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Abstract 

Hydrogen has been regarded as a promising candidate to replace conventional fossil 

fuels, and thus attracted enormous research efforts. However, hydrogen storage remains to 

be a big challenge to its practical applications. Consequently, the investigation of suitable 

hydrogen storage materials has become a highly active research field. Here, we report the 

first high pressure studies of three promising hydrogen storage materials, N(CH3)3BH3, 

NH(CH3)2BH3 and NaNH2BH3, by Raman and IR spectroscopy. 

First, N(CH3)3BH3 was studied at room temperature and pressures up to 30 GPa. Under 

ambient conditions, N(CH3)3BH3 forms rhombohedral crystals. During compression, two 

phases transitions were observed, which was evidenced by rich profile changes in Raman 

and IR spectra as well as by examining the pressure dependence of Raman and IR modes. 

Raman and IR spectra collectively revealed consistent structural information for 

N(CH3)3BH3. The pressure-induced phase transitions were reversible, indicated by the 

recovered Raman and IR modes upon decompression.  

Similarly, the other two hydrogen storage materials, NH(CH3)2BH3 and NaNH2BH3 

were investigated under high pressures up to 20 and 14 GPa, respectively. NH(CH3)2BH3 

was found to experience two phase transitions from the parent monoclinic structure. An 

interesting red shift and subsequent blue shift cycle of the N-H stretching mode was also 

observed. The decompression experiments suggested that the pressure-induced phase 

transitions were reversible. The changes in Raman and IR spectra under pressure together 
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with factor group analysis provided us a chance to examine the possible high-pressure 

structure. On the other hand, NaNH2BH3, which crystalizes into an orthorhombic structure 

at ambient pressure, underwent two phase transitions during the compression process. The 

pressure-induced phase transitions turned out to be reversible upon decompression. 

Moreover, the bonding behaviors of NaNH2BH3 were found to be different from NH3BH3, 

which has implications for improved hydrogen storage performance.  
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Chapter 1. Introduction 

1.1 Hydrogen energy and hydrogen storage materials 

 Hydrogen energy 1.1.1

Global warming and energy crisis are among the tremendous challenges that threaten the 

future of human beings. In order to tackle these challenges, a clean and highly efficient 

energy to replace the current large-scale-consumed fossil fuels is in urgent demand. In 

recent years, intensive research efforts have been devoted to the investigation of alternative 

energy sources, i.e. solar energy, nuclear energy, wind energy and hydrogen energy.1,2  

Unlike the conventional fossil fuels, the only combustion product of hydrogen is water 

without any emission of carbon dioxide. Moreover, hydrogen has excellent high energy 

density with per mass content of 143 MJ/kg, which is three times as high as liquid 

hydrocarbon based fuels.3 Also, researchers pointed out the hydrogen combusted in the 

same way as gasoline or natural gas in an internal combustion engine can provide 8% 

higher efficiency. Such outstanding properties make hydrogen one of the most promising 

candidates for both portable and stationary applications, and thus have attracted enormous 

research efforts.4-7  

Hydrogen is the simplest and most abundant element in universe. It is colorless, odorless, 

and most importantly, non-toxic. Key properties of hydrogen are summarized in Table 1.1. 
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Table 1.1 Properties of hydrogen 

Property Value 

Atomic weight 1.008 

Color, odor Colorless, odorless 

Toxicity None 

Energy density 143 MJ/kg 

Density  Gas: 0.089 g/L, liquid: 0.07 g/cm3 

Melting and boiling point -259.14 °C, -252.87 °C 

  

 Hydrogen storage materials 1.1.2

To achieve the goal of widespread applications of hydrogen as the primary energy 

sources, several obstacles still remain to be overcome, such as the cost, regeneration and 

storage. Among these prominent issues, hydrogen storage is considered to be a key 

problem to be solved. To guide the research endeavors devoted to hydrogen storage, the 

U.S. Department of Energy (DOE) has set an ambitious target, that a gravimetric density of 

9 wt% and a volumetric density of 82 g H2·L-1 should be fulfilled.8 

Currently, there are two major strategies for hydrogen storage: physical storage and 

chemical storage.9 In physical storage, no covalent bonds or ionic interactions are formed 

between hydrogen and the host compound. In the category of physical storage, the high 

pressure tank technique is the most conventional and commercialized method,3,10 adopted 
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by most prototypes of fuel-cell-powered cars.9 Another technique focuses on porous 

materials, such as metal-organic frameworks (MOFs), zeolite and porous carbon. In such 

cases, hydrogen is physisorbed on the surface of pores via weak van der Waals forces, 

and thus the hydrogen storage capacity largely depends on the surface area and pore 

volume.5  

On the other hand, for chemical storage, hydrogen is bonded to the storage medium 

through chemical bonds. Metal hydrides (e.g., MgH2), complex hydrides (e.g., NaAlH4) 

and amine-borane adducts (e.g., NH3BH3) belong to this class. In contrast to the physical 

hydrogen storage materials, the dehydrogenation of chemical storage materials requires 

high temperature owing to the strong interactions between hydrogen and the host 

compound. This is counted as a drawback for use as a fuel. However, the chemical 

hydrogen storage materials are still considered to be the ones closest to practical 

large-scale application due to their high hydrogen content.9 Recently, many breakthroughs 

have been achieved in the search for a suitable catalyst to lower the dehydrogenation 

temperature.11-14 

 Ammonia-Borane and its derivatives for hydrogen storage 1.1.3

Among the various chemical hydrogen storage materials, ammonia borane is 

undoubtedly in the spotlight of this hot research field. Ammonia borane has several 

outstanding properties as a promising hydrogen storage material. First, it possesses a high 



4 
 

 
 

hydrogen content of 19.6 wt%, far exceeding the target set by the U.S Department of 

Energy. In addition, it is rather stable under ambient condition, neither flammable nor 

explosive.15 The thermal dehydrogenation of ammonia borane includes three steps and as 

follows16,17:  

(1)  NH3BH3 (s) → [NH2BH2] (s) + H2 (g)    100-120 °C 

(2)  [NH2BH2] (s) → [NHBH] (s) + H2 (g)      150-200 °C 

(3)  [NHBH] (s) → BN (s) + H2 (g)             > 500 °C 

Despite the aforementioned advantages, one drawback, however, is that toxic borazine is 

released during the decomposition process, which may poison the fuel cell. Another issue 

with NH3BH3 is its high decomposition temperature. These two major issues are 

considered as obstacles to practical use. For this reason, intense efforts have been devoted 

to lowering the decomposition temperature and to limiting the release of borazine.  

Many approaches have been developed, such as incorporating ammonia borane into 

scaffolds, the use of iridium or base-metal catalysts, carbon cryogel and ionic liquid 

medium.13,18-21 One adopted strategy, chemical compositional modification, turns out to be 

an effective way. More and more research effort has been diverted to the derivatives of 

ammonia borane (e.g., dimethylamine borane, sodium amidoborane, lithium amidoborane), 

in the hope of finding an alternative storage materials with better performance.15,22-27 For 

example, NaNH2BH3 releases ~7.4 wt% hydrogen at around 91 °C, obviously lower than 

the onset dehydrogenation temperature of NH3BH3 at 108 °C.28 Also, there is no borazine 

emission during the decomposition process.29    
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Recently, the high pressure technique has been employed in developing novel hydrogen 

storage materials and many promising achievements have been reached. In the following 

section, the high pressure phenomenon will be discussed and more technical details can be 

found in Chapter 2.  

1.2 High pressure effect 

Pressure, as one of the three fundamental thermodynamic parameters, has a vital 

influence on the stability and the reactivity of chemical system. Pressure has a rather broad 

range, spanning over 60 orders of magnitude in the universe, from 10-32 Pascal in 

intergalactic space to 1032 Pascal in the center of a neutron star.  

Nowadays, high pressure research in the laboratory is facilitated by anvil technology, 

which was originally developed by Nobel laureate Percy Bridgman. Thanks to the 

contribution of Percy Bridgman, high pressure research stepped into gigapascal (GPa) 

region. Now, the highest static pressure achieved in the laboratory has exceeded 100 GPa 

scale (1 GPa = 103 MPa = 109 Pa ≈ 104 atm), comparable to the pressure at the Earth’s core 

(330-360 GPa).30,31 

High pressure can drive materials to a lower volume state, efficiently shortening the 

inter-atomic and intra-atomic distance. Consequently, a number of interesting phenomena 

can occur, such as phase transitions, metallization, polymerization, ionization, 

amorphization and so on.32 High pressure has been proved to be an effective means to tune 
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the electronic, optical, magnetic and mechanical properties for novel applications.2,33 In 

fact, modern high pressure studies have demonstrated extraordinary breakthroughs in the 

discovery of superhard materials and superconductors. For example, cubic-BN synthesized 

under high pressure conditions has a comparable hardness to diamond.34 For another 

example, superconducting behavior has been observed in the ionic salt CsI at high 

pressure.35 More recently, high pressure scientists have expanded their research horizons 

on functional materials, including hydrogen storage materials and high energy density 

materials, which has become a vibrant research area. 36-41 

1.3 High pressure studies of hydrogen storage materials 

Supplementary to the traditional methods, recently, high pressure technique has been 

demonstrated as it a simple but effective as well as promising approach for developing 

potential hydrogen storage materials. The structure, stability and reversibility of hydrogen 

storage materials have fundamental influences on the storage performance. Under high 

pressure condition, the structure can be altered, and even unprecedented phases and 

complexes may be obtained, which has profound implications on improved hydrogen 

storage performance. Moreover, the high pressure study can provide a unique chance to 

reveal the atomic, electronic and structural information of potential storage materials, 

which in turn offers guidance for future design. For these reasons, numerous potential 

hydrogen storage materials have been intensively investigated under high pressure. A 
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detailed review article covering the current high pressure research progress on hydrogen 

storage materials is available.42 

The hydrogen-rich materials studied by high pressure techniques can be classified into 

four groups: (1) simple hydrides (e.g., LiH, MgH2, AlH3), (2) complex hydrides (LiAlH4, 

NaBH4) (3) chemical hydrides (e.g., B2H6, NH3BH3) (4) hydrogen containing complexes 

(CH4-H2, H2O-H2, NH3BH3-H2). Various methods have been adopted to monitor the high 

pressure behavior of potential hydrogen storage materials, such as Raman, IR spectroscopy, 

X-ray diffraction. Previous high pressure studies of different hydrides are summarized in 

Table 1.2.42 

For instance, as a member of the simple hydride family, MgH2 has received intensive 

investigations under high pressure, and was found to exhibit various phases in the high 

pressure region. At about 2 GPa, MgH2 experienced a dramatic transition from α-MgH2 to 

β-MgH2.43 In a subsequent experiment, a γ-MgH2 was confirmed at 3.8 GPa.44 More 

recently, the phase diagram of MgH2 was further updated through theoretical calculation.45 

Both experimental and theoretical research suggests that MgH2 has a strong ionic character. 

Thus, it can be predicted that weakening the ionic bond by pressure modification is 

possible to improve the dehydrogenation process. 

As another example, with a gravimetric hydrogen content of 10.5 wt%, LiAlH4 is a 

representative chemical in the class of complex hydrides. Under ambient conditions, 

LiAlH4 crystalizes into α-phase with a monoclinic structure.46 A slow and reversible phase 

transition from α to β was observed by Raman spectroscopy between 2.2 and 3.5 GPa.47 
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Later, Chellappa et al. found that β-LiAlH4 has a distorted [AlH4
-
] tetrahedron with 

softened Al-H stretching mode.48 The Al-H bond in AlH4
- is believed to have important 

effects on the hydrogen release process. The weakening of the Al-H bond may have 

profound implications for the storage performance. 

