg/m2s 

Solids holdup, [-] 

Ug9Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0072 0.0072 0.0103 0.0151 0.0186 0.0337 0.0154 
z=1.02 0.0062 0.0088 0.0076 0.0054 0.0220 0.0211 0.0122 
z=1.94 0.0073 0.0070 0.0069 0.0075 0.0151 0.0239 0.0109 
z=2.85 0.0077 0.0071 0.0087 0.0069 0.0129 0.0319 0.0117 
z=3.77 0.0073 0.0062 0.0077 0.0099 0.0122 0.0270 0.0112 
z=4.78 0.0076 0.0068 0.0069 0.0096 0.0106 0.0126 0.0090 
z=5.84 0.0073 0.0065 0.0068 0.0087 0.0115 0.0123 0.0089 
z=7.78 0.0064 0.0065 0.0069 0.0077 0.0102 0.0081 0.0079 
z=9.61 0.0065 0.0069 0.0068 0.0067 0.0102 0.0104 0.0080 

z=10.09 0.0061 0.0068 0.0064 0.0065 0.0109 0.0104 0.0080 

Particle velocity, [m/s] 

Ug9Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 8.38 7.08 6.60 5.15 2.35 -0.91 4.52 
z=1.02 9.38 8.77 6.83 7.57 2.58 -1.02 5.49 
z=1.94 9.66 9.23 8.19 7.89 4.00 -0.17 6.39 
z=2.85 9.96 9.71 8.06 8.33 4.47 -0.47 6.62 
z=3.77 9.94 9.98 8.76 7.05 4.96 -0.10 6.71 
z=4.78 10.08 9.97 9.16 7.68 5.72 -0.54 7.06 
z=5.84 10.22 10.21 9.77 7.92 5.39 -0.30 7.26 
z=7.78 11.12 10.67 9.92 7.95 5.69 -0.38 7.45 
z=9.61 11.59 10.88 10.30 8.81 5.69 -0.57 7.75 

z=10.09 11.74 11.13 10.68 9.33 6.10 -0.38 8.12 

Solids flux, [kg/m2s] 

Ug9Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 107.43 90.67 120.65 138.08 77.59 -54.53 88.48 
z=1.02 103.28 137.24 92.84 73.23 101.02 -38.53 83.27 
z=1.94 126.33 115.63 100.57 104.91 107.27 -7.25 93.23 
z=2.85 136.06 123.15 125.49 101.84 102.35 -26.41 96.54 
z=3.77 130.03 109.79 119.44 124.44 107.90 -4.90 101.45 
z=4.78 137.07 120.68 112.26 131.11 107.82 -11.96 102.50 
z=5.84 132.38 118.28 117.88 122.52 110.75 -6.51 102.73 
z=7.78 125.79 123.98 121.85 108.69 103.37 -5.43 100.10 
z=9.61 133.98 134.11 125.13 104.66 102.85 -10.58 101.18 

z=10.09 127.73 134.16 122.16 108.21 117.88 -7.01 105.09 
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1.13   Ug = 9.0 m/s, Gs = 200 kg/m2s 

Solids holdup, [-] 

Ug9Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0081 0.0126 0.0389 0.0639 0.0570 0.0541 0.0454 
z=1.02 0.0107 0.0107 0.0319 0.0714 0.0694 0.1009 0.0534 
z=1.94 0.0096 0.0110 0.0227 0.0264 0.0458 0.1056 0.0362 
z=2.85 0.0092 0.0101 0.0229 0.0244 0.0503 0.1011 0.0362 
z=3.77 0.0091 0.0107 0.0135 0.0227 0.0458 0.1024 0.0328 
z=4.78 0.0089 0.0103 0.0147 0.0227 0.0454 0.0902 0.0315 
z=5.84 0.0098 0.0098 0.0129 0.0217 0.0455 0.0850 0.0301 
z=7.78 0.0099 0.0098 0.0120 0.0187 0.0322 0.0551 0.0227 
z=9.61 0.0099 0.0099 0.0110 0.0171 0.0422 0.0933 0.0289 

z=10.09 0.0095 0.0105 0.0108 0.0161 0.0242 0.0954 0.0250 

Particle velocity, [m/s] 

Ug9Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 11.43 8.53 3.65 1.71 2.47 0.82 3.55 
z=1.02 11.42 10.36 3.84 2.05 1.57 0.89 3.83 
z=1.94 16.54 10.77 5.94 4.63 1.94 0.81 5.07 
z=2.85 13.46 12.41 6.30 4.87 2.10 0.81 5.56 
z=3.77 13.86 11.61 8.67 5.87 2.20 1.04 6.25 
z=4.78 13.95 12.23 9.15 6.07 2.90 1.03 6.68 
z=5.84 13.52 12.69 9.96 6.09 3.20 1.05 7.03 
z=7.78 13.52 13.25 10.88 6.32 3.19 1.02 7.41 
z=9.61 13.72 13.70 12.17 6.64 3.76 0.82 7.98 

z=10.09 14.08 13.05 12.19 7.20 4.70 0.83 8.20 

Solids flux, [kg/m2s] 

Ug9Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 165.67 191.35 253.02 194.71 250.20 78.81 206.74 
z=1.02 217.14 197.72 218.05 260.87 193.70 160.39 211.57 
z=1.94 282.22 210.33 239.64 217.28 157.84 152.82 200.29 
z=2.85 220.72 222.76 257.09 211.64 187.95 146.32 211.55 
z=3.77 224.80 221.42 208.23 237.50 179.19 190.05 208.73 
z=4.78 221.28 224.60 238.76 245.39 234.45 165.68 227.95 
z=5.84 236.04 222.00 228.09 235.03 259.07 158.25 227.22 
z=7.78 237.64 230.03 233.28 209.91 182.82 99.70 200.24 
z=9.61 240.89 241.23 238.91 201.57 282.44 136.55 228.59 

z=10.09 239.20 244.66 235.10 206.01 202.61 141.49 211.98 
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1.14   Ug = 9.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug9Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0092 0.0114 0.0215 0.1048 0.2017 0.2071 0.1009 
z=1.02 0.0114 0.0167 0.0253 0.1694 0.2070 0.2049 0.1184 
z=1.94 0.0135 0.0152 0.0271 0.0278 0.1528 0.2056 0.0743 
z=2.85 0.0133 0.0163 0.0300 0.0294 0.1425 0.2087 0.0736 
z=3.77 0.0128 0.0139 0.0204 0.0259 0.1047 0.1415 0.0537 
z=4.78 0.0128 0.0148 0.0217 0.0300 0.0746 0.1216 0.0460 
z=5.84 0.0143 0.0147 0.0200 0.0383 0.0645 0.1239 0.0454 
z=7.78 0.0157 0.0187 0.0228 0.0360 0.0652 0.1285 0.0470 
z=9.61 0.0153 0.0161 0.0176 0.0374 0.0633 0.1051 0.0424 

z=10.09 0.0153 0.0167 0.0177 0.0372 0.0636 0.1034 0.0424 

Particle velocity, [m/s] 

Ug9Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 11.45 13.70 6.92 0.99 0.46 0.38 4.66 
z=1.02 15.14 11.40 7.08 1.22 0.71 0.15 4.33 
z=1.94 15.62 12.23 7.20 5.53 0.99 0.39 5.59 
z=2.85 14.83 12.36 6.63 5.33 1.03 0.55 5.46 
z=3.77 16.47 14.96 9.93 5.74 1.30 0.35 6.88 
z=4.78 15.96 13.70 9.37 5.74 1.41 0.45 6.54 
z=5.84 15.50 14.80 10.67 4.83 1.61 0.26 6.87 
z=7.78 14.46 12.03 9.12 4.99 1.86 0.10 6.04 
z=9.61 15.24 14.82 10.26 5.07 1.10 0.55 6.75 

z=10.09 14.77 13.63 11.90 5.16 1.88 0.20 7.07 

Solids flux, [kg/m2s] 

Ug9Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 186.97 277.16 265.05 185.32 166.69 141.04 212.53 
z=1.02 307.72 338.39 319.01 368.22 261.55 54.27 289.73 
z=1.94 375.21 331.58 347.12 273.27 268.90 140.99 285.46 
z=2.85 350.90 358.68 354.12 279.12 260.14 202.79 298.98 
z=3.77 376.32 370.50 360.68 265.14 242.81 87.04 282.09 
z=4.78 364.65 360.04 362.52 306.89 187.78 97.72 278.87 
z=5.84 393.92 387.52 379.22 329.15 184.59 57.54 287.72 
z=7.78 403.29 400.81 370.27 319.85 215.49 22.16 288.81 
z=9.61 414.14 423.55 321.02 337.41 123.48 103.56 274.36 

z=10.09 402.86 404.63 374.11 341.02 212.93 37.18 296.45 
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1.15   Ug = 9.0 m/s, Gs = 400 kg/m2s 

Solids holdup, [m/s] 

Ug9Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0087 0.0109 0.0207 0.1101 0.2033 0.0839 0.0876 
z=1.02 0.0143 0.0175 0.0427 0.1044 0.2184 0.4963 0.1449 
z=1.94 0.0190 0.0160 0.0328 0.0843 0.1768 0.1291 0.0850 
z=2.85 0.0164 0.0177 0.0376 0.0644 0.1740 0.3962 0.1128 
z=3.77 0.0153 0.0166 0.0321 0.0538 0.1096 0.1216 0.0620 
z=4.78 0.0144 0.0187 0.0253 0.0537 0.0969 0.3010 0.0791 
z=5.84 0.0143 0.0175 0.0242 0.0434 0.0863 0.1988 0.0618 
z=7.78 0.0154 0.0195 0.0219 0.0373 0.0759 0.1988 0.0580 
z=9.61 0.0152 0.0160 0.0202 0.0322 0.0598 0.2152 0.0540 

z=10.09 0.0151 0.0202 0.0226 0.0369 0.0753 0.2072 0.0590 

Particle velocity, [m/s] 

