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We chose to study COM {100} surfaces, which are rough with no observable growth features such as 

terraces or steps, using the etch-pit regrowth method. Partially dissolved COM (100) crystals with etch-

pits will be examined in supersaturated solutions of calcium oxalate. The regrowth rate of the etch-pits 

will be examined in the presence of OPN peptides at different concentrations to provide a nanoscale 

picture of the peptide-mineral interaction. We attempt to address the issue related to deficiencies in 

previously-published analyses of etch-pit growth rate calculations.  

 

2.3 Atomic force microscopy 

The first atomic force microscope (AFM) was invented by Binnig, Quate and Gerber66 in 1986. In 1989, 

first commercially available atomic force microscope was introduced.  The AFM is now one of the 

leading tools for imaging and measuring materials at the nanoscale. It belongs to the family of 

microscopes typically known as scanning probe microscopes, in which a sharp tip is placed close to the 

surface of the sample and is moved vertically and laterally with sub-nanometer precision as it measures 

maps some tip-sample interaction. Fig 2.3 shows the schematic diagram for an AFM. 

The sample is mounted on a piezoelectric tube scanner. A mechanical probe, typically described as an 

AFM tip, gathers information by ‘feeling’ the surface. As the AFM tip approaches the sample, the weak 

cantilever spring on which the tip is mounted deflects due to interactions with the sample surface. 

Typically, the AFM senses this deflection by mean of the optical lever technique67, wherein laser light 

is reflected from the back of the cantilever onto position-sensitive photodiodes whose output signal is 

collected by a differential amplifier. Expressing photodiode output in terms of their labels in Fig. 2.3, 

the deflection signal is [(A+B) – (C+D)] / (A+B+C+D) and is commonly designated A–B. This output 

signal is proportional to the deflection of the cantilever and amplified by the length of the beam path. 

For my thesis, most of the data are collected using contact-mode imaging (in air and fluid), in which the 

cantilever deflection (due to both short-ranged repulsive forces and attractive forces) is used to generate 

a topographical image of the sample. In contact mode, the A–B signal is compared to a preselected 

setpoint voltage and used to adjust the vertical positioning of the piezo tube scanner so that the 

cantilever deflection remains constant. As the tip is scanned over the sample, a record of the change in 
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vertical sample position required to compensate for the changing sample heights is used to generate a 

topographical image of the sample. 

 

Figure 2.3 A schematic of the parts of an atomic force microscope. 
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3.4.5 Conceptual Model for the Twinned Phase 

The phenomenon of twinning has been well studied for many materials and crystallographic systems.  

In most cases of alternating twin “stripes,” it is experimentally observed that the twin-boundary spacing 

is somewhat constant for a particular system, though it may vary with the size of the twinned grain (see, 

e.g.,21  for examples).  This behavior is typically modeled as resulting from a competition between the 

interfacial energy of the twin boundaries and elastic energy, which favor wide and narrow stripes, 

respectively.  A common case in the martensite literature is the formation of a twinned phase in an 

untwinned parent phase.  Modeling the elastic energy in the parent phase yields the prediction that the 

stripe spacing λ should scale as the square root of the size of the twinned domain22. 

In our case, with a single-component system, only one phase is thermodynamically stable, and the 

entire sample is twinned (aside from occasional small regions).  We propose that mechanical strain in 

this case accommodates a free (0 0 1) surface at an inclination determined by the monoclinic unit cell 

while the bottom of the crystal, which also inherits a (0 0 1) orientation from its origins in the 

orthorhombic RI phase, is constrained by the substrate to lie perpendicular to the vertical c axis, as 

shown in Fig. 3.7.  The strain then varies linearly across the ridge (i.e., along the x direction in Fig. 3.7), 

so that the elastic energy density varies quadratically.  The integrated elastic energy of each trapezoidal 

domain is then proportional to Eλ3/h, where E is the Young’s modulus along the c axis and h is the 

average thickness of the domains: 

𝐸𝑡𝑟𝑎𝑝 = 𝐸
𝑣
ℎ
� (� 𝑦𝑑𝑦

𝑥 tan𝛼

0
)

𝜆 4⁄

−𝜆 4⁄
𝑑𝑥 =  

1
192

𝐸
𝑣 tan2𝛼

ℎ
𝜆3, 

(4) 

where v is the length of the ridge in the z direction and α = 90°–β ≈ 7° is the inclination of the ridge.  