With excellent advantages such as high hydrogen capacity and stability, ammonia 

borane (NH3BH3) has been examined and reviewed extensively.49-52 In recent years, it has 

attracted much attention from high pressure scientists. Under ambient conditions, NH3BH3 

crystalizes into a tetragonal structure with the space group I4mm.53 Two phase transitions 

were monitored upon compression to 4 GPa in early spectroscopy studies.54 In the 

subsequent researches conducted by Lin et al.55 and Xie et al.56 respectively, similar new 

phase transitions were observed. Later, through X-ray diffraction and theoretical 

calculations, a new orthorhombic structure was established at 1.5 GPa.57,58 More recently, 

Liu and Song further extended the phase diagram of NH3BH3 in the temperature range of 

80 to 350 K, and the pressure range from ambient to 15 GPa aided by in situ 

low-temperature Raman spectroscopy.40 At the same time, a new phase was reported by 

Lin et al. at above 12.9 GPa with the help of synchrotron X-ray powder diffraction as well 

as density functional calculations.59  

In the case of hydrogen-containing complexes, hydrogen is enclosed as guest molecules 

in the framework constructed by the host molecules (e.g., CH4, SiH4 and NH3BH3) under 

high pressures.60 Most of the host molecules are already hydrogen-rich compounds. 

Encapsulating hydrogen into the hydrogen-rich system with the aid of high pressure will 
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remarkably improve the hydrogen content, which is desirable for hydrogen storage. This 

approach is originated from the pioneering work of Vos et al., who first reported the 

H2O-H2 system under high pressure.61 Subsequently, other hydrogen containing complexes, 

such as CH4-H2 and NH3BH3-H2 were reported. Multiple molecular compounds, CH4(H2)2, 

(CH4)2H2, CH4(H2)4 and CH4H2 were observed at pressures up to 10 GPa.62 In 2009, a 

novel complex, NH3BH3(H2)x (x=1.3-2) with 30 wt% H2, was obtained at above 6.2 GPa.41 
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Table 1.2 Summary of previous high pressure studies on hydrogen storage materials and systemsa 

Materials Hydrogen 
content Structural information Pressure   

rangeb(GPa) 
Temperature rangeb 

(K) 
Simple hydride     
LiH  12.6% 𝐹𝐹3�𝑚  250 room 
NaH 4.2% 𝐹𝐹3�𝑚 (𝐵1); 𝑃𝑃3�𝑚 (𝐵2) 54 room 

MgH2 7.6% P42/mnm (α); 𝑃𝑃3� (𝛽); Pbcn (γ);  
Pbca (δ) 16 1070 

CaH2 4.8% Pnma; P63/mmc 42 room 

AlH3 10.0% 𝑅3�𝑐 (α) ; Cmcm(αˊ); 𝐹𝐹3�𝑚 (β) ; Pnnm (γ); 
P2 (α-II); 𝑃𝑃3�𝑛 (α-III)  164 4 

Complex hydride     
LiAlH4 10.5% P21/c (α); I2/b (β) 7 773 
NaAlH4 7.4% I41/a (α); P21/c (β) 27 room 
LiBH4 18.4% Pnma; P63mc; Ama2; 𝐹𝐹3�𝑚  10 500 
NaBH4 10.6% 𝐹𝐹3�𝑚 (α); 𝑃4�21c (β); Pnma (γ)    30 80-673 
Ca(BH4)2 11.5% Fddd(α); 𝑃4�(β); Pbca (γ); 𝐼4�2𝑑 (αˊ) 10 873 
LiNH2 8.8% 𝐼4� (α); P21 (β) 28 room 
NaNH2 5.2% Fddd 16 room 
Chemical hydride     
B2H6 22% P21/n (β) 50 room 
NH3BH3 19% I4mm; Pmn21; Cmc21; P21 65 15-350 
H2 containing complex     
CH4-H2 50% CH4(H2)2; (CH4)2H2; CH4(H2)4; CH4H2   60 10 
H2O-H2 20% C1;C2; sII 80 10-450 
NH3BH3-H2 29% NH3BH3(H2)x x=1.3-2 60 413 
Ar-H2&Xe-H2 9%&9.7% Ar(H2)2-P63/mmc; Xe(H2)7-R3 200&255 room 
a This table is adapted from reference 42  
b For pressure, the range goes from ambient to the given value; for temperature, “room” refers to 298 K, the value refers to either the maximum or 
the minimum or to a range of temperature under which the materials were investigated under simultaneous high pressure conditions. 
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1.4 Motivation and thesis structure 

As is mentioned above, although ammonia borane is regarded as a promising hydrogen 

storage material, there are still several prominent problems such as high onset 

dehydrogenation temperature and release of borazine, which limits its practical 

applications. Thus, the researchers have embarked on investigations of ammonia borane 

derivatives in the hope of finding a more suitable hydrogen storage material, and gaining 

enlightenments for the design of novel materials in the future. Many ammonia borane 

derivatives, such as LiNH2BH3, NaNH2BH3, NH(CH3)2BH3 and N(CH3)3BH3, have 

received extensive investigations under ambient conditions, with respect to structure, 

stability and dehydrogenation mechanism. However, few high pressure studies of 

ammonia borane derivatives have been reported. In my project, three compounds, 

NH(CH3)2BH3, N(CH3)3BH3 and NaNH2BH3, were chosen to be examined for high 

pressure studies of their structures and properties by Raman and IR spectroscopy, which 

may extend our knowledge and shed light on the future design. Moreover, this project can 

contribute to finding a novel phase that has profound implications for improved hydrogen 

storage performance.     

The layout of the thesis is as follows. Chapter 1 provides a general introduction of 

hydrogen storage materials. Chapter 2 focuses on the instrumentation including the 

diamond anvil cell (DAC), Raman and IR spectroscopy used in this thesis. Chapters 3 to 5 
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are the body chapters, in which detailed high pressure studies of NH(CH3)2BH3, 

N(CH3)3BH3 and NaNH2BH3 are included. Finally, Chapter 6 summarizes the general 

conclusions and proposes suggestions for future work.  
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Chapter 2. Instrumentation 

2.1 High-pressure apparatus 

 Diamond anvil cell (DAC) 2.1.1

Static high pressure studies in the last few decades have been assisted by the diamond 

anvil cell (DAC), a device used to generate and maintain high pressures up to ~360 GPa. 

The modern DAC with two opposing diamonds acting as anvils was developed by Weir 

and his colleagues in the National Bureau of Standards.1,2 Diamonds were used because 

they are known as the hardest material in nature and, therefore, could sustain extreme high 

pressure. In addition, diamonds have excellent transparency in a board spectral range, and 

thus can be utilized for structural characterization of materials under high pressure by 

various in situ probes, such as vibrational spectroscopy and X-ray diffraction (XRD).  

Basically, there are two types of diamonds used in the DAC techniques, namely types I 

and II. Both diamonds have an intense first order Raman line at 1334 cm-1.3 In terms of 

infrared absorption, Type I diamonds with higher impurity (e.g., nitrogen) have two strong 

absorption regions, which are at around 2000 cm-1 and 1000-1350 cm-1. In contrast, type II 

diamonds which only show IR absorption at around 2000 cm-1 allow IR measurements in 

the DAC. Based on their different properties, type I diamonds are only suitable for Raman 

spectroscopy, while type II diamonds are widely used for IR spectroscopy. 
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Figure 2.1 Left: the photo of a diamond anvil cell; right: schematic drawing of a DAC with 

the diamond anvils enlarged. (Adapted from Ref. 4) 

Nowadays, in order to meet the requirements of various high pressure experiments, 

DACs have evolved into many types such as Merrill-Bassett type DAC for high 

temperature measurements5 and symmetric DAC for room temperature experiments.6 The 

schematic of a symmetric DAC is shown in Fig. 2.1. A pair of diamond anvils is mounted 

on the two supporting seats, typically made of tungsten carbide. The tips of the diamond 

anvils are generally tens to hundreds of microns in diameter. A pre-indented gasket with a 

hole drilled at the center is placed between the two diamonds, acting as the sample chamber. 

The backup seats will generate a pressure once a small force is applied to the DAC by 

tightening the screws. The low pressure will be amplified by the shape of the diamond tip 

and yield a much higher pressure on the tip.  
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 Pressure gauge 2.1.2

A reliable and accurate way to determine the pressure inside the DAC is a vital 

component in high-pressure experiments. Based on Mao’s work, a ruby fluorescence 

method was well-established, and is adopted in this thesis.7  

Ruby, which is Al2O3 doped with Cr3+, is loaded into the sample hole together with 

samples. It has two intense luminescent peaks R1 and R2 (Fig. 2.2) when excited by lasers. 

The positions of the R1 and R2 peaks are pressure-dependent and shift to a longer 

wavelength as pressure increases. Mao reported an equation (eq. 2.1) shown below to 

describe the relation between pressure and R1 position.  
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P λ                   (2.1)                                                                                                                                  

where P is the in-situ pressure in GPa, and λ∆ is the difference between the wavelength 

of R1 in nm at pressure P and that at ambient pressure. The parameter B equals 7.665 

under quasi-hydrostatic condition, and 5 under non-hydrostatic condition. Using this 

method, the resolution of the pressure can be achieved to ± 0.05 GPa. 
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Figure 2.2 Ruby fluorescence measured at different pressures with the two luminescent 

peaks labeled (R1 and R2). The pressure condition for each spectrum is labeled beside. 

(Adapted from Ref. 4) 

2.2 High-pressure vibrational spectroscopy 

  Raman and IR absorption spectroscopies, whose designs are compatible with the DAC, 

are widely used in high pressure studies. Both Raman and IR spectroscopies can provide 

similar information about molecular vibrations, but their selection rules are different. If the 

vibration in the molecules can cause a change in polarizability, the vibration mode is 

Raman-active. On the other hand, if dipole moment is changed, this mode is considered as 

IR-active. In a practical situation, a vibration can be either Raman-active or IR-active, and 
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even active/inactive to both probes. For this reason, for the non-silent vibrations, IR spectra 

and Raman spectra are complementary to each other.8  

  Raman spectroscopy originates from the scattering of monochromatic light, normally 

from a laser in the visible, near infrared, or near ultraviolet range. After interactions with 

atoms or molecules in the sample, a small amount of laser photons are scattered. Among 

the scattered photons, most of them have the same frequency as the incident beam, which 

is referred to as Rayleigh scattering, and therefore carry no spectroscopic information. At 

the same time, some photons are scattered with frequencies lower or higher than the 

incident beam; the former process is referred to as Stokes scattering while the latter is 

called anti-Stokes scattering. Energies between the incident and the anti-Stokes or Stokes 

energies fall into the gaps between different vibrational or rotational energy levels of the 

molecule in the sample. In consequence, valuable spectroscopic information for the 

vibrational or rotational energy levels of that sample can be revealed by the measurement 

of Raman shifts (energy differences between the incident beam and Stokes/anti-Stokes 

scattering). 

  IR absorption spectroscopy is based on the absorption of the incident infrared beam in 

molecules. Molecules will be excited to various discrete vibrational or rotational energy 

levels through absorbing infrared phonons. Monitoring the absorption can provide 

vibrational information of studied molecules. 