Ug9Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 16.14 14.41 9.82 2.26 1.01 0.49 5.90 
z=1.02 13.79 12.68 6.75 2.34 1.05 0.01 4.81 
z=1.94 16.48 14.78 7.07 2.57 1.22 0.14 5.40 
z=2.85 19.92 16.11 7.61 3.63 1.22 0.24 6.04 
z=3.77 19.54 16.93 9.16 4.63 1.64 0.26 6.88 
z=4.78 20.00 16.66 9.99 4.56 2.07 0.05 7.09 
z=5.84 20.47 17.22 10.32 5.39 2.08 0.16 7.47 
z=7.78 20.51 17.19 12.50 6.23 2.39 0.11 8.24 
z=9.61 20.40 18.58 13.04 7.61 2.68 0.48 9.06 

z=10.09 20.51 16.48 12.03 6.61 2.08 0.53 8.06 

Solids flux, [kg/m2s] 

Ug9Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 250.62 278.60 362.31 442.78 364.42 73.46 330.86 
z=1.02 350.76 393.99 512.36 435.17 406.42 12.80 389.30 
z=1.94 556.80 421.68 412.11 386.39 383.81 32.28 356.92 
z=2.85 579.88 507.35 509.19 416.07 377.73 172.23 418.38 
z=3.77 532.41 501.64 522.51 442.83 320.59 55.68 399.91 
z=4.78 512.01 553.75 449.50 435.25 357.03 28.29 395.81 
z=5.84 522.43 536.86 443.71 416.42 319.95 56.58 381.90 
z=7.78 560.72 597.59 487.76 413.55 323.36 38.91 402.10 
z=9.61 551.72 529.00 468.22 435.42 285.88 182.77 397.77 

z=10.09 551.14 591.37 484.32 433.57 279.56 197.15 413.44 

 
 
 
 
 
 
  



Appendices 

251 

 

1.16   Ug = 9.0 m/s, Gs = 500 kg/m2s 

Solids holdup, [-] 

Ug9Gs500 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0100 0.0104 0.0086 0.0103 0.0749 0.3356 0.0628 
z=1.02 0.0205 0.0251 0.0139 0.0850 0.2248 0.5600 0.1440 
z=1.94 0.0205 0.0227 0.0521 0.0672 0.2521 0.5598 0.1548 
z=2.85 0.0205 0.0216 0.0452 0.0602 0.2329 0.2876 0.1149 
z=3.77 0.0179 0.0196 0.0403 0.0548 0.2093 0.3548 0.1148 
z=4.78 0.0160 0.0177 0.0402 0.0549 0.1325 0.2254 0.0818 
z=5.84 0.0153 0.0164 0.0384 0.0561 0.1227 0.2552 0.0827 
z=7.78 0.0154 0.0155 0.0322 0.0515 0.1227 0.3552 0.0918 
z=9.61 0.0154 0.0164 0.0215 0.0544 0.1257 0.2539 0.0788 

z=10.09 0.0206 0.0213 0.0211 0.0532 0.1354 0.2075 0.0761 

Particle velocity, [m/s] 

Ug9Gs500 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 15.37 13.74 11.40 5.52 3.49 0.16 7.41 
z=1.02 15.95 13.44 11.17 2.78 0.84 0.16 6.08 
z=1.94 16.05 13.61 6.14 4.28 0.65 0.29 5.23 
z=2.85 17.92 16.29 7.69 4.60 1.18 0.04 6.28 
z=3.77 20.68 19.76 8.82 4.80 1.30 0.01 7.28 
z=4.78 20.75 20.06 8.41 5.14 1.86 0.78 7.53 
z=5.84 20.89 19.65 8.40 5.80 1.93 0.24 7.55 
z=7.78 20.55 19.92 10.28 6.14 1.93 0.18 8.13 
z=9.61 20.69 20.35 15.53 5.97 1.97 0.16 9.43 

z=10.09 18.11 17.24 18.10 6.43 1.95 0.19 9.54 

Solids flux, [kg/m2s] 

Ug9Gs500 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 272.28 253.65 175.12 101.55 464.78 95.97 229.34 
z=1.02 582.41 601.30 275.64 420.45 336.97 158.31 371.06 
z=1.94 586.49 550.86 569.34 511.67 291.83 286.72 456.93 
z=2.85 654.49 626.48 618.80 493.30 490.66 20.46 492.37 
z=3.77 659.77 691.10 632.59 468.31 484.30 6.77 499.36 
z=4.78 591.00 630.43 601.29 502.25 437.82 313.34 513.68 
z=5.84 569.60 574.15 573.63 579.33 422.10 109.79 486.20 
z=7.78 564.54 548.09 589.11 562.79 421.53 115.85 481.71 
z=9.61 567.89 594.98 594.85 577.49 441.61 73.66 494.96 

z=10.09 664.39 653.89 678.69 609.06 469.11 68.54 538.98 
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1.17   Ug = 9.0 m/s, Gs = 600 kg/m2s 

Solids holdup, [-] 

Ug9Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0088 0.0098 0.0107 0.1014 0.0607 0.3939 0.0876 
z=1.02 0.0251 0.0230 0.0403 0.2162 0.2443 0.3541 0.1598 
z=1.94 0.0211 0.0228 0.0427 0.2658 0.2382 0.3413 0.1687 
z=2.85 0.0205 0.0217 0.0470 0.1684 0.3311 0.2775 0.1608 
z=3.77 0.0213 0.0220 0.0458 0.1082 0.2560 0.2560 0.1275 
z=4.78 0.0197 0.0222 0.0400 0.1055 0.2254 0.2175 0.1141 
z=5.84 0.0196 0.0218 0.0392 0.0758 0.1882 0.2516 0.1027 
z=7.78 0.0185 0.0197 0.0327 0.0558 0.1882 0.2163 0.0921 
z=9.61 0.0185 0.0186 0.0278 0.0533 0.1192 0.2853 0.0828 

z=10.09 0.0217 0.0217 0.0276 0.0543 0.1240 0.2219 0.0771 

Particle velocity, [m/s] 

Ug9Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 15.93 15.51 10.83 2.01 3.32 0.33 6.80 
z=1.02 16.80 15.90 9.58 1.07 0.44 0.19 5.70 
z=1.94 17.99 17.42 9.07 1.07 0.98 0.29 6.00 
z=2.85 19.96 18.87 8.70 2.28 0.94 0.16 6.45 
z=3.77 19.92 17.96 8.95 3.13 1.10 0.18 6.56 
z=4.78 21.22 17.81 9.71 3.40 1.11 0.33 6.80 
z=5.84 20.65 19.76 9.99 4.95 1.60 0.59 7.73 
z=7.78 21.47 20.15 11.88 6.15 1.72 0.22 8.51 
z=9.61 21.97 21.13 14.10 7.08 2.62 0.21 9.64 

z=10.09 19.63 18.88 15.08 7.18 2.72 0.70 9.54 

Solids flux, [kg/m2s] 

Ug9Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 249.56 271.49 205.99 362.48 358.81 227.89 291.04 
z=1.02 751.66 651.77 686.87 413.02 191.72 117.16 439.39 
z=1.94 675.64 707.82 688.57 504.94 413.59 175.31 528.19 
z=2.85 729.48 727.57 728.81 683.27 554.46 78.32 602.26 
z=3.77 754.12 702.92 729.58 603.92 500.75 81.35 567.98 
z=4.78 742.31 703.30 691.84 638.73 444.79 128.91 560.00 
z=5.84 722.18 765.43 697.38 667.92 534.98 263.23 616.02 
z=7.78 708.90 704.89 691.56 610.42 574.58 85.74 577.91 
z=9.61 725.19 701.00 698.38 671.98 555.09 104.99 590.63 

z=10.09 757.48 728.98 740.30 693.63 599.94 274.71 641.02 

 
 
 
 
 
 
  



Appendices 

253 

 

1.18   Ug = 9.0 m/s, Gs = 700 kg/m2s 

Solids holdup, [-] 

Ug9Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0220 0.0242 0.0415 0.1089 0.3039 0.4873 0.1651 
z=1.02 0.0413 0.0758 0.1295 0.2443 0.5482 0.4601 0.2784 
z=1.94 0.0380 0.0745 0.1210 0.2557 0.5375 0.4070 0.2700 
z=2.85 0.0288 0.0442 0.0732 0.1434 0.3061 0.3198 0.1650 
z=3.77 0.0352 0.0474 0.0727 0.1085 0.2012 0.3357 0.1359 
z=4.78 0.0290 0.0400 0.0567 0.0806 0.1741 0.3242 0.1169 
z=5.84 0.0323 0.0390 0.0578 0.0751 0.1533 0.3191 0.1104 
z=7.78 0.0324 0.0292 0.0347 0.0605 0.1450 0.3154 0.0974 
z=9.61 0.0401 0.0412 0.0471 0.0656 0.1077 0.3183 0.0958 

z=10.09 0.0431 0.0432 0.0432 0.0709 0.1071 0.3050 0.0947 

Particle velocity, [m/s] 