Note that each trapezoid corresponds to half of a ridge, and that strain energy is minimized if the center 

of a trapezoid is unstrained, with a maximum strain of λtanα/4h at either end.  As a result, the total 

elastic energy for a region of extent w along the x axis (and extent v along the z direction), which 

contains 2w/λ tapezoidal domains, scales as Ewλ2/h.  Explicitly, 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 =  
1

96
𝐸
𝑤 𝑣 tan2𝛼

ℎ
𝜆2. 

(5) 
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If each twin boundary has an interfacial energy (per area) of γ, the energy per unit length along the z 

axis of 2w/λ boundaries is 2γwh/λ.   Energy minimization then suggests that 

    

 

λ3 =
96h2

tan2 α
γ
E

. 
(6) 

For our crystals, with typical values of h ≈ 20 µm and λ ≈ 1 µm, we predict γ /E ≈ 4 x 10–13 m.  Lack of 

data on both the twin-plane energy and elastic moduli of the RV phase of tricosane makes verification of 

Eq. 5 difficult, but we note that the energy cost of a twin boundary is likely to be rather small (i.e., on 

the order of 1 mN/m) for these van der Waals solids, while the stiffness along the axis of the alkane 

molecules would be expected to be quite large (i.e., > 1 GPa). (Detailed calculations are presented in 

Appendix B.) 

 

Figure 3.7 Illustration showing a cross-section of a twinned region perpendicular to the 
ridges, with twin axes (dotted lines) and crystal surfaces (solid lines) identified for a single 

domain (shaded region). 
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3.5 Conclusion 

We have performed a study of the polymorphs exhibited by tricosane, C23H48, which has a rich phase 

diagram containing at least five solid phases, three of which are so-called “rotator phases” characterized 

by positional order without long-range orientational order.  Our particular interest is in the solid-solid 

transitions between the polymorphs, which are identified by X-ray diffraction but can be observed via 

optical microscopy.  Most of the transitions are clear first-order transitions, which proceed with a 

growth front and result in significant changes in the crystalline lattice and unit-cell volume.   

One of the transitions, that between the monoclinic RV and orthorhombic RI rotator phases, is 

diffusionless.  Optical and atomic-force microscope imaging reveals that the RV structure is highly 

twinned, exhibiting a striking arrangement of ridges arranged in domains bounded by two types of twin 

planes.  We have shown that the transition from the RV phase to and from the RI phase preserves both 

the macroscopic domain structure on length scales of 10s of µm, and microscopic molecular features on 

nm scales, made possible by the very similar densities of the two phases.  We propose that the twinning 

is the result of a monoclinic structure constrained such that it is bounded below by a flat substrate and is 

oriented with a vertical c-axis due to the presence of surrounding domains.  The mechanical strain 

caused by the constraints is relieved by quasi-periodic twin boundaries that allow the free top surface to 

be approximately horizontal. 

The features of the RV polymorph and its transitions are reminiscent of martensitic transformations, 

which are more familiar in metal alloys.  The tricosane system may thus be a convenient model for 

martensitic transitions:  Because tricosane is a weakly-bound van der Waals solid, the transition occurs 

at convenient temperatures, and because the tricosane molecules are large relative to metal atoms, the 

transitions are slow enough to be easily studied. 
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Table III Principal Bragg peaks observed for the orthorhombic phase at 34 °C.  The planes are indexed 

for consistency with the phase sequence for tricosane proposed in Ref. 9. 

Peak location (2θ) Planar separation, d (Å) Miller indices (h k l) 

8.59 10.29 (0 0 6) 

11.39 7.76 (0 0 8) 

14.24 6.21 (0 0 10) 

17.13 5.17 (0 0 12) 

20.03 4.43 (0 0 14) 

21.53 4.12 (1 1 0) 

22.93 3.87 (0 0 16) 

23.80 3.74 (0 2 0) 

 

 

Figure 3.8 Principal Bragg peaks observed for the orthorhombic phase at 34 °C. 
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Table IV  Principal Bragg peaks observed for the orthorhombic phase at 38 °C.  The planes are indexed 

for consistency with the phase sequence for tricosane proposed in Ref. 9. 