  A customized Raman system was used for Raman measurements in our lab. The 

schematic diagram of this Raman system is depicted in Fig. 2.3. The system is 
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constructed on an optical table. Briefly, a single longitudinal mode, pumped solid state 

green laser was used as the excitation source. The Raman signal was detected by the 

objective lens with backscattering geometry. A pair of notch filters was used to remove 

the Rayleigh scattering. The scattered light was then dispersed by an imaging 

spectrograph equipped with a triple grating. The Raman signal was recorded using an 

ultrasensitive, liquid nitrogen cooled, back-illuminated and charge-coupled device (CCD) 

detector from Acton. The system was calibrated by neon lines with an uncertainty of ± 1 

cm−1.8 

 
Figure 2.3 Schematic of the Raman system. BPF: band path filter; IRIS: IRIS aperture; 

M1-7: broadband dielectric reflecting mirrors; FW1A: Six station filter wheel; BS: beam 

splitter; NF: notch filter; DAC: diamond anvil cell; Triple gratings: 300 lines/mm, 1200 

lines/mm, and 1800 lines/mm. Blue area is the microscope system with a CCD camera, 
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which is perpendicular to the other parts. (Adapted from Ref. 4) 

  In our lab, a customized IR micro-spectroscopy system was used for all 

room-temperature IR absorption measurements. A commercial Fourier transform infrared 

(FTIR) spectrometer (Model Vertex 80v) from Bruker Optics Inc. equipped with Globar 

mid-IR light source constituted the main component of the micro-IR system. The system 

was operated under a vacuum of < 5 mbar so the H2O and CO2 absorption could be 

efficiently removed. A collimated IR beam was directed into a relay box through a KBr 

window on the spectrometer and then focused onto the sample by an iris optics and 15× 

reflective objective lens with a numerical aperture of 0.4. The diameter of the IR beam 

was adjusted to be identical to the entire sample size (e.g., ~ 150 μm) by a series of iris 

apertures. The transmitted IR beam was collected using another identical reflective 

objective as the condenser, and was then directed to a wide-band mercury cadmium 

telluride (MCT) detector equipped with a ZnSe window that enables a spectral range of 

400 to 10000 cm−1 to be measured.8 
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Figure 2.4 Schematic diagram of the IR micro-spectroscopy system. All major optical 

components are labeled. Those with ‘-R’ and half mirror are for reflection measurements 

while the rest for transmission/absorption measurements. ‘Switch’ refers to switchable 

mirrors for illumination purpose. ‘mirror-T-R’ is a mirror used to switch between 

transmission and reflection modes. ‘Mirror-F’ is used to focus the IR signal to the detector. 

(Adapted from Ref. 8) 
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Chapter 3. In-situ high pressure study of borane 

trimethylamine by Raman and IR spectroscopy 

3.1 Introduction 

Regarded as one of the promising hydrogen storage materials, NH3BH3 has attracted 

immense research interest over the past decade.1-10 With high gravimetric hydrogen 

content of 19.5 wt%, NH3BH3 far exceeds the requirement (9 wt%) of the U.S. Department 

of Energy for on-board hydrogen systems.11  

Under high pressure conditions, materials may display a series of changes in molecular 

structures and associated properties, such as enhanced hydrogen storage capacities.12 

Therefore, a wide range of hydride complexes (e.g., ammonia borane, diborane, metal 

hydrides, calcium borohydride and sodium amide) as potential hydrogen storage materials 

have been studied under extreme high pressure.13-19 Recently, NH3BH3
 has been 

extensively studied under high pressures by means of vibrational spectroscopic techniques 

such as Infrared and Raman spectroscopy, X-ray diffraction and neutron diffraction.17,20-23 

Based on previous efforts by many researchers, Liu et al. determined the phase diagram of 

NH3BH3 in the pressure region of 0-15 GPa and temperature region of 80-350 K.17 

Although we have gained deep insights into the structure and related properties of 

NH3BH3 owing to previous research, there are still many problems which limit application 

of NH3BH3. NH3BH3 has intrinsic disadvantages such as high decomposition temperature 
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and borazine released in the decomposition process which may damage the fuel cell.24,25 

Investigating the derivatives of NH3BH3 will therefore help us find an alternative ammonia 

borane-based hydrogen storage material with improved performance. Recently, for 

example, Russell et al. have used Raman spectroscopy and synchrotron X-ray diffraction 

to examine the high pressure behavior of tetramethylammonium borohydride (TMAB) at 

room temperature.26  

To continue the high pressure research on ammonia borane derivatives, we shifted our 

focus to another compound in this series, borane trimethylamine (N(CH3)3BH3). Compared 

to ammonia borane, borane trimethylamine (BTMA) may not be an ideal hydrogen storage 

material due to its relatively low hydrogen content. However, systematic study of the 

derivative series of NH3BH3 will allow a more in-depth understanding of structures and 

bonding properties of amine borane complexes, and thus may provide some guidance for 

choosing and improving potential hydrogen storage materials. 

 As shown in Figure 3.1, at ambient conditions, N(CH3)3BH3 forms rhombohedral 

crystals with space group R3m and cell parameters a = 9.079 Å, b = 9.079 Å, c = 5.892 

Å.27 In Naresh’s theoretical study, C-H…H-B dihydrogen bonding is predicted between 

BTMA and acetylenes.28 In addition, a dehydrogenation reaction was once reported 

between dihydrogen bonded borane trimethylamine and phenol in the gas phase.29  
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Figure 3.1 Ambient-pressure crystal structure of BTMA in space group R3m. The coordinate 

system is indicated to show the orientations of the unit cell. 

In this study, using vibrational spectroscopy, we reported the first in situ high-pressure 

Raman and IR spectra of BTMA up to 30 GPa and 35 GPa in diamonds anvil cells (DACs), 

respectively. We observed interesting pressure-induced phase transitions in this pressure 

region. These findings not only further deepened our understanding of amine borane 

complexes, but also fulfilled our interest of having fullest knowledge and shed lights on 

research of hydrogen storage materials.  

 



28 
 

 
 

3.2 Experimental section 

 Sample preparation 3.2.1

  White powders borane trimethylammonia (97% purity) were purchased from Alfa-Aesar 

and used without further purification. 

A symmetrical DAC with two type-I diamonds with 400 μm culets was used for the 

high-pressure Raman measurements, while a pair of type-II diamonds with a culet size of 

300 μm was used for the IR measurements. Sample loading was conducted in an MBraun 

LAB Master 130 glovebox filled with N2 atmosphere (< 10 ppm O2 and H2O). To 

accommodate the hygroscopicity of the material, no fluid pressure-transmitting medium 

was used. A few ruby (Cr3+ doped α-Al2O3) chips were carefully placed inside the gasket 

chamber before the sample loading as the pressure calibrant. The pressure was determined 

by using the R1 ruby fluorescence line shift with an accuracy of ± 0.05 GPa under 

quasi-hydrostatic conditions.20 For IR measurements, spectral quality KBr powders were 

also loaded into the DAC to dilute the sample. In the entire compression process, no 

significant pressure gradient or non-hydrostatic effect was indicated by ruby fluorescence 

spectra obtained on different ruby chips across the sample chamber. 

 High pressure Raman measurements 3.2.2

A customized Raman micro-spectroscopy system was used to collect the Raman spectra. 
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The instrumental set-up was discussed in Chapter 2 and specific experimental parameters 

are described as follows. A green laser with wavelength 532.10 nm was used as the 

excitation source. The laser was focused to < 5 μm on the sample by a 20× Mitutoyo 

objective. A 1200 lines/mm grating was used to disperse the scattered light, achieving a 0.1 

cm−1 resolution. To avoid the strong first-order Raman mode of diamond at 1334 cm−1, the 

spectra were collected in ranges of 0-1300 cm−1 and 1350-3400 cm−1 in several collection 

windows. A collection time of 30 s was employed for each spectrum, and the average laser 

power on the sample was kept at ~ 30 mW. All Raman measurements were conducted at 

room temperature and pressures of up to ~ 30 GPa, and were reproduced several times. 

 High pressure IR measurements 3.2.3

  A customized IR micro-spectroscopy system was used for all room-temperature IR 

absorption measurements and the detailed instrumentation has been described in Chapter 2. 

All the IR measurements were undertaken in absorption (or transmission) mode. A 

resolution of 4 cm−1 and 512 scans were applied for each spectrum measurement to achieve 

an excellent signal-to-noise ratio. The absorption of diamond anvils loaded with KBr but 

without any sample was used as reference spectrum, and was later divided as background 

from each sample spectrum to obtain the absorbance. 
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3.3 Results and discussion 

 Ambient-Pressure Raman and IR spectra 3.3.1

Firstly, Raman and IR spectra shown in Figure 3.2 were collected under ambient 

pressure.  

Our measurements of BTMA were in excellent agreement with previous research by 

Durig.30 The peak assignments of observed modes could be made based on Durig’s work. 

The tentative assignment results of BTMA were listed in Table 3.1 in comparison with 

reference. In the Raman spectra, 4 lattice modes at 353, 442, 450 and 480 cm-1 in the lattice 

region, were labeled as 1, 2, 3 and 4, respectively (Figure 3.3a). Other assigned modes were 

labeled as ν B-H def , ν N-H def , ν B-H str , ν B-N str and ν N-H str (“str” is short for stretching and “def” 

stands for deformation) according to their mode origins. 
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Figure 3.2 Raman spectrum of N(CH3)3BH3 (bottom) in comparison with IR spectrum (top) 

in the spectral region 0-3800 cm−1, both collected at near ambient pressure and room 

temperature. The omitted spectral regions are due to the lack of spectroscopic features. 
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        Table 3.1 Partial assignments and vibrational frequencies (cm−1) of BTMA at ambient pressure 

 
  

Description 
BTMA Reference30 

Raman IR Raman IR 

asym. C-H stretching 3025 
3013 

3019 
3003 

3019 
3004 

3018 
3002 

sym. C-H stretching 2961 2952 2953 2954 

asym. B-H stretching 2377 2371 2373 2360 

sym. B-H stretching 2270 2263 2266 2264 

B-H deformation 1174 1168 1168 1168 

C-H deformation 1468 1474 1475 1473 

B-N stretching 691 - 680 680 

N-C stretching 865 856 860 859 
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 Raman spectra on compression 3.3.2

Starting from ambient pressure, Raman spectra of BTMA were collected up to 30 GPa 

with selected spectra depicted in Figure 3.3. In Figure 3.3 (a), lattice mode 3 became broad 

and intensified at around 3 GPa, which implies a phase transition. Meanwhile, in Figure 3.3 

(b), the ν B-N str at 718.5 cm-1 obviously split into two modes, where the new mode was 

labeled as ν B-N str (b). The pressure evolution of other modes such as ν N-C str were very 

gradual and lacked distinctive profile changes, with the exception of blue shifts in this 

pressure region. This new phase remained in the pressure region of 3.1-8.9 GPa as 

suggested by the similar Raman spectra.  

Another round of phase transition could be identified when the pressure went beyond 8.9 

GPa. First of all, all the lattice modes became extremely weak and broad at 8.9 GPa. In 

particular, lattice mode 1 almost disappeared. Moreover, the intensity of sharp ν B-N str was 

significantly reduced. In Figure 3.3 (c), ν B-H str (a) and ν B-H str (b) remarkably faded away, and 

ν B-H str (b) merged with the second order Raman mode of diamond at 2469.3 cm-1. In Figure 

3.3 (d), ν C-H str (b) vanished at 8.9 GPa with the appearance of the shoulder peak of        

ν asym C-H str(c) at 3062.3 cm-1. This new peak was further resolved when the pressure 

increased up to 10.4 GPa. All of the profile changes mentioned above collectively 

suggested a new phase transition at around 9 GPa. Upon compression to 29.8 GPa, the 

highest pressure reached in our study, all the modes obviously weakened and broadened, 

indicating the appearance of amorphous phase. It is worth noting that no red shifts could be 

observed in the whole pressure region. That means the dihydrogen bonds observed in 

NH3BH3
17,31 do not exist in N(CH3)3BH3.  
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Figure 3.3 Selected Raman spectra of BTMA collected at room temperature on compression in the region of 0-600 cm−1, the lattice region 

with enhanced intensity (A) 600-1300 cm−1 (B) 2100-2700 cm−1 (C) and 2700-3350 cm−1 (D) at pressures of 0.4-29.8 GPa. The relative 

intensities are normalized and thus are directly comparable. The pressures in GPa are labeled for each spectrum. The assignments are 

labeled for selected Raman modes (see text). 
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 IR spectra on compression 3.3.3

The Mid-IR spectra of BTMA were collected from ambient pressure up to 35 GPa. 

Selected absorption spectra in the region of 600-3500 cm-1 are depicted in Figure 3.5. 

Similar to the Raman measurements, the first phase transition could be identified at 3.7 

GPa, as indicated by rich changes in IR features. First, a former shoulder peak (1459.8 cm-1) 

in C-H deformation region evolved into a sharp peak. In addition, ν B-H str (b), split into two 

components. These clear profile changes were indicative of phase transition at this 

pressure point, and were consistent with the result obtained from Raman spectra.  

