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Abstract

A formulation used to simulate the solidification process of magnesium alloys is developed
based upon the volume averaged finite volume method on unstructured collocated grids. To
derive equations, a non-zero volume fraction gradient has been considered and resulting
additional terms are well reasoned. For discretization the most modern approximations for
gradient and hessians are used and novelties outlined. Structure-properties correlations are
incorporated into the in-house code and the proposed formulation is tested for a wedge-
shaped magnesium alloy casting. While the results of this study show a good agreement with
the previously reported experimental data, it was concluded that a better understanding of the
boundary condition that existed during the experiment would result in a more agreeable

result.

A variety of boundary conditions are considered at the mold-casting interface to replicate the
existing conditions during the casting process. The predicted cooling rates and experimental
correlations are used to predict the local grain size and average yield strength. The grain size
and thickness of the skin and core regions are taken into account to modify the local yield
strength. Results are compared to previously reported experimental data. The outcome of this
comparison emphasizes the importance of the influence of cooling rate on the mechanical
properties of castings. The effect of different boundary conditions, which resulted in
variation of the cooling rates, various grain sizes and, hence, various yield strengths are

studied and discussed.

It is concluded that the formulation and the numerical treatment presented in this work can be
used as an excellent framework to capture the key features of the solidification process, and
also provides sufficient microstructural information for estimating the local mechanical

properties of die-cast components.

Keywords

Solidification modeling, Magnesium alloys, Phase change modeling, Wedge casting, Die-
Casting modeling, Volume-Averaged technique, Finite Volume Method, Unstructured grid,

Collocated grid.
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Chapter 1

1 Introduction and Background

Automakers are concentrating on reducing car weight and limiting exhaust emissions due
to legislative requirements for safer and cleaner vehicles. A 15% weight reduction
improves fuel efficiency by at least 10%, reducing gasoline consumption by 10 billion
gallons and saving $US27 billion/year at the current pump prices of $2.7/gal. Moreover,

10 billion gallons in fuel reduction would reduce CO, emissions by 200 billion 1b[1].

Light metal alloys, particularly magnesium-aluminum (Mg-Al) alloys, due to their low
density and excellent specific stiffness and strength, offer a significant reduction in mass
compared with traditional metals. Advancements in the Canadian Mg-Al alloy die-
casting technology industry would allow for a competitive global advantage in an

increasingly fuel-efficient market.

High pressure die casting (HPDC), which is the most common process for the production
of Mg-Al components, is prone to the development of defects such as knit lines and
micropores that lead to the local degradation of mechanical properties. The non-
equilibrium nature of rapid solidification that exists in HPDC makes the understanding
and analysis of these processes extremely difficult. As a result, die-casters are constrained
to design components assuming lower-than-actual mechanical properties which, in-turn,
results in larger-than-necessary, heavier and more costly parts, limiting the use of Mg-Al
alloys in the auto industry and decreasing their competitiveness. Enhancing control over
the as-cast microstructure and reducing product development time by enabling realistic
prediction of actual local microstructure and mechanical properties will allow for the

optimization of section thickness for mass and cost reduction.

A research program funded by the AUTO21 Network of Centres of Excellence and
Meridian Lightweight Technologies Inc. has, since its inception in 2001, been focused on
filling the gaps in the process-structure-properties relationships for HPDC of commercial
Mg alloys such as AM60B. Work-to-date has resulted in identification of the casting

features that affect microstructural features as well as mechanical properties that are



influenced by microstructural features. Via a combination of experiments and utilization
of commercial software, structure-property and process-structure relationships that can be

used to predict these behaviors have been developed [2-6].

Computational tools not only provide assistance for a faster understanding of the effect of
variations of variables during the process but also shorten the prototyping sequence for
newly developed alloys and improve the die designs. Although the most advanced
existing industry-standard software, such as MAGMASOFT and ProCAST, are capable
of predicting some of the features of the casting, they are not yet able to accurately

predict all of them [7], hence, a high rate of scrap is still produced.

The work described in this thesis is focused on further developing the understanding of
the solidification process, the prediction of microstructure, and the implementation of
previously established structure-property relationships into an in-house numerical code
beneficial to the Canadian magnesium die-cast industry. In particular, an advanced
Computational Fluid Dynamics (CFD) code using a finite volume approach for the
simulation of solidification of Mg-Al alloys, with novelties in the volume averaged
formulation that led to a better prediction of cooling rates, and therefore, grain size and
mechanical properties (yield strength), than those from existing commercial software is

developed.

The remainder of this chapter is an overview and background of some of the concepts
and terminologies that are not reviewed in the subsequent chapters but which are required

to better understand the physics of the casting process.

1.1 Magnesium and Magnesium Alloys

Magnesium (Mg) with atomic number and weight of 12 and 24.32, respectively, and a
density of about 1.7 g/lem’, occupies a place in Group II of the Periodic Table and it may
be referred to as the lightest of typical divalent metals. Pure magnesium is relatively
weak and easy to deform. Typically, sand-cast pure magnesium has a tensile strength of

approximately 90 MPa, yield strength of 21 MPa, and an elongation to fracture of



approximately 2-12% [8]. Alloying can greatly improve the mechanical properties of

magnesium.