Peak location (2θ) Planar separation, d (Å) Miller indices (h k l) 

8.59 10.28 (0 0 6) 

11.40 7.76 (0 0 8) 

14.25 6.21 (0 0 10) 

17.12 5.17 (0 0 12) 

21.47 4.13 (1 1 1) 

21.95 4.04 (1 1 3) 

22.70 3.91 (1 1 5) 

24.40 3.65 (2 0 3) 

 

 

Figure 3.9 Principal Bragg peaks observed for the orthorhombic phase at 38 °C. 
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Table V Principal Bragg peaks observed for the monoclinic rotator phase at 41 °C.  The planes are 

indexed for consistency with the phase sequence for tricosane proposed in Ref. 9. 

Peak location (2θ) Planar separation, d (Å) Miller indices (h k l) 

8.51 10.37 (0 0 6) 

11.35 7.79 (0 0 8) 

14.18 6.24 (0 0 10) 

17.03 5.20 (0 0 12) 

21.28 4.17 (1 1 1) 

22.46 3.96 (2 0 0) 

 

 

Figure 3.10 Principal Bragg peaks observed for the monoclinic rotator phase at 41 °C. 
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et al. of a finite lifetime of inhibitor molecules on growth faces17.  In our picture, pOPAR molecules 

bind nearly irreversibly to step-risers on {010} COM faces, accounting for the pinning seen by atomic 

force microscopy.  The step curvature resulting from this pinning results in a decreased growth velocity 

via the Gibbs-Thomson effect, in accordance with the C-V model.  A new steady-state density of 

pinning sites (and therefore a constant reduced growth velocity) is achieved by a balance between 

incorporation of pOPAR molecules by propagating steps, resulting in their removal from the growth 

surface, and the adsorption of additional pOPAR molecules onto newly created surfaces.   

Future experiments over a range of inhibitor concentrations and calcium oxalate supersaturations, and 

involving a variety of inhibitors, will test the validity of our model. 

4.5 Conclusions 

The Cabrera-Vermilyea has been successful in explaining the inhibition of crystallization in many 

systems in terms of the pinning of growth steps by strongly adsorbed impurities.  However, the 

irreversible adsorption required to pin steps is in seeming contradiction with the observation that the 

degree of inhibition is proportional to the concentration of inhibitor available in solution.  By examining 

the recovery of calcium oxalate surfaces from poisoning by pOPAR, a phosphopeptide of osteopontin, 

we are able to gain insight into the inhibition mechanism.  To our knowledge, this is the first 

quantitative study of the recovery of growth steps from impurity-pinning.  Specifically, we find that 

poisoning by added pOPAR is rapid relative to the time required for recovery to an uninhibited state 

after pOPAR is removed, but full recovery does occur.  Moreover, after removal of pOPAR from the 

growth solution, the acceleration of step speeds is initially low, and increases over time.  These results 

are consistent with a model31 in which the degree of inhibition is dependent on the density of inhibitor 

molecules adsorbed on the surface, in accordance with the C-V model, but in which the steady-state 

density results from a balance between the rate of adsorption and rate of incorporation into the growing 

crystal, rather than a balance between adsorption and desorption, as is often assumed. 

This work will provide an improved understanding of the mechanism of crystallization inhibition in this 

system and may have applications to a wider variety of commercially and biologically important growth 

processes.  In addition, our increased understanding of the role of osteopontin and derived peptides may 

be useful for the design of therapeutic agents for the treatment of kidney stones. 



80 

 

 

 

4.6 Bibliography for Chapter 4 

1 D. A. Bushinsky, "Kidney stones," Adv Intern Med 47, 219-238 (2001). 

2 H. Shiraga, W. Min, W. J. Vandusen, M. D. Clayman, D. Miner, C. H. Terrell, J. R. Sherbotie, J. 

W. Foreman, C. Przysiecki, E. G. Neilson, and J. R. Hoyer, "Inhibition of Calcium-Oxalate 

Crystal-Growth Invitro by Uropontin - Another Member of the Aspartic Acid-Rich Protein 

Superfamily," Proc Natl Acad Sci U S A 89 (1), 426-430 (1992). 

3 S. R. Qiu, A. Wierzbicki, C. A. Orme, A. M. Cody, J. R. Hoyer, G. H. Nancollas, S. Zepeda, 

and J. J. De Yoreo, "Molecular modulation of calcium oxalate crystallization by osteopontin and 

citrate," Proc Natl Acad Sci U S A 101 (7), 1811-1815 (2004). 

4 A. Taller, B. Grohe, K. A. Rogers, H. A. Goldberg, and G. K. Hunter, "Specific adsorption of 

osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals," Biophys J 93 

(5), 1768-1777 (2007). 