When the pressure was further increased, all bands gradually became broadened and 

shifted to higher frequencies. The most drastic changes occurred at 9.4 GPa. At this 

pressure point, a new peak suddenly appeared at 1236.2 cm-1 as the shoulder peak of the   

ν B-H def. At the same time, the two components of ν C-H def at 1247 cm-1 developed into a 

triplet. Moreover, the formation of a sharp peak at 2434.1 cm-1 right in front of the ν asym B-H 

str could be easily noticed. All the changes mentioned above provided substantial evidences 

of phase transition at 9.4 GPa. 

Beyond 9.4 GPa, all the modes continually broadened with reduced intensities. At 34.8 

GPa, the peaks became extremely weak and broad. No further dramatic phase transitions 

occurred in the third pressure region, which suggested that the third phase observed in our 

high pressure study has a much wider stability region than the previous two. It is important 

to point out that, in agreement with the Raman spectra, all the IR modes exhibited blue 

shifts in the entire pressure region. Again, this phenomenon suggested the absence of 

dihydrogen bonding between N(CH3)3BH3 molecules.  
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Figure 3.4 Selected IR spectra of BTMA collected at room temperature on compression in the spectral region of 600-3500 cm−1 in the 

pressure region of 0.2-34.8 GPa. The pressures in GPa are labeled for each spectrum respectively. The assignments are labeled for selected 

IR modes.
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 Pressure effects on Raman and IR modes 3.3.4

The suggested phase transitions in the Raman and IR spectra could be further visualized 

by plotting the characteristic modes as a function of pressure as depicted in Figures 3.5 and 

3.6. Pressure cofficients for the assigned modes were calculated by the least-square fitting 

of the experimental data and are listed in Tables 3.2 and 3.3. The proposed phase 

boundaries can be further evidenced by the changes in pressure coefficients between 

different phases. 

In the Raman spectra, a significant change in the slope could be observed between 

different phases. In general, the pressure coefficients in Phase I are relatively larger than 

those in the other two phases. Different pressure coefficients indicate different 

compressiblities of different phases. Moreover, all the pressure coefficients are positive, 

meaning all of the Raman modes displayed blue shifts in the entire pressure region due to 

bond stiffening upon compression.  

The compression behavior of the IR modes of N(CH3)3BH3 was similar to the Raman 

modes. The monitored IR modes shifted to higher frequencies in the entire pressure region. 

Nonetheless, the changes of pressure coefficients of the IR modes were less significant 

than those of the Raman modes. Overall, the pressure coefficients of the monitored Raman 

and IR modes collectively suggested 3 pressure regions: 0-3 GPa, 3-9 GPa and 9-35 GPa. 
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Figure 3.5 Pressure dependence of selected Raman modes of BTMA on compression. Different symbols represent Raman modes with 

different origins with assignments labeled (see text). The solid lines crossing the solid symbols are based on linear regressions. The vertical 

dashed lines indicate the proposed phase boundaries.
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Figure 3.6 Pressure dependence of selected IR modes of BTMA on compression. Different symbols represent Raman modes with different 

origins with assignments labeled (see text). The solid lines crossing the solid symbols are based on linear regressions. The vertical dashed 

lines indicate the proposed phase boundaries. 
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Table 3.2 Pressure dependence of the selected Raman modes of BTMA on 

compression  

 

Table 3.3 Pressure dependence of the selected IR modes of BTMA on compression  

 

 Raman and IR spectra on decompression. 3.3.5

  In order to study the reversibility of pressure-induced phase transitions, Raman and IR 

spectra were collected on decompression all the way down to near-ambient pressure. 

Selected spectra are shown in Figures 3.7 and 3.8. The Raman spectra of compressed 

Optical Mode Frequency (cm−1)  
dν/dP (cm−1⋅GPa−1) 

Phase I 
(<3.1 GPa) 

Phase II  
(3.1-8.9 GPa) 

Phase III 
(>8.9 GPa) 

ν 1 352.4 9.7 6.2 - 
ν 2 442.2 5.7 4.9 - 
ν 3 448.8 7.3 4.6 - 

ν B-N str 691.7 9.8 7.8 5.3 
ν B-N str (b) 729.2 11.2 8.0 5.0 
ν B-H def 1160.5 2.3 2.0 3.0 

ν B-H str (a) 2269.5 10.4 6.1 - 
ν B-H str (b) 2374.0 9.6 9.9 - 
ν C-H str (a) 2930.0 4.8 7.8 3.7 
ν C-H str (b) 2958.4 7.8 6.6 - 

ν C-H asym str (a) 3008.5 8.6 6.7 6.5 

Optical Mode Frequency (cm−1)  
dν/dP (cm−1⋅GPa−1) 

Phase I 
(0-3.7 GPa) 

Phase II  
(3.7-9.4 GPa) 

Phase III 
(>9.4 GPa) 

ν B-H def 1168.6 1.9 2.4 1.4 
ν C-H def (a) 1446.5 6.2 3.5 1.3 
ν C-H def (b) 1474.3 0.3 4.4 3.0 

ν B-H asym str (a) 2315.8 9.3 5.8 - 
ν B-H asym str (b) 2370.8 11.8 11.4 4.5 
ν C-H asym str (a) 3003.8 10.0 - - 
ν C-H asym str (b) 3019.6 10.8 8.7 - 
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sample after pressure release were highly similar to the initial ones, with most of the peaks 

being recovered under ambient pressure. A small shift of the Raman modes compared to 

the initial modes could be attributed to hysteresis effect. Similarly, in the IR spectra, we 

could observe the complete back transformations. Again, the hysteresis effect and the 

difference of sample thickness in compression/decompression cycle possibly led to slight 

changes of positions and intensities in the IR modes.  

  According to the recovered Raman and IR spectra, we can conclude that the 

pressure-induced phase transitions are reversible. 
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Figure 3.7 Selected Raman spectra of BTMA collected at room temperature on decompression in the spectral region of 0-1300 cm−1 (A), 

2100-2700 cm−1 (B) and 2700-3350 cm−1 (C). The pressures in GPa are labeled for each spectrum. The initial near-ambient-pressure 

spectra before compression (top) is included to compare with the spectra of recovered BTMA. 
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Figure 3.8 Selected IR spectra of BTMA collected at room temperature on decompression in the spectral region of 600-3400 cm−1. The 

pressures in GPa are labeled for each spectrum. The assignments are labeled for selected IR modes (see text). The initial 

near-ambient-pressure spectra prior to compression (top) are included as a comparison with the spectra of recovered BTMA.  
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 Discussion 3.3.6

  Three pressure regions were successfully characterized by the aforementioned 

spectroscopic study. Naturally, the subsequent question will be what the possible 

high-pressure structures and the origins of phase transitions are. Unfortunately, as far as we 

know, no in situ high pressure X-ray diffraction has been reported. In our group’s previous 

study of NH3BH3, the factor group analysis was adopted to get a clue of the structural 

information. However, in this case of BTMA, factor group analysis seems unavailable to 

provide valuable information due to the structural complexity of BTMA. Therefore, a 

practical method is to carefully analyze the combined Raman and IR spectra, especially in 

the lattice region, which may reveal important information for understanding the high 

pressure structure of BTMA.   

  The lattice region of the IR spectra was lacking due to the Mid-IR setup in our lab while 

4 lattice modes were identified in the Raman spectra. In the first pressure region (0.4-3.1 

GPa), all the Raman and IR modes, especially the lattice modes, gradually shifted to higher 

frequencies without obvious changes. Therefore, phase I could be interpreted as the 

extension of rhombohedral crystals with space group R3m under ambient condition. Upon 

compression to the first phase boundary (3 GPa), the intensity of ν3 was enhanced. 

Moreover, the splitting of Raman ν B-N str, IR ν C-H def and ν B-H str could be observed. All 

these changes strongly indicated enhanced intermolecular interactions or lower unit cell 
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symmetry. More detailed structural information is needed to reveal by in situ high-pressure 

X-ray diffraction. 

  In the next pressure region (3-9 GPa), BTMA experienced apparent structural 

modification. The lattice modes became further weakened. Moreover, ν2 and ν3 underwent 

enhanced separation. In the C-H stretching region, new modes were detected in both 

Raman and IR spectra. When the pressure went beyond 9 GPa, BTMA transformed into an 

amorphous phase via structural disorder which was evidenced by the gradual broadening 

and reduced intensities of Raman and IR modes, especially the depletion of lattice modes. 

In the previous high pressure studies of NH3BH3, N-H stretching modes displayed negative 

shift correlation with pressure due to dihydrogen bonding. However, in the case of BTMA, 

the positive pressure-induced shifts of all modes from 0.4 to 35 GPa were in agreement 

with bond stiffening, which ruled out the possible existence of dihydrogen bonding 

between BTMA molecules. This is likely due to the total methyl substitution of the NH3 

group in N(CH3)3BH3 and CH3 is not capable of forming dihydrogen bonds with the BH3 

group. 

3.4 Conclusion 

By means of in situ Raman and IR spectroscopy, we investigated the pressure behavior 

of BTMA up to 30 and 35 GPa, respectively. Two phase transitions were characterized by 

abundant profile changes observed at around 3 and 9 GPa. After decompression, the 
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characteristic Raman and IR modes were recovered under ambient pressure, which 

indicated that the pressure-induced phase transitions were reversible. Raman and IR 

spectral analysis revealed that phase I maintained the parent structure-rhombohedral up to 

3 GPa. Further compression may cause BTMA to experience structural transformation. 

High pressure X-ray diffraction and theoretical calculations are still needed to identify the 

detailed structural information under high pressure. 
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Chapter 4. In-situ high pressure study of 

dimethylamine borane by Raman and IR 

spectroscopy 

4.1 Introduction  

As potential hydrogen storage materials, amine-borane complexes received have 

extensive investigations in recent years due to the high gravimetric content of hydrogen in 

these compounds.1-5 In particular, ammonia borane (NH3BH3), which contains 19.5 wt% H 

exceeding the target (9 wt%)6 set by the U.S. Department of Energy for on-board hydrogen 

storage systems is of interest to many researchers.3,7-10  

However, as discussed in Chapter 3, NH3BH3 has its intrinsic disadvantages. One of 

such problems is the high dehydrogenation temperature required for solid-state 

decomposition. Moreover, the borazine released in the decomposition process may be 

damaging to the fuel cell.1 Consequently, in recent years, more and more research 

endeavors have been directed to ammonia borane derivatives. 11-17 

Dimethylamine borane (DMAB), a derivative of NH3BH3, is also regarded as a potential 

hydrogen storage material. There has been growing research focused on DMAB, including 

the investigation of dehydrogenation mechanisms and the search for suitable catalysts for 

releasing hydrogen from DMAB.18-21 However, compared to NH3BH3 which has been 

extensively investigated under high pressure, DMAB has not been studied in detail and as a 
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result, there is little known about its structures in a broad temperature or pressure range that 

is important for hydrogen storage applications. 

 

Figure 4.1. Ambient-pressure crystal structure of DMAB in space group P21/c. The 

coordinate system is indicated to show the orientations of the unit cell. 

Under ambient conditions, DMAB crystallizes into a monoclinic cell with space group 

P21/c ( C2ℎ5  ) and cell parameters a=7.045 Å, b=5.837 Å, c=12.234 Å and Z=4.22 The unit 

cell structure of DMAB is shown in Figure 4.1. Similar to NH3BH3, DMAB displays 

obvious intermolecular N-H…H-B ‘dihydrogen bonds’ with short H…H distance (around 

2 Å) which are labeled as B in Figure 4.2. Unlike the conventional hydrogen bonds, 

dihydrogen bonds are formed between D-Hδ+ and δ-H-E, where D-H is a typical proton 

donor such as an NH or OH group, and E-H is either B-H or M-H (M=transition metal). 

