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Abstract

Three models of a privately informed contract designer (a principal) are examined. In

the first, I study how much private information the principal wants to acquire before

offering a contract to an agent. Despite allowing her to acquire all information for

free, I prove in a general environment that there is a nontrivial set of parameters for

which it is strictly suboptimal for the principal to be completely informed, regardless

of the continuation equilibrium following any information acquisition choice. This

result holds even when the principal is able to employ the most general mechanisms

available and, in particular, when she can choose her most favourable full-information

continuation equilibria. Further, in a specialized environment I characterize the prin-

cipal’s optimal information choice.

The second is a two-state principal-agent model with moral hazard in which the

principal knows the state but the agent does not. This model is relevant to situations

where an employer has private information about the productivity of a worker in a

particular task while the worker has private information about the effort she exerts on

the job. Much of the literature on this subject restricts the employer to offer contracts

that leave her no discretion once a contract is accepted, while more general contracts

may allow the employer to exercise discretion after acceptance; such contracts are

called menu-contracts. I show when the employer can obtain strictly higher expected

payoffs by offering menu-contracts than by offering the restricted contracts used in
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the literature.

The final model studies the ability of a bidder in an auction to organize collu-

sion among her rival bidders and the resulting impact of this collusion on the seller.

Bidders valuations are private information. I show that in a two bidder, discrete,

independent private-value auction, the seller earns less when a bidder can offer her

rival a collusion proposal than in the absence of collusion. This contrasts with a cele-

brated result by Che and Kim [1] stating that for such auctions there is a mechanism

that eliminates all the effects of collusion. Che and Kim and much of the literature

assume an uninformed third-party organizes collusion.

Key Words: information acquisition, informed principal, auctions, collusion,

mechanism design

JEL Classification: D44, D82, D83, D86, C78
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Introduction

The problem of an individual bargaining with private information is well known to be

relevant to countless economic circumstances such as franchising, vertical contracting,

public procurement, auctions and managerial compensation (see Maskin and Tirole [2]

and Segal and Whinston [4]). On the other hand, such problems are technically

challenging; even in its simplest manifestation, where one player has all the bargaining

power, difficult issues arise (Myerson [3]). While a few notable works have tackled

this problem, there remains significant gaps in the theoretical literature about how

privately informed individuals behave when they have the power to shape their trading

environment.

This thesis fills in some of these gaps. In the first chapter I consider a principal-

agent model in which the principal decides how much private information to acquire

before making an offer to the agent. I prove that for non-trivial parameters of the

model it is strictly suboptimal for the principal to be completely informed. The

intuition is that to convince the agent that she is contracting honestly given her

private information, the principal may need to distort the allocation. This distortion

can be very costly ex ante. Choosing to be partially ignorant frees the principal

from these incentive constraints and partially mitigates the damage to her ex ante

payoff. In much of the relevant literature the principal is assumed to be endowed

with a fixed set of information; this chapter demonstrates that this assumption may
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be undesirable. Within the small literature that does study the principal’s incentives

to acquire information, this chapter is the first work to take a mechanism design

approach to the problem in a general environment. This generality is important since

it allows the principal to make full strategic use of any information she acquires.

In the next chapter, I expand on this last point and in so doing highlight a potential

oversight in the literature. In particular, I present a model where an employer has

private information about the potential productivity of a worker in a specific task,

who in turn has private information about the effort she exerts on the job. For

example, consider a law firm which has advanced knowledge about the likelihood of

winning a trial and needs to assign an attorney to the case. Suppose further that

the law firm cannot observe the effort the attorney exerts for the case. Much of the

literature on this subject restricts the employer to offer contracts that leave her no

discretion once a contract is accepted, while more general mechanisms may allow the

employer to exercise discretion after acceptance. Such contracts are called menu-

contracts. For example, the law firm may be restricted to paying a wage based on

the only observable outcome: whether the trial is won or lost. On the other hand,

she could in addition specify bonuses to be paid that depend on the difficulty of the

case. In this chapter I describe the advantages to the employer of presenting the

worker with a set of potential contracts from which the employer will choose after the

worker has accepted the offer. Specifically, in a two-state principal-agent model with

moral hazard, I characterize environments in which the employer can obtain strictly

higher expected payoffs by offering menu-contracts than the restricted contracts of

the literature.

In the final chapter I study collusion by bidders in an auction. I depart from

most of the literature by supposing that one of the bidders can propose the collusion

contract. The standard approach to modelling collusion is to assume the collusion

2



mechanism is designed by an uninformed third party whose mandate is to maximize a

weighted sum of the bidder’s expected surplus. This construction avoids the informed

principal problem but obscures a number of issues that are important to the modelling

of collusion; in particular, the strategic consideration of the bidder who proposes

collusion as well as the limitations or advantages that are present for the proposer

due to her private information (i.e. her valuation of the good). Within the third party

collusion framework, the literature has shown that if bidders can collude only after

agreeing to participate in the auction, then the seller can design the auction such that

her payoff is no less than if the bidders could not collude at all (see Che and Kim [1]).

In contrast, in this chapter I present an example in a bidder-led collusion framework

such that any appropriately refined equilibrium results in the seller receiving strictly

less than the payoff she would expect if bidders could not collude. Further, I develop

a framework to study the general mechanism design problem of the seller who faces

bidders who can self-organize collusion.
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Chapter 1

The Strategically Ignorant

Principal

1.1 Introduction

The problem of a privately informed principal contracting with an agent is known

to be relevant to many real world situations, as noted by Akerlof [1], Myerson [13],

Maskin and Tirole [10, 11] and Segal and Whinston [17]. For example, an insurer

may know more than the client about the risks she faces, or a franchiser may have

private access to data about demand in the territory of a franchisee. As observed in

this literature, a privately informed principal’s payoff can be constrained by her need

to convince the agent that she is contracting honestly, which can require inefficient

contracts (c.f. Akerlof [1] and Maskin and Tirole [11]).

This chapter studies the advantages to the principal of bypassing these constraints

by making the strategic choice to be ignorant. I consider a standard principal-agent

model and extend it by allowing the principal to costlessly learn about the state
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before making an offer to the agent.1 Importantly, I allow the principal to offer

a menu of contracts from which she chooses one to implement after the agent has

accepted (à la Segal and Whinston [17]).2 This approach favours the acquisition

of information; by contrast, the simpler alternative of the point-conrtact leaves the

principal no discretion once a contract is accepted and thus subjects her to the agent’s

arbitrary off-path posterior beliefs which can deter her from exploiting her private

information. For example, very inefficient contracts can be supported in equilibrium

by punishing deviations from said contracts with agent’s beliefs that put probability

1 on the worst possible state. Despite giving the principal full strategic flexibility to

exploit her information, I prove that there are nontrivial sets of preferences and prior

beliefs such that it is strictly suboptimal for the principal to acquire full information.

This holds even if an informed principal can choose the continuation equilibrium she

most desires.

In my framework, both the principal and the agent care about the state of the

world and all choices, including the information acquisition choice, are observable.

Formally, I study a static adverse selection model with common values as in Maskin

and Tirole [11]. I relax the observability of the information choice in Section 1.6.

My first result, Theorem 1.1, proves under general conditions that there are always

preferences such that the distortions required to make the menu offer incentive com-

patible are so severe that for nontrivial priors the principal finds it strictly suboptimal

to be fully informed, regardless of continuation equilibria following any information

acquisition choice.3 This results holds despite the fact that information is free in our

1I use the terminology of the literature by naming the actor that makes offers the principal while
the actor who responds the agent. The principal is labelled as such because she controls mechanism
to be played and the opposing party must accept this choice passively. A more informative, though
less standard, label for the agent may be the subordinate as used in Myerson [13].

2Menu contracts are fully general trading mechanisms due to the revelation principle.
3My strategic ignorance result is not to be confused with Myerson’s [13] inscrutability principle.

Myerson notes that the principal can never be worse off by not revealing private information when
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model and would thus hold a fortiori under the more realistic assumption that it is

costly to acquire information.

While the proof of this strategic ignorance result is technically complicated, the

intuition is straightforward. I choose preferences for the principal such that the

difference in payoff functions between two adjacent states is small. This creates an

incentive for the principal to lie in one of these states, requiring distortion in the menu-

contract to maintain the principal’s incentive compatibility. The principal prefers to

be uninformed in order to avoid this distortion ex ante. For tractability, this theorem

is based on a set of priors under which the equilibrium payoff of the fully informed

principal’s continuation game is uniquely the lower bound equilibrium payoff of the

game. Its formal proof and those of subsequent results are presented in the Appendix.

I next ask the question of whether ignorance can be an optimal strategy when

there are other equilibria in the fully informed principal’s continuation game that

deliver payoffs greater than the lower bound. In the general case, only these lower

bound payoffs can be computed; to establish the entire set of expected equilibrium

payoffs I specialize to a quasilinear, binary state environment in Section 1.4. I go

beyond Theorem 1.1 to prove not only that the answer to this next question is yes,

but that ignorance is optimal for nontrivial set of parameters of the model even when

the principal expects to attain her highest ex ante payoff conditional on becoming

informed. Thus, ignorance can be optimal even when the principal has a nontrivial

opportunity to choose which equilibrium is played, à la Myerson [13]. Moreover, I

prove that the restrictions on preferences needed for Theorem 1.1 to hold are com-

patible with quasilinearity, and provide more precise restrictions on the preferences

and priors for which the ignorance result holds.

offering her menu of contracts (thus remaining inscrutable to the agents at this stage), whereas our
result claims that foregoing the acquisition of private information can strictly improve payoffs.
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In Section 1.5 I consider the three state case to examine the subtleties of the

model when the principal is no longer restricted to being either fully informed or

completely uninformed. I prove that complete ignorance is optimal for the principal in

a nonempty open set of priors for nontrivial preferences when there are three states of

the world.4 More generally, I characterize the optimal information acquisition choice

depending on preferences and priors.

Finally, I show that when the information choice of the principal is not observed

by the agent, there is still a nontrivial set of parameters of the model under which

ignorance is chosen with positive probability in equilibrium.

1.1.1 Related Literature

The seminal work on the informed principal problem asks whether and how the

principal can exploit her informational asymmetry (Myerson [13]; Maskin and Ti-

role [10, 11]). These papers endow the principal with information and do not consider

her decision to acquire it.

Since, a handful of papers have looked at the principal’s information acquisition

problem. Nosal [15] and Crémer [5] study finite horizon principal-agent problems

in which a principal can acquire information before offering a contract. In both

papers, the information acquired by the principal becomes public before the contract

is implemented; the principal therefore does not face the same distortionary incentive

compatibility constraints that drive our results. Finkle [7] also studies the information

acquisition decision of a principal. His principal covertly acquires private information

for a cost after a contract has been signed but before the contract is implemented.

Finkle considers only contracts that induce full information acquisition. My focus

4This result is nontrivial since there is always a nonempty open set of priors such that com-
plete knowledge is optimal for any preferences and there are always preferences such that complete
knowledge is optimal for all priors.
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is different since I am concerned about how distortionary contracts can be improved

upon by acquiring less than perfect information.

A number of recent papers study the informed principal problem in other environ-

ments. With multiple agents with stochastically dependant (privately known) types,

Severinov [18] provides a construction that allows a privately informed principal to

extract all social surplus. Thus, in this environment, the principal always wishes

to obtain as much information as possible. Mylovanov and Tröger [14] focus on a

linear, independent private values environment. In contrast to our common values

environment, the principal can never lose by having private information but Mylo-

vanov and Tröger determine when the principal is not strictly better off than when

her information is public.

Particularly related to the current chapter, Silvers [19], Kaya [8], Chade and Sil-

vers [4], and Beaudry [2] study the value of the principal’s private information in

games with moral hazard and identify parameters when the principal prefers to be

ignorant. While I focus on pure adverse selection and do not consider moral hazard, I

provide a deeper consideration of the incentives for a principal to acquire information.

In each case, these authors restrict the principal to offer only point-contracts to the

agent, which leaves her no discretion once a contract is accepted. In contrast I allow

the principal to offer menu-contracts, which are fully general trading mechanisms in

our framework. By Myerson’s inscrutability principle, menu-contracts allow the prin-

cipal to reveal no information until the agent has accepted the contract then reveal the

state afterwards. This is more than a matter of technical generality. Menu-contracts

preserve the strategic nature of the informed principal problem captured in the sem-

inal work by Myerson [13] and Maskin and Tirole [10, 11], giving the principal the

best opportunity to capitalize on her informational advantage. Moreover, a restric-

tion to point-contracts can be used to exploit mistrust in the trading relationship by
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using pessimistic posteriors to support very inefficient equilibria, thus increasing the

relative value of ignorance. Allowing the principal to offer menu-contracts eliminates

these mistrustful equilibria from the game.5

1.2 An Example

The following example illustrates the main results of this chapter as well as demon-

strates the importance of considering fully general menu-contracts instead of simpler

point-contracts.