AMG60B or AZ91 and other aluminum-magnesium alloys, in which aluminum is the
primary alloying element, show excellent properties such as low-density, high specific
stiffness and strength, which makes them great candidates for making structural
components in industries such as automotive where significant reduction in mass and

manufacturing labour cost are critical.

Table 1 indicates how alloying increases the mechanical properties of pure magnesium
without significantly increasing the density. For example, with only a 3.2% increase in
the density of AM60B, 1.8 g/cm’, compared to pure magnesium, there is an increase of

150% in tensile strength and an increase of about 520% in yield strength [8].

It is worth mentioning that in this particular alloy, in addition to Al, other elements such
as Manganese (Mn), Zinc (Zn) and Silicon (Si) are added to the pure Mg to improve its
corrosion resistance, strength at room temperature and creep resistance, respectively
[9,10]. Copper also can be found as an impurity in the AM60B alloy and should be

eliminated due to its negative influence on mechanical strength and corrosion resistance

[3].

Table 1-1: The effect of Aluminum on the mechanical properties of Mg [2]

Metal or % Ultimate Tensile Szr{;ilgcih Elongation to
Alloy Aluminum Strength (MPa) (MPa) fracture (%)

Pure Mg 0 90 21 12

AM60B 5.5-6.5 225 130 8
AZ91 8.3-9.7 240 160 3

1.2 Terminologies and Fundamentals

A solid or liquid phase refers to a portion of the system where the properties and
composition of the material are homogeneous and which is physically distinct from other
parts of the system. Liquids take the shape of their container and are essentially

incompressible, whereas solids retain their original shape unless an external force



deforms them. A crystalline material is one in which the atoms are located in a repeating
or periodic array over large atomic distance. Lattice is a term used in the context of
crystal structure and it means a three dimensional array of points coinciding with atom
positions. In the crystal structure, small groups of atoms form a repetitive pattern, which
are called unit cells [11]. Magnesium crystalizes in the hexagonal close packed (h.c.p)
structure, Fig. 1-1. However, the axial ratio, c/a =1.6236, does not exactly correspond

with the close packing of spheres, for which it is 1.633 [12].

Figure 1-1: The hexagonal close-packed crystal structure

Point defects are where an atom is missing or is in an irregular place in the lattice
structure. Diffusion, which is the phenomenon of material transport by atomic motion,
occurs when there is a point defect in the solid structure and the atom has sufficient
energy to break bonds with its neighbouring atoms and cause lattice distortion. Diffusion
flux is defined as the mass or number of atoms diffusing through and perpendicular to a
unit cross-sectional area of solid per unit of time. Fick’s second law is used to predict

how diffusion causes the concentration to change with time:

a_czg(Da_Cj (1)
ot Ox ox

where C is the concentration and D is called the diffusion coefficient. The magnitude of
the diffusion coefficient is indicative of the rate at which atoms diffuse. This coefficient

is highly influenced by temperature and increases exponentially with increasing



temperature. The solution to Fick’s second law for specific boundary conditions is
available in literature [11]. For a semi-infinite solid in which the surface concentration is

held constant one can obtain a solution as follows:

x_Ct

=0 X
—zl_e;f[—J (1-2)
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where C, represents concentration at depth x after time ¢. erf (x/ 2+ Dt )is the Gaussian

error function, values of which are available in mathematical tables for various x /2~ Dt

values. This solution is demonstrating that the concentration at any depth is a function of

x/~/ Dt and can be determined at any time and position if a correct boundary condition
is available [11]. Also, it is stating that diffusion takes time, meaning that if there is
insufficient time for diffusion, the distance over which diffusion can happen reduces

accordingly.

1.3 Diffusion Length Scale

Diffusion length scale is defined by square root of product of solidification time and
diffusivity. It is a measure of the distance over which a property of interest can propagate.

Most of metallic systems have a thermal diffusivity, &, of the order of 10° to 10°. For

2

. . s m
the sake of discussion let’s assume that & =, =10 —1].
s

Table 1-2: Shows diffusion length scale for different cooling rates




Also the diffusion coefficient for the similar systems can be approximated in the order of

D ~10"and D, ~10”[m"/ s]. Knowing that the solidification time is defined as the

s

ratio of the freezing range and cooling rate, one can measure how much heat or solute
propagates into a material based on the existing cooling rate in the process of casting. For
example, for a cooling rate between 1K/s and 1000 K/s and a freezing range of 180 K the
data shown in Table 1-1 can be obtained. While these numbers should be compared to the
length scales present in the solidification process, in general, it can be said that heat
propagates faster than solute, and also, solute diffusion in the liquid is often complete

compared to the solid for the low cooling rates.

1.4 Driving Force for Solidification

The study of phase transformation involves how one or more phases in the system of
study, i.e. an alloy, change into a new phase or mixture of phases. The main reason why
the transformation occurs is because the initial state of the alloy is unstable relative to the
final state. The measurement of the relative stability of a system at constant temperature

and pressure is determined by the Gibbs 