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Abstract 

Ecosystems are being altered at unprecedented rates with little knowledge of the 

potential impacts on biodiversity. Two of the most pressing contemporary anthropogenic 

stressors are pollution and global warming. Species can respond to these stressors via 

dispersal, phenotypic plasticity, or evolutionary adaptation. Many species, especially 

aquatic organisms, experience ecological or physical barriers to dispersal and will 

therefore have to respond via phenotypic plasticity or evolutionary responses. I examined 

the responses of multiple traits associated with fitness in fish to pollution and increased 

temperature using a 2 × 2 common garden experimental design. I examined the effects of 

pollution on behaviour in a natural population of brown bullheads (Ameiurus nebulosus), 

and increased temperature on population demographics, life history traits, reproductive 

traits, and the immune response in experimental populations of guppies (Poecilia 

reticulata). The plastic responses to pollution were increased locomotion and decreased 

aggression and the plastic responses to increased temperature were decreased age at 

maturity, sperm length, sperm velocity, and sperm path linearity. These results are 

indicative of stress responses by the fish and could potentially decrease reproductive 

success and survival. Next, I measured reproductive output in experimental populations 

of guppies and found that, after many generations in elevated temperature, females 

produced fewer, smaller broods than control populations. However, I found no effect of 

temperature on census population size, survivorship, sex ratio, size-at-age, or the immune 

response, indicating that, despite the decreased reproductive output, guppies appear to 

cope with the increased temperature. Additionally, genetic diversity in the elevated 

temperature populations decreased more rapidly than control populations, and was 
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equivalent to one quarter the effective population size relative to the controls. This latter 

result shows a clear signature of selection. Indeed, I found that sperm length displayed an 

evolutionary response in an estimated 2-3 generations. And in a natural population of 

bullheads, after an estimated 33 generations, I found an evolutionary response in 

locomotion and aggression. However, the reduced genetic diversity could lower the 

adaptive potential of populations to future stressors. I discuss these results in the context 

of the scope of organisms to rapidly respond to anthropogenic stressors. 
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Chapter 1  

1 General introduction 

In 1992, a joint statement released by Britain’s Royal Society and the US National 

Academy of Sciences concluded that “if current predictions of population growth prove 

accurate…the future of our planet is in the balance” (Press and Atiyah 1992). 

Anthropogenic influences are changing the environment, both locally and globally, 

through population expansion, industrialisation, and increased intensification of 

agriculture (Moss 1998). This environmental alteration is occurring at unprecedented 

levels with little knowledge of the potential consequences these alterations will have on 

organisms. Pollution and global warming are two of the most pressing anthropogenic 

stressors - defined here as any human-induced alteration of the environment that elicits a 

stress response in organisms - which are predicted to have serious negative impacts on 

biodiversity, especially in aquatic ecosystems (Moyle and Leidy 1992; Ficke et al. 2007). 

There are suggestions that “we are in the midst of a mass extinction caused by the 

advancement of one species: Homo sapiens” (Angilletta 2009). One of the most pressing 

contemporary concerns is whether organisms can respond to these stressors on an 

ecological timescale (Hendry et al. 2008). 

In order to avoid widespread extinctions due to anthropogenic stressors, such as 

pollution or global warming, Fuller et al. (2010) suggested that organisms will have to 

respond via one, or more, of the following: (1) dispersal - defined here as the movement 

of populations from a habitat that has become unsuitable or undesirable to inhabit, to a 

new, more favourable habitat; (2) phenotypic plasticity - where different environmental 
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conditions trigger a given genotype to display different phenotypes; or (3) an 

evolutionary response - defined here as genetic changes driven by natural selection on 

favourable traits. There are many studies documenting dispersal in response to 

anthropogenic stressors (reviewed in Parmesan 2006). For example, Thomas and Lennon 

(1999) documented a mean northward shift in 12 bird species in the UK of approximately 

20 km over 20 years in response to contemporary climate warming. However, depending 

on their movement abilities, many species will face physical barriers to dispersal, such as 

mountain ranges or large water bodies. The dispersal ability of organisms may also be 

compromised by ecological restrictions, such as food or shelter availability. Dispersal is 

particularly problematic for aquatic organisms, such as fish, which face a multitude of 

barriers, such as dams and waterfalls. Additionally, water bodies are often spatially 

restrictive. Therefore, for those species that cannot disperse in response to anthropogenic 

stressors, they may instead have to respond via phenotypic plasticity or genetic 

adaptation. It is these latter two responses that I focus on for my thesis. 

 

1.1 Phenotypic plasticity 

The evolution of phenotypic plasticity results in genotypes producing better 

phenotype-environment matches, in terms of fitness, across a broad range of 

environments than a trait that does not display phenotypic plasticity (DeWitt et al. 1998). 

Plasticity includes individual responses to environmental stimuli at all levels of biological 

organization (Angilletta 2009). Indeed, morphological, physiological, life history, and 

behavioural traits can all show phenotypic plasticity (e.g. Berry and Bjorkman 1980; 

Kaufmann and Bennett 1989; Dhillon and Fox 2004). Phenotypic plasticity is best 
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detailed through a reaction norm which describes the pattern between phenotype 

expression (i.e. phenotypic performance) over a continuous environmental variable 

(West-Eberhard 2003). For example, Barlow (1962) detailed the innate capacities for 

population increase in two species of aphid over a broad range of temperatures and found 

that the optimum temperature for population growth was approximately 20°C. This 

plastic response is often the first response of organisms to environmental change, and 

may be the only response for many long-lived species with long generation times 

(Bradshaw and Holzapfel 2006; Fuller et al. 2010). Therefore, it is of crucial importance 

that we better understand the extent of plasticity in nature in order to predict the fate of 

organisms in changing environments (Somero 2010). A phenotypically plastic response 

allows an organism to achieve continued performance over a larger range of 

environmental conditions than they could otherwise. However, phenotypic plasticity has 

many constraints associated with it which can be categorised into costs (e.g. maintenance 

and production costs) and limitations (e.g. information reliability and lag-time; reviewed 

in DeWitt et al. 1998). Plasticity occurs only at the individual level, therefore, each 

successive generation will have to re-acquire this plastic response which could hinder 

optimal offspring development and, consequently, fitness as they require energy which 

could have been channelled towards other somatic processes, such as growth, maturation, 

and reproduction. Phenotypic plasticity may be advantageous to individuals in that it 

allows them to adapt to changes in environmental conditions in a manner that will 

increase fitness, but it may be hindered by these costs and limitations (reviwed in DeWitt 

et al. 1998). Thus, heritable alternatives would potentially be more advantageous.  
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1.2 Evolutionary response 

Anthropogenic stressors may have large evolutionary consequences by inducing 

greater selection pressures than would occur naturally (Reznick and Ghalambor 2001). 

Thus, exposure to these stressors could potentially result in unprecedented rates of 

evolution. Traditionally, it was believed that an evolutionary response would take 

thousands of generations to occur (Darwin 1859). More recently, however, evolutionary 

biologists have recognized that evolution can also occur over much shorter temporal 

scales. In general, adaptive evolutionary events occurring over a relatively short time-

frame are referred to as ‘contemporary’ or ‘rapid’ evolution (Hendry and Kinnison 1999). 

Perhaps the most notable example of rapid evolution comes from the medium ground 

finch (Geospiza fortis) on the Galápagos Island of Daphne Major, where individuals 

underwent a severe selection event and, consequently, showed signs of adaptive evolution 

in just one generation (Boag and Grant 1981; 1984; Grant and Grant 1995; 2003). Since 

this seminal research on G. fortis, interest in rapid evolution has grown considerably, 

especially over the last decade with the recent realization that most documented examples 

of rapid evolution are attributed, at least in part, to anthropogenic changes to the 

environment. Indeed, evolutionary responses are considered essential for population 

persistence in the face of long-term environmental changes (Lande and Shannon 1996).  

Darwin (1859) outlined four postulates which have to be met in order for 

evolution by natural selection to occur: (1) there must be variation among individuals of a 

population; (2) this variation must, at least in part, be heritable (i.e. passed on from parent 

to offspring); (3) this variation would lead to variation in survival between individuals; 

and (4) those individuals with the most favourable traits would have the highest 
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reproductive success and consequently pass on their traits to their offspring. Populations 

can evolve through genetic adaptations by two means; selecting from standing (pre-

existing) genetic variation (e.g. Jump et al. 2006), or selecting for new mutations 

(reviewed in Barrett and Schluter 2008). Evolving from standing genetic variation should 

occur more rapidly because desirable traits would already be present in the population 

and at higher frequencies than the rate that mutations could otherwise introduce them. 

However, such desirable genetic variation is not always present, so mutations may be 

necessary for some populations to respond genetically to changes in the environment. 

Favourable mutations likely do not occur that often, even though some stressors increase 

mutation rates (e.g. pollution; Cachot et al. 2007). Indeed, according to the neutral theory 

of molecular evolution, advantageous mutations are exceedingly rare (Kimura 1983). 

Thus, species may require that favourable alleles be present in the population in order to 

display an evolutionary response to these anthropogenic stressors. 

Responding to anthropogenic stressors via evolutionary adaptation may be the 

best means of adaptation because these beneficial traits do not come at a cost to 

development, and many species have limited scope for plasticity (e.g. Stillman 2003; 

reviewed in DeWitt et al. 1998). However, exposure to anthropogenic stressors has been 

shown to significantly reduce genetic variation in populations (e.g. exposure to pollution 

in brown bullheads, Ameiurus nebulosus, Silbiger et al. 2001; least killifish, Heterandria 

formosa, Athrey et al. 2007; and midges, Chironomus riparius, Nowak et al. 2009; and 

exposure to increased temperature in fruit flies, Drosophila subobscura, Santos et al. 

2005), demonstrating the significant selection forces these stressors apply on populations 

(Reznick and Ghalambor 2001). Additionally, increased selection can also lead to 
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inbreeding and inbreeding depression (Charlesworth and Charlesworth 1987; e.g. 

Kristensen et al. 2003). Thus, selection can come at a cost to a population, as inbreeding 

depression and reduced genetic diversity reduces the ability of the populations to respond 

other stressors (Meyer and Di Giulio 2003; Vogt et al. 2010; reviewed in Pauls et al. 

2013). 

 

1.3 Pollution 

1.3.1 Pollution in aquatic environments 

Anthropogenically-induced pollution, defined here as the introduction of toxic 

chemicals into the environment that elicits adverse changes in the local biodiversity, is 

increasingly becoming a wide-spread environmental stressor and has the potential to 

cause drastic effects on ecosystems. Aquatic environments are especially vulnerable to 

pollution because many different forms of anthropogenic waste can enter water systems 

via multiple means such as dumping, leaching, and run-off (Moyle and Leidy 1992). Now 

only the most remote rivers and streams remain relatively unpolluted (Moss 1998). 

Aquatic ecosystems have thus become loaded with chemicals which greatly exceed the 

concentrations with which they naturally occur. Polychlorinated biphenyls (PCBs), 

polyclyclic aromatic hydrocarbons (PAHs), and heavy metals are all found in much 

higher concentrations in many aquatic environments than considered natural (e.g. Furlong 

et al. 1988; Arcand-Hoy and Metcalfe 1999). These pollutants have the potential to elicit 

adverse effects on aquatic biodiversity.  
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There are three main mechanisms by which pollutants can affect organisms: (1) 

imposing additional forms of density-independent breeding failure or mortality, such as 

the reduced levels of protective egg wrapping behaviour observed in dwarf newts, 

Triturus pygmaeus (Ortiz-Santaliestra et al. 2007) or reduced eggshell thickness seen in 

British sparrowhawks, Accipiter nisus, exposed to DDT (dichlorodiphenyltrichloroethane; 

Newton 1986); (2) reducing food supplies, for example, the decline of the grey partridge, 

Perdix perdix, was associated with declines in its insect prey as a result of insecticide 

exposure (e.g. Potts 1986);  and (3) altering the chemical or physical structure of habitats, 

for example eutrophication which results in decreased oxygen availability (Newton 

1998). For the purpose of my thesis, I focus on the first of these three points; the direct 

effects of pollution on organisms, and concentrate, where possible, on pollution in aquatic 

fauna (animal rather than plant life).  

1.3.2 The plastic responses to pollution in aquatic organisms 

The plastic responses of aquatic organisms to pollution have been well 

documented. Most examples of these responses involve species being subjected to a 

single chemical under laboratory conditions (e.g. Milne et al. 2000). Single contaminant 

exposure has been shown to affect fish behaviour (guppies, Poecilia reticulata, Yilmaz et 

al. 2004), chemosensory functions (pike minnow, Ptychocheilus lucius, Beyers and 

Farmer 2001), sperm traits (e.g. African catfish, Clarias gariepinus, Kime et al. 1996; and 

P. reticulata, Tian et al. 2012), reproductive success, ornamentation, sex ratios (e.g. P. 

reticulata, Cardinali et al. 2004; Tian et al. 2012), and survivorship (rainbow trout, 

Oncorhynchus mykiss, Allin and Wilson 2000; rainbow trout and brown trout, O. mykiss 

and Salmo trutta, Milne et al. 2000; and P. reticulata, Tian et al. 2012). An organism’s 
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ability to respond to multiple pollutants simultaneously, however, is likely to be far more 

complex. For example, Klerks (1999) examined the acclimatory ability in grass shrimp 

(Palaemonetes pugio) survival to individual and mixtures of contaminants and found that, 

while the shrimp could acclimate to individual contaminants, they could not acclimate to 

a mixture. In reality, species in the wild will be exposed to multiple different pollutants 

simultaneously. For example, the Detroit River, Canada/US, is polluted by various heavy 

metals, PAHs, PCBs, and numerous other organic chemicals (Furlong et al. 1988; 

Arcand-Hoy and Metcalfe 1999). Exposure to multiple contaminants can elicit a variety 

of negative impacts (reviewed in Jones and Reynolds 1997; Harmon and Wiley 2011). 

Thus, studying the effects of multiple pollutants simultaneously will enable us to better 

understand and manage natural populations.  

1.3.3 The evolutionary responses to pollution in aquatic organisms 

To date, few studies have attempted to evaluate the sub-lethal impacts of multiple 

contaminants on aquatic organisms within a single experiment. Most examples of genetic 

responses to pollution, such as insects becoming resistant to DDT (e.g. mosquitos, 

Anopheles arabiensis, Jones et al. 2012), plants developing resistance to certain heavy 

metals (e.g. the grass, Agrostis stolonifera, Wu et al. 1975), and rodents becoming 

resistant to the pesticide warfarin (e.g. house mice, Mus musculus, Howe and Redfern 

1965), have come from a small subset of exposed species and usually only involve a 

single chemical (Newton 1998). Of the few studies that do examine the evolutionary 

responses of species to multiple chemicals combined, the majority only examine survival. 

For example, wild-caught mosquitofish, Gambusia affinus, collected from a polluted 

river, and their offspring reared in unpolluted water in a laboratory setting, had higher 
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rates of survival in contaminated water than controls from non-polluted sites, suggesting 

an evolved resistance of the mosquitofish to pollution (Andreasen 1985). However, these 

results could also have been confounded by maternal environmental effects (non-genetic 

information passed on from mother to offspring) or by epigenetics (changes in gene 

expression). Regardless, the fish from the contaminated site would have an advantage 

over other individuals that do not possess these maternal environmental or epigenetic 

effects. Indeed, in another study, killifish (Fundulus heteroclitus) from the polluted 

Elizabeth River in Virginia, US, showed a true genetic response to pollution (i.e. a 

genetic response was disentangled from maternal environment effects and epigenetics; 

Meyer and Di Giulio 2003). Laboratory raised F1 and F2 generations from Elizabeth River 

reared in unpolluted water showed normal development and were better adapted to 

survive than controls when put in polluted water. Clearly, there is an urgent need to 

determine the sub-lethal evolutionary responses of wild populations, such as behaviour 

and genetics, to multiple contaminants which are more representative of the pollution 

currently found in nature. 

 

1.4 Global warming 

The occurrence of global warming is now unequivocal, as is evident from current 

increases in air and water temperatures, snow and ice melts, and sea level rises (IPCC 

2007). The level of warming to date has already resulted in: (i) decreased diel (24 hour 

period) variation as night time temperatures are increasing more than daytime 

temperatures; (ii) decreased seasonal variation as winter temperatures are increasing more 

than summer temperatures; (iii) increased frequency of heat waves; and (iv) decreased 
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frequency of cold snaps (IPCC 2007). This has led to a warmer, less thermally variable 

climate. Evidence suggests that the current temperature increase is more rapid than, and 

will surpass all other periods of climate warming known from the fossil record (Allan et 

al. 2005). In particular, it is the rate of global warming that will be more critical than 

either the magnitude or the duration of change in temperature to the persistence of species 

as species will have to adapt to these conditions more rapidly (Davis et al. 2005). Indeed, 

the rate of warming over the last decade alone exceeded the rate of warming observed 

over the last five decades (IPCC 2007). The period between 1995 and 2006 had 11 of the 

12 warmest years since the commencement of instrumental records in 1880, and this 

warming trend is only likely to increase (IPCC 2007).  

Global warming is accelerated by the release of greenhouse gases (or ‘heat-

trapping’ gases, such as carbon dioxide, methane, and nitrous oxide) and aerosols which 

affect absorption, scattering, and emission of radiation within the earth’s surface and the 

atmosphere, leading to increased temperatures. Emissions of greenhouse gases are rapidly 

increasing and the projection for carbon dioxide alone is an increase of 40-110% by 2030 

causing a 0.5°C global temperature rise (IPCC 2007). As these emissions are the by-

product of energy, transportation, and other essential industries to humans, we cannot 

expect emissions to cease overnight (Angilletta 2009). Thus, in 2007, the 

Intergovernmental Panel on Climate Change (IPCC) projected an average global air 

temperature increase from current levels, which are already 0.74°C higher than the 

beginning of the 20
th

 century, of 1.8-4.0°C by the year 2100. These predictions were 

based on the best estimates from six climate change models with likely ranges of 1.1-

6.4°C (IPCC 2007). This temperature rise is the equivalent to shifting temperate climatic 
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belts polewards by 200-300 km or shifting altitudes upwards by 200 m (Newton 1998). 

As a result, global warming could have startling consequences for both ecosystems and 

biodiversity, especially for those species that cannot disperse. Indeed, in a review of the 

potential negative effects of global warming, Thomas et al. (2004) predicted that some 

38-52% of species included in the study that cannot disperse would be extinct by 2050 

versus 21-32% of the total 1,103 animal and plant species in the study. 

1.4.1 The effects of contemporary global warming on organisms 

The biological impacts of climate change are already under way (Angilletta 2009). 

Indeed, the level of warming to date has already resulted in many populations becoming 

extinct (e.g. Sinervo et al. 2010), and many more experiencing ranger shifts or altered 

phenology (the timing of certain life events, such as breeding or migration; reviewed in 

Parmesan 2006). Almost 60% of 1,598 species exhibited a shift in their ranges and/or 

phenology over the past 20-140 years, predominantly in the direction expected from 

climate warming, and 41% of these species have already been impacted by this warming 

(Parmesan 2006). The phenological response has been an advancement of 2.3 days per 

decade and species in the Northern Hemisphere generally shifted their ranges 6.1 km 

northwards or 6.1 m higher in altitude per decade (Parmesan and Yohe 2003). One of the 

most notable examples of a species responding to global warming is that of the North 

American red squirrel, Tamiasciurus hudsonicus (Réale et al. 2003). Red squirrels from 

the Yukon, Canada, have shown both phenotypic plasticity and evolutionary responses to 

the increased spring temperatures and earlier availability of food supplies by shifting their 

breeding timing 18 days earlier over a 10 year period (Réale et al. 2003). However, there 

are few examples of evolutionary responses to the future rate of temperature increase 
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predicted by global warming. Temperature has been described as the ‘ecological master 

factor’ because so many abiotic factors depend upon it (Brett 1971), thus it is crucial to 

understand the effects of temperature on organisms, especially tropical species (detailed 

below), and their responses to this increased temperature. 

1.4.2 The potential effects of global warming on tropical 
ectotherms 

The level and rate of warming across the globe is highly spatially heterogeneous. 

The highest level of warming is predicted to occur in high northern latitudes, with the 

Arctic likely to experience warming rates nearly double those of the global average 

(Walther et al. 2002), and temperate regions of the Northern hemisphere are expected to 

warm more than tropical regions (IPCC 2007). The tropics constitute the vast majority of 

the world’s biodiversity, and, of this biodiversity, the vast majority are ectotherms 

(Wilson 1992). Ectotherms are organisms that cannot regulate their body temperature via 

physiological means. Despite the predicted heterogeneity in warming levels across the 

globe, it is tropical ectotherms that are predicted to be most at risk (Deutsch et al. 2008; 

but see Walters et al. 2012). This prediction is based on the fact that the basic 

physiological functions of ectotherms, such as growth and reproduction, are dependent on 

the ambient temperature. As well, thermal tolerance has been shown to have a positive 

relationship with temperature variation (e.g. Addo-Bediako et al. 2000). The climate in 

tropical regions is less thermally variable than temperate regions, so tropical species tend 

to be adapted to a smaller range of environmental conditions and therefore, tropical 

species have a narrower thermal performance breadth than temperate species (Deutsch et 

al. 2008; Angilletta 2009; Dillon et al. 2010). As such, many tropical ectotherms are 
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currently living close to or at their thermal limits (Deutsch et al. 2008; Angilletta 2009; 

Dillon et al. 2010), and have a lower capacity for phenotypic plasticity (e.g. Stillman 

2003) and evolutionary responses (e.g. Hoffmann et al. 2003). Thus, there has been 

growing concern regarding the persistence of tropical ectotherms in the context of global 

warming.  

1.4.3 The plastic responses of increased temperature on 
ectotherms 

Increases in temperature can have multiple effects on organisms, including the 

loss of motor activities, increased metabolism and ventilation rates, protein degeneration, 

denaturing of enzymes, increased cell division and differentiation, and differential gene 

transcription (Hochachka and Somero 2002 and references therein). All of these effects 

can disrupt the equilibrium of internal processes and result in less energy for other 

somatic (bodily) functions, such as growth, reproduction, and immune responses. Here, I 

focus on the higher-level, ecological effects of increased temperature on ectotherms. 