Consider a car manufacturer (the principal) who is negotiating the sale of cars

produced via a new production process to a dealership (the agent) who then resells the

cars to consumers. Suppose there is some uncertainty in the new production process

about how effectively paint can be applied to the cars: in state 1, the standard paint

does not adhere properly and requires an additive that is only effective with black

paint; in state 2, the standard paint can be applied successfully in the manufacturing

process, allowing cars to be painted in any colour. Using the additive raises the cost of

painting each car and the lack of variety reduces the demand for the car. Formally, in

state i the cost to the manufacturer of producing y units of the good is Ci(y) := ciy

with 0 < c2 < c1 < 8; in state 1, the downstream inverse demand for the car is

P 1(y) := 8 − y while in state 2 it is P 2(y) := 9 − y. Thus, given contract (y, t),

the payoff to the manufacturer in state i is V i(y, t) = t− ciy while the payoff to the

dealership is W i(y, t) = P i(y)y − t. Let π be the common prior belief that the state

5The importance of allowing more general mechanisms here is analogous to the work of Segal
and Whinston [17]. By generalizing offers in a family of bilateral contracting games to allow for
menu contracts, these authors are able to make robust predictions about the game in the sense
that they must be satisfied by all equilibria in all such games. Whether restricting the principal to
point-contracts has bite depends on the specific environment. In Chapter 2 of this dissertation I
characterize moral hazard environments where the principal can get strictly higher ex ante payoffs
when allowed to use more general mechanisms.
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of the world is 1.

Consider the case where the manufacturer is informed of the state of the world

and suppose the manufacturer can only offer a point-contract: a single pair (y, t). A

restriction to point contracts admits very low payoff equilibria for the manufacturer in

the contracting game described above. Consider first an extreme example where the

dealership is highly mistrustful of the manufacturer and rejects any offer that would

give her negative payoff in at least one state of the world. Formally, she believes

the state is 1 with probability 1 for any offer (y, t) such that P 1(y)y − t < 0 and

maintains her prior belief π otherwise. The optimal equilibrium point-contract for the

manufacturer given these beliefs is
(
yPC , tPC

)
=
(
8−c1
2
,
(
8− 8−c1

2

)
8−c1
2

)
regardless of

the state. Note that
(
yPC , tPC

)
gives the dealership zero payoff in state 1 and strictly

positive payoff in state 2.

The game where the manufacturer can offer point-contracts has other equilibria,

some of which are better for her than the one described above. For example, there is

an equilibrium where the manufacturer offers
(
yLCS1 , tLCS1

)
:=
(
8−c1
2
,
(
8− 8−c1

2

)
8−c1
2

)
in state 1 and

(yLCS2 , tLCS2 ) := argmax
(y,t)

{
t− c2y : V 1(yLCS1 , tLCS1 ) ≥ V 1(y, t), P 2(y)y = t

}
(1.1)

in state 2. This is the least-cost separating equilibrium and is the best equilibrium

for the manufacturer when she can only offer point-contracts.

Now consider the case where the manufacturer can offer menu-contracts. A menu-

contract is a list of point-contracts offered to the dealership that gives the manufac-

turer the discretion to choose which contract to implement after the dealership has

accepted. I will show that the ability to offer menu-contracts eliminates highly in-

efficient outcomes such as (yPC , tPC). In fact, menu-contracts guarantee that the
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manufacturer’s payoff is at least as high as in the least-cost separating equilibrium.

To see this, suppose the manufacturer offers the menu
{(
yLCS1 , tLCS1

)
,
(
yLCS2 , tLCS2

)}
in both states the world. This menu is acceptable to the manufacturer regardless of

her belief : it gives her non-negative payoff in each state of the world, assuming the

manufacturer chooses optimally from the menu. Since we have imposed an incentive

compatibility constraint for the manufacturer, this assumption is valid.6 Thus, the

manufacturer can always offer this menu-contract and obtain its payoff. It therefore

provides a lower bound on the payoff the manufacturer expects to earn when she is

able to offer menu-contracts. This menu-contract is called the Rothchilds-Stiglitz-

Wilson (RSW) menu-contract.7 It is introduced by Maskin and Tirole [11, p11] and

it plays a important role in our analysis below. I present its technical definition and

discuss its significance in Section 1.3.

I will now determine when the manufacturer prefers to learn the state of her

production process and when she would rather be uninformed. Let c1 = 4 and

c2 = 2.9. First note that the production efficient level of the good (i.e. the level that

equates marginal revenue with marginal cost) is 2 in state 1 and 3.05 in state 2.

The informed manufacturer’s problem potentially has multiple equilibria depend-

ing on priors which can give her higher payoffs than the RSW menu. Neverthe-

less, we will start with the RSW lower bound menu. The RSW menu is given by

{(2, 12), (4, 20)} and gives expected payoff

4π + 8.4(1− π). (1.2)

Notice that the production level of 4 in state 2 is inefficiently high: marginal cost

6See problem (1.1).
7Rothchild-Stiglitz-Wilson is a reference to the similar least cost separating contracts developed

in the insurance models of Rothschild and Stiglitz [16] and Wilson [21].
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is greater than marginal revenue; because the manufacturer’s incentive constraint is

violated at the efficient state 2 production level, production in this state must be

increased so that the constraint just binds. State 1 production is always efficient

because the manufacturer will never want to pretend to be in state 1 when it is state

2 (i.e. the downward incentive constraint for the manufacturer will never bind). Since

the dealership gets zero rents regardless of how much information the manufacturer

has acquired, the value of information for the manufacture, given the RSW payoff is

earned when the state is learned, is decreasing in the production distortion of state

2. A smaller difference between the marginal cost of production in the two states

generates bigger distortions in state 2 and therefore reduces the value of information

for the manufacturer.

Meanwhile, the uninformed manufacturer solves the problem

max
(y,t)
{t− (4π + 2.9(1− π))y | (8π + 9(1− π)− y)y − t ≥ 0}.

The value of this problem is

(
4π + 6.1(1− π)

2

)2

. (1.3)

Expression (1.3) is strictly greater than (1.2) if and only if π < 0.82. So ignorance is

preferred when the manufacturer expects the RSW menu to be played in equilibrium

as long as the prior is below a cut-off value. This is because the inefficiency in the

RSW menu occurs only in state 2; the manufacturer has to expect that state 2 is

sufficiency likely to occur to prefer ignorance.

Depending on priors, other menu-contract equilibria can exist that give higher

payoffs to the informed manufacturer ex ante. In particular, in Section 1.4 we charac-

terize the highest payoff the informed manufacturer can expect. Although the details
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are beyond the scope of this section, one can show that being ignorant of the state

delivers strictly higher payoffs for the manufacturer ex ante than any equilibrium

menu-contract if and only if π ∈ (0.62, 0.82).

I have discussed why this interval has an upper cut-off. To understand the lower

bound on this interval consider that for low π the manufacturer can mitigate the

inefficiency in state 2. Myerson’s [13] inscrutability principle states that we can

assume without loss of generality that the manufacturer offers the same menu in

both states of the world. This implies that dealership evaluates the menu offer using

her prior belief: i.e. she accepts the offer if and only if her participation constraint is

satisfied on average:

π[(8− y1)y1 − t1] + (1− π)[(9− y2)y2 − t2] ≥ 0. (1.4)

Now suppose we set y2 to be efficient and at the same time increase t1 and decrease

t2 until the manufacturer’s incentive constraint is just satisfied. When we do this, the

first term of (1.4) becomes negative but the second term becomes positive. For small

enough π, (1.4) will be satisfied and the dealership will accept the menu. Meanwhile,

the manufacturer earns the full expected trade surplus at this prior and therefore

chooses to become informed.8 As π increases, eventually full efficiency will not be

attainable. In this example, when π = 0.62, it is just low enough that the closest the

manufacturer can get to the efficient y2 generates ex ante payoffs that are equal to

the uninformed manufacturer’s payoff.

Finally, in this example the highest payoff the informed manufacturer can achieve

under point-contracts is the RSW payoff, by definition the least cost separating equi-

8While it is true that for small π the uninformed level of production is close to efficient, it will
never reach full efficiency as long as π is positive. Since full efficiency is possible through the menu-
contract constructed as described, being informed always dominates not being informed at these low
levels of π.
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librium.9 For π < 0.82, even this payoff is less than the uninformed equilibrium payoff

(1.3). In contrast, we can show that if c2 < 2.73 (with c1 = 4), there exists at least

one menu-contract for any prior such that it is better to be informed. Thus, if we

were only to look at point-contracts in this case (with c2 < 2.73 and low enough π)

we would conclude that the principal has a negative value of information whereas this

value can be positive when menu-contracts are allowed.

1.3 The Model and Suboptimality of Full Informa-

tion

The state space is N = {1, . . . , n} for n < ∞. The game proceeds in four stages.

First, the principal makes an information acquisition choice: a partition of the state

space. This choice is observable and verifiable and the principal privately observes

the partition cell to which the state belongs. There is no cost associated with the

information choice. Second, she offers a menu of contracts. Third, the agent accepts

or rejects the offer. Rejection leaves all parties with zero payoff. Acceptance leads to

the final stage where the principal chooses a contract from the menu and said contract

is implemented. The principal and agent can commit to the menu-contract which the

agent accepted.

A contract specifies an action-transfer pair (y, t) ∈ R2. In state i ∈ N , when

contract (y, t) is implemented, the principal earns payoff V i(y, t) and the agent earns

payoff W i(y, t). I follow the notational convention of Maskin and Tirole [11] by having

superscripts on payoff functions indicate the state. Both functions V i and W i are

continuously differentiable and concave in (y, t). Function V i is increasing in t and

9It can be shown that no pooling equilibrium can ever be sustained: the state 1 manufacturer
will always wish to deviate.
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decreasing in y while W i is increasing in y and decreasing in t. In addition, W i is

increasing in state i for almost all (y, t). I make no explicit assumptions about the

principal’s preferences over states although item (iii) in Assumption 1.1 below puts

some structure over how the principal’s marginal rates of substitution varies by state.

Both parties are expected utility maximizers.

I adopt the following standard sorting assumption on preferences from Maskin

and Tirole [11]. Subscripts on payoff functions denote partial derivatives: V i
y (y, t) =

∂V i(y, t)/∂y, V i
t (y, t) = ∂V i(y, t)/∂t with agent’s marginal payoffs defined analo-

gously.

Assumption 1.1 (Sorting) (i) W i
y(y, t) ≥ 0 for all (y, t) ∈ R2 and there is an

ε > 0 such that V i
y (y, t) < −ε, V i

t (y, t) > ε, W i
t (y, t) < −ε for all i ∈ N and all

(y, t) ∈ R2;

(ii) for all numbers w̄ and v̄ there exists a finite solution to the problem maxV i(y, t)

subject to v̄ ≥ V i(y, t) and W i(y, t) ≥ w̄.

(iii) −V i
y (y, t)/V i

t (y, t) > −V j
y (y, t)/V j

t (y, t) for all i < j ∈ N and all (y, t) ∈ R2.

In this framework, the menu contracts described above are direct revelation mecha-

nisms: a list of n contracts {(yi, ti)}ni=1 such that the principal offers the menu-contract

in stage two of the game and chooses a contract from the menu to implement in stage

four of the game. Due to the revelation principle, menu-contracts are fully general

trading mechanisms.

An important menu-contract in the informed principal game is the RSW menu.10

Introduced by Maskin and Tirole [11, p11], it generates the lower bound payoff for

the informed principal and it plays a large role in our analysis below. I now present

its technical definition then provide intuition about why it is the principal’s lower

10RSW is an acronym for Rothchild-Stiglitz-Wilson. See footnote 7.
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bound payoff.

Definition 1.1 The RSW payoff for the principal in state j is the principal’s lower

bound payoff in that state. It is attained by solving the problem

V j
r := max

{(yk,tk)}k∈N
V j(yj, tj)

s.t. (RSW-IC[l,k]) V l(yl, tl) ≥ V l(yk, tk) for all l, k ∈ N ; and

(RSW-IR[k]) W k(yk, tk) ≥ 0 for all k ∈ N .

Denote by
(
yrj , t

r
j

)
the state j principal’s contract in her solution to this problem. Let

{(yrk, trk)}k∈N denote the menu such that each (yrk, t
r
k) solves the RSW problem for all

k ∈ N .

The RSW problem generates lower bound payoffs for the principal in state j since

the agent will accept any RSW menu regardless of her belief about the state of the

world.11 To see this, note first that the RSW problem for the principal in state j

specifies an entire menu: a contract for each state k ∈ N . This menu must be

incentive compatible in every state k ∈ N , not just state j. Finally, this menu must

guarantee the agent her reservation payoff ex post in every state. Thus, the agent will

always accept an RSW menu. The principal in any state j ∈ N can always deviate

to her RSW menu and get payoff V j
r .12

Theorem 1.1 Suppose Assumption 1.1 holds. Then, for any set of payoffs (W 1, . . . ,W n)

for the agent, there are payoffs functions (V 1, . . . , V n) for the principal and a nonempty

open set of priors such that for any priors in this set, the principal finds it strictly

11In terms of Myerson [13], any feasible solution to the RSW problem is safe. The RSW menu
for the principal in state j is the best safe menu in state j.