5 J. A. Wesson, E. M. Worcester, and J. G. Kleinman, "Role of anionic proteins in kidney stone 

formation: Interaction between model anionic polypeptides and calcium oxalate crystals," J 

Urology 163 (4), 1343-1348 (2000). 

6 B. Grohe, K. A. Rogers, H. A. Goldberg, and G. K. Hunter, "Crystallization kinetics of calcium 

oxalate hydrates studied by scanning confocal interference microscopy," J Cryst Growth 295 

(2), 148-157 (2006). 

7 M. Weaver, S. Qiu, J. Hoyer, W. Casey, G. H. Nancollas, and J. J. De Yoreo, "Surface 

Aggregation of Urinary Proteins and Aspartic Acid-Rich Peptides on the Faces of Calcium 

Oxalate Monohydrate Investigated by In Situ Force Microscopy," Calcified Tissue Int 84 (6), 

pg. 462-473 (2009). 

8 N. Cabrera, and D. A. Vermilyea, "Growth of crystals from solution", in Growth and Perfection 

of Crystals: Proceedings, edited by R. H. Doremus, B. W. Roberts and D. Turnbull, (Wiley, 

New York, 1958), pp. 393-410. 

9 J. A. Raymond, Y. Lin, and A. L. Devries, "Glycoprotein And Protein Antifreezes In 2 Alaskan 

Fishes," J Exp Zool 193 (1), 125-130 (1975). 

10 A. A. Abrosimov, Z. M. Pishchaeva, V. A. Vinokurov, S. T. Bashkatova, and T. P. 

Vishnyakova, "Daks-D depressant additive for diesel fuels," Chem Tech Fuels Oils 35 (5), 300-

301 (1999). 



83 

 

 

 

31 S. S. Nene, G. K. Hunter, H. A. Goldberg, and J. L. Hutter, "Reversible Inhibition of Calcium 

Oxalate Monohydrate Growth by an Osteopontin Phosphopeptide," Langmuir 29 (21), 6287-

6295 (2013). 

 

 

  







98 

 

 

 

synthetic peptide referred to as pOPAR, corresponding to amino acids 65–80 of rat bone OPN.  We 

observed clear changes in the morphology of the growth-step structure and a decrease in step velocity 

upon addition of pOPAR, which suggests adsorption of this molecule on the {010} growth hillocks.  

Experiments in which pOPAR was flushed from the growth cell by a supersaturated calcium oxalate 

solution showed that COM hillocks are able to fully recover to their pre-inhibited state.  Our results 

suggest that recovery occurs through incorporation of the peptide into the growing crystal, rather than 

by desorption from the growth face, as assumed by other researchers.  This work provides new insights 

into the mechanism by which crystal growth is inhibited by adsorbants, with important implications for 

the design of therapeutic agents for kidney stone disease and other forms of pathological calcification. 

Unlike the {010} faces, growth features were not typically observed on {100} surfaces. To study the 

effect of the polypeptides on the {100} faces, we partially dissolved these faces in pure water to form 

elongated etch pits. Regrowth of these pits was observed in real time by atomic-force microscopy in the 

presence of saturated calcium oxalate solution.  The effects on the re-growth rate of peptides of OPN 

(P0, P3 and pOPAR) and poly(aspartate acid) were tested. The 16 residue length pOPAR molecule 

shows the maximum effect on the etch-pit re-growth rate among the selection of additives we studied. 

Along with being a phosphorylated peptide, it is an aspartic acid rich section of the OPN, which is 

consistent with its higher adsorption to growth surfaces, consequently reducing the etch-pit filling rate.  

Studies of calcium oxalate crystallization are continuing in our laboratory. Effects of these protein 

additives on the {100} surface are being extensively studied using atomic force microscopy. 

Meanwhile, additional experiments to validate the hypothesis of protein incorporation into the growing 

crystal are being performed. Using different techniques of crystal growth it is possible grow crystals in 

which {121} and {021} surfaces are accessible to the AFM, thus allowing one to examine the growth 

process on these faces in the presence of inhibitors.  
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Appendix A: Twinning pattern in C25 

We have also performed preliminary optical imaging of C25 crystals and observe a twinned pattern 

similar to that seen for C23.  Fig. A.1 show the occurrence of the pattern formed between 47 ° C to 49 

°C during slow heating of the C25. The pattern is very similar to the one observed in C23, but not as 

distinct. 