Studies of the effects of increased temperature have documented changes in life 

history traits (e.g. small white butterflies, Pieris rapae, Kingsolver 2007; and neotropical 

pseudoscorpions, Cordylochernes scorpioides, Zeh et al. 2012), behaviour (e.g. desert 

night lizards, Xantusia vigilis, Kaufmann and Bennett 1989; and marsh frogs, 

Limnodynastes peroneii, Wilson and Franklin 1999), ornamentation (e.g. three-spined 

sticklebacks, Gasterosteus aculeatus, Borg 1982; and fathead minnow, Pimephales 

promelas, Brian et al. 2011), sperm quality (e.g. Siberian sturgeon, Acipenser baeri, 

Williot et al. 2000; eastern mosquitofish, Gambusia holbrooki, Adriaenssens et al. 2012; 

and C. scorpioides, Zeh et al. 2012; reviewed in Alavi and Cosson 2005), reproductive 
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success (e.g. G. aculeatus, Hopkins et al. 2011), and immunology (e.g. tench, Tinca tinca, 

Collazos et al. 1996). Most of the plastic effects involving just slight increases in 

temperature on ectotherms have resulted in a potential decreased fitness (e.g. Hopkins et 

al. 2011; Zeh et al. 2012). Indeed, while it is known that increasing temperatures in 

general could have significant and adverse effects on different traits in ectotherms, 

relatively little is known about the evolutionary responses to counteract the rapid rates of 

temperature increase associated with global warming. Evolutionary responses to global 

warming will surely play a role in determining the degree to which ectotherms will be 

negatively impacted (Angilletta 2009). 

1.4.4 The evolutionary responses of increased temperature on 
ectotherms 

Most examples of rapid thermal adaptation in ectotherms come from plants. For 

example, the European beech tree, Fagus sylvatica, in Catalonia, Spain, was able to cope 

with the ambient temperature increases to date by selecting for heterozygotes at a 

temperature-linked locus (Jump et al. 2006). This gene pre-existed due to previous 

climatic fluctuations, thus the trees could evolve rapidly to the recent increase in 

temperature by selection on standing genetic variation. As well, there are many examples 

of animals that have become adapted, over hundreds of generations, to their thermal 

habitat. For example, Dahlgaard et al. (2001) found that both wild-caught and laboratory 

reared fruit flies, D. buzzatii, from a highland, cooler site (Tilcara, Argentina) were 

significantly larger in size than those caught from a lowland, warmer site (Catamarca, 

Argentina). However, these flies would have had many thousands of generations to adapt 

to their climatic conditions. The rate of global warming in the future is expected to 
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surpass all previous rates in the fossil record (Allan et al. 2005). Thus, species will have 

to adapt more rapidly to the new climate or face extinction. 

There are many examples of wild and laboratory selection experiments involving 

bacteria, fruit flies, and viruses (see Angilletta 2009). However, there have been few 

studies documenting rapid evolution to increased temperature in ectothermic vertebrates 

(but see Leal and Gunderson 2012 who show that lizards introduced to Miami, FL, US 

from Puerto Rico evolved their critical thermal minimum after just 35 years in response 

to the cooler climate). Hendry et al. (1998) provides one of the few empirical examples of 

a wild, ectothermic vertebrate population (sockeye salmon, O. nerka) showing rapid 

genetic thermal adaptation. Embryos from populations of newly diverged Lake 

Washington sockeye salmon that experienced higher temperatures had evolved to display 

higher survival rates at increased temperatures than embryos that experienced cooler 

temperatures after only 9-14 generations (Hendry et al. 1998). This result provides 

evidence that species can adapt rapidly via evolutionary responses to increased 

temperature. However, most studies that document a genetic response to increased 

temperature in ectotherms only detail survivorship (e.g. Nakajima et al. 2009); few have 

examined the evolutionary response of sub-lethal traits. 

 

1.5 Fish as a model species 

For my thesis I focus on the effects of pollution and global warming, currently 

two of the most severe threats to biodiversity. Pollution is particularly abundant and 

problematic in aquatic ecosystems (Moyle and Leidy 1992), and global warming is 
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predicted to have the most severe impact on tropical ectotherms (Deutsch et al. 2008). I 

chose fish as my study organisms for four reasons. The primary reason for using 

freshwater fish is that they will likely experience more barriers to dispersal than other 

organisms. Thus, in the absence of dispersal, they will have to adapt to anthropogenic 

stressors via phenotypic plasticity or an evolutionary response. Second, aquatic systems 

are sinks for most forms of anthropogenic waste (Moyle and Leidy 1992), and hence, 

aquatic organisms are exposed to pollutants in much higher concentrations than the 

majority of other, terrestrial organisms. Third, most fish, with a few exceptions, such as 

tuna and sharks of the family Lamnidae, are ectotherms. Some ectotherms can partially 

control their body temperature through behaviour, a process known as behavioural 

thermoregulation, via such methods as basking in the sun to warm up or going down a 

burrow to cool down. However, most freshwater fish are poikilotherms; their ability to 

behaviourally thermoregulate is constrained by their generally thermally homogeneous 

aquatic environment. Thus, they are, for the most part, dependent on the ambient 

temperature for all their physiological processes. Consequently, fish, and especially 

tropical fish (see Deutsch et al. 2008), will be among the most vulnerable to the predicted 

level of global warming. Finally, there has been a great deal of research that has 

documented phenotypically plastic responses of fish to anthropogenic stressors, yet 

comparatively little work has documented their evolutionary responses. Indeed, 

evolutionary responses to anthropogenic stressors in vertebrates as a whole have been 

rare (Nacci et al. 2002). Thus, it is crucial that we detail the evolutionary responses of fish 

to anthropogenic stressors, as fish constitute a large part of both the diet and economy of 

most of the human population. 
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I use two different fish species in my thesis, the brown bullhead (A. nebulosus) 

and the guppy (P. reticulata). First, I studied the plastic and evolutionary responses of 

behaviour in bullheads as these traits tend to be more labile and evolve more rapidly than 

most other traits (Wcislo 1989; West-Eberhard 2003). I studied bullheads because they 

are native to north-eastern North America (Wheeler 1978) and are common in southern 

Ontario (Scott 1955) where they are frequently exposed to high levels of contaminants 

(e.g. Drouillard et al. 2006). Since as early as the 1960’s, water pollution has been 

recognised as a major problem in North America (Hall et al. 2006). In the catchment 

areas of the Great Lakes, some 30,000 commercially significant chemicals are 

manufactured, with about 3,500 new chemicals being manufactured each year (Moss 

1998). As a result, many water systems of the Great Lakes have chemical loads that 

exceed health and safety guidelines (e.g. Drouillard et al. 2006). Most of the pollutants in 

aquatic ecosystems are accumulated in the sediment which can act as both sinks and 

secondary sources of pollution (Cachot et al. 2007). These chemically loaded sediments 

will result in bioaccumulation (the accumulation of substances in an organism) and, 

consequently, there is concern about the potential impacts of pollution on aquatic 

organisms, and fish in particular, for both economic and human health reasons. Brown 

bullheads are benthic and have a high affiliation with the sediment. As they are a game 

fish and are also commonly used in aquaculture (www.fishbase.org), it is vital that we 

understand the effects of pollution on brown bullheads. 

Second, I studied the plastic and evolutionary responses of multiple reproductive 

traits and life history traits key to fitness, as well as assessing genetic diversity, in wild 

caught Trinidadian guppies to increased temperatures. Guppies are a tropical, ectothermic 

http://www.fishbase.org/
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fish that may be under great threat because of global warming (see Deutsch et al. 2008). 

They have short generation times (sexually mature at approximately 7 weeks; Reznick et 

al. 2001), breed readily in a laboratory environment, are highly fecund, and are thus an 

ideal fish species with which to study both phenotypic plasticity and potential 

evolutionary responses within the scope of my doctoral thesis. Numerous studies on 

guppies have documented detrimental short-term effects of increased temperature on 

aspects of behaviour (e.g. Laudien and Schlieker 1981; Weetman et al. 1998; Muñoz et 

al. 2012), feeding (e.g. Gonzalez Mayor 2007), sex ratios (Dzikowski et al. 2001), life 

history, survival, reproduction (e.g. Dzikowski et al. 2001; Karayücel et al. 2008), and 

thermal tolerance (e.g. Chung 2001). However, to my knowledge, the only studies on 

guppies to document thermal evolution have examined survival (e.g. Nakajima et al. 

2009). Thus, there is an urgent need to better understand the sub-lethal evolutionary 

response of guppies to increased temperature. 

 

1.6 Thesis framework 

The over-arching goal of my thesis is to determine the plastic responses of species 

to anthropogenic stressors and to determine if, and how rapidly, species could respond to 

these stressors via an evolutionary response. Throughout my thesis, I utilise a framework 

that allows for the partitioning of phenotypic plasticity and genetic responses. Tests for 

evolution which are not confounded by phenotypic plasticity involve placing organisms 

from different populations into controlled conditions; a common garden experiment 

(Hendry et al. 1998; Hendry and Kinnison 1999). The framework of my thesis involves 

subjecting fish from both ‘stressed’ and ‘control’ natal environments to specific fitness 
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tests in common environments in a 2 × 2 design (Fig. 1.1). An advantage of the 2 × 2 

design is that it allows for the examination of genotype-by-environment interactions 

between the fish from a control of stressed natal environment (i.e. determine whether the 

plastic response by the ‘stressed’ fish has evolved in a different manner to the ‘control’ 

fish). This experimental design enables partitioning of any variance in performance of 

fitness traits into phenotypic plasticity or genetic responses. If there is variation in the 

‘control’ fish when tested in controlled and stressed experimental conditions, this 

represents a phenotypically plastic response (i.e. they are showing different phenotypes in 

different environments). If ‘stressed’ fish tested in stressed and controlled experimental 

conditions display similar patterns to control fish, there is no evidence of a genetic 

response (i.e. this variance in performance was due to plasticity alone). However, if the 

‘stressed’ fish display different levels of performance in the control, stressed, or both 

control and stressed experimental conditions as compared to the ‘control’ fish, this 

suggests a genetic response has occurred.  

It is possible that a putative genetic response could be confounded by maternal 

environmental effects (e.g. increased investment in the yolk of eggs) or by epigenetics. In 

order to distinguish between these effects, an F2 generation is required; organisms whose 

grandparents came from the stressed environment but both their parents and themselves 

had not been subjected to the stressor. If the F2 individuals respond in the same way as 

did their parents, the initial response of the F1 generation was genetic (including 

epigenetic effects; e.g. Anway et al. 2005) and not a result of maternal environmental 

effects. 
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Figure 1.1 An example of a 2 × 2 common garden experimental design. 

Shown are two natal environments, ‘control’ and ‘stressed’. Individuals from both 

environments are then placed into control and stressed experimental conditions. For 

example, in Chapter 2 (Breckels and Neff 2010) fish from clean and polluted sites were 

placed in clean and polluted tanks.   
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1.7 Thesis structure 

The four data chapters in my thesis (Chapters 2-5) were prepared as separate 

research projects, each intended for publication independently yet united by the common 

theme of plastic and evolutionary responses of fish to anthropogenic stressors. Chapters 2 

and 3 have been published and Chapters 4 and 5 have been submitted for publication and 

are currently under review. I have provided an outline of the objective of each research 

project below. All the data chapters of my thesis all share a common hypothesis that both 

short and long-term exposure to pollution and global warming will elicit responses from 

brown bullheads and guppies respectively. Furthermore, I predicted that fish would 

display phenotypic plasticity in response to short-term exposure and evolutionary 

responses after long-term exposure to pollution and global warming. 

In Chapter 2 (“Pollution-induced behavioural effects in the brown bullhead 

(Ameiurus nebulosus)”; Breckels and Neff 2010), I examine the potential evolutionary 

effects of long-term exposure to pollution on brown bullhead behaviour. Specifically, I 

detail aspects of aggression, locomotion, and escape response and try to partition any 

variance in behaviour between different treatments into genetic and plastic responses by 

using the framework detailed above.  

In Chapter 3 (“The effects of elevated temperature on the sexual traits, 

immunology, and survivorship of a tropical ectotherm”; Breckels and Neff 2013), I 

examine survivorship and the phenotypically plastic effects of various key fitness traits of 

guppies to elevated water temperatures, as predicted for the end of the century due to 

global warming. Specifically, I detail brood survivorship and various sperm, 

ornamentation, and immune response traits at four different temperatures.  
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In Chapter 4 (“Rapid evolution of a sperm trait in response to increased 

temperature in an ectothermic fish”; Breckels and Neff In review), I examine the potential 

evolved response of sperm traits in guppies after multi-generational exposure to elevated 

water temperature, as predicted for the end of the century. Specifically, I detail sperm 

morphology, velocity, and path linearity at three different time points following exposure 

to elevated temperature. I distinguish between plastic and genetic responses in sperm 

traits using the framework detailed above. 

In Chapter 5 (“Rapid evolution in response to increased temperature maintains 

population viability despite genetic erosion in a tropical ectotherm”; Breckels et al. In 

press), I examine the potential evolved response of various demographic and life history 

traits in guppies after multi-generational exposure to elevated water temperature, as 

predicted for the end of the century. Specifically, I detail population size, the number of 

successful pregnancies, brood size, brood survivorship, sex ratio, and age and length at 

maturity at three different time points following exposure to elevated temperature. I 

distinguish between plastic and genetic responses in several life history traits using the 

framework detailed above. Furthermore, I use neutral microsatellite molecular markers to 

assess the genetic diversity in each of my replicate tanks every six months, starting from 

time zero and going up to 24 months, and modelled effective population size to best fit 

the observed genetic data. 

Finally, I conclude my thesis (Chapter 6) with a summary of my thesis findings 

and a discussion on directions for future research which would further our understanding 

of the effects of anthropogenic stressors on organisms. 
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Chapter 2  

2 Pollution-induced behavioural effects in the brown 

bullhead (Ameiurus nebulosus)1 

Aquatic ecosystems are major sinks for pollutants which can have adverse effects 

on biodiversity. Thus, it is important to understand the nature of pollution-induced change 

in aquatic ecosystems. I show that brown bullheads (Ameiurus nebulosus) may have 

evolved in response to chronic pollution exposure. I collected adults from the Detroit 

River (polluted site) and Belle River (control site). Both adults and common-garden 

raised juveniles were tested for aggression, locomotion, and escape response using 

consecutive unchallenged (clean) and challenged (polluted) trials. Detroit River fish were 

more aggressive than Belle River fish when challenged. Furthermore, Belle River fish 

showed increased locomotion when exposed to pollutants, whereas Detroit River fish 

were unaffected. The consistent difference in adult and juvenile behaviour across trials 

suggests a genetic response to pollution. Escape response on the other hand, showed 

inter-population differences, but no consistency between adults and juveniles, indicating 

that this behaviour is influenced by non-genetic factors. I discuss my data with respect to 

the potential adaptation of populations to pollution and the implications for prioritizing 

remediation efforts.  

 

                                                 

1
 A version of this chapter has been published and is presented here with permission from Ecotoxicology. 

Citation: Breckels, R.D. and Neff, B.D. 2010. Pollution-induced behavioural effects in the brown bullhead 

(Ameiurus nebulosus). Ecotoxicology. 19, 1337-1346. 
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2.1 Introduction 

The potential effects of pollution on ecosystem health have received increased 

attention in recent years. Population expansion, industrialisation, and the intensification 

of agriculture and other industries have led to an increase in the amount and variety of 

pollutants introduced into the environment (Moss 1998; Hall et al. 2006). As detailed in 

Chapter 1, aquatic environments and hence aquatic species are especially vulnerable to 

pollution. For example, 11 out of 19 studies of fish showed adverse changes in 

reproductive behaviours as a result of pollution (reviewed in Jones and Reynolds 1997). 

Changes were documented in display frequency, courtship duration, as well as 

performance of male-specific behaviours by masculinized females. These behavioural 

changes can decrease reproductive success and, ultimately, population health and 

viability (Grue et al. 2002). Consequently, individuals and populations must adjust to the 

stress induced by chronic exposure to contaminants in order to persist in polluted 

environments (as detailed in Chapter 1). Understanding behavioural differences induced 

by pollutants can provide insight into the mechanisms that allow individuals to persist in 

polluted environments.  

Anthropogenic stressors, such as pollution, have occurred only recently on an 

evolutionary timescale. As such, a population that shows a beneficial genetic response to 

a stressor must have evolved the adaptation in a relatively short period, a process known 

as rapid evolution (e.g. Grant and Grant 1995; Hendry et al. 1998). Rapid evolution likely 

occurs through selection on standing (pre-existing) genetic variation, but can also involve 

selection for beneficial mutations (Barrett and Schluter 2007). Such beneficial mutations 

can come about from the mutagenic effects of the pollutants themselves. For example, 
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Cachot et al. (2007) found that Japanese medaka (Oryzias latipes) exposed to polluted 

sediments had higher mutation rates than control fish. Although most of the mutations are 

likely to be deleterious, increasing mutagenesis can also result in an increased frequency 

of favourable mutations. Polluted environments thereby provide an exceptional 

opportunity to study rapid evolution. 

In this study, I examine the effects of long-term pollution exposure on the 

behaviour of brown bullheads, Ameiurus nebulosus (LeSueur 1819). Brown bullheads are 

an ideal species to study the effects of long-term pollution exposure in aquatic habitats. 

They are native to north-eastern North America (Wheeler 1978) and are most abundant in 

the lakes and ponds of southern Ontario (Scott 1955). Brown bullheads sexually mature at 

about 3 years of age and produce large broods of up to 10,000 offspring (Blumer 1985). 

They are philopatric, benthic fish and have a high sediment affiliation, exposing them to 

pollutants that occur in the sediment. For example, brown bullheads from the heavily 

polluted Trenton Channel in the Detroit River have chemical burdens in their tissues 

similar to those of the sediment (Leadley et al. 1998; Yang and Baumann 2006).  

I partition variation in aggression, locomotion, and escape response behaviour of 

fish from the polluted Detroit River and fish from a nearby clean site (Belle River) into 

phenotypic plasticity or evolutionary responses. I chose these behaviours because they are 

linked to individual performance (fitness) and can thereby affect population viability. For 

example, alterations in levels of aggression can affect an individual’s acquisition of 

resources such as food, shelter, and mates (e.g. Fero et al. 2007). Locomotion is essential 

for many activities such as feeding, migration, reproduction, and predator avoidance 

(Baatrup and Bayley 1993) and is a good indicator of an individual’s condition (Martin 
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and Bateson 1993). Alterations in predator avoidance can result in an increased risk of 

predation (reviewed in Scott and Sloman 2004). Exposure to pollutants, including 

polycyclic aromatic hydrocarbons and heavy metals, has been shown to affect these 

behaviours; (1) aggression: reduced aggression in Nile tilapia, Oreochromis niloticus 

(Almeida et al. 2009) and three-spined stickleback, Gasterosteus aculeatus (Bell 2001); 

elevated aggression in mice (Jaeger et al. 1999), (2) locomotion: e.g. hyperactivity in sea 

catfish, Arius felis and sheepshead, Archosargus probatocephalus (Steele 1985), and 

woodlice, Oniscus asellus (Bayley et al. 1997), and (3) predator avoidance: e.g. 

hyporeactivity in rainbow trout, Oncorhynchus mykiss (Ward et al. 2006); hyperactivity 

in fathead minnows, Pimephales promelas (Drummond and Russom 1990). 

 

2.2 Methods  

Brown bullheads were collected using electroshocking from two rivers in south-

western Ontario, the highly industrialized Trenton Channel of the Detroit River 

(42º10’54”N, 83º09’07”W) and the less industrialized Belle River (42º16’57”N, 

82º42’50”W). The Detroit River is in the centre of a vast water system, receiving inputs 

from Lake St. Clair and the St. Clair River as well as from the cities of Detroit, Michigan 

and Windsor, Ontario. These inputs include effluents from both point and non-point 

sources including industrial, hazardous, and sewage treatment plant wastes (Drouillard et 

al. 2006). As a result, the Detroit River is an area of high contaminant loading, primarily 

by heavy metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated 

biphenyls (PCBs), with the sediments on the western side of the river containing over 200 

elevated organic chemical concentrations (Furlong et al. 1988; Arcand-Hoy and Metcalfe 
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1999; Drouillard et al. 2006). Indeed, 93% and 78% of sample stations in Trenton 

Channel greatly exceed threshold effect level sediment quality guidelines for PAHs and 

PCBs, respectively (Drouillard et al. 2006) and more than 16% of sample stations in the 

Detroit River exceed the severe effect level for heavy metals, with the maximum 

concentrations being confined to the Trenton Channel (Szalinska et al. 2006). Average 

hydrocarbon levels in the Detroit River are 1,195 parts per million (ppm) whereas these 

levels are only 77 ppm in the Belle River (Nagy et al. 1984). 

2.2.1 Experimental design 

First, for the adult behavioural trial, during 17-19 June 2008, 24 adults from 

Trenton Channel and 25 from Belle River were collected, weighed, measured for total 

length, and individually marked with a PIT tag. The fish were then transported to Leadley 

Environmental Corporation (Essex County) (42º06’11”N, 82º55’44”W) where they were 

held in 2.5 m × 2.5 m × 0.6 m holding tanks with 10 fish from the same site per tank. The 

fish were then exposed to a behavioural framework involving two different trials that 

allowed any variation between sites in aggression, locomotion, or escape response to be 

partitioned into plastic and evolutionary responses (Fig. 2.1). First, an “unchallenged” 

trial was conducted 3 weeks after capture in unstressed conditions (clean pond water) as 

direct acute responses to pollution stress from many chemicals are significantly reduced 

within 3 weeks (e.g. Djomo et al. 1996; Kavitha and Rao 2007). I thus assumed that any 

difference in behaviour between sites after the 3 week period reflected long-term 

responses (i.e. plastic or evolutionary responses). Next, immediately afterwards, a 

“challenged” trial was conducted on the fish by placing them into holding tanks lined  
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Figure 2.1 A bifurcated tree detailing the four possible scenarios for the behavioural 

trials in brown bullheads (Ameiurus nebulosus). 

Arrows pointing upwards represent a difference in that behaviour between the two sites 

whereas arrows pointing downward represent no difference between the sites. PU and PC 

denote the probability that the null hypothesis is accepted at the unchallenged and 

challenged trial, respectively. Probability values associated with each arrow are presented 

in Table 1. The unchallenged trial was conducted after 3 weeks in clean water and the 

challenged trial was conducted after 24 hours exposure to polluted sediments. As an 

example, scenario 1 represents a difference between the two sites at both the 

unchallenged and the challenged trial. 