12For further discussion of RSW menus and a general characterization of equilibrium menus in
this framework, see Maskin and Tirole [11]
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suboptimal to be fully informed regardless of the continuation equilibria (in pure strate-

gies) following information acquisition.

The formal proof of this theorem and all subsequent results appear in Section

1.8. To prove this theorem, we restrict priors such that within the restricted set

the equilibrium payoff of the fully informed principal’s continuation game is uniquely

the RSW payoff. That is, under the set of priors referred to in the theorem, the

principal’s payoff when fully informed is unique and is her lower bound payoff for

the fully informed continuation game. In the next section we show that the strategic

ignorance result holds when there are multiple equilibria with payoffs that are greater

than the RSW payoff for the principal in all states.

1.4 Strategic Ignorance Despite Multiple Equilib-

ria

In this section we specialize to the quasilinear, binary state environment. Here, we

are able to characterize the entire set of equilibrium payoffs. I therefore go beyond

Theorem 1.1 to prove that ignorance can be optimal even when there exist equilibrium

payoffs higher than the RSW lower bound, and in particular that ignorance is optimal

for nontrivial parameters of the model even when the principal expects to attain her

highest ex ante payoff conditional on becoming informed. This is shown in Theorem

1.2. Thus ignorance can be optimal even when principal can choose from among

multiple equilibria, conditional on being informed, via persuasion over the agent’s

beliefs (à la Myerson [13]).
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1.4.1 Preferences and Supplemental Assumptions

Let n = 2. Given contract (y, t), the principal gets payoff V i(y, t) = t − Ci(y) for

i ∈ {1, 2} and the agent gets payoff W i(y, t) = U i(y) − t. Let MC i := dCi/dy and

MU i := dU i/dy for all i ∈ {1, 2}. I will refer to Ci as the principal’s cost in state i

and U i as the agent’s revenue in state i.

I assume these payoff functions have the same properties as defined in the Intro-

duction and satisfy Assumption 1.1. I make the following further assumptions on the

principal’s cost function.

Assumption 1.2 For all states i ∈ {1, 2}: (i) Ci is strictly decreasing in i for all

y 6= 0; and (ii) dMCi(·)/dy is nondecreasing in i.

Item (i) says that the principal and the agent agree about which state is the good

state.13 Item (ii) ensures that the RSW contract is unique and deterministic. For

example, Ci(y) = y2 − iy + 2− i satisfies all our assumptions for y > 0.

Since an information choice is a partition of the state space, for n = 2 the principal

is either fully informed or completely ignorant. If the principal chooses not to learn

the state, the offer in stage two is a single contract. Define π := π1 as the probability

that the state is 1. In this case, the contract is the solution to the uninformed

principal’s problem:

Vu(π) := max
(y,t)

{
t− πC1(y)− (1− π)C2(y) | πU1(y) + (1− π)U2(y)− t ≥ 0

}
. (1.5)

An equilibrium consists of an information acquisition choice (either ignorance or

knowledge) together with a contract for each known state and a list of accept/reject

decisions from the agent corresponding to any information choice and menu offered

13This eases incentive compatibility requirements relative to the case where they disagree. I
therefore expect the results to carry over to the latter case.
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such that the information strategy, the offer, and list of the agent’s decisions constitute

a perfect Bayesian Nash equilibrium.

Define

κ := sup
y
MC1(y)/MC2(y) > 1.

The parameter κ measures the severity of distortions needed in an informed principal’s

menu to maintain incentive compatibility as a function of preferences.

1.4.2 Ignorance and the Best Ex Ante Informed Payoff

The following problem delivers the highest equilibrium payoff the principal can ex-

pect ex ante conditional on becoming informed. The ex ante optimal informed

principal’s problem is

V ∗(π) := max
{(yi,ti)}i∈{1,2}

∑
i∈{1,2}

πi
(
ti − Ci(yi)

)
(1.6)

s.t. (IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ {1, 2}

(IR)
∑
i∈{1,2}

πi
(
U i(yi)− ti

)
≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ {1, 2}.

The constraints NB[i] for i ∈ N are the non-blocking constraints. They state that the

informed principal cannot commit to a contract that gives her a payoff lower than

her RSW payoff in any state. Maskin and Tirole’s [11, p19] Theorem 1 proves that

these constraints form sufficient and necessary conditions for a menu-contract to be

an equilibrium.

Next, we define an ordering for menus among the principal in different states. One

menu is superior to another if it delivers strictly higher payoff to the principal in at
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least one state and at least as high a payoff in the other.

Definition 1.2 A menu {(yi, ti)}i∈N is superior to another menu {(y′i, t′i)}i∈{1,2}

if ti − Ci(yi) ≥ t′i − Ci(y′i) for all i ∈ {1, 2} and there exists j ∈ {1, 2} such that

tj − Cj(yj) > t′i − Cj(y′j).

Our main result of this section says that there exist preferences such that even

when the principal expects to earn V ∗ and that payoff is superior to her RSW payoff,

she will still wish to remain ignorant of the state for a nontrivial set of priors.

Theorem 1.2 Suppose Assumptions 1.1 and 1.2 hold. If κ is sufficiently close to

1, there exists a nonempty, open interval of priors such that, for any priors in this

interval, the principal is uninformed regardless of the continuation equilibrium played

following information acquisition and there are multiple continuation equilibria fol-

lowing information acquisition that are superior to the informed principal’s RSW

lower bound.

In particular, for any preferences and priors π specified in the theorem, choosing to

be ignorant delivers strictly higher payoff than becoming informed and earning payoff

V ∗(π).

To discuss the intuition of Theorem 1.2 we define the first best menu of contracts.

Definition 1.3 Let action yEi be called efficient in state i ∈ {1, 2} if MC(yEi ) =

MU(yEi ). A menu is first best if it is efficient in both states. Define

V FB(π) := π
(
U1(yE1 )− C1(yE1 )

)
+ (1− π)

(
U2(yE2 )− C2(yE2 )

)
to be the value of the first best menu to the principal ex ante.
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Figure 1.1 illustrates the following intuition behind Theorem 1.2. I show in Lemma

1.9 in Section 1.8.2 that when κ is close to 1, RSW-IC[1,2] binds and as a result yr2 >

yE2 . The RSW menu in the continuation game following full information acquisition

is thus distorted away from the first best. For low π (lower than πFB in Figure

1.1), the menu that solves problem (1.6) can completely mitigate this inefficiency and

the principal can attain the first best payoff ex ante. As π increases, however, this

become impossible to do and V ∗ eventually settles to the RSW lower bound payoff

Vr(π) := πV 1
r + (1− π)V 2

r . I label this point πr.

In Proposition 1.1 (to follow), we show that there exists preferences and π∗ ≤ 1

such that Vu(π) > Vr(π) for all priors π ∈ (0, π∗): ignorance generates a higher

payoff than the expected RSW payoff for the principal. This can be seen in Figure

1.1. Further, in Proposition 1.2 we show that that V ∗ is continuous and that there

exists preferences such that πr < π∗. Thus, Vu(π) − V ∗(π) < 0 for π ∈
(
0, πFB

]
and Vu(π) − V ∗(π) > 0 for π ∈ [πr, π∗). Since both Vu and V ∗ are continuous,

the intermediate value theorem states there must be some π′ ∈ (πFB, πr) such that

Vu(π
′) = V ∗(π′).14 Thus, for π ∈ (π′, πr), we have Vu(π) > V ∗(π) > Vr(π): the

statements of Theorem 1.2 hold.

The next proposition establishes the value of the ignorant principal’s problem

(1.5) relative to the ex ante RSW payoff and characterizes this relative value in terms

of preferences and priors.

Proposition 1.1 Suppose Assumptions 1.1 and 1.2 hold. If κ is sufficiently close to

1 then there exists π∗ ∈ (0, 1] such that for any priors π ∈ (0, π∗), Vu(π) > Vr(π): the

principal strictly prefers her ignorant payoff to her informed ex ante RSW payoff; if

π ∈ (π∗, 1), then Vu(π) < Vr(π). Moreover, there exists κ such that π∗ = 1 if κ < κ.

Figure 2.1 illustrates the following intuition behind Proposition 1.1. Figure 1.2(a)

14If there are multiple such π′, choose the largest.
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Figure 1.1: This figure illustrates Theorem 1.2. Note the nonempty, open set of priors such that

Vu(π) > V ∗(π) > Vr(π).

plots, in (y, t)-space, the informed RSW solution when the informed principal is

constrained by incentive compatibility. It illustrates how the RSW contract en-

tails inefficiently high y in state 2 and efficient y in state 1. To see why the RSW

action is efficient in state 1, note that the principal can offer the menu-contract{(
yE, U(yE)

)
,
(
yE, U(yE)

)}
. It is straight forward to check that this menu is ex post

incentive compatible (i.e. satisfies RSW-IC[1,2] and RSW-IC[2,1]) and is individually

rational for the agent in both states. Thus,
{(
yE, U(yE)

)
,
(
yE, U(yE)

)}
is an RSW

menu for the principal in state 1. Since
(
yE, U(yE)

)
is a tangency point on the agent’s

indifference curve at her reservation utility, it is the unique state contract that gives

the state 1 principal her efficient payoff U1(yE) − C1(yE) and therefore the unique

state 1 contract in the RSW menu. The state 2 contract in the RSW menu is then the

least cost separating equilibrium, as plotted in the figure. The Figure 1.2(b) plots the

functions Vu and Vr when κ is sufficiently close to 1 that the state 2 RSW contract is

inefficient.

Notice that the state i RSW problem is independent of priors; this implies that,

even as the probability of state 2 approaches 1, the value of the RSW problem for the

state 2 principal will be less than the value of the first-best menu. Meanwhile, the
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(a) V i indicates the RSW indifference curve for
the principal in state i.

(b) V E
2 := U2(yE2 )−C2(yE2 ) is the value of the

efficient contract payoff to the principal in state
2.

Figure 1.2: Example of informed principal RSW solution and value function and uninfored value

function when the principal is constrained by incentive compatility

uninformed principal is unburdened by incentive compatibility constraints and her ex

post payoff approaches efficient levels as π approach 0 and 1. Further, the uninformed

value function is convex in π. Since Vr is linear in π, these value functions must

intersect at most twice as a function of π: once at π = 1, since the state 1 contract is

always efficient when the principal is informed, and once at some π ≥ 0. Denote the

first intersection as π increases from 0 to 1 by π∗. As Proposition 1.1 asserts, π∗ > 0

for κ close enough to 1. For all priors π < π∗, the uninformed principal’s payoff will

be higher ex ante than the informed principal RSW payoff.

Our next proposition states that there exists preferences and priors such that the

optimal ex ante equilibrium payoff is achieved by being ignorant of the state, even

when the principal expects to attain V ∗ upon becoming informed.

Proposition 1.2 Suppose Assumptions 1.1 and 1.2 hold. If κ is sufficiently close to

1 then there exists πr < π∗ such that for any priors π ∈ (πr, π∗), Vu(π) > V ∗(π) =

Vr(π): the unique ex ante optimal informed payoff is the RSW payoff and the unin-

formed principal’s payoff is strictly larger.
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Remark 1 While Propositions 1.1 and 1.2 may appear to be corollaries of Theorem

1.1, they are making stronger statements than such a corollary could make. First,

our assumptions on preferences (i.e. that κ is sufficiently close to 1) restrict only the

second order properties of the payoff functions rather than the entire function as in

Theorem 1.1. Moreover, Theorem 1.1 could not be specific about which priors admit

ignorance as an optimal strategy whereas the results in this section can.

The main task in the proof of Proposition 1.2 is to characterize the ex ante optimal

informed principal problem (1.6). This allows us to prove the existence of πr and,

importantly, that it is strictly less than 1. Further, we show that V ∗ is continuous.

The existence of πr is proved by demonstrating that for high enough π the state

2 RSW contract cannot be altered at all without violating either the state 1 princi-

pal’s incentive compatibility constraint or the agent’s individual rationality constraint.

