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Abstract

Approximation to the solutions of non-linear differential systems is very useful

when the exact solutions are unattainable. Perturbation expansion replaces

the system with a sequences of smaller problems, only the first of which is

typically linear. This works well by hand for the first few terms, but higher

order computations are typically too demanding for all but the most persistent.

Symbolic computation is thus attractive; however, symbolic computation of

the expansions almost always encounters intermediate expression swell, by

which we mean exponential growth in subexpression size or repetitions. A

successful management of spatial complexity is vital to compute meaningful

results.

This thesis contains two parts. In the first part, we investigate a heat

transfer problem where two-dimensional buoyancy-induced flow between two

concentric cylinders is studied. Series expansion with respect to Rayleigh

number is used to compute an approximation of a solution, using a symbolic-

numeric algorithm. Computation sequences are used to help reduce the size of

intermediate expressions. Up to 30th order solutions are computed. Accuracy,

validity and stability of the computed series solution are studied.

In the second part, Hilbert’s 16th problem is investigated to find the maxi-

mum number of limit cycles of certain systems. Focus values of the systems are

computed using perturbation theory, which form multivariate polynomial sys-

tems. The real roots of such systems leads to possible limit cycle conditions.

A modular regular chains approach is used to triangularize the polynomial

systems and help to compute the real roots. A system with 9 limit cycles is

constructed using the computed real roots.
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Chapter 1

Introduction

1.1 Motivation

The integration of multivariate non-linear differential systems is a very impor-

tant but challenging subject in computer algebra. Exact solutions of many

such systems, especially those with complicated nonlinear terms, are beyond

the reach of today’s techniques. A popular workaround in computer algebra is

to solve a nearby problem as an approximation with good accuracy. Perturba-

tion theory is one such technique, which has a long history, and still remains

popular [15, 23, 20, 22]. Other works on perturbation theory in practice in-

clude [25, 24, 13, 16]. Due to their complicated structure, it is very natural to

use computer algorithms to solve perturbation problems which usually involve

the handling of large expressions. Thanks to the advances in both hardware

and software techniques, we are able to compute perturbation expansions for

systems that could not be solved before. In chapter 2, we use perturbation

theory to solve the systems describing the two-dimensional heat convection

of a fluid contained in two concentric cylinders. In chapter 3, we use pertur-

bation theory to compute focus values which helps to identify the number of

limit cycles on Hilbert’s 16th problem. In both applications, large expression

management techniques such as computation sequences and modular methods

are the key technique.

In regular perturbation theory, the equations in the target system are ex-
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panded with respect to some parameter to form the series expansions.

For example, to find the root of

x3 + x− ε (1.1)

that goes to zero as ε→ 0.

We can expand x into Taylor series of ε, as follows:

x :=
∑

k≥1

akε
k (1.2)

By substitution, we obtain a sequence of equations for the ak,

a1 − 1 = 0

a2 = 0

a3
1 + a3 = 0

3a2
1a2 + a4 = 0

2a2
2a1 + a1(2a1a3 + a2

2) + a3a
2
1 + a5 = 0

· · ·

(1.3)

We solve these equations one after another and obtain the sequence of the

coefficients {a1, a2, a3, · · · } as

{1, 0, −1, 0, 3, 0, −12, 0, 55, 0, −273, 0, 1428, 0, −7752, · · · } . (1.4)

Therefore we arrive at the following approximation to the solution using the

perturbation series:

x = ε− ε3 + 3ε5 − 12ε7 + 55ε9 − 273ε11 + 1428ε13 − 7752ε15 + · · · (1.5)

At this moment, several questions arise. How accurate is the solution? What

is the maximum value that |ε| could be? We usually expect that a series

solution is more accurate when truncated with higher order, with a small ε.

The values of ε must be inside the radius of convergence. In this example, we

2



can determine the radius of convergence directly. Here, the ak can be written

as

ak :=





0 if k is even ,

(−1)m

2m+1

(
3m
m

)
if k is odd ,

(1.6)

where m = (k − 1)/2. Then the radius of convergence is

lim
k→∞

∣∣∣∣
ak
ak+1

∣∣∣∣ = lim
k→∞

√∣∣∣∣
a2k+1

a2k+3

∣∣∣∣ = lim
m→∞

√∣∣∣∣
am
am+1

∣∣∣∣

= lim
m→∞

√ (
3m
m

)

2m+ 1

2m+ 3(
3m+3
m+1

)

= lim
m→∞

√
(2m+ 3)(m+ 1)(2m+ 1)(2m+ 2)

(2m+ 1)(3m+ 1)(3m+ 2)(3m+ 3)

= 2/3
√

3

≈ 0.385 .

(1.7)

If we set dε/dx to zero, which is 3x2 + 1 = 0, we obtain x = ±i/
√

3. At these

points dx/dε = ∞, therefore ε = ∓i/3
√

3 ± i/
√

3 = ±2/3
√

3i, are the exact

locations of the singularities, which match the radius of convergence. If we

feed the series to Maple, it returns

∞∑

m=0

(−1)m

2m+ 1

(
3m

m

)
ε2m+1

=3ε cosh

(
2

3
arccosh(

3

2

√
3ε)

)
+

2
√

3

9

(
−3 − 81

4
ε2

)
sinh

(
2
3
arcsinh

(
3
2

√
3ε

))
√

1 + 27
4
ε2

,

(1.8)

which confirms the singular points to be ±2/3
√

3i. In this simple example,

the solving process for the series coefficients is easy. In more general cases,

for example when solving differential equations, the perturbation series are

usually tremendously complicated with a fast growth in size of the resulting

expressions. The perturbation series for many non-linear systems, such as

the ones presented in Chapter 2 and 3, are so complicated that any direct

3



translating of the perturbation expansion will quickly run out of memory. We

consider the spatial complexity to be the number one issue to overcome.

Accuracy is another problem we encounter when computing series solu-

tions using perturbation technique for nonlinear differential equations. The

dependency of higher order solutions on lower ones can amplify the numerical

error from lower order solutions. For example, a term in a lower order solution

which should be zero, might be stored as some small number because of nu-

merical error. After several steps of integration, when the program carries this

error term to higher order solution, it may result in many terms that shouldn’t

exist. When these terms are integrated, even more error terms show up. These

errors could go quickly out of control. Therefore, we used a pure symbolic ap-

proach that computes the series solutions where the coefficients of each term

are symbols. However, in such symbolic integration processes the expression

swell is also a difficulty. Large-expression management techniques are needed

to control the rapid growth of space usage, thereafter help us to arrive at high

order solutions. Eventually, numerical evaluation does take place. In the event

that expressions are ill-conditioned, higher precision must be used. [25, 12, 7]

An even more important problem is to make sure the computed series so-

lutions truly represent the exact solution. As demonstrated in the previous

example, series solutions must be bounded by the radius of convergence. We

declare a series solution to be valid when the expansion parameter ε is inside

the radius of convergence. If the radius of convergence of the series solution is

very small, no useful information of the system but the expansion point can

be found immediately. Unlike the previous example, the radius of convergence

is not always easily obtainable. A method that helps determine the radius

of convergence is needed as well. In many cases, the solutions of nonlinear

differential systems posses complicated singularity structures such as movable

poles, essential singularities, branch cuts etc. These singularity structures have

a great impact on the radius of convergence of the series solution. By Dar-

boux’s principle [11, 5, 6], the convergence of a series expansion is determined

by the nearest singularity. The distance between the point of expansion (usu-

ally the origin) and the nearest pole is the maximum range that the expansion

4



parameter ε should be used in. To deal with this problem, singularity detec-

tion techniques such as the Quotient-Difference (QD) algorithm (please see

appendix B), are needed to ensure the validity of such solutions. In the previ-

ous example, we input the series solution to the QD algorithm, the estimated

nearest pole location is 0.395 which is within 3% of the true value.

1.2 Outline

In the first part of this thesis, we investigate the heat transfer of fluids con-

tained in the annulus between two horizontally placed concentric cylinders.

Two dimensional flow behavior for free convection∗ is studied. We used the

perturbation expansion with respect to Rayleigh number A, following the work

of Mack & Bishop [19] who computed series solution of the second order by

hand. Corless et al. pushed the series solution to 10th order [7]. They intro-

duced computation sequences to simplify the intermediate expression swell.

However at this order not many conclusions could be drawn firmly. We ex-

tended the work of Corless et al. [7], optimized the computation sequences

and reprogrammed the symbolic-numerical solver, thereby pushing the result

to 16th order. The solver applies a simplified direct integration method. Dur-

ing the computation of order kth solution, the algorithm computes particular

solutions according to each term of the inhomogeneous parts. The solutions

are collected after all terms of the inhomogeneous parts are taken into con-

sideration and then combined with the general solutions. At this point the

coefficients in many terms of the solution are very complicated. We use new

symbols to substitute these coefficients, and record the evaluation relation of

these symbols in the computation sequences. These coefficients are not evalu-

ated until the end of the symbolic stage when the desired order solutions are

computed symbolically.

For a second, greatly improved algorithm, we recognized the pattern of

solution of each order and summarized it into a general form. Applying the

general form we designed a more efficient algorithm using the method of un-

∗The fluid is only influenced by gravity.
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known coefficients. This greatly reduces the size of intermediate expressions.

The new algorithm decreased the spatial complexity from O(n7) to O(n4),

where the solution is truncated at nth order. We take advantage from this

efficiency and successfully computed solution to the 30th order. With this

high order solution, reliable information of the system can be extracted. As

pointed out by Y.F Chang [8], 30th order solutions allow good estimates of

nearby singularities and their properties. Thereafter the series provides the

range on Rayleigh number A, where within the range the solutions are valid.

The QD method [14, 3, 9, 10, 1] is the main technique used here to detect

singularities. Comparing to other methods, such as Padé approximants [3],

the QD method has many advantages. It does not require information on the

singularity structure a priori. It can handle the cases where defects† happen.

It works well with a small radius of convergence, where singularities are very

close to the origin.

The errors of the computed series solutions are estimated using residual

tests. The stability of the solution is also analyzed by perturbing the sys-

tem with additional nonlinear terms. We observed the difference between the

solutions and original ones compared to the size of the additional terms.

In the second part of the thesis, normal form theory and perturbation

expansion are used to identify the number of limit cycles of quadratic and

cubic planar polynomial systems. We investigated Hilbert’s 16th problem,

which asks for an upper bound of number on the limit cycles for a system in

the form of

ẋ = F (x, y), ẏ = G(x, y) , (1.9)

where F (x, y) and G(x, y) are degree k polynomials of variables x and y, with

real coefficients. The problem is narrowed to the case of small-amplitude limit

cycles bifurcating from a center at the origin. In this case, the number of

such limit cycles can be obtained by focus value computations. This problem

has been solved for generic quadratic systems [4], where at most three such

limit cycles could exist. For cubic systems, James and Lloyd obtained [18] a

†A defect in Padé approximants is the case where a nearby singularity is accompanied
by a close zero
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special cubic system with eight limit cycles. Yu and Corless [2009] showed the

existence of nine limit cycles with the help of a numerical method for another

special cubic system. We will symbolically compute the case of 9 limit cycles.

In this work, the focus values are computed using perturbation theory on

multiple time scales. The parameters of the system becomes the variable of the

output focus values, which are multivariate polynomial equations. The real

solutions of these equations will provide possible condition that the system

consists certain number of limit cycles.

In order to find the n limit cycles in a cubic system, there must be at least n

free parameters, and n+ 1 focus values to be computed (one more focus value

is needed to distinguish between the limit cycle conditions and the center

conditions). Due to the rapid growth in size of the higher-order focus values,

as expected, it is very hard to compute symbolic solutions of these equations.

Direct solving on such system fails for the built-in Maple solver. The more

powerful tools such as the Gröbner bases package in Maple quickly ran out of

memory as well. Instead, we applied a modular technique [17] on the regular

chains [21, 2] method to compute the triangular decomposition of the focus

value system. Please refer to Section3.3.2 for an example of the regular chains

method. Some large enough primes are used during the computation process

to decrease the size of intermediate expressions. The result of the modular

triangular decomposition is then verified using another prime with similar

size, and lifted using the first prime. The lifting process provides regular

chains in a triangular shape which have the same common zeros as the input

system. All the real roots are isolated and represented by intervals where each

interval contains one and only one real root. The size of the intervals can be

made arbitrarily small on demand. This interval representation is commonly

viewed as a symbolic solution since it is fully compatible with the symbolic

procedures. With one set of roots as an example, we constructed the cubic

system that contains nine small limit cycles. To our knowledge it is the best

symbolic result so far, and provides a rigorous proof for the existence of nine

limit cycles in a cubic system.
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Cambridge University Press.

[4] Bautin, N. (1952). On the number of limit cycles appearing with variation
of the coefficients from an equilibrium state of the type of a focus or a center.
Matematicheskii Sbornik, 72(1):181–196.

[5] Boyd, J. P. (2001). Chebyshev and Fourier spectral methods. Courier Dover
Publications.

[6] Boyd, J. P. (2009). Large-degree asymptotics and exponential asymptotics
for Fourier, Chebyshev and Hermite coefficients and Fourier transforms.
Journal of Engineering Mathematics, 63(2-4):355–399.

[7] Corless, R. M., Jeffrey, D. J., Monagan, M. B., and Pratibha (1997). Two
perturbation calculations in fluid mechanics using large-expression manage-
ment. Journal of Symbolic Computation, 23(4):427–443.

[8] Corliss, G. and Chang, Y. (1982). Solving ordinary differential equations
using taylor series. ACM Transactions on Mathematical Software (TOMS),
8(2):114–144.

[9] Cuyt, A. (1983). The QD-algorithm and multivariate Padé-approximants.
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Chapter 2

High-accuracy series solution for

two-dimensional convection in a

horizontal concentric cylinder∗

2.1 Introduction

Heat transfer via natural convection in horizontal concentric cylinders has

attracted much attention, due to its wide practical application and interest-

ing dynamical behavior. Following the first comprehensive study by Liu, et

al.(1961) [17] using air as the fluid, many experiments were conducted in the

1960’s by Bishop & Carley [5], Grigull & Hauf [12] and Lis [16] with different

diameter ratio of cylinders and different Grashof number. Powe et al.[19, 20]

summarized their results on the convective flow of air and categorized the

flow pattern into steady flow, oscillatory flow, three-dimensional spiral flow

and multicellular flow. Labonia & Guj [15] conducted experiments using large

Rayleigh number A ∈ [0.9E5, 3.3E5] and observed chaos (as one might expect

nowadays).

In terms of computational studies, Mack and Bishop [18] applied a per-

turbation expansion in the Rayleigh number A and obtained a series solution

of second order. They suggested an approximation for a limiting value Alim

above which their solution was not to be trusted; by implication, it was con-

∗A version of this chapter has been submitted to SIAM Journal on Applied Mathematics.
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sidered trustworthy for A < Alim. We will pursue this solution method to very

high order in this present work, and give reliable accurate estimates for Alim.

Custer & Shaughnessy [8] investigated very low Prandtl number P fluids

using a double perturbation expansion in powers of the Grashof and Prandtl

numbers. Kuehn & Goldstein [14] conducted both experimental and numerical

(finite difference) studies for air and for water. Fant et al. [11] explored the

limiting case of zero Prandtl number using a so-called high Rayleigh number

small gap asymptotic expansion. Yoo [21] gives a dual steady solution using

a finite difference method. Desrayaud et al. reported a multi-cellular steady

state solution with small radius ratio R = 1.14 using a finite difference method

[10] For a more comprehensive review please refer to [3].

Most numerical studies are conducted using finite difference methods. Each

study chooses some specified settings of Prandtl number (type of the fluent),

Rayleigh number (heat difference of the cylinders) and radius ratio (shape of

the concentric cylinder). In the case of series solution, Mack & Bishop [18]

gave a second order series solution valid for low Rayleigh number A. Further,

their estimate of the upper limit of validity of their solution, which they called

Alim, was of unknown reliability. They used a perturbation expansion with

respect to Rayleigh number to obtain the steady state solution of the stream

and heat equations. Corless et al. [7] investigated the problem in a computer

algebra point of view. In [7] the series solution of the problem was extended

to 10th order by computer algebra using the then-novel technique of Large

Expression Management. The principal concern of that work was efficient

computer algebra.

In this article, we will extend that series solution to very high order in

the Rayleigh number for arbitrary values of the parameters. The choice of

parameters do influence the accuracy of the series solution, which will be

discussed in section 5. We provide a reliable method for assessing precisely

how small A must be for the solution to be valid.

Following Mack & Bishop’s method, the same expansion is applied with an

additional Fourier expansion to remove the θ dependence. A direct integra-

tion algorithm is developed to systematically solve the differential equations
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generated from the double expansions. The pattern of the symbolic solution is

recognized as some general form, and applied to develop a much more efficient

algorithm using the method of unknown coefficients.

The current approach generates a symbolic program that, given values for

Prandtl number P , and radius ratio R, can evaluate all terms up to O(A30)

exactly or in arbitrary high precision. Error analysis for the latter is discussed

in section five as well. At this high order, reliable techniques for detecting and

locating singularities become available. Here, we use the Quotient-Difference

(QD) method to identify the structure of the singularities of the computed

series solution, and thereafter provide an estimate on the validity of the serious

solution.

2.2 Model Equations

Following the discussion of Mack and Bishop [18], the model contains two

equations:

∇4ψ = A · L(T ) +
1

P · r
∂(∇2ψ, ψ)

∂(r, θ)
, (2.1)

∇2T =
1

r

∂(T, ψ)

∂(r, θ)
, (2.2)

where ψ is the stream function, T is temperature, P is the Prandtl number

and A is the Rayleigh number, and

L(T ) = sin(θ)
∂T

∂r
+

cos(θ)

r

∂T

∂θ
,

∂(T, ψ)

∂(r, θ)
=
∂T

∂r

∂ψ

∂θ
− ∂T

∂θ

∂ψ

∂r
,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
, ∇4 = ∇2(∇2) .

Note that both the stream function ψ and temperature T are nondimen-

sional quantities. They have the following relationship with the dimensional
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r′o

r′iT ′
i

T ′
o

θ

Figure 2.1: Sketch of the concentric cylinders

quantities (all dimensional quantities are marked with primes).

r =
r′

r′i
, r′ ∈ [r′i, r

′
o] ,

T =
T ′ − T ′

o

T ′
i − T ′

o

, T ′ ∈ [T ′
i , T

′
o] ,

ψ =
ψ′

α′
,

P =
ν ′

α′
,

A =
gβ′

ν ′α′
(T ′

i − T ′
o)r

3
i .

(2.3)

Here r′i is the radius of the inner cylinder, r′0 is the radius of the outer cylinder,

and their ratio is R =
r′
0

r′i
. We define r = r′

r′i
, where r′i ≤ r′ ≤ r′o such that

1 ≤ r ≤ R. T ′
i and T ′

o represent the temperature of inner and outer boundary

respectively. α′ = k′

ρ′C′

p
is the fluid thermal diffusivity, k′ is the thermal con-

ductivity, ρ′ is the density and C ′
P is the specific heat capacity. ν ′ is the fluid

kinematic viscosity, g′ is the acceleration due to gravity and β′ is coefficient of

volumetric expansion.
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The equation (2.1) and (2.2) obey the following boundary conditions:

T (1, θ) = 1 , (2.4)

T (R, θ) = 0 , (2.5)

ψ(1, θ) = ψ(R, θ) =
∂(ψ)

∂(r)
(1, θ) =

∂(ψ)

∂(r)
(R, θ) = 0 , (2.6)

∂T

∂θ
(r, 0) = ψ(r, 0) =

∂2ψ

∂θ2
(r, 0) = 0 , (2.7)

∂T

∂θ
(r, π) = ψ(r, π) =

∂2ψ

∂θ2
(r, π) = 0 . (2.8)

The boundary condition (2.4) and (2.5) define the temperatures of the annulus

boundaries. The condition (2.6) ensures no flow passes through the boundaries.