  

Scenario 1 

 

 

Scenario 2 

 

Scenario 3 

 

 

Scenario 4 

TRIAL             UNCHALLENGED                          CHALLENGED 

1 - PU 

PU 

1 - PC 

1 - PC 

PC 

PC 
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with a 10 cm layer of sediment collected from Trenton Channel (polluted environment) 

for 24 h. The sediment was collected using Ponar sediment grabs. If fish from the two 

sites continued to differ in behaviour and also responded differently to the exposure to the 

polluted sediment, then it would be possible to attribute the long-term response to the 

pollution (see Fig. 2.1).  

Second, for the juvenile behaviour trials, in May 2008, adults were collected and 

released into site-specific ponds at Leadley Environmental Corporation and allowed to 

spawn naturally. The ponds were monitored daily for free-swimming juveniles, which 

were collected and placed into separate site-specific ponds. To ensure a similar age in the 

experimental juvenile fish, I collected free-swimming individuals at first notice and over 

only a two day period in July 2008. In September 2008, 20 juveniles from each site-

specific pond (40 total) were collected and transported to the Freshwater Ecology 

Research Facility at the University of Western Ontario, where they were housed in 20 L 

aquaria with 10 fish per aquarium. The juveniles were kept on a 12h:12h light-dark cycle 

until experiments commenced in November 2008 (the juveniles were thus about 4 months 

old). The experiments followed the same framework as the adults. Consistent differences 

between the populations in the adults and the juveniles would rule-out a plastic response 

and instead suggest an evolutionary response. 

2.2.2 Behavioural trials 

Each experimental fish was subjected to the behavioural experiments twice, once 

for the unchallenged trial and a second time for the challenged trial. The experiments 

commenced shortly after sunset and were performed under infrared light due to the 

nocturnal behaviour of the bullheads. Experiments were recorded using SONY DCR-



 

45 

 

 

SR300 video cameras set to night vision mode and placed above the experimental 

aquaria. Prior to each set of trials, fish were moved from their holding tanks to circular 

experimental aquaria (150 cm diameter and 20 cm depth for adults, 30 cm diameter and 8 

cm depth for juveniles, which ensured similar fish-to-aquarium size ratios). First, 

locomotion was examined by observing the volitional distance (distance travelled in a 

given time) of fish from each site. Fish were placed in an experimental aquarium and, 

after a 15 min acclimatization period, were recorded for the next 15 min. The distance 

travelled by each fish was measured by extracting a single frame image every 5 s from 

the video and determining the co-ordinates in a two-dimensional plane using Image J 

software. The distance travelled between each frame was determined using the 

Pythagorean Theorem and all the distances were summed to give an estimate of total 

distance travelled. Bullheads are benthic and consequently rarely leave contact with the 

sediment and swim into the water column. Thus, the two dimensional analysis provides 

an accurate measurement of the distance travelled. 

 Next, the escape response was examined. A stimulus was created by dropping a 

square weight into the water in the centre of the aquarium. Fish were recorded for 1 min 

preceding the stimulus and until their response had terminated (i.e. when the fish first 

ceased progressive forward motion, which typically occurred within 5 s). The distance 

travelled and maximum burst speed during the response were recorded. The distance 

travelled was measured by extracting images from the video at 33 frames per second and 

measuring the total distance travelled (as above). For the burst speed, five single frame 

images were extracted per second from the video. The greatest distance between 
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consecutive frames during the entire response was then multiplied by 5 to get an estimate 

of maximum burst speed (in cm/s).  

Finally, after a 30 min rest period, the aggression displayed by fish from the 

different sites was observed by placing four fish, two from each site, selected to be of 

similar size, into an experimental aquarium. Fish were individually marked using small 

marks with liquid paper (Sanford LD, Oakville, Canada) and were initially separated by a 

cross-shaped barrier measuring 150 cm × 150 cm. The barrier was removed after a 15 

min acclimatization period and the aggressive behaviour of the fish was recorded for the 

next 10 mins. The number of aggressive acts, observed as chases and nudges, initiated by 

each individual were quantified. Aggression was calculated as the sum of aggressive acts 

performed by that individual divided by the total number of acts performed by all four 

individuals in that aquarium (to control for any tank effects and thereby standardize 

measures across tanks). After the unchallenged trials had finished, fish were moved to 

new holding tanks containing the polluted Trenton Channel sediment for 24 h, after 

which the challenged trial commenced following the same procedures as outlined above. 

Time constraints restricted the aggression trials to 44 adults (22 from each site). The 

subset of fish was selected haphazardly from the original sample. Throughout the 

experiments, all fish were fed once daily with commercial fish food (Profishent, Martin 

Mills, ON).  

2.2.3 Statistical analysis 

T-tests were used to compare data between each site for all four behaviours and 

both trials, resulting in two P-values for each behaviour, which I refer to as PU for the 

unchallenged trial, and PC for the challenged trial. Next, to test the biological significance 
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of the data, these values were converted into the probability that the null hypothesis – that 

there was no difference in behaviour between the sites – is false by subtracting them from 

one (i.e. the probability of accepting the null when it is, in fact, true). The later values 

were multiplied through a bifurcated tree in order to estimate the probability of each of 

four scenarios: (1) different at both trials; (2) different at the unchallenged trial, but the 

same at the challenged trial; (3) the same at the unchallenged trial, but different at the 

challenged trial; (4) the same at both trials (Fig. 2.1). For example, if Trenton Channel 

fish were significantly more aggressive than Belle River fish across both trials, the most 

probable outcome would be scenario 1. Additionally, for each behaviour, I assessed the 

confidence in the probability of the most likely scenario by calculating a log-likelihood 

ratio (LOD score), which is the likelihood ratio of the most probable scenario compared 

to that of the next most probable scenario, using the equation: 















1

1
 log

2

1

P

P
kLOD ;                                                                      (1) 

where P1 represents the most probable scenario, P2 represents the second most probable 

scenario, and k is a normalization constant equal to 1/log2 such that the LOD scores 

range between 0 and 1. As an example, suppose scenario 1 was the most probable and 

scenario 2 the second most probable; a score of 1 gives complete support for scenario 1 as 

the most probable outcome, whereas a score of 0 indicates that the two scenarios are 

equally likely. 
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2.3 Results 

Adult brown bullheads were of similar sizes between the two sites (total body 

length: Belle River (BR) = 26.2 ± 5.6 cm; Trenton Channel (TC) = 24.9 ± 8.2 cm; t47 = 

1.35, p = 0.182). The juvenile brown bullheads did differ in size between the sites with 

the individuals from Belle River being longer than those from Trenton Channel (BR = 5.7 

± 0.1 cm; TC = 5.1 ± 0.1 cm; t38 = 3.64, p = 0.001). Consequently, I included body length 

as a covariate for the analysis of juvenile behaviour, but body length had no effect on any 

of the recorded behaviours, and was removed from the final analysis. The results for the 

adult and juvenile behaviours are summarised in Tables 2.1 and 2.2. 

2.3.1 Aggression  

For the adults, there was no difference between the two sites at the unchallenged 

trial (t42 = 0.05, PU = 0.960); however, there was a difference between the sites at the 

challenged trial, with Trenton Channel fish being more aggressive than Belle River fish 

(t42 = 2.11, PC
 
= 0.041) (Fig. 2.2). Indeed, scenario 3 was the most probable outcome with 

strong statistical support (92.1%; LOD = 0.89). For the juveniles, the difference at the 

unchallenged trial was not significant (t38 = 0.72, PU = 0.478). At the challenged trial, 

similar to the adults, Trenton Channel juveniles were more aggressive than Belle River 

juveniles, yet this difference was not significant (t38 = -1.66, PC = 0.105) (Fig. 2.2). The 

two most probable outcomes for the juveniles were scenarios 1 and 3 with roughly equal 

support (46.7 % and 42.8% respectively; LOD = 0.04), suggesting that there was a 

difference at the challenged trial. 
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Table 2.1 Mean (±SE) behavioural measurements and P values for both adult and 

juvenile brown bullheads (Ameiurus nebulosus). 

 Behaviour Trial Belle River Trenton Channel PU/C 

ADULTS      

Aggression Relative 

Aggression 

Unchallenged 0.249 ± 0.045 0.251 ± 0.037 0.960 

 Challenged 0.212 ± 0.025 0.288 ± 0.026 0.041 

      

Locomotion Volitional Distance 

(cm) 

Unchallenged 532 ± 94.6 1161 ± 85.9 <0.001 

 Challenged 1688 ± 296 1063 ± 215 0.091 

      

Escape Response Distance Travelled  

(cm) 

Unchallenged 64.9 ± 13.1 41.4 ± 8.47 0.188 

 Challenged 38.9 ± 12.2 50.3 ± 12.8 0.542 

      

 Burst Speed 

(cm/s) 

Unchallenged 36.8 ± 6.10 27.2 ± 4.99 0.271 

 Challenged 27.3 ± 6.21 27.5 ± 7.49 0.984 

JUVENILES      

Aggression Relative 

Aggression 

Unchallenged 0.263 ± 0.028 0.237 ± 0.023 0.478 

 Challenged 0.218 ± 0.030 0.282 ± 0.024 0.105 

      

Locomotion Volitional Distance 

(cm) 

Unchallenged 1157 ± 43.1 1321 ± 65.3 0.043 

 Challenged 1397 ± 69.7 1464 ± 43.8 0.452 

      

Escape Response Distance Travelled 

(cm) 

Unchallenged 19.1 ± 8.31 11.1 ± 5.29 0.422 

 Challenged 15.9 ± 4.60 7.74 ± 2.55 0.156 

      

 Burst Speed 

(cm/s) 

Unchallenged 14.1 ± 3.86 9.35 ± 3.08 0.344 

 Challenged 20.9 ± 4.99 6.73 ± 2.12 0.022 

N.B. P-values in bold represent significant results (α = 0.05). 
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Table 2.2 Summary of the probabilities of each of four scenarios from the bifurcated 

tree for adult and juvenile brown bullheads (Ameiurus nebulosus). Four behaviours 

were examined in both adult and common-garden reared juvenile fish. 

Behaviour Scenario 1 Scenario 2 Scenario 3 Scenario 4 

ADULTS     

Aggression 0.038 0.002 0.921 (0.886) 0.039 

Volitional 

Distance 

0.909 (0.807) 0.091 <0.001 <0.001 

Burst Speed 0.012 0.717 (0.438) 0.004 0.267 

Distance 

Travelled 

0.404 0.478 (0.074) 0.054 0.064 

JUVENILES     

Aggression 0.467 (0.039) 0.055 0.428 0.050 

Volitional 

Distance 

0.524 (0.089) 0.433 0.024 0.019 

Burst Speed 0.642 (0.297) 0.014 0.336 0.008 

Distance 

Travelled 

0.487 (0.133) 0.090 0.356 0.066 

N.B. Probabilities in bold represent the most probable outcome. Values in parentheses represent the LOD 

score. As an example, suppose scenario 1 was the most probable and scenario 2 the second most probable; a 

score of 1 gives complete support for scenario 1 as the most probable outcome, whereas a score of 0 

indicates that the two scenarios are equally likely. Scenario 1 represents a difference between the two sites 

at both trials; Scenario 2 represents a difference at the unchallenged trial, but not the challenged trial; 

Scenario 3 represents no difference at the unchallenged trial, but a difference at the challenged trial; and 

Scenario 4 represents no difference between the sites at either trial. 
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Figure 2.2 Mean aggressive behaviour in brown bullheads (Ameiurus nebulosus). 

Relative aggressive acts was calculated by the total aggressive acts performed by an 

individual divided by the sum of the aggressive acts in the tank. Adults and common-

garden reared juveniles were tested after 3 weeks in clean water (unchallenged) then 24 h 

exposure to polluted sediment (challenged). Error bars denote plus or minus one standard 

error of the mean. Asterisks represent significant differences between sites. 
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2.3.2 Volitional distance  

The most probable outcome for the adults was scenario 1 (90.9%; LOD = 0.81). 

Trenton Channel fish swam a greater distance at the unchallenged trial than Belle River 

fish (t47 = -4.91, PU < 0.001), yet Belle River fish dramatically increased their volitional 

distance during the challenged trial (paired t-test: t20 = 4.24, p < 0.001). Belle River fish 

swam farther than Trenton Channel fish during this latter period, consequently the 

difference between sites was not significant (t42 = 1.73, PC = 0.091) (Fig. 2.3). The 

juveniles showed similar results to the adults with scenario 1 being the most probable 

(52.4%; LOD = 0.09). Trenton Channel juveniles swam a greater distance in the 

unchallenged trial than Belle River juveniles (t38 = 2.09, PU = 0.043), yet at the 

challenged trial, like the Belle River adults, Belle River juveniles significantly increased 

their volitional distance (paired t-test: t19 = 3.65, p = 0.002) to similar levels as Trenton 

Channel (t34 = 0.76, PC = 0.452) (Fig. 2.3). 

2.3.3 Escape response  

The most probable scenario for burst speed in adults was scenario 2 (71.7%; LOD 

= 0.44). There was no difference between sites at the unchallenged trial (t38 = 1.12, PU = 

0.271) or at the challenged trial (t30 = 0.02, PC = 0.984). Unlike the adults, scenario 1 was 

the most probable outcome for burst speed for the juveniles (64.2%; LOD = 0.30). Belle 

River and Trenton Channel juveniles showed similar burst speeds at the unchallenged 

trial (t38 = -0.96, PU = 0.344). At the challenged trial, Belle River juveniles increased their 

burst speed while Trenton Channel juveniles showed no difference, resulting in a 

significant difference between the two sites (t34 = 2.40, PC = 0.022). The distance 

travelled in the adults showed scenario 2 as the most probable (47.8%) albeit with low 
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Figure 2.3 Mean volitional distance in brown bullheads (Ameiurus nebulosus). 

Volitional distance was calculated as the distance an individual swam in 15 mins. Adults 

and common-garden reared juveniles were tested after 3 weeks in clean water 

(unchallenged) then 24 h exposure to polluted sediment (challenged). Error bars denote 

plus or minus one standard error of the mean. Asterisks represent significant differences 

between sites. 
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statistical support (LOD = 0.07). There was no difference between the sites at the 

unchallenged trial (t38 = 1.34, PU = 0.188) or at the challenged trial (t30 = -0.62, PC = 

0.542). Scenario 1 was the most probable outcome for the juveniles (48.8%; LOD = 

0.13). There was no difference between the sites at the unchallenged trial (t38 = 0.21, PU = 

0.422) or the challenged trial (t34 = 1.45, PC = 0.156). 

 

2.4 Discussion 

My study is one of the first attempts to document an evolutionary behavioural 

response to pollution. I found that bullheads from the highly polluted Detroit River 

appear to have evolved adaptations to pollution as measured by locomotion and 

aggressive behaviours. Specifically, Detroit River adults and common-garden reared 

juveniles were unaffected by the addition of polluted sediments, maintaining the same 

volitional distance when in clean or polluted water. Belle River fish, on the other hand, 

displayed an increase in activity with greater volitional distances when exposed to 

polluted water. Detroit River fish also maintained higher levels of aggression when 

exposed to pollution than Belle River fish. Increased aggression can be beneficial because 

individuals typically gain access to more resources, such as food, shelter, and mates (e.g. 

Fero et al. 2007). Conversely, an increase in locomotion behaviour in response to a 

stimulus is often a sign of stress in fish (Allin and Wilson 2000). The results from the 

other behaviours showed differences between the Detroit River and Belle River fish. 

However, those differences were not consistent between adults and juveniles, suggesting 

that non-genetic factors may be driving them.  



 

55 

 

 

While my results suggest an evolved response in locomotion and aggressive 

behaviours due to pollution, I cannot rule out other factors. First, parental effects could 

contribute to the differences I observed. Abnormalities in the offspring could stem from 

the fathers in the form of damage caused from chemicals in the Detroit River to the DNA 

carried by the sperm (e.g. Gray et al. 1999). Alternatively, chemicals from the river 

carried by the mothers could have been directly passed onto the offspring through the 

eggs. For many chemicals, the amount present in eggs correlates with the amount present 

in the mother (e.g. mercury: Hammerschmidt et al. 1999; and PAHs: Hall and Oris 1991). 

However, the burden in eggs is usually considerably lower than in the mothers (Serrano et 

al. 2008) and the burden in offspring is considerably lower than in the eggs (Beattie and 

Pascoe 1978). Given that the juveniles in this study were reared in clean water from the 

egg stage for four months prior to testing, it is likely that any of the pollutants that might 

have been transferred would have been depurated (e.g. Djomo et al. 1996; Gardinali et al. 

2004). Furthermore, it is difficult to understand why pollutants transferred maternally 

through the egg, or damage done to the germ-line DNA, would enable the Detroit River 

juveniles to subsequently dominate the Belle River juveniles in the challenge trials. On 

the other hand, it is possible that pollutants passed from the Detroit River mothers to their 

offspring is a trigger that ‘turns-on’ genes that allow the offspring to acclimate to the 

polluted environment. For example, offspring pre-exposed as eggs to cadmium survived 

longer than naïve offspring when both were later exposed to cadmium (Beattie and 

Pascoe 1978). Insomuch as those genes remain active or otherwise provide a 

physiological coping mechanism, the response I observed might not be an evolved 

response in the Detroit River fish. To test this alternative hypothesis, eggs from Belle 



 

56 

 

 

River fish could be pre-exposed to the pollutants to see if a similar effect could be elicited 

from those fish, or you could conduct a multi-generation study with the Detroit River fish 

and look at second generation offspring whose parents had also been reared in an 

unpolluted environment (e.g. Meyer and Di Giulio 2003). Second, epigenetic effects have 

been shown to play a role in polluted environments through DNA methylation, 

microRNA, and histone modification (reviewed in Baccarelli and Bollati 2009). 

However, the importance of epigenetic effects in driving heritable behavioural responses 

to pollution or other stressors is unknown. Regardless, it is difficult for any study of 

heritability to definitely rule-out epigenetic effects as an alternative to heritable variation 

in DNA sequence.  

It is also worth noting that although my fish were put in clean water for 3 weeks to 

remove any effects of the acute response, many chemicals remain stored in the body for a 

much longer period. I selected three weeks because this duration in clean conditions has 

been shown as sufficient time to depurate significant amounts of the organophosphate 

pesticide monocrotophos (Kavitha and Rao 2007), the heavy metals chromium (Parma et 

al. 2008), cadmium, and copper (Kraemer et al. 2005), the PAHs anthracene, 

phenanthrene, pyrene, and benzo[a]pyrene (Djomo et al. 1996), and the PCB Aroclor 

1254 (Wang 1998). All of these chemicals are present in the Detroit River, although there 

is little known about the clearance times for many of the other chemicals in the river. 

Thus, it is possible that some residual chemicals continued to affect the Detroit River fish 

during the unchallenged trial. Nevertheless, residual burdens would not affect my 

interpretation of the challenged trial data and, for example, the increased performance of 
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the Detroit River fish over the Belle River fish during the aggression trials. Thus, my data 

for aggression and locomotion are most consistent with a genetic response. 

 Traditionally it was thought that an evolutionary response was a slow process that 

would take hundreds of generations to occur (Darwin 1859), but more recent evidence 

suggests that such responses can occur over much shorter timescales (e.g. Grant and 

Grant 1995). Pollution in the Detroit River dates back to the late 19
th

 century (US EPA 

2007) or roughly 100 years ago. Brown bullheads tend to become sexually mature at 3 

years of age, so 100 years represents at most 33 generations. Therefore, any evolved 

response to pollution in the Detroit River brown bullheads has occurred over a relatively 

short timescale. It is possible that large effective population sizes and large brood sizes 

contribute to the apparent rapid response. First, a large effective population size should 

contribute to large amounts of standing genetic variation on which selection can act. 

Second, a large brood size means that there are increased opportunities for favourable 

mutations to occur. Additionally, many contaminants can be genotoxic in that they have 

the ability to be mutagenic. Cachot et al. (2007) found that Japanese medaka (Oryzias 

latipes) exposed to sediment from the upper River Seine, Oissel, France showed 

significantly higher mutation rates than control fish. The sediments of the Seine in Oissel 

are known to have contaminant concentrations similar to the Detroit River. Indeed, 

Maccubbin et al. (1991) found the sediments of the Detroit River to be mutagenic. 

Increased mutagenesis, while resulting in increased deleterious mutations, could also 

result in an increased frequency of favourable mutations. Thus, the mutagenic nature of 

some of the chemicals in the Detroit River may have aided in the adaptation of the brown 

bullheads to contamination stress. Conceivably, the combination of short generation time, 



 

58 

 

 

large brood sizes, large effective population sizes, and mutagenic chemicals, in 

conjunction with strong selective pressure have contributed to the apparent rapid evolved 

response in Detroit River bullhead behaviour. 

It has been suggested that genetic changes in behavioural traits precede and direct 

subsequent morphological changes (West-Eberhard 2003). This idea stems from the fact 

that behavioural traits tend to be more labile than morphological traits (Wcislo 1989). 

That is, for each morphological state there can be many behavioural states, so the chance 

of producing a favourable trait is higher in behavioural traits than morphological traits 

(West-Eberhard 1989). Consequently, adaptive behavioural traits should become 

established first, followed by adaptive morphological traits. If an individual who resides 

in a polluted environment displays some heritable behaviour that is associated with a 

fitness benefit relative to other behaviours in the population, then the phenotype should 

be rapidly selected for and passed-on to the next generation. For example, in this study I 

found that Belle River fish significantly increased their locomotion when in polluted 

water, showing signs of stress, which in turn can lower fitness, whereas Trenton Channel 

fish were unaffected by the pollution. Additionally, brown bullheads from the Detroit 

River were more aggressive than their Belle River counterparts when in polluted water. I 

did not look at morphological traits, so do not yet know if those traits have also responded 

to pollution, or the relative time scales with which behavioural and morphological traits 

have evolved in this population. Nevertheless, recently polluted environments do provide 

an opportunity to examine the relative rates of evolution of behavioural and 

morphological traits. 
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There is growing support for the presence of behavioural syndromes in 

populations. Behavioural syndromes are suites of correlated behaviours that occur in 

different contexts or situations (e.g. Hedrick 2000; reviewed by Sih et al. 2004). One of 

the more common behavioural syndromes is the aggressiveness/activity syndrome, where 

aggression is positively correlated with activity levels (Sih et al. 2004). This relationship 

has been demonstrated in, for example, the field cricket, Gryllus integer in which activity, 

measured as an individual’s latency to leave a glass vial into a novel environment, was 

positively correlated with aggressiveness, measured as the number of fights won by that 

individual (Kortet and Hedrick 2007). In my study, bullheads from the Detroit River were 

more aggressive and were more active than Belle River fish, which is in concordance 

with Kortet and Hedrick’s results. Thus, at least for the aggressiveness/activity syndrome, 

my data suggest a behavioural syndrome exists in bullhead as well.    