Thus, V ∗ must equal the ex ante RSW payoff for such priors. To see this, note that

to improve on the RSW payoff we must reduce yr2 closer to its efficient level: since

the principal gets all gains from trade in the RSW payoff, the only way to increase

her payoff is to increase the gains from trade. Decreasing y2 requires that we deliver

a higher payoff to the state 1 principal to maintain incentive compatibility. Since yr1

is efficient, however, U1 is tangent to C1 at (yr1, t
r
1). This implies that the agent’s

payoff must be less than her reservation value in state 1. I can give the agent a payoff

higher than her reservation value in state 2 as we move y2 closer to yE2 to balance out

this state 1 deficit ex ante; if π is too large, however, we cannot give the agent a high

enough surplus in state 2 to make up for the deficit in state 1 that is required to main-

tain incentive compatibility. I label πr as the prior at which this point is just hit as

π increases from 0 to 1 and we note that πr < 1 since the state 1 indifference curve is

everywhere steeper than the state 2 indifference curve. Hence, for π ∈ [πr, 1), we have

V ∗(π) = Vr(π). Finally, we can appeal to Proposition 1.1 and choose κ close enough
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to 1 such that π∗ > πr. Then for π ∈ (πr, π∗), we have V ∗(π) = Vr(π) < Vu(π).

The results in this section have so far used the distortionary effects of the incentive

constraints conditional on the principal being informed as a sufficient condition for

ignorance of the state to be of strategic advantage. The final proposition of this

section shows that binding incentive constraints in the menu offered by the informed

principal are also necessary.

Proposition 1.3 If RSW-IC[1,2] does not bind, then ignorance will never be chosen

in equilibrium. Moreover, the informed RSW problem generates the first best menu

and the unique equilibrium payoff for all priors.

1.5 Optimal Information Structure: Three States

In this section we consider the three state case to examine the subtleties of the

model when the principal no longer faces a binary choice of information acquisition.

She can now choose how informed or how ignorant she wishes to be. I show that

complete ignorance of the state is optimal for the principal in a nonempty open set of

priors for nontrivial preferences. More generally, we characterize optimal information

acquisition choice depending on preferences and priors. Further, we find that if the

principal is exogenously restricted to choosing between complete knowledge of the

state or complete ignorance, there are preferences and a nonempty open set of priors

such that complete ignorance is preferred.

1.5.1 General Information Structures

An information choice by the principal consists of any partition of the set N . Let P

be the set of all partitions of N . I will refer to p ∈ P as an information acquisition

option; the ith cell of p is denoted pi and is referred to as an information set. Given
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information acquisition option p, the state space becomes p in a new informed prin-

cipal problem with typical state pi. A choice of information option p generates payoff

functions

Cpi(y) :=

(
1∑

j∈pi πj

)∑
j∈pi

πjC
j(y)

Upi(y) :=

(
1∑

j∈pi πj

)∑
j∈pi

πjU
j(y)

for each information set pi ∈ p. Associated with each p ∈P there is an RSW menu

which we denote the p-RSW menu.15

Our goal is to analyze the optimal information acquisition options in this environ-

ment. As in the case of two states, we use the closeness of the relative marginal costs

between states to measure the severity of the distortions introduced by the incentive

constraints. Since the information acquisition choice is no longer binary, however, we

require a second parameter. The second measures the separateness of the relative

marginal costs between states. Whereas the first provided us with sufficient condi-

tions for ignorance between two states, the second will provide sufficient conditions

for the principal to be informed of the two states. Define the following

κSi := sup
y

MCi(y)

MC i+1(y)
; and (1.7)

κIi := inf
y>yEi

MCi(y)

MC i+1(y)
(1.8)

for all i ∈ N \ {n} where yEi satisfies MU i(yEi ) = MCi(yEi ).

15See Section 1.8.3 for a formal description of the p-RSW menu.
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1.5.2 Three states of the world

Our result in this section identifies sufficient conditions for certain information ac-

quisition strategies to be optimal. Figure 1.3, panels (a) to (c) indicate (the shaded

areas) the priors under which Proposition 1.4 parts (A) to (C) apply respectively in

a 3 dimensional simplex.

Proposition 1.4 Suppose Assumptions 1.1 and 1.2 hold. Let ∆3
o := {π ∈ (0, 1)3|

∑
i πi =

1} be the set of non-degenerate priors and p1 = {{1, 2} , {3}} , p2 = {{1} , {2, 3}} ,

p3 = {{1, 2, 3}} , p4 = {{1} , {2} , {3}} , and p5 = {{1, 3} , {2}} .

(A) There exists κ̄S1 > 1 and κI2 such that for κS1 < κ̄S1 and κI2 > κI2, there exists

π̂ ∈ ∆3
o such that for any

π ∈

π′ ∈ ∆3
π1 ∈ (π′1, 1),

π′1
π′1+π

′
2
∈
(

π̂1

π̂1+π̂2
, 1
)
,

π′2
π′2+π

′
3
∈
(

π̂2

π̂2+π̂3
, 1
)

π′1 + π′3 ∈ (π̂1 + π̂3, 1),
π′1

π′1+π
′
3
∈
(

π̂1

π̂1+π̂3
, 1
)


the optimal information acquisition option is p1;

(B) There exists κ̄S2 > 1 and κI1 such that for κS2 > κ̄S1 and κI1 < κI2, then there exists

π̂ ∈ ∆3
o such that for any

π ∈

π′ ∈ ∆3
π′2 ∈ (π̂2, 1),

π′2
π′2+π

′
3
∈
(

π̂2

π̂2+π̂3
, 1
)
,

π′1
π′1+π

′
2
∈
(

0, π̂1

π̂1+π̂2

)
,

π′1
π′1+π

′
3
∈
(

0, π̂1

π̂1+π̂3

)


the optimal information acquisition option is p2; and

(C) There exists κS1 > 1 and κS2 > 1 such that if κS1 < κS1 and κS2 < κS2 , then there
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exists π̂ ∈ ∆3
o such that for any

π ∈

π′ ∈ ∆3
π′1 + π′2 ∈ (π̂1 + π̂2, 1) , π′1 ∈ (π̂1, 1) ,

π′1
π′1+π

′
2
∈
(

π̂1

π̂1+π̂2
, 1
)
, π′1 ∈ (π̂1, 1) ,

π′1
π′1+π

′
3
∈
(

π̂1

π̂1+π̂3
, 1
)


the optimal information acquisition option is p3.

(D) There exists κ̄I1 > 1 and κ̄I2 > 1 such that if κI1 > κ̄I1 and κI2 > κ̄I2 then the optimal

information acquisition option is p4. Moreover, there exists π̂ ∈ ∆3
o such that if

π3 ∈ (π̂3, 1) then the optimal information acquisition option is p4.

(a) p1 optimal information acquisi-
tion option (κS1 close to 1, κI2 large).

(b) p2 optimal information acquisi-
tion option (κS2 close to 1, κI1 large).

(c) p3 optimal information acquisi-
tion option (both κS1 and κS2 close to
1).

(d) Full ignorance preferred to full
knowledge in restricted game (κS1
close to 1, κI2 large).

Figure 1.3: Proposition 1.4 and Corollary 1 are illustrated in this figure. The labels on the vertices
indicate the probability-one state. The dashed lines represent the restrictions on priors stipulated
in the propositions. Panels (a) to(c) demonstrate the priors under which Proposition 1.4 (A), (B),
and (C) apply respectively. Panel (d), indicate priors under which Corollary 1 applies if κS1 close to
1 and κI2 large.
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Notice that information acquisition options p1, p2 and p5 are two-cell partitions. In

the proof of Proposition 1.4, we treat these as two state informed principal problems

to which we can apply Proposition 1.2 to compare their values to the fully ignorant

information acquisition strategy p3 and characterize the priors and preferences under

which they are preferred to p3 or vice versa. This is straightforward for p1 and p2

– they induce preferences that conform to Assumptions 1.1 and 1.2 – but to use

Proposition 1.2 on p5 we must first ensure that the payoff functions it generates

conform to Assumptions 1.1 and 1.2. For parts (A) and (C) this is done by restricting

priors such that π1 is large relative to π3 so that event {1, 3} is analogous to state 1

in Section 1.4 and for part (B) we restrict priors such that π1 is small relative to π3

so that event {1, 3} is analogous to state 2. Comparing the values from these two-cell

partitions to the fully informed information acquisition strategy p4 and characterizing

the priors and preferences under which they are preferred to p4 or vice versa uses

techniques similar to those used to prove Theorem 1.1.

I have no theory to directly compare the value of the two-cell partitions to each

other, or to directly compare the fully informed payoff to the fully ignorant payoff.

To characterize the priors and preferences under which one is preferred to the other

in each case, we use indirect comparisons over which Proposition 1.2 can be used.

Take for example item (A) of Proposition 1.4. I first note that in the continuation

game following information acquisition option p1 is a two state informed principal

game and the p1-RSW menu is first best, given the information acquisition option.

Therefore, by Proposition 1.3, the principal must prefer p1 to the fully ignorant op-

tion p3. Next we characterize priors under which the p4-RSW payoff is the unique

payoff following information acquisition option p4 and the p4-RSW payoff is strictly

lower than any p1 equilibrium payoff using Proposition 1.2; this requires that π1 is

sufficiently close to 1 and sufficiently larger than π2 respectively.
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The next two steps compare the value of choosing information acquisition strategy

p1 to p2 and p5 indirectly by comparing the latter values to information acquisition

option p3. The p2-RSW payoff is the unique payoff following information acquisition

option p2 and the p2-RSW payoff is strictly lower than any p3 equilibrium payoff if

π1 is sufficiently close to 1 and π2 sufficiently larger than π3. To use Proposition 1.2

to compare p5 to p3 we need to ensure that p5 conforms to Assumptions 1.1 and 1.2.

This is so if π1 is sufficiently larger than π3. Then, applying Proposition 1.2, the

p5-RSW payoff is the unique payoff following information acquisition option p5 and

the p5-RSW payoff is strictly lower than the p3 payoff if π1 + π3 is sufficiently close

to 1.

Thus, we have developed a set of restriction on priors such that within this set of

priors, ex ante, the principal knows that if she chooses any information acquisition

option other than p1, she will attain her RSW payoff for that information acquisition

option and this payoff is necessarily less than the payoff to choosing information

acquisition option p1. I note that this intersection is open and nonempty, since any

priors such that π1 is sufficiently large (but less than 1) and π2 is sufficiently larger

than π3 is in this intersection.

In the final result in this section, we present a corollary to Proposition 1.4 where

we consider an environment in which it is technologically infeasible for the principal

to choose any partition of N . In particular, we suppose that she is restricted to

choosing either to acquire full information or no information.

Corollary 1 Suppose the principal was restricted to choose between complete knowl-

edge and complete ignorance. If either κS1 or κS2 is close to 1, (so some ignorance

is desired in the unrestricted game) there is a nonempty set of priors for which the

principal prefers complete ignorance.
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Figure 1.3, panel (d) indicate the priors under which Corollary 1 applies in a 3

dimensional simplex if κS1 close to 1 and κI2 large.

1.6 Information Acquisition as Hidden Action

In this section we examine the case where the principal’s information acquisition

decision is her private information. The problem becomes one of an informed principal

with three states in which one of the states is endogenously chosen by the principal:

the informed principal in each of the two states and the uninformed state of the

principal.

A menu-contract is a list {(y0, t0), (y1, t1), (y2, t2)} where state 0 is the uninformed

state. Let α ∈ [0, 1] denote the probability that the principal becomes informed.

Thus, α is the principal’s information acquisition strategy. Finally, define C0(y) :=

πC1(y)+(1−π)C2(y) to be the expected cost of implementing effort y for the principal

and U0(y) := πU1(y) + (1 − π)U2(y) to be the expected revenue of effort y for the

agent.

Our first result shows that there is always an equilibrium where the principal is

informed with zero probability.

Lemma 1.1 There always exists an equilibrium with α = 0.

On the other hand, we assert in our next proposition that a payoff equivalent equi-

librium exists in which the principal is uninformed with strictly positive probability

if κ is close enough to 1.

Proposition 1.5 Suppose Assumptions 1.1 and 1.2 hold. If κ is sufficiently close to

1, then there exists a nonempty open interval of priors such that the principal remains

ignorant with positive probability.
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As shown in the proof of Lemma 1.1, incentive compatibility ensures that the

payoff to the uninformed principal will never be larger than that of the informed

principal in expectation. To prove Proposition 1.5, we start with an equilibrium

where the principal acquires information with zero probability and construct a payoff

equivalent equilibrium where she acquires information with strictly positive proba-

bility. As long as κ is sufficiently small, there is an interval of priors such that the

contract is inefficient in at least one state. This allows us to increase the agent’s pay-

off while maintaining the principal’s payoff, thus creating a surplus for the agent in

this state. By choosing a sufficiently low but positive α, we can leverage this surplus

to increase the payoff to the uninformed principal sufficiently high to make her indif-

ferent between being informed and being ignorant while maintaining the individual

rationality constraint. The formal construction of the payoff equivalent contract is

demonstrated in the proof.