Ug9Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 19.95 19.24 10.09 2.20 0.86 0.25 6.82 
z=1.02 13.70 7.01 5.87 2.06 0.31 0.00 3.28 
z=1.94 17.66 8.15 5.03 2.08 0.66 0.17 3.40 
z=2.85 22.22 13.49 9.09 3.24 0.28 0.02 5.56 
z=3.77 21.63 15.09 9.16 3.61 0.69 0.29 6.09 
z=4.78 22.72 16.74 9.31 4.38 0.54 0.38 6.59 
z=5.84 20.70 16.61 10.58 5.15 2.10 0.08 7.36 
z=7.78 20.12 19.37 13.58 6.47 1.89 0.09 8.86 
z=9.61 19.08 18.92 13.33 6.04 1.39 0.28 8.52 

z=10.09 18.12 17.61 13.70 6.14 1.54 0.17 8.40 

Solids flux, [kg/m2s] 

Ug9Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 780.89 829.38 745.68 426.37 463.65 216.49 563.45 
z=1.02 1007.41 946.32 1353.47 895.71 303.30 2.39 775.68 
z=1.94 1194.40 1079.80 1084.65 946.85 632.68 120.46 837.01 
z=2.85 1137.46 1061.97 1184.04 826.07 151.71 9.99 708.61 
z=3.77 1356.52 1273.96 1185.79 696.45 246.30 172.44 760.83 
z=4.78 1172.61 1193.04 938.83 628.93 168.50 216.50 658.90 
z=5.84 1188.87 1152.47 1088.33 688.14 572.67 48.19 771.14 
z=7.78 1159.00 1007.05 838.86 696.53 488.13 51.18 667.07 
z=9.61 1362.26 1387.64 1117.36 705.10 265.81 156.11 770.83 

z=10.09 1390.02 1353.83 1054.13 774.43 293.30 90.43 763.45 
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1.19   Ug = 9.0 m/s, Gs = 800 kg/m2s 

Solids holdup, [-] 

Ug9Gs800 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0133 0.0126 0.0164 0.1079 0.2644 0.4638 0.1450 
z=1.02 0.0288 0.0594 0.1586 0.4370 0.5511 0.5600 0.3383 
z=1.94 0.0272 0.0479 0.1263 0.4108 0.5458 0.5600 0.3213 
z=2.85 0.0274 0.0479 0.1028 0.2880 0.5147 0.5600 0.2808 
z=3.77 0.0281 0.0342 0.0542 0.2171 0.5285 0.5600 0.2537 
z=4.78 0.0277 0.0353 0.0552 0.2125 0.4026 0.5600 0.2247 
z=5.84 0.0252 0.0331 0.0652 0.2166 0.3458 0.5264 0.2109 
z=7.78 0.0303 0.0345 0.0596 0.2166 0.3103 0.5600 0.2058 
z=9.61 0.0422 0.0362 0.0432 0.2085 0.3263 0.5496 0.2028 

z=10.09 0.0421 0.0388 0.0537 0.2089 0.3287 0.5242 0.2034 

Particle velocity, [m/s] 

Ug9Gs800 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 22.31 19.93 19.74 2.88 0.64 0.25 9.36 
z=1.02 20.79 10.33 3.18 0.75 0.40 0.11 3.02 
z=1.94 19.93 12.43 4.29 1.07 0.48 0.19 3.78 
z=2.85 21.58 13.75 5.39 1.43 0.52 0.21 4.39 
z=3.77 20.28 16.99 9.71 2.04 0.51 0.29 6.19 
z=4.78 21.17 17.08 10.05 1.96 0.75 0.21 6.31 
z=5.84 21.93 18.04 9.38 2.02 0.95 0.29 6.41 
z=7.78 22.09 18.03 10.21 2.19 0.99 0.16 6.63 
z=9.61 15.40 17.43 13.18 2.07 1.00 0.11 7.19 

z=10.09 15.23 16.13 10.46 2.22 1.01 0.24 6.35 

Solids flux, [kg/m2s] 

Ug9Gs800 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 528.75 446.71 575.03 552.39 301.20 209.81 440.53 
z=1.02 1066.49 1092.38 898.60 584.53 396.76 108.50 658.49 
z=1.94 963.46 1060.62 963.72 780.01 468.45 185.04 737.38 
z=2.85 1054.29 1172.39 985.91 732.32 479.95 209.72 758.83 
z=3.77 1013.60 1034.65 936.96 786.89 479.42 292.47 742.73 
z=4.78 1042.34 1071.88 987.17 739.85 535.31 212.22 754.26 
z=5.84 982.35 1063.67 1088.80 778.88 587.77 272.24 804.60 
z=7.78 1191.28 1105.89 1083.70 842.99 545.55 155.01 802.72 
z=9.61 1157.35 1124.33 1012.42 767.67 580.79 104.84 774.22 

z=10.09 1140.69 1115.66 999.62 826.58 591.74 227.78 799.85 
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1.20   Ug = 9.0 m/s, Gs = 1000 kg/m2s 

Solids holdup, [-] 

Ug9Gs1000 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 0.0688 0.0568 0.0775 0.2181 0.4921 0.5584 0.2554 
z=1.02 0.0607 0.1038 0.3037 0.4422 0.5059 0.5600 0.3724 
z=1.94 0.0668 0.1035 0.3026 0.4417 0.5060 0.5600 0.3720 
z=2.85 0.0901 0.1457 0.3042 0.4826 0.5057 0.5600 0.3897 
z=3.77 0.1049 0.1190 0.2853 0.4347 0.5367 0.5600 0.3762 
z=4.78 0.0549 0.0975 0.2315 0.3922 0.4751 0.5593 0.3357 
z=5.84 0.0575 0.0993 0.2047 0.3737 0.4921 0.5589 0.3292 
z=7.78 0.0649 0.0865 0.1915 0.3883 0.4754 0.5600 0.3233 
z=9.61 0.0672 0.0765 0.1246 0.3258 0.4752 0.5550 0.2907 

z=10.09 0.0948 0.0908 0.1036 0.3532 0.4753 0.5549 0.2946 

Particle velocity, [m/s] 

Ug9Gs1000 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 10.49 8.32 3.50 1.24 1.63 0.96 3.19 
z=1.02 11.59 8.80 2.78 1.57 0.11 0.45 2.79 
z=1.94 15.47 9.69 2.63 1.80 0.30 0.03 2.97 
z=2.85 17.60 10.57 3.32 1.54 1.00 0.23 3.42 
z=3.77 17.05 11.31 4.21 2.04 0.78 0.09 3.82 
z=4.78 23.91 13.72 5.10 2.03 0.99 0.11 4.55 
z=5.84 23.20 13.79 5.33 2.73 0.53 0.22 4.68 
z=7.78 22.45 15.80 6.05 2.16 0.78 0.30 5.18 
z=9.61 23.34 15.38 6.48 2.39 0.72 0.13 5.22 

z=10.09 21.27 13.33 6.03 2.39 0.99 0.34 4.80 

Solids flux, [kg/m2s] 

Ug9Gs1000 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 
z=0.57 1285.02 841.18 483.22 480.96 1429.28 949.42 819.34 
z=1.02 1252.17 1626.23 1503.75 1236.32 103.24 444.06 1026.58 
z=1.94 1838.94 1785.71 1418.33 1415.11 272.65 26.19 1066.26 
z=2.85 2821.15 2742.35 1796.46 1325.70 904.05 225.11 1485.37 
z=3.77 3181.62 2396.10 2138.98 1577.39 741.52 86.44 1504.47 
z=4.78 2335.11 2382.03 2101.83 1418.03 836.13 104.99 1480.24 
z=5.84 2375.75 2438.35 1940.96 1813.09 464.93 218.08 1472.28 
z=7.78 2594.11 2432.38 2061.27 1492.53 660.32 302.43 1480.93 
z=9.61 2793.43 2094.98 1437.82 1385.36 612.49 132.27 1212.57 

z=10.09 3590.31 2154.56 1111.49 1501.83 836.53 331.42 1246.71 
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Appendix 2. Raw data of solids holdup, particle velocity and solids flux 

in the CFB downer 

2.1   Ug = 1.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug1Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0543 0.0544 0.0544 0.0596 0.0596 0.0473 0.0559 

z=0.61 0.0438 0.0480 0.0504 0.0542 0.0543 0.0460 0.0512 

z=1.12 0.0354 0.0363 0.0377 0.0400 0.0408 0.0410 0.0391 

z=1.63 0.0347 0.0353 0.0368 0.0393 0.0410 0.0495 0.0395 

z=2.13 0.0320 0.0334 0.0353 0.0379 0.0389 0.0424 0.0372 

z=2.64 0.0307 0.0324 0.0303 0.0353 0.0370 0.0380 0.0343 

z=3.26 0.0262 0.0280 0.0302 0.0323 0.0355 0.0346 0.0319 

z=4.02 0.0226 0.0256 0.0280 0.0292 0.0296 0.0320 0.0286 

z=4.99 0.0226 0.0212 0.0258 0.0275 0.0296 0.0327 0.0270 

Particle velocity, [m/s] 

Ug1Gs300 R1 R2 R3 R4 R5 R6 Average 
z=0.22 2.29 2.33 2.51 2.96 3.20 3.28 2.82 
z=0.61 2.78 2.91 3.03 3.25 3.71 2.63 3.16 

z=1.12 4.04 4.28 4.29 4.54 4.86 3.80 4.42 

z=1.63 4.20 4.59 4.68 4.69 4.94 3.93 4.64 

z=2.13 4.32 4.59 4.99 5.17 5.34 3.99 4.91 

z=2.64 4.54 4.61 5.03 5.58 5.92 4.03 5.16 

z=3.26 4.55 4.65 5.05 6.06 6.55 4.03 5.42 

z=4.02 4.56 4.76 5.05 6.50 6.86 4.23 5.63 

z=4.99 4.57 4.91 5.18 7.17 7.27 4.25 5.94 

Solids flux, [kg/m2s] 