Remediation plans aim to restore the ecosystem to some level of acceptable 

integrity or health. Consequently, many remediation plans target areas with a long history 

of pollution, such as the Detroit River and Lake Erie (e.g. Heidtke et al. 2002). Between 

1993 and 2001, an estimated $130 million was spent on sediment remediation activities in 

the Detroit River and western Lake Erie as part of the Detroit River Remedial Action Plan 

(Heidtke et al. 2002). However, it is apparent that these areas are still loaded with 

chemicals at levels well above the policy guidelines (Drouillard et al. 2006). The Detroit 

River has a long history of contamination and my data now show that at least one native 

species may have evolved in response to the pollution although a more thorough 

community-level analysis is needed. I suggest that it may be time to start prioritising our 

remediation action plans with some consideration of potential adaptation to a stressor by 
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local flora and fauna. Newly-polluted ecosystems or ones that are experiencing rapid 

population declines ought to be top of our priority list. Conversely, areas with a long 

history of pollution might be prioritized lower if resident species show signs of adaptation 

to the current pollution levels. Additionally, if areas such as the Detroit River are fully 

restored to a non-polluted state, some consideration should be given to ensure that the 

resident species are fully viable in the ‘new’ clean environment. For example, it is 

conceivable that the brown bullhead presently in the Detroit River would be less adapted 

to the clean environment and would be prone to invasion by other non-local species that 

occupy a similar niche. As humans continue to pollute aquatic ecosystems, the need for 

prioritizing remediation efforts will become increasingly important to effectively use 

conservation resources. My study suggests that consideration of adaptive and 

physiological responses to stressors should also be considered when prioritizing sites. 
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Chapter 3  

3 The effects of elevated temperature on the sexual traits, 

immunology, and survivorship of a tropical ectotherm2 

In 2007, the Intergovernmental Panel on Climate Change projected an average 

global air temperature increase of 1.1-6.4ºC by the end of the 21
st
 century. Although the 

tropics are predicted to experience less extreme temperature increases than regions of 

higher latitude, tropical ectotherms live close to their thermal limits, and are thus 

particularly vulnerable to increases in temperature. In this study, I examined how 

predicted patterns of global warming will affect survival and sexual traits in the 

Trinidadian guppy (Poecilia reticulata). Guppies were exposed from birth to one of four 

temperature treatments: 23ºC, 25ºC (control), 28ºC, or 30ºC. I measured brood survival 

and at sexual maturity, male ornamentation, sperm traits, and immune response. My 

results show that increases in temperature result in guppies that have shorter, slower 

sperm but that there is an optimum temperature for ornamental hue at 28ºC. Given the 

importance of sperm quality for reproduction, these results suggest population viability 

could be affected by warming. However, I found no difference in brood survival or 

immune response to a novel antigen across the treatments, indicating that survival may 

not be as vulnerable as previously thought. Overall, my data suggest that male sexual 

                                                 

2
 A version of this chapter has been published and is presented here with permission from Journal of 

Experimental Biology. 

Citation: Breckels, R.D. and Neff, B.D. 2013. The effects of elevated temperature on the sexual traits, 

immunology, and survivorship of a tropical ectotherm. J. Exp. Biol. 216, 2658-2664. 
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traits, and in particular sperm performance, are more sensitive than survival to a warming 

environment. 

 

3.1 Introduction 

One of the most ubiquitous environmental conditions that broadly impacts 

organisms is temperature (Dorts et al. 2012). As detailed in Chapter 1, the average global 

air temperature is predicted to increase by 1.8-4.0°C by the end of the 21
st
 century and 

this is likely to have severe impacts on organisms, especially tropical ectotherms. The 

projected increase in temperature is also likely to have ecological impacts, including 

reduced food availability, which can be confounded by thermally-induced increases in the 

metabolic rate of ectotherms. Consequently, less energy may be available for other 

important functions, including reproduction, potentially altering the demographics of 

populations (Deutsch et al. 2008; Daufrense et al. 2009; Dillon et al. 2010). Therefore, 

understanding the response of organisms, especially the extent of phenotypic plasticity, is 

of crucial importance to better understand the fate of organisms in warming environments 

(Somero 2010). 

Sexual traits including sperm performance are key determinants of male 

reproductive success but exposure to elevated temperatures has the capacity to alter these 

traits (Alavi and Cosson 2005; Dorts et al. 2012). Increased temperatures have been 

shown to result in decreased sperm motility (e.g. Williot et al. 2000), decreased sperm 

number (e.g. Zeh et al. 2012), and, in one study, increased sperm length (e.g. 

Blanckenhorn and Hellriegel 2002); most other stressors have instead been shown to lead 
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to decreased sperm length (e.g. Dey et al. 2009; Immler et al. 2010). These changes 

subsequently can have a significant impact on male reproductive success (Billard 1978; 

Stoss 1983; Gage et al. 2004; Alavi and Cosson 2005). In addition, temperature may also 

affect secondary sexual characters which are important sexual traits because they act as 

an honest signal of male quality and aid females in choosing mates (Kortet at al. 2004). 

Borg (1982) found that the decline of secondary sexual characters during the summer is 

accelerated by high temperatures in the three-spined stickleback, Gasterosteus aculeatus. 

As well, Brian et al. (2011) found that an optimum temperature for male secondary sexual 

characteristics exists in the fathead minnow (Pimephales promelas). Therefore, 

temperature may have the potential to affect both pre- and post-copulatory processes 

during reproduction.  

A rise in temperature is also predicted to result in an increase in the transmission, 

growth rate, and virulence of parasites and pathogens (Harvell et al. 2002; Marcogliese 

2008; Harvell et al. 2009; Dang et al. 2012). The immune system is highly sophisticated 

and has evolved to defend hosts against the debilitating effects of pathogens and parasites 

(Møller and Saino 2004). However, variation in temperature can have marked effects on 

immunological function and effectiveness: increased temperatures can affect the 

antibacterial activity, antimicrobial activity, and parasite resistance of a host (e.g. 

Collazos et al. 1996; Lamková et al. 2007; Dang et al. 2012). Indeed, Collazos et al. 

(1996) found that the immune response to Phytohaemagglutinin (PHA) is compromised at 

higher temperatures in the tench, Tinca tinca. Phytohaemagglutinin, a protein derived 

from red kidney beans, is commonly used as a novel antigen to test T-cell proliferation 

(e.g. Collazos et al. 1996; Bayyari et al. 1997; Ardia and Clotfelter 2006). 
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Phytohaemagglutinin-induced immune response has also been linked directly to parasite 

resistance (Bayyari et al. 1997). Exposure to PHA thereby provides a simple test of an 

organism’s immune response. 

The projected change in air temperature will also result in a change in water 

temperature (e.g. Stefan and Preudhomme 1993; Caissie et al. 2001). The magnitude of 

the change in water temperature, however, will depend upon several factors including the 

location and volume of the water-body. Small, shallow streams are likely to experience 

similar changes to air temperature, whereas large water bodies, such as oceans, will take 

longer to respond (Ficke et al. 2007). Indeed, long-term increases in river and stream 

water temperature are strongly correlated to long-term increases in air temperature 

(Kaushal et al. 2010). Consequently, global warming will be more problematic for 

obligate freshwater organisms. For fish, this problem is further compounded due to their 

poikilothermic nature whereby their basic physiology is directly dependent on the 

temperature of their environment. Given the potential negative impacts that global 

warming might cause, studies addressing the short and long-term effects of the increased 

temperature are needed.  

Here, I use the Trinidadian guppy (Poecilia reticulata, Peters 1860) as a model 

poikilothermic fish to examine the effects of increased temperature, as projected for 2100. 

Guppies are a small, polygamous, live bearing fish native to north-eastern South America 

and the Caribbean. They inhabit small freshwater streams and pools that flow through 

lowland and montane rain forests (Houde 1997). Currently, the mean air temperature in 

Trinidad is 27.7°C and fluctuates by 2.0°C annually between the coldest months (January 

and February - 26.5°C) and the warmest month (May - 28.5°C), while the diel 
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temperature fluctuates by approximately 8.4°C (mean values calculated between January 

1992 and December 2012; weatheronline.co.uk). Due to its physical nature, short-term 

temperature variations in water are usually smaller than short-term variations in air 

temperature (Caissie et al. 2001; Kaushal et al. 2010). The mean water temperature of 

rivers in Trinidad is approximately 25°C and ranges between 20°C to 28°C (Alkins-Koo 

2000). Over the past 60 years, Trinidad has experienced a mean air temperature rise of 

1.5°C (Singh 1997), and the temperature is projected to increase by 1.0-3.5°C by the end 

of the 21
st
 century (Water Resources Agency 2001). However, variation in temperature is 

set to decrease as night time and winter temperatures are projected to increase more than 

day time and summer temperature (IPCC 2007). Geographical barriers, such as waterfalls 

and oceans, mean that natural dispersal for individuals within Trinidadian streams is 

unfeasible. Therefore guppies, like many other poikilotherms, will largely have to rely on 

phenotypic plasticity in order to respond to global warming. 

The objective of this study was to assess brood survival and to detail the 

phenotypic plasticity of sperm length, sperm velocity, male ornamentation, and immune 

response to guppies exposed to increased temperatures. I exposed guppies from birth to 

one of four temperature treatments: 23°C to represent a cooler climate, 25°C (control), 

and 28°C or 30°C to represent average or upper projected temperatures for the year 2100, 

respectively. I hypothesized that there would be an effect of increased temperature on 

survivorship and reproductive traits. I predicted that exposure to increased temperatures 

would result in decreased brood survival, sperm length, sperm velocity, male ornament 

quality, and immune response. 
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3.2 Methods 

Experiments were conducted following ethical guidelines as implemented by the 

Canadian Council of Animal Care and were approved by the Animal Use Subcommittee 

at the University of Western Ontario. Guppies used in this experiment were descendants 

of fish that were collected in 2003 from a tributary of the Paria River in the Northern 

Range, Trinidad (10°44’42” N; 61°15’42” W). All guppies were kept at a constant 

temperature of 25 ± 0.6ºC to represent natural conditions (Alkins-Koo 2000). Pregnant 

females were put into individual 10 L tanks until they gave birth. The number of 

offspring at birth and again after three months was recorded in order to get an estimate of 

brood survival. Approximately 24 h after the females gave birth (allowing time for the 

entire brood to be birthed) they were removed from the tanks so only the offspring 

remained. The temperature in the tanks was then set to one of four temperatures: 30ºC to 

represent the upper range of future climate predictions for the end of the century, 28ºC to 

represent average future climate predictions for the end of the century, 25ºC to act as a 

control, and 23ºC to represent a cooler climate. 

3.2.1 Sperm analysis 

At three months of age (mean age in days ± SD: 95.8 ± 7.0), a subset of males 

were removed from their tanks and put into individual isolation chambers set at the 

temperature in which they were acclimated for 3 d to ensure full sperm reserves (Pilastro 

et al. 2002). Males were then anaesthetized with MS-222 and ‘pat-dried’ to remove all 

excess MS-222 from their skin. The males were placed under a dissection microscope 

with their gonopodium swung forward and 40 µl of sperm extender medium (207 mM 

NaCl, 5.4 mM KCl, 1.3 mM CaCl2, 0.49 mM MgSO4, 10mM Tris, pH 7.5) held at 25ºC 
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was added to the base of the gonopodium (Evans 2009). Gentle pressure was applied to 

the side of the abdomen, anterior to the base of the gonopodium to release all sperm 

bundles into the extender medium. The sperm was then activated using 40 µl of 150 mM 

KCl solution with 2 mg/l bovine serum albumin (BSA) also held at 25ºC which helps to 

prevent sperm from sticking to the slide. Two 15 µl aliquots of the sperm solution were 

immediately placed in a 2X-CEL sperm analysis chamber (Hamilton Thorne, Beverly, 

MA, USA) and put under a microscope. Digital images were recorded using an SI-C400N 

microscope video camera (Costar Imaging, Lakewood, CA, USA) for velocity analysis. 

Following methods outlined in Chapter 2 (Breckels and Neff 2010), I extracted images 

from the recorded video at 10 frames per second and determined the two-dimensional co-

ordinates using NIH Image J software (http://rsbweb.nih.gov/ij). Using the Pythagorean 

Theorem, the distance travelled (µm) by a sperm cell in 1 s was calculated as the sum of 

the distances travelled between the 11 consecutive frames in that second. The total 

distance travelled by each sperm in 1 s is called the curvilinear velocity (VCL, µms
-1

). I 

then calculated the straight line velocity (VSL) of the sperm by determining the distance 

travelled between the first and the last of the 11 consecutive frames. Finally, I calculated 

the path linearity by dividing the VSL by the VCL. A path linearity value of 0 represents 

a sperm that started and ended at the same point whereas a value of 1 represents a sperm 

that travelled in a straight line (see Stoltz and Neff 2006 and Kime et al. 2001). I 

measured the VCL, VSL, and path linearity of 10 sperm per individual.  

Next, a 20 µl aliquot of the sperm solution was put onto a slide and covered with a 

cover slip. The slide was viewed under a microscope at 400× magnification and digital 

images were taken. Images were analysed in UTHSCSA Image Tool software v. 3.0 

http://rsbweb.nih.gov/ij
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(http://compdent.uthscsa.edu/dig/itdesc.html). The tail length, including flagellum and 

mid-piece, of 30 sperm per male was measured. 

3.2.2 Ornament analysis 

Female guppies tend to respond favourably to males with larger and more intense 

orange spots on their body (Kodric-Brown 1985; 1989; Houde 1997). Thus, I examined 

the impact of temperature on both orange spot area and colour intensity. At the same time 

as the sperm analysis measurements, a photograph was taken of each guppy on a white 

background with a dark blue paint chip and a ruler, which acted as a scale. Images were 

then analysed using Image J in order to calculate the length of each fish and the 

proportion of orange on their bodies. For length measurements, fish were measured from 

the tip of the snout to the end of the caudal peduncle. For the proportion of orange 

measurements, the outline of the fish was traced in order to get an estimate of the area. 

Then, each orange spot on the body of the fish was traced and summed to get total orange 

cover. All measurements were repeated three times and the measures were averaged. The 

value was then divided by the mean fish area to express the cover as a proportion of body 

size. 

 To measure the hue, saturation, and brightness (HSB) of the orange pigmentation, 

pictures were analysed using Adobe Photoshop CS3 (San Jose, CA, USA). Each 

photograph was standardized for lighting conditions following Villafuerte and Negro 

(1998) by recording mean values of red, green, and blue (RGB) for the light background 

and the dark paint chip. Next, the mean RGB values were recorded for the orange 

pigmentation on the guppies and standardized. From these values I was able to calculate 

the standardised HSB values for each guppy (Villafuerte and Negro 1998).  

http://compdent.uthscsa.edu/dig/itdesc.html
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3.2.3 Immune response 

To evaluate the immune response, a separate subset of fish from each temperature 

treatment were injected with phytohaemagglutinin (PHA) and their swelling response was 

recorded. The PHA swelling response provides a measure of the T-cell proliferation, 

among other things, and has also been linked to parasite resistance (Bayyari et al. 1997; 

Ardia and Clotfelter 2006). After roughly 8 months of age (mean age in days ± SD: 236 ± 

43), both male and female guppies were anaesthetized using MS-222 and length 

measurements were taken as detailed above. Next, the guppies were placed under a 

dissection microscope and the width of the caudal peduncle, in line with the end of the 

dorsal fin, was measured independently three times for accuracy with a digital calliper 

(0.01 mm accuracy). The guppies were then injected in the same area with 4 µg PHA, in 

2 µl phosphate buffered saline (PBS) using a 10 µl, 26 gauge syringe (Hamilton 

Company, NV, USA). Another subset of guppies, reared at 25ºC, were either injected 

with the needle only or received a dose of PBS without the PHA and acted as control 

groups. The guppies were then put in isolation chambers to avoid contact with other fish, 

with the temperature set to the temperature that they had been acclimated to, for 24 h. The 

fish were then anaesthetized again and the caudal peduncle was re-measured as above to 

determine the swelling response. The immune response of each individual was recorded 

as the difference in swelling between post- and pre-injection. 

3.2.4 Statistical analyses 

All statistical analyses were performed using SPSS v. 20 (SPSS Inc., Chicago, IL, 

USA) or Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA, USA) and all 

presented p-values are two-tailed probabilities. Brood survival, orange cover, and sperm 
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path linearity were transformed using logit transformations. A one-way analysis of 

variance (ANOVA) was performed to compare brood survival among the four 

temperature treatments. General linear mixed models (GLMMs) were performed to 

compare each of male body length, sperm length, VCL, VSL, path linearity, orange 

cover, HSB, and immune response among the four temperature treatments. Family 

identification (ID) was included as a random factor and body length was included as a 

covariate for all tests. Because there was variation in age of the fish tested in the immune 

response trials and both sexes were used, I included sex as an additional fixed factor and 

age as a covariate. For post hoc analysis I used a Tukey’s b test. Finally, I preformed 

linear contrast analyses for the four different sperm traits in order to determine if there 

was a linear relationship with temperature. 

 

3.3 Results 

The number of families reared at 23ºC, 25ºC, 28ºC, and 30ºC was 13, 21, 12, and 

21, producing mean brood sizes of 6.7, 4.9, 4.8, and 5.5 offspring, respectively. There 

was no difference in brood survival among the four temperature treatments (mean brood 

survival, % ± SD: 23ºC: 0.81 ± 0.21, 25ºC: 0.72 ± 0.29, 28ºC: 0.94 ± 0.12, and 30ºC: 0.74 

± 0.28; F3,63 = 1.4, p = 0.258). A total of 82 fish were used for the sperm trials and 

ornament analysis (23ºC: N = 11, 25ºC: N = 27, 28ºC: N = 19, and 30ºC: N = 25). Family 

ID had a significant effect on male body length at three months of age (F13,65 = 2.0, p = 

0.040) and there was also a significant effect of temperature (F3,65 = 5.0, p = 0.003). 

Interestingly, males in the 23ºC and 28ºC treatments were significantly longer than the 
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25ºC and 30ºC treatments (mean length, mm ± SE: 23ºC: 15.2 ± 0.6, 25ºC: 13.9 ± 0.3, 

28ºC: 15.1 ± 0.4, 30ºC: 13.9 ± 0.2).  

3.3.1 Sperm analysis 

Male body length had no effect on either sperm length, VCL or VSL, and neither 

body length nor family ID had an effect on path linearity across the four treatments (p > 

0.05 for all). However, family ID had an effect on sperm length, VCL, and VSL (F13,64 = 

2.3, p = 0.008; F13,59 = 1.9, p = 0.047; and F13,59 = 2.2, p = 0.023, respectively). There was 

a significant decrease in average sperm length with increasing temperature (F3,64 = 38.3, p 

< 0.001), with the 30ºC acclimated fish producing significantly shorter sperm than the 

28ºC acclimated fish, which in turn produced significantly shorter sperm than both the 

23ºC and 25ºC acclimated fish (Fig. 3.1 A). Similarly, there was a significant decrease in 

VCL and VSL with increasing temperatures (F3,59 = 7.8, p < 0.001 and F3,59 = 8.0, p < 

0.001, respectively), with 30ºC acclimated fish showing significantly decreased VCL and 

VSL than fish from the other three temperatures (Fig. 3.1 B, C). The path linearity also 

decreased significantly with increasing temperature (F3,59 = 3.8, p = 0.015; Fig. 3.1 D), 

with the 23ºC acclimated fish displaying a greater path linearity than both the 28ºC and 

30ºC acclimated fish. Additionally, sperm length, VCL, VSL, and path linearity all 

declined linearly with increasing temperature (F1,78 = 75.9, p < 0.001; F1,73 = 15.7, p < 

0.001; F1,73 = 17.7, p < 0.001; and F1,73 = 12.0, p = 0.001, respectively). 
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Figure 3.1 Sperm measurements of guppies (Poecilia reticulata) reared from birth at 

one of four temperatures.  

Shown are means (± SE) for (A) sperm length, (B) curvilinear velocity, (C) straight line 

velocity, and (D) path linearity. Error bars with the same letter are not significantly 

different (p > 0.05) according to a Tukey’s b HSD test. 
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3.3.2 Ornament analysis 

There was no effect of family ID on orange cover, saturation, or brightness, nor 

was there an effect of body length on orange cover, hue, or saturation (p > 0.05 for all). 

There was also no effect of temperature on orange cover or saturation (mean orange 

cover, % ± SE: 23ºC: 5.2 ± 0.6, 25ºC: 6.3 ± 0.5, 28ºC: 5.6 ± 0.6, and 30ºC: 6.3 ± 0.6, F3,64 

= 0.7, p = 0.548; mean saturation ± SE: 23ºC = 0.87 ± 0.01, 25ºC = 0.91 ± 0.02, 28ºC = 

0.82 ± 0.03, and 30ºC = 0.86 ± 0.02, F3,64 = 2.0, p = 0.120). There was, however, an effect 

of family ID (F3,64 = 2.9, p = 0.002) and temperature on hue (F3,64 = 17.5, p < 0.001; Fig. 

3.2), with the 28ºC fish displaying a significantly greater hue than all other treatments. 

The 25ºC displayed significantly greater hue than the 30ºC fish whereas the 23ºC fish 

were not significantly different from either the 25 or 30ºC fish. There was an effect of 

body length on brightness (F1,64 = 7.2, p = 0.009), but temperature had no effect (mean 

brightness ± SE: 23ºC: 0.45 ± 0.02, 25ºC: 0.45 ± 0.01, 28ºC: 0.44 ± 0.01, and 30ºC: 0.41 

± 0.01; F3,64 = 1.0, p = 0.487). 

3.3.3 Immune response analysis 

A total of 156 fish were used from 65 families in the immune response trials 

(control: N = 13, PBS control: N = 10, 23ºC: N = 38, 25ºC: N = 35, 28ºC: N = 27, and 

30ºC: N = 33). Age, length, and family ID had no effect on PHA swelling response (p > 

0.05 for all). Although, there was a significant increase in PHA swelling response 

between the two controls and the four temperature treatments (F5,121 = 4.4, p = 0.001; Fig. 