1.7 Conclusion

I have studied a principal-agent problem where the principal can decide how much

private information to (costlessly) acquire before offering a contract to an uninformed

agent. Importantly, the state is directly payoff relevant to both the principal and the

agent. In this setting I have found that the principal will not choose to be completely

informed of the state for some priors as long as her payoffs between at least two states

of the world are sufficiently close. Indeed, this result holds regardless of the contin-

uation equilibrium played following any information acquisition choice and is robust

to the existence of multiple equilibria in the informed principal continuation game. I

show further, in a three state, quasilinear environment, that the principal chooses to

be completely ignorant of the state for nontrivial parameters of the model. Notably,
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these results were obtained in a full mechanism design framework: the principal was

given full strategic flexibility to make use of whatever information she decides to

acquire.

1.8 Proofs

I assume that incentive compatibility constraints are still imposed at degenerate pri-

ors.

1.8.1 The Suboptimality of Full Information

Proof of Theorem 1.1 Before we prove Theorem 1.1, we first describe how As-

sumption 1.1 simplifies the computation of an RSW menu according to Proposition 2

in Maskin and Tirole [11, p12].

Proposition 2, Maskin and Tirole [11] Suppose Assumption 1.1 holds. The RSW

allocation (within the class of deterministic solutions) is obtained by successively solv-

ing the following programs:

max
(y1,t1)

V 1(y1, t1) (RSW1)

s.t. (RSW-IR[1]) W 1(y1, t1) = 0

and for all k = 2, . . . , n, given (y1, t1), . . . , (yk−1, tk−1)

max
(yk,tk)

V k(yk, tk) (RSWk)

s.t. (RSW-IC[k-1,k]) V k(yk−1, tk−1) ≥ V k−1(yk, tk); and

(RSW-IR[k]) W k(yk, tk) = 0
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Further, yk−1 < yk and tk−1 < tk for all k = 2, . . . , n.

Remark 2 Note that, (i) the RSW individual rationality constraints in each state

always bind; (ii) of all the incentive compatibility constraints, only those of the form

RSW-IC[j, j + 1] for all j ∈ {1, . . . , n − 1} can possibly bind; (iii) the constraint

RSW-IC[j − 1, j] only shows up in the RSW problem of the principal in state j; (iv)

the choice variable in each state is now a single contract rather than a full menu; and

(v) (yrj , t
r
j) is strictly increasing in the state j.

Let π ∈ ∆n :=
{
π̂ ∈ [0, 1]n :

∑
i∈N π̂i = 1

}
be the common prior belief over the

state spaceN . I begin by defining two information acquisition options for the principal

(one partially ignorant, one fully informed) and their payoffs. Choose any i ∈ N and

consider:

(a) FI: The full information option reveals the precise state before the contract is

offered;

(b) PI: The partial ignorance option reveals all states precisely unless that state is

either i or i+ 1; if the state is either i or i+ 1, it is only revealed that the state

is in {i, i+ 1}.

I refer to the continuation game following the information acquisition option FI

as the original game and the continuation game following the information acquisition

option PI as the modified game. Our goal is to compare the ex ante RSW payoffs for

each game.

Consider the principal in the interim stage who knows that the state is in {i, i+1};

call her the {i, i+ 1}-state principal. Let

α =
πi

πi + πi+1

.
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The {i, i+ 1}-state principal’s interim expected payoff from choosing FI is

V
{i,i+1}
FI (α) := αV i

r + (1− α)V i+1
r .

Consider the modified game that treats {i, i + 1} as a single state: the state

space is N̂ = {1, . . . , i− 1, {i, i+ 1}, i+ 2, . . . , n}, the principal has payoff V j(y, t)

and the agent has payoff W j(y, t) in all states j = 1, . . . , i−1, i+ 2, . . . , n and payoffs

V {i,i+1}(y, t) := αV i(y, t) + (1 − α)V i+1(y, t) and W {i,i+1}(y, t) := αW i(y, t) + (1 −

α)W i+1(y, t) respectively in state {i, i+ 1}, given contract (y, t).

The following lemma establishes the state {i, i+1} RSW problem for the principal

who chooses PI.

Lemma 1.2 The interim expected payoff for the principal from playing PI is repre-

sented by the problem

V i,i+1
PI (α) := max

(y,t)
αV i(y, t) + (1− α)V i+1(y, t) (1.9)

s.t αW i(y, t) + (1− α)W i+1(y, t) = 0

V i−1(yri−1, t
r
i−1) ≥ V i−1(y, t).

Proof The result follows from Proposition 2 of Maskin and Tirole [11] if we can

show that the modified game with state space N̂ = {1, . . . , {i, i+ 1}, . . . , n} satisfies

the associated Sorting Assumption 1.1. In the modified game, we treat the combined

states {i, i+ 1} as a single state.

By inspection, items (i) and (ii) of Sorting Assumption 1.1 are satisfied in the

modified game. For item (iii) we need to show that −V i+2
y

V i+2
t

< −αV i
y+(1−α)V i+1

y

αV i
t +(1−α)V i+1

t

<
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−V i−1
y

V i−1
t

.16 Recall that Vt > 0 and Vy < 0. Assumption 1.1 for the original game has

−
V i
y

V i
t

> −
V i+1
y

V i+1
t

⇔ −V i
yV

i+1
t > −V i+1

y V i
t . (1.10)

Then

−
αV i

y + (1− α)V i+1
y

αV i
t + (1− α)V i+1

t

=−
αV i

y + (1− α)V i+1
y

αV i
t + (1− α)V i+1

t

· V
i+1
t

V i+1
t

>
−αV i+1

y V i
t − (1− α)V i+1

y V i+1
t

αV i
t + (1− α)V i+1

t

· 1

V i+1
t

=−
V i+1
y

V i+1
t

> −
V i+2
y

V i+2
t

(1.11)

where the first inequality follows from inequality (1.10) and the second results from

the Sorting Assumption 1.1. And, by a symmetric argument −αV i
y+(1−α)V i+1

y

αV i
t +(1−α)V i+1

t

< −V i−1
y

V i−1
t

as needed.

Denote by (y(α), t(α)) the solution to this problem. The following four lemmas

characterize V
{i,i+1}
PI and bound it from below.

Lemma 1.3 V
{i,i+1}
PI (1) = V i

r .

Proof By Proposition 2 of Maskin and Tirole [11],

V i
r = max

(yi,ti)

{
V i(yi, ti) : V i−1(yri−1, t

r
i−1) ≥ V i−1(yi, ti) and W i(yi, ti) = 0

}
.

Problem (1.9) at α = 1 is

V
{i,i+1}
PI (1) = max

(y,t)

{
V i(y, t) : V i−1(yri−1, t

r
i−1) ≥ V i(y, t) and W i(y, t) = 0

}
due to the previous lemma. These problems are equivalent.

16Recall that the subscripts on the payoff functions indicate partial derivatives.
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Lemma 1.4 The payoff to the information acquisition option PI can be expressed as

V i,i+1
PI (α) = V i

r −
∫ 1

α

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da.

Proof Consider the optimization problem (1.9). By the integral form of the envelope

theorem (Milgrom and Segal, Corollary 5, [12]), its value is

V
{i,i+1}
PI (α) = V i+1(y(0), t(0)) +

∫ α

0

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da (1.12)

+

∫ α

0

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da

where λ is the multiplier on the first constraint. Simple algebra on equation (1.12)

shows that

V
{i,i+1}
PI (α) = V i+1(y(0), t(0)) +

∫ α

0

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da (1.13)

+

∫ 1

0

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da.

By Lemma 1.3 we can plug V i
r in for V

{i,i+1}
PI (1) in equation (1.13) evaluated at α = 1

and rearrange to get

∫ 1

0

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da = (1.14)

V i
r − V i+1(y(0), t(0))−

∫ 1

0

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da
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Now plug (1.14) into (1.13) to get

V
{i,i+1}
PI (α) = V i

r −
∫ 1

α

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da.

as needed.

Lemma 1.5 Let V denote the set of payoff functions for the principal that satisfy

all our assumptions with typical element V = (V 1, . . . , V n). For any V ∈ V , define

M(α;V ) :=
−V {i,i+1}

t (y(α), t(α))
[
V i
y (y(α),t(α))

V i
t (y(α),t(α))

− V i−1
y (y(α),t(α))

V i−1
t (y(α),t(α))

]
−V i−1

y (y(α),t(α))

V i−1
t (y(α),t(α))

W
{i,i+1}
t (y(α), t(α)) +W

{i,i+1}
y (y(α), t(α))

,

M(V ) := min
α∈[0,1]

M(α;V ).

Choose small δ > 0 such that V̄ := {V ∈ V : M(V ) > δ} 6= ∅. Then for all V ∈ V̄ ,

λ(α) > δ for any α ∈ [0, 1].

Proof I claim that M(α;V ) is well defined and strictly positive for all α and V . To

see this, note first that by the Sorting Assumption 1.1 the numerator in M(α;V ) is

strictly negative for all α ∈ [0, 1] and V ∈ V . Define

Z(α;V ) = −
V i−1
y (y(α), t(α))

V i−1
t (y(α), t(α))

W
{i,i+1}
t (y(α), t(α)) +W {i,i+1}

y (y(α), t(α))

To see that the Z(α;V ) < 0 for all α ∈ [0, 1] and all V ∈ V suppose by contradiction

that there is some α ∈ [0, 1] and some V ∈ V such that Z(α;V ) ≥ 0. Let µ be

the Lagrange multiplier on the second constraint in problem (1.9). To demonstrate a
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contradiction, consider the Lagrangian for problem (1.9) evaluated at the maximum

L = V {i,i+1}(y(α), t(α)) + λ(α)W {i,i+1}(y(α), t(α))

+ µ(α)
(
V i−1(yri−1, t

r
i−1)− V i−1(y(α), t(α))

)
and the following deviation from the optimal contract (y(α), t(α)): (ŷ, t̂) := (y(α) +

δy, t(α)+ δt) for small δy, δt > 0 such that V i−1
y (y(α), t(α))δy+V i−1

t (y(α), t(α))δt = 0.

By the Sorting Assumption 1.1, part (iii)

−
V i+1
y (y(α), t(α))

V i+1
t (y(α), t(α))

< −
V i
y (y(α), t(α))

V i
t (y(α), t(α))

< −
V i−1
y (y(α), t(α))

V i−1
t (y(α), t(α)

=
δt
δy

(1.15)

Cross multiplying and rearranging the (1.15) gives δyV
i
y (y(α), t(α))+δtV

i
t (y(α), t(α)) >

0 and δyV
i+1
y (y(α), t(α)) + δtV

i+1
t (y(α), t(α)) > 0. Taking a convex combination of

these expressions gives (weighting by α and 1− α)

dV {i,i+1}(y(α), t(α)) := δyV
{i,i+1}
y (y(α), t(α)) + δtV

{i,i+1}
t (y(α), t(α)) > 0

Let L̂ denote the value of the Lagrangian at the deviation (ŷ, t̂). The net gain

from the deviation is

L̂ −L = dV {i,i+1}(y(α), t(α)) + λ(α)
[
δyW

{i,i+1}
y (y(α), t(α)) + δtW

{i,i+1}
t (y(α), t(α))

]
= dV {i,i+1}(y(α), t(α)) + δyλ(α)

[
W {i,i+1}
y (y(α), t(α)) +

δt
δy
·W {i,i+1}

t (y(α), t(α))

]
= dV {i,i+1}(y(α), t(α)) + δyλ(α)Z(α;V ) > 0

where the third equality follows from the equality in (1.15) and the definition of Z

and the inequality follows since we have assumed Z(α;V ) ≥ 0. If δy, δt are sufficiently

small, the deviation contract (ŷ, t̂) strictly increases the Lagrangian which contradicts
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the supposition that (y(α), t(α)) is an optimum. Thus, Z(α;V ) < 0 so M(α;V ) > 0

for all α ∈ [0, 1] and V ∈ V and so M(V ) > 0 for all V ∈ V . Thus, V̄ is a nonempty

for sufficiently small δ > 0.

To see that λ(α) > δ for any V ∈ V̄ , suppose there exists V ∈ V̄ such that

λ(α) ≤ δ and consider the same deviation proposed above. Choose any α ∈ [0, 1].

From equality in (1.15)

δyV
i
y (y(α), t(α)) + δtV

i
t (y(α), t(α)) = M(α;V ) · Z(α;V ) ·

[
−V

{i,i+1}
t (y(α), t(α))

δyV i
t (y(α), t(α))

]−1
= −δyV i

t (y(α), t(α)) ·M(α;V )
Z(α;V )

V
{i,i+1}
t (y(α), t(α))

and due to the first inequality and the equality in (1.15)

δyV
i+1
y (y(α), t(α)) + δtV

i+1
t (y(α), t(α)) > M(α;V ) · Z(α;V ) ·

[
−V

{i,i+1}
t (y(α), t(α))

δyV
i+1
t (y(α), t(α))

]−1
= −δyV i+1

t (y(α), t(α)) ·M(α;V )
Z(α;V )

V
{i,i+1}
t (y(α), t(α))

.