With a strength around 3-7 kcal•mol-1, lying in the range of traditional hydrogen bonds, 
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such interactions can be observed in metal hydrides and boron hydrides.23,24 

As shown in Figure 4.2, molecules are linked in a head-to-tail manner via hydrogen 

bonding. Each chain is surrounded by neighboring chains experiencing interchain 

contacts.22 

 

 

Figure 4.2. (i) Chains formed by H…H and electrostatic interactions in the crystal structure 

of DMAB. (ii) The most significant interchain interactions. (Adapted from Ref. 22) 

In this study, we used vibrational spectroscopy to obtaine the first in situ high-pressure 

Raman and IR spectra of DMAB up to 20 GPa in diamond anvil cells (DACs). Interesting 

pressure-induced phase transitions during the compression process were observed. These 

findings can contribute to the development of DMAB as hydrogen storage materials. In 
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addition, it may provide us a better understanding of the structure and related properties of 

ammonia borane derivatives in the high pressure region and shed further light on exploring 

improved ammonia borane based hydrogen storage materials. 

4.2 Experimental section 

 Sample preparation 4.2.1

Dimethylammonia borane (97% purity) were purchased from Alfa-Aesar and used 

without further purification. 

A symmetrical DAC with two type-I diamonds with 400 μm culets was used for the 

high-pressure Raman measurements, while a pair of type-II diamonds with a culet size of 

300 μm was used for the IR measurements. Sample loading was conducted in a MBraun 

LAB Master 130 glovebox filled with N2 atmosphere (< 10 ppm O2 and H2O). No fluid 

pressure-transmitting medium was used to accommodate the hygroscopicity of the material. 

A few ruby (Cr3+ doped α-Al2O3) chips used as a the pressure calibrant were carefully 

placed inside the gasket chamber before the sample loading. The pressure was determined 

by using the R1 ruby fluorescence line shift with an accuracy of ± 0.05 GPa under 

quasi-hydrostatic conditions.20 For IR measurements, spectral quality KBr powders were 

also loaded into the DAC to dilute the sample. In the entire compression process, no 

significant pressure gradient or non-hydrostatic effect was indicated by ruby fluorescence 

spectra obtained on different ruby chips across the sample chamber. 
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 High pressure Raman measurements 4.2.2

A customized Raman micro-spectroscopy system was used to collect the Raman spectra. 

The instrumental set up has been discussed in Chapter 2 and specific experimental 

parameters are described as follows. A green laser with wavelength 532.10 nm was used as 

the excitation source. The laser was focused to < 5 μm on the sample by a 20× Mitutoyo 

objective. A 1200 lines/mm grating was used to disperse the scattered light, achieving a 0.1 

cm−1 resolution. To avoid the strong first-order Raman mode of diamond at 1334 cm−1, the 

spectra were collected in ranges of 0-1300 cm−1 and 1350-3400 cm−1 in several collection 

windows. A collection time of 30 s was employed for each spectrum, and the average laser 

power on the sample was kept at ~ 30 mW. All Raman measurements were conducted at 

room temperature and pressures of up to ~ 18 GPa, and were reproduced several times. 

 High pressure IR measurements 4.2.3

A customized IR micro-spectroscopy system was used for all room-temperature IR 

absorption measurements and the detailed instrumentations have been described in Chapter 

2. All IR measurements were undertaken in absorption (or transmission) mode. A 

resolution of 4 cm−1 and 512 scans were applied for each spectrum measurement achieving 

an excellent signal-to-noise ratio. The absorption of diamond anvils loaded with KBr but 

without any sample was used as reference spectrum, and was later divided as background 

from each sample spectrum to obtain the absorbance. 
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4.3 Results and discussion  

 Ambient-Pressure Raman and IR spectra.  4.3.1

Raman and IR spectra of DMAB were collected under ambient pressure as a starting 

point and are shown in Figure 4.3 in comparison with the Raman spectrum of NH3BH3. At 

ambient pressure and room temperature, DMAB crystalizes into a monoclinic phase with 

P21/c space group with 4 molecules per unit cell. DMAB has a Cs molecular symmetry and 

a C2h
5  factor group symmetry. The vibrational degrees of freedom for DMAB can be 

calculated as follows: 3n (ZB) – 3 = 165, where n = 14 and ZB =4. Factor group analysis 

indicates that there are 96 Raman active modes and 84 IR active modes in total, which are 

mutually exclusive. Obviously, the observed modes are just a subset of the total predicted 

modes. The use of a notch filter used in the Raman measurements, the spectral limit 

of >400 cm-1 imposed by our IR instrument capability and the incomplete factor group 

splitting may partly contribute to the absence of other modes. 
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Figure 4.3. Raman (middle) and IR spectra (top) of DMAB in the spectral region 70-3800 

cm−1 both collected at near ambient pressure and room temperature in comparison with 

Raman spectrum of NH3BH3 (bottom). The omitted spectral regions are due to the lack of 

spectroscopic features. 

 

The peak assignments of DMAB have not yet been thoroughly investigated. However, 

in consideration of the structural similarity between DMAB and NH3BH3, some important 

modes can still be assigned. The tentative assignment of selective Raman and IR modes of 

DMAB are listed in Table 4.1 in comparison with those of NH3BH3. In the Raman spectra, 

we could observe 5 lattice modes at 69, 89, 136, 393, 426 cm-1 in the lattice region, which 

were labeled as 1, 2, 3, 4 and 5 respectively (Figure 4.4a) and other assigned modes were 

labeled as ν B-H def , ν N-H def , ν B-H str and ν N-H str (“str” is short for stretching and “def” stands 

for deformation) according to their mode origins. 
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From Table 4.1, we could conclude that the frequencies of B-H stretching modes are 

close to those of NH3BH3 while the frequencies of N-H stretching and deformation modes 

and B-N stretching modes are quite far away. This is possibly due to the methyl group 

substitution of the NH3 group. 

Table 4.1 Partial assignments and vibrational frequencies (cm−1) of DMAB at 

ambient pressure 

 

 Raman spectra on compression  4.3.2

Starting from ambient pressure, Raman spectra of DMAB were collected upon 

compression to 17.9 GPa with selected spectra depicted in Figure 4.4. In Figure 4.4 (a), the 

intensities of lattice modes 1, 2 and 3 were significantly enhanced when the sample was 

compressed to ~0.7 GPa. Concurrently, lattice mode 4 split into a doublet with the new 

peak labeled as 4b. The labels follow the convention that the new components are assigned 

in the order of their appearance (e.g., νa, νb, νc, etc.). All these obvious changes in the lattice 

region collectively suggested a phase transition together with a modification of the crystal 

Description 
DMAB NH3BH3

25 
Raman IR Raman IR 

asym. N-H stretch 
sym. N-H stretch 

3209 
3198 

- 
3198 

3316 
3250 

3386 
3337 

asym. B-H stretch 2376 2380 2328 2415 
sym. B-H stretch 2260 2266 2279 2340 
B-H deformation 

 
N-H deformation      

1199 1197 1189 1186 
1151 
1464 

1162 
1468 

1155 
1357 

1175 
1343 

B-N stretch 707 - 800 987 
- 784 968 



58 
 

 
 

structure of DMAB. The phase transition can be further identified by the change in B-H 

deformation region in Figure 4.4 (b), where ν B-H def (b) was clearly resolved. The similar 

Raman spectra from 0.7 to 9.8 GPa suggested the stability of the new phase in this 

pressure range. When the pressure went beyond 9.8 GPa, the peaks between 950-1000 

cm-1 further split while all the lattice modes became barely visible. All these evidences 

were indicative of a new round of phase transition. As the pressure increaed to 17.9 GPa, 

all the modes significantly broadened, being a strong indication of a transformation into a 

amorphous phase.  

In Figure 4.4 (c), two peaks in the B-H stretching region were labeled as ν B-H str (a) (2260 

cm-1) and ν B-H str (b) (2376 cm-1). The peak at 2458 cm-1 is the second order Raman mode of 

diamond. No obvious changes were observed in this region when the sample was 

compressed except for the broadening and blue shifts of the peaks. In Figure 4.4 (d), the 

evolution of ν C-H str (2958 cm-1) into two reduced components, and the merging of two 

peaks (2997 and 3001 cm-1) in the C-H stretching region, indicated a phase transition at 0.7 

GPa, which was consistent with the conclusion above. N-H stretching modes labeled as ν 

N-H str (a) and ν N-H str (b) displayed obvious red shifts upon compression, in accordance with 

the observation in the high pressure study of NH3BH3.9, 25 This phenomenon could be 

explained by the weakening of the N-H bond and the strengthening of the dihydrogen bond 

N-H…H-B by compression.9 However, it is noteworthy that when the pressure was 

increased beyond 9.8 GPa, the trend reversed from red shift to blue shift. This kind of 

changing cycle was not observed in the study of NH3BH3. 
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Figure 4.4 Selected Raman spectra of DMAB collected at room temperature on compression in the region of 40-600 cm−1, lattice region 

with enhanced intensity (A), 600-1300 (B), 2100-2600 cm−1 (C) and 2700-3350 cm−1 (D) at pressures of 0.28-17.9 GPa. The relative 

intensities are normalized and thus are directly comparable. The pressures in GPa are labeled for each spectrum. The assignments are 

labeled for selected Raman modes (see text). The omitted spectral regions are due to the lack of spectroscopic features. 
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 IR spectra on compression  4.3.3

Mid-IR spectra of DMAB were collected on compression at 20.5 GPa. Selected 

absorption spectra in the region of 650-3600 cm-1 are depicted in Figure 4.5. Upon 

compression to 0.8 GPa from ambient pressure, a phase transition can be clearly 

identified by various changes of IR modes. First, the split of ν B-H def (a), in addition to the 

sharpness of the shoulder peak of ν B-H def (a) at 1197 cm-1 provided substantial evidence. In 

the meantime, the N-H stretching mode ν N-H str (a) evolved into two components. The most 

dramatic changes were observed in the B-H stretching region, where the two peaks ν B-H 

str (b) and ν B-H str (c) developed into four components with enhanced intensities. All these 

observations suggested a phase transition at ~ 0.8 GPa which agreed with the result we 

obtained in Raman spectra at similar pressure.  

 Beyond 9.7 GPa, all the modes gradually broadened and faded away. Most 

interestingly, the pressure dependence of the ν N-H str (b) reversed at around 9.7 GPa and 

after that ν N-H str (b) kept shifting to higher frequency till 20.5 GPa, the highest pressure 

reached in this study. This uncommon observation is consistent with what happened at 

around 9.8 GPa in the Raman spectra. All of these observations collectively indicated a 

new phase transition.  
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Figure 4.5 Selected IR spectra of DMAB collected at room temperature on compression in the spectral region of 650-3600 cm−1 in the 

pressure region of 0.3-20.5 GPa. The pressures in GPa are labeled for each spectrum respectively. The assignments are labeled for selected 

IR modes. 
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 Pressure effects on Raman and IR modes 4.3.4

 The possible phase transitions suggested by changes in the Raman and IR spectra were 

examined by plotting the characteristic modes as a function of pressure as depicted in 

Figure 4.6 and 4.7. Analyzed by least-square fitting of the experimental data, the calculated 

pressure cofficients for the assigned modes are listed in Table 4.2 and 4.3. Supplementary 

to the compelling spectroscopic evidence, the changes in pressure coefficients can further 

indicate the proposed phase boundaries.  

In the Raman spectra, the pressure coefficient of the monitored modes displayed 

apparent changes between 0-0.7 GPa and 0.7-10.7 GPa. For instance, dν/dP of ν B-H def (b) is 

21.99 cm-1⋅GPa-1 in the lower pressure region while it decreased significantly to 6.64 

cm-1⋅GPa-1 in the high pressure region. The smaller pressure dependence indicated lower 

compressibility of the new phase. The first red shift and subsequent blue shift of the N-H 

stretching modes could be clearly observed. In phase II, ν N-H str (b) has a negative pressure 

coefficient of -3.29 cm-1⋅GPa-1. However, the pressure coefficient increased significantly to 

3.60 cm-1⋅GPa-1 in phase III.  