Ug1Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 221.10 225.57 242.85 339.09 366.91 276.25 293.20 

z=0.61 217.27 248.73 271.72 313.48 357.89 215.31 289.50 

z=1.12 254.55 276.88 288.24 323.66 352.66 277.66 307.33 

z=1.63 259.41 288.83 306.49 328.00 360.19 346.15 324.73 

z=2.13 246.42 273.32 312.89 348.88 369.77 300.72 324.80 

z=2.64 248.05 266.11 271.19 350.28 389.92 273.04 315.08 

z=3.26 211.94 231.84 271.14 348.45 413.64 248.57 310.51 

z=4.02 183.04 216.94 251.40 337.30 361.03 240.94 287.68 

z=4.99 183.56 184.97 237.63 350.86 383.45 247.27 287.13 
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2.2   Ug = 3.0 m/s, Gs = 100 kg/m2s 

Solids holdup, [-] 

Ug3Gs100 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0156 0.0152 0.0155 0.0179 0.0170 0.0157 0.0163 

z=0.61 0.0121 0.0153 0.0155 0.0158 0.0165 0.0133 0.0155 

z=1.12 0.0117 0.0142 0.0146 0.0146 0.0154 0.0146 0.0147 

z=1.63 0.0109 0.0126 0.0127 0.0135 0.0144 0.0140 0.0134 

z=2.13 0.0103 0.0114 0.0115 0.0122 0.0148 0.0168 0.0130 

z=2.64 0.0099 0.0103 0.0101 0.0105 0.0122 0.0158 0.0114 

z=3.26 0.0100 0.0101 0.0102 0.0098 0.0125 0.0142 0.0111 

z=4.02 0.0089 0.0091 0.0097 0.0105 0.0105 0.0141 0.0105 

z=4.99 0.0090 0.0094 0.0099 0.0099 0.0103 0.0138 0.0104 

Particle velocity, [m/s] 

Ug3Gs100 R1 R2 R3 R4 R5 R6 Average 

z=0.22 2.85 2.93 3.00 3.98 3.43 3.68 3.38 

z=0.61 3.20 3.13 4.20 4.18 4.54 3.88 4.03 

z=1.12 4.92 4.95 5.06 5.35 5.91 4.21 5.19 

z=1.63 5.13 4.69 5.50 5.43 5.93 3.88 5.23 

z=2.13 5.58 5.70 5.65 5.76 6.45 3.70 5.64 

z=2.64 5.71 5.83 5.80 6.06 6.70 3.60 5.81 

z=3.26 5.82 5.83 5.83 6.18 6.78 3.95 5.90 

z=4.02 5.84 5.86 5.84 6.20 6.60 4.27 5.91 

z=4.99 5.88 5.87 5.94 6.33 6.99 4.19 6.04 

Solids flux, [kg/m2s] 

Ug3Gs100 R1 R2 R3 R4 R5 R6 Average 

z=0.22 79.33 79.49 82.78 126.66 103.42 103.03 99.13 

z=0.61 68.73 85.38 115.52 117.78 133.01 92.06 111.40 

z=1.12 102.24 125.17 131.61 138.88 161.90 109.59 136.24 

z=1.63 99.60 104.89 124.26 130.19 151.84 96.76 124.84 

z=2.13 102.74 115.96 116.17 125.19 170.36 110.26 129.66 

z=2.64 100.54 107.36 104.43 113.76 145.87 101.07 116.03 

z=3.26 103.16 104.35 105.69 107.58 151.31 99.78 115.42 

z=4.02 92.42 94.80 100.41 115.74 123.68 107.22 108.85 

z=4.99 93.95 98.28 104.66 111.84 128.48 102.71 110.19 
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2.3   Ug = 3.0 m/s, Gs = 200 kg/m2s 

Solids holdup, [-] 

Ug3Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0372 0.0362 0.0375 0.0397 0.0433 0.0533 0.0409 

z=0.61 0.0216 0.0206 0.0244 0.0329 0.0326 0.0328 0.0285 

z=1.12 0.0166 0.0185 0.0191 0.0248 0.0262 0.0321 0.0234 

z=1.63 0.0187 0.0184 0.0189 0.0224 0.0223 0.0255 0.0211 

z=2.13 0.0179 0.0174 0.0175 0.0226 0.0203 0.0254 0.0202 

z=2.64 0.0168 0.0163 0.0167 0.0210 0.0194 0.0250 0.0192 

z=3.26 0.0192 0.0186 0.0185 0.0206 0.0243 0.0262 0.0212 

z=4.02 0.0190 0.0190 0.0189 0.0173 0.0217 0.0251 0.0199 

z=4.99 0.0195 0.0198 0.0194 0.0195 0.0232 0.0273 0.0213 

Particle velocity, [m/s] 

Ug3Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 2.74 2.77 3.37 4.42 4.89 2.86 3.78 

z=0.61 3.74 4.07 4.67 4.80 5.00 2.56 4.41 

z=1.12 4.16 4.01 4.59 4.83 5.47 3.20 4.57 

z=1.63 4.66 4.60 5.10 6.32 6.47 2.67 5.30 

z=2.13 4.77 4.89 5.45 5.69 6.17 3.37 5.31 

z=2.64 5.74 5.56 6.06 6.29 6.42 3.84 5.83 

z=3.26 5.83 5.85 6.11 6.46 6.59 4.16 6.02 

z=4.02 5.84 5.72 6.26 6.78 6.81 4.65 6.21 

z=4.99 6.02 6.03 6.34 6.89 7.19 5.38 6.48 

Solids flux, [kg/m2s] 

Ug3Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 181.86 178.93 225.30 312.84 377.28 271.16 275.84 

z=0.61 143.65 149.03 203.27 281.45 290.55 149.25 223.83 

z=1.12 122.84 132.35 155.58 212.94 254.70 183.06 189.66 

z=1.63 154.76 150.92 171.86 251.80 256.23 121.03 198.95 

z=2.13 152.08 151.48 169.71 229.20 222.48 152.84 189.58 

z=2.64 171.77 161.21 179.71 235.32 221.62 171.15 197.18 

z=3.26 199.10 193.87 200.72 236.76 284.72 194.23 225.71 

z=4.02 197.99 193.46 209.99 208.31 262.73 208.17 218.08 

z=4.99 209.29 212.67 219.30 239.74 297.68 261.29 245.25 
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2.4   Ug = 3.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug3Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0405 0.0491 0.0540 0.0539 0.0600 0.0542 0.0544 

z=0.61 0.0405 0.0386 0.0353 0.0362 0.0413 0.0415 0.0382 

z=1.12 0.0235 0.0271 0.0281 0.0313 0.0392 0.0511 0.0338 

z=1.63 0.0296 0.0280 0.0314 0.0334 0.0343 0.0412 0.0330 

z=2.13 0.0281 0.0247 0.0258 0.0315 0.0433 0.0399 0.0325 

z=2.64 0.0264 0.0268 0.0273 0.0294 0.0321 0.0360 0.0298 

z=3.26 0.0234 0.0243 0.0270 0.0284 0.0305 0.0319 0.0282 

z=4.02 0.0212 0.0221 0.0239 0.0280 0.0302 0.0319 0.0269 

z=4.99 0.0222 0.0231 0.0238 0.0273 0.0308 0.0317 0.0270 

Particle velocity, [m/s] 

Ug3Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 2.01 2.09 2.09 3.20 3.43 3.38 2.79 

z=0.61 3.51 3.59 3.59 4.49 4.93 3.88 4.13 

z=1.12 4.15 4.03 5.14 5.64 5.89 3.21 4.98 

z=1.63 4.93 5.05 5.29 5.99 6.45 3.70 5.48 

z=2.13 5.46 5.48 5.93 6.16 6.31 3.69 5.72 

z=2.64 5.70 5.59 6.13 6.44 6.46 3.83 5.90 

z=3.26 5.72 5.89 6.28 6.57 6.81 4.12 6.13 

z=4.02 5.92 5.94 6.33 6.87 7.19 4.64 6.37 

z=4.99 6.19 6.24 6.57 7.33 7.41 5.89 6.79 

Solids flux, [kg/m2s] 

Ug3Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 145.25 182.72 200.70 307.21 391.79 325.95 279.17 

z=0.61 253.16 246.85 225.41 289.40 362.34 286.38 282.04 

z=1.12 173.71 194.43 256.51 314.24 410.69 292.30 296.57 

z=1.63 259.81 251.45 295.75 356.67 393.60 271.78 320.23 

z=2.13 273.18 241.05 272.83 345.54 486.00 261.63 329.84 

z=2.64 267.36 266.33 297.62 336.80 369.71 245.24 310.52 

z=3.26 237.64 254.65 302.34 332.39 369.61 233.66 307.01 

z=4.02 223.05 233.82 269.40 342.75 386.46 263.21 304.80 

z=4.99 244.24 257.16 278.69 356.05 406.82 332.48 327.27 
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2.5   Ug = 5.0 m/s, Gs = 100 kg/m2s 

Solids holdup, [-] 