The initial conditions (2.7) and (2.8) define the flow to be symmetric with

respect to the vertical line of θ = 0 and θ = π.

2.3 Solution by computation sequences: Per-

turbation in Rayleigh number

Assume that T and ψ can be expanded in a convergent power series with

respect to the Rayleigh number A,

T =
∞∑

j=0

AjTj(r, θ) , (2.9)

ψ =
∞∑

j=1

Ajψj(r, θ) . (2.10)

Substitute these power series in to equations (2.1) and (2.2), and isolate the

coefficients of the same powers of A. This yields two infinite sets of equations,

∇2Tk =
1

r

k−1∑

j=0

∂(Tj, ψk−j)

∂(r, θ)
, k = 0, 1, 2, . . . (2.11)
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∇4ψk =
1

P · r

k−1∑

j=1

∂(∇2ψj, ψk−j)

∂(r, θ)
+ L(Tk−1), k = 1, 2, 3, . . . (2.12)

According to the series expansion, the boundary conditions become

T0(1, θ) = 1 , (2.13)

T0(R, θ) = 0 , (2.14)

Tj(1, θ) = Tj(R, θ) = 0, j = 1, 2, 3, . . . , (2.15)

∂Tj
∂θ

(r, 0) =
∂Tj
∂θ

(r, π) = 0, j = 0, 1, 2, . . . , (2.16)

ψj(1, θ) =
∂ψj
∂r

(1, θ) = ψj(R, θ) =
∂ψj
∂r

(R, θ) = 0, j = 1, 2, 3, . . . , (2.17)

ψj(r, 0) =
∂2ψj
∂θ2

(r, 0) = ψj(r, π) =
∂2ψj
∂θ2

(r, π) = 0, j = 1, 2, 3, . . . . (2.18)

We further expand ψk and Tk in Fourier series with respect to θ,

Tk(r, θ) =
k∑

m=0

Tmk (r) cos(mθ), k = 0, 1, 2, . . . , (2.19)

ψk(r, θ) =
k∑

m=0

ψmk (r) sin(mθ), k = 1, 2, 3, . . . , (2.20)

to remove the θ dependence. In the Fourier series, the odd numbered terms are

zero if k is even, and even numbered terms are zero if k is odd. Substituting

the Fourier series into equations (2.11) and (2.12) yields two infinite sequences

of ordinary differential equations for functions Tmk (r) and ψmk (r) which only

depend on r. These new equations are of Euler type:

(
d2

dr2
+

1

r

d

dr
− m2

r2

)
Tmk (r) = Rm

k (r) , (2.21)

(
d2

dr2
+

1

r

d

dr
− m2

r2

) (
d2

dr2
+

1

r

d

dr
− m2

r2

)
ψmk (r) = Smk (r) , (2.22)
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where the inhomogeneous parts Rm
k (r) and Smk (r) are in terms of lower order

Tmk (r) and ψmk (r), and always have the form
∑
Cir

α lnβ(r). Ci i = 0, 1, 2 · · ·
form a computation sequence, because each of them is defined in terms of

previously computed Ck or Kℓ, where k, ℓ < i. The general solutions of these

Euler type equations are summations of homogeneous solutions and particular

solutions. The homogeneous solutions are as follows,

TH,
m
k =




K1 +K2 ln(r) if m = 0 ,

K1r
−m +K2r

m if m 6= 0 ,
(2.23)

ψH,
m
k =





K1 +K2 ln(r) +K3r
2 +K4 ln(r)r2 if m = 0 ,

K1/r +K2r +K3r
3 +K4 ln(r)r if m = 1 ,

K1r
−m +K2r

−m+2 +K3r
m +K4r

m+2 if m 6= 0, m 6= 1 ,

(2.24)

whereK1, K2, K3 andK4 are unknown coefficients directly solvable the bound-

ary conditions. The particular solutions given the inhomogeneous parts in

terms of Cα,βr
α(ln(r))β are always computable. We use Maple to do the

bookkeeping of the inhomogeneous terms and compute the particular solu-

tions of the equations (2.21) and (2.22). Observe that in (2.22) the operator

( d
2

dr2
+ 1

r
d
dr

− m2

r2
) is applied twice, so a program that computes the particular

solution of (2.21) can be used to find the solution of (2.22) as well. In the fol-

lowing section we will give an algorithm that computes the particular solution

of (2.21).

2.3.1 Direct integration method

Equation (2.21) can be integrated using substitutions and an “integrating fac-

tor”. For an inhomogeneous term in general form Crα(ln(r))β, we have

(
r2 d

2

dr2
+ r

d

dr
−m2

)
T = Crα(ln(r))β . (2.25)
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By linearity we may take C = 1 without loss of generality. We apply the

substitution x = ln r to factorize the operator on T .

(
d2

dx2
−m2)T = (

d

dx
+m)(

d

dx
−m)T = eαxxβ . (2.26)

The equation is separated into two similar ones,

(
d

dx
+m)v = eαxxβ , (2.27)

(
d

dx
−m)T = v , (2.28)

and (2.27) is integrated first (order does not matter since these operators

commute†). The second substitution v = ueαx is introduced such that v′ =

(u′ + αu)eαx and (2.27) becomes

du

dx
+ (α+m)u = xβ . (2.29)

Suppose α+m 6= 0, (2.29) is integrated using the integration factor e(α+m)x,

u = e−(α+m)x

∫
xβe(α+m)xdx = e−(α+m)x

β∑

k=0

γke
(α+m)xx(β−k) =

β∑

k=0

γkx
(β−k) ,

(2.30)

where γ0 = 1
α+m

, γj = −γj−1(β−j+1)

α+m
, j = 1, 2, . . . , β. Thus, according to

v = ueαx and x = ln(r),

v = eαx
β∑

k=0

γkx
(β−k) =

β∑

k=0

γkr
α ln(r)(β−k) ,

γ0 =
1

α+m
, γj = −γj−1(β − j + 1)

α+m
, j = 1, 2, . . . , β .

(2.31)

†That is, we could equally well have chosen to integrate instead the pair ( ddx −m)u =

eαxxβ followed by ( ddx −m)T = u in that order.
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T 0
0 ψ1

1 ψ2
2 ψ1

3 ψ2
4 ψ1

5 ψ2
6

T 1
1 T 0

2 ψ3
3 ψ4

4 ψ3
5

...

T 2
2 T 1

3 T 0
4 ψ5

5
...

T 3
3 T 2

4 T 1
5

T 4
4 T 3

5

T 5
5

k=0 k=1 k=2 k=3 k=4 k=5 k=6

Figure 2.2: Computation routine

For the special case α+m = 0, equation (2.29) degenerates into u′ = xβ which

has the solution

u =
1

β + 1
xβ+1 ,

v =
1

β + 1
xβ+1eαx =

1

β + 1
ln(r)β+1rα .

(2.32)

Observe that v is also in the form of
∑
Crα lnβ(r), so (2.28) can be solved

similarly to obtain T which is the particular solution of (2.21).

A Maple procedure has been written to systematically solve Tmk and ψmk
following a specific order of the equations (see Figure 2.2). The solution of

T 0
0 (r) is computed when the program starts. Then for each higher order k > 0,

ψmk are computed first followed by Tmk , where m is increasing.

The program contains two stages. In the first stage, the program computes

the solution symbolically, where the evaluation sequence of each unknown

constant is collected rather than solved. The symbolic solution is computed to

an order specified by the call. In the second stage, all the evaluation sequences

are evaluated following the same routine as in Figure 2.2 to determine the

18



unknown coefficients.
The first several symbolic solutions generated by our program are printed

here:

T 0
0 = K1 +K2 ln(r)

ψ1
1 =

K3

r
+ 1/16K2r

3 ln (r) +K6r ln (r) − 1/32C1r
3 +K5r

T 1
1 = − 1/4

C4

r
− 1/2

K2K3

ln
(r) r +

1

128
K2

2r
3 ln (r) + 1/4C3 ln (r) r + 1/4K2K6r (ln (r))

2

− 1

512
C2r

3 +K8r

ψ2
2 = K10 −

1

128
C16r

2 − 1

9216
C17r

4 +
K9

r2
− 1

12288
1/PK2

2r6 (ln (r))
2

+
1

147456
C11r

6 ln (r)

− 1

3538944
C12r

6 +
1

128
C15r

2 ln (r) − 1

64
C9r

2 (ln (r))
2

+
1

2304
C13r

4 ln (r) − 1

384
C7r

4 (ln (r))
2

T 0
2 =

1

24576
K2

3r6 (ln (r))
2 − 1

294912
C18r

6 ln (r) +
1

884736
C19r

6 +
1

512
K2

2K6r
4 (ln (r))

3

+
1

2048
C20r

4 (ln (r))
2 − 1

4096
C21r

4 ln (r) − 1

16384
C22r

4 + 1/16K2K6
2r2 (ln (r))

3

+
1

128
C23r

2 (ln (r))
2

+
1

512
C24r

2 ln (r) − 1

2048
C25r

2 + 1/16C26 (ln (r))
2

− 1/24K2K3K6 (ln (r))
3

+ 1/8
K2K3

2 ln (r)

r2
+ 1/8

C27

r2
+K13 +K14 ln (r)

T 2
2 = − 1/32C37 +K16r

2 − 1

331776
C32r

4 +
1

64

C40

r2
− 1

384
C33r

2 (ln (r))
3 − 1

768
K2

2K6r
4 (ln (r))

3

+ 1/16
C38 ln (r)

r2
− 1

196608
K2

31/P r6 (ln (r))
2 − 1/16C36 ln (r) − 3/16K2K3K6 (ln (r))

2

+
1

2359296
C28r

6 ln (r) − 1

56623104
C29r

6 − 1

1024
C35r

2 ln (r) +
1

512
C34r

2 (ln (r))
2

− 1

55296
C31r

4 ln (r) − 1

4608
C30r

4 (ln (r))
2

· · · · · ·

The unknown constants K1, K2, . . .s are introduced when computing the

general solutions of the homogeneous equations, and they are efficiently com-

putable from boundary conditions. The C ′s are introduced during the compu-

tation of particular solutions, and they generally depend on the radius ratio
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R, Prandtl number P and previously defined C ′s and K ′s. Maple does all

the bookkeeping of the evaluation information contained in computation se-

quences of these unknown constants. Each time a symbolic solution of certain

Tmk or ψmk is computed, the coefficients of the rα ln(r)β terms are examined.

Those coefficients that contain more than one monomial are substituted using

a new C, and recorded in the appropriate computation sequence. In this way,

the size of the input for the direct solving procedure are kept under control,

which makes it possible to compute symbolic solutions to higher orders.

During the computation process, some K may share the same value as C,

but we only keep their relationship and never substitute using the C, since the

computational efficiency gained by doing so will be offset by more complicated

bookkeeping.

This algorithm successfully computed solution to the 18th order, which

contains totally 111557 terms, 560 K ′s, 83286 C ′s, used about 22 hours and

41140.2MB memory.

2.3.2 The method of undetermined coefficients

With a careful investigation and verification we found the pattern of the sym-

bolic solutions of each order, so that we can attack the expression swell in the

intermediate steps. For k ≥ 1, Tmk and ψmk obey the following general form‡

Tmk =

−m/2∑

α=−k/2

1+2α+k∑

β=0

CTm
k ,2α,βr

2α lnβ r +

m/2∑

α=−m/2+1

k−m/2+α+1∑

β=0

CTm
k ,2α,βr

2α lnβ r

+

3k/2−1∑

α=m/2+1

k+1∑

β=0

CTm
k ,2α,βr

2α lnβ r +
k∑

β=0

CTm
k ,3k,βr

3k lnβ r ,

(2.33)

‡The uncommon half integers in α are used to summarize the even and odd case equations
into one general form.
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ψmk =

−m/2−1∑

α=−k/2+1

2α+k−1∑

β=0

Cψm
k ,2α,β

r2α lnβ r +

m/2∑

α=−m/2

k−m/2+α∑

β=0

Cψm
k ,2α,β

r2α lnβ r

+

3k/2∑

α=m/2+1

k∑

β=0

Cψm
k ,2α,β

r2α lnβ r .

(2.34)

For a proof of this general form, please refer to Appendix A.

Using (2.33) and (2.34), we designed a new algorithm that starts from the

known form of the symbolic solution and evaluates the coefficients according

to that. Similar to the direct integration method, the coefficients are still

distinguished, where the K’s are general solution coefficients, and the C’s

are particular solution coefficients. This is not shown in the above general

form, but is used in the algorithm to construct the Tmk and ψmk . It is natural

to distinguish K and C, since when the solutions are substituted to (2.21)

and (2.22), the terms that contain K’s vanish and those contain C’s equal

the inhomogeneous terms. Therefore, K’s are evaluated using the boundary

conditions and C’s are computed using the unknown coefficient method.

In the new algorithm, solutions of Tmk , ψmK and their corresponding right

hand sides Rm
k , Smk are stored in tables. The table structure helps to demon-

strate how the terms containing C’s are mapped to the inhomogeneous parts.

We also take advantage from less storage space and faster accessing time in-

stead of using an explicit polynomial data structure. In the tables, the row

index is α and column index is β which are powers of r and ln(r) respectively.

The entries are the corresponding coefficients C or K. The procedure only

needs to write down the coefficients of each entry other than the whole ex-

pression containing rα ln(r)β. To demonstrate the table structure, we take the

equation (
d2

dr2
+

1

r

d

dr
− 1

r2

)
T 1

3 = R1
3 , (2.35)
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rα\ln(r)β

β = 0 β = 1 β = 2 β = 3 β = 4
α = −3 C1 C2 0 0 0
α = −1 K1 C3 C4 C5 0
α = 1 K2 C6 C7 C8 C9

α = 3 C10 C11 C12 C13 C14

α = 5 C15 C16 C17 C18 C19

α = 7 C20 C21 C22 C23 C24

α = 9 C25 C26 C27 C28 0

Table 2.1: Table form of T 1
3 , where, the K’s are coefficients of homogeneous

solution, C’s are coefficients of particular solution. For example, K1 is the co-
efficient of K1r

−1, where α = −1 and β = 0; C3 is the coefficient of C3r
−1ln(r),

where α = −1 and β = 1.

as an example where

T 1
3 =K1r

−1 +K2r + C1r
−3 + C2r

−3 ln2(r) + C3r
−1 ln(r) + C4r

−1 ln2(r) + C5r
−1 ln3(r)

+ C6r ln(r) + C7r ln2(r) + C8r ln3(r) + C9r ln4(r) + C10r
3 + C11r

3 ln(r) + C12r
3 ln2(r)

+ C13r
3 ln3(r) + C14r

3 ln4(r) + C15r
5 + C16r

5 ln(r) + C17r
5 ln2(r) + C18r

5 ln3(r)

+ C19r
5 ln4(r) + C20r

7 + C21r
7 ln(r) + C22r

7 ln2(r) + C23r
7 ln3(r) + C24r

7 ln4(r)

+ C25r
9 + C26r

9 ln(r) + C27r
9 ln2(r) + C28r

9 ln3(r) ,

(2.36)

and

R1
3 =R1r

−5 +R2r
−5 ln(r) +R3r

−3 +R4r
−3 ln(r) +R5r

−3 ln2(r) +R6r
−1 +R7r

−1 ln(r)

+R8r
−1 ln2(r) +R9r

−1 ln3(r) +R10r +R11r ln(r) +R12r ln2(r) +R13r ln3(r) +R14r ln4(r)

+R15r
3 +R16r

3 ln(r) +R17r
3 ln2(r) +R18r

3 ln3(r) +R19r
3 ln4(r) +R20r

5 +R21r
5 ln(r)

+R22r
5 ln2(r) +R23r

5 ln3(r) +R24r
5 ln4(r) +R25r

7 +R26r
7 ln(r) +R27r

7 ln2(r)

+R28r
7 ln3(r) ,

(2.37)

are written in Table 2.1 and Table 2.2 respectively.

In order to compute the inhomogeneous coefficients C’s, the solution is

substituted into (2.35). A term Crα ln(r)β in Tmk will be mapped by the
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rα\ln(r)β

β = 0 β = 1 β = 2 β = 3 β = 4
α = −5 R1 R2 0 0 0
α = −3 R3 R4 R5 0 0
α = −1 R6 R7 R8 R9 0
α = 1 R10 R11 R12 R13 R14

α = 3 R15 R16 R17 R18 R19

α = 5 R20 R21 R22 R23 R24

α = 7 R25 R26 R27 R28 0

Table 2.2: Table form of R1
3. R’s are dummy variables representing the coef-

ficients of each term. For example, R2 is the coefficient of R2r
−5ln(r), where

α = −5 and β = 1.

( d
2

dr2
+ 1

r
d
dr

− 1
r2

) operator into

(
d2

dr2
+

1

r

d

dr
− 1

r2

)
(Crα ln(r)β)

=C(α2 −m2)rα−2 ln(r)β + 2Cαβrα−2 ln(r)β−1 + Cβ(β − 1)rα−2 ln(r)β−2 .

(2.38)

Therefore, the elements in row α of the Table 2.1 will be mapped into row

α−2 of Table 2.2. This mapping can be written into a matrix form. For

instance, we write the C’s in the fourth row (α = 3) of Table 2.1 as a vector

C =< C10, C11, C12, C13, C14 >
T , and the fourth row (α = 1) of Table 2.2 into

a vectorR =< R10, R11, R12, R13, R14 >
T . Then the mapping has the matrix

form M1C = R, where

M1 =




α2 −m2 0 0 0 0

2αβ α2 −m2 0 0 0

β(β − 1) 2α(β + 1) α2 −m2 0 0

0 (β + 1)(β) 2α(β + 2) α2 −m2 0

0 0 (β + 2)(β + 1) 2α(β + 3) α2 −m2



,

(2.39)

α = 3, β = 1 and m = 1. This linear system can be generalized for any row

of Tmk and Rm
k table. Suppose that there are j nonzero elements in row α of

given Tmk table, then the linear system between this row and corresponding
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α−2 row in Rm
k will have the same matrix form M1C = R, where

M1 =




α2 −m2 0 0 0 0 0

2αβ α2 −m2 0 0 0 0

β(β − 1) 2α(β + 1)
. . . 0 0 0

0 (β + 1)(β)
. . . . . . 0 0

0 0
. . . . . . α2 −m2 0

0 0 0
. . . 2α(β + j − 2) α2 −m2




, (2.40)

and β is the powers of ln(r) of the first element in the α row of Tmk table.

We can store the solutions of the linear system M1C = R for further

numerical evaluation. However, it is not efficient to do so. A better way that

consumes less space is to store the matrix M1 and vector R. When evaluating

C’s, the vector R is substituted as numerical values.