 

Figure A.1 Optical microscopy images showing the twinning pattern observed in n-pentacosane. 
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Appendix B:  Detailed calculations for the conceptual model for crystal 
twinning 
We observed the entire sample, aside from occasional small regions, twinned in a single 

thermodynamically stable monoclinic phase.  Consider the Fig. B.1 showing a cross-section of a 

twinned region perpendicular to the ridges, with twin axes (dotted lines) and crystal surfaces (solid 

lines) identified for a single domain (shaded region). 

 

Figure B.1 Illustration showing a cross-section of a twinned region perpendicular to the 

ridges, with twin axes (dotted lines) and crystal surfaces (solid lines) identified for a single 

domain (shaded region). 

 

There are two energies of primary importance: the strain energy and twin plane energy. For the strain 

energy, consider Fig. B.2 (a) for the formation of a single trapezoidal domain. 
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Figure B.2 Illustration showing formation of the single domain of twinned region in C23. 

 

As shown in Fig. B.2 (b), consider each trapezoidal as divided into small slabs, each with vertical length 

h and thickness dx. 

The Young's modulus of a material can be used to calculate the force F it exerts under a specific strain. 

From the definition of young’s modulus, we can write for our case, 

𝐸 =  
𝐹 𝐴⁄
∆𝐿 𝐿0⁄ =

𝐹 𝑤𝑑𝑥⁄
𝑦 ℎ⁄

, 

so that 
 

(1)  

𝐹 = 𝑤𝑑𝑥𝐸
𝑦
ℎ

 , 

 
(2)  

where E is the modulus of elasticity, A = w dx is the original cross-sectional area through which the 

force is applied with w length of the ridge, ∆L= y is the amount by which the length of the object 

changes and 𝐿0 = ℎ is the original length of the object. 

So from Fig. B.2 (b), the work W of stretching the slab of thickness dx, is 

𝑑𝑊 = 𝑤𝑑𝑥
𝐸
ℎ
� 𝑦 𝑑𝑦
𝑥 tan𝜃

0
= 𝑤𝑑𝑥 

𝐸
ℎ

 
𝑥2tan2𝜃

2
, (3)  
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where, θ ~ 90 – β is the inclination of the ridge. So the total mechanical energy of a single trapezoidal 

region will be 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = 𝑊 =  � 𝑤𝑑𝑥 
𝐸
ℎ

 
𝑥2tan2𝜃

2

𝑎 4⁄

−𝑎 4⁄
=  

1
192

𝑤 𝐸
ℎ

tan2𝜃𝑎3. 

 

(4)  

Here, each trapezoid corresponds to half of a ridge, and that strain energy is minimized if the center of a 

trapezoid is unstrained, with the maximum strain of 𝑙 𝑡𝑎𝑛𝜃/4ℎ at either end. As a result, the total elastic 

energy for the region of extent a along the x-axis as well as w along the z-axis, which contains 2𝑙 𝑎⁄  

trapezoidal domains will be 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 =
1

192
𝑤 𝐸
ℎ

tan2𝜃𝑎3
2 𝑙
𝑎

=
1

96
𝑤 𝐸
ℎ

tan2𝜃𝑎2𝑙. 

 

(5)  

Now, if each twin boundary has the interfacial energy of 𝛾 per area, the energy per unit length along z-

axis of 2 𝑙 𝑎⁄  boundaries has a twin-plane energy of, 

𝐸𝑡𝑤𝑖𝑛 = 2𝑤 ℎ 𝛾 
𝑙
𝑎

. 

 

(6)  

Thus total energy will be 

𝐸 =  𝐸𝑠𝑡𝑟𝑎𝑖𝑛 +  𝐸𝑡𝑤𝑖𝑛 =  
1

96
𝑤 𝐸
ℎ

tan2𝜃𝑎2𝑙 +  2𝑤 ℎ 𝛾 
𝑙
𝑎

.   

 

(7)  

Energy minimization then suggests 

𝑑𝐸
𝑑𝑎

=  
1

96
𝑤 𝐸
ℎ

tan2𝜃 2 𝑎 𝑙 −  2𝑤 ℎ 𝛾 
𝑙
𝑎2

 = 0  

 

(8)  

for equilibrium.  Thus, 

𝑎3 =
96 ℎ2𝛾
𝐸 tan2𝜃

. 

 
(9)  
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The typical values of the wax crystals in our case are  ℎ ≈ 20 µm and 𝑎 = 1 µm , which allow us to 

predict 𝛾 𝐸⁄ ≈ 4 ×  10−13m. 
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