3.3), there was no difference in swelling response among the four temperature treatments. 

Additionally, males produced a significantly larger swelling response than did females 

(F1,121 = 4.8, p = 0.031). 
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Figure 3.2 Ornament hue of guppies (Poecilia reticulata) reared from birth at one of 

four temperatures.  

Shown are means (± SE). Error bars with the same letter are not significantly different (p 

> 0.05) according to a Tukey’s b HSD test. 
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Figure 3.3 Phytohaemagglutinin (PHA) swelling response of guppies (Poecilia 

reticulata) reared from birth at one of four temperatures or the controls (C1 - needle 

only; C2 - phosphate buffered saline injection).  

Shown are means (± SE). Error bars with the same letter are not significantly different (p 

> 0.05) according to a Tukey’s b HSD test. 
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3.4 Discussion  

Climate change, particularly the increased temperature predicted for the end of the 

century, has the potential to alter many life history traits, including juvenile survival (e.g. 

Zeh et al. 2012; reviewed in Pepin 1991). Although temperature can impact many aspects 

of natural ecosystems (reviewed in Ficke et al. 2007; IPCC 2007), its direct effect on 

physiology and survival is a critical first step in discerning the impact of climate change 

on natural populations. A previous study suggested that guppies have lower juvenile 

survival rates at temperatures of 29°C and above (Karayucel et al. 2008). However, in my 

study I found no difference among temperature treatments in brood survival. This 

discrepancy may be because Karayucel et al. (2008) used commercial aquarium fish that 

had been selectively bred for their elaborate pigmentation and fins (Karayucel et al. 

2006), whereas I used guppies caught from the wild and maintained in a large stock 

population without any intentional, directional artificial selection. Taken together, the two 

studies suggest that the elaboration of sexual ornaments affects survival, particularly in 

warmer environments, indicating that they are costly (Andersson 1994). The discrepancy 

between the two studies may also reflect differences in genomic diversity as aquarium 

guppies tend to be highly inbred due to selective breeding whereas wild caught guppies 

have a much higher level of genetic variation (e.g. Blealkley et al. 2008). Thus, wild 

caught guppies could potentially have broader thermal limits than aquarium fish allowing 

them to survive at higher temperatures. Regardless, I found no evidence to suggest that 

temperature increases as predicted for the end of the century will have a significant effect 

on brood survival in guppies.   
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Secondary sexual characters influence female mate choice because they can act as 

an honest signal of male quality (Andersson 1994). Brian et al. (2011) found that there 

was an optimum temperature for ornamentation in fathead minnows which was slightly 

higher than the native temperature. My results show that ornament hue was highest at 

28°C, higher than the mean natural temperature of 25°C. While it has been documented 

that hue is an important factor in female mate choice for many species (e.g. Chinook 

salmon, Oncorhynchus tshawytscha [Neff et al. 2008] and the blue crab, Callinectes 

sapidus [Baldwin and Johnsen 2009]), its role in mate choice for guppies is less well 

known. One study at least suggests that female guppies instead prioritize the area of 

orange and colour saturation over hue (Karino et al. 2010), yet I found no effect of 

temperature on those two aspects of ornamentation. It is conceivable that ornamentation 

traits subject to intense sexual selection become canalized from environmental stressors 

such as the increased temperature in my study. This then brings into question whether the 

signals are, in fact, honest. Indeed, Candolin (1999) found that the condition of male 

three-spined sticklebacks displayed a curvilinear relationship with ornament quality; 

males of both good and poor condition had larger ornaments than males of intermediate 

condition. My results show that male guppies reared at higher temperatures had lower 

quality sperm (a key component of fertility in the guppy: e.g. Boschetto et al. 2011) but 

their ornament, as measured by orange colour and saturation, was unaffected, suggesting 

that these aspects of the secondary sexual character may not be honest signals of quality.   

Zeh et al. (2012) have claimed that the “Achilles’ heel” for tropical ectotherms 

will be reproduction in a warming climate. Zeh et al. (2012) found that with slight 

increases in temperature (3.5°C) male neotropical pseudoscorpions, Cordylochernes 
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scorpioides produced half the sperm loads as controls and females failed to reproduce at 

all. Lahnsteiner and Mansour (2012) similarly found that sperm velocity decreased in 

both brown trout, Salmo trutta and burbot, Lota lota as temperature increased across a 

biologically relevant range. I found that increased temperature significantly decreased 

sperm length, and curvilinear and straight line velocity. Sperm length and velocity are key 

determinants of fertilization in many ectotherms (Billard 1978; Stoss 1983; Gage et al. 

2004; Alavi and Cosson 2005). Indeed, Gage et al. (2004), Casselman et al. (2006), and 

Gasparini et al. (2010) found that there was a positive relationship with sperm velocity 

and fertilization success in internally or externally fertilizing fish. Additionally, sperm 

length is often positively correlated to sperm velocity (e.g. Gomendio and Roldan 1991; 

Malo et al. 2006; Fitzpatrick et al. 2009). Thus, my results indicate that reproduction 

could be compromised in a warmer environment, supporting the claim made by Zeh et al. 

(2012) that reproduction is the “Achilles’ heel” for tropical ectotherms. 

Many studies suggest that global warming has the potential to negatively affect 

the immune system (e.g. Collazos et al. 1996; Dang et al. 2012). Indeed, Collazos et al. 

(1996) found that seasonal variation in temperature affects the immune response to PHA 

in the tench with the increased summer temperatures experienced by the fish causing a 

decreased immunological response compared to winter temperatures. However, Le 

Morvan-Rocher et al. (1995) found no effect of increased temperature on the PHA 

response in carp, Cyprinus carpio. My results agree with those of Le Morvan-Rocher et 

al. (1995) as I found no evidence of a reduced PHA swelling response at increased 

temperatures. This apparent difference in results with those of Collazos et al. (1996) may 

reflect the experimental manipulation of my study whereas Collazos et al. studied the 
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effects of natural, seasonal variation. Tench breed in the summer so their immune system 

may be down-regulated during this period as resources are shifted to reproduction (e.g. 

Fedorka et al. 2004; Whitton 1982; Moret and Schmid-Hempel 2000 and references 

therein). Regardless, my results suggest that the innate immune system of guppies may be 

able to cope with the projected temperature increase for the end of the century, at least as 

measured by the swelling response to a novel antigen. 

In my study, I found that increased temperatures affected some sexual traits 

(sperm characteristics and ornament hue), but not aspects of immune function or survival. 

It is possible that, at the elevated temperatures, guppies channel resources to up-regulate 

their immune system, which then leaves their reproductive system more susceptible to 

immunological attack (Folstad and Skarstein 1996). Indeed, the immunocompetence 

handicap hypothesis (Folstad and Karter 1992) states that sperm cells are considered non-

self and subject to attack from the immune system (reviewed in Kosuda and Bigazzi 

1987). To counter attacks on sperm cells, males can release elevated levels of gonadal 

androgens which act to down-regulate the immune system (Folstad and Skarstein 1996). I 

did not, however, directly measure immune cell proliferation or circulating androgen 

levels in my fish and therefore cannot confirm if my data support the immunocompetence 

handicap hypothesis. My results might also reflect a trade-off between reproduction and 

immunity (and potentially other life history traits) with the latter taking precedence over 

reproductive traits in guppies when thermally stressed. 

In conclusion, the results of my study suggest that the temperature rise predicted 

by the end of the century had no effect on immunity or survival in the guppy, a tropical 

ectotherm. Conversely, the increased temperature could have a significant impact on 
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reproduction in this fish. I found that increased temperatures resulted in decreased sperm 

length and motility, which are key aspects of fertility. My study thereby indicates that key 

sexual traits are more sensitive to elevated temperatures than traits linked to survival. 

Future work might emphasize long-term experiments that examine potential maternal 

environmental effects (e.g. McAdam et al. 2002), epigenetic effects (e.g. Miller et al. 

2012), and genetic adaptations (e.g. Réale et al. 2003) that could all help to ameliorate the 

negative impacts of climate change.  
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Chapter 4 

4 Rapid evolution of a sperm trait in response to 

increased temperature in an ectothermic fish 

The Intergovernmental Panel on Climate Change predicts an average global 

temperature increase of 1.8-4.0°C by 2100. Tropical ectotherms are expected to be 

particularly sensitive to this temperature increase because they live close to their thermal 

limits. I investigated the phenotypic plasticity and evolutionary responses of sperm traits 

in guppies (Poecilia reticulata) to increased temperatures after 6, 18, and 24 months. 

Guppies with experimental population temperatures of 25°C (control) or 28°C were 

reared in either 25°C or 28°C in a 2 × 2 common garden design. The plastic response to 

increased temperature was a decreased sperm length, velocity, and path linearity. The 

evolutionary response was a subsequent increase in sperm length, resulting in complete 

compensation after just 6 months in 28°C water. Sperm velocity and linearity showed no 

sign of evolution even after 24 months. This study provides evidence that some 

reproductive traits can respond via rapid evolution to the temperature increase associated 

with climate change.  

 

4.1 Introduction 

Changes in the environment can have marked effects on organisms (e.g. Endler 

1980; West and Packer 2002), with temperature being one of the most ubiquitous 

environmental conditions with broad impacts on virtually all species (Dorts et al. 2012). 

As detailed in Chapter 1, there is concern about the potential impact of global warming 

on species composition and ecosystem health. Species have the capacity to respond to a 
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warmer environment by phenotypic plasticity or genetic adaptation (detailed in Chapter 

1). Genetic adaptations to temperature can occur via natural selection acting on either 

phenological mechanisms or thermal physiology (Angilletta 2009). There are a number of 

examples of species showing genetic based adaptations in phenology (detailed in Chapter 

1). However, little is known about rapid genetic adaptations of thermal physiology with 

the predominant view being that adaptation of thermal physiology is not likely over 

ecological timescales (Leal and Gunderson 2012). Yet, more recent evidence suggests 

that thermal adaptation can occur more rapidly than once believed (e.g. Leal and 

Gunderson 2012). 

The effects of temperature on plasticity in developmental and life history traits 

have been well documented, yet less is known about reproduction, particularly 

reproductive morphology, despite these latter traits being crucial to population health and 

persistence (Angilletta 2009; Berger et al. 2011). In males, sperm length and velocity 

have been linked to fertilization success, particularly under competition (reviewed in 

Snook 2005; Simmons and Fitzpatrick 2012; but see Humphries et al. 2008). However, 

sperm traits have been shown to be sensitive to changes in temperature, with even slight 

increases in temperature resulting in reduced sperm numbers (Zeh et al. 2012), longevity 

(Binet and Doyle 2013), motility (Williot et al. 2000), length (Adriaenssens et al. 2012; 

Chapter 3; Breckels and Neff 2013), and velocity (Chapter 3; Breckels and Neff 2013; but 

see Adriaenssens et al. 2012). Such studies have led Zeh et al. (2012) to claim that 

reproduction is a potential “Achilles’ heel” for many species in the face of global 

warming. Certainly, more studies are needed to examine the plastic and genetic responses 

in reproductive traits to increases in temperature.  
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Here, I use Trinidadian guppies (Poecilia reticulata, Peters 1860) as a model 

ectotherm to detail the effects of long-term exposure to increased temperature, as 

projected for the end of the 21
st
 century. Guppies are a small, live bearing fish, native to 

north-eastern South America and the Caribbean that inhabit small freshwater streams 

(Houde 1997). They tend to be highly polyandrous with males experiencing high levels of 

sperm competition. Males mature at approximately 7 weeks of age or younger (Reznick 

et al. 2001). Guppies have overlapping generations; as such generation time has been 

estimated between 1.5 and 6.9 months (e.g. Endler 1980; Reznick et al. 1997). Over the 

past six decades, Trinidad has experienced a mean air temperature increase of 1.5°C 

(Singh 1997), and is set to increase by a further 1.0-3.5°C by the end of the 21
st
 century 

(Water Resources Agency 2001). This projected increase in air temperature will result in 

similar increases in stream and small river water temperatures (Stefan and Preudhomme 

1993; Caissie et al. 2001; Kaushal et al. 2010). In Trinidad, the current mean daily air 

temperature is 27.7°C with daily fluctuations of up to 8.4°C (calculated between January 

1992 and December 2012; weatheronline.co.uk). Mean river water temperatures are 

approximately 25°C and fluctuate between 20°C and 28°C (Alkins-Koo 2000). Although, 

guppies periodically experience temperatures of 28°C, I have previously shown that 

prolonged exposure to 28°C affects sperm traits (Chapter 3; Breckels and Neff 2013). 

Thus multi-generational exposure to increased temperature could negatively affect 

reproduction. Additionally, geographical barriers, such as waterfalls and oceans, mean 

that natural dispersal is unfeasible. Therefore guppies, like many other species, will have 

to rely on phenotypic plasticity or genetic adaptation in order to respond to a warming 

environment. 
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Specifically, I have previously shown that exposure to elevated temperatures 

during development results in decreased sperm length, velocity, and path linearity 

(Chapter 3; Breckels and Neff 2013), but that study measured only the initial plastic 

response and thus could not address the multi-generational, evolutionary response. In the 

present study, I exposed guppies to elevated temperatures for many generations to 

evaluate the scope of the genetic response. My objective was to examine whether sperm 

length, velocity, or path linearity would respond genetically and if that response was 

compensatory (returned to baseline levels). These sperm traits typically show high levels 

of heritability (Simmons and Moore 2009; Evans 2011), so I predicted that a genetic 

response would occur, resulting in partial or full compensation. 

 

4.2 Methods 

Guppies used in this experiment were descendants of fish caught from the Paria 

River, Trinidad in 2003. Guppies were held in the Freshwater Ecology Research Facility 

room at the University of Western Ontario in tanks lined with bottom layers of gravel and 

artificial plants to provide cover. Fish were kept on a 12h:12h light-dark cycle with the 

water temperature set to 25°C, using internal heaters, to simulate current natural 

conditions (Alkins-Koo 2000). Fish were fed twice daily, once with Tetramin® flake food 

and once with brine shrimp. 

On May 1
st
 2010, six, 250 L experimental populations were seeded with 55 adult 

fish (25 males and 30 females). The initial water temperature in all six experimental 

populations was set to 25°C. The temperature in three of these experimental populations 

was raised gradually, at a rate of 1°C every 45 days, up to 28°C (SD: ± 1.2°C) to simulate 
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average levels of global warming by the end of the century (IPCC 2007). The three other 

experimental populations remained at 25°C (SD: ± 0.5°C) throughout the experiment and 

acted as controls. To produce families for the common garden treatments, after 6, 18, and 

24 months, eight pregnant females (evident from enlarged abdomens and darker anal 

regions; Houde 1997) were removed from each experimental population and put into 

separate, individual 10 L rearing tanks with the water set at the same temperature as the 

experimental population that the female had come from (i.e. if the female came from an 

experimental population set at 25°C she was put into a rearing tank with the water set at 

25°C). Females were allowed to give birth, after which they were returned to their 

original experimental population, leaving only their offspring in the rearing tanks. 

Next, I created four treatments in a common garden experimental design by 

switching the water temperature in four of the eight rearing tanks, 24 hours after the first 

offspring was born, to that of the alternate experimental populations: (1) 25-25 (control), 

fish that had an experimental population and rearing temperature of 25°C; (2) 25-28, fish 

that had an experimental population temperature of 25°C but a rearing temperature of 

28°C; (3) 28-28, fish that had an experimental population and rearing temperature of 

28°C; and (4) 28-25, fish that had an experimental population temperature of 28°C but a 

rearing temperature of 25°C (see appendix A). There were a total of 12 tanks in each 

treatment, four from each of the three different experimental populations with the 

corresponding temperature. From the offspring in these rearing tanks (i.e. the F1 

generation) I estimated sperm traits as detailed below. 
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In addition, for the 18 month trial, a breeding design was used to generate an F2 

generation (F2) of the 28-25 treatment. The breeding design used fish from the four 

rearing tanks of each experimental population. Males and females from the 28-25 

treatment were separated into individual rearing tanks before they became sexually 

mature. After approximately four months, males and females were paired in a design that 

ensured brothers and sisters were not mated. The guppies were given 3 days to copulate 

and then the males were removed. When the females gave birth, the offspring were 

removed and put into separate rearing tanks. The water temperature remained at 25°C and 

sperm traits were examined on the offspring as detailed below. 

4.2.1 Sperm characteristics 

When fish were 3 months of age (mean age in days ± SD: 96 ± 10), males were 

removed from their rearing tanks and put into individual isolation tanks for 3 days to 

ensure full sperm reserves (Pilastro et al. 2002), with the water temperature set to the 

same as they had been reared in. I then followed the methods for sperm analysis outlined 

in Chapter 3 (Breckels and Neff 2013). I did not measure sperm number here because of 

logistical constraints, but previous analysis revealed no change in numbers with increased 

temperature (sperm count ± SD; 25°C: 2.2 × 10
6
 ± 0.8 × 10

6
; 28°C: 2.5 × 10

6
 ± 1.0 × 10

6
; 

t17 = 0.87, p = 0.398). 

4.2.2 Statistical analysis 

All presented p-values are two-tailed probabilities and all statistical analyses were 

performed using IBM SPSS v. 20 (SPSS Inc., Chicago, IL, USA). Metrics from 

individuals within the same family were averaged in order to get family means which 
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were used for all statistical analyses except when noted. Sperm path linearity was 

transformed using a logit transformation to normalize the data. General linear mixed 

models (GLMMs) were performed on family means of body length, sperm length, VCL, 

and path linearity. I included time point (6, 18, or 24 months) and experimental 

population and rearing temperatures as fixed factors and experimental population 

identification nested within experimental population temperature as a random factor in all 

tests. For the 18 month trial, I also used a one-way ANOVA and a subsequent tukey’s 

post hoc test to compare body length, sperm length, velocity, and path linearity among the 

control (25-25), 28-28, 28-25, and F2 treatments.  

Variation in sperm length, velocity, or path linearity due to rearing temperature 

would suggest a phenotypic plastic response. Variation due to experimental population 

temperature suggests either a genetic response or maternal environmental effects. If this 

latter variation persists in the F2 treatment, a genetic response is indicated. 

 

4.3 Results 

A total of 92 families were used across the three time periods (Table 4.1). This 

number is lower than the maximum expected of 144 families because some females did 

not give birth (N = 23), females gave birth to female only broods or males in the brood 

died before sperm analysis was conducted (N = 26), or no sperm could be taken from 

males in a family (N = 3). There was no effect of time, experimental population or rearing 

temperature, or the interaction between experimental population and rearing temperature 

on body length (F2,80 = 1.5, p = 0.226; F1,4.4 = 0.5, p = 0.500; F1,80 = 1.5, p = 0.224; and   
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Table 4.1 Metrics for the families used in analyses of sperm characteristics in the 

guppy (Poecilia reticulata).  

Variable 

Treatments 

Control 25-28 28-28 28-25 F2 

6 Month 

No. families 10 9 9 4  

Males per family 1-10 1-5 1-5 2-7  

Body length (mm) 15.0 ± 0.9 14.8 ± 1.3 14.0 ± 0.9 14.0 ± 1.7  

18 Month 

No. families 9 7 9 7 7 

Males per family 1-5 1-5 1-9 1-3 1-4 

Body length (mm) 15.4 ± 0.7 14.6 ± 1.1 14.8 ± 0.8 14.9 ± 1.1 15.1 ± 0.6 

24 Month 

No. families 9 10 5 4  

Males per family 1-4 1-4 1-2 1-4  

Body length (mm) 14.9 ± 0.9 14.4 ± 0.8 15.2 ± 1.3 15.0 ± 1.0  

N.B. Experimental populations and rearing temperatures were either 25°C or 28°C, in a 2 × 2 design (see 

text).  Means are plus or minus one standard deviation. Numbers of families represent those families that 

were used in the analysis (see text).   
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F1,80 = 0.5, p = 0.467, respectively; Table 4.1). Similarly, there was no significant 

difference in male length in the F2 treatment and the control, 28-28, and 28-25 after 18 

months (F3,28 = 1.0, p = 0.390). 

4.3.1 Sperm length 

There was a significant effect of time, experimental population temperature, and 

rearing temperature on sperm length over the three time periods (Table 4.2; Fig. 4.1 A-C). 

Across the three sampling times, fish reared at 28°C (25-28 and 28-28) produced sperm 

that were about 3.5% shorter than fish from the corresponding experimental populations 

but were reared at 25°C (control and 28-25). Conversely, all treatments with fish from the 

28°C experimental populations (28-28 and 28-25) had sperm that were over 4% longer 

than fish from the 25°C experimental populations with the corresponding rearing 

temperature (25-28 and control). After 18 months, males from the 28-25 and F2 

treatments had sperm that were similar in length but significantly longer than the control 

and 28-28 treatments (F3,28 = 31.5, p < 0.001; Fig. 4.2 A).  

4.3.2 Sperm velocity 

There was a significant effect of rearing temperature on sperm velocity (Table 4.2; 

Fig. 4.1 D-F). Treatments where fish were reared at 28°C produced sperm that were 

11.5% - 12.4% slower than fish from the same experimental population but reared at 

25°C. There was no effect of time or experimental population temperature on velocity 

(Table 4.2). Similarly, there was no significant difference between the F2 treatment and 

the control, 28-28, and 28-25 after 18 months (F3,26 = 0.9, p = 0.446; Fig. 4.2 B).   
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Table 4.2 General linear mixed model results of sperm traits in families of guppies 

(Poecilia reticulata). 

Factor Sperm Length Velocity Path Linearity 

Time F2,80 = 87.1, p < 0.001 F2,74 = 2.2, p = 0.120 F2,74 = 1.6, p = 0.210 

Population temperature F1,4.8 = 142, p < 0.001 F1,7.0 = 0.5, p = 0.487 F1,4.8 = 0.4, p = 0.539 

Rearing temperature F1,80 = 198, p < 0.001 F1,74 = 18.9, p < 0.001 F1,74 = 14.3, p < 0.001 

Population × Rearing temperature F1,80 = 2.1, p = 0.154 F1,74 = 0.0, p = 0.938 F1,74 = 2.1, p = 0.148 

Random factor F4,80 = 1.7, p = 0.160 F4,74 = 0.5, p = 0.762 F4,74 = 1.7, p = 0.164 

N.B. Experimental population and rearing temperatures were either 25°C or 28°C, in a 2 × 2 design (see 

text). Time denotes the three sampling periods of 6, 18, and 24 months. The random factor was 

experimental population identification nested within experimental population temperature.   
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Figure 4.1 The effects of experimental population and rearing temperature on 

sperm traits in the guppy (Poecilia reticulata).  