Summing the last two expressions (weighted by α and 1− α) we get

dV {i,i+1}(y(α), t(α)) > −δyM(α;V )Z(α;V )

= −M(α;V )
[
δtW

{i,i+1}
t (y(α), t(α)) + δyW

{i,i+1}
y (y(α), t(α))

]
> −M(V )

[
δtW

{i,i+1}
t (y(α), t(α)) + δyW

{i,i+1}
y (y(α), t(α))

]
> −δ

[
δtW

{i,i+1}
t (y(α), t(α)) + δyW

{i,i+1}
y (y(α), t(α))

]
.

The equality follows from the definition of Z and the equality in (1.15). The last two

inequalities follow since the term in the square brackets is negative.17 Using this last

17Otherwise, the deviation is strictly better for the {i, i + 1} principal, at least a good for the
agent and maintains the incentive compatibility constraint, a contradiction that (y(α), t(α)) is an

41



inequality, the gain from deviation is

L̂ −L = dV {i,i+1}(y(α), t(α)) + λ(α)
[
δyW

{i,i+1}
y (y(α), t(α)) + δtW

{i,i+1}
t (y(α), t(α))

]
> − (δ − λ(α))

[
δyW

{i,i+1}
y (y(α), t(α)) + δtW

{i,i+1}
t (y(α), t(α))

]
≥ 0.

where the final inequality is due to our assumption that δ ≥ λ(α). If δy, δt are

sufficiently small, the deviation contract (ŷ, t̂) strictly increases the Lagrangian which

contradicts the supposition that (y(α), t(α)) is an optimum. Thus, λ(α) > δ for any

V ∈ V̄ . Since α was chosen arbitrarily, this holds for all α ∈ [0, 1].

Lemma 1.6 There exists a ξ > 0 such that for any specification of preferences

W i(y(α), t(α))−W i+1(y(α), t(α)) < −ξ for any α ∈ [0, 1].

Proof Since 0 < yri < y(α) < yri+1 and 0 < tri < t(α) < tri+1 and we assume that W i

is strictly increasing in i18

W i(y(α), t(α))−W i+1(y(α), t(α)) ≤ max
(y,t)∈[yri ,yri+1]×[tri ,tri+1]

W i(y, t)−W i+1(y, t) < −ξ

as needed.

Lemma 1.7 For any V ∈ V̄ such that ‖V i − V i+1‖∞ < 1
2
δξ, we have for any α ∈

[0, 1), V
{i,i+1}
PI (α) > V

{i,i+1}
FI (α).

optimum.
18The ordering of RSW actions and transfers is stated in Proposition 2 of Maskin and Tirole [11].
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Proof Using Lemma 1.4

V i,i+1
PI (α)− V i,i+1

FI (α) ≥ (1− α)
(
V i(yri+1, t

r
i+1)− V i+1(yri+1, t

r
i+1)
)

(1.16)

−
∫ 1

α

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a)

)
da

> −(1− α)δξ + (1− α)δξ = 0

where the first inequality due to the RSW-IC[i,i+1] constraint, the second holds due

to Lemmas 1.5 and 1.6 and since ‖V i − V i+1‖ < 1
2
δξ.

Lemma 1.8 Let V j
r (PI) denote the RSW payoff of the principal in state j 6= {i, i+

1} in the continuation game following information acquisition option PI and let

(yrj (PI), trj(PI)) be the associated RSW contract.19 Then V j
r (PI) ≥ V j

r for all

j 6= {i, i+ 1}.

Proof Take j 6= {i, i+ 1}. For j < i, V j
r (PI) = V j

r due to item (iii) in Remark 2.

I claim that the incentive compatibility constraint in the state j ≥ i+ 2 PI-RSW

problem is weaker than in the state j FI-RSW problem. The argument is illustrated

in Figure 1.4.

If j = i + 2, then the incentive compatibility constraint is weaker. To see this,

define the indifference curve of any principal in state l ∈ N ∪ {i, i + 1} at payoff K

to be t̄l(y;K) such that V l(y, t̄l(y;K)) = K for any y.20 Note that the slope of the

curve t̄l(y;K) with respect to y is −V l
y (y, t)/V l

t (y, t) and t̄l(y;K) is strictly increasing

in K since V l is strictly increasing in t for all l ∈ N ∪ {i, i+ 1}.
19I have suppressed the dependence of these objects on α for clarity.
20The existence of such a t̄ is guaranteed by the implicit function theorem.
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Figure 1.4: If the original game is incentive compatible, we can replace states i and i + 1 with

{i, i+ 1} and maintain incentive compatibility.

By inequality (1.11) we have

t̄{i,i+1}(y;V {i,i+1}(yri+1, t
r
i+1))


= t̄i+1(y;V i+1

r ) if y = yri+1

> t̄i+1(y;V i+1
r ) if y > yri+1

< t̄i+1(y;V i+1
r ) if y < yri+1

(1.17)

Since yri+2 > yri+1, by the middle line of (1.17) we have

t̄{i,i+1}(yri+2;V
{i,i+1}(yri+1, t

r
i+1)) > t̄i+1(yri+2;V

i+1
r )) ≥ tri+2 (1.18)

where the last inequality follows since V i+1(yri+1, t
r
i+1) ≥ V i+1(yri+2, t

r
i+2) by the defi-

nition of the RSW menu.

Finally, note that V {i,i+1}(α) ≥ V {i,i+1}(yri+1, t
r
i+1) since (yri+1, t

r
i+1) is a feasible

solution for problem (1.9) for all α ∈ (0, 1). Then, by (1.18)

t̄{i,i+1}(yri+2;V
{i,i+1}(α)) > tri+2

44



so that the principal in state {i, i + 1} will not misrepresent the state as i + 2 when

the state i+ 2 principal gets her RSW contract
(
yri+2, t

r
i+2

)
:

V {i,i+1}(α) > αV i(yri+2, t
r
i+2) + (1− α)V i+1(yri+2, t

r
i+2).

Moreover, by the Sorting Assumption 1.1, for j = i+ 2, . . . , n, if we assign to the

state j principal (yrj , t
r
j), the state {i, i+ 1} principal will not misrepresent the state

as j.

Thus, if {(yrk, trk)}k∈N is an RSW menu for the continuation game following the

full information acquisition option, then

{
(yr1, t

r
1), . . . , (y

r
i−1, t

r
i−1), (y(α), t(α)), (yri+2, t

r
i+2), . . . , (y

r
n, t

r
n)
}

is a safe menu: it is incentive compatible and the agent will accept it regardless of

her beliefs.21 Therefore, the RSW payoff in each state for the modified game is at

least as high as that in the original game.

Maskin and Tirole [11] show that there is a nonempty set of priors such that the

RSW payoff
∑

j πjV
j
r is the unique equilibrium payoff when the principal is perfectly

informed of the state. Choose any prior π′ in this set; π′ determines some α′. Then,

by Lemma 1.7, for ‖V i − V i+1‖∞ sufficiently small

∑
j

π′jV
j
r −

[ ∑
j 6=i,i+1

π′jV
j
r (PI) + (π′i + π′i+1)V

{i,i+1}
PI (α′)

]

≤
∑

j 6=i,i+1

π′jV
j
r + (π′i + π′i+1)V

{i,i+1}
FI (α′)−

[ ∑
j 6=i,i+1

π′jV
j
r + (π′i + π′i+1)V

{i,i+1}
PI (α′)

]

= (π′i + π′i+1)
(
V
{i,i+1}
PI (α′)− V {i,i+1}

FI (α′)
)
< 0.

21Recall that the solution to problem (1.9) requires that the state i − 1 principal not wish to
misrepresent the state as {i, i+ 1}.
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The first term in both lines is the expected (unique) equilibrium payoff for the fully

informed principal. The second term is expected equilibrium payoff if she confounds

states i and i + 1. The first inequality follows from Lemma 1.8, the second from

Lemma 1.7.

1.8.2 Strategic Ignorance Despite Multiple Equilibria

Proof of Proposition 1.1

I begin by showing that if κ is small, the RSW-IC[1,2] binds.

Lemma 1.9 If κ is sufficiently close to 1, then tr1 − C1(yr1) = tr2 − C1(yr2).

Proof By way of contradiction, assume that tr1 − C1(yr1) > tr2 − C1(yr2). Let (ŷ1, t̂1)

denote the optimal contract for the principal in state 1 when she has convinced the

agent that she is in state 2:

(ŷ1, t̂1) = arg max
y1,t1
{t1 − C1(y1)|t1 = U2(y1)} (1.19)

This solution is uniquely characterized by MC1(ŷ1) = MU2(ŷ1) and t̂1 = U2(ŷ1. Fur-

ther, the state 1 principal’s RSW contract is characterized by MC1(yr1) = MU1(yr1)

and tr1 = U1(yr1) and since RSW-IC[1,2] does not bind, the state 2 principal’s RSW

contract is characterized by MC2(yr2) = MU2(yr2) and tr2 = U2(yr2). Now,

MC2(ŷ1) <MC1(ŷ1) = MU2(ŷ1) = MC1(ŷ1)

(
MC2(ŷ1)

MC2(ŷ1)

)
≤ κMC2(ŷ1).

So, if κ is close enough to 1, since costs are convex, we can bound the difference

between the two maximizers for some small δa > 0: yr2 − ŷ1 < δa. In a similar way,

we can show there exists small δby > 0 such that ŷ1 − yr1 < δb. Thus, we can choose κ

sufficiently close to 1 such that yr2 − y1r < δa + δb and hence C1(yr2)− C1(yr1) < δc :=
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miny{U2(y)− U1(y)}. Then

0 > U2(yr2)− C1(yr2)− [U1(yr1)− C1(yr1)] = U2(yr2)− U1(yr1)−
[
C1(yr2)− C1(yr1)

]
> δc −

[
C1(yr2)− C1(yr1)

]
> 0

where the first inequality follows from the fact that we have assumed RSW-IC[1,2]

does not bind. This is a contradiction so we must have RSW-IC[1,2] bind for κ close

to 1.

Now we characterize payoffs for the ignorant strategy and the informed strategy.

Note that the uninformed principal’s problem (1.5) can be expressed as Vu(π) =

maxy π[U1(y)−C1(y)] + (1−π)[U2(y)−C2(y)] since IG-IR constraint always binds.

Fix κ such that RSW-IC[1,2] binds. The first statement of Proposition 1.1 re-

sults from the following properties of the payoff functions: (a) V 1
r = Vu(1) since the

maximand and constraints are identical in the RSW and uninformed problems at

π = 1; (b) V r
2 < Vu(0) since the state 2 RSW problem is more constrained (i.e. by

RSW-IC[1,2]) than the uninformed principal’s problem at π = 0 by our choice of κ;

(c) Vu(π) is convex and downward sloping in π since the maximand is linear in π; and

(d) Vr(π) is linear and downward sloping in π.

Properties (c) and (d) imply that the equation Vu(π) = Vr(π) has at most two

solution. Clearly, one solution is always π = 1. Due to properties (b) - (d), a second

solution π∗ > 0 exists and Vu(π) > Vr(π) for all π ∈ (0,min(1, π∗)).

The following lemma completes the proof of Proposition 1.1.

Lemma 1.10 Fix C1 and U i for i ∈ {1, 2}. There exists κ∗ such that if κ < κ∗, then

Vu(π) > Vr(π) for all π ∈ (0, 1).

Proof Define Si(y) := U i(y)−Ci(y). By the integral form of the envelope theorem

(Milgrom and Segal, [12]) Vu(π) = Vu(0) +
∫ π
0

(S1(y(π))−S2(y(π)))dπ. As in Lemma
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1.4 we can write Vu(π) = V 1
r −

∫ 1

π
(S1(y(π))− S2(y(π)))dπ and so

Vu(π)− Vr(π) = (1− π)(V 1
r − V 2

r )−
∫ 1

π

(S1(y(π))− S2(y(π)))dπ. (1.20)

Note that

S1(y(π))− S2(y(π)) < S1(yr1)− S2(yr1) (1.21)

= V 1
r − (U2(yr1)− C2(yr1))

= −(U2(yr1)− U1(yr1))− (C1(yr1)− C2(yr1))

≤ −(U2(yr1)− U1(yr1))−∆C(0).

for all π ∈ (0, 1) where ∆C(0) = C1(0)−C2(0) is the difference in fixed costs between

states.

Further,

V 1
r − V 2

r = tr2 − C1(yr2)− (tr2 − C2(yr2)) (1.22)

= −(C1(yr2)− C2(yr2)))

= −
∫ yr2

0

[
MC1(y)−MC2(y)

]
dy − (C1(0)− C2(0))

≥ −(κ− 1)
[
C2(yr2)− C2(0)

]
−∆C(0)

The first equality follows from the fact that tr1 − C1(yr1) = tr2 − C1(yr1).