Similar to the Raman spectra, in the IR spectra all the IR modes displayed blue shifts due 

to bond stiffening under compression with exception that the N-H stretching modes 

displayed red shifts in the pressure region of 0-9 GPa. The negative slopes (e.g., -2.15 and 

-4.63 cm-1⋅GPa-1 for ν N-H str (a)and ν N-H str (b)) could be explained by a reason similar to that 

in the case of NH3BH3. In contrast, the B-H stretching modes (e.g., ν N-H str (a), ν N-H str (b), ν 

N-H str (c) and ν N-H str (d) in IR spectra) exhibited blue shifts in all pressure regions (e.g., 15.03 

and 3.68 cm-1⋅GPa-1 in 0.8-10 GPa and 10-20 GPa respectively for ν B-H str (d)) denoting 
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remarkable strengthening of B-H bonding with decreased bond length. At around 9.8 GPa, 

the pressure coefficient of N-H stretching modes turned from negative to positive, strongly 

indicating that a phase transition took place at this pressure point. Moreover, the sharp 

changes in the pressure coefficient of ν B-H str (d) (from 15.03 to 3.08 cm-1⋅GPa-1) and the 

disappearance of ν B-H str (a) and ν B-H str (b) modes further identified the proposed phase 

boundary. 

Overall, the pressure dependence of the assigned Raman and IR modes collectively 

suggested serval pressure regions in which different phases exist. These pressure regions 

include: 0-0.7GPa, 0.7-10 GPa and > 10 GPa. 
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Figure 4.6 Pressure dependence of selected Raman modes of DMAB on compression. Different symbols represent Raman modes with 

different origins with assignments labeled (see text). The solid lines crossing the solid symbols are based on linear regressions except for ν 

B-H def（b）mode in the pressure region of 0.7-10.0 GPa. The vertical dashed lines indicate the proposed phase boundaries.
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Figure 4.7 Pressure dependence of selected IR modes of DMAB on compression. Different symbols represent IR modes of different origins 

with assignments labeled (see text). The solid lines crossing the solid symbols are based on linear regressions except for ν B-H def（c）mode. The 

vertical dashed lines indicate the proposed phase boundaries. 
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Table 4.2 Pressure dependence of the selected Raman modes of DMAB on 

compression  

 
 

Table 4.3 Pressure dependence of the selected IR modes of DMAB on compression  

 

 Raman and IR spectra on decompression 4.3.5

To get a better understanding of the reversibility of the pressure-induced phase transition 

Optical Mode Frequency (cm−1)  
dν/dP (cm−1⋅GPa−1) 

Phase I 
(<0.8 GPa) 

Phase II  
(0.8-10.0 GPa) 

Phase III 
(>10.0 GPa) 

ν B-H def (a) 1158.9 9.1 2.1 2.8 

ν B-H def (b) 1211.2 22.0 6.6 3.0 

ν B-H def (c) 1172.3 - 3.0 2.8 

ν B-H str (a) 2260 17.2 8.1 10.0 
ν B-H str (b) 2375.9 20.9 11.6  - 

ν N-H str (a) 3197.5 -16.4 -5.3 -2.3 
ν N-H str (b) 3209.3 -11.8 -3.3 3.6 
ν B-N str 719 22.0 8.6 7.6 

Optical Mode Frequency (cm−1)  
dν/dP (cm−1⋅GPa−1) 

Phase I 
(<0.7 GPa) 

Phase II  
(0.7-10.0 GPa) 

Phase III 
(>10.0 GPa) 

ν B-H def (a) 1162.8 - 2.6 2.3 

ν B-H def (b) 1167 - 3.6 1.0 
ν B-H str (a) 2265.5 - 9.0 - 
ν B-H str (b) 2301.3 - 17.4 - 

ν B-H str (c) 2336 - 6.5 6.0 
ν B-H str (d) 2380.5 - 15.0 3.7 
ν N-H str (a) 3214.1 - -2.1 0.8 
ν N-H str (b) 3200.5 - -4.6 0.1 
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of DMAB, we conducted Raman and IR measurements on decompression with selected 

spectra shown in Figures 4.8 and 4.9. In the Raman spectra, the back transformations could 

be observed. Obviously, the recovered Raman modes were almost identical to the initial 

ones with only a little shift. Similar to the observations in the Raman spectra, when the 

near-ambient-pressure was reached, most of the IR peaks recovered except for some peaks 

in the B-H deformation and B-H stretching regions. The different shapes and intensities of 

the IR modes could likely be attributed to the difference of sample thickness in 

compression/decompression cycle and hysteresis effect. All the observations above 

collectively suggested that the pressure-induced phase transitions were reversible.  
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Figure 4.8 Selected Raman spectra of DMAB collected at room temperature on 

decompression in the spectral region of 10-1300 cm−1, 1600-2100 cm−1 and 2700-3400 cm−1. 

The pressures in GPa are labeled for each spectrum. The initial near-ambient-pressure 

spectra before compression (top) is included to compare with the spectra of recovered 

DMAB.  
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Figure 4.9 Selected IR spectra of DMAB collected at room temperature on decompression in 

the spectral region of 650-3600 cm−1. The pressures in GPa are labeled for each spectrum. 

The assignments are labeled for selected IR modes (see text). The initial 

near-ambient-pressure spectra prior to compression (top) are included as a comparison 

with the spectra of recovered DMAB.  

 

 Discussion 4.3.6

  Two phase boundaries were suggested by our IR and Raman measurements at 0.7 and 10 

GPa. It is of fundamental interest to investigate the corresponding structures and origins of 

phase transitions. Recently, Lin et al.26 used a combination of synchrotron powder X-ray 

diffraction (XRD) and density functional theory (DFT) to study NH3BH3 under high 

pressure. In their study, the transformation from an I4mm structure at ambient pressure to 

Cmc21 at 1.6 GPa was confirmed. The subsequent second-order isostructural phase 

transition at 5 GPa and further development into a monoclinic P21 phase at 12.9 GPa were 

also observed. To our knowledge, no in situ high-pressure X-ray diffraction study of 

DMAB has been reported so far. However, combining the spectroscopic measurements and 
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factor group analysis, we can still gain significant insight into the pressure behavior of 

DMAB. 

  As shown in Figure 4.1, the monoclinic structure (P21/c) with four molecular units per 

unit cell has the following lattice modes: 

                    Γlattice vib.
DMAB =6 Ag+5 Au                            (4.1) 

                  Γlattice lib.
DMAB =6 Ag+6 Au                         (4.2) 

where Γvib and Γlib are irreducible representations for lattice vibration and lattice libration, 

respectively. Ag is Raman active while Au is IR active. In all, 12 Raman active modes and 

11 IR active modes are predicted. However, only 5 Raman lattice modes were detected in 

our experiment. The lack of other lattice modes is likely due to the notch filter used in our 

Raman system and Mid-IR setup, we were not able to thoroughly detect the signals under 

100 cm-1 and 400 cm-1, respectively. Although there is no contradiction between our 

observations and the predicted results, in situ high-pressure X-ray diffraction 

measurements are still needed to confirm the structure in the 0-0.7 GPa pressure region. 

  In the next pressure region (0.7-10 GPa), the Raman and IR spectra are quite different 

from those at low pressure. First, the Raman lattice modes shifted significantly with the 

appearance of a new mode at 407 cm-1. In addition, the splitting of internal modes and 

apparent changes in pressure coefficients could be observed. All these observations 

strongly suggested a modification of the crystal lattice. Unfortunately, it is always the case 

that the observed Raman and IR modes are a subset of the predicted ones, which makes it 

extremely difficult to use factor group analysis to predict the possible structure. Again, in 

situ high-pressure X-ray diffraction measurements are needed to determine the crystal 

structure. 
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  In the 10-20 GPa pressure region, the pressure coefficient of the N-H stretching modes 

changed from negative to positive, which is an evidence of phase transition. Lin et al.26 

suggested that the phase transition of NH3BH3 at 12.9 GPa was caused by the 

reorganization of the dihydrogen bonding network and the change in the rotational 

dynamics of the NH3 and BH3 groups. This reason could also be applied to explain the 

phase transition of its derivative-DMAB. The peaks in this region significantly broadened 

with reduced intensities. In particular, the lattice modes became extremely weak and 

almost indiscernible. All these phenomena collectively suggested that DMAB was turning 

into a possibly disordered or ultimately amorphous structure.  

In order to gain a comprehensive understanding of structural and bonding properties of 

ammonia borane derivatives, the previous high pressure studies on methylamine-borane 

molecules were summarized in Table 4.4.25,26 In this table, it could be easily noticed that 

the pressure-induced phase transitions of ammonia borane and its derivatives were 

reversible. Dihydrogen bonding could be observed in ammonia borane25,27,31 and DMAB 

while it is absent in BTMA. This phenomenon can be attributed to the substitution of  

hydrogen with methyl group of hydrogen in the N-H group. The C-H group is not efficient 

as a proton donor as N-H group29 and therefore the C-H…H-B interaction was not formed. 

A careful analysis of Table 4.4 revealed that the first phase boundary of NH3BH3 and 

NH(CH3)2BH3 is obviously lower than that of N(CH3)3BH3. A possible explanation is that 

the dihydrogen bonding network is sensitive to the external pressure environment, which 

gives rise to the changes of orientation and rotational dynamics of NH and BH groups and 

hence phase transitions. Further experimental and theoretical investigations are needed to 

justify our interpretation. 
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Table 4.4 Summary of the high pressure studies on methylamine-borane molecules, MenH3-nN•BH3 
 

Material Characterization method Pressure range 
(GPa) 

Phase transition 
pressure (GPa) 

Dihydrogen 
bonding Reversibility 

NH3BH3 Raman/IR/XRD 0-20 1.5, 5, 12.9 Yes Yes 

NH(CH3)2BH3 Raman/IR 0-20 0.7, 10 Yes Yes 

N(CH3)3BH3 Raman/IR 0-35 3, 9 No Yes 
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4.4 Conclusion  

Taking advantage of in situ Raman and IR spectroscopy, we studied the pressure 

behavior of DMAB under high pressure up to 18 and 20 GPa respectively. DMAB was 

found to experience phase transitions at around 0.7 and 10 GPa from the parent phase P21/c. 

The phase transitions were evidenced by changes in spectral profiles and pressure 

dependence of fundamental optical modes. Spectroscopic measurements during 

decompression revealed the reversibility of pressure-induced phase transitions based on 

the observations that most of fundamental modes recovered under near-ambient pressure. 

Analysis of combined Raman and IR spectroscopy suggested that DMAB maintains a 

monoclinic structure with P21/c space group under 0.8 GPa. Under further compression, 

DMAB underwent a structural transformation characterized by obvious changes in spectra, 

especially the appearance of new modes in the lattice region in the Raman spectra. At 

around 10 GPa, DMAB may undergo another phase transition that was supported by the 

changes of pressure dependence coefficient of the N-H stretching modes from negative to 

positive. We believed that the phase transition is due to the reorganization of the 

dihydrogen bonding network and the change in the rotational dynamics of the NH3 and 

BH3 groups. Further experiments such as in situ X-ray diffraction measurements and 

theoretical calculations are needed to confirm our interpretation. 
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Chapter 5. Ball milling synthesis and in-situ high 

pressure study of sodium amidoborane 

5.1 Introduction   

As previously described, ammonia borane (NH3BH3) is considered to be one of the most 

promising candidates for effective hydrogen storage.1-5 NH3BH3 has many unparalleled 

advantages such as high hydrogen content (19.6 wt%) and chemical stability. However, its 

practical application is still limited by two intrinsic drawbacks, namely the high 

decomposition temperature and the release of toxic borazine in the decomposition 

process.6,7 

 Recently, considerable effort has been devoted to lowering the dehydrogenation 

temperature, to inhibit borazine release and to enhance hydrogen release rate.8-14 For 

example, chemical compositional modification, in which one of the protonic hydrogen 

atoms of N-H in NH3BH3 is replaced by an alkali element such as Li and Na,15-22 is found 

to effective. The rationale behind this strategy is to change the polarity and intermolecular 

interactions (especially the dihydrogen bonding) and thus to improve the dehydrogenation 

property.15 As a successful example, NaNH2BH3 releases ~7.4 wt% hydrogen at around 

91 °C, significantly lower than the onset dehydrogenation temperature of NH3BH3 at 

108 °C.23 Moreover, no toxic borazine is detected during the decomposition process.15,20  

NaNH2BH3 (NaAB) crystallizes in the orthorhombic space group Pbca. The lattice 
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constants for NaNH2BH3 are a = 7.46931(7) Å, b = 14.65483(16) Å, c = 5.65280(8) Å, V = 

618.764(20) Å.15 [NH2BH3]δ- groups form tetrahedral coordination with the Na+ cation 

center with a Na-N distance of 2.35 Å.16,24 The crystal structure of NaAB is shown in 

Figure 5.1. 