Ug5Gs100 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0111 0.0139 0.0150 0.0161 0.0121 0.0151 0.0144 

z=0.61 0.0105 0.0109 0.0104 0.0101 0.0106 0.0107 0.0105 

z=1.12 0.0105 0.0092 0.0095 0.0100 0.0105 0.0100 0.0099 

z=1.63 0.0108 0.0106 0.0100 0.0093 0.0103 0.0101 0.0100 

z=2.13 0.0105 0.0094 0.0105 0.0105 0.0100 0.0103 0.0101 

z=2.64 0.0095 0.0092 0.0101 0.0102 0.0096 0.0102 0.0099 

z=3.26 0.0085 0.0082 0.0093 0.0098 0.0086 0.0106 0.0092 

z=4.02 0.0080 0.0080 0.0091 0.0090 0.0085 0.0102 0.0089 

z=4.99 0.0076 0.0076 0.0089 0.0095 0.0103 0.0104 0.0093 

Particle velocity, [m/s] 

Ug5Gs100 R1 R2 R3 R4 R5 R6 Average 

z=0.22 5.29 5.13 5.36 4.82 4.62 4.67 4.94 

z=0.61 5.29 5.53 5.72 6.30 6.97 5.68 6.09 

z=1.12 6.03 6.10 6.29 6.30 6.97 6.27 6.40 

z=1.63 6.64 6.56 6.42 6.62 7.12 6.12 6.61 

z=2.13 6.99 7.00 6.94 6.82 7.02 6.10 6.84 

z=2.64 7.01 7.02 7.14 7.25 7.33 6.35 7.09 

z=3.26 7.12 7.06 7.20 7.34 7.46 6.62 7.19 

z=4.02 7.03 6.94 7.25 7.46 7.67 6.62 7.26 

z=4.99 7.01 7.15 7.24 7.47 8.27 6.63 7.44 

Solids flux, [kg/m2s] 

Ug5Gs100 R1 R2 R3 R4 R5 R6 Average 

z=0.22 104.02 127.27 143.50 137.69 99.09 125.14 126.90 

z=0.61 99.14 107.65 105.89 113.21 131.22 107.59 113.79 

z=1.12 112.41 100.11 106.79 112.55 130.26 111.79 112.68 

z=1.63 127.57 124.40 114.36 109.03 130.70 110.16 118.26 

z=2.13 130.23 117.38 129.10 127.08 124.80 111.81 123.38 

z=2.64 118.96 115.43 127.94 131.81 125.63 114.77 124.34 

z=3.26 108.09 103.55 119.33 128.63 114.56 125.14 118.02 

z=4.02 99.63 98.85 118.05 118.94 116.22 120.16 114.40 

z=4.99 94.83 96.94 114.68 126.34 151.88 123.03 123.27 
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2.6   Ug = 5.0 m/s, Gs = 200 kg/m2s 

Solids holdup, [-] 

Ug5Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0232 0.0247 0.0233 0.0282 0.0302 0.0307 0.0271 

z=0.61 0.0219 0.0227 0.0228 0.0277 0.0242 0.0231 0.0242 

z=1.12 0.0175 0.0175 0.0187 0.0189 0.0195 0.0202 0.0189 

z=1.63 0.0158 0.0149 0.0140 0.0154 0.0166 0.0238 0.0162 

z=2.13 0.0149 0.0145 0.0145 0.0153 0.0158 0.0222 0.0159 

z=2.64 0.0140 0.0154 0.0140 0.0145 0.0162 0.0206 0.0157 

z=3.26 0.0148 0.0144 0.0149 0.0140 0.0159 0.0193 0.0153 

z=4.02 0.0141 0.0141 0.0143 0.0145 0.0143 0.0182 0.0148 

z=4.99 0.0142 0.0143 0.0146 0.0146 0.0146 0.0184 0.0150 

Particle velocity, [m/s] 

Ug5Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 3.98 4.06 4.59 5.24 6.32 4.35 5.00 

z=0.61 3.80 4.10 4.99 5.34 6.47 4.53 5.18 

z=1.12 5.80 6.44 6.85 7.38 7.59 5.59 6.91 

z=1.63 6.07 6.33 7.08 7.46 7.87 5.91 7.06 

z=2.13 6.35 6.46 7.09 7.30 7.66 6.10 7.03 

z=2.64 6.69 6.45 7.31 7.58 8.15 6.22 7.26 

z=3.26 7.22 7.24 7.78 7.85 8.40 6.33 7.66 

z=4.02 7.47 7.44 7.78 7.83 8.46 6.16 7.69 

z=4.99 7.40 7.46 7.79 7.81 8.86 6.55 7.83 

Solids flux, [kg/m2s] 

Ug5Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 164.17 178.85 190.26 262.50 339.14 237.87 243.56 

z=0.61 148.25 165.63 202.40 262.76 279.27 186.52 224.44 

z=1.12 180.83 201.04 227.68 248.56 263.55 201.33 232.25 

z=1.63 171.27 167.50 175.96 203.95 233.14 249.89 202.27 

z=2.13 167.97 166.99 182.84 198.75 214.89 240.39 197.40 

z=2.64 166.43 177.01 181.82 195.29 235.08 228.14 201.40 

z=3.26 189.89 185.80 205.86 195.96 237.07 217.41 208.14 

z=4.02 188.01 186.19 197.94 202.67 215.89 199.24 200.94 

z=4.99 186.81 190.43 202.86 203.37 229.54 214.94 208.01 
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2.7   Ug = 5.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug5Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0434 0.0432 0.0432 0.0483 0.0534 0.0434 0.0467 

z=0.61 0.0302 0.0329 0.0310 0.0323 0.0337 0.0403 0.0334 

z=1.12 0.0299 0.0294 0.0315 0.0284 0.0334 0.0394 0.0318 

z=1.63 0.0232 0.0245 0.0240 0.0271 0.0339 0.0368 0.0285 

z=2.13 0.0211 0.0229 0.0236 0.0271 0.0311 0.0351 0.0273 

z=2.64 0.0214 0.0231 0.0233 0.0269 0.0312 0.0369 0.0275 

z=3.26 0.0231 0.0220 0.0231 0.0274 0.0301 0.0365 0.0270 

z=4.02 0.0239 0.0235 0.0231 0.0253 0.0289 0.0357 0.0264 

z=4.99 0.0238 0.0243 0.0232 0.0251 0.0277 0.0358 0.0263 

Particle velocity, [m/s] 

Ug5Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 3.94 4.45 4.70 5.04 5.45 4.42 4.87 
z=0.61 4.55 4.72 4.74 5.31 5.40 4.82 5.02 
z=1.12 5.19 5.32 5.90 6.13 6.53 5.65 5.95 

z=1.63 6.86 7.08 7.31 7.72 8.49 6.41 7.52 

z=2.13 7.16 7.38 7.61 7.95 8.40 6.49 7.69 

z=2.64 7.47 7.66 7.93 8.19 8.42 6.62 7.89 

z=3.26 7.67 7.86 7.96 8.42 8.32 6.67 7.97 

z=4.02 7.93 7.96 7.76 8.32 8.38 6.81 7.95 

z=4.99 8.12 8.41 8.46 8.53 8.84 7.51 8.44 

Solids flux, [kg/m2s] 

Ug5Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 304.54 342.34 361.52 433.54 517.95 341.22 406.96 

z=0.61 245.21 276.50 260.94 305.20 324.11 345.94 298.21 

z=1.12 275.89 278.34 330.74 309.74 387.99 396.32 336.52 

z=1.63 283.86 309.29 312.79 371.53 512.02 420.20 382.93 

z=2.13 269.08 301.24 319.55 383.01 464.84 405.54 373.25 

z=2.64 285.08 315.29 328.50 392.13 467.93 434.45 384.26 

z=3.26 315.42 307.49 327.48 410.13 445.39 432.96 381.35 

z=4.02 336.52 332.64 318.41 374.14 430.64 432.81 372.53 

z=4.99 343.24 363.72 349.11 380.85 435.93 478.56 393.92 
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2.8   Ug = 7.0 m/s, Gs = 200 kg/m2s 

Solids holdup, [-] 

Ug7Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0193 0.0262 0.0238 0.0237 0.0250 0.0232 0.0244 

z=0.61 0.0134 0.0131 0.0153 0.0170 0.0197 0.0216 0.0170 

z=1.12 0.0125 0.0131 0.0143 0.0150 0.0154 0.0212 0.0153 

z=1.63 0.0119 0.0112 0.0123 0.0127 0.0119 0.0180 0.0128 

z=2.13 0.0106 0.0105 0.0109 0.0113 0.0102 0.0191 0.0117 

z=2.64 0.0095 0.0111 0.0109 0.0110 0.0128 0.0163 0.0120 

z=3.26 0.0112 0.0112 0.0111 0.0112 0.0115 0.0141 0.0116 

z=4.02 0.0128 0.0121 0.0114 0.0114 0.0103 0.0120 0.0114 

z=4.99 0.0127 0.0122 0.0121 0.0112 0.0117 0.0125 0.0119 

Particle velocity, [m/s] 

Ug7Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 4.69 4.93 4.48 4.46 4.74 5.14 4.70 

z=0.61 5.45 5.74 5.98 6.16 6.47 6.02 6.09 

z=1.12 6.77 6.50 6.90 7.26 7.53 7.20 7.08 

z=1.63 7.82 7.83 7.81 7.98 8.26 7.42 7.91 

z=2.13 8.31 8.39 8.29 8.80 8.89 7.37 8.45 

z=2.64 8.75 8.94 8.94 8.92 9.03 7.62 8.80 

z=3.26 8.97 9.03 9.26 9.49 9.08 7.78 9.05 

z=4.02 9.02 9.39 9.57 9.60 9.22 7.82 9.26 

z=4.99 9.34 9.64 9.62 9.61 8.95 8.28 9.31 

Solids flux, [kg/m2s] 