Offspring from experimental populations at 25°C (black circles) or 28°C (open circles) 

were sampled at 6, 18, and 24 months and reared at either 25°C or 28°C.  Shown are 

means (± SE) for sperm length (A-C), velocity (D-F), and path linearity (G-I). 
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Figure 4.2 The effects of temperature treatment after 18 months on sperm traits in 

the guppy (Poecilia reticulata).  

Treatments include fish from the 25°C and 28°C experimental populations (25-25 and 28-

28), fish that were from the 28°C experimental populations but reared at 25°C (28-25), 

and the offspring of the fish that were from the 28°C experimental populations but reared 

at 25°C for 2 generations (F2). Shown are means (± SE) for sperm length (A), velocity 

(B), and path linearity (C). Error bars with the same letter are not significantly different (p 

> 0.05) according to a Tukey’s b HSD test. 
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4.3.3 Sperm path linearity 

There was a significant effect of rearing temperature on sperm path linearity 

(Table 4.2). Treatments where fish were reared at 28°C (25-28 and 28-28) produced 

sperm that travelled about 2% less linearly than fish from the same experimental 

population temperature but reared at 25°C (control and 28-25; Fig. 4.1 G-I). There was no 

effect of time or experimental population temperature on sperm path linearity (Table 4.2). 

There was a significant difference between the control, 28-28, 28-25, and F2 treatments at 

18 months in sperm path linearity, with the control displaying significantly greater path 

linearity than the 28-28 treatment (F3,26 = 4.8, p = 0.009; Fig. 4.2 C). 

 

4.4 Discussion 

Previous research shows that reproduction in species could be significantly 

affected by climate change (e.g. Zeh et al. 2012; Chapter 3; Breckels and Neff 2013). 

Here I found that rearing temperature had a significant effect on all sperm traits that I 

measured; the phenotypically plastic response to increased temperature was decreased 

sperm length, velocity, and path linearity. These traits may be critical for male 

competitiveness during reproduction (Simmons and Fitzpatrick 2012). My results 

corroborate other studies that have similarly shown that an increase in temperature leads 

to a decrease in sperm length (e.g. Adriaenssens et al. 2012) and velocity (e.g. Beirão et 

al. 2011; Lahnsteiner and Mansour 2012). Some of those studies suggest that even small 

changes in temperature can elicit a stress response and negatively affect reproduction. 

Collectively, these studies suggest that the projected increase in temperature due to 

climate change could be detrimental to ectotherms, at least in the short term, because it 
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may significantly reduce sperm quality and performance, and consequently, reproductive 

success and population viability. 

Given the potentially negative phenotypically plastic response observed, sperm 

traits must instead respond genetically via natural selection to overcome the effect of 

increased temperature. Sperm traits in several species have been shown to be highly 

heritable (e.g. Simmons and Moore 2009 and references therein), including in an 

introduced population of the guppy (Evans 2011), so these traits should have the potential 

to evolve rapidly. Here, male guppies from the 28°C experimental populations showed an 

evolved response with sperm length returning to the same size as the 25°C experimental 

populations after only 6 months (about 2-3 generations). The F2 offspring (i.e. fish from 

the 28°C experimental populations reared at 25°C for two generations) had sperm lengths 

similar to the 28°C experimental populations reared at 25°C, indicating that the response 

to the increased temperature was indeed genetic (including epigenetics; e.g. Anway et al. 

2005). Sperm velocity and path linearity, on the other hand, showed no sign of an evolved 

response even after 24 months (about 8-12 generations). Interestingly, fish from the 28°C 

experimental populations reared at 25°C produced sperm that were significantly longer 

than fish from the 25°C and the 28°C experimental populations, following the ‘hotter-is-

better’ hypothesis (Huey et al. 1999), whereby fish from the 28°C experimental 

populations produce longer sperm than fish from the 25°C experimental populations, 

whatever temperature they are reared at. The fact that sperm traits have a high additive 

genetic component, yet I found that only length evolved, suggests that length may have 

been under stronger selection than velocity or path linearity. Thus, at least in guppies, 
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sperm length may play a more important part in reproductive success than previously 

thought (see Boschetto et al. 2011). 

In several species, it has been documented that sperm length co-evolves with 

different aspects of females’ reproductive tract (e.g. Briskie and Montgomerie 1992; 

Presgraves et al. 1999; Pitnick et al. 1999; Morrow and Gage 2000; Miller and Pitnick 

2002). For example, in Drosophila melanogaster, females that were artificially selected 

to have longer sperm storage organs preferentially used longer sperm for fertilization, and 

consequently males evolved longer sperm (Miller and Pitnick 2002). There was no 

difference in my experimental populations of guppies in female body length between fish 

that were acclimated to 25°C or 28°C (Chapter 3; Breckels and Neff 2013) or after 6 

months in the experimental populations (F1,39 = 1.1, p = 0.294). Assuming that body 

length is an indicator of female reproductive tract length or sperm storage organ size 

(micropockets in guppies, Kobayashi and Iwamatsu 2002), females from the two 

experimental population temperatures should not differ in those traits. Consequently, 

female reproductive morphology might impose strong stabilizing selection and drive the 

evolutionary response in sperm length. Interestingly, the 28-25 treatment males produced 

significantly longer sperm than either the 25°C or the 28°C experimental population 

males. It remains to be seen if those males gain higher reproductive success than the 25°C 

or 28°C experimental population males or whether their sperm are in fact too long and 

selected against via the female’s reproductive tract.  

Understanding the genetic covariance between traits is fundamental because it can 

determine the response of the traits to selection (Lynch and Walsh 1998). At the 

phenotypic level, sperm length is often correlated with sperm velocity (e.g. Gomendio 
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and Roldan 1991; Malo et al. 2006; Fitzpatrick et al. 2009; but see Humphries et al. 

2008). However, little is known about the genetic covariance between these two traits 

(Mossman et al. 2009 and Evans 2011). My results suggest that there is minimal genetic 

covariance between sperm length and velocity as length responded to my temperature 

treatment independent of velocity. Furthermore, my results indicate that the traditional 

kinematics associated with sperm length and velocity can be easily disassociated, perhaps 

mediated by a reduced beat frequency of the flagellum in sperm from the higher 

temperature populations. Regardless, if sperm length and velocity are correlated, my 

study suggests that they can be rapidly disassociated both phenotypically and genetically. 

In conclusion, the results of my study show that the short-term effects of the 

increased temperature predicted for the end of the century could have negative impacts 

for reproduction in a tropical ectotherm. However, I found evidence of an evolved 

response in sperm length after only 6 months or about 2-3 generations. This genetic 

response indicates that guppies can respond to climate warming via rapid evolution, at 

least for some reproductive traits. 
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Chapter 5 

5 Rapid evolution in response to increased temperature 

maintains population viability despite genetic erosion in 

a tropical ectotherm3 

Climate change is predicted to increase the average global air temperature by up 

to 4.0°C by the end of the century. This increased temperature could have negative effects 

on many life history traits that are closely linked to fitness. Many species will therefore 

have to adapt to the warmer environment, but life history traits often have limited additive 

genetic variance. Here, we investigated population demographics and the evolutionary 

response of life history traits, as well as genetic diversity in guppies (Poecilia reticulata), 

in response to an experimentally increased temperature. There were fewer successful 

pregnancies, smaller brood sizes, and males matured earlier at a higher temperature as 

compared to control populations. However, there was no sign of an evolutionary response 

in these traits after 24 months of exposure to the increased temperature. We also found 

that population size, brood survivorship, sex ratio, and male length at maturity were 

unaffected by the increased temperature. Genetic diversity decreased rapidly in the 

increased temperature populations at a rate equivalent to an effective population size of 

only one quarter of the controls, revealing a clear signature of selection in response to 

                                                 

3
 A version of this chapter has been published and is presented here with permission from Evolutionary 

Ecology. 

Citation: Breckels, R.D., Garner, S.R. and Neff, B.D. 2013. Rapid evolution in response to increased 

temperature maintains population viability despite genetic erosion in a tropical ectotherm. Evol. Ecol. DOI: 

10.1007/s10682-013-9668-5 
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increased temperature. This genetic erosion, however, could hamper the adaptive 

potential of the populations to other environmental changes associated with climate 

change.    

 

5.1 Introduction 

As detailed in Chapter 1, global warming is projected to increase the average 

global temperature by 1.8-4.0°C by the end of the century. In response to this warming, 

many species will have to disperse or adapt, or face the risk of extinction (as detailed in 

Chapter 1). Life history traits are a major determinant of both individual and population 

fitness and may be an especially important target for selection and genetic adaptation in 

response to a warming environment (reviewed in Crnokrak and Roff 1995; Roff and 

Emerson 2006). Life history traits include individual growth rate, age and size at 

maturity, reproductive investment, such as brood or clutch size, sex ratio, and 

survivorship (Stearns 1992). Recent evidence indicates that increases in temperature have 

negative impacts on many of these traits (e.g. guppies, Poecilia reticulata Dzikowski et al 

2001; Karayücel et al 2008; neotropical pseudoscorpions, Cordylochernes scorpioides 

Zeh et al 2012; and grayling, Thymallus thymallus Wedekind et al 2013). For example, 

the effects of short-term increases in temperature on life history traits include reduced 

successful parturition (e.g. Karayücel et al 2008; Zeh et al 2012), reduced brood sizes 

(e.g. Dzikowski et al 2001; Karayücel et al 2008), decreased survival (e.g. Zeh et al 

2012), and altered sex ratios resulting from sex-specific differences in survival (e.g. 

Karayücel et al 2008; Wedekind et al 2013). However, because life history traits are so 

closely linked to fitness, they often have little additive genetic variance and therefore 
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cannot respond to selection, at least until new mutations arise (reviewed in Crnokrak and 

Roff 1995; Roff and Emerson 2006). On the other hand, more recently there has been 

evidence for cryptic genetic variation in many traits (reviewed in Gibson and Dworkin 

2004), which is expressed as a result of changes in the environment (i.e. genetic variation 

among individuals in phenotypic plasticity). Thus, some life history traits may show 

higher levels of additive genetic variance in a warmer environment, which could help 

species respond to global warming and could facilitate evolutionary adaptation. 

Of particular relevance to global warming is the temperature-size rule which is a 

taxonomically widespread relationship between temperature and life history traits 

(Atkinson 1994; Angilletta 2009). According to this rule, for ectotherms, age at maturity 

and size at maturity decrease with increasing temperature (Atkinson 1994). This rule can 

be largely explained by a direct effect of the environment on physiological processes, 

which are dependent on the ambient temperature in ectotherms. Increased temperature 

leads to a phenotypically plastic response of earlier maturation because it causes more 

rapid cell division and differentiation, and smaller size at maturity when the rate of cell 

division and differentiation exceeds the rate of growth (van der Have and de Jong 1996; 

Angilletta et al 2004). The specific relationship between size or age at maturation and 

temperature (i.e. the reaction norm) for a population or species is generally understood to 

be genetically controlled and influenced by the relationship between size and 

reproductive success, as well as selection from ecological factors such as predator-prey 

interactions and competition (Neuheimer and Taggart 2007; Daufresne et al 2009). 

Global warming may therefore push populations off their optimum trait value for size or 
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age at maturation until selection can act on new mutations or existing genetic variation in 

the reaction norm. 

Here, we use the Trinidadian guppy (Poecilia reticulata, Peters 1860) as a model 

ectotherm to determine the effects of multi-generational exposure to an elevated 

temperature. We exposed replicate experimental populations of guppies over two years 

(approximately 8 generations) to the temperature predicted for the end of the century, and 

measured multiple life history traits and population demographics, as well as levels of 

genetic diversity. Specifically, we measured population size, the number of successful 

pregnancies, brood size, brood survivorship, sex ratio, age and length at sexual 

maturation, and genetic diversity using microsatellite loci. We compared these traits to 

control experimental populations and partitioned variation between phenotypic plasticity 

and genetic responses.   

 

5.2 Methods  

5.2.1 Study species 

Guppies inhabit shallow pools in streams and rivers of north-eastern South 

America and the Caribbean (Houde 1997). Currently, the mean water temperature in 

Trinidad is approximately 25°C with annual fluctuations between 20°C and 28°C 

(Alkins-Koo 2000; Grether et al 2001). Trinidad is projected to have an average air 

temperature increase of 1.0-3.5°C by the end of the century (Water Resources Agency 

2001), which will likely result in similar increases in water temperature (e.g. Stefan and 

Preudhomme 1993; Caissie et al 2001; Kaushal et al 2010). The current natural variation 
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in temperature experienced by guppies may mitigate the potential negative effects of 

global warming, yet they rarely experience temperatures of 28°C for prolonged periods of 

time. Thus, the predicted temperature increase for the end of the century could be 

detrimental to guppies.  

Guppies are sexually dimorphic, and males can be differentiated from females 

after 5-6 weeks as their anal fin develops into a rod like structure known as a gonopodium 

(Houde 1997). Males are mature when the gonodopial hood extends beyond the main part 

of the gonopodium, which typically occurs at approximately 7 weeks (49 days) of age or 

younger (Houde 1997; Reznick et al 2001). Breeding occurs throughout the year and 

females have a gestation period of approximately 3-4 weeks (Houde 1997). Generation 

times in guppies have been estimated to range between 1.5 and 6.9 months (e.g. Endler 

1980; Reznick et al 1997).  

5.2.2 Experimental set-up 

Guppies and the experimental set-up for this experiment were the same as those in 

Chapter 4 (Breckels and Neff In review). Population size was counted three times for 

each population (repeatability r
2
 = 0.994; F23,71 = 712, p < 0.001) every 6 months up until 

24 months. After 6, 18, and 24 months, pregnant females were removed from each 

experimental population. If the female did not give birth within 2 months, she was 

replaced by a new female from the same experimental population. If the second female 

did not give birth within 2 months, she was not replaced and no data were collected from 

that rearing tank.  
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As outlined in Chapter 4 (Breckels and Neff In review), I created four treatments 

in a 2 × 2 common garden experimental design. From the offspring of the females in the 

rearing tanks I estimated life history traits at each time point (6, 18, and 24 months) as 

outlined below. Additionally, after conducting the 18 month trial, to examine maternal 

versus genetic effects on the offspring traits, I also generated an F2 generation as detailed 

in Chapter 4 (Breckels and Neff In review). 

5.2.3 Demographics and life history traits 

I measured the number of successful pregnancies, brood size, brood survivorship, 

and sex ratio for the broods in each rearing tank. For the male offspring in each brood, we 

also measured male age and body length at maturation. The number of successful 

pregnancies was calculated as the number of females that produced a brood within 2 

months. Brood size was calculated by counting the number of offspring that each female 

produced within the first 24 h of birthing her first offspring (females that did not produce 

broods were not included in this analysis). Brood survivorship was calculated as the 

proportion of the offspring born in a rearing tank that survived to 3 months of age. Sex 

ratio was calculated as the proportion of each brood that were male (determined at 3 

months of age when all fish had reached maturity). Male age at maturity was calculated 

as the number of days from birth until a given male offspring first reached sexual 

maturity. At maturation, we also measured male body length from the tip of the snout to 

the end of the caudal peduncle.  

5.2.4 Genetic analysis 

At the baseline and every 6 months, fin clips were taken from 30 adults per 

experimental population and stored in 95% ethanol for microsatellite analysis of genetic 
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diversity. DNA was first isolated from each fish using a proteinase K digestion (Neff et al 

2000). Eight previously described microsatellite loci were then PCR amplified for each 

individual (Pr36, Pr39, Pr80, Pr92, and Pr171; Becher et al 2002 and Pre8, Pre9, and 

Pre17; Paterson et al 2005). The resulting microsatellite products were visualised using 

an ABI 3730S DNA analyzer and manually sized using GENEMAPPER v. 4.0 (Applied 

Biosystems).  

I checked for linkage disequilibrium between pairs of loci using GENEPOP v. 4.1 

(Rousset 2008) at each time point, resulting in 840 comparisons; a Bonferroni correction 

method was used. I checked for the presence of non-amplifying (‘null’) alleles using 

MICRO-CHECKER v. 2.2 (van Oosterhout et al 2004). Null alleles were detected in our 

data, so we used FREENA (Chapuis and Estoup 2007) to correct the allele frequencies. 

Next, for the loci without null alleles, we assessed whether each locus from each 

experimental population at each time point was in Hardy-Weinberg equilibrium (HWE) 

using GENALEX v. 6.5 (Peakall and Smouse 2012), again applying a Bonferroni 

correction. Allelic richness was also estimated at these times as the average number of 

alleles observed at the eight microsatellite loci based on the sample of 30 fish. Finally, I 

estimated Nei’s standard genetic distance between the experimental populations at each 

time point using GENALEX. 

5.2.5 Assessing a signature of selection 

We used a simulation approach to determine if declines in allelic richness over the 

course of the experiment could be explained by genetic drift, given the observed 

population sizes in each tank. I used the combined allele frequencies across all six tanks 

at the initial time point, correcting for and incorporating the null alleles, to seed my 
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simulated populations. To mirror my experimental design, I then simulated six replicate 

populations of 25 males and 30 females with genotypes chosen at random based on the 

initial allele frequencies. I first modeled the behaviour of each population assuming 

random mating in each generation, with the parents for each individual chosen at random 

from all individuals of the appropriate sex in the previous generation. The sex of each 

offspring was assigned probabilistically based on a 45% male sex ratio (see results; Table 

1). The population size of the simulated populations was altered between generations to 

match the observed values in the experimental populations. I assumed non-overlapping 

generations and a 3 month generation time (similar results were obtained with a 6 month 

generation time). For each simulated population, I sampled 30 individuals at each time 

point to calculate allelic richness as in the experimental populations. I then repeated this 

simulation 1000 times to produce an expected distribution of allelic richness from which 

the 99% confidence intervals in the 25°C and 28°C simulated populations could be 

estimated at each time point. I used 99% confidence intervals to correct for repeated 

comparisons at the five time points (0, 6, 12, 18, 24 months). Ultimately, these 

simulations allowed us to determine if genetic drift could explain the declines in allelic 

richness that were observed in the 25°C and 28°C experimental populations.  

Additionally, when the simulations indicated that genetic drift alone could not 

explain the decline in allelic richness, I estimated how much smaller the effective 

population size would need to be relative to the census population size to produce the 

allelic richness values that I observed at 24 months. I did this by allowing only a fixed 

proportion of the individuals to breed in any generation. For example, if this proportion 

was set at 0.5, then only 50% of the individuals in any generation were included as 
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potential parents in the next generation. The simulations were repeated in 0.05 increments 

for each value of this proportion between 0.1 and 1.0, from which I selected the 

proportion that best matched the observed data. I considered the proportion that best fit 

the data to be the proportion that produced an average allelic richness that was most 

similar to the observed allelic richness at the 24 month point. 

5.2.6 Statistical analysis 

The sex ratio and brood survivorship data were transformed using a logit 

transformation. All other variables were normality distributed (Kolmonov-Smirnov test; 

all p > 0.091). A log-linear model was performed to compare the prevalence of successful 

and unsuccessful pregnancies between the two experimental population temperatures 

across the three time points (6, 18, and 24 months). General linear mixed models 

(GLMMs) were then used to analyse differences among brood size, sex ratio, brood 

survivorship, age, and length at maturity at each time point. For brood size, we included 

experimental population temperature as a fixed factor and, for all other tests, we included 

experimental population temperature and rearing temperature as fixed factors. 

Experimental population replicate number (tank ID) nested within experimental 

population temperature was included as a random factor for all tests. When significant 

effects were found, we performed linear contrasts between fish from different population 

temperatures with the same rearing temperature to determine whether (1) adaptation to 

high temperature compromises performance at the control temperature (i.e. 25-25 > 28-

25), and (2) adaptation to high temperature increases performance at high temperatures 

relative to the controls (i.e. 25-28 < 28-28). Additionally, for the 18 month trial, we used 

GLMMs to compare brood size among fish born in 25, 28, and the F2 and to compare the 
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other demographic and life history traits among the control, 28-28, 28-25, and F2 

treatments. We included treatment as a fixed factor and tank ID as a random factor in the 

GLMMs.  

T-tests were performed to compare allelic richness between the 25°C and 28°C 

experimental populations at the baseline level. Then, repeated measure analysis of 

variance (ANOVA) tests were performed to compare the estimated population size and 

allelic richness among experimental populations from different temperatures across all 

sampling times. One-way ANOVAs were performed at each time point to compare Nei’s 

standard genetic distance among the three pair-wise comparisons treatments: the two 

intra-temperatures and the inter-temperature experimental population pair-wise 

comparisons (i.e. all three 25°C vs. 25°C pair-wise comparisons, all three 28°C vs. 28°C 

pair-wise comparisons, and all nine 25°C vs. 28°C pair-wise comparisons). All statistical 

analyses were performed using the statistical software packages IBM SPSS v. 20 (SPSS 

Inc., Chicago, IL, USA) or JMP v. 4 (SAS Inc., Cary, NC, USA). 

 

5.3 Results 

5.3.1 Demographics and life history traits 

Although the experimental populations nearly doubled in size during the 

experiment, the change in size over time was not significant (F4,16 = 2.5, p = 0.086) and 

there was no difference in population size between the two temperatures (F4,16 = 0.7, p = 

0.598; Fig. 5.1). There was no difference in the number of successful pregnancies across 

the three time periods (loglinear model: χ
2
 = 4.0, df = 2, p = 0.135). However, the 

proportion of successful pregnancies was greater in the 25°C (68/88 = 77%) than the  
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Figure 5.1 Size of experimental populations of guppies (Poecilia reticulata). 

Shown are means (± SE) for populations at 25°C (black bars) or 28°C (open bars) over 

five time points. Error bars are based on three replicates within each temperature. 
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28°C (56/100 = 56%) experimental populations (χ
2
 = 10.0, df = 1, p = 0.002) and this 

difference increased over time (χ
2
 = 6.7, df = 2, p = 0.035). There was no effect of 

experimental population temperature on mean brood size at the 6 and 18 month time 

points (F1,13.6 = 0.0, p = 0.986 and F1,17.4 = 0.1, p = 0.705, respectively; Table 5.1). At the 

18 month time point, there also was no difference in brood size among fish from the 25°C 

and 28°C experimental populations and the F2 treatment (F2,44 = 0.2, p = 0.819; Table 

5.1). However, at the 24 month time point, females from the 28°C experimental 

populations produced approximately half as many offspring as fish from the 25°C 

experimental populations (F1,14.3 = 11.6, p = 0.004; Table 5.1). There was no effect of 

experimental population or rearing temperature on brood survivorship or sex ratio at any 

time point (Table 5.1, 5.2), nor was there a significant difference between the control, 28-

28, 28-25, and the F2 treatments in brood survival or sex ratio for the 18 month trial (F3,36 

= 0.6, p = 0.598 and F3,35 = 0.5, p = 0.706, respectively).  