 

Figure 5.1. Ambient-pressure crystal structure of NaAB in space group Pbca determined 

from high-resolution X-ray power diffraction data at room temperature. Boron 

isrepresented by orange spheres, nitrogen by green spheres, hydrogen by white sphere and 

sodium by red spheres. This figure was adapted from reference 15,  

NaAB can be synthesized via two approaches, namely traditional wet-chemistry 

synthesis20 and solid-state mechanical milling.15,25 The procedure of wet-chemistry 

synthesis is slightly complicated since special treatment is needed to remove solvent from 
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the amidoborane product due to strong coordination between cations and solvent 

molecules. In contrast, the mechanical synthesis of NaAB is rather time-saving and 

straightforward without any worry about solvent removal. For this reason, the ball milling 

synthesis was adopted in our study. In a typical ball milling synthetic approach, ammonia 

borane and sodium hydride are used as reacting reagents. The driving force for this reaction 

is believed to be the high chemical potential of the combination of Hδ+ in NH3 and Hδ- in 

NaH to form H2.15 

 High pressure study of hydrogen storage materials can reveal unique structural 

information such as phase stability, hydrogen bonding, and even produce new structures 

with possible enhanced performance for hydrogen storage, which in turn provides 

guidelines for future design and improvement.26-31 For instance, NH3BH3 has been 

intensively studied under high pressure conditions by Raman,30,31 IR spectroscopy,32,33 

X-ray diffraction34 and neutron diffraction.35 More recently, a high pressure study of 

LiNH2BH3 using Raman spectroscopy was conducted by Najiba36 and two phase 

transitions were identified. 

In this study, using vibrational spectroscopy, we present the first in situ high-pressure 

Raman and IR spectra of NaAB up to 14 GPa in diamond anvil cells (DACs). NaAB 

showed interesting pressure-induced phase transitions in this pressure region. These 

findings will provide deeper a understanding of the properties of NaAB in a broad pressure 

region as well as ideas for future hydrogen storage development. 
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5.2 Experimental section 

 Sample synthesis 5.2.1

  NaH (95% purity) and NH3BH3 (97% purity) were purchased from Sigma Aldrich and 

used without further purification. Ammonia borane and sodium hydride were mixed 

together with 1:1 molar ratio. The mixtures, as well as 6 steel milling balls (ball-to-sample 

weight ratio is 180 : 1), were transferred into the containers and the containers were sealed. 

All the operations above were conducted in a N2-filled MBraun LAB Master 130 glovebox 

with hydrogen and water content of < 10 ppm. The containers were then placed on a Retsch 

PM200 planetary mill and rotated for 60 minutes with a milling speed of 250 r.p.m. The 

reaction is shown below: 

NH3BH3 (s) + NaH (s) → NaNH2BH3 (s) + H2 (g) 

  The prepared product was then characterized using an Inel CPS X-ray powder 

diffractometer with the Cu Kα radiation. The obtained X-ray pattern was compared with 

that in Ref. 25 and they were found to be identical.  

 Sample preparation 5.2.2

  A symmetrical DAC with two type-I diamonds with 400 μm culets was used for the 

high-pressure Raman measurements, while a pair of type-II diamonds with a culet size of 

300 μm was used for the IR measurements. The sample loading was conducted in an 
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MBraun LAB Master 130 glovebox filled with N2 atmosphere (< 10 ppm O2 and H2O). No 

fluid pressure-transmitting medium was used to accommodate the hygroscopicity of the 

material. A few ruby (Cr3+ doped α-Al2O3) chips as the pressure calibrant were carefully 

placed inside the gasket chamber before the sample loading.  The pressure was 

determined by using the R1 ruby fluorescence line shift with an accuracy of ± 0.05 GPa 

under quasi-hydrostatic conditions.20 For IR measurements, spectral quality KBr powders 

were also loaded into the DAC to dilute the sample. In the entire compression process, no 

significant pressure gradient or non-hydrostatic effect was indicated by ruby fluorescence 

spectra obtained on different ruby chips across the sample chamber. 

 High pressure Raman measurements 5.2.3

A customized Raman micro-spectroscopy system was used to collect the Raman spectra. 

Detailed information regarding the instrumental set up can be found in Chapter 2 and 

specific experimental parameters are described as follows. The laser with 532.10 nm 

wavelength was focused on the sample by a 20× Mitutoyo objective to act as the excitation 

source. 0.1 cm−1 resolution was achieved by using a 1200 lines/mm grating to disperse the 

scattered light. To avoid the strong first-order Raman mode of diamond at 1334 cm−1, the 

spectra were collected in ranges of 50-1330 cm−1 and 1350-3400 cm−1 in several collection 

windows. A collection time of 30 s was employed for each spectrum, and the average laser 

power on the sample was kept at ~ 30 mW. All Raman measurements were conducted at 
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room temperature and pressures of up to ~ 14 GPa and were reproduced several times. 

 High pressure IR measurements 5.2.4

  A customized IR micro-spectroscopy system was used for all room-temperature IR 

absorption measurements and the detailed instrumentations have been described in Chapter 

2. All the IR measurements were undertaken in absorption (or transmission) mode. A 

resolution of 4 cm−1 and 512 scans were applied for each spectrum measurement achieving 

an excellent signal-to-noise ratio. The absorption of diamond anvils loaded with KBr but 

without any sample was used as reference spectrum, and was later divided as background 

from each sample spectrum to obtain the absorbance. 

5.3 Results and discussion 

 Ambient pressure Raman and IR spectra 5.3.1

The Raman and IR spectra of NaNH2BH3 were collected at ambient conditions and are 

shown in Figure 5.2. The peak assignments of NaAB have not yet been thoroughly studied. 

However, in reference to the peak assignments of NH3BH3 and LiNH2BH3, some important 

modes can still be assigned.33,36 The tentative assignment results are listed in Table 5.1 in 

comparison with those of NH3BH3. In the Raman spectra, 5 lattice modes at 123, 148, 201, 

227, 282 cm-1 in the lattice region were labeled as 1, 2, 3, 4 and 5 respectively (Figure 5.3a) 

and other assigned modes were labeled by their molecular nature: ν B-H def , ν N-H def , ν B-H str and 
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ν N-H str (“str” is short for stretching and “def” stands for deformation). 
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B-N stretching BH3 deformation
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Figure 5.2 Raman (middle) and IR spectra (bottom) of NaAB in the spectral region 70-3600 

cm−1 in comparison with the Raman spectrum of NH3BH3 (top). The omitted spectral region 

in the middle of IR spectra of NaAB is due to the strong absorbance of diamond. 

In Table 5.1, compared with NH3BH3, the B-H stretching mode appeared at lower 

wavenumber, which is in agreement with the previous study of LiNH2BH3.36 This change 

indicated NaAB has weaker B-H bond than ammonia borane does. In contrast, both N-H 

and B-N stretching modes of NaAB displayed higher frequencies than in NH3BH3, 

suggesting that the strength of such bonds was stronger in NaAB. It should be mentioned 

that two peaks (3257.1 cm-1 and 3183.3 cm-1) in the N-H stretching region possibly 

originated from the unreacted NH3BH3 in the ball milling synthesis. 
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      Table 5.1 Partial assignments and vibrational frequencies (cm−1) of NaAB at ambient pressure 

 

 

 

 

 

 

 

 

 

 

 

 

Description 
NaAB NH3BH3

33 

Raman IR Raman IR 

asym. N-H stretch 
sym. N-H stretch 

3372 
3316 

3374 
3301 

3316 
3250 

3386 
3337 

asym. B-H stretch 2189 - 2328 2415 

sym. B-H stretch 2112 - 2279 2340 

B-H deformation 1262 1266 1189 1186 

B-N stretch 
905 905 800 987 

- - 784 968 

N-H deformation - 1379 1357 1343 
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 Raman spectra on compression 5.3.2

The Raman spectra of NaAB were collected at pressures from ambient to 13.8 GPa with 

representative spectra depicted in Figure 5.3. The region associated with lattice modes 

showed dramatic changes at 0.8 GPa, including obvious blue shifts of modes 1 and 2, as 

well as increased intensity of mode 3. In the BH3 deformation region, the peak at 

1191.1cm-1 split into two components while the peak at 1229.2 cm-1 markedly faded away. 

All these significant profile changes, especially the changes in the lattice region, provide 

substantial evidence of a phase transition at this pressure. The high similarity of the 

spectra in the range from 0.8 GPa to 2.8 GPa suggest the stability of the new phase in this 

pressure region. 

When the pressure was increased to 2.8 GPa, remarkable changes in the Raman spectra 

demonstrated another round of phase transition. First, a prominent modification was 

present in the B-N stretching region, where ν B-N str at 916.9 cm-1 gained considerable 

intensity. Similarly, ν B-H str , a previous broad peak at 2251.4 cm-1, evolved into a sharp mode. 

In contrast, in the N-H stretching region, ν N-H str at 3393.4 cm-1 vanished. All the changes 

mentioned above could be attributed to the new phase transition.  

With further compression, the profile lacked prominent changes except for the gradual 

blue shifts and increasing band width, suggesting that the sample was heading for 

amorphous phase gradually. At 13.8 GPa, all the Raman modes became extremely broad 
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and weak. A bit to our surprise, in the entire compression process, a blue shift of the N-H 

stretching mode was observed. In the case of NH3BH3, obvious red shifts of N-H stretching 

modes could be observed. The reasons for the different phenomenon will be discussed in 

the following section. 
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Figure 5.3 Selected Raman spectra of NaAB collected at room temperature on compression in the region of 50-1330 cm−1 (A) 2000-2750 

cm−1 (B) and 3100-3500 cm−1 (C) at pressures of 0.2-13.8 GPa. The relative intensities are normalized and thus are directly comparable. 

The pressures in GPa are labeled for each spectrum. The assignments are labeled for selected Raman modes (see text). 
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 IR spectra on compression 5.3.3

IR spectra were collected as a function of pressure from 0.12 GPa to 13.6 GPa. Selected 

absorption spectra in the region of 600-3600 cm-1 are depicted in Figure 5.4. Upon 

compression to 0.9 GPa, N-H deformation mode at 1380.1 cm-1 developed into a doublet 

with reduced intensity, in addition to a concurrent appearance of a new peak at 2396.5 cm-1 

in the B-H stretching region. Meanwhile, the peak at 1604.5 cm-1 in the N-H deformation 

region turned into a sharp peak from a previously broad band. All these evidences 

mentioned above collectively indicated a phase transition at around 0.9 GPa, in agreement 

with our observation in the Raman spectra.  

Upon further compression, abundant changes at 3.7 GPa clearly marked the second 

phase transition. First, the formerly pronounced peak at 708.2 cm-1 abruptly vanished in 

contrast to the appearance of a small peak at 894.4 cm-1. More significant changes could be 

observed in the B-H deformation region, in which the sharp peak ν B-H def at 1260.7 cm-1 split 

into two weaker components labeled as ν B-H def (b) and ν B-H def (c) respectively. Meanwhile, the 

transformation of the N-H stretching mode at 3311.0 cm-1 from a sharp peak into a doublet 

further evidenced the phase transition. Further compression resulted in the broadening of 

IR modes. In the entire pressure region, the N-H deformation mode exhibited a red shift, 

for which the reason is still not clear. In contrast, the N-H stretching modes continued shift 

to higher frequencies, in accordance with the results of Raman spectra.  
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Figure 5.4 Selected IR spectra of NaAB collected at room temperature on compression in the spectral region of 600-3500 cm−1 in the 

pressure region of 0.1-13.6 GPa. The pressures in GPa are labeled for each spectrum respectively. The assignments are labeled for selected 

IR modes. 
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 Pressure effects on Raman and IR modes 5.3.4

To further examine the possible phase transitions, the pressure dependence of Raman 

and IR modes (i.e. Raman/IR shift vs. pressure) are plotted in Figure 5.5 and 5.6. 