Ug7Gs200 R1 R2 R3 R4 R5 R6 Average 

z=0.22 161.21 229.87 189.79 188.39 210.50 212.52 204.52 

z=0.61 130.27 134.06 162.96 185.85 226.43 231.04 184.91 

z=1.12 150.54 151.37 175.00 193.89 205.88 271.84 193.12 

z=1.63 166.14 156.35 170.74 181.19 174.29 238.22 179.10 

z=2.13 156.33 156.21 161.41 176.56 162.03 250.42 174.49 

z=2.64 148.15 176.43 173.87 174.75 205.97 221.30 187.38 

z=3.26 178.70 179.77 182.43 189.96 185.44 195.88 185.89 

z=4.02 205.77 201.47 193.43 195.52 169.78 167.23 187.04 

z=4.99 210.53 209.33 207.64 192.30 186.17 183.69 196.83 
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2.9   Ug = 7.0 m/s, Gs = 300 kg/m2s 

Solids holdup, [-] 

Ug7Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 0.0228 0.0255 0.0257 0.0243 0.0430 0.0328 0.0301 

z=0.61 0.0200 0.0232 0.0238 0.0264 0.0266 0.0271 0.0253 

z=1.12 0.0214 0.0246 0.0233 0.0204 0.0252 0.0268 0.0237 

z=1.63 0.0179 0.0178 0.0181 0.0193 0.0203 0.0233 0.0194 

z=2.13 0.0162 0.0161 0.0165 0.0174 0.0204 0.0227 0.0182 

z=2.64 0.0152 0.0151 0.0145 0.0174 0.0200 0.0246 0.0177 

z=3.26 0.0158 0.0146 0.0150 0.0160 0.0182 0.0241 0.0170 

z=4.02 0.0157 0.0145 0.0147 0.0166 0.0171 0.0240 0.0167 

z=4.99 0.0156 0.0146 0.0148 0.0155 0.0167 0.0241 0.0165 

Particle velocity, [m/s] 

Ug7Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 4.89 4.75 5.05 5.14 5.11 4.91 5.01 

z=0.61 5.79 5.57 5.85 5.99 6.41 6.91 6.08 

z=1.12 7.29 6.97 6.96 7.03 7.11 7.65 7.09 

z=1.63 7.99 8.15 8.43 8.77 9.23 8.25 8.61 

z=2.13 8.85 8.50 8.83 9.14 9.40 8.83 8.97 

z=2.64 9.87 9.70 9.75 10.06 10.11 8.98 9.80 

z=3.26 9.83 10.11 10.15 10.21 10.28 8.92 10.04 

z=4.02 9.96 9.93 10.15 10.28 10.42 9.29 10.10 

z=4.99 10.26 10.37 10.33 10.39 10.79 9.76 10.39 

Solids flux, [kg/m2s] 

Ug7Gs300 R1 R2 R3 R4 R5 R6 Average 

z=0.22 198.58 215.35 230.89 221.79 390.72 286.91 268.40 

z=0.61 206.56 230.23 247.87 281.37 303.54 333.88 274.75 

z=1.12 278.14 305.05 288.51 254.88 318.71 364.51 299.82 

z=1.63 253.85 258.23 270.99 300.82 333.53 342.72 297.83 

z=2.13 254.58 243.68 259.75 282.60 341.96 356.89 291.80 

z=2.64 267.03 260.99 252.04 310.83 359.05 392.78 307.78 

z=3.26 275.70 263.13 271.81 290.88 332.61 383.31 301.30 

z=4.02 278.47 256.02 264.95 303.48 316.49 396.46 299.09 

z=4.99 284.07 269.83 272.23 287.21 320.25 419.08 303.30 
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Appendix 3. Raw data of ozone concentration in the CFB riser 

3.1   Ug = 5.0 m/s 
Dimensionless ozone concentration, [-] 

Ug5Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.6044 0.5628 0.5448 0.4759 0.3032 0.1985 0.4374 

z=1.02 0.5738 0.5619 0.5057 0.4328 0.2894 0.2399 0.4199 

z=1.94 0.5433 0.5609 0.4666 0.3896 0.2756 0.2313 0.3966 

z=2.85 0.5367 0.5460 0.4143 0.3225 0.2587 0.2080 0.3595 

z=3.77 0.5428 0.5336 0.4338 0.2985 0.2520 0.1885 0.3525 

z=4.78 0.5489 0.4963 0.4533 0.2996 0.2578 0.1816 0.3506 

z=5.84 0.5056 0.4840 0.4516 0.2988 0.2543 0.1567 0.3440 

z=7.78 0.5119 0.4529 0.4663 0.2871 0.2624 0.1802 0.3434 

z=9.61 0.4924 0.4686 0.4406 0.2845 0.2410 0.1643 0.3331 

z=10.09 0.4447 0.4470 0.4400 0.2740 0.2490 0.1740 0.3293 

 
Dimensionless ozone concentration, [-] 

Ug5Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7402 0.6551 0.5652 0.4369 0.3070 0.1793 0.4498 

z=1.02 0.6611 0.5849 0.3850 0.3474 0.2286 0.2104 0.3591 

z=1.94 0.6537 0.5309 0.3502 0.3314 0.1742 0.1612 0.3188 

z=2.85 0.5479 0.4281 0.3589 0.2752 0.2312 0.1745 0.3027 

z=3.77 0.5431 0.3947 0.3395 0.2725 0.2282 0.1747 0.2904 

z=4.78 0.5011 0.3774 0.3211 0.2565 0.2260 0.1594 0.2768 

z=5.84 0.4484 0.3755 0.2214 0.2107 0.1894 0.1514 0.2331 

z=7.78 0.3547 0.3060 0.2783 0.2580 0.1649 0.1573 0.2393 

z=9.61 0.3407 0.3092 0.2601 0.1682 0.1667 0.1582 0.2156 

z=10.09 0.3560 0.3248 0.2456 0.1916 0.1519 0.1175 0.2124 

 
Dimensionless ozone concentration, [-] 

Ug5Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7010 0.5766 0.5030 0.3953 0.1017 0.0723 0.3516 

z=1.02 0.5431 0.4712 0.4582 0.3644 0.1955 0.0575 0.3331 

z=1.94 0.5067 0.4284 0.3006 0.2714 0.1361 0.0665 0.2540 

z=2.85 0.4639 0.3459 0.3000 0.2700 0.1167 0.0535 0.2317 

z=3.77 0.4250 0.3447 0.2890 0.2589 0.1181 0.0519 0.2265 

z=4.78 0.3746 0.3226 0.2715 0.2462 0.1083 0.0790 0.2162 

z=5.84 0.2961 0.2679 0.2519 0.2315 0.1016 0.0645 0.1944 

z=7.78 0.2630 0.2009 0.2349 0.2160 0.1142 0.0655 0.1769 

z=9.61 0.2443 0.2361 0.1901 0.1878 0.1034 0.0632 0.1639 

z=10.09 0.2234 0.2127 0.1773 0.1741 0.1197 0.0627 0.1569 
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Dimensionless ozone concentration, [-] 

Ug5Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.5353 0.4971 0.4336 0.3407 0.1567 0.0623 0.3186 

z=1.02 0.4682 0.4062 0.3950 0.3142 0.1685 0.0496 0.2871 

z=1.94 0.4368 0.3693 0.2592 0.2340 0.1174 0.0573 0.2189 

z=2.85 0.3999 0.2982 0.2586 0.2328 0.1006 0.0461 0.1997 

z=3.77 0.3664 0.2971 0.2491 0.2232 0.0673 0.0447 0.1875 

z=4.78 0.3229 0.2781 0.2341 0.2122 0.0589 0.0336 0.1745 

z=5.84 0.2553 0.2309 0.2172 0.1996 0.0531 0.0211 0.1558 

z=7.78 0.2267 0.1732 0.2025 0.1862 0.0640 0.0220 0.1407 

z=9.61 0.2106 0.2035 0.1639 0.1619 0.0547 0.0200 0.1295 

z=10.09 0.1926 0.1834 0.1529 0.1501 0.0342 0.0195 0.1157 

 
 
3.2   Ug = 7.0 m/s 

Dimensionless ozone concentration, [-] 

Ug7Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7443 0.6392 0.5804 0.5894 0.5402 0.4336 0.5674 

z=1.02 0.6112 0.6121 0.5609 0.5571 0.4859 0.4019 0.5343 

z=1.94 0.6009 0.5907 0.5256 0.4147 0.3617 0.3270 0.4527 

z=2.85 0.6193 0.5801 0.5054 0.4143 0.3666 0.3359 0.4479 

z=3.77 0.6101 0.5703 0.4852 0.3842 0.3490 0.3163 0.4281 

z=4.78 0.6009 0.5907 0.4953 0.4147 0.3617 0.3270 0.4455 

z=5.84 0.5994 0.5634 0.4899 0.3867 0.3715 0.3091 0.4327 

z=7.78 0.5906 0.5426 0.5021 0.3616 0.3350 0.3141 0.4182 

z=9.61 0.5582 0.5584 0.5115 0.3281 0.3037 0.3072 0.4080 

z=10.09 0.5315 0.5423 0.5106 0.3161 0.2971 0.2893 0.3984 

 

Dimensionless ozone concentration, [-] 