Now, applying inequalities (1.21) and (1.22) to equation (1.20) we have

Vu(π)− Vr(π) ≥ −(κ− 1)
[
C2(yr2)− C2(0)

]
−∆C(0) + U2(yr1)− U1(yr1) + ∆C(0)

= −(κ− 1)
[
C2(yr2)− C2(0)

]︸ ︷︷ ︸
A

+U2(yr1)− U1(yr1) (1.23)
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The RSW actions yri for all i = 1, 2 will be the same for all κ: both are determined

solely by the cost function of the state 1 principal. The term A in (1.23) can be made

arbitrarily small by taking κ close to 1 since C2(yr2) < C1(yr2). Moreover, the term

U2(yr1) − U1(yr1) > 0 and does not change with κ. Therefore 3 for κ > 1 sufficiently

close to 1, we have Vu(π) > Vr(π) for all π ∈ (0, 1). Define κ := sup{κ|Vu(π) >

Vr(π) for all π ∈ (0, 1)} > 1.

Proof of Proposition 1.2 I begin by proving three useful lemmas. Then, in

Lemma 1.14, we characterize V ∗. The important fact derived in this lemma is that

the RSW payoff is the unique equilibrium payoff for all π ∈ [πr, 1) for some πr < 1.

Lemma 1.11 If RSW-IC[i, i + 1] is strictly binding, for any i = 1, . . . , n − 1 (i.e.

tri − Ci(yri ) = tri+1 − Ci(yri+1)) then the state i + 1 RSW contract is inefficient:

MCi+1(yri+1) > MU i+1(yri+1).

Proof Suppose MCi+1(yri+1) < MU i+1(yri+1) and consider the following deviation

for type 2 in the RSW problem: y′ = yri+1 + ε; and

t′ ∈
(
tri+1 + εMC2(yri+1), t

r
i+1 + εmin

{
MU2(yri+1),MCi(yri+1)

})
.

Then for sufficiently small ε > 0, this deviation is profitable and feasible:

t′ − Ci(y′) < tri+1 − Ci(yri+1) = tri − Ci(yri );

t′ − Ci+1(y′) > tri+1 − Ci+1(yri+1); and

U i+1(y′)− t′ > U i+1(yri+1)− tri+1.

If MCi+1(yri+1) = MU i+1(yri+1), then RSW-IC[i, i+ 1] is not strictly binding.

Lemma 1.12 If {(yi, ti)}∈N is an equilibrium of the informed principal problem, then

y2 ≤ yr2.
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Proof Suppose y2 > yr2. If RSW-IC[1,2] is not binding, then the first best contract

is possible and y2 = yr2; this is a contradiction.

If RSW-IC[1,2] is binding, first note that since C1(yr1) is tangent to U1(yr1) (so

that tr1 = U1(yr1)), any state 1 contract that satisfies NB1 must have tr1 ≥ U1(yr1).

By Lemma 1.11, MC2(yr2) > MU2(yr2). This implies, that since C2 is convex and

increasing and U2 is concave and increasing, if t2 − C2(y2) ≥ V 1
r = U2(yr2) − C2(yr2)

then t2 > U2(y2) for y2 > yr2. But this violates the individual rationality constraint

of the agent, a contradiction that y2 > yr2 can occur in equilibrium.

Lemma 1.13 V ∗(π) is continuous.

Proof Consider the ex ante optimal informed principal’s problem (1.6) and its value

function V ∗(π). Let y = (y1, y2) and t = (t1, t2). I will show that the feasibility

correspondence

Γ(π) =

(y, t) ∈ R4

∣∣∣∣∣
(IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ N

(IR)
∑

i πi (U
i(yi)− ti) ≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ N


is both upper and lower hemi-continuous in π.

Due to Lemma 1.12 and Assumption 1.2, without lost of generality we can restrict

the feasibility correspondence to

Γ′(π) =

(y, t) ∈ [0, yr2]
2 × [0, T ]2

∣∣∣∣∣
(IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ N

(IR)
∑

i πi (U
i(yi)− ti) ≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ N
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for some large finite T . Then the graph of Γ′

Gr(Γ′) =
{

(π, {(yi, ti)}2i=1) ∈ [0, 1]× [0, yr2]
2 × [0, T ]2 : {(yi, ti)}2i=1 ∈ Γ′(π)

}
is closed. Moreover, for any closed interval Π ⊆ [0, 1], Γ′(Π) is bounded. So by

Theorem 3.4 in Stokey and Lucas [20], Γ′ is upper hemi-continuous.

As for lower-hemicontinuity, we first note, that of the five possible constraints, at

most four will bind. To see this, suppose there is (y, t) ∈ Γ(π) for some π such that

all five constraints bind. Then we have the following series of implications

(a) NB[i] binds for i = 1, 2 implies that state i contract is on the state i principal’s
RSW indifference curve;

(b) IC[1,2] binds implies that (y2, t2) is on the state 1 principal’s indifference;

(c) IC[21] binds implies that (y1, t1) is on the state 1 principal’s indifference;

(d) Items (b) and (c) imply that y1 = y2 =: y′ and t1 = t2 =: t′ since the indifference
curves cross only once due to item (a.iii) of Assumption 1.2

(e) Items (a), (b) and (d) imply that y′ = yr2, t
′ = U2(yr2) since yr2 is defined such

that U2(yr2)− C1(yr2) = V 1
r ;

(f) U1(y′) − t′ < 0 since U1(·) is tangent to C1(·) at y1r and therefore any y 6= yr1
results in U1(y)− t < 0;

(g) Items (e) and (f) imply IR is violated: π(U1(y) − t) + (1 − π)(U2(y) − t) =
π(U1(y)− t) < 0.

The final item contradicts the assumption that (y, t) ∈ Γ(π). Thus, for any π at

most four constraints are active.

The following argument is due to Duggan and Kalandrakis [6]. Suppose four

constraints bind at π0 ∈ (0, 1). Take any (y0, t0) ∈ Γ(π0). Let fs(y, t, π) for

s = 1, . . . , 4 denote the four binding constraints. Then the Jacobian matrix of

F (y, t, π) := (fs(y, t, π))4s=1 is invertible at (y0, t0, π0). So, by the implicit func-

tion theorem there exists a continuous function h(π) such that h(π0) = (y0, t0) and
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F (h(π), π) = 0 in an open neighbourhood around π0. Since the remaining constraint

is slack at π0, it is also slack in an open neighbourhood around π0. Thus, there is an

open neighbourhood of π0 such that h(π) ∈ Γ(π) for all π in this neighbourhood and

we conclude that Γ is lower hemi-continuous at π0.

If only d < 4 constraints bind at π0, then let fs(y, t, π), for s = 1, . . . , d denote

the d binding constraints and define gs(y, t, π), for s = d + 1, . . . , 4 as affine linear

functions that are constant in π, satisfy gs(y
0, t0, π0) = 0 for all s = d+ 1, . . . , 4, and

have total derivative D(y,t)gs(y, t, π) = vs such that the matrix

((
D(y,t)fs(y

0, t0, π0)
)d
s=1

, (vs)
4
s=d+1

)

has full rank and is invertible. As above, we can apply the implicit function theorem

to conclude that Γ is lower hemi-continuous at π0.

So by the Theorem of the Maximum (Stokey and Lucas [20, Theorem 3.6]), V ∗(π)

is continuous in π.

Lemma 1.14 If RSW-IC[1,2] binds, there are two cutoff points 0 < πFB < πr < 1

such that V ∗(π) is the first best payoff if π ≤ πFB and the ex ante RSW payoff if

π ≥ πr.

Proof Claim 1 If π is close enough to 1, V ∗(π) = Vr(π). This holds by Lemma

1.15 below: i∗ = 1. �

Claim 2 If π is sufficiently small, then V ∗(π) = VFB(π). Recall that the superscript

E indicates the efficient action. To see that the first best solution is attainable for

small π set y∗i = yEi , set t∗2 such that t∗2 − C2(yE2 ) = V 2
r and set t∗1 sufficiently high

such that IC[1,2] is satisfied. To see that we can do this last step while satisfying the

IR constraint, note that, by Lemma 1.11, yE2 < yr2 which implies that t∗2 < tr2. Finally,
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since U2(yr2) = tr2, Lemma 1.11 implies that U2(yE2 )− t∗2 > 0. Thus, we can find small

enough π such that π(U1(yE1 )− t∗1) + (1− π)(U2(yE2 )− t∗2) = 0. �

Define πr := inf {π ∈ [0, 1] : V ∗(π) = Vr(π)}. This infimum is attained in [0, 1)

due to Claim 1 above and Proposition 4 of Maskin and Tirole [11] which says that

the set of beliefs relative to which the RSW payoff is the unique equilibrium payoff

consists entirely of strictly positive vectors. As a result, πr < 1 regardless of κ so

[πr, 1) is always well defined and nonempty. By definition, V ∗(π) = Vr(π) if and only

if π ∈ [πr, 1).

Further, by assumption, RSW-IC[1,2] binds which implies, by Lemma 1.11, that

the state 2 contract is inefficient. Thus, V FB(π) > Vr(π) for all π ∈ (0, 1). Given

Claim 2, we must have πr > 0; otherwise, V FB(π) and Vr(π) must coincide, which is

a contradiction.

Define πFB := sup
{
π ∈ [0, 1] : V ∗(π) = V FB(π)

}
. This supremum is attained in

(0, 1) by Claim 2. By definition V ∗(π) = VFB(π) if and only if π ∈
(
0, πFB

]
. This

point exists and is strictly greater than 0 by Claim 3. Further, πFB < πr. To see

this, suppose πFB ≥ πr. Then there exists π̃ ∈ [πr, πFB]. But, by the definitions of

πr, πFB this implies

V ∗(π̃) = VFB(π̃) = Vr(π̃) a contradiction, since by Lemma 1.11 the state 2 contract

is inefficient. Thus, 0 < πFB < πr < 1. Figure 1.1 plots V ∗, Vu, Vr and V FB.

Since πr < 1, due to Proposition 1.1 (item (ii) of the second statement) there is κ

close enough to 1 such that πr < π∗ and for all π ∈ (πr, π∗) Proposition 1.2 holds.

Proof of Theorem 1.2 By Lemma 1.9 RSW-IC[1,2] binds since κ is assumed to

be sufficiently close to 1. Recall that for such κ, 0 < πFB < πr < π∗ ≤ 1 (see

proof of Proposition 1.2).

Consider the following facts

(a) V ∗ and Vu are continuous: the former is proved in Lemma 1.14 (Claim 1), the
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latter is immediate by inspection of problem (1.5);

(b) V ∗(π) > Vu(π) for all π ∈
(
0, πFB

]
: this holds since Vu(π) cannot be efficient in

both states where as V ∗(π) is first best by definition in this domain;

(c) V ∗(π) < Vu(π) for all π ∈ [πr, π∗): established by Proposition 1.2;

(d) V ∗(π) > Vr(π) for all π ∈ (0, πr): by definition of πr in Lemma 1.14 (Claim 2).

Due to items (a) through (c), the intermediate value theorem guarantees the

existence of a π̂ ∈
(
πFB, πr

)
such that for all π ∈ (π̂, πr), Vu(π) > V ∗(π). This

confirms the first statement of Theorem 1.2. Since π̂ ∈ (0, πr), by item (d) we also

have that V ∗(π) > Vr(π) thus confirming the second statement of Theorem 1.2.

Proof of Proposition 1.3 When RSW-IC[1,2] does not bind, the RSW contract in

both states is efficient. To see this, recall that the state 1 contract is always efficient

and note that, according to Proposition 2 of Maskin and Tirole [11], the problem

of the state 2 principal in this case is max(y2,t2) {t2 − C2(y2) : U2(y2)− t2 = 0}. So

Vu(0) = V 2
r and Vu(1) = V 1

r . Since Vu is convex and Vr is linear (see the proof of

Proposition 1.1, items (c) and (d)), Vu(π) < Vr(π) for all π ∈ (0, 1).

1.8.3 Optimal Information Structure: Three States

Before proving the results of this section, we define the principal’s problems and

strategies relative to p. For this, we need some additional notation.

The RSW problem relative to information strategy p for principal in p-state i is

to choose {(yi, ti)}i∈I(p) to solve

max ti − Cpi(yi)

s.t. (p-RSW-IC[i, j]) tj − Cpj(yj) ≥ tk − Cpj(yk) for all j, k ∈ I(p); and

(p-RSW-IR[j]) Upj(yj) ≥ tj for all j ∈ I(p).
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I will refer to this problem as the p-RSW problem for p-state i or the pi-RSW problem.

Let V pi
r (π; p) denote the pi-RSW given priors π.

Our first lemma in this section characterizes the priors under which the RSW

payoff is unique for the fully informed principal problem.

Lemma 1.15 Consider the problem of the fully informed principal when there are

either two or three states. Let E ⊂ N denote the set of states for which the RSW

contracts are efficient. Define I := N/E to be the set of states with inefficient RSW

contracts and let i∗ = max {i ∈ E|i < min I}.

Then: (i) If I = ∅, the RSW payoff is the unique payoff for all priors; (ii) if

|I| = 1, then if πi∗ is sufficiently large, the RSW payoff is the unique equilibrium

payoff; and (iii) if |I| = 2, then if π1 and π2/(π2 + π3) are sufficiently close to 1, the

RSW payoff is the unique equilibrium payoff. Moreover, all of these bounds on priors

are strictly less than 1.

Proof First note that 1 ∈ {i ∈ E|i < min I} since state 1 is always efficient. There-

fore, i∗ is always well defined.

If I = ∅, then all states are efficient and the RSW contract is first best (see

Proposition 1.3). The RSW payoff is therefore the unique payoff for all priors.

Now suppose I 6= ∅. By Theorem 1 in Maskin and Tirole [11] {ŷi, t̂i}i∈N is an

equilibrium menu if and only if it satisfies the following conditions


(IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ N

(IR)
∑

i πi (U
i(yi)− ti) ≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ N.

Suppose there exists a menu {ŷi, t̂i}i∈N gives payoff strictly higher than the RSW

menu in equilibrium. For each i ∈ I, the action in the state i RSW contract is higher
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than the efficient level (see Lemma 1.11). For all i ∈ I, define δi = U i(ŷi)− t̂i. This

is the surplus given to the agent in state i by the proposed menu.

If the proposed menu delivers strictly higher payoff than the RSW menu, there

must exist at least one i ∈ I such that δi > 0. To see this, suppose not: for all

i ∈ I, U i (ŷi) − t̂i = 0. Call this assumption (?). Note that for all k ∈ E, Ck is

tangent to Uk at (yrk, t
r
k). This implies that for all (y′k, t

′
k) such that t′k−Ck(y′k) > V r

k ,

Uk(y′k)− t′k < 0. This last implication, along with (?) and the equilibrium condition

IR implies that (ŷk, t̂k) = (yrk, t
r
k) for all k ∈ E. So, we have that {ŷi, t̂i}i∈N satisfies

IC[i, j] for all i, j ∈ N and U i (ŷi) − t̂i = 0 for all i ∈ N . But the RSW menu is the

best of all menus that satisfy these assumptions so that the menu {ŷi, t̂i}i∈N cannot

give a strictly higher payoff than the RSW menu.

Thus, there exist at least one state i ∈ I such that δi > 0. Note that this implies

that ŷi < yri by Lemma 1.11. For each i ∈ I, define δ̄i := max(yi,ti) {U i(yi)− ti|ti − Ci(yi) ≥ V i
r }.

So, δ̄i is the largest surplus we can assign to the state i agent for i ∈ I. Note that this

maximum is achieved at the efficient state i action along the state i RSW indifference

curve.

Now consider two cases.

Case 1: |I| = 1. Then i∗ + 1 ∈ I by definition and δi∗+1 > 0. I claim that if the

principal receives her RSW contract in state i∗ she will have strict incentive to lie

given state i∗+1 contract (ŷi∗+1, t̂i∗+1). To see this first note that, by Proposition 1.3,

RSW-IC[i∗, i∗+1] must bind: tri∗−Ci∗(yri∗) = tri∗+1−Ci∗(yri∗). Since MCi∗ > MCi∗+1

the indifference curves of the principal in states i∗ and i∗ + 1 cross only once and

the latter crosses the former from below. Consider the indifference curves that pass
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through the RSW contracts

V i∗

r + Ci∗(y)−
(
V i∗+1
r + Ci∗+1(y)

)


< 0 if y < yri∗+1

= 0 if y = yri∗+1

> 0 if y > yri∗+1

(1.24)

Note that

V i∗

r + Ci∗(ŷi∗+1)−
(
V i∗+1
r + Ci∗+1(ŷi∗+1)

)
≥ V i∗

r + Ci∗(ŷi∗+1)−
(
t̂i∗+1 − Ci∗+1(ŷi∗+1)

+ Ci∗+1(ŷi∗+1)
)

(1.25)

= V i∗

r −
(
t̂i∗+1 − Ci∗(ŷi∗+1)

)
(1.26)

where the inequality follows from the NB[i∗+1] condition. Since ŷi∗+1 < yri∗+1, by the

first line of expression (1.24) we have that 0 > V i∗
r +Ci∗(ŷi∗+1)−

(
V i∗+1
r + Ci∗+1(ŷi∗+1)

)
which, given (1.26), implies that V i∗

r < t̂i∗+1 − Ci∗(ŷi∗+1).

Thus, given the state i∗+1 contract
(
ŷi∗+1, t̂i∗+1

)
, to satisfy incentive compatibility

we must give the state i∗ principal payoff that is strictly higher than her RSW payoff.

Since i∗ ∈ E, Ci∗ is tangent to U i∗ at the RSW contract; thus, any contract that

increases the payoff to the principal in this state necessarily assigns a strictly positive

deficit to the agent. Denote this deficit by δi∗ := t̂i∗ − U i∗ (ŷi∗) > 0.

Without loss of generality, set (ŷi, t̂i) = (yri , t
r
i ) for all i ∈ E/{i∗} and assume the

resulting contract is incentive compatible. Then, if πi∗ is close enough to 1

∑
i

πi
(
U i(yi)− ti

)
=

∑
i∈E/{i∗}

πi
(
U i(ŷi)− t̂i

)
− πi∗δi∗ + πi∗+1δi∗+1

= −πi∗δi∗ + πi∗+1δi∗+1 ≤ −πi∗δi∗ + πi∗+1δ̄i∗+1 < 0

where the first equality follows since there is zero surplus for the agent in states
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E/{i∗}. This contradicts the assumption that {ŷi, t̂i}i∈N is an equilibrium.

Case 2: |I| = 2. The state 2 and three contracts are inefficient. Then RSW-IC[1,2]

and RSW-IC[2,3] bind by Proposition 1.3. If δ2 > 0 or δ2 = 0 and δ3 > 0 then the

argument in Case 1 can be applied in much the same way; if π1 is sufficiently large,

IR cannot hold and {ŷi, t̂i}i∈N cannot be an equilibrium.

Now suppose that δ3 > 0 and δ2 < 0. Without loss of generality, set (ŷ1, t̂1) =

(yr1, t
r
1). As above, if the state 2 principal receives her RSW contract she will have a

strict incentive to lie given the state three contract (ŷ3, t̂3). Thus, the menu {ŷi, t̂i}i∈N

must give the state 2 principal strictly higher payoff than her RSW contract. Define

δ2 := −δ2 > 0. If π2/(π2 + π3) is close enough to 1, then

∑
i

πi
(
U i(yi)− ti

)
= π1

(
U1(ŷ1)− t̂1

)
− π2δ2 + π3δ3

= −π2δ2 + π3δ3 ≤ (π2 + π3)

[
− π2
π2 + π3

δ2 +
π3

π2 + π3
δ̄3

]
< 0

where the first equality follows since there is zero surplus for the agent in state 1.

This contradicts the assumption that {ŷi, t̂i}i∈N is an equilibrium.

Finally note that Maskin and Tirole [11, Proposition 4] asserts that the set of

beliefs relative to which the RSW payoff is unique consists of strictly positive vectors.

Thus, the bounds we have placed on priors in this lemma are strictly less than one.

Proof of Proposition 1.4 Note that α is used below to denote conditional priors.

Be aware that α is redefined in subsequent lemmas. Further, any priors (conditional

or unconditional) superscripted with r are meant to be analogous to those in Propo-

sitions 1.1 and 1.2.

This proof proceeds by applying Proposition 1.2 to the various subgames associ-

ated with choosing different information acquisition options. Recall that in Proposi-
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tion 1.2, as long as κ < κ, π∗ = 1. To ease exposition, when we apply Proposition 1.2

we sacrifice its generality (i.e. allowing the upper bound on priors to be less than 1)

and simply assume all the the starred priors (conditional or unconditional) are 1.

I first characterize priors such that p5 conforms to the Assumption 1.2.

Lemma 1.16 Let

C{1,3}(·) :=
π1

π1 + π3
C1(·) +

π3
π1 + π3

C3(·)

and define U{1,3} in the same way. There exists priors π̂ ∈ ∆3 such that for all

π1
π1 + π3

∈
[

π̂1
π̂1 + π̂3

, 1

)

Assumptions 1.1 and 1.2 are satisfied for the two state informed principal game with

principal payoff functions ordered (V {1,3}, V 2) = (t− C{1,3}, t− C2) and agent payoff

functions ordered (W {1,3},W 2) = (U{1,3} − t, U2 − t).

Proof I will prove that part (iii) from Assumption 1.1 holds. Parts (i) and (ii) of

Assumption 1.1 are immediate. Both parts of Assumption 1.2 are proved in a similar

manner.

Let α := π1/(π1 + π3). By Assumption 1.1, there exists δ > 0 such that

MC1(y)

MC2(y)
,
MC2(y)

MC3(y)
> δ + 1.

Define

α̂ :=
κS2 − 1

δ(δ + 1) + κS2 − 1
< 1. (1.27)
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Then for all α ∈ [α̂, 1) we have

MC{1,3}(y)−MC2(y) = α
(
MC1(y)−MC2(y)

)
+ (1− α)

(
MC3(y)−MC2(y)

)
> MC3(y)

[
α

(
MC1(y)

MC3(y)
− MC2(y)

MC3(y)

)
+ (1− α)

(
1− κS2

)]
= MC3(y)

[
α

(
MC1(y)

MC2(y)
− 1

)
MC2(y)

MC3(y)
+ (1− α)

(
1− κS2

)]
> MC3(y)

[
αδ(δ + 1) + (1− α)(1− κS2 )

]
> 0

where the first inequality follows from the definition of κS2 in (1.7) and the second

follows from the definition of α̂. The lemma is proved.

(A) The proof of the statement is in the form of a series of claims, each describing

conditions on priors such that the principal prefers information acquisition strategy

p1 to each of the others. First, we prove that the state three RSW action is efficient

given either information acquisition strategy p1 or p4, under the assumptions of claim

(A).

Lemma 1.17 There exists κI2 such that for all κI2 > κI2, the p4-RSW and p1-RSW

state 3 actions are efficient.

Proof I first prove the statement for the p4-RSW state 3 action. Let V 3
r (π; p) denote

the state three p-RSW payoff. Note that

V 3
r (π; p4) + C2(y) = U3(y) (1.28)

has two solutions since C2 is convex, U i is concave and V 3
r (π; p4)+C2(yr2) = U2(yr2) <

U3(yr2). Define ŷ as the larger solution to (1.28). As y increases in a neighbourhood

around ŷ, the left hand side of (1.28) crosses the right hand side from below. Since

MC2(ŷ) > MU3(ŷ) we have V 3
r (π; p4) + C2(y) > U3(y) for all y ≥ ŷ.
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Since MU3(yE3 ) = MC3(yE3 ), as we increase κI2, y
E
3 increases towards infinity.

Thus, there exists a κI2 such that for all κI2 > κI2, y
E
3 > ŷ. Thus, by the previous

paragraph, V 3
r (π; p4) + C2(yE3 ) > U3(yE3 ) and therefore RSW-IC[1,2] does not bind

and the lemma holds.

To see that this holds for the p1-RSW state 3 action, define α := π1/(π1 + π2)

and replace C2 and U2 above with αC1(·) + (1 − α)C2(·) andαU1(·) + (1 − α)U2(·)

respectively.

The next lemma characterizes priors such that information acquisition strategy

p1 is strictly preferred to information acquisition strategy p4.

Lemma 1.18 Define α = π1/(π1+π2). There exists π1 < 1, αr(p4) < 1 such that for

all π1 ∈ (π1, 1) and α ∈ (αr(p4), 1) the unique payoff following information acquisition

strategy p4 is the p4-RSW payoff and any continuation payoff following information

acquisition strategy p1 is strictly larger.

Proof From Lemma 1.9, the state 2 p4-RSW contract is inefficient for sufficiently

small κS1 and from Lemma 1.17 we know that the state three p4-RSW contract is

efficient. Thus, from Lemma 1.15 part (ii), i∗ = 1 so there exists π1 such that the

RSW payoff is the unique payoff following information strategy p4 for π ∈ (π1, 1).

By Lemma 1.17 the state 3 p1-RSW contract is efficient. Thus, V 3
r (π; p4) =

V 3
r (π; p1).

Now, consider the RSW problem of the state {1, 2} principal

V {1,2}r (π; p1) := max
(y12,t12)

{
t12 − αC1(y12)− (1− α)C2(y12) :αU1(y12) + (1− α)U2(y12) = t12

}
(1.29)

Since κS1 is small, we can apply Proposition 1.2 to conclude that there exists αr(p4)

such that αr(p4) < 1 and for all α ∈ (αr(p4), 1) we have V
{1,2}
r (π; p1) > αV 1

r (π; p4) +
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(1− α)V 2
r (π; p4). So (π1 + π2)V

{1,2}(π; p1) + π3V
3
r (π; p1) >

∑
i