Similarly, ( d
2

dr2
+ 1

r
d
dr

− 1
r2

)( d
2

dr2
+ 1

r
d
dr

− 1
r2

) maps Crα ln(r)β into

(
d2

dr2
+

1

r

d

dr
− 1

r2

) (
d2

dr2
+

1

r

d

dr
− 1

r2

)
(Crα ln(r)β)

=(α2 −m2)((α− 2)2 −m2)rα−4 lnβ r

+
[
2(α2 −m2)(α− 2)β + 2αβ((α− 2)2 −m2)

]
rα−4 lnβ−1 r

+
[
(α2 −m2)β(β − 1) + 4α(α− 2)β(β − 1) + β(β − 1)((α− 2)2 −m2)

]
rα−4 lnβ−2 r

+ (4α− 2)β(β − 1)(β − 2)rα−4 lnβ−3 r + β(β − 1)(β − 2)(β − 3)rα−4 lnβ−4 r

(2.41)

Therefore, the row α in ψmk table is mapped into α−4 row in the Smk table. A

similar linear system can be constructed as M2C = S, where C is the vector

consisting of j elements from row α in ψmk , and S is the corresponding row in
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Smk table. The matrix M2 has the following form,

M2 =




a1 0 0 0 0 0 0 0

b1 a2 0 0 0 0 0 0

c1 b2 a3 0 0 0 0 0

d1 c2 b3
. . . 0 0 0 0

e1 d2 c3
. . . . . . 0 0 0

0 e2 d3
. . . . . . . . . 0 0

0 0 e3
. . . . . . . . . aj−1 0

0 0 0
. . . . . . . . . bj−1 aj




, (2.42)

and

ai =(α2 −m2)((α− 2)2 −m2) ,

bi =(α2 −m2)2(α− 2)(β + i− 1) + 2α(β + i− 1)((α− 2)2 −m2) ,

ci =(α2 −m2)(β + i− 1)(β + i− 2) + 4α(α− 2)(β + i− 1)(β + i− 2)

+ (β + i− 1)(β + i− 2)((α− 2)2 −m2) ,

di =(4α− 2)(β + i− 1)(β + i− 2)(β + i− 3) ,

ei =(β + i− 1)(β + i− 2)(β + i− 3)(β + i− 4) .

(2.43)

Here i = 1, 2, . . . , j and β is the power of ln(r) in the first element in the α

row of ψmk table.

With the help of the table structure, evaluating the inhomogeneous coeffi-

cients now turns into the process of solving a series of small linear system. We

computed the condition number for all the matrices M ’s up to 30th order. The

average condition number is around 3.7 and maximum one is 10.4. Therefore,

solving such linear systems numerically gives accurate solutions.

The new algorithm successfully computed series solution to the 30th order,

which totally used about 24 hours and 14196.6MB memory.
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2.4 Cost of computation

Despite the space management techniques being used here, the size of the

solutions and the corresponding computation sequences grow very fast. For

example, in the direct integration method, T8 contains 715 terms with 67092

entries contained in the computation sequence for those terms; ψ8 contains 496

terms with 19796 entries in its corresponding computation sequence. Demon-

strated in the left graph of Figure 2.3, the growth in number of terms is O(k3)§

In the right graph of Figure 2.3, the number of entries in the computation se-

quence used in each order Tk and ψk have a growth rate of O(k6)¶. In fact,

the construction of the coefficients in Tk and ψk involves O(k6) operations.

Each operation using exact rational arithmetic has a cost that depends on

the length of the integers involved, but for this problem the growth is modest

and at 10th order the longest integers are about 100 digits long. Therefore a

solution truncated at order N , for example computing TN =
∑N

k=0A
kTk(r, θ)

has spatial complexity O(13 + 23 + · · · +N6) = O(N7).

The difference between the size of kth order solutions and the number of

entries involved to compute them means the intermediate expressions during

the kth order computation are much larger than the actual size of the same

order solution. In fact, there are many terms that share the same monomial

of rα lnβ(r) in the intermediate expression. If these terms can be condensed

without the loss of information, the solution process could be much improved.

The new algorithm using unknown coefficients is motivated by this intention.

In the new algorithm, solutions are constructed using the general form

(2.33) and (2.34). The redundant computations in the first algorithm are

eliminated since the coefficients C of the solutions have one to one mappings

with the coefficients R in the corresponding right hand sides. Solving the C’s

in the new algorithm does not involve the integration process which produces

the redundant terms; instead it only requires the evaluation of several linear

systems. For each Tmk or ψmk there are 2k lower triangular matrices that need

§It can be directly computed from the general form.
¶The growth of the computation sequence is obtained based on observation

26



Figure 2.3: Left figure is the growth of number of terms in Tk and ψk (O(k3));
the right one is the growth of number of entries in the computation sequence
for Tk and ψk (O(k6)).

to be solved, where the maximum size of the matrices is k×k. The spatial cost

of computing Tmk or ψmk is then O(2k × k2) which is O(k3). Then a solution

truncated at order N , has spatial complexity O(13 + 23 + · · ·+N3) = O(N4).

Compared to the complexity of the direct integration method which is O(N7),

the new algorithm is seen to be much better.

2.5 The accuracy of the series solution

Both of the algorithms are based on the series expansion with respect to

Rayleigh number A, where

T =
∞∑

k=0

AkTk(r, θ) , ψ =
∞∑

k=1

Akψk(r, θ) .

One question is how accurate is the solution being computed. We need to

identify the error on the Tk and ψk. Further, given the coefficients being

accurate, one also wants to know how well the series solutions represent the

actual solutions.
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Recall that in the above symbolic-numerical approaches, each Tk and φk

are computed or written down symbolically in first step. These symbolic so-

lutions are exact, since they strictly satisfy the equations (2.11), (2.12), and

corresponding boundary conditions. The round off errors are introduced dur-

ing the evaluation on the unknown coefficients K’s and C’s. Since higher

order solutions dependent on lower order ones, the error accumulates during

the evaluation process.

Figure 2.4: Left figure is the log plot of residuals on Tk and φk with R = 2
P = 0.02 k ≤ 30, the right one is the log of magnitude of Tk and φk with same
parameter.

We use the residual of equation (2.11) and (2.12) where the numerical

solutions are substituted in, to estimate the numerical error. For Nth order

truncated solutions T̂N and ψ̂N , the residuals are defined as

εψk
:= ∇4ψ̂N − A · L(T̂N) − 1

P · r
∂(∇2ψ̂N , ψ̂N)

∂(r, θ)
,

εTk
:= ∇2T̂N − 1

r

∂(T̂N , ψ̂N)

∂(r, θ)
.

(2.44)

The size of the residual varies according to solution with different order,

Prandtl number P , and radius ratio R. However they are all similar in size

given the same digits of accuracy defined by reserved word Digits in Maple.
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In the left graph of Figure 2.4, the log residual of Tk and φk are plotted for the

R = 2, P = 0.02 case. Note that the residuals are functions in r and θ, a local

maximum of the residual is computed in the range of 1 ≤ r ≤ R, 0 ≤ θ ≤ π.

From Figure 2.4 we can see that the residuals are very small, and the errors are

slowly adding up. In Figure 2.5, the residual of T30 is computed with r ∈ [1, 2]

and θ ∈ [0, π]. The residual oscillates with in a bound when θ variates, but

increases dramatically when r increase. However, the maximum size of the

residual is very small.

Figure 2.5: Residual of T30.

The residual analysis confirms the computation to be very accurate, but

the series solution may not always represent the real solution. Traditionally,

one more higher order solution is considered to be better, when higher-order

terms add a small correction to the overall sum (Custer & Shaughnessy [8]). It

is also quite common to truncate just before the smallest terms. However, we

need to point out that the series solution may or may not converge in either

case. We consider a series solution to be valid when A is inside the radius of

convergence rA, controlled by nearest pole location. According to Darboux’s

principle [6], given a series expansion of a meromorphic function, the radius of
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convergence is determined by the nearest pole in the complex plane. Therefore,

the pole locations of the series solution needs to be identified.

A possible way of obtaining the pole locations is by Padé approximants [4].

Padé approximants provides a rational function approximation based on the

series expansion. The denominator of the approximation gives the information

on pole locations. However, since the numbers of the poles and their structures

are not known, it is hard to distinguish between the poles and noise. Padé

approximants also faces severe difficulty when a defect happens where a pole

is accompanied by a nearby zero [1]. Unfortunately, based on the results from

the Padé approximants, the computed series solutions has many defects (as

shown in Figure 2.6).

The QD method is used here to locate the nearby poles of the series ex-

pansion with respect to the Rayleigh number A. The QD algorithm does not

require any information on the poles a priori [13, 2, 9]. Unlike the Padé ap-

proximants, it provides a mechanism that extracts pole location from the series

input‖. Further more, the defect of nearby pole and zero have no significant

influence on QD method.

In order to demonstrate the performance of the QD algorithm on the defect,

10 input equations with a pole and a nearby zero are constructed as the input.

The equations used to generate the series are as follows,

ex(x− 0.999 · 10(−k))

x− 1 · 10(−k)
, k = 1, 2, . . . , 10 , (2.45)

where k controls how close the defect is from the origin, and 1 ·10(−k) is the ex-

act location of the pole. The distance between the defects and origin decreases

by 10(−1) for each k. The noise ex is multiplied which doesn’t affect the na-

ture of poles and zeros. Each of the equations in (2.45) is then expanded into

Maclaurin series to the 10th order, which are the input of the QD algorithm.

The computed pole locations and errors of the QD algorithm are presented

in Table 2.3. Apparently, a defect near the expansion point has no impact

on the ability of the QD algorithm to accurately locate the pole. In addition

‖The roots of the input series can also be computed if needed.
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k QD output pole location computational error
1 0.010000053 0.53230320 · 10−7

2 0.0010000001 0.55376742 · 10−10

3 0.00010000000 0.55593272 · 10−13

4 0.000010000000 0.55614944 · 10−16

5 0.10000000 · 10−5 0.55617112 · 10−19

6 0.10000000 · 10−6 0.55617329 · 10−22

7 0.10000000 · 10−7 0.55617350 · 10−25

8 0.10000000 · 10−8 0.55617352 · 10−28

9 0.10000000 · 10−9 0.55617353 · 10−31

10 0.10000000 · 10−10 0.55617353 · 10−34

Table 2.3: Accuracy analysis on the examples with nearby defects

the QD algorithm is very accurate even when the radius of convergence of the

series expansion is almost zero. It has been shown [13] that the accuracy of

the QD algorithm will only suffer when there are multiple poles in the same

location or share the same moduli, for example: an essential singularity. In

this case, the essential singularities can be mapped to nonessential singularities

by logarithmic derivative.

Figure 2.6: The singularites and zeros of R = 2, P = 0.02 case (left), and
R = 2, P = 0.7 case (right) in the complex plane

The QD algorithm requires a series input. Both the series solution of

temperature T and stream equation ψ in power series of A can be used. We
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Chapter 3

An application of regular chain

theory to the study of limit

cycles∗

3.1 Introduction

In the field of dynamical systems, an interesting topic is the study of the

number of limit cycles of a given system. For example, Hilbert’s 16th problem

asks for an upper bound of the number of limit cycles for the system

ẋ = F (x, y), ẏ = G(x, y) , (3.1)

where F (x, y) and G(x, y) are degree k polynomials of variables x and y, with

real coefficients. No results are established for generic cubic systems.

In the case of finding small-amplitude limit cycles bifurcating from an ele-

mentary center or a focus point based on focus value computation, the problem

has been completely solved only for generic quadratic systems [3], which can

have three limit cycles in the vicinity of such a singular point. For cubic

systems, James and Llyod obtained [25] a formal construction, via symbolic

computation, of a special cubic system with eight limit cycles. In [52], Yu and

Corless showed the existence of nine limit cycles with the help of a numerical

∗A version of this chapter has been accepted by the International Journal of Bifurcation
and Chaos.
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method for another special cubic system.

Very recently, Lloyd and Pearson [32] claimed to be the first to obtain a

formal construction, via symbolic computation, of a new cubic system with

nine limit cycles. A key step of their derivation is to show that two bivariate

polynomials R1 and R2 have real solutions. They found that the resultant of

R1 and R2 had a real solution and then concluded that R1 and R2 would have

a real common solution. This is not always true. In fact, the existence of a

real solution of the resultant of two bivariate polynomials does not necessarily

imply the existence of a common real solution for the original two polynomial

equations. For example, given R1 = y2 + x + 1 and R2 = y2 + 2x + 1 with

x < y, the resultant of R1 and R2 in y is x2, which has a real solution x = 0.

However the two equations R1 = R2 = 0 actually do not have common real

solutions. In addition, a similar flawed conclusion was made by the authors

when they were claiming that the existence of real solutions for R1 = R2 = 0

was implying the existence of real solutions for a trivariate polynomial systems

Ψ1 = Ψ2 = Ψ3 = 0. Therefore, the proof given by Lloyd and Pearson in [32]

is not complete. (For a more complete explanation, please refer to Appendix

E.)

In the present paper, we formally prove that a specific cubic dynamical

system has nine limit cycles. Our strategy is as follows. Given a cubic dy-

namical system, we reduce the fact that this system has (at least) nine limit

cycles to testing whether a given semi-algebraic set is empty or not. This test

is based on a symbolic procedure capable of producing an exact representation

for each real solution of any system of polynomial equations and inequalities.

Once one such real solution has been found, then this procedure can be halted

and non-emptiness has been formally established. Therefore, our approach

does not have the flaws of [32].

The symbolic computation of small limit cycles involves finding the com-

mon roots of a non-linear polynomial system consisting of n focus values

v0(γ1, . . . , γm), . . . , vn−1(γ1, . . . , γm), where the variables γ1, . . . , γm are the pa-

rameters of the original system. With the help of algorithmic and software

tools from symbolic computation, we are able to compute nine limit cycles
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symbolically, using the same system as that used by Yu & Corless [52]. Unlike

the methods used in previous studies which usually depend on good choices

of free parameters and the values of dependent parameters, the new method

introduces a systematic procedure to symbolically find the maximum number

of limit cycles for a given system. It also provides a symbolic proof on the ex-

istence of the computed number of limit cycles. In addition, center conditions

may be obtained as a by-product.

Symbolic methods for studying and solving non-linear polynomial systems

are of great interest due to their wide range of applications, for example, in

theoretical physics, dynamical systems, biochemistry, to name a few. They are

very powerful tools that surpass numerical methods by giving exact solutions,

whether the number of solutions is finite or not, and by identifying which

solutions have real coordinates.

There are two popular families of symbolic methods, based on different

algebraic concepts: Gröbner bases [7, 4, 6], and regular chains [26, 46, 35, 2,

10]. Gröbner bases methods have gained much attention during the past four

decades due to their simpler algebraic structure: the input polynomial system,

say F , is replaced by another polynomial system, say G, such that both F and

G have the same solution set and geometrical information (dimension, number

of solutions) can easily be read from G.

Methods based on regular chains are relatively new, and have many advan-

tages compared to Gröbner bases methods. For example, they tend to produce

much smaller output [18, 11] in terms of number of monomials and size of co-

efficients. In addition, regular chain methods can proceed in an incremental

manner, that is, by solving one equation after another, against the previously

solved equations. This allows for more efficient implementation and makes

the processing of inequality constrains much easier. These advantages will be

further explained later in this paper.

Given a multivariate polynomial system F in a polynomial ring, for exam-

ple Q[x] over Q, regular chains methods compute the algebraic variety (or zero

set - the set of common complex solutions) of F in the form of a list of finitely

many polynomial sets. Each of these sets is a polynomial system in triangular
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shape and with remarkable algebraic properties; for these reasons, it is called

a regular chain. The algebraic variety of the input system F is given by the

union of the common complex roots of the output regular chains. The notion

of a regular chain was introduced independently by Kalkbrener [26] and, by

Yang and Zhang [46] as an enhancement for notion of a triangular set. In-

deed, the regular chain is a special type of triangular set which avoids possible

degenerate cases that lead to empty solution [11].

One of the main successes of the Computer Algebra community in the last

30 years is the discovery of algorithms, called modular methods, that allow to

keep the swell of the intermediate expressions under control. Even better: with

these methods, almost all intermediate (polynomial or matrix) coefficients fit

in a machine word, making these methods competitive in terms of running

time with numerical methods. Modular methods have been well developed for

solving problems in linear algebra and for computing greatest common divisors

(GCDs) of polynomials [43]. They extend the range of accessible problems

that can be solved using exact algorithms. In the area of polynomial system

solving, the development of those methods is quite recent. They have been

applied to Gröbner bases [1, 42] and primitive element representations [23, 24].

Thanks to sharp size estimates [18], the application of modular methods to

polynomial system solvers based on regular chains has been very successful in

both practice and theory, see [19], opening the door to using fast polynomial

arithmetic [28] and parallelism [36] in the implementation of those solvers. The

modular method of [19] is available in the RegularChains package in Maple.

The rest of the paper is organized as follows. The advantages of incremen-

tal solving are further explained in the next section. The theory of regular

chains and a modular method for solving polynomial systems by means of

regular chains are presented in the third section, together with a number of

examples and related Maple commands. The relationship of limit cycles

and focus values is presented in the fourth section, with an example of focus

value computation using a perturbation method. Then, in the fifth section,

the regular chains method is applied to a generic quadratic system to show

three small-amplitude limit cycles around the origin and to obtain center con-
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ditions. Moreover, with a modular method based on regular chain theory, a

special cubic system is presented to show nine small-amplitude limit cycles in

the vicinity of the origin.

3.2 Incremental solving

The nature of the algebraic problem posed by this application to the study of

dynamic systems and, more precisely, the study of limit cycles require that the

supporting algebraic tools provide the following specifications and properties.

Incremental solving of polynomial systems. Given a polynomial system of

equations, f1 = ... = fm = 0, one would like to solve one equation after another

against the previously solved equations. To be more precise, we first choose a

format for the solutions. Here we consider regular chains. Thus, we can assume

that the common solutions of f1, . . . , fj, for 1 ≤ j < m, are given by finitely

many regular chains T1, ..., Te. Then the common solutions of f1, . . . , fj+1 are

obtained by taking the union of the regular chains computed by executing a

procedure called Intersect and applied to fj+1 and T1, .., Te successively.

The advantages of this approach are numerous. First of all, from a the-

oretical point of view, if {f1, ..., fm} is a regular sequence, then incremental

solving is known to be a very effective process [27, 41, 11, 21].

There are also practical reasons. For instance, information (such as di-

mension, existence of real solutions) may be extracted before completing the

solving of the entire system f1 = ... = fm = 0.

Incremental processing of inequality constraints. Given a component of

the solution set of a system of polynomial equations, one would like to extract

from that component the points that satisfy an inequality constraint, either

of the type f 6= 0 or of the type f > 0. For example, in the application

to limit cycles, one requires the first several focus values vanish, v0 = · · · =

vn−1 = 0, but the last one vn 6= 0. Regular chains provide this facility [9, 12].

That is, for a component encoded by one or several regular chains, one can

extract the points of that component that satisfy a given inequality constraint.

Moreover, the output of this refinement process is again given by a special
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flavor of regular chains, called regular semi-algebraic systems [8]. Therefore,

incremental solving can also be used with inequality constraints.

Practical efficiency. With respect to other algebraic tools for describing so-

lution sets of polynomial systems, regular chains have an advantage in terms

of size [17]. In addition, there are sharp size estimates about the representa-

tion of the solutions of polynomial systems when this representation is done

with regular chains. This is essential in order to design efficient algorithms to

compute these representations.