Ug7Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7141 0.7189 0.6238 0.5578 0.4348 0.3138 0.5480 

z=1.02 0.6813 0.6653 0.5593 0.4694 0.3275 0.2761 0.4737 

z=1.94 0.6814 0.6769 0.5232 0.4737 0.2622 0.1839 0.4428 

z=2.85 0.6365 0.5761 0.5056 0.3893 0.2615 0.1814 0.3996 

z=3.77 0.6027 0.5703 0.4299 0.3892 0.2533 0.1743 0.3778 

z=4.78 0.5807 0.5664 0.4253 0.3876 0.2423 0.1499 0.3702 

z=5.84 0.4881 0.4786 0.4205 0.3656 0.2413 0.1420 0.3460 

z=7.78 0.4684 0.4719 0.4148 0.3399 0.2421 0.1269 0.3359 

z=9.61 0.4615 0.4288 0.4045 0.3383 0.2188 0.1053 0.3171 

z=10.09 0.4274 0.4021 0.3673 0.3180 0.2062 0.1086 0.2960 
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Dimensionless ozone concentration, [-] 

Ug7Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.6779 0.6152 0.5791 0.5854 0.4203 0.4403 0.5354 

z=1.02 0.6345 0.6087 0.5300 0.3618 0.3141 0.3106 0.4325 

z=1.94 0.5663 0.5826 0.3954 0.3055 0.2972 0.3039 0.3781 

z=2.85 0.5085 0.4038 0.4119 0.2985 0.2948 0.2678 0.3412 

z=3.77 0.5085 0.4038 0.3664 0.2985 0.2796 0.2526 0.3252 

z=4.78 0.4585 0.3930 0.3506 0.3154 0.2397 0.2399 0.3127 

z=5.84 0.5083 0.3505 0.3528 0.3046 0.2201 0.1919 0.2926 

z=7.78 0.4261 0.3916 0.3449 0.3096 0.2011 0.1739 0.2934 

z=9.61 0.4079 0.3585 0.3216 0.2623 0.2107 0.1539 0.2705 

z=10.09 0.3908 0.3518 0.2842 0.2510 0.1867 0.1613 0.2532 

 

Dimensionless ozone concentration, [-] 

Ug7Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7205 0.7221 0.6099 0.5402 0.3848 0.2077 0.5176 

z=1.02 0.6459 0.6132 0.5055 0.4050 0.3630 0.1916 0.4343 

z=1.94 0.5410 0.5579 0.4324 0.3386 0.2722 0.1434 0.3651 

z=2.85 0.5102 0.4570 0.3868 0.2754 0.2393 0.1376 0.3124 

z=3.77 0.4458 0.4090 0.3023 0.2515 0.2008 0.1252 0.2676 

z=4.78 0.4148 0.3610 0.3178 0.2442 0.1955 0.1296 0.2597 

z=5.84 0.4021 0.3461 0.2679 0.2205 0.1763 0.1264 0.2349 

z=7.78 0.3842 0.3183 0.2505 0.2183 0.1713 0.1279 0.2240 

z=9.61 0.3842 0.2919 0.2616 0.2100 0.1704 0.1320 0.2199 

z=10.09 0.2868 0.2631 0.2571 0.1738 0.1788 0.1237 0.2060 

 

Dimensionless ozone concentration, [-] 

Ug7Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7495 0.6732 0.5816 0.3686 0.3059 0.1335 0.4360 

z=1.02 0.6521 0.5400 0.4561 0.2943 0.2066 0.0645 0.3332 

z=1.94 0.6000 0.4752 0.3337 0.1981 0.1659 0.1179 0.2669 

z=2.85 0.4964 0.3871 0.2716 0.1870 0.1516 0.1282 0.2307 

z=3.77 0.3700 0.3346 0.2039 0.1993 0.1438 0.1096 0.2034 

z=4.78 0.3688 0.2901 0.2046 0.1825 0.1463 0.1149 0.1923 

z=5.84 0.3522 0.2764 0.2053 0.1656 0.1487 0.1201 0.1872 

z=7.78 0.3377 0.2670 0.1916 0.1669 0.1412 0.1095 0.1795 

z=9.61 0.3136 0.2449 0.1745 0.1518 0.1288 0.0905 0.1627 

z=10.09 0.2889 0.2062 0.1518 0.1443 0.1381 0.0783 0.1488 
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Dimensionless ozone concentration, [-] 

Ug7Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.5945 0.5597 0.4628 0.3464 0.3059 0.1302 0.3805 

z=1.02 0.4888 0.4388 0.3963 0.3063 0.1988 0.1075 0.3056 

z=1.94 0.4450 0.3703 0.2960 0.2510 0.1565 0.0886 0.2443 

z=2.85 0.4111 0.3165 0.2617 0.2146 0.1376 0.1049 0.2151 

z=3.77 0.4197 0.2513 0.1983 0.1856 0.1412 0.0994 0.1811 

z=4.78 0.3882 0.2262 0.1849 0.1667 0.1347 0.0940 0.1667 

z=5.84 0.3851 0.2092 0.1776 0.1316 0.1272 0.0752 0.1498 

z=7.78 0.3268 0.1682 0.1421 0.1203 0.1015 0.0703 0.1246 

z=9.61 0.3269 0.2167 0.1011 0.0995 0.0868 0.0825 0.1175 

z=10.09 0.3232 0.1826 0.1128 0.0919 0.0855 0.0702 0.1103 

 
 
3.3   Ug = 9.0 m/s 

Dimensionless ozone concentration, [-] 

Ug9Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7979 0.7446 0.7464 0.7567 0.7749 0.6960 0.7488 

z=1.02 0.7874 0.7959 0.7717 0.7019 0.6327 0.6133 0.7106 

z=1.94 0.7874 0.7548 0.7495 0.6294 0.6077 0.6008 0.6738 

z=2.85 0.7633 0.7442 0.7309 0.6190 0.5688 0.5411 0.6492 

z=3.77 0.7468 0.7301 0.7102 0.6023 0.5704 0.5388 0.6379 

z=4.78 0.7303 0.7284 0.6646 0.5857 0.5596 0.4865 0.6143 

z=5.84 0.7214 0.7121 0.6730 0.5752 0.5485 0.4777 0.6073 

z=7.78 0.7048 0.6755 0.6669 0.5636 0.5501 0.4796 0.5967 

z=9.61 0.6783 0.6627 0.6734 0.5731 0.5243 0.4693 0.5910 

z=10.09 0.6743 0.6562 0.6377 0.5636 0.5126 0.4401 0.5730 

 

Dimensionless ozone concentration, [-] 

Ug9Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.8299 0.8426 0.7893 0.7661 0.5917 0.4527 0.7101 

z=1.02 0.8052 0.8057 0.7691 0.6789 0.4806 0.4338 0.6512 

z=1.94 0.7723 0.7874 0.7744 0.6679 0.5162 0.4414 0.6554 

z=2.85 0.7570 0.7482 0.7035 0.6481 0.4937 0.4313 0.6202 

z=3.77 0.7501 0.7109 0.6991 0.5274 0.4519 0.4244 0.5744 

z=4.78 0.7025 0.6696 0.6687 0.5279 0.4517 0.4285 0.5598 

z=5.84 0.6899 0.6137 0.5850 0.5122 0.4354 0.4145 0.5202 

z=7.78 0.6740 0.6163 0.5862 0.5180 0.4355 0.4141 0.5223 

z=9.61 0.6018 0.5438 0.5105 0.5018 0.4244 0.4141 0.4842 

z=10.09 0.5577 0.5363 0.5007 0.4796 0.4219 0.4218 0.4757 
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Dimensionless ozone concentration, [-] 

Ug9Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.8429 0.8461 0.8020 0.7600 0.6364 0.4832 0.7261 

z=1.02 0.7840 0.7192 0.6498 0.5830 0.5318 0.4287 0.5953 

z=1.94 0.6805 0.6669 0.5740 0.5265 0.4761 0.4393 0.5432 

z=2.85 0.5842 0.5659 0.4977 0.4973 0.4553 0.4073 0.4905 

z=3.77 0.5770 0.5619 0.4771 0.4490 0.3993 0.3552 0.4552 

z=4.78 0.5014 0.5039 0.4253 0.4815 0.4179 0.3875 0.4471 

z=5.84 0.4713 0.4841 0.4056 0.4656 0.3806 0.3678 0.4242 

z=7.78 0.5806 0.5626 0.4097 0.3783 0.3511 0.3133 0.4074 

z=9.61 0.5841 0.5570 0.4967 0.2939 0.2828 0.2697 0.3874 

z=10.09 0.5710 0.5548 0.4551 0.3103 0.2799 0.2551 0.3784 

 

Dimensionless ozone concentration, [-] 

Ug9Gs400 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7496 0.7352 0.6885 0.6024 0.5264 0.3912 0.6064 

z=1.02 0.6872 0.6620 0.5751 0.5302 0.4719 0.2939 0.5252 

z=1.94 0.6284 0.6079 0.5302 0.4746 0.3833 0.3200 0.4747 

z=2.85 0.6056 0.5653 0.5054 0.3891 0.3358 0.2813 0.4260 

z=3.77 0.5305 0.5067 0.4504 0.3548 0.3074 0.2198 0.3801 

z=4.78 0.5191 0.4885 0.4359 0.3395 0.2791 0.2168 0.3630 

z=5.84 0.5111 0.4809 0.4035 0.3162 0.2824 0.1980 0.3471 

z=7.78 0.4763 0.4504 0.3849 0.3048 0.2486 0.1924 0.3260 

z=9.61 0.4656 0.4365 0.3588 0.2937 0.2309 0.1867 0.3099 

z=10.09 0.4341 0.4225 0.3340 0.2939 0.2025 0.1765 0.2937 

 

Dimensionless ozone concentration, [-] 