Males reared at 28°C matured approximately 7, 8, and 11 days sooner than fish 

reared at 25°C at the 6, 18, and 24 month time points, respectively (Table 5.2; Fig. 5.2 A-

C). However, there was no effect of experimental population temperature on male age at 

maturity. There was also no difference at any time point between the 25-25 and 28-25 

treatments (linear contrasts, 6 month: F1,26 = 2.3, p = 0.142; 18 month: F1,19 = 0.9, p = 

0.34; 24 month: F1,20 = 1.5, p = 0.233) or between the 25-28 and 28-28 treatments (linear 

contrast, 6 month: F1,26 = 0.1, p = 0.811; 18 month: F1,19 = 0.5, p = 0.481; 24 month: F1,20 

= 1.1, p = 0.300). Age at maturity also did not differ between males from the control, 28-

28, 28-25, and the F2 treatments at 18 months (F2,26 = 2.4, p = 0.108). 
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Table 5.1 Metrics for the families used in analyses of life history traits in the guppy 

(Poecilia reticulata). 

Variable 

Treatments 

Control 25-28 28-28 28-25 F2 

6 Month 

No. families 12 12 11 7  

Brood size 6.7 ± 5.8 4.2 ± 2.8 4.9 ± 3.0 6.6 ± 5.9  

Brood survivorship (%) 89.2 ± 13 93.8 ± 12 90.2 ± 23 95.4 ± 6.6  

Sex ratio (% males) 0.36 ± 0.2 0.43 ± 0.3 0.48 ± 0.3 0.33 ± 0.4  

18 Month 

No. families 12 9 12 8 10 

Brood size 4.3 ± 3.4 4.4 ± 2.3 5.6 ± 4.1 4.0 ± 3.0 4.4 ± 2.8 

Brood survivorship (%) 87.5 ± 31 90.1 ± 13 84.4 ± 31 100 ± 0.0 86.4 ± 30 

Sex ratio (% males) 0.38 ± 0.3 0.43 ± 0.3 0.47 ± 0.2 0.52 ± 0.3 0.45 ± 0.4 

24 Month 

No. families 11 12 9 7  

Brood size 7.9 ± 4.0 4.5 ± 3.1 2.1 ± 0.8 3.6 ± 2.5  

Brood survivorship (%) 88.4 ± 30 91.0 ± 17 96.3 ± 11 90.5 ± 19  

Sex ratio (% males) 0.40 ± 0.2 0.43 ± 0.3 0.46 ± 0.5 0.71 ± 0.4  

N.B. Experimental population and rearing temperatures were either 25°C or 28°C, in a 2 × 2 design (see 

text).  Means are plus or minus one standard deviation. 

  



 

133 

 

 

Table 5.2 General linear mixed model results of the life history traits in families of 

guppies (Poecilia reticulata). 

Factor 

Experimental 

Population 

Temperature 

Rearing 

Temperature 

Experimental 

Population × 

Rearing 

Temperature 

Nested Factor 

6 month 

Brood Survival F1,4.3 = 0.0, p = 0.837 F1,34 = 1.3, p = 0.268 F1,34 = 0.2, p = 0.694 F4,34 = 1.2, p = 0.301 

Sex Ratio F1,4.4 = 0.7, p = 0.461 F1,34 = 1.2, p = 0.280 F1,34 = 0.6, p = 0.434 F4,34 = 1.1, p = 0.366 

Age at Maturity F1,4.5 = 0.4, p = 0.555 F1,26 = 10.7, p = 0.003 F1,26 = 1.9, p = 0.185 F4,26 = 3.6, p = 0.017 

Length at 

Maturity 

F1,5.3 = 3.1, p = 0.136 F1,26 = 0.0, p = 0.893 F1,26 = 2.0, p = 0.165 F4,26 = 1.4, p = 0.254 

18 month 

Brood Survival F1,4.5 = 0.3, p = 0.615 F1,33 = 1.4, p = 0.243 F1,33 = 0.2, p = 0.634 F4,33 = 0.7, p = 0.599 

Sex Ratio F1,4.1 = 0.4, p = 0.585 F1,31 = 0.1, p = 0.803 F1,31 = 0.1, p = 0.794 F4,31 = 3.0, p = 0.033 

Age at Maturity F1,7.6 = 0.0, p = 0.829 F1,19 = 4.6, p = 0.045 F1,19 = 1.6, p = 0.219 F5,19 = 1.4, p = 0.276 

Length at 

Maturity 

F1,14.9 = 8.3, p = 0.011 F1,19 = 3.9, p = 0.063 F1,19 = 3.6, p = 0.072 F5,19 = 0.9, p = 0.860 

24 month 

Brood Survival F1,5.5 = 1.9, p = 0.225 F1,31 = 0.8, p = 0.374 F1,31 = 0.0, p = 0.834 F4,31 = 0.7, p = 0.617 

Sex Ratio F1,4.9 = 0.5, p = 0.519 F1,31 = 0.6, p = 0.458 F1,31 = 1.6, p = 0.219 F4,31 = 1.1, p = 0.352 

Age at Maturity F1,8.2 = 2.3, p = 0.166 F1,20 = 16.1, p < 0.001 F1,20 = 0.0, p = 0.962 F4,20 = 1.0, p = 0.416 

Length at 

Maturity 

F1,11.1 = 0.4, p = 0.527 F1,20 = 0.3, p = 0.605 F1,20 = 0.7, p = 0.422 F4,20 = 0.6, p = 0.642 

N.B. Experimental population and rearing temperatures were either 25°C or 28°C, in a 2 × 2 design (see 

text). The nested factor was experimental population replicate identification nested within experimental 

population temperature.
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Figure 5.2 The effects of experimental population and rearing temperature on life 

history traits in families of guppies (Poecilia reticulata). 

 

Offspring from populations at 25°C (black circles) or 28°C (open circles) were sampled 

at 6, 18, and 24 months and reared at either 25°C or 28°C.  Shown are means (± SE) for 

male age (A-C) and body length (D-F) at maturity.  
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There was no effect of either experimental population or rearing temperature on 

male body length at maturity at the 6 and the 24 month time points (Table 5.2; Fig 5.2 D, 

F). At the 18 month time point, males reared at 28°C were approximately 0.8 mm shorter 

at maturity than fish reared at 25°C (Table 5.2; Fig. 5.2 E). Males from the 28°C 

experimental populations were shorter than fish from the 25°C experimental populations, 

but this difference was not statistically significant (p = 0.053). Fish from the 28-25 

treatment were approximately 1.7 mm and 1.0 mm shorter at maturation than fish from 

25-25 treatment after 6 and 18 months, respectively (6 month: F1,26 = 4.4, p = 0.046; 18 

month: F1,19 = 7.1, p = 0.015). However, this effect was not observed after 24 months 

(F1,20 = 1.0, p = 0.322). There was no difference between the 25-28 and 28-28 treatments 

in size at maturity at any time point (linear contrast, 6 month: F1,26 = 0.0, p = 0.629; 18 

month: F1,19 = 0.1, p = 0.766; 24 month: F1,20 = 0.0, p = 0.905). Additionally, there was no 

difference in length at maturity between males from the control, 28-28, 28-25, and the F2 

treatments at 18 months (F2,26 = 1.0, p = 0.366). Consequently, the differences in body 

length observed between the control and 28-25 treatments cannot be explained by a 

genetic response. 

5.3.2 Genetic diversity 

 After applying a Bonferroni correction, approximately 2% of the pair-wise 

comparisons between microsatellite loci showed significant linkage disequilibrium (18 of 

840). However, the pair-wise comparisons that did show linkage disequilibrium did not 

include the same pairs of loci across different tanks or time points, suggesting that the 

deviations do not reflect actual linkage between the loci. Only 72% of the microsatellite 

loci were in Hardy- Weinberg equilibrium (HWE; 173 out of 240) after controlling for 
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multiple comparisons. However, when excluding loci with null alleles present (four out of 

eight loci), 92% of the remaining loci were in HWE (110 out of 120) and there again was 

no consistent pattern across tanks or time points.  

Mean allelic richness did not differ between experimental populations based on 

temperature at the baseline (t4 = 0.1, p = 0.923). Mean allelic richness decreased over 

time in all tanks (F4,16 = 55.3, p < 0.001), but the 28°C experimental populations 

decreased significantly more rapidly than the 25°C experimental populations (F4,16 = 

12.0, p < 0.001; Fig. 5.3). From my simulation model of genetic drift, I determined that 

drift alone could explain the decrease in allelic richness in the 25°C experimental 

populations (Fig. 5.3). However, the 28°C experimental populations experienced a greater 

decline in allelic richness than could be explained by drift. I calculated that the 28°C 

experimental populations lost allelic richness at a rate equivalent to populations that had 

an effective size that was only 25% of the observed size.  

There was no significant difference in Nei’s standard genetic distance among 

treatments for the pair-wise comparisons of intra- or inter-temperature experimental 

populations (i.e. all 25°C vs. 25°C, 28°C vs. 28°C, and 25°C vs. 28°C pair-wise 

comparisons) at the 0, 6, 12, or 18 month time points (p > 0.084 for all). However, at the 

24 month time point, the 28°C experimental populations were significant more diverged 

from each other than were the 25°C experimental populations (F2,14 = 4.5, p = 0.034), 

with the inter-temperature pair-wise comparisons not significantly different from either 

the 25°C or 28°C pair-wise comparisons (p > 0.137; Table 5.3). This result is consistent  
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Figure 5.3 Allelic richness in experimental populations of guppies (Poecilia 

reticulata). Shown are populations at 25°C (A) and 28°C (B). 

The black dots indicate the average observed allelic richness (mean number of alleles) at 

each time point. The shaded section denotes the 99% confidence intervals from a 

simulation that modelled declines in allelic richness based solely on genetic drift. The 

solid lines in panel B denote the 99% confidence intervals for the simulated population 

size that best matched the observed declines in allelic richness, with the number to the 

right of the graph indicating the proportional size (effective size) of the simulated 

population relative to the observed experimental population.  
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Table 5.3 Pair-wise population comparisons of Nei’s standard genetic distance after 

24 months in experimental populations of guppies (Poecilia reticulata). 

  25°C 28°C 

  1 2 3 4 5 

25°C 

2 0.100     

3 0.139 0.139    

28°C 

4 0.114 0.140 0.136   

5 0.189 0.162 0.192 0.220  

6 0.181 0.166 0.182 0.168 0.183 

N.B. Experimental populations 1-3 and 4-6 were held at a constant temperature of 25°C and 28°C, 

respectively. Shaded boxes represent pair-wise comparisons between experimental populations at the same 

temperature.  
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with the reduced effective population size in the 28°C experimental populations and 

consequently increased genetic drift relative to the 25°C experimental populations. 

 

5.4 Discussion 

Global warming is predicted to have a negative impact on population viability in 

many species (e.g. Karayücel et al 2008; Zeh et al 2012). Previous research conducted 

using guppies acclimated to various temperatures from birth documented reduced 

offspring survival in water temperatures equal to or higher than 29°C (Karayücel et al 

2008). As well, Dzikowski et al (2001) found differential survival between the sexes at 

higher temperatures in guppies, resulting in a male biased sex ratio. However, we found 

no difference in population size, sex ratio, or brood survivorship between our control 

temperature (25°C) and the elevated temperature predicted by global warming (28°C), at 

any of our three sampling time points. Guppies may be able to tolerate 28°C because they 

periodically experience temperatures that high in their natural environment (Alkins-Koo 

2000). We did find, however, that the performance of offspring from the 28°C 

experimental populations were compromised when reared at the control temperature; 

these offspring were significantly shorter than fish from the control populations after 6 

and 18 months. The F2 fish did not display this effect which implies that it is not a genetic 

effect but perhaps explained by maternal or developmental effects. Interestingly, after 24 

months, there was no longer any evidence of this compromised performance suggesting 

that fish from the 28°C populations had become better adapted to the higher temperature. 

Taken together, these results suggest that, although temperatures up to 28°C have a 
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limited effect on demographic parameters in guppies, temperatures at or above 29°C are 

associated with a significant decrease in survival, particularly for females.  

On the other hand, we also found that there were fewer successful pregnancies at 

28°C than at 25°C and the brood size of the 28°C females was half that of 25°C females at 

the 24 month time period. Zeh et al (2012) have argued that, in a warming climate, 

reproduction is likely to be particularly vulnerable for tropical species, and indeed, many 

studies have documented effects on reproductive traits in response to increases in 

temperature (e.g. Karayücel et al 2008; Zeh et al 2012; Breckels and Neff 2013; 

Lahnsteiner and Leitner 2013). In our case, the reduced reproductive success could have 

been the result of dysfunctional sperm as we have previously shown that multiple sperm 

traits in guppies are negatively affected by increasing temperature (Breckels and Neff 

2013). The reduced reproductive success also could be a product of a change in female 

investment in reproduction (e.g. Zeh et al 2012), or perhaps a sign of inbreeding 

depression, as there was a sharp reduction in genetic diversity in the 28°C experimental 

populations. Although this reduction in reproductive success did not yet translate into 

lower population sizes, our results suggest that even if other demographic parameters are 

unaffected by an increased temperature of 28°C, reproduction in guppies is compromised. 

Thus, as suggested by Zeh et al (2012), reproduction may indeed be the “Achilles’ heel” 

for tropical ectotherms. 

According to the temperature-size rule, global warming should result in earlier 

maturation at a smaller size for ectotherms (Atkinson 1994; Angilletta et al 2004). 

Numerous other studies on ectotherms have found that exposure to increased temperature 
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results in a younger age at maturity (e.g. Dhillon and Fox 2004; Zeh et al. 2012). Our 

results partially support the temperature-size rule in guppies; males showed a plastic 

response of maturing at a younger age when reared at a higher water temperature. Indeed, 

this earlier maturation may reduce generation time in the 28°C experimental populations 

and maintain population viability despite reduced reproductive performance. Increased 

temperature should also result in smaller size at maturity (Angilletta et al 2004; e.g. 

Dhillon and Fox 2004; Zeh et al 2012). However, our results did not support this latter 

prediction as length at maturity did not differ across the two rearing temperatures, 

suggesting that this trait is canalised. It is possible that guppies have compensating 

mechanisms to counteract the relationship between higher growth rate and decreased size 

at maturity, which is likely driven by strong size-dependent predation that favours 

reaching a threshold size before allocating resources towards reproduction (Reznick and 

Endler 1982). Overall, guppies exposed to warmer temperatures matured at a younger age 

as predicted by the temperature-size rule, although their size at maturity was not affected 

by the increased temperature.   

Selection on favourable traits can result in the loss of genetic diversity within 

experimental populations even if demographics are unaffected (e.g. Santos et al 2005; 

Athrey et al 2007; reviewed in Hoffman and Willi, 2008; Pauls et al 2013). Here, we 

found that the multi-generational exposure to an elevated temperature (28°C) significantly 

reduced allelic richness compared to the control temperature (25°C) despite no reduction 

in population size. As well, our simulation model suggested that the loss of allelic 

richness was far greater than could be explained by genetic drift alone; relative to the 

control experimental populations, only about one quarter as many fish from the 28°C 
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experimental populations were likely contributing their genes to the next generation. The 

initial deviation observed in allelic richness compared to our simulation model in the 

28°C experimental populations may simply reflect an increased effective population size 

due to the initial females used to seed the experimental population being pregnant. 

Regardless, we did not find any evidence of a genetic response in any life history traits 

that we measured, which may reflect an absence of additive genetic variance in these 

traits (see Crnokrak and Roff 1995; Roff and Emerson 2006). We also found no evidence 

that the microsatellites we used consistently deviated from Hardy-Weinberg equilibrium, 

indicating that these loci were not linked to genes under selection to the thermal 

environment. Instead, this signature of selection could be driven by a gene for thermal 

tolerance, at least one of which may reside on the X chromosome in guppies (Fujio et al 

1990; Nakajima et al 2009), or possibly selection acting on sperm traits as we have 

previously documented (Chapter 4; Breckels and Neff In review). Nevertheless, our data 

clearly show a signature of selection in response to increased temperature, mediated by 

increased variance in reproductive success among individuals. 

Despite showing a clear signature of selection to increased temperature, the future 

adaptive potential of guppies in the 28°C experimental populations may nevertheless be 

compromised. There is mounting evidence that the adaptive potential of populations is 

hampered by small effective population sizes and reduced genetic diversity after exposure 

to a stressor (e.g. Athrey et al 2007; Nowak et al 2009). Although the experimental 

populations exposed to elevated temperature in our study maintained similar population 

sizes as the control experimental populations, they displayed significantly less genetic 

diversity and consequently lower effective population sizes. The 28°C experimental 
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populations were also significantly more diverged from each other after 24 months than 

were the control experimental populations, which was likely a product of increased 

genetic drift acting on the 28°C experimental populations in the latter time points. This 

reduction in diversity may have led to increased inbreeding (e.g. Kristensen et al 2003; 

reviewed in Keller and Waller 2002; Frankham et al 2005), which can result in inbreeding 

depression and reduced population viability (Charlesworth and Charlesworth 1987). 

Inbreeding depression might explain the reduced fertility of the female guppies in the 

elevated temperature populations at the latter time points (see Kristensen et al 2003; 

Pitcher et al 2008). Importantly, the loss of genetic diversity and lower effective 

population sizes will decrease the chance for further adaptation to other stressors (e.g. 

Meyer and Di Gulio 2003; Vogt et al 2010). Thus, although the demographic and life 

history traits appear unaffected by increased temperature, there was an underlying erosion 

of genetic variation which will reduce the adaptive capacity of the populations. Given that 

climate change is predicted to result in multiple stressors, populations may become too 

genetically impoverished to adapt to all environmental or ecological changes. Certainly 

more studies examining multiple stressors are needed to more fully understand the 

adaptive capacity of populations to climate change. 
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Chapter 6 

6 General discussion 

Anthropogenic stressors are altering ecosystems, both locally and globally, at 

unprecedented levels and there is a distinct lack of knowledge regarding how species’ 

may respond to different stressors. The overarching goal of my thesis was to conduct 

research that would provide insight into the plastic and evolutionary responses of species 

to these anthropogenic stressors, specifically pollution and global warming. While 

numerous studies have documented the short-term plastic effects of species to 

anthropogenic stressors (e.g. Allin and Wilson 2000; Milne et al. 2000; Robinson and 

Davison 2008; Muñoz et al. 2012; Zeh et al. 2012), comparably little research has 

focussed on the evolutionary responses of organisms to these stressors. I document both 

the plastic and evolutionary responses of key fitness traits in two fish species to 

anthropogenic stressors. Taken together, these chapters provide valuable insight as to how 

species can, and are, responding to different stressors. 

  

6.1 Plastic responses to anthropogenic stressors 

 Phenotypic plasticity is the first response to anthropogenic stressors for species 

that cannot disperse (Bradshaw and Holzapfel 2006; Fuller et al. 2010). I found plastic 

responses in brown bullhead (Ameiurus nebulosus) behaviour in response to pollution 

exposure (Chapter 2; Breckels and Neff 2010), and age at maturity and sperm 

performance in guppies (Poecilia reticulata) in response to increased temperatures 

(Chapters 3-5; Breckels and Neff 2013; In review; Breckels et al. 2013). These plastic 
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responses are generally indicative of a stress response and could have negative impacts on 

long-term population viability.  

Stress responses can lead to reduced growth, impaired reproduction, and increased 

susceptibility to parasites and disease (Adams et al. 1989 and reference therein). If this 

stress is expanded to the population level, it could result in reduced recruitment, and then 

further to the community level, it could also affect species richness (Adams et al. 1989). 

Thus, the plastic responses to pollution and increased temperature can be detrimental to 

individuals, populations, species, and communities. Indeed, many studies have 

documented short-term decreases in survival and alterations in sex ratios, due to sex-

specific selection pressures, with exposure to anthropogenic stressors, such as pollution 

and global warming (e.g. Milne et al. 2000; Cardinali et al. 2004; Karayücel et al. 2008; 

Tian et al. 2012; Zeh et al. 2012). However, I found no differences in guppies among 

temperature treatments in survivorship, sex ratio, and size-at-age (Chapters 3-5; Breckels 

and Neff 2013; In review; Breckels et al. 2013). Another factor that might affect 

survivorship at increased temperatures is the immune response, yet I also found no 

difference in immune response among temperature treatments (Chapter 3; Breckels and 

Neff 2013). These results suggest that guppies can cope with short-term exposure to 

increased temperature, perhaps because they periodically experience elevated 

temperatures in the wild (Alkins-Koo 2000). 

 In Chapter 5 (Breckels et al. 2013), I did find that the plastic response to 

increased temperature was a decreased male age at maturity. However, the potential 

consequences of males maturing at a younger age remain unclear (van der Have and de 
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Jong 1996). As there was no apparent difference in body size between temperatures, this 

earlier maturation could result in an earlier onset of reproduction, which could be 

beneficial to the fish, in terms of fitness. Of all the measured life history traits after one 

generation of exposure to increased temperatures, the only trait that responded via 

phenotypic plasticity was age at maturity, implying that life history traits in guppies have 

a large performance breadth so the increased temperature predicted for the end of the 

century may not impact guppies.  

On the other hand, while I found no effect of temperature on measures of 

ornamentation important in female mate choice (see Karino et al., 2010), I did find that 

the plastic response in males to increased temperatures was a decrease in sperm length, 

velocity, and path linearity (Chapter 3; Breckels and Neff 2013). Similarly, other studies 

have shown short-term increases in temperature to have negative impacts on sperm traits 

(e.g. Adriaenssens et al. 2012; Zeh et al. 2012). Taken together, these results suggest that 

reproduction may be compromised at higher temperatures as sperm traits, particularly 

velocity in guppies (e.g. Boschetto et al. 2011), have been linked to fertilisation success 

(Snook 2005; Simmons and Fitzpatrick 2012).  