Calculated pressure cofficients for the assigned modes obtained by the linear regression of 

the experimental data are listed in Tables 5.2 and 5.3. The proposed phase transitions could 

be further proved when different coefficents were observed in different pressure regions. 

Upon compression, all the Raman modes displayed pressure-induced blue shifts, 

consistent with a stiffening of bonds at high pressure. In Figure 5.5, the changes in 

pressure coefficients were clearly visualized. Overall, the selected modes exhibited lower 

pressure coefficients in phase III than in phase II (e.g., 10.52 and 2.24 cm-1⋅GPa-1 in 0.8-2.8 

GPa and 2.8-13.8 GPa, respectively for ν N-H str (a) ), suggesting that phase III is less 

sensitive to compression. It is also noteworthy that the pressure coefficients of N-H and 

B-H stretching modes are positive in the three phases.  

The monitored IR modes displayed similar trends to the Raman modes. As can be seen 

in Figure 5.6, the sharp changes in pressure dependence suggest consistent phase 

boundaries. The postive pressure coefficients of ν N-H str (a), ν N-H str (b) and ν N-H str (c) agreed 

with the results obtained in the Raman spectra.  

Overall, the pressure behavior of the selcted Raman and IR modes collectively 

suggested three pressure regions including 0-0.8 GPa, 0.8-3 GPa and 3-14 GPa. 
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Figure 5.5 Pressure dependence of selected Raman modes of NaAB on compression. Different symbols represent Raman modes with 

different origins with assignments labeled (see text). The solid lines crossing the solid symbols are based on linear regressions. The vertical 

dashed lines indicate the proposed phase boundaries. 
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Figure 5.6 Pressure dependence of selected IR modes of NaAB on compression. Different symbols represent Raman modes with different 

origins with assignments labeled (see text). The solid lines crossing the solid symbols are based on linear regressions. The vertical dashed 

lines indicate the proposed phase boundaries. 
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Table 5.2 Pressure dependence of the selected Raman modes of NaAB on 

compression  

a. The pressure coefficients of phase I was not calculated due to limited data point 
 
Table 5.3 Pressure dependence of the selected IR modes of NaAB on compression  

a. The pressure coefficients of phase I was not calculated due to limited data point 

 

 

 

Optical Mode Frequency (cm−1)  
dν/dP (cm−1⋅GPa−1)a 

 Phase II  
(0.8-2.8 GPa) 

Phase III 
(>2.8 GPa) 

ν 2 148.4  7.6 7.8 
ν 3 203.4  8.1 9.8 
ν 4 225.1  8.5 - 
ν 5 281.7  9.9 - 

ν B-N str 906.9  9.6 7.5 
ν B-H str (a) 2187.4  20.6 13.5 
ν B-H str (b) 2282.5  9.5 8.9 
ν N-H str (a) 3315.4  10.5 2.2 
ν N-H str (b) 3371.6  8.8 - 

Optical Mode Frequency (cm−1)  
    dν/dP (cm−1⋅GPa−1)a 

 Phase II  
(0.9-3.7 GPa) 

Phase III 
(>3.7 GPa) 

ν B-N str 905.8  9.3 5.2 
ν B-H def  1238.0  10.3 - 

ν B-H def (b) 1247.2  - 4.6 
ν B-H def (c) 1291.5  - 6.5 
ν N-H def  1380.8  -1.6 -0.9 

ν N-H str (a) 2187.4  2.7 2.3 
ν N-H str (b) 2282.5  5.0 2.9 
ν N-H str (c) 2381.8  11.2 - 
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 Raman and IR spectra on decompression 5.3.5

When releasing the pressure, we conducted Raman and IR measurements to study the 

reversibility of the pressure-induced phase transitions of NaAB. The selected Raman and 

IR spectra are shown in Figures 5.7 and 5.8. As shown in Figure 5.8, upon decompression, 

most of the Raman modes followed a back transformation in a reverse sequence to 

compression. When the pressure was close to ambient, the recovered Raman and IR 

patterns were almost identical to the initial ones except for the lower intensity and a small 

upshift of the peak position. The difference between the recovered Raman patterns and the 

initial profile is likely associated with the hysteresis effect. In the case of IR spectra, the 

modification of sample thickness in the compression and decompression cycle can also 

contribute to the difference. In conclusion, the decompression Raman and IR spectra 

indicated the reversibility of pressure-induced phase transition of NaAB. 
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Figure 5.7 Selected Raman spectra of NaAB collected at room temperature on decompression in the spectral region of 50-1330 cm−1 (A), 

2000-2750 cm−1 (B) and 3100-3500 cm−1 (C). The pressures in GPa are labeled for each spectrum. The initial near-ambient-pressure 

spectra before compression (top) are included to compare with the spectra of recovered NaAB.
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Figure 5.8 Selected IR spectra of NaAB collected at room temperature on decompression in the spectral region of 600-3400 cm−1.The 

pressures in GPa are labeled for each spectrum. The assignments are labeled for selected IR modes (see text). The initial 

near-ambient-pressure spectrum prior to compression (top) is included as a comparison with the spectra of recovered NaAB. 
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 Discussion 5.3.6

Our Raman and IR measurements of NaAB on compression up to 14 GPa suggested two 

pressure-induced phase transitions at 0.8 and 3.0 GPa at ambient temperature. Since the 

structure and bonding have fundamental influences on the hydrogen storage property, it is 

of particular interest to understand the new phase and bonding behaviors in different high 

pressure regions. 

The phase in the first pressure region below 0.8 GPa could be interpreted as the 

extension of orthorhombic structure with space group Pbca at ambient pressure.  After the 

pressure was increased to 0.8 GPa, NaAB possibly underwent significant transition in the 

crystal lattice, which was evidenced by remarkable changes in the Raman and IR profiles, 

especially the changes in the lattice region mentioned in the above section. At 3 GPa, a 

phase transition was associated with changes in the major stretching modes such as the 

evolution of the B-N and B-H stretching modes into sharp peaks in the Raman spectra and 

the splitting of N-H stretching modes in the IR spectra. These abundant profile changes 

suggested that the structural complexity increases with pressure, possibly due to enhanced 

interaction between molecules. The removal of degeneracy in the N-H bond caused by 

interaction of non-equivalent molecules is likely responsible for the splitting of N-H 

stretching modes. Upon further compression, the general broadening trend of the Raman 

and IR bands signified the conclusion that NaAB was on the way to an amorphous 
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structure. 

 In the previous high pressure study of LiAB which is isostructural to NaAB, two phase 

transitions were suggested at 3.9 and 12.7 GPa by Najiba.36 Compared with NaAB, the two 

phase transitions of NaAB occurred in much lower pressure regions. In Najiba’s study, no 

red shifts of N-H stretching modes were observed, which was consistent with our study of 

NaAB. In the case of NH3BH3, obvious red shifts of N-H stretching modes were observed, 

constituting strong evidence for the existence of dihydrogen bonding. In NH3BH3, the 

N-Hδ+…δ-H-B dihydrogen bonding strengthens with the increase of pressure, at the 

expense of N-Hδ+ bond strength, leading to the red shift of the N-H stretching mode. A 

possible explanation for the absence of dihydrogen bonding in NaAB and LiAB is that the 

alkali-metal elements such as Li and Na are more electron-donating, and thus N attracts 

more electrons from alkali metals than hydrogen atoms. In consequence, N-H tends to 

display covalent character instead of N-Hδ+ while Na-N shows more ionic character. In this 

case, strong interaction may occur between Na and B-Hδ-, acting as the dominant role to 

stabilizing the molecular structure of NaNH2BH3 despite the absence of dihydrogen 

bonding in the molecular system.  

In earlier studies, many researchers believed that dihydrogen bonding might obviously 

lower the activation energy for hydrogen release of NH3BH3.37,38 Through theoretical 

calculation, even the homopolar H…H interaction in LiNH2BH3 and NaNH2BH3, e.g., 

B-Hδ-…δ-H-B and N-Hδ+…δ+H-N were proposed by McGrady’s group who further claimed 

that such an interaction could help mediate the release of H2 either directly or indirectly.39 
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Despite the fact that no hydrogen bonding is observed in the NaNH2BH3 and LiNH2BH3 

molecules in high pressure studies, the onset dehydrogenation temperature of such metal 

amidoborane is much lower than that of NH3BH3. This interesting phenomenon indicates a 

different dehydrogenation mechanism, which needs more in-depth research and may 

provide excellent opportunities to develop novel hydrogen storage materials.  

5.4 Conclusion 

Using in situ Raman and IR spectroscopy, we investigated the structure and phase 

transitions of sodium amidoborane (NaAB) under high pressures up to 14 GPa. Two phase 

transitions at around 0.8 and 3 GPa were identified. Three pressure regions were revealed 

by remarkable and abundant profile changes and different pressure coefficients over 

different phases. In the first pressure region, NaAB maintained the orthorhombic structure 

with space group Pbca. Upon further compression, NaAB experienced significant 

structural transformation evidenced by apparent changes in the lattice region. Beyond 3 

GPa, NaAB gradually transformed into an amorphous phase, as suggested by the depleted 

lattice modes and broad band profiles. The pressure induced phase transitions were found 

to be completely reversible upon decompression. The N-H and B-H stretching modes 

displayed blue shifts in the entire compression process which was different from the 

previous study on ammonia borane but similar to another alkali metal amidoborane, 

lithium amidoborane. This phenomenon pointed to the absence of dihydrogen bonding in 
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NaAB. The low dehydrogenation temperature of NaAB without the influence of 

dihydrogen bonding implied a probably different mechanism. Future experiments such as 

in situ X-ray and neutron diffraction are needed to study the phase transition and the 

absence of dihydrogen bonding.   
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Chapter 6. Summary and future work 

In this thesis, I have studied high-pressure effects on three potential hydrogen storage 

materials, borane trimethylamine (BTMA), dimethylamine borane (DMAB) and sodium 

amidoborane (NaAB), by in situ vibrational spectroscopy. Our work demonstrated the first 

high pressure studies of these three compounds and revealed important structural 

information. Several possible high pressure-induced phase transitions were observed in 

each sample. Additionally, the structural stability and reversibility of these 

pressure-induced phase transitions were examined. Based on the changes of Raman and IR 

profiles, the possible structures in different pressure regions were also discussed. Finally, 

the implications of the results obtained in our high pressure research were proposed. 

Although our study has revealed unprecedented spectroscopic and structural 

information of BTMA, DMAB and NaAB under high pressure, more in-depth and detailed 

studies are still needed. For instance, the proposed structures in different pressure regions 

still remain to be undecided and need to be finally confirmed by in situ high pressure X-ray 

diffraction. Moreover, the dehydrogenation process of such hydrogen storage materials 

occurs in pyrolysis.1-4 For this reason, it is of particular interest to investigate the structural 

transformation and hydrogen release of these materials as a function of pressure combined 

with temperature.  

Recently, it has been reported that NH3BH3 can form a novel H2 containing complex, i.e., 

NH3BH3-H2, under high pressure.5 These novel complexes can store a substantial amount 
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of extra hydrogen. Therefore, exploring the possibility of synthesizing similar complexes, 

such as NaNH2BH3-H2 under high pressure can further enhance the hydrogen storage 

performance of ammonia borane derivatives. Finally, theoretical calculations can be 

adopted to assist with understanding the high pressure behavior and designing novel 

hydrogen storage materials.  
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Appendix: Supporting materials for Chapter 5 
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Figure A1. X-ray diffraction pattern of NaNH2BH3 
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