Ug9Gs600 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7496 0.7242 0.6387 0.5412 0.4067 0.2828 0.5388 

z=1.02 0.7071 0.6640 0.5731 0.4379 0.3234 0.2503 0.4656 

z=1.94 0.6631 0.5978 0.4967 0.4026 0.2866 0.1931 0.4117 

z=2.85 0.6404 0.5411 0.4418 0.3361 0.2217 0.1900 0.3577 

z=3.77 0.5707 0.4500 0.3962 0.2690 0.2109 0.1753 0.3099 

z=4.78 0.5778 0.4522 0.3282 0.2497 0.1969 0.1683 0.2858 

z=5.84 0.5503 0.4382 0.2891 0.2327 0.1980 0.1737 0.2709 

z=7.78 0.4882 0.4523 0.2526 0.2241 0.1926 0.1899 0.2636 

z=9.61 0.4745 0.4646 0.2402 0.1757 0.1895 0.1782 0.2500 

z=10.09 0.3982 0.4020 0.1904 0.1522 0.2614 0.1539 0.2341 
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Dimensionless ozone concentration, [-] 

Ug9Gs700 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.6838 0.6270 0.5855 0.4448 0.4107 0.2993 0.4885 

z=1.02 0.6763 0.5818 0.5577 0.3373 0.2898 0.1725 0.4066 

z=1.94 0.6028 0.5519 0.4066 0.2655 0.2210 0.1551 0.3311 

z=2.85 0.5576 0.5119 0.3566 0.2626 0.2009 0.1567 0.3065 

z=3.77 0.5046 0.4355 0.3088 0.2544 0.2173 0.1494 0.2814 

z=4.78 0.4479 0.4046 0.2643 0.2326 0.1874 0.1122 0.2488 

z=5.84 0.4092 0.3690 0.2232 0.2151 0.1846 0.1051 0.2268 

z=7.78 0.3705 0.3350 0.2149 0.1835 0.1607 0.1080 0.2061 

z=9.61 0.3728 0.2896 0.2098 0.1502 0.1385 0.1080 0.1836 

z=10.09 0.3371 0.2572 0.2065 0.1113 0.1040 0.0619 0.1545 

 

Dimensionless ozone concentration, [-] 

Ug9Gs800 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.57 0.7931 0.7000 0.5705 0.4445 0.3252 0.1491 0.4619 

z=1.02 0.7606 0.6219 0.5270 0.3094 0.1928 0.1856 0.3804 

z=1.94 0.6752 0.5081 0.3891 0.2645 0.1494 0.0735 0.2926 

z=2.85 0.5931 0.4159 0.3166 0.1697 0.1181 0.0933 0.2314 

z=3.77 0.5292 0.3339 0.2729 0.1749 0.1149 0.0894 0.2052 

z=4.78 0.4427 0.2785 0.2368 0.0796 0.0833 0.0896 0.1572 

z=5.84 0.3873 0.2637 0.1942 0.1126 0.0606 0.0992 0.1478 

z=7.78 0.3598 0.2611 0.1514 0.1171 0.0646 0.0781 0.1365 

z=9.61 0.2762 0.2172 0.1381 0.1251 0.0674 0.0792 0.1275 

z=10.09 0.1800 0.1507 0.1411 0.1130 0.0621 0.0454 0.1075 
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Appendix 4. Raw data of ozone concentration in the CFB downer 

 
4.1   Ug = 3.0 m/s 

Dimensionless ozone concentration, [-] 

Ug3Gs100 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.22 0.5973 0.5658 0.4834 0.4848 0.3704 0.3490 0.4583 

z=0.61 0.5869 0.5478 0.5161 0.4765 0.3105 0.2971 0.4411 

z=1.12 0.4923 0.4869 0.4666 0.2954 0.2874 0.2729 0.3685 

z=1.63 0.4594 0.4302 0.4067 0.2947 0.2466 0.2406 0.3302 

z=2.13 0.4500 0.4244 0.3978 0.2931 0.2562 0.2424 0.3290 

z=2.64 0.4273 0.4273 0.3303 0.2555 0.2578 0.2149 0.3020 

z=3.26 0.3921 0.3698 0.3161 0.2809 0.2350 0.1920 0.2855 

z=4.02 0.3664 0.3495 0.2704 0.2667 0.2526 0.1819 0.2703 

z=4.99 0.3364 0.3608 0.2790 0.2509 0.2479 0.1815 0.2699 

 

Dimensionless ozone concentration, [-] 

Ug3Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.22 0.5167 0.4980 0.5015 0.4758 0.3850 0.3362 0.4493 

z=0.61 0.4374 0.3854 0.3307 0.3268 0.2964 0.2788 0.3265 

z=1.12 0.3884 0.3506 0.2963 0.2619 0.2578 0.2505 0.2848 

z=1.63 0.3499 0.2985 0.2563 0.2241 0.1764 0.1653 0.2284 

z=2.13 0.2772 0.2570 0.2246 0.1884 0.1564 0.1291 0.1960 

z=2.64 0.2639 0.2321 0.2107 0.1781 0.1412 0.1123 0.1802 

z=3.26 0.2214 0.2177 0.2100 0.1556 0.1509 0.1187 0.1751 

z=4.02 0.2240 0.2093 0.1893 0.1583 0.1429 0.1165 0.1671 

z=4.99 0.2098 0.1953 0.1790 0.1434 0.1242 0.1025 0.1527 

 

Dimensionless ozone concentration, [-] 

Ug3Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.22 0.5050 0.4946 0.4650 0.4305 0.3856 0.2965 0.4251 

z=0.61 0.4468 0.3910 0.3082 0.3798 0.2732 0.2590 0.3267 

z=1.12 0.3381 0.2711 0.2370 0.1944 0.1523 0.1298 0.2022 

z=1.63 0.2537 0.2318 0.1970 0.1597 0.1318 0.1066 0.1699 

z=2.13 0.2326 0.2017 0.1586 0.1398 0.1120 0.0999 0.1452 

z=2.64 0.1876 0.1620 0.1380 0.1141 0.1030 0.0808 0.1225 

z=3.26 0.1932 0.1501 0.1250 0.1140 0.0903 0.0700 0.1130 

z=4.02 0.1591 0.1391 0.1072 0.0991 0.0740 0.0524 0.0976 

z=4.99 0.1336 0.1318 0.0984 0.0923 0.0656 0.0505 0.0904 
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4.2   Ug = 5.0 m/s 

Dimensionless ozone concentration, [-] 

Ug5Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.22 0.6867 0.6564 0.6206 0.5479 0.5025 0.4619 0.5657 

z=0.61 0.6861 0.6425 0.5737 0.5201 0.5054 0.3887 0.5376 

z=1.12 0.6462 0.5904 0.5506 0.4971 0.4391 0.3464 0.4969 

z=1.63 0.6400 0.5348 0.5094 0.4617 0.4173 0.3286 0.4614 

z=2.13 0.5946 0.5295 0.4440 0.4291 0.3815 0.3308 0.4296 

z=2.64 0.5745 0.5001 0.4293 0.4022 0.3559 0.3118 0.4064 

z=3.26 0.5359 0.4861 0.4275 0.3894 0.3412 0.2977 0.3954 

z=4.02 0.5208 0.4843 0.4166 0.3750 0.3074 0.2869 0.3803 

z=4.99 0.5086 0.4661 0.3939 0.3500 0.3058 0.2721 0.3636 

 

Dimensionless ozone concentration, [-] 

Ug5Gs300 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.22 0.5517 0.5516 0.5816 0.5516 0.4815 0.4546 0.5315 

z=0.61 0.5498 0.5368 0.5073 0.4757 0.4362 0.3682 0.4734 

z=1.12 0.5207 0.5028 0.4780 0.4570 0.3893 0.3372 0.4415 

z=1.63 0.5053 0.4761 0.4285 0.3975 0.3594 0.3232 0.4027 

z=2.13 0.4633 0.4305 0.3984 0.3587 0.3326 0.2920 0.3682 

z=2.64 0.4416 0.4087 0.3710 0.3545 0.3140 0.2773 0.3506 

z=3.26 0.4191 0.3972 0.3642 0.3201 0.2854 0.2505 0.3294 

z=4.02 0.3828 0.3554 0.3384 0.3024 0.2788 0.2557 0.3103 

z=4.99 0.3878 0.3426 0.3372 0.3319 0.2673 0.2573 0.3119 

 
 
4.3   Ug = 7.0 m/s 

Dimensionless ozone concentration, [-] 

Ug7Gs200 r/R=0.0 r/R=0.316 r/R=0.548 r/R=0.707 r/R=0.837 r/R=0.950 Average 

z=0.22 0.8476 0.8270 0.7881 0.7738 0.8024 0.7738 0.7939 

z=0.61 0.8284 0.8192 0.7462 0.7079 0.6378 0.6042 0.7104 

z=1.12 0.7774 0.7919 0.7031 0.6786 0.6338 0.6307 0.6905 

z=1.63 0.7211 0.7045 0.6915 0.6448 0.6242 0.6174 0.6595 

z=2.13 0.7011 0.6848 0.6590 0.6332 0.6069 0.6011 0.6396 

z=2.64 0.6789 0.6567 0.6363 0.6172 0.6035 0.5894 0.6230 

z=3.26 0.6625 0.6478 0.6292 0.6185 0.5879 0.5721 0.6143 

z=4.02 0.6492 0.6388 0.6221 0.6102 0.5792 0.5478 0.6042 

z=4.99 0.6174 0.6286 0.5950 0.5924 0.5645 0.5440 0.5880 
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