In Chapter 2 (Breckels and Neff 2010), I found that the plastic response of wild 

brown bullheads to polluted sediments was a threefold increase in their locomotion and a 

reduction in their aggression relative to baseline levels. Decreased aggression typically 

results in reduced access to resources, such as food, shelter, and mates (e.g. Fero et al. 

2007), and locomotion is involved in such activities as feeding, predator avoidance, and 

reproduction (Baatrup and Bayley 1993; Collar and Wainwright 2009). I did not find an 



 

154 

 

effect of pollution on the measured aspects of escape response, yet with reduced access to 

shelter and increased locomotion, individuals would indirectly become more vulnerable 

to predation. As such, exposure to multiple pollutants simultaneously could potentially 

reduce an individual’s food intake, reproductive output, and predator avoidance. The 

plasticity displayed by bullheads in response to pollution and guppies in response to 

elevated temperatures are indicative of stress responses (Kime et al. 1996; Allin and 

Wilson 2000). Thus, evolutionary responses may be critical in order to maintain 

population viability. 

 

6.2 Evolutionary responses to anthropogenic stressors 

The findings of Deutsch et al. (2008) that tropical ectotherms are most at risk due 

to global warming have been recently challenged. In particular, Walters et al. (2012) 

predict that the risk of extinction of tropical ectotherms is no greater than temperate 

species because, generally, tropical ectotherms: (1) are smaller (see Atkinson 1994); (2) 

are more fecund; (3) have larger population sizes; and (4) have shorter generation times 

than temperate species. Thus, such species should possess an evolutionary advantage 

because adaptation can occur more rapidly in larger populations possessing higher levels 

of standing genetic variation, larger growth rates, and shorter generation times (Walters et 

al. 2012). However, many temperate ectotherms, such as brown bullheads, also possess 

many of the same biological characteristics and thus may be capable of rapid evolutionary 

responses. Providing Darwin’s (1859) four postulates are true for a given trait and the 

selection pressure generated by anthropogenic stressors is strong enough (Reznick and 
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Ghalambor 2001), both tropical and temperate populations with the above biological 

characteristics have the potential to rapidly evolve to anthropogenic stressors. Indeed, I 

found evidence for rapid evolutionary responses in brown bullhead behaviour and guppy 

sperm length to pollution and increased temperature, respectively. 

Exposure to anthropogenic stressors, such as pollution and increased temperature, 

often results in reduced genetic diversity as the population responds to the selection 

pressures imposed upon them (e.g. Silbiger et al. 2001; Santos et al. 2005; Athrey et al. 

2007; reviewed in Pauls et al. 2013). For example, brown bullheads from Lake Erie, US, 

had lower levels of genetic diversity relative to controls (Silbiger et al. 2001). In Chapter 

5 (Breckels et al. 2013), I also found a reduction in genetic diversity and effective 

population size in guppies from the increased temperature populations as compared to the 

control populations. These results clearly infer a signature of selection on the populations 

at increased temperature (see discussion in Chapter 5; Breckels et al. 2013). Perhaps 

selection was also acting on tolerance to the corresponding stressor (e.g. Athrey et al. 

2007; Nakajima et al. 2009), yet survival was unaffected by short-term exposure to 

increased temperature (Chapter 3; Breckels and Neff 2013). Furthermore, despite 

showing an apparent adaptive genetic response to increased temperature, the population’s 

potential to adapt to further stressors could now be hampered by this genetic 

impoverishment (e.g. Meyer and Di Gulio 2003; Athrey et al. 2007; Nowak et al. 2009; 

Vogt et al. 2010; reviewed in Pauls et al. 2013). 

Anthropogenic stressors, such as global warming, have already triggered many 

species’ extinctions, and currently threaten the viability of many others (Thomas et al. 
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2004; reviewed in Parmesan 2006). As well, contemporary levels of global warming are 

causing sex-specific mortality, resulting in altered sex ratios (e.g. Leonardos et al. 2009; 

Wedekind et al. 2013). However, I found that guppy census population size, survivorship, 

and sex ratios were unaffected by multi-generational exposure to increased temperatures 

(Chapter 5; Breckels et al. 2013). Warming temperatures are predicted to lead to an 

increase in the growth rate, transmission, and virulence of both pathogens and parasites 

(reviewed in Marcogliese, 2008). However, a more thorough analysis is needed as I did 

not test the evolutionary response of the immune system. As well, I did not test the 

evolutionary response of parasites or pathogens to increased temperatures, which could 

also affect the immune response by adding increased pressure on the immune system. 

Thus, an objective for potential future work is to detail the evolutionary responses of both 

pathogen or parasite and its host to anthropogenic stressors (see future work detailed 

below). 

Non-reproductive life history traits, such as age and size at maturity, typically 

have low levels of additive genetic variance because they have been eroded by thousands 

of generations of selection in order to optimize traits (reviewed in Crnokrak and Roff 

1995; Roff and Emerson 2006). Accordingly, I found no evidence of a genetic response 

in age at maturity, suggesting that cryptic genetic variation does not exist for this trait 

(e.g. Runcie et al. 2012; reviewed in Gibson and Dworkin 2004) or that selection 

pressures were not high enough to result in an evolutionary response. In many taxa, body 

size is positively correlated to reproductive success (Andersson 1994). The fact that size 

does not seem to be affected by the temperature increase in this study means that 

maturing at a younger age may not be detrimental to guppies as reproduction can 
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commence earlier in life. As such, selection on this trait would not be high. The results of 

the life history traits suggest that guppies may have the capacity to survive in a warming 

environment. 

A recent study by Zeh et al. (2012) claimed reproduction to be the “Achilles’ 

heel” in the face of global warming. However, sperm traits typically have high levels of 

additive genetic variance (e.g. Simmons and Moore 2009) and therefore can evolve 

rapidly if selection acting on them is great enough. Indeed, in Chapter 4 (Breckels and 

Neff 2013; In review), I found that sperm length evolved complete compensation (i.e. 

returned to baseline levels) after just 6 months (approximately 2-3 generations) in 

elevated temperatures. Sperm velocity has previously been shown to be important in 

guppy reproduction (Boschetto et al. 2011) and has high levels of additive genetic 

variance (e.g. Simmons and Moore 2009), yet showed no sign of an evolved response 

after 24 months (approximately 8-12 generations). Perhaps the sperm kinematics or cell 

composition has been altered by exposure to increased temperatures (e.g. Labbé et al. 

1995), which, in turn, would affect sperm velocity (Beirão et al. 2012). Nevertheless, the 

fact that sperm length evolved, but there was no evidence of evolution in the other two 

sperm traits examined, suggests that sperm length may be playing an important role in 

reproduction in guppies, at least in an increasingly thermal environment.  

Future work is needed to better understand the reproductive success of males at 

elevated temperature (see future research) and the effects of anthropogenic stressors on 

the evolutionary response of other sperm traits, such as kinematics (e.g. beat frequency) 

and cell composition (e.g. levels of adenosine triphosphate; ATP). As well, sperm 
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velocity and path linearity measurements were performed in solutions held at room 

temperature (i.e. approximately 25°C), thus the control males (25°C) may have had an 

advantage over the increased temperature males (28°C) as the solutions were closer to 

control temperatures. 

Many studies of different taxa have documented reduced successful parturition in 

response to increases in temperature (e.g. Dzikowski et al. 2001; Karayücel et al. 2008; 

Zeh et al. 2012). In Chapter 5 (Breckels et al. 2013), I found that females from elevated 

temperatures produced significantly fewer, smaller broods than control females. This 

reduced reproductive output could be explained by younger males with poor quality 

sperm courting females (Chapters 3-5; Breckels and Neff 2013; In review; Breckels et al. 

2013); lower successful parturition rates occur when females are courted by lower quality 

mates (e.g. Sato et al. 2011). Maturing at an earlier age could potentially shorten the 

generation time of guppies, explaining the similar census population sizes yet reduced 

reproductive output, as there were more reproductive episodes in a given time. Hence, 

future research could look into generation time in guppies at elevated temperature as 

compared to controls. The lower successful parturition could also be explained by 

reduced female investment in reproduction (e.g. Zeh et al. 2012), although the females 

role in reproduction has not been as extensively studied to date. Hence, future work 

should detail the effect of anthropogenic stressors on the female investment in 

reproduction. Nevertheless, despite sperm length displaying an evolutionary response, the 

lack of an evolved response in other male and female reproductive traits provides support 

to the suggestion that reproduction will likely be highly vulnerable in a warming 

environment (Zeh et al. 2012).  
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Reduced effective population sizes, genetic diversity, and reproductive output, as 

seen in the increase temperature populations of guppies, are often signs that a population 

is inbred (reviewed in Charlesworth and Charlesworth 1987). Perhaps inbreeding could 

explain the lack of an evolved response in some sperm traits as inbreeding reduces sperm 

quality (Gage et al. 2006).  Inbreeding could also explain the reduced reproductive output 

as mating with kin reduces sperm competitiveness (Michalczyk et al. 2010; Gasparini and 

Pilastro 2011), resulting in reduced brood sizes and reduced fertilization success (e.g. 

Pitcher et al. 2008; Zajitschek et al. 2009). Inbreeding depression could have negative 

effects on fitness, such as depressing the immune system (e.g. Herber et al. 2013), and 

consequently population viability. 

Evolutionary changes in behavioural traits precede most other traits as they tend 

to be more labile (Wcislo 1989; West-Eberhard 2003). Consequently, adaptive changes in 

behavioural traits should become established more rapidly than other traits. Indeed, I 

found an evolutionary response in aspects of behaviour of brown bullheads in response to 

multi-generational exposure to pollution (Chapter 2; Breckels and Neff 2010). 

Specifically, their locomotion and aggression behaviours likely evolved in response to 

pollution. This seemingly rapid evolutionary response occurred within approximately 100 

years which represents at most 33 generations in brown bullheads. However, temporal 

constraints meant that I could not distinguish between an evolutionary response and 

maternal environmental effects or epigenetics. Nevertheless, the polluted fish would have 

an advantage over control fish in a polluted environment even if this response was not 

genetic, in that they would not have to spend as much energy on a plastic response and 

could channel this ‘extra’ energy towards other somatic processes, such as growth and 
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reproduction. Future research could examine an F2 generation and determine if my 

results, in fact, represent an evolutionary response.  

 

6.3 Additional future research directions 

6.3.1 Parasite resistance 

 In Chapter 3 (Breckels and Neff 2013), I showed that exposure to a range of 

temperatures did not affect the immune response to phytohaemagglutinin (PHA) in 

guppies. As well, I found that the PHA response after 6 months of exposure to 28°C did 

not differ from the control (25°C; results not presented). While PHA injections provide a 

simple test of immune response, they do not account for the potential increased 

transmission, growth rate, and virulence of parasites that increases in temperature are 

predicted to cause (reviewed in Marcogliese 2008). Increases in parasites can affect 

individual survival, leading to population or species declines (Marcogliese 2008). As 

well, increased levels of inbreeding, as suggested in Chapter 5 (Breckels et al. 2013), 

have been shown to depress the immune response (e.g. Reid et al. 2003). To that end, 

future research could explore the effect of anthropogenic stressors, especially increased 

temperature, on parasite resistance. For example, the effect of temperature on guppy 

susceptibility to gyrodactylus infections could be studied (see Fraser and Neff 2010). 

Also, the ability of parasites to respond to anthropogenic stressors should be detailed in 

order to get a comprehensive view of the effects of these stressors on both parasite and 

host.  



 

161 

 

6.3.2 Measuring thermal tolerance 

Guppies have the ability to acclimate their thermal tolerance rapidly to increased 

temperature (e.g. Chung 2001). Chung (2001) showed that guppies acclimated to higher 

temperatures for only a few days had higher critical thermal maxima (the temperature at 

which organized locomotion ceases; CTmax) and death points than guppies acclimated to 

lower temperatures. However, it is not known how quickly their thermal optimum (Topt) 

and CTmax evolve. Using insects as a model system, Deutsch et al. (2008) estimated that 

the ‘warming tolerance’, the difference between CTmax and the mean habitat temperature 

(Thab), and the thermal safety margin, the difference between Topt and Thab, of temperate 

species is three and five times that of tropical species, respectively. These estimations 

suggest that tropical species are far more vulnerable to the slightest temperature rise than 

temperate species. Currently, the Thab of tropical species is increasing (IPCC 2007), and 

they are residing closer to their thermal limits (Deutsch et al. 2008; Angilletta 2009; 

Dillon et al. 2010). As a result, tropical species have less scope for plasticity (e.g. 

Stillman 2003) and thus genetic adaptation, whereby they evolve their reaction norms (the 

phenotypic expression of a given trait over a range of environments) may be crucial for 

survival.  

In Chapter 3 (Breckels and Neff 2013), I documented the phenotypic plasticity of 

various traits in guppies over a range of temperatures. Then, in Chapters 4 and 5 

(Breckels and Neff In review; Breckels et al. 2013) using the same species, I determined 

whether some of these traits had evolved after long term exposure to higher temperature. 

However, it would be informative to document the plasticity of these traits in fish from 

higher temperatures and the controls over a wider range of temperatures (not just 25°C 
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and 28°C) as evolution of their reaction norm for these traits may have gone unnoticed. 

Indeed, from this design you could determine the Topt and CTmax of various traits from the 

two different experimental temperatures to determine the potential evolved response of 

the reaction norms in guppies. In Chapter 4 (Breckels and Neff In review), there is some 

evidence that the reaction norm of sperm length has evolved as fish from the 28°C 

experimental populations had similar lengths to the controls and fish from the 28°C 

experimental populations but reared at 25°C had longer sperm than the controls. 

However, this would have to studied over a broader range of temperatures, both higher 

and lower than the temperatures tested, to fully examine the evolution of reaction norms 

and determine both the Topt and the CTmax. As well, the genetic variance of thermal 

tolerance has not been studied (Walters et al. 2012), so measuring genetic variance is the 

focus of the next section. 

6.3.3 Quantitative genetics 

Many studies have shown additive genetic variance to be high for sperm traits 

(e.g. Simmons and Moore 2009), while other studies show little additive genetic variance 

for other traits, such as life history traits (reviewed in Crnokrak and Roff 1995; Roff and 

Emerson 2006). It would be interesting to know how quickly the additive genetic 

variance and overall genetic variance of sperm traits, as well as other traits (e.g. thermal 

tolerance, life history, and ornamentation), decreases as individuals with favourable traits 

are selected for. This could be measured through simple breeding designs involving 

stressed and control fish. A virgin female would be mated to a single male and the 

resulting brood of full-sibling offspring would be split between the two treatments (50% 

stressed and 50% control). This would enable us to determine how much of each trait 
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measured is attributable to additive genetic, non-additive genetic, and maternal 

environmental effects, and determine how the stressed environment compares to the 

control environment. Even if the stressed population initially shows signs of an evolved 

response, if the genetic variance decreases too much due to selection, this genetic 

impoverishment will lead to reduced population viability (i.e. little standing genetic 

variation for selection to act upon; reviewed in Pauls et al. 2013). 

6.3.4 The effects of other anthropogenic stressors 

Throughout my thesis I concentrated on two anthropogenic stressors, pollution 

and the temperature increase associated with climate change. While these two stressors 

are perhaps the most significant anthropogenic stressors impacting biodiversity today, 

particularly aquatic species, there exist other important threats, including habitat 

degradation and fragmentation, and the introduction of invasive species, which also have 

the potential to pose significant selection pressures on species. As well, the temperature 

increase associated with climate change will cause additional environmental changes 

(reviewed in Ficke et al. 2007; IPCC 2007), which all have the potential to add extra 

selection pressures to organisms. For example, increases in evaporation, and altered 

precipitation and hydrological regimes due to climate change, may put added selection 

pressure on morphological traits involved in such things as locomotion and foraging in 

aquatic species as flow rates are altered (e.g. Mauget 2003; Colborne et al. 2011 and 

references therein). As well, different flow rates may also alter fish behaviour, such as 

foraging and reproduction as they may be exposed to different foraging opportunities and 

different mating tactics.    
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Perhaps the most important indirect effect of global warming for fish is that 

increases in temperature will decrease the levels of dissolved oxygen in the water while 

simultaneously increasing the biological oxygen demand for ectotherms (Kalff 2000). 

This decreased oxygen will be most problematic for organisms that reside in large water 

bodies where there is less surface area for oxygen to dissolve (e.g. Pörtner and Knust 

2007). Although, decreased oxygen may also become a problem for many river and 

stream fish. In the dry season it is not uncommon for sections of streams to dry out 

(Alkins-Koo 2000), and this will likely become more frequent as altered hydrologic 

regimes could result in decreased flow (Mauget 2003; Ficke et al. 2007). This will result 

in pools of stagnant water where more fish will have to reside due to smaller stream areas 

with less dissolved oxygen due to a lower or no flow rate. As well, the temperature in the 

pools will likely rise, which, in turn, will result in lower dissolved oxygen levels. This 

will create an “oxygen squeeze” whereby the demand for oxygen will exceed the supply 

(Ficke et al. 2007), potentially resulting in decreased individual growth or even decreased 

survival (e.g. Pörtner and Knust 2007). Thus, it is essential that we better understand the 

evolutionary responses of fish to decreased oxygen levels as this is likely to be an 

emerging stressor for aquatic organisms in the future. 

6.3.5 Relating performance to fitness: reproductive success 

Most research examining the effects of anthropogenic stressors on species detail 

the effect of said stressors on some aspect of performance (e.g. Kime et al. 1996; Dhillon 

and Fox 2004), as I have done throughout my four data chapters. However, unless a trait 

is directly linked to fitness, such as survival, we can only infer the possible effects that 

the trait’s performance may have on fitness in the stressed environment. For example, 
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does a decreased age at maturity really matter at higher temperatures if all ectotherms 

decrease in size in warmer environments? Does decreased sperm velocity due to 

increasing temperatures affect reproductive success? Perhaps the ‘new’ stressed 

environment has new optimal trait values. Thus, more studies are needed which document 

both particular trait values and the effects of these trait values on fitness in the new 

environment.  

The evolved response of sperm traits to increased temperature (Chapter 4; 

Breckels and Neff In review) clearly follows the hotter-is-better hypothesis (Huey et al. 

1999), but I found no evidence of evolution in sperm velocity or path linearity. As well, 

reproductive output decreased over time. These results open up a plethora of research 

questions which would add to our knowledge about the role of sperm performance in 

reproduction. Does sperm length really matter? Does sperm velocity matter at increased 

temperatures? What role, if any, does the female play in post-copulatory selection 

(cryptic female choice)? Measures of sperm quality and performance are good indicators 

of stress in a population, however, they do not convey rates of actual reproductive 

success. Determining the reproductive success of male guppies from the increased 

temperature populations, or any stressed population, could be achieved by artificial 

insemination of a virgin female by two rival males of known sperm phenotype (see Evans 

and Rutstein 2008) and determining the paternity of the offspring. Alternatively, sperm 

could be stained with fluorescent labels in order to view them progressing through the 

female reproductive tract (e.g. Fisher and Hoekstra 2010). Next, determining the 

proportion of offspring sired by each male would conducted by parentage analysis. Thus, 

it can be determined what the most successful sperm phenotype is by comparing 
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reproductive successes of each treatment. Indeed, there was a large amount of variation in 

sperm velocity in fish from increased temperature and this could explain the decrease in 

reproductive output if velocity is still important in increased temperatures. 

Future work could also detail sperm competitiveness of each of my four 

temperature treatments (25-25, 25-28, 28-28, and 28-25), or by using the same framework 

with species from any stressful environment, using the same methods as above. Using 

guppies from my experimental set-up would determine whether sperm length is a key 

fertilising characteristic or whether fish from higher temperature are being hindered in 

terms of reproductive success by lower velocity sperm.  

 

6.4 Concluding remarks 

My thesis research provides considerable evidence that fish can evolve rapidly in 

response to anthropogenic-induced environmental change. Indeed, I found evolutionary 

responses to pollution and increased temperature in behaviour and sperm length, 

respectively. However, even though population demographics and some life history traits 

appeared to be unaffected, evolutionary responses to such stressors may be offset by a 

lower reproductive output and a loss of genetic diversity. These latter results could 

potentially result in fewer individuals with reduced genetic variation which may limit the 

future adaptive potential of populations to respond to other anthropogenic stressors. Thus, 

even though I have found evidence of rapid evolutionary responses, the rate and 

magnitude of anthropogenic induced environmental change may ultimately decide the 

fate of organisms. Future research focused on examining the effects of multiple stressors 
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in combination on fish and other organisms will allow us to better understand the 

consequences of these stressors on the long-term persistence of species. 
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Appendix A: Chapters 4 and 5 supplementary material 

 

Figure A.1 The 2 × 2 common garden experimental design used to assess multiple 

sperm and life history traits in guppies (Poecilia reticulata).  

Shown are six experimental populations (top); three of which remained at 25°C (white 

tanks) throughout the experiment (controls) and three were raised at a rate of 1°C every 

45 days up to 28°C (grey tanks). After 6, 18, and 24 months, eight pregnant females were 

removed from each experimental population and put into separate rearing tanks (bottom) 

with the temperature set to the same as the experimental population that the female had 

originated. After the female had given birth, four treatments were established by 

switching the water temperature in four of the eight rearing tanks to that of the alternate 

experimental populations. Multiple sperm and life history traits were estimated from the 

offspring in these tanks. 
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Appendix B: Permission to reproduce published material 

A version of Chapter 2 was published in Ecotoxicology. Permission was granted by 

Springer to reproduce the work in my PhD thesis. 

“With reference to your request to reprint in your thesis material on which Springer 

Science and Business Media control the copyright, permission is granted, free of 

charge, for the use indicated in your enquiry.” 

 

A version of Chapter 3 was published in the Journal of Experimental Biology. As per The 

Company of Biologists LTD’s copyright assignment policy, no specific permission is 

required to reproduce the work in my PhD thesis. 

“Authors may reproduce the article, in whole or in part, in any printed book 

(including thesis) of which they are author, provided the original article is properly 

and fully attributed” 

http://jeb.biologists.org/site/journal/rights_permissions.xhtml 

 

A version of Chapter 5 was published in Evolutionary Ecology. As per Springer’s current 

copyright assignment policy, no specific permission is required to reproduce the work in 

my PhD thesis. 

“Author retains the right to use his/her article for his/her further scientific career 

by including the final published journal article in other publications such as 

dissertations and postdoctoral qualifications provided acknowledgement is given 

to the original source of publication.” 

http://jeb.biologists.org/site/journal/rights_permissions.xhtml
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Appendix C: Animal care protocol approval documentation 
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