Moreover, these efficient algorithms are able to take advantages of modular

techniques. We use a standard example to introduce the principle of those

techniques. Consider a square matrix A with integer entries and for which its

determinant d is to be computed exactly. It is well-known that using multi-

precision rational arithmetic will only solve examples of moderate size due to

intermediate expression swell. Let B be a bound on the absolute value of d

and let p1, ..., ps be prime numbers such that their product exceeds 2B and

each of these primes is of machine word size. One computes the determinant

di of A modulo the prime number pi. Then, the determinant d is obtained by

applying the Chinese remainder theorem (CRT) to the residues d1, ..., ds and

the moduli p1, ..., ps. This approach not only avoids intermediate expression

swell, but it allows for using efficient algorithms over finite fields and efficient

implementation techniques in fixed single precision. Last but not least, the

complexity of this modular computation process is less than that of the direct

approach for computing the determinant of A via Gaussian Elimination (or

LU decomposition, etc.) [22].

The following example is introduced to demonstrate the idea of incremental

solving. Given the system

F =





x ,

x+ y2 − z2 ,

y − z3 ,

(3.2)

we want to find the real common roots. The incremental solving algorithm
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processes one additional equation at a time. So it takes the first equation x = 0

and find the real roots, in this case the whole y-z plane (left graph of Fig. 1).

In the second step, the next equation x+ y2 − z2 is taken into computation to

obtain the common roots x = 0, y = ±z (middle graph of Fig. 1). At the last

step, y − z3 is added to compute the final answer {x = 0, y = 0, z = 0}, {x =

0, y = 1, z = 1}, {x = 0, y = −1, z = −1} (right graph of Fig. 1).

Figure 3.1: The incremental solving of (3.2)

3.3 The regular chains method

Similarly to a linear system which can be transformed to a triangular system

by Gaussian elimination, a non-linear polynomial system can be transformed

into one or finitely many systems, such that each of them is in a triangular

shape. Such a system is called a triangular set, in that the main (or leading)

variables of different polynomials are distinct. The notion of a triangular set

was introduced in [39, 44], with the purpose of representing and computing the

set of the common zeros of a given polynomial system. Since a triangular set is

already in triangular form, it is ready to be solved by evaluating the unknowns

one after another using a back-substitution process, as for triangular linear
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systems. For example, the system

F =





x2
4 − 2x3 + x1 ,

x3
3 + 2x2 ,

x2
2x1 − 2x1 + 3 ,

2x2
1 + x1 ,

(3.3)

with ordered variables x1 < x2 < x2 < x4, is a triangular set since the polyno-

mials in it have distinct main variables, which are here x4, x3, x2, x1, respec-

tively.

The backward solving process of a triangular set could sometimes lead to

an empty solution set. In the above example, one solution of the last equation

is x1 = 0, which leads to no solution for x2. To avoid such degenerate cases, the

notion of a regular chain was introduced. A regular chain is a type of triangular

set which guarantees the success of the backward solving process . Regular

chains are constructed by the insight that every algebraic variety is uniquely

represented by some generic points of their irreducible components [2]. These

generic points are given by certain polynomial sets, called regular chains. The

common complex roots of any given multivariate polynomial system can be

described by some finite union of regular chains. Such a family of regular

chains is called a triangular decomposition of the input system.

3.3.1 Some definitions and examples for triangular de-

composition

Before demonstrating the regular chains method, some definitions are given,

followed by illustrative examples. Throughout this section, let Q denote the

rational number field and C the complex number field. Let Q[x] denote the

ring of polynomials over Q, with ordered variables x = x1 < · · · < xn. Let

p be a polynomial of the polynomial ring Q[x] and let F ⊂ Q[x] be a finite

subset. We denote by V (F ) the algebraic variety defined by F , that is, the set

of points in Cn which are common solutions of the polynomials of F .
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Definition 1. If the polynomial p ∈ Q[x] is not a constant, then the greatest

variable appearing in p is called the main variable (or leading variable) of p,

denoted by mvar(p). Furthermore, the leading coefficient and leading monomial

of p, regarded as a univariate polynomial in mvar(p), are called the initial and

the rank of p, denoted by init(p) and rank(p), respectively.

Example 1. Let p := (x1 + 1)x2
2 + 1 ∈ Q[x1, x2], where x1 < x2. Then,

mvar(p) = x2, init(p) = x1 + 1 and rank(p) = x2
2.

Definition 2. Let T ⊂ Q[x] be a triangular set, that is, a set of non-constant

polynomials with pairwise distinct main variables. The quasi-component of T ,

denoted by W (T ), is the set of points in Cn which vanish all polynomials in

T , but none of the initials of polynomials in T . The minimal algebraic variety

containing W (T ), denoted by W (T ), is called the Zariski closure of W (T ).

Note that W (T ) is a subset of V (T ), but may not equal V (T ).

Example 2. Consider the polynomial ring Q[x, y, z], where x < y < z. Then,

the set T := {y − x, yz2 − x} is a triangular set. The quasi-component W (T )

is {(x, y, z) ∈ C3 | x 6= 0, y = x, z2 − 1 = 0}. The Zariski closure W (T ) is

{(x, y, z) ∈ C3 | y = x, z2−1 = 0}. The variety V (T ) is {x = 0, y = 0}∪W (T ).

Definition 3. Let T be a triangular set. A polynomial p is said to be zero

modulo T if W (T ) ⊆ V (p) holds. A polynomial p is said to be regular modulo

T if the dimension of the variety V (p) ∩ W (T ) is strictly less than that of

W (T )†.

Example 3. Let T := {y − x, yz2 − x}. The polynomial y − x is zero modulo

T since we have W (T ) ⊆ V (p). On the other hand, the polynomial z − x

is regular modulo T since V (p) ∩W (T ) is the set of points {(x, y, z) ∈ C3 |
x2 − 1 = 0, y = x, z2 − 1 = 0}, whose dimension is zero, that is, less than the

dimension of W (T ).

Definition 4. A triangular set T ⊂ Q[x] is a regular chain if one of the

following two condition holds:

†The dimension of the empty set is defined as −1.
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(i) T is empty or consists of a single polynomial;

(ii) T \ {Tmax} is a regular chain, where Tmax is the polynomial in T with

largest main variable, and the initial of Tmax is regular modulo T \{Tmax}.

Example 4. The triangular set T := {y− x, yz2 − x} is a regular chain since

{y − x} is a regular chain and y is regular modulo {y − x}.

Definition 5. Let F ⊂ Q[x] be finite, and T := {T1, . . . , Te} be a finite set of

regular chains of Q[x]. We call T a triangular decomposition of V (F ) if we

have V (F ) = ∪ei=1W (Ti). We denote by Triangularize a function for computing

such decompositions.

Example 5. Let F := {y−x, yz2−x}, T1 := {y−x, z2−1} and T2 := {x, y}.
Then, {T1, T2} is a triangular decomposition of V (F ).

The corresponding Maple program is as follows:

with(RegularChains):

F:=[y-x,y*z^2-x];

R:=PolynomialRing([z,y,x]);

dec:=Triangularize(F,R,output=lazard);

map(Equations, dec, R);

which returns,

[[z-1, y-x], [z+1, y-x], [y, x]]

Definition 6. Let T be a regular chain, and p be a polynomial of Q[x]. Let

T := {T1, . . . , Te} be a finite set of regular chains of Q[x]. We call T a regular

split of T w.r.t. p if (1) W (T ) = ∪ei=1W (Ti) and (2) the polynomial p is either

zero or regular modulo Ti, for i = 1, . . . , e. We denote by Regularize a function

for computing such decompositions.

Example 6. Let p := z−1 and T := {y−x, yz2−x}. Let T1 := {y−x, z+1}
and T2 := {y − x, z − 1}. Then {T1, T2} is a regular split of T w.r.t. p.

The Maple program for this example is given by,
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with(ChainTools):

p:=z-1;

T := Chain([y-x, y*z^2-x], Empty(R), R);

reg, sing := op(Regularize(p, T, R));

map(Equations, reg, R);

map(Equations, sing, R);

which returns,

[[z+1, y-x]]

[[z-1, y-x]]

3.3.2 Triangular decomposition algorithm

In this section, we illustrate how to obtain a triangular decomposition of an

input polynomial system.

Given an input set of polynomials F = [P1, . . . , Pm] ⊂ Q[x], we would

like to compute a triangular decomposition of V (F ), that is, regular chains

T1, . . . , Te ⊂ Q[x] such that we have V (F ) = W (T1) ∪ · · · ∪ W (Te). The

algorithm presented here works in an incremental manner, that is, by solving

one input equation after another, against the solutions of the previously solved

equations. The core routine of this algorithm is denoted as Intersect. It takes

a regular chain T and a polynomial P as input, and returns regular chains

T1, . . . , Te, such that we have

V (P ) ∩W (T ) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ V (p) ∩W (T ) . (3.4)

We choose a polynomial p1 with minimum rank from F and remove it from F .

Then, it is intersected with the empty regular chain, and obtain the regular

chain T as p1 itself. Next, the polynomial p2 with minimum rank from the

remaining F is chosen and removed. Then, p2 and the regular chain T are

the input for Intersect, which returns a list of regular chains T1, · · · , Te that

satisfy (3.4). Further, p3 with the minimum rank from the remaining input

F is intersected with each Ti, i ∈ 1, · · · , e, and will give more regular chains
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which also satisfy (3.4). The algorithm will go on until F is empty. A more

detailed description of the algorithm can be found in [11].

In order to illustrate this triangular decomposition process, we compute

the triangular decomposition of V (F ) for the following example. Let F =

[p1, p2, p3], where

p1 := z + y + x2 − 1 ,

p2 := z + y2 + x− 1 ,

p3 := z2 + y + x− 1 ,

(3.5)

with a order x < y < z.

Firstly, p1 is picked and removed from F as the lowest rank polynomial

within the three polynomials, and then is a regular chain T0 = p1 by definition.

Secondly, p2 with the lowest rank is chosen from the remaining two polyno-

mials. Now p2 and T0 are the input of Intersect, which computes V (z+y+x2−
1, z+ y2 +x− 1). The procedure Intersect works as follows. By computing the

resultant of z+y+x2−1 and z+y2+x−1, z is eliminated and we obtain a bivari-

ate polynomial (y−x)(y+x−1). Then T1 := {(y−x)(y+x−1), z+y+x2−1}
is a regular chain‡, with V (z + y + x2 − 1, z + y2 + x − 1) = W (T1). Since

the GCD of z + y + x2 − 1 and z + y2 + x − 1 modulo (y − x)(y + x − 1) is

z+y+x2−1, which is obtained by Maple’s command RegularGcd. Note that

(y − x)(y + x − 1) has two factors. By factorizing it§, we obtain two regular

chains T11 := {y − x, z + y + x2 − 1} and T12 := {y + x − 1, z + y + x2 − 1}
such that we have V (z + y + x2 − 1, z + y2 + x− 1) = W (T11) ∪W (T12).

In the third step, the variety V (p1, p2, p3) is finally computed. This is

equivalent to computing the union of V (p3) ∩W (T11) and V (p3) ∩W (T12).

Let us consider how to compute V (p3) ∩ W (T11). To this end, we first

compute the resultant of z2 + y + x − 1 and z + y + x2 − 1 and obtain

resultant(z2 + y + x− 1, z + y + x2 − 1, z) = (y + x2 + x− 1)(y + x2 − x). We

then compute the resultant of (y+x2 +x−1)(y+x2−x) and y−x, and obtain

‡For this particular regular chain, one can check that W (T1) = V (T1). But this does not
always hold unless the regular chain is zero-dimensional.

§Irreducible factorization over Q is not necessary for computing triangular decomposition.
However, factorization often helps to improve the practical efficiency of polynomial system
solvers based on triangular decomposition.
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resultant((y + x2 + x− 1)(y + x2 − x), y − x, x) = (x2 + 2x − 1)x2. Since the

GCD of (y + x2 + x− 1)(y + x2 − x) and y − x mod (x2 + 2x− 1)x2 is y − x,

and the GCD of z2 + y+x− 1 and z+ y+x2 − 1 mod {(x2 +2x− 1)x2, y−x}
is z + y + x2 − 1, we know that V (p3) ∩W (T11) is the union of zero sets of

{x2 + 2x− 1, y− x, z + y+ x2 − 1} and {x, y− x, z + y+ x2 − 1}, which could

be further simplified as {x2 + 2x− 1, y − x, z − x} and {x, y, z − 1}.
Similarly, V (p3) ∩W (T12) can be decomposed into a union of zero sets of

two regular chains {x, y − 1, z} and {x− 1, y, z}.
To summarize, we have the following triangular decomposition to represent

the zero set of F :





z − x = 0

y − x = 0

x2 + 2x− 1 = 0

,





z = 0

y = 0

x− 1 = 0

,





z = 0

y − 1 = 0

x = 0

,





z − 1 = 0

y = 0

x = 0

. (3.6)

3.3.3 A method based on modular techniques for com-

puting triangular decomposition

For challenging input polynomial systems, the method described in the previ-

ous section may require vast amounts of computing resources (time and space).

This situation can be improved in a spectacular manner by means of so-called

modular techniques, which, broadly speaking, means computing by homomor-

phic images instead of computing directly in the original polynomial ring. We

present below such an improvement for the case of input zero-dimensional

systems whose coefficients are in Q.

Let F = {p1, . . . , pn} ⊂ Q[x]. Recall that x stands for n ordered variables

x1 < · · · < xn. We assume that the variety V (F ) is finite and that the Jacobian

matrix of F is invertible at any point of V (F ). This latter assumption allows

the use of Hensel lifting techniques. The algorithm proposed in [19] computes

a triangular decomposition of V (F ) via the following two-step process:

1. For some prime number ℘, compute a triangular decomposition of V (F mod ℘),
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2. Apply Hensel lifting to recover a triangular decomposition of V (F ) from

that of V (F mod ℘).

Some precautions need to be taken before the algorithm produces correct

answers. In fact, extraneous factorizations or recombinations could occur

when working modulo some “unlucky” prime numbers. Since the same in-

put system F could admit different triangular decompositions, it is possible

that a regular chain obtained modulo ℘ does not match the modular im-

age of any regular chains in a triangular decomposition T1, . . . , Te of V (F ).

In [19], the following example is considered. Let F = [p1, p2] where p1 :=

326x1 − 10x6
2 + 51x5

2 + 17x4
2 + 306x2

2 + 102x2 + 34, p2 := x7
2 + 6x4

2 + 2x3
2 + 12,

with x1 < x2. We have the following triangular decomposition of V (F ), that

is, over Q:

T1 =

{
x1 − 1 = 0 ,

x3
2 + 6 = 0 ,

T2 =

{
x2

1 + 2 = 0 ,

x2
2 + x1 = 0 .

(3.7)

Computing the regular chains that describe V (F mod 7) yields

t1 =

{
x2

2 + 6x2x
2
1 + 2x2 + x1 = 0 ,

x3
1 + 6x2

1 + 5x1 + 2 = 0 ,
t2 =

{
x2 + 6 = 0 ,

x1 + 6 = 0 ,
(3.8)

which are not the images of T1, T2 modulo 7. In order to overcome this diffi-

culty, the notion of equiprojectable decomposition was introduced in [19].

For a given ordering of the coordinates, the equiprojectable decomposition

of a zero-dimensional (that is, with finitely many points) variety V is a canon-

ical decomposition of V into components, each of which being the zero set of a

regular chain. This notion can be defined as follows. Consider the projection

π := V ⊂ An(k̄) → An−1(k̄) that forgets the last coordinate, say x. We define

N(α) := #π−1(π(α)), α ∈ V , that is, the number of the points that share

the same coordinate with α in the x-axis.

The variety V is split into V1, . . . , Vd such that each Vi, i = 1, . . . , d, consists

of the point β ∈ V such that N(β) = i. Then, a similar decomposition process

is applied to each Vi by considering the second last coordinate. Continuing in

this manner yields a partition of C1 ∪ · · · ∪Cd = V , which is a equiprojectable
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decomposition. The key point is that each equiprojectable component Cj is

the zero set of a regular chain Tj, which can be made unique by requiring that

each of its initials is equal to one. Together, those regular chains T1, . . . , Td

form now a canonical triangular decomposition of V .

In the last example, the triangular decomposition, t1, t2 of V (F mod 7),

is not an equiprojectable decomposition, as shown in the left graph of Fig.

2, since for the points which share the same x1 coordinate, only the left and

middle columns have the same number of points (which is two), while the right

column has three points. So the decomposition is rearranged such that the

left and middle columns are represented by one regular chain t′2, and the last

column is another regular chain t′1 (the right graph of Fig. 2). One can use

the Maple’s procedure EquiprojectableDecomposition to compute the regular

chains t′1, t
′
2 from t1, t2, and thus to obtain the equiprojectable decomposition

of the input system.

t′1 =

{
x1 − 1 = 0 ,

x3
2 + 6 = 0 ,

t′2 =

{
x2

1 + 2 = 0 ,

x2
2 + x1 = 0 .

(3.9)

It is obvious that t′1, t
′
2 are equal to T1, T2 mod 7.

t2

t1

t′2

t′1

Fig. 2: Equiprojectable decomposition

Now the modular triangular decomposition will only be lifted after the

equiprojectable decomposition is applied. Another key feature of this approach

based on modular techniques is the size of the prime number ℘. The following

theorem provides an approach for selecting good primes so as to avoid unlucky

reductions.

Definition 7. The height of a non-zero number a ∈ Z, is H(a) := log(|a|). For

a rational number P/Q ∈ Q, GCD(P,Q) = 1, the height is max(H(P ), H(Q)).
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Finally, the height of a polynomial system F ∈ Z[x1, . . . , xm] is the maximum

height of a non-zero coefficient in a polynomial of F .

Theorem 1 (Theorem 1 in [19]). Let F = [p1, . . . , pm] ⊂ Q[x] where each

polynomial has degree at most d and height at most h, Let T = T1, . . . , Te be

the equiprojectable decomposition of V (F ). There exists an A ∈ N−{0}, with

H(A) ≤ a(m, d, h), and, for m ≥ 2,

a(m, d, h) = 2m2d2m+1(3h+ 7log(m+ 1) + 5mlogd+ 10),

such that, if a prime number ℘ does not divide A, then ℘ cancels none of the

denominators of the coefficients of T , and the regular chains T1, . . . , Te reduced

mod ℘ define the equiprojectable decomposition of V (F mod ℘).

Therefore, the set of unlucky primes is finite. Moreover, one can always

find a large enough ℘ that guaranties the success of the modular algorithm

sketched above.

Once the equiprojectable decomposition using some good prime ℘ is com-

puted, the result is ready to be lifted in the sense of Hensel lifting. According

to Hensel’s lemma [20], a simple root r of a polynomial f mod ℘k can be lifted

to root s of f mod ℘k+m, which also holds in the multivariate case. Using this

lemma, given a polynomial system F , its modular triangular decomposition

t = t1, . . . , te over V (F mod ℘) is lifted to tk = tk1, . . . , t
k
e , which is the trian-

gular decomposition of V (F mod ℘2k) [40] . Then, rational reconstruction is

used to recover the regular chains with coefficients in Q.

Here, a probabilistic method is implemented which uses two primes ℘1, ℘2

that satisfy the condition of Theorem 1. The use of a probabilistic algorithm

is a very common technique to compute values modulo primes, and then re-

construct the result to integers or rationals. It is very useful when the deter-

ministic bound is not available or, like in our case, very high. The algorithm

usually terminates when the result does not change for several primes. The

output could be incorrect, but the probability of such failure is very small and

controllable. In Maple many procedures are implemented using, probabilis-
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tic algorithms including the commands Determinant, LinearSolve, Characteris-

ticPolynomial, Eigenvalues, resultant etc.

In our case, the algorithm works as follows.

1. Compute the equiprojectable triangularizations T and U for ℘1 and ℘2,

respectively.

2. Lift T to T k = T k1 , . . . , T
k
e in Z(F mod ℘2k

1 ), where k starts from 1.

3. T k is taken as the input of the rational reconstruction to obtain Nk =

Nk
1 , . . . , N

k
e over Q.

4. The algorithm terminates if Nk mod ℘2 equals U , and Nk is returned as

the triangular decomposition of F over Q.

5. Otherwise, k is incremented by 1 and computations resume from Step 2.

Assume that N is the correct equiprojectable triangular decomposition of the

input system F . The algorithm fails when Nk mod ℘2 equals U (the modular

image of Nk w.r.t ℘2), but Nk 6= N . It is also possible that either one of

℘1, ℘2 divides A or both, so Nk modulo ℘2 may never agree with N modulo

℘2. However, the choices of ℘1, ℘2 that lead to those bad cases are finite and

controllable. See Theorem 2 in [19] for details. In Maple, the Triangularize

command offers this modular method. With the option ’probability’=’prob’,

the algorithm applies the probabilistic approach using the input probability of

success ’prob’, which control the size of the prime numbers ℘1, ℘2.

3.3.4 Isolating real roots of a regular chain

In this section, we briefly review how to obtain the real roots of a regular

chain. Let T be a regular chain of Q[x1 < · · · < xn]. A Cartesian product of

n intervals is called a box of Q[x1 < · · · < xn]. Let L be a list of boxes. We

say L isolates the real roots of T if

• The boxes in L are pairwise disjoint;

• Each real root of T belongs to one element of L;
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• Every element of L contains a real root of T .

Example 7. Let T := {x2 − 2, y2 − x}. Then, the Maple output of a real

root isolation of T is as follows:

{ 19 { -19

{ y = [--, 5/4] { y = [-5/4, ---]

{ 16 { 16

[{ , { ]

{ 181 91 { 181 91

{ x = [---, --] { x = [---, --]

{ 128 64 { 128 64

There are several existing algorithms and implementations [33, 45, 16,

5] for isolating the real roots of regular chains. However, they all rely on

Maple’s univariate real root isolation routine, which is not efficient enough for

our particular problem. Instead, we adapt a hybrid routine. The univariate

polynomial in the regular chain T is isolated by a parallel and cache optimal

Collins-Akritas algorithm implemented in Cilk++ [13]. The obtained intervals

are used to isolate the rest of the polynomials in T by a sleeve-polynomials

like algorithm [16], implemented in Maple.

3.4 Limit cycle and focus value

In system (3.1), suppose that F (x, y) andG(x, y) containm parameters γ1, . . . , γm,

and there is a Hopf critical point at the origin, then the normal form of the

system can be written in polar form up to the (2n+ 1)-th order as [47],

dr

dt
= r(v0 + v1r

2 + v2r
4 + · · · + vnr

2n) , (3.10)

r
dθ

dt
= r

(
1 +

dφ

dt

)
= r

(
1 + ω + t1r

2 + t2r
4 + · · · + tnr

2n
)
, (3.11)

where each vk, k = 0, 1, . . . , n is the kth-order focus value of the origin. Note

that there are only r2k (k = 0, 1, . . . , n) terms, since the odd power terms
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vanish. Each of the focus values vk is a polynomial of the parameters γj, (j =

1, 2, . . . ,m) of the original system.

The small-amplitude limit cycles near the origin can be determined from

the equation,

dr/dt = 0 = r(v0 + v1r
2 + v2r

4 + · · · + vnr
2n) , (3.12)

then the right hand side of the equation (3.10) needs to be manipulated such

that there are n (and at most n) positive real roots for r2.

Assuming the first n + 1 focus values v0, v1, . . . , vn−1, vn are computed,

we will find a combination of parameters such that the first n focus values

v0, v1, . . . , vn−1 all vanish except the vn. This can generate at most n limit

cycles. Then, proper perturbations on the zeros of the n focus values yields n

limit cycles. More precisely, a theorem on the relationship between the number

of limit cycles and the focus values has been established in [51], which is given

here for convenience.

Theorem 2. Suppose the origin is an elementary center of (3.1). If the first

n focus values associated with the origin depend on n parameters {γj}, j =

1, 2, . . . , n such that

v0 = v1 = · · · = vn−1 = 0, vn 6= 0 , (3.13)

then there are at most n small-amplitude limit cycles in the vicinity of the

origin. Further suppose that vk(Γ), k = 0, 1, . . . , n− 1, Γ = {γ1, . . . , γn}, has

some positive real solution Γ = C, C = {c1, . . . , cn} such that vk(C) = 0 and

the following condition holds,

det

[
∂(v0, v1, . . . , vn−1)

∂(γ1, γ2, . . . , γn)

]∣∣∣∣
Γ=C

6= 0 , (3.14)

then there are exactly n small-amplitude limit cycles around the origin.

Accordingly, in order to compute n small limit cycles near the origin, one
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needs to find the common roots of a multivariate polynomial system:

v0(γ1, . . . , γn) = · · · = vn−1(γ1, . . . , γn) = 0 , (3.15)

where the variables γ1, . . . , γn are parameters of the original system. Once

the common roots of v0, . . . , vn−1 are computed, the next focus value vn will

be evaluated at these roots. If some of the common roots does not make vn

vanish, then this set of roots will lead to n limit cycles, given their Jacobian

to be non-zero. Otherwise, the common roots leading to vn = 0 will be the

candidate conditions for the origin to be a center.

There are many commonly used methods to compute focus values, includ-

ing the perturbation method based on multiple time scales[48, 49, 47, 50, 38,

37], the singular point method [31, 29, 14, 15], and Poincare-Takens method

[51]. In this article, we apply the perturbation method to compute the focus

values.

3.5 Application to limit cycle computation

In this section, we apply the results presented in previous sections to compute

limit cycles bifurcating from an isolated singular point (the origin of the sys-

tem). Without loss of generality, suppose system (3.1) has at most n limit

cycles. Then the first n+1 focus values need to be computed. v0, . . . , vn−1 are

taken as the input for the triangular decomposition and vn is used to verify if

the output regular chains represent limit cycles. Two examples are given in

this section. In the first example, we use the general quadratic system (D1)

to illustrate how to use the regular chains method to find the limit cycle con-

ditions and center conditions, respectively. It is actually a simple case where

small limit cycles have already been thoroughly studied [52] using variable

elimination method. The regular chains method computes all the possible

common complex roots of the input system, and provides a systematical pro-

cedure of analyzing the properties of the outputs. If a regular chain T makes

vn vanish, then it is a candidate of center condition; if vn does not vanish on
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T then it is a limit cycle condition. This can be checked by calling the built-in

Maple procedure Regularize.

In the second example, we follow the work of [52] on a special cubic system

that yields nine limit cycles with the help of numerical computation. Unlike

the case of quadratic system, the existence of nine limit cycles for this cubic

system has not been confirmed by purely symbolic algorithm. Due to the large

input focus value system, the modular method based on regular chain theory

is applied.

3.5.1 Generic quadratic system

Consider the general quadratic system [52], which is the system (3.23) trun-

cated at 3rd-order terms,

ẋ = αx+ y + x2 + (b+ 2d)xy + cy2 ,

ẏ = −x+ αy + dx2 + (e− 2)xy − dy2 ,
(3.16)

where α, b, c, d and e are independent parameters. It has been proved [3] that
this system has three small-amplitude limit cycles near the origin. α is set to
zero to make the zero-order focus value v0 = 0, then the rest focus values up
to v4 are obtained using the perturbations method,

v1 = −(1/8)b(c+ 1)

v2 = −(1/288)(c+ 1)(20bc2 + 19bce− 18bc+ 30dce+ 18b+ 5b3 + 3be+ 56d2b− 6de2

−be2 + 34b2d+ 30de)

v3 = −(1/663552)(c+ 1)(112800dec2 − 33564bec2 + 68944b2dc2 + 1054be3c+ 10224dc2e2

+151200dce+ 4746be2c− 52320de2c+ 238080d3ec− 1400b2de2 + 7776dce3

+26409be2c2 + 104160dc3e+ 71500bc3e+ 98304bd2c+ 1764bce+ 130176bd2e

−15568bd2e2 + 22510b3ec+ 36288b2de+ 250112bd2c2 − 82464b2dc+ 267136bd2ec

+126464b2dce+ 87156b+ 88344bc2 − 1071be2 − 30132be+ 292608d2b− 99792de2

+142560de+ 118800b2d− 82128bc3 − 35526b3c− 37248d3e2 + 27640b4d+ 127536b3d2

−94b3e2 + 222208bd4 − 1968de4 − 83be4 + 270208b2d3 + 4756bc4 + 7985b3c2

+1110be3 + 7014b3e+ 238080d3e+ 24096de3 + 40176bc+ 4473b3 + 2293b5) ,

(3.17)
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v4 = −(1/238878720)(c+ 1)(258892800d4be+ 82198656b2c2d3 − 204901296b2c4d

−56338704b3c2d2 + 831702b3ce3 + 263761920bc2d4 − 119804160bc4d2

+8476608b3c2e2 − 29882016b4c2d+ 18389145b3c3e+ 3850887b5ce

−17649bce5 + 31704606bc4e2 − 10436580bc5e+ 7987025bc3e3 + 742995bc2e4

+344856de2b4 + 157049280dec2 − 7783989eb3c2 − 12255624bec2 − 59918688b2dc2

−2618973be3c− 83645568dc2e2 + 150426720dce− 3031152e2bc3 − 179620608b2cd3

+208343040bd4c+ 7007904be2c− 129060864de2c+ 881619e3bc2 − 21854976d4be2

+845184d2b3e2 + 228864000d5ec+ 307564800d3ec3 − 116280de4b2

−3741696d3b2e2 − 1332000d2be4 − 3115008d3e2c2 + 19222272d3e3c

+31738560de2c4 + 65987040dec5 + 534120de5c+ 10858872de3c3 − 911400de4c2

+522720000d3ec− 115056768dcb4 − 26398440b2de2 + 46163304dce3 + 68285280edc4

+3137580be2c2 + 111913920dc3e− 301641120b3cd2 − 105235956ebc4 − 1264968bc3e

+296421120bd2c− 1935048e2b3c− 427123200dc3b2 − 19519380bce+ 98286048bd2e

−96552720bd2e2 − 16922112e2dc3 − 325651200bd2c3 + 20525499b3ec

−145720320e2d3c+ 604638e4bc+ 21063528e3dc2 − 7734480e4dc+ 35263080b2de

+218522880bd2c2 − 2090880b2dc+ 493843200ed3c2 + 341404704bd2ec

+146193336b2dce− 62052000e2bd2c+ 342006432ebd2c2 + 65831736eb2dc2

−18987024e2b2dc+ 158803248b3cd2e+ 338098944b2cd3e+ 38615568b4cde

+5083512b2cde3 + 59250288bc2d2e2 + 368805984bc3d2e+ 393851904bcd4e

+13093680bcd2e3 + 37870296b2c2de2 + 130825704b2c3de+ 4543992b2de3

+162174720b2d3e+ 69325104b3d2e+ 17444112b4de+ 21348144d2be3 + 59923800b

+66397320bc2 + 15739110be2 − 48688452be+ 299427840d2b− 123591744de2

+102993120de+ 98507664b2d+ 66713760bc3 − 27441504b3c− 201636864d3e2

−23445216b4d+ 16298352b3d2 − 4639752b3e2 + 371957760bd4 − 15410088de4

+685611be4 + 263984256b2d3 + 148406760bc4 − 30238380b3c2 − 3321567be3

+13493385b3e+ 336441600d3e+ 61004664de3 − 59586960bc5 − 100956048b3c3

−13151334b5c− 3304704d3e4 + 23561376d2b5 + 92370176d3b4 + 209773824d4b3

−103128de6 + 3281784db6 + 142458880d6b+ 262901760d5b2 − 4431e4b3 + 6355e6b

+30825e2b5 − 29515776d5e2 − 41260494b3c4 − 3141747b5c2 − 75978440bc6

+624246e3b3 − 103137e5b+ 1883415eb5 + 44268288d3e3 + 1981416de5

+228864000d5e+ 49163760bc− 5071734b3 − 4189203b5 + 193675b7) .

(3.18)

The existence of three small-amplitude limit cycles requires that the focus

values v0, v1, v2 vanish, while v3 6= 0 [51]. Since v0 is already zero, the triangular
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decomposition of v1 and v2 gives the following regular chains.

c+ 1 = 0,

{
d = 0 ,

b = 0 ,

{
e = 0 ,

b = 0 ,

{
e− 5c− 5 = 0 ,

b = 0 .
(3.19)

Note that these regular chains represent the common roots of v1 and v2.

They are candidates of center conditions or the conditions for the existence

of three limit cycles, depending on whether v3 vanishes on them or not. In

this case, it is easy to check by directly substituting each regular chain into

v3. However, in a more general case with a large input system, regular chains

obtained by triangular decomposition are not simple. It can not be substituted

into higher-order focus values. Therefore, two different methods are introduced

to verify the properties of the regular chains. The first method involves the

triangular decomposition using one or few more higher-order focus values,

while the second method uses the Regularize procedure to check whether the

input regular chains make the next focus value vanish implicitly.

In the first method, another triangular decomposition using all three focus

values v1, v2 and v3 is conducted. The newly generated regular chains are

then compared with the ones obtained using only v1 and v2. The triangular

decomposition of v1, v2 and v3 gives the new regular chains,

c+ 1 = 0,

{
d = 0 ,

b = 0 ,

{
e = 0 ,

b = 0 ,





d2 + 2c2 + c = 0 ,

e− 5c− 5 = 0 ,

b = 0 .

(3.20)

Comparing with the regular chains in (3.19) generated from v1 and v2, the first

three regular chains {c + 1 = 0}, {d = 0, b = 0}, {e = 0, b = 0} are identical.

This indicates that on these three regular chains v3 vanishes as well, therefore

they are center conditions. Now consider the fourth regular chain, d2 +2c2 + c

must also be zero in order to make v3 vanishes on {e − 5c − 5 = 0, b = 0}.
Therefore {e − 5c − 5 = 0, b = 0, d2 + 2c2 + c 6= 0} is a condition for the

existence of three limit cycles, while {e− 5c− 5 = 0, b = 0, d2 + 2c2 + c = 0}
is a possible center condition.
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To further verify the result, one can conduct the triangular decomposition

with one additional focus value v4, which yields,

c+ 1 = 0,

{
d = 0 ,

b = 0 ,

{
e = 0 ,

b = 0 ,





d2 + 2c2 + c = 0 ,

e− 5c− 5 = 0 ,

b = 0 .

(3.21)

These are exactly the same regular chains as that given in (3.20). So v4

vanishes on the regular chain {e− 5c− 5 = 0, b = 0, d2 + 2c2 + c = 0}, which

confirms that it is a center condition.

The advantage of this method is easy to see how the results are verified.

However, the triangular decomposition computation with additional higher-

order focus values could be very heavy, and sometimes impossible to compute.

Therefore, we introduce another method which is less illustrative but compu-

tationally efficient.

The second method uses the built-in Maple procedure Regularize. Recall

from Example 6, Regularize takes a polynomial p and a regular chain T as

input, in this case the polynomial is v3, and T is chosen from (3.19). It

returns two lists. The first one consists of the regular chain Tr such that p is

regular modulo Tr. The second list consists of the regular chain Tz such that p

is zero (or singular) modulo Tz. If the first list is empty, then p is zero modulo

the input regular chain T , implying that T will make v3 vanish. If the second

list is empty, then p is regular modulo T , which implies that this regular chain

will make p 6= 0.

After the triangular decomposition of v1 and v2 the regular chains in (3.19)

are then used to regularize v3. The Regularize process shows that for the first

three regular chains in (3.19), the first output list is empty, implying that the

first three regular chains make v3 vanish. For the last regular chain, the second

output of the Regularize procedure is empty, indicating that the last regular

chain makes v3 6= 0. One can also use Regularize on v4 with respect to each

regular chain in (3.19) as well to further verify, which gives exactly the same

result as that obtained using the first method. Compared to the first method,

the Regularize procedure takes much less time in computation. We shall apply
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the Regularize method in the next subsection to compute nine limit cycles for

a special cubic system.

3.5.2 A special cubic system

A general normalized cubic system with a fixed point at the origin has the

form:

ẋ = a10x+ a01y + a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 ,

ẏ = b10x+ b01y + b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3 ,

(3.22)

where aij’s and bij’s are parameters. According to [52], the system can be

simplified into

ẋ = αx+ y + ax2 + (b+ 2d)xy + cy2 + fx3 + gx2y + (h− 3p)xy2 + ky3 ,

ẏ = −x+ αy + dx2 + (e− 2a)xy − dy2 + ℓx3 + (m− h− 3f)x2y + (n− g)xy2 + py3 ,

(3.23)

where a can be an arbitrary nonzero constant, usually set to a = 1 by a proper

scaling.

It has been proved [30] that α = b = d = e = h = n = m = 0 is a

center condition for the origin. In order to find nine limit cycles we need

v0 = · · · = v8 = 0, but v9 6= 0. We follow the set-up of [52] and set the

following 5 parameters to be zero:

α = b = d = e = h = 0 . (3.24)

By the perturbation method, eight focus values are computed, with v1 given

by

m/8 , (3.25)

which obviously indicates that m = 0 to ensure v1 = 0. With this new

condition, the second focus value v2 becomes

−1/8fn+ 1/8pn . (3.26)
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Note that nf is a factor in v3 and all higher-order focus values. This indicates

that either n = 0, leading to the center condition [30], or a new candidate

condition for center: α = b = d = e = h = m = f = p = 0. So, in the

following, we assume nf 6= 0. Thus, the only choice of making v2 = 0 for

existence of limit cycles is

p = f . (3.27)

Under this condition, v3 has the following form:

−1/192fn(3n+ 15ℓ− 30c+ 45 − 35c2 + 15k) . (3.28)

Since nf 6= 0, an easy choice of making v3 vanish is

n = −5ℓ+ 10c− 15 +
35

3
c2 − 5k . (3.29)

Now there are 5 free parameters,

c, k, ℓ, f, g, (3.30)

remaining in the five focus values v4, v5, . . . , v8. Using the above results and
removing the common factor nf and a constant factor in the resulting focus
values we obtain

v4 =648 − 162c− 516c2 + 72ℓ+ 81k + 45g − 30gc− 434c3 + 60cℓ+ 54ck − 168c4 + 56c2ℓ

− 24k2 − 6gk − 7c2g − 6gℓ− 30kℓ− 6ℓ2 + 21kc2 ,

(3.31)

v5 =231336 − 265836c3k + 37350kc2ℓ+ 6174c2gℓ− 4428gkℓ+ 1764c2gk − 66204gc

− 184098c2ℓ+ 40392gk − 133182c2g + 25002gℓ+ 74610kℓ− 361344kc2 + 270c2ℓ2

− 14448c4ℓ− 101871kc4 − 1944kℓ2 − 7506k2ℓ+ 24165k2c2 − 13587c4g − 1575g2c2

− 540g2ℓ− 864f2k − 13860f2c2 − 864f2ℓ− 540g2k − 3618gk2 − 810gℓ2 − 34296c3ℓ

− 156888ck − 135828cℓ− 4590g2c+ 360cℓ2 + 40104ckℓ+ 6912gcℓ− 3348gck

− 41580c3g − 11880f2c+ 38394ck2 − 497556c2 + 655080c3 + 548132c4 + 60525k2

+ 16110ℓ2 + 187306c5 − 270ℓ3 + 54152c6 − 5832k3 + 6885g2 + 17820f2 − 607122c

+ 115398ℓ+ 363339k + 131625g ,

(3.32)
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v6 =323074872gkc2ℓ+ 46434531132c3k − 10614656412kc2ℓ− 4323518316c2gℓ

+ 1747144728gkℓ− 8537169420c2gk + 477367776k2c2ℓ− 242856468kc2ℓ2

+ 512185086kc4ℓ− 4214700gc2ℓ2 − 103297626gc4ℓ− 762314922gkc4

− 34795656gkℓ2 − 93514176gk2ℓ+ 234557856gk2c2 + 191130624f2c2ℓ

− 80777088f2kℓ− 26967924g2kc2 − 33543720g2kℓ+ 29212704g2c2ℓ

− 428849856f2kc2 − 189314496f2gc2 − 18942336f2gk − 18942336f2gℓ

+ 3496808634c5k − 12158345106gc+ 494477136gckℓ− 5648392872c2ℓ

+ 6530829606gk − 8063653761c2g + 2727654102gℓ+ 5077228878kℓ

− 14369006205kc2 − 2308784724c2ℓ2 + 11211047880c4ℓ+ 26955499191kc4

+ 847752156kℓ2 + 2178967392k2ℓ− 10546897392k2c2 + 11692092699c4g

− 1454945976g2c2 + 324725760g2ℓ+ 1155995712f2k − 3206863872f2c2

+ 492687360f2ℓ+ 522334332g2k + 1571957280gk2 + 409782564gℓ2

+ 1168019685kc6 − 20942712kℓ3 + 499013568k3c2 − 53343360k3ℓ

− 22915872k2ℓ2 − 1728185544k2c4 + 11043864c2ℓ3 − 527082024c6ℓ

+ 144765594c4ℓ2 − 26181792g2k2 − 7361928g2ℓ2 − 29683332g2c4

− 66407040gk3 + 512530473gc6 − 7688520gℓ3 − 11975040f2ℓ2

− 287005824f2c4 − 68802048f2k2 − 15098076g3c2 − 3143448g3k

− 3143448g3ℓ+ 617404032ck3 − 449534652c5ℓ+ 17856001944c3ℓ

− 4222690272c3k2 − 181543032g2c3 + 2704428702gc5 − 1408703616f2c3

− 31447268118ck − 38578680g3c− 12575398716cℓ− 909902808g2c

+ 1301328c3ℓ2 + 16674336cℓ3 − 1886860656cℓ2 − 10011607128ckℓ

− 4634256888gck + 233217792f2cℓ+ 337929408gck2 + 1314575496c3kℓ

− 247758264ckℓ2 + 365912640ck2ℓ− 561043368gc3ℓ+ 150984gcℓ2

− 2608877592gc3k − 208987776f2ck + 40376880g2cℓ− 91362168g2ck

− 251475840f2gc+ 14327069940c3g + 377213760f2g − 1438591104f2c

− 7726593888ck2 + 2289369096 + 11186921988c2 + 49162023090c3

− 4045402440c4 + 7440988536k2 + 1963517274ℓ2 − 46874362782c5

+ 176926680ℓ3 − 19564392796c6 + 1527553728k3 + 1314588204g2

+ 3474845568f2 − 369870578c7 − 47900160k4 + 176215256c8

− 3470040ℓ4 + 57868020g3 − 17873296866c+ 4874228136ℓ

+ 5523913665k + 3624801597g .

(3.33)
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The other 2 polynomials,

v7 = v7(c, f, g, k, ℓ), v8 = v8(c, f, g, k, ℓ) , (3.34)

with degrees 10 and 12, are too large to be presented here. These five focus

values are input to the triangular decomposition algorithm. To simplify the

computing process, a better order was generated before the triangular decom-

position (by using the built-in Maple procedure SuggestVariableOrder),

f > g > ℓ > k > c . (3.35)

According to the size of the input system, a sufficiently large prime,

℘ := 304166505300000047 , (3.36)

with 258 bits, is chosen to conduct the modular triangular decomposition. Note

that the prime chosen here guarantees the success of modular algorithm.
The program was successfully executed to generate seven regular chains.

In order to be lifted, they are mapped into two equiprojectable regular chains.
The first one is omitted since it contains f = 0. The second regular chain is





f2 +Q1(c) + 109048982804251206 ,

g +Q2(c) + 213759544982554218 ,

ℓ+Q3(c) + 212357665370487176 ,

k +Q4(c) + 235643319065695752 ,

Q5(c) + 249698644301675923 ,

(3.37)

whereQ1(c), Q2(c), · · · , Q5(c) are polynomials in c with order 425, 425, 425, 425
and 426, respectively. This regular chain is lifted using the same prime given
in (3.36) to obtain,

T =





R1(c)f
2 + S1(c) + P1 ,

R2(c)g + S2(c) + P2 ,

R3(c)ℓ+ S3(c) + P3 ,

R4(c)k + S4(c) + P4 ,

S5(c) + P5 ,

(3.38)

where R1(c), · · · , R4(c), S1(c), · · · , S5(c) are polynomials in c, with order 426 in
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S5(c) and 425 in the rest; P1, . . . , P5 are big constant terms, and approximately
equal to 




P1 ≈ 0.9531642255 · 102755 ,

P2 ≈ 0.6286620222 · 101432 ,

P3 ≈ 0.6286809511 · 101432 ,

P4 ≈ −0.2811943803 · 101428 ,

P5 ≈ −0.1285851059 · 10517 .

(3.39)

Since these constants are long, only their first 10 digits and their size are

presented. In order to check if v9 vanishes or not on the common roots of T ,

one can follow the quadratic example, and use Regularize procedure. However,

since T is very large, we check this by the following steps instead. Firstly, we

compute Tp = T mod ℘, and check if Tp is a regular chain which turns out to

be true. Secondly, we take v9 mod ℘ and Tp as the input for Regularize, and

find out that v9 mod ℘ does not vanish on Tp. According to the specialization

property of resultants [34] (or Theorem 4 in [12]), this is a sufficient condition

for v9 6= 0 on T . Therefore, we have found the conditions such that v1 = v2 =

· · · = v8 = 0 but v9 6= 0, indicating that there exist at most nine limit cycles.

Note that one requirement during the lifting procedure is that the Jacobian

to be nonzero, which satisfies the condition of Theorem 2. This implies that

all the positive real roots of the second regular chain lead to nine limit cycles.

By isolating the real roots of the obtained regular chain, we found that it

has 78 real roots. The computer outputs of the intervals for the first several

ones are shown below:

[f = [-11/32, -41/128], g = [-93359084781/1073741824,

-186718169557/2147483648],

l = [1244408533/67108864, 39821073059/2147483648],

k = [64099524509/68719476736, 128199049023/137438953472],

c = [-12179047533111153071896572523085646692445709943373514406698511\

6204186867199659306166505138577217441/3417579257473456131832034\

729871283383364327235770644431915266572515551561249024880036739\

33909\85216, -3805952354097235334967678913464264591389284357304\

223252093284881380839599989353317703285580538045/10679935179604\

550411975108530847760573013522611783263849735208039111098628903\

20275011481043468288]]
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[f = [41/128, 11/32], g = [-93359084781/1073741824,

-186718169557/2147483648],

l = [1244408533/67108864, 39821073059/2147483648],

k = [64099524509/68719476736,128199049023/137438953472],

c = [-12179047533111153071896572523085646692445709943373514406698511\

6204186867199659306166505138577217441/3417579257473456131832034\

729871283383364327235770644431915266572515551561249024880036739\

3390985216, -38059523540972353349676789134642645913892843573042\

23252093284881380839599989353317703285580538045/106799351796045\

504119751085308477605730135226117832638497352080391110986289032\

0275011481043468288]]

[f = [-19/4, -35/8], g = [-5239003/262144, -83824045/4194304],

l = [292265139/16777216, 1169060569/67108864],

k = [-247962889/134217728, -991851547/536870912],

c = [-11568068092531426135570548366413048945491890284508066745722072\

8245158022295965108754679631530185\579177248617/366959778558411\

441857731343248333910527450398266924979798014214301907660174157\

56929120296849762010984873984, -1446008511566428266946318545801\

631118186486285563508343215259103064475278699563859433495394127\

3197397156077/4586997231980143023221641790604173881593129978336\

562247475177678773845752176969616140037106220251373109248]]

...

The total time used for the modular triangular decomposition is 1622615.24

sec (almost 19 days), on a computer with Intel(R) Core(TM)2 Quad CPU

Q9550 @ 2.83GHz and 8G of memory. Isolating the real roots of the regular

chain takes about nine hours in Maple on one node of a cluster. The node has

4 processors, each of which is a 12-core AMD Opteron(tm) 6168 @ 0.8GHz

processor, and total memory of 250 GB.

To illustrate the critical focus values, we take one solution with 1000 sig-
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nificant figures (only the first 50 decimals are printed for convenience):

α = b = d = e = h = m = 0 ,

p = f ,

n = −5ℓ+ 10c− 15 +
35

3
c2 − 5k ,

c = −3.5636474286524271074464850122360152178067239603615 · · · ,
f = −0.33257083410940510824128708562052896225706851485676 · · · ,
g = −86.947423200934377419805695811344083098600366046486 · · · ,
l = 18.543132142599506651625032427714327516815314466604 · · · ,
k = 0.93277084686805751726888595860136166253862306463035 · · · .

which yields the following approximations for critical focus values:

v0 = 0 , v4 = −0.2628637706 · 10−1088 , v9 = 0.9410263940 · 1019 .

v1 = 0 , v5 = −0.3957953881 · 10−1078 ,

v2 = 0 , v6 = −0.5385553132 · 10−1076 ,

v3 = 0 , v7 = −0.5135260069 · 10−1074 ,

v8 = −0.4251758871 · 10−1072 ,

and the determinant of the Jacobian matrix is −0.4633625957 · 101259. This

clearly indicates the existence of nine limit cycles. By increasing the precision

used to 2000 digits, the size of v4, . . . , v8 is reduced to O(10−2000). These

numbers are zero in actuality. By having constructed isolating intervals for

the real root earlier, this was proved. The numerical computation here merely

illustrates the computer-assisted proof given earlier.

3.6 Conclusion

Quantitative analysis of polynomial dynamical systems, such as determining

the number of small-amplitude limit cycles around the origin, naturally leads to

solve systems of multivariate polynomial equations and inequalities. Proving

formally that such a semi-algebraic system is consistent, and, if it is, computing
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all its solutions or a sample of them, are goals that make the use of symbolic

and exact methods desirable.

In this paper, we have demonstrated that the theory of regular chains

possesses powerful algorithmic tools to achieve those goals. We have applied

to large input focus value systems an algorithm for computing triangular de-

compositions of polynomial systems via modular techniques. From these cal-

culations, we have obtained conditions for the existence of limit cycles and

potential center conditions. One example, in particular, exhibiting nine limit

cycles shows the computational power and efficiency of these tools from regular

chain theory.

These tools, available in the RegularChains library in Maple can be applied

to solve other polynomial systems arising from real physical or engineering

systems.
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Chapter 4

Concluding Remarks

The works presented here are conducted with the belief that series expansions

provide precise information for the given system around the expansion point.

In Chapter 2 we demonstrated the use of series solution of the two dimensional

heat transfer of some fluids between two horizontal concentric cylinders. The

high order solutions do provide very accurate approximation to the actual

solutions within the radius of convergence. The stability of the computed

series solutions is also studied, which turns out be quite stable.

The radius of convergence of the computed solutions is determined by the

nearest singularity according to Darboux’s principle. The singularity proper-

ties and their locations are determined also using the high order solutions. We

utilized the QD algorithm to compute the nearby poles, and this algorithm is

more reliable compared to other methods such as Padé approximants in our

case. We find out that there is no evidence of essential singularities, but there

are many cases the poles are accompanied by nearby zeros, which can cause

the Padé approximant algorithm to be inaccurate.

In Chapter 3 we investigated the Hilbert’s 16th problem which asked the

number of limit cycles of a system. We narrow the question to the case of small-

amplitude limit cycles bifurcating from a center at the origin of the quadratic

and cubic planar polynomial systems. We perturbed the system using multiple

time scale method to compute focus values of the input systems. The real

solutions of the focus values are possible limit cycle conditions. These focus

values are multivariate polynomials of the parameters in the original system,
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and they are very complicated both in size and degree. The modular regular

chains approach is used to triangularize the polynomial system and give an

input for the real root isolation procedure. Using the computed real roots

we constructed the target system which process 9 small limit cycles near the

origin.

In both works, large expression management is the key technique that

makes the solutions computable. In the concentric cylinder problem, the com-

putation sequences are applied to reduce the size of symbolic expressions. They

are used here due to the observations that many terms of the intermediate ex-

pressions share the same monomials. By collecting the complicated coefficients

and substituting them with new variables, the algorithm is able to compute

some high order solution (16th order). The shape of the solutions is then

recognized and applied in a new algorithm which reduces the intermediate ex-

pression even more. The computation sequences could be used in many other

perturbation problems which involves symbolic computation of perturbation

series. In the Hilbert’s 16th problem, symbolic computation of limit cycles is

transformed into a solving process of dense multivariate polynomial systems.

The modular technique reduces the size of the coefficients of each expression

during the computation, without which it is impossible to solve such system

symbolically. The modular approach is quite popular in recent years, and it is

suitable for those systems whose complexity are mostly caused by the size of

the coefficients.

Future work

In the concentric cylinder problem, the boundary conditions in our study are

symmetric, with the inside cylinder being hotter than the outer one. It is

worth investigating with changed boundary conditions, for example, the out-

side cylinder being hotter, or a non-uniformly distributed temperature on the

boundaries. These new boundary conditions requires different Fourier trans-

formations, but the series solutions will in some cases have similar forms to

the ones presented in this work.
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The series solutions of the concentric cylinder problem are only valid within

the radius of convergence. This boundary could be extended using analytic

continuation, which can go around the poles and reach the point that other-

wise couldn’t. The observed singularity structures can be used as an guidance

for the analytic continuation algorithm. A problem is the increased spatial

complexity due to more complicated structure and steps. Another issue is

how to find the optimal path through the “mine field” filled with poles, that

maximizes the accuracy and minimizes the number of steps. This is a tech-

nique with great potential due to the fact that the solutions of most partial

differential equations possess singularities.

The modular regular chains algorithm will be applied to similar cubic sys-

tems with more independent parameters which could have more small limit

cycles. Since there are at most 12 such parameters in cubic systems, it is

commonly believed that the maximum number of small limit cycles is 12. We

will further optimize the focus value computation program and the modular

regular chains algorithm to reach this target by symbolic computations.

Other systems in dynamical system problems that ask the number of limit

cycles or require the solving of polynomial systems can also be studied using

the modular regular chains approach. There are several systems available that

we will try to solve using the this method.
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Appendix

A Proof of the shape of the general form

In this Appendix, we give an inductive proof of the shape of the general solution
of Tmk . We rewrite (2.33), (2.34) and (2.11) here for convenience,

Tmk =

−m/2∑

α=−k/2

1+2α+k∑

β=0

CTm
k
,2α,βr

2α lnβ r +

m/2∑

α=−m/2+1

k−m/2+α+1∑

β=0

CTm
k
,2α,βr

2α lnβ r

+

3k/2−1∑

α=m/2+1

k+1∑

β=0

CTm
k
,2α,βr

2α lnβ r +

k∑

β=0

CTm
k
,3k,βr

3k lnβ r ,

ψmk =

−m/2−1∑

α=−k/2+1

2α+k−1∑

β=0

Cψm
k
,2α,βr

2α lnβ r +

m/2∑

α=−m/2

k−m/2+α∑

β=0

Cψm
k
,2α,βr

2α lnβ r

+

3k/2∑

α=m/2+1

k∑

β=0

Cψm
k
,2α,βr

2α lnβ r .

∇2Tk =
1

r

k−1∑

j=0

∂(Tj , ψk−j)

∂(r, θ)
, k = 0, 1, 2, . . . .

One can easily verify that T 1
1 and ψ1

1 satisfy (2.33) and (2.34). Recall the
Fourier series

Tk(r, θ) =

k∑

m=0

Tmk (r) cos(mθ), k = 0, 1, 2, . . . , (A1)

ψk(r, θ) =
k∑

m=0

ψmk (r) sin(mθ), k = 1, 2, 3, . . . , (A2)
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are substituted into (2.11), such that

∇2
k∑

m=0

Tmk (r) cos(mθ)

=
1

r

k−1∑

j=0

[
j∑

p=0

∂T pj (r)

∂r
cos(pθ)

k−j∑

q=0

qψqk−j(r) cos(qθ) +

j∑

p=0

pT pj sin(pθ)

k−j∑

q=0

∂ψqk−j(r)

∂r
sin(qθ)

]

=
1

r

j∑

p=0

k−j∑

q=0

{
q

2

∂T pj (r)

∂r
ψqk−j(r) [cos(p− q)θ + cos(p+ q)θ]

+
p

2
T pj (r)

∂ψqk−j(r)

∂r
[cos(p− q)θ − cos(p+ q)θ]

}

(A3)

yields

∇2Tmk =
1

r

k−1∑

j=0

j∑

p=0

k−j∑

q=0

[
q

2

∂Tjp(r)

∂r
ψqk−j(r) +

p

2
T pj (r)

∂ψqk−j(r)

∂r

]∣∣∣∣∣∣
|p−q|=m

, (A4)

or

∇2Tmk =
1

r

k−1∑

j=0

j∑

p=0

k−j∑

q=0

[
q

2

∂Tjp(r)

∂r
ψqk−j(r) −

p

2
T pj (r)

∂ψqk−j(r)

∂r

]∣∣∣∣∣∣
p+q=m

, (A5)

The table structure of Tmk provides a guide line for the proof by induction.

We will prove equation (2.33) for some k and m completely fits the Table A1

with the assumption that all solutions with smaller k and m satisfy (2.33) and

(2.34). According to the shape of the table structure, the tables are separated

into four parts (see Table A1), where the upper and middle part have a stair

shape, the lower part is in a block shape and the last row has one less element

compared to the lower part. In order to prove the general form of Tmk , we need

to ensure both the left and right hand sides of (A4) and (A5) have the same

monomials in rα lnβ r. In other words, if we put both sides into table form

similar to Table A1, their shape must match. Firstly, we will find the general
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α\β 0 1 · · · · · · · · · · · · · · · k+1

−k/2 × ×
.
.
. × × × × upper

−m/2 × × × × × ×
−m/2+1 × × · · · · · · · · · ×

..

. × × · · · · · · · · · · · · × middle
m/2 × × · · · · · · · · · · · · · · · ×
m/2+1 × × · · · · · · · · · · · · · · · ×
m/2+2 × × · · · · · · · · · · · · · · · × lower

.

..
...

...
...

3k/2−1 × × · · · · · · · · · · · · · · · ×
3k/2 × × · · · · · · · · · · · · × last row

Table A1: The non-zero component of the Tmk table. In side the boundary, the
× represents some non-zero coefficient CTm

k ,α,β, while outside the boundary all
elements are zeros.

form of ∇2Tmk .

∇2Tmk =

−m/2∑

α=−k/2

1+2α+k∑

β=0

CTm
k ,2α,β∇2

(
r2α lnβ r

)

+

m/2∑

α=−m/2+1

k−m/2+α+1∑

β=0

CTm
k ,2α,β∇2

(
r2α lnβ r

)

+

3k/2−1∑

α=m/2+1

k+1∑

β=0

CTm
k ,2α,β∇2

(
r2α lnβ r

)

+
k∑

β=0

CTm
k ,3k,β∇2

(
r3k lnβ r

)
,

(A6)

We name the four terms on the right hand side to be 1©, 2©, 3© and 4©. Now
we expand the first term of the right hand side 1©,

1© =

−m/2∑

α=−k/2

1+2α+k∑

β=0

CTm
k
,2α,β∇2

(
r2α lnβ r

)

=

−m/2∑

α=−k/2

1+2α+k∑

β=0

CTm
k
,2α,β

[
(4α2−m2)r2α−2 lnβ r + 4αβr2α−2 lnβ−1 r + β(β−1)r2α−2 lnβ−2 r

]

(A7)
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=

−m/2−1∑

α=−k/2

1+2α+k∑

β=0

CTm
k
,2α,β(4α

2−m2)r2α−2 lnβ r +

−m/2−1∑

α=−k/2

1+2α+k∑

β=1

CTm
k
,2α,β4αβr

2α−2 lnβ−1 r

+

−m/2−1∑

α=−k/2

1+2α+k∑

β=2

CTm
k
,2α,ββ(β−1)r2α−2 lnβ−2 r +

1+2α+k∑

β=1

(4α2−m2)r2α−2 lnβ r

∣∣∣∣∣∣
α=−m/2

+

1+2α+k∑

β=1

4αβr2α−2 lnβ−1 r

∣∣∣∣∣∣
α=−m/2

+

1+2α+k∑

β=2

β(β−1)r2α−2 lnβ−2 r

∣∣∣∣∣∣
α=−m/2

=

−m/2−1∑

α=−k/2

1+2α+k∑

β=0

CTm
k
,2α,β(4α

2−m2)r2α−2 lnβ r +

−m/2−1∑

α=−k/2

2α+k∑

β=0

CTm
k
,2α,β+14α(β+1)r2α−2 lnβ r

+

−m/2−1∑

α=−k/2

2α+k−1∑

β=0

CTm
k
,2α,β+2(β+2)(β+1)r2α−2 lnβ r +

2α+k∑

β=0

4α(β+1)r2α−2 lnβ r

∣∣∣∣∣∣
α=−m/2

+
2α+k−1∑

β=0

(β+2)(β+1)r2α−2 lnβ r

∣∣∣∣∣∣
α=−m/2

=

−m/2−1∑

α=−k/2

1+2α+k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r +
2α+k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=−m/2

,

where α ∈ [−k/2,−m/2] and

C̃Tm
k
,2α,β

=





CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) + CTm

k
,2α,β+2(β+2)(β+1) if β ≤ 2α+k−1

CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) if β = 2α+k

CTm
k
,2α,β(4α

2−m2) if β = 2α+k+1 .

(A8)

We collect the “old” C and use C̃ for the easiness of notations. Similarly, the
rest of ∇2Tmk can be written down as

2© =

m/2−1∑

α=−m/2+1

k−m/2+α+1∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r +

k−m/2+α∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=m/2

,

(A9)
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where α ∈ [−m/2 + 1,m/2] and

C̃Tm
k
,2α,β

=





CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) + CTm

k
,2α,β+2(β+2)(β+1) if β ≤ k−m/2+α+1

CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) if β = k−m/2+α

CTm
k
,2α,β(4α

2−m2) if β = k−m/2+α−1 .

(A10)

3© =

3k/2−1∑

α=m/2+1

k+1∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r , (A11)

where α ∈ [m/2 + 1, 3k/2 − 1] and

C̃Tm
k
,2α,β

=





CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) + CTm

k
,2α,β+2(β+2)(β+1) if β ≤ k+1

CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) if β = k

CTm
k
,2α,β(4α

2−m2) if β = k−1 .

(A12)

4© =

k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=3k/2

, (A13)

where

C̃Tm
k
,2α,β

=





CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) + CTm

k
,2α,β+2(β+2)(β+1) if β ≤ k

CTm
k
,2α,β(4α

2−m2) + CTm
k
,2α,β+14α(β+1) if β = k−1

CTm
k
,2α,β(4α

2−m2) if β = k−2 .

(A14)

To summarize

∇2Tmk =

−m/2−1∑

α=−k/2

1+2α+k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r +

2α+k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=−m/2

+

m/2−1∑

α=−m/2+1

k−m/2+α+1∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r +

k−m/2+α∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=m/2

+

3k/2−1∑

α=m/2+1

k+1∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r +

k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=3k/2

,

(A15)
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α\β 0 1 · · · · · · · · · · · · · · · k+1

−k/2 × ×
.
.
. × × × × upper

−m/2 × × × × × 0

−m/2+1 × × · · · · · · · · · ×
..
. × × · · · · · · · · · · · · × middle

m/2 × × · · · · · · · · · · · · × 0

m/2+1 × × · · · · · · · · · · · · · · · ×
m/2+2 × × · · · · · · · · · · · · · · · × lower

.

..
...

...
...

3k/2−1 × × · · · · · · · · · · · · · · · ×
3k/2 × × · · · · · · · · · · · · × last row

Table A2: The ∇2Tmk table in “stair” shape.

have a table form (see Table A2) similar to Table A1. The only difference is
that the last rows of upper and middle part have one less element (the zeros
in dashed cell). With the ∇2Tmk expanded, we now consider the right hand

sides of (A4) and (A5). We consider the general term
∂Tjp(r)

∂r
ψqk−j(r) first.

∂Tjp(r)

∂r
has the following general form,

∂Tjp(r)

∂r

=

−p/2∑

α1=−j/2

1+2α1+j∑

β1=0

CTp
j
,2α1,β1

r2α1−1 lnβ1 r

+





p/2∑

α1=−p/2+1

j−p/2+α1+1∑

β1=0

CTp
j
,2α1,β1

r2α1−1 lnβ1 r if p is odd

p/2∑

α1=−p/2+1

j−p/2+α1+1∑

β1=0

CTp
j
,2α1,β1

r2α1−1 lnβ1 r

− CTp
j
,2α1,β1

r2α1−1 lnβ1 r
∣∣∣

α1=0,

β1=j−p/2+1

if p is even

+

3/2j−1∑

α1=p/2+1

j+1∑

β1=0

CTp
j
,2α1,β1

r2α1−1 lnβ1 r +

j∑

β1=0

CTp
j
,2α1,β1

r2α1−1 lnβ1 r

∣∣∣∣∣∣
α1=3j/2

.

(A16)
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Here the C is used to distinguish form the C used by T pj (r). We name each
term as 5©, 6©, 7© and 8©. Now for ψqk−j(r) we have

ψqk−j(r) =

−q/2−1∑

α2=−(k−j)/2+1

2α2+(k−j)−1∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r

+

q/2∑

α2=−q/2

α2+(k−j)−q/2∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r

+

3/2(k−j)∑

α2=q/2+1

k−j∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r ,

(A17)

and we name each term 9©, 10© and 11©. We will prove that the upper part of

Table A2 can be constructed from

1

r

∂Tjp(r)

∂r
ψqk−j(r) =

1

r
( 5©+ 6©+ 7©+ 8©) × ( 9©+ 10©+ 11©) , (A18)

but the boundary will never be passed. Naively, the first row of the upper part

seems to be the product of 1
r

5© and 9©; however it is not the case. Actually,

when q < k − j − 2, 9© does not vanish, since 1
r

5© × 9© is

−m/2−1∑

α=−k/2+1

2α+k∑

β=0

CT p
j ,2α1,β1

Cψq
k−j ,2α2,β2

r2α−2 lnβ r , (A19)

where α = α1 + α2 and β = β1 + β2. Comparing to the first term of (A15),
1
r

5© and 9© do not have the very top row α = −k/2 and the last element

β = 1 + 2α + k of every row is missing. Therefore, when q < k − j − 2 the

very top row of the product (A18) will never reach −k/2. Since q and k − j

must have the same parity, then the only case left is q = k− j, where 9© does

not vanish.
In order to reach the boundary of the upper part, we need to separate the

very first row from the upper part. For the first row α = −k/2 of the upper
part, we take q = k − j. Since q = k − j, 9© vanishes, we take the first row of
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5© (α1 = j/2) and consider 1
r

5© × 10©,

=

1+2α1+j∑

β1=0

CTp
j
,2α1,β1

r2α1−2 lnβ1 r

∣∣∣∣∣∣
α1=−j/2

·
q/2∑

α2=−q/2

(k−j)−q/2+α2∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r

=

1∑

β1=0

CTp
j
,−j,β1

r−j−2 lnβ1 r ·
q/2∑

α2=−q/2

(k−j)−q/2+α2∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r

=
(
CTp

j
,−j,0 r−j−2 + CTp

j
,−j,1 r−j−2 ln r

)
·

q/2∑

α2=−q/2

(k−j)−q/2+α2∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r

=

q/2∑

α2=−q/2

(k−j)−q/2+α2∑

β2=0

CTp
j
,−j,0Cψq

k−j
,2α2,β2

r2α2−j−2 lnβ2 r

+

q/2∑

α2=−q/2

(k−j)−q/2+α2∑

β2=0

CTp
j
,−j,1Cψq

k−j
,2α2,β2

r2α2−j−2 lnβ2+1 r

=

(q−j)/2∑

α=−k/2

k/2+α∑

β2=0

CTp
j
,−j,0Cψq

k−j
,2α+p,β2

r2α2−2 lnβ2 r

+

(q−j)/2∑

α=−k/2

k/2+α+1∑

β=1

CTp
j
,−j,1Cψq

k−j
,2α+p,β−1r

2α−2 lnβ r

=

(q−j)/2∑

α=−k/2

k/2+α+1∑

β=0

ĈTp
j
,2α,βr

2α−2 lnβ r ,

(A20)

where α = α2 − j/2, β = β2 + 1 and

ĈTm
k
,2α,β

=





CTp
j
,−p,0Cψq

k−j
,2α+p,β if β = 0

CTp
j
,−p,0Cψq

k−j
,2α+p,β + CTp

j
,−p,1Cψq

k−j
,2α+p,β−1 if 0 < β < k/2 + α+ 1

CTp
j
,−p,1Cψq

k−j
,2α+p,β−1 if β = k/2 + α+ 1 .

(A21)

We collect the C and use Ĉ for the easiness of notations. Observe the first
row (α = −k/2),

(q−j)/2∑

α=−k/2

k/2+α+1∑

β=0

ĈTp
j
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=−k/2

= ĈTp
j
,−k,0r

−k−2+ĈTp
j
,−k,1r

−k−2 ln(r), (A22)
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which matches the first row in the upper part of ∇2Tmk ,

−m/2−1∑

α=−k/2

1+2α+k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r

∣∣∣∣∣∣
α=−k/2

= C̃Tp
j
,−k,0r

−k−2+C̃Tp
j
,−k,1r

−k−2 ln(r). (A23)

Note, in the q = k − j case (A20), only the first row matches the one in the

upper part of ∇2Tmk and all other rows has less elements. In fact, −k/2 ≤ α ≤
k/2 such that α+ k/2 ≥ 0, the max element in each row is β = k/2 +α+ 1 ≤
1 + 2α + k − (k/2 + α) ≤ 1 + 2α + k. The equality holds when α + k/2 = 0,

which is the first row.
Now we need the find the “double step stair” shape boundary case for the

upper part without the first row. A special case is needed, q = k−j−2, where
the first row of ψqk−j contains three elements, such that the product with the
upper part of T pj matches the target boundary. We want to maximize j − p
such that the upper part of T pj contains the maximized number of rows. The
largest j that satisfies q = k − j − 2 is q = 1, k − j = 3 such that j = k − 3.
The smallest p is where we take m = p+ q. In this case, the first row of ψqk−j
is

q/2∑

α2=−q/2

(k−j)−q/2+α2∑

β2=0

Cψq

k−j
,2α2,β2

r2α2 lnβ2 r

∣∣∣∣∣∣
α2=−q/2=−1/2

=
2∑

β2=0

r−1Cψq

k−j
,−1,β2

lnβ2 r

(A24)

Now the product of 1
r

5© and the first row of 10© is

1

r

−p/2∑

α1=−j/2

1+2α1+j∑

β1=0

CTp
j
,2α1,β1

r2α1−1 lnβ1 r ·
2∑

β2=0

r−1Cψq

k−j
,−1,β2

lnβ2 r

=

−(m−1)/2∑

α1=−j/2

1+2α1+j+2∑

β1=0

CTp
j
,2α1,β1

Cψq

k−j
,−1,β2

r2α1−3 lnβ1 r

=

−m/2∑

α=−j/2−1/2

1+2α+j+3∑

β=0

ĈTp
j
,2α1,β1

r2α−2 lnβ r

=

−m/2∑

α=−k/2+1

1+2α+k∑

β=0

ĈTp
j
,2α1,β1

r2α−2 lnβ r ,

(A25)

where α = α1 − 1/2, β = β1 and ĈT p
j ,2α1,β1

= CT p
j ,2α1,β1

Cψq
k−j ,−1,β2

. This is
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almost exactly the target upper part without the first row α = −k/2,

−m/2−1∑

α=−k/2

1+2α+k∑

β=0

C̃Tm
k
,2α,βr

2α−2 lnβ r , (A26)

except there is one more term α = −m/2. Now we will show the last element
of this last row is zero. Recall that when p + q = m on the right(A5) there
may be a chance that the two terms cancel. In fact, take an arbitrary term of

q
∂Tjp(r)

∂r
ψqk−j(r) − pT pj (r)

∂ψqk−j(r)

∂r
,

q
(
CTp

j
,α1,β1

rα1 lnβ1 r
)′

Cψq

k−j
,α2,β2

rα2 lnβ2 r − pCTp
j
,α1,β1

rα1 lnβ1 r
(
Cψq

k−j
,α2,β2

rα2 lnβ2 r
)′

=qC1C2

(
α1r

α1−1 lnβ1 r + β1r
α1−1 lnβ1 r

)
rα2 lnβ2 r

− pC1C2r
α1 lnβ1 r

(
α2r

α2−1 lnβ2 r + β2r
α2−1 lnβ2 r

)

=qC1C2

(
α1r

α1+α2−1 lnβ1+β2 r + β1r
α1+α2−1 lnβ1+β2−1 r

)

− pC1C2

(
α1r

α1+α2−1 lnβ1+β2 r + β1r
α1+α2−1 lnβ1+β2−1 r

)
.

(A27)

For α1r
α1+α2−1 lnβ1+β2 r term to vanish one needs qα1 = pα2, and for

α1r
α1+α2−1 lnβ1+β2−1 r term to vanish one needs qβ1 = pβ2. Any element in

this row except the last element will never give a zero in the target table, since

it can easily be compensated from the derivatives of the next element. For the

last element in the boundary case, if the α1r
α1+α2−1 lnβ1+β2 r vanishes, it will

reshape the boundary of the outcome table, since no higher order term exists.

In the previous case we have p+ q = m, α2 = −q/2 = −1/2 when α = −m/2
which is the last row, α1 = −m/2+1/2 = −p/2− q/2+1/2 = −p/2 such that

qα1 = pα2. This will make the last element vanish, so the product of 1
r

5© and

the first row of 10© is

−m/2−1∑

α=−k/2+1

1+2α+k∑

β=0

C̃Tm
k ,2α,βr

2α−2 lnβ r +
2α+k∑

β=0

C̃Tm
k ,2α,βr

2α−2 lnβ r

∣∣∣∣∣
α=−m/2

. (A28)

where the first component completely matches the target (A26) and the second

component matches the shape of the last row of upper component. Now we

have proved the upper part of right hand side of (A4) and (A5) must have the
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shape in table A2. Similarly one can prove the middle and lower part. The

same idea can be applied to the ψmk to verify the general form. 2

B QD algorithm

Given a power series expansion of the meromorphic function f(z) =
∑∞

i=0 ciz
i,

the QD algorithm relies on the computation of QD scheme,

q0
1

0 e01

q1
1 q0

2

0 e11 e02

q2
1 q1

2
. . .

0 e21 e12
...

...
. . .

...
...

...

(B1)

where the alternate columns containing qnm and enm are called Q-columns and

E-columns respectively. Entries of the QD scheme are defined by

qnm =
Hn+1
m Hn

m−1

Hn
mH

n+1
m−1

,

enm =
Hn
m+1H

n+1
m−1

Hn
mH

n−1
m

,

(B2)

where the Hn
m is the Hankel determinant of the input power series,

Hn
m =

∣∣∣∣∣∣∣∣∣∣

cn cn+1 · · · cn+m−1

cn+1 cn+2 · · · cn+m

...
...

. . .
...

cn+m−1 cn+m · · · cn+2m+2

∣∣∣∣∣∣∣∣∣∣

. (B3)
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Suppose we have one and only one pole in the meromorphic function. Then

the radius of convergence is the absolute value of the pole ZS, defined as

|ZS| = limn→∞ | Cn

Cn+1
|. In multiple pole situations, The relationship between

Hankel determinants and pole locations can be viewed as an extension of the

definition of radius of convergence in the case of one pole. Suppose there are

m poles z1, z2, . . . , zm with distinct moduli in the complex plane, then the

product of the reciprocal of each pole location is the ratios of corresponding

Hankel determinants when n→ ∞,

m∏

i=1

ui = lim
n→∞

Hn+1
m

Hn
m

. (B4)

Even though the q and e elements are defined using Hankel determinants,

the QD scheme is not computed this way, since the computation is very ineffi-

cient and ill-conditioned [7]. By manipulating (B2) one can have the following

rhombus rule,

qn+1
m =

(
enm − en+1

m−1

)
+ qnm ,

en+1
m =

qnm+1

qn+1
m

enm .
(B5)

The QD scheme is computed using these identities and the following initial

values,

q−m+1
m = 0, m = 2, 3, . . . ,

q−1
1 =

c1
c0
,

e−m+1
m =

bm+1

bm
m = 1, 2, . . . .

(B6)

Here the b’s are the coefficients of the power series expansion of the reciprocal

of f(z), 1/f(z) = b0 + b1z + b2z
2 + · · · computed also by recurrence relation.

For a meromorphic function f(z) that contains m poles, where

0 < |z1| ≤ |z2| ≤ · · · ≤ |zm| , (B7)

any k such that |zk| < |zk+1| is called a critical index. On the QD scheme,

any critical index will make the corresponding E-column go to zero. In other
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words, if k is a critical index, then

lim
n→∞

enk = 0 . (B8)

If all poles are distinct, every k ∈ {1, 2, . . . ,m} is a critical index, and each

Q-column will converge to the reciprocal of the corresponding pole location,

lim
n→∞

qnk = uk = 1/zk . (B9)

If there are poles with equal moduli, for example

uk = uk+1 = · · · = uk+j , (B10)

then the nearby critical index will be k and k+j. The pole location information

in between the qk and qk+j column are not that obvious. To extract the pole

information in the equal moduli case, the Hadamard polynomial [7, 1, 5, 6] is

used,

pnm+1(u) = upn+1
m (u) − qnm+1p

n
m(u), pn0 (u) = 1 . (B11)

Given the Q-columns between any two nearby critical index, as in the example

(B10) the Hadamard polynomials have the following property:

lim
n→∞

pnj (u) =

j∏

i=1

(u− ui), i = k, k + 1, . . . k + j . (B12)

Therefore, the locations of poles with same moduli can be computed by Hadamard

polynomials. If we construct the matrix

Mn
m =




gn1 hn1 0

1 gn2 hn2

1 gn3 hn3
. . . . . . . . .

0 1 gnm




, (B13)

where gnk+1 = qnk+1 + enk+1, h
n
m = qnme

n
m, then the Hadamard polynomial pnm is
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the characteristic polynomial of the matrix Mn
m. Therefore, the eigenvalues of

Mn
m are the zeros of the Hadamard polynomial, which is also the location of

the poles. Finding eigenvalues using, for example the QR algorithm is a stable

method of finding these poles. The QD algorithm contains two parts

1. Construct the QD scheme using the input power series coefficients.

2. Identify the critical indexes and extract pole locations using the Hadamard

matrices.

Note that the successful computation of pole locations in the multiple pole

case depend on the number of higher order coefficients available. A more

accurate estimations on the locations of the poles requires higher order input.

But the higher order input does not guarantee the accuracy. The number of

poles and their structures have great impact on the accuracy. For example,

if the solution has many poles that either share the same location (multiple

poles) or same moduli, then the accuracy of the QD algorithm suffers greatly

[7]. If the output of the QD algorithm contains several poles near each other,

then it may be case they are actually on the same location but just biased by

the QD algorithm. Nevertheless, some high order input for example the 30th

order in Chapter 2, is always appreciated.

C Perturbation method and multiple time scale

algorithm

There are many commonly used methods to compute focus values, including

the perturbation method based on multiple time scales [14, 15, 13, 16, 12, 11],

the singular point method [9, 8, 3, 4], and Poincaré-Takens method [17]. In

this work, we apply the perturbation method. Suppose system (3.1) has an

elementary center at the origin. It can always be written in the following form:

ẋ = y + F (x, y) ,

ẏ = −x+G(x, y) ,
(C1)
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where F and G are polynomials in x and y, consisting of only non-linear terms.

Space variables x, y are expanded using ε:

x =
∞∑

k=0

xkε
k+1 ,

y =
∞∑

k=0

ykε
k+1 ,

(C2)

where a scalar transformation z → εz has been applied to x and y prior to the

expansion. Time variable t is replaced by an infinite sequence of time variables

Ti, which is defined as:

Tk = εkt, k = 0, 1, 2, · · · (C3)

Now the derivative with respect to t is expressed as a series expansion in

powers of ε
d

dt
=

∞∑

k=0

εkDk , (C4)

where Dk = d/dTk. Tk’s are called multiple time scales. Substituting the series

expansions for both space and time (C2), (C3) and (C4) into (C1) and balanc-

ing all the coefficients of like powers of ε, yields an infinite set of equations,

D0xk − yk = Fk , k = 0, 1, . . . (C5)

D0yk + xk = Gk , k = 0, 1, . . . (C6)

where F0 = G0 = 0, Fk and Gk, k > 0 are determined by the terms found at

lower orders and always in the form of

C+
∑

Am r
m cos(mT0+φ(T1, T2, . . .))+Bm r

m sin(mT0+φ(T1, T2, . . .)). (C7)

93



The solutions of these differential equations are always solvable and com-

putable. Applying D0 on (C5) plus (C6) gives

D2
0(xk) + xk = D0(Fk) +Gk . (C8)

Note that the right hand side of (C8) is still in the form of (C7). A particular

solution can be obtained by the method of undetermined coefficients:

xk = Ak0 +
k∑

j=1

[
Akj cos(jT0 + φ(T1, T2, . . .)) +Bk

j sin(jT0 + φ(T1, T2, . . .))
]
,

(C9)

where Ak, k = 0, 1, . . . , and Bk, k = 1, 2, . . . are coefficients to be determined.

This xk is substituted back into (C8) to determine these coefficients. In the

solution, some terms are unbounded when t → ∞, which are called secular

terms. These terms need to be eliminated because the true solution is known

to be bounded. To eliminate the secular terms the coefficients of cos(T0 +

φ(T1, T2, . . .)) and sin(T0 + φ(T1, T2, . . .)) terms must be zero, which yields

Dkr +H (p1, p2, . . . , pm) = 0 ,

Dkφ+ I (p1, p2, . . . , pm) = 0 ,
(C10)

where H and I are polynomials in the parameters of the original system. Solv-

ing (C10) provides the focus values of each order vk = Dkr = −H (p1, p2, . . . , pm).

Then, the normal form of the system, given in polar coordinates, can be rewrit-

ten in the form of:

dr

dt
=

∂r

∂T0

∂T0

∂t
+

∂r

∂T1

∂T1

∂t
+

∂r

∂T2

∂T2

∂t
+ · · ·

= D0r +D1r +D2r + · · · ,
(C11)

dφ

dt
=

∂φ

∂T0

∂T0

∂t
+

∂φ

∂T1

∂T1

∂t
+

∂φ

∂T2

∂T2

∂t
+ · · ·

= D0φ+D1φ+D2φ+ · · · ,
(C12)
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where Dir and Diφ are both uniquely determined by the parameters of the

original system.

D An example of focus value computation

The focus value algorithm using the perturbation method is better explained

using an example. Consider the general quadratic system [18], which is the

system (3.23) truncated at 3rd-order terms,

ẋ = αx+ y + x2 + (b+ 2d)xy + cy2 ,

ẏ = −x+ αy + dx2 + (e− 2)xy − dy2 ,
(D1)

where α, b, c, d and e are independent parameters. It has been proved [2] that

this system has at most three small-amplitude limit cycles near the origin.

This system is introduced here to illustrate the computation of focus values.

The space variable x and y are firstly scaled by x → εx, y → εy, and

then expanded into (C2). While the time variable t is expanded using scales

Tk = εkt, k = 0, 1, 2, . . ., and the derivative with respect to t is then replaced

by (C4). Once (D1) is expanded according to the previous space and time

expansions, coefficients of the like powers of ε are then collected, which gives

infinitely many pairs of equations,

D0x0 − y0 = 0 ,

D0y0 + x0 = 0 ,
(D2)

D0x1 − y1 +D1x0 − x2
0 − (b+ 2d)x0y0 − cy2

0 = 0 ,

D0y1 + x1 +D1y0 + dx2
0 + (e− 2)x0y0 − dy2

0 = 0 ,
(D3)

D0x2 − y2 +D2x0 +D1x1 − 2x0x1 − (b+ 2d)x0y1 − (b+ 2d)x1y0 − 2cy0y1 = 0 ,

D0y2 + x2 +D2y0 +D1y1 + 2dx0x1 + (e− 2)x0y1 + (e− 2)x1y0 − 2dy0y1 = 0 .

(D4)

· · · · · · · · ·
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Consider the first pair (D2). Applying D0 on the first equation plus the second

one will eliminate yk and give a second-order linear differential equation,

D2
0x0 + x0 = 0 , (D5)

for which the solution is x0 = r cos(θ), θ = T1 +φ(T2, T3, . . .), and accordingly

y0 = D0x0 = −r sin(θ). Now the second pair of equations in (D3) becomes

D0x1 − y1 +D1r cos(θ) − r2 cos(θ)2 + (b+ 2d)r2 cos(θ) sin(θ) − cr2 sin(θ)2 = 0 ,

D0y1 + x1 −D1r sin(θ) + dr2 cos(θ)2 − (e− 2)r2 cos(θ) sin(θ) − dr2 sin(θ)2 = 0 ,

(D6)

and is treated in the same way as the first pair to obtain an equation containing

only one unknown x1:

D2
0x1 + x1 − 2 sin(θ)D1r − 2r cos(θ)D1φ− r2 sin(θ)2 − (b+ 2d)r2 cos(θ) sin(θ)

− cr2 cos(θ)2 + dr2 cos(θ)2 − (e− 2)r2 cos(θ) sin(θ) − dr2 sin(θ)2 = 0 .

(D7)

This new equation is then simplified using trigonometric identities to reduce

the power of the sin and cos terms, yielding

D2
0x1 + x1 + 1/2r2 [(−2d− b+ e− 2) sin(2θ) + (1 − 2d− c) cos(2θ) − 1 − c]

− 2 sin(θ)D1r − 2r cos(θ)D1φ = 0 .

(D8)

In order to eliminate the secular terms in the solution x1, the sin(θ) and cos(θ)

terms must be dropped, so that the coefficients of the secular terms must be

zero,

D1r = 0 ,

D1φ = 0 ,
(D9)

yielding v0 = D1r = 0, as expected. Then, equation (D8) becomes

D2
0x1+x1+1/2r2 [(−2d− b+ e− 2) sin(2θ) + (1 − 2d− c) cos(2θ) − 1 − c] = 0.

(D10)

According to the form in the square bracket of the above equation, x1 is

96



assumed to be

x1 = r2(A0 + A2 cos(2θ) +B2 sin(2θ)) , (D11)

to compute a particular solution by the method of undetermined coefficients.

Substituting (D11) back to (D8), to balance the coefficients of cos, sin and

constant terms, yields the solution of each unknown coefficients,

A0 = 1/2 + 1/2c ,

A2 = 1/6 − 1/3d− 1/6c ,

B2 = −1/3d− 1/6b+ 1/6e− 1/3 ,

(D12)

yielding

x1 = r2[(1/2 + 1/2c) + (1/6 − 1/3d− 1/6c) cos(2θ)

+ (−1/3d− 1/6b+ 1/6e− 1/3) sin(2θ)] ,
(D13)

which is substituted into (D3) to obtain

y1 = r2[(−1/3 + 1/2b+ 5/3d+ 1/3c) sin(2θ)

+ (1/3e− 2/3d− 1/3b+ 1/2c− 7/6) cos(2θ) − 1/2 − 1/2c] .
(D14)

The computation procedure of the second order and even higher ones are

exactly the same. It is aways solvable, since at each order, xn and yn only

depend on previously computed xk, yk, Dkr,Dkφ. The term that contains un-

evaluated focus values are always linear and have the form of DnD0x0 +Dny0,

which then leads to the secular terms in solutions. Therefore, the focus values

are always computed by eliminating the secular terms in solutions.

The most expensive part of the computation is the trigonometric transfor-

mation which combines the high order sin and cos terms. The Maple routine

combine[trig] is relatively slow and inefficient. Instead, a new procedure was

written to take advantage of repeating trigonometric terms in each equation.

A table is created to memorize new trig-identities, and retrieved when an input

term contains existing identities. The new procedure boosted the speed of the

whole algorithm by more than five times.

It should be noted that although we have discussed and applied the pertur-
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bation method for two-dimensional system (3.1), it actually can be applied to

consider general n-dimensional system with a Hopf critical point at the origin.

More details can be found in [13].

E Flaws in the paper of Lloyd and Pearson

In [10], Lloyd and Pearson made the following claim: ”Our example appears

to be the first to have been obtained without recourse to some numerical

calculation”.We think that this conclusion is not correct since their method has

some flaws and is not complete. In their calculation, they reduce the original

problem to checking whether or not the system Ψ1 = Ψ2 = Ψ3 = 0, Φ4 6= 0.

The polynomials Φi, i = 1, ..., 4 are polynomials in the three rational variables

b1 < m < b6.

To achieve their goal, they did the computations in two steps

Step.1 They show that if the system Φ1 = Φ2 = Φ3 = 0 holds, then Φ4 6= 0

also holds

Step.2 They try, but fail, to show that the system Φ1 = Φ2 = Φ3 = 0 has real

solutions.

We explain below why this Step.2 has significant flaws.

To see this, let us have a look at the author’s main computation steps.

1. They compute the following resultants, for which they give patterns that

we reproduce below on the right hand sides of the equalities,

resultant(Φ1,Φ2, b6) = #m144(b21 + 1)188 ∗R1

resultant(Φ1,Φ3 mod Φ1, b6) = #m186(b21 + 1)248 ∗R2

resultant(Φ1,Φ4 mod Φ1, b6) = #m228(b21 + 1)280 ∗R3

resultant(R1, R2,m) = #(b21 + 1)40 ∗ Z,

where the pound sign denotes (large) integer factors while R1, R2, R3 are

bivariate polynomials in m, b1 and Z are univariate polynomials in b1.
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2. They correctly prove that resultant(R1, R2,m) and resultant(R1, R3,m)

cannot have a non-trivial common factor, which implies that Step.1 is

properly handled. This is done by

(a) computing resultant(R1, R3,m) mod 44449 and resultant(R1, R2,m)

mod 44449, and

(b) finding that they have no non-trivial common factors

Indeed, if resultant(R1, R3,m) and resultant(R1, R2,m) would have a

non-trivial common factor over the rationals, they would have one non-

trivial common factor modulo 44449. Moreover, the fact that resultant(R1, R3,m)

and resultant(R1, R2,m) have non-trivial common factors would imply

that the system Φ1 = Φ2 = Φ3 = Φ4 = 0 is inconsistent. (Resultant(R1, R2,m)

and resultant(R1, R3,m) both belong to the ideal generated by Φ1,Φ2,Φ3,Φ4).

3. They try to prove that Φ1 = Φ2 = Φ3 = 0 has real common solutions.

First they view Z as a polynomial in w = b21 and find that Z = 0 has a

real positive zero w∗ in the interval (0.6, 0.7) Then they claim that “When

b21 = w∗ holds there is a value of the variable m satisfying R1 = R2 = 0,

but R3 6= 0, and hence a value of b6 such that Φ1 = Φ2 = Φ3 = 0, with

Φ4 6= 0.”

This deduction is wrong for the following reasons.

(a) The fact that the univariate equation resultant(R1, R2,m) = 0 has a

real solution does not imply that the bivariate system R1 = R2 = 0

has real solutions.

For example R1 := y2+x+1 and R2 := y2+2x+1 are two bivariate

polynomials in x < y where the resultant in y is x2, which has real

solutions, while the system R1 = R2 = 0 does not.

(b) Even if the system R1 = R2 = 0 has solutions (complex or real) this

does not imply that the Φ1 = Φ2 = Φ3 = 0 system has solutions.

For example Φ1 := z2 + x + y + 1,Φ2 := z2 + 2x + 2y + 1 and

Φ3 := z2+3x−3y+1. We have R1 := resultant(Φ1,Φ2, z) = (x+y)2
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and R2 := resultant(Φ1,Φ3, z) = (2x− 4y)2. Obviously, R1 and R2

have common real solutions, but the system Φ1 = Φ2 = Φ3 = 0 has

no real solutions.

F Maple input for the quadratic example

read "focusvalues_quadric": # Read in the focus values

eqs := [v2, v3];

vars := SuggestVariableOrder(eqs);

# Suggest a best order for the variables

R := PolynomialRing(vars); # Construct the polynomial ring

dec := Triangularize(eqs, R, output=lazard);

# Compute the triangular decomposition

Info(dec, R);

# Display the output which contains four regular chains,

# [[c+1], [d, b], [e-5*c-5, b], [e, b]];

# Now we check if $v4$ vanishes on each of the regular chains

#Method1: using Regularize.

Regularize(v4, dec[1], R);

# [[], [regular_chain]]

# This output shows that v4 vanishes on zeros of dec[1];

# This is equivalent to say that dec[1] is a center condition.

Regularize(v4, dec[2], R);

# Same as above

Regularize(v4, dec[4], R);

# Same as above

Regularize(v4, dec[3], R);
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# The output is [[regular_chain], []],

# which says that v4 does not vanish on all the zeros of dec[3]

# Method2:

dec2 := Triangularize([v2, v3, v4], R, output=lazard);

Info(dec2, R);

# [[c+1], [d, b], [e, b], [d^2+2*c^2+c, e-5*c-5, b]]

# According the result from dec (v2, v3 only),

# [c+1], [d, b], [e, b] are center conditions, since v4 vanishes

# on them. d^2+2*c^2+c must be zero in order to make v4 vanishes

# at [e-5*c-5, b]. Thus, [e-5*c-5=0, b=0], but d^2+2*c^2+c<>0 is

# condition for limit cycle.

dec3 := Triangularize([v2, v3, v4, v5], R, output=lazard);

Info(dec3, R);

# [[c+1], [d, b], [e, b], [d^2+2*c^2+c, e-5*c-5, b]]

# By dec2, all the components from dec2 makes v5 vanishes,

# which means [d^2+2*c^2+c, e-5*c-5, b] is a new center

# condition.

G Maple input for the cubic example

read "focusvalues_cubic";

with(RegularChains);

F:= [F1, F2, F3, F4, F5];

R:= PolynomialRing[vars]; # Construct the polynomial ring

vars:= SuggestVariableOrder(F);

# Suggest a best order for the variables

p := 304166505300000047; # Pick a large enough prime

Rp := PolynomialRing(vars, p);

# Construct the polynomial ring mod p

dec := Triangularize(F, Rp);
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# Compute the triangular decomposition modulo p

map(NumberOfSolutions, dec, Rp);

# Check the number of solutions of each output regular chain

# [474, 214, 112, 34, 18, 1, 1]

ndec := [seq(op(NormalizeRegularChain(rc, Rp,

’normalized’=’strongly’)), rc=dec)];

# Normalize each regular chain

edec := [op(EquiprojectableDecomposition(ndec, Rp))];

# Compute the equiprojectable decomposition, which contains

# two regular chains edec[1], edec[2]

with(MatrixTools);

jm1 := JacobianMatrix(F, edec[1], Rp); # Jacobian of edec[1]

MatrixTools:-MatrixInverse(jm1, edec[1], Rp);

# Check if the Jacobian is invertable, which returns false

jm2 := JacobianMatrix(F, edec[2], Rp); # Jacobian of edec[2]

MatrixTools:-MatrixInverse(jm2, edec[2], Rp);

# The Jacobian of edec[1] is zero

Equation(edec[1],Rp);

# Show the equations in edec[1], which contains f=0

# This is a known center condition

# The Jacobian of edec[2] is non-zero

Lift(F, R, edec[2], 10, p); # Lift the edec[2]

eqn0 := Equations(dec, Rp);

# Extract the equations from edec[2]

# check if the five equations is initial is 0 mod p

expand(Initial(eqn0[1], R)) mod p;

expand(Initial(eqn0[2], R)) mod p;

expand(Initial(eqn0[3], R)) mod p;
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expand(Initial(eqn0[4], R)) mod p;

expand(Initial(eqn0[5], R)) mod p;

#check if still a regular chain mod p;

eqp := map(x->expand(x) mod p, eq0);

rc := Empty(Rp);

rc := Chain(eqp[5..-1], rc, Rp);

# Reconstruct the regular chain mod p

Regularize(Initial(eqp[4], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[4..-1]), Empty(Rp), Rp);

Regularize(Initial(eqp[3], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[3..-1]), Empty(Rp), Rp);

Regularize(Initial(eqp[2], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp[2..-1]), Empty(Rp), Rp);

Regularize(Initial(eqp[1], Rp), rc, Rp);

# [[regular_chain], []]

rc := Chain(ListTools:-Reverse(eqp), Empty(Rp), Rp);

# It turns out that it is still a regular chains mod p

read "v9": # Read the next focus value v9

Regularize(v9, rc, Rp);

# Check if the regular chain makes v9 vanish

# [[regular_chain], []]

# v9 does not vanish on the regular chain, so the eq0 deals

# to limit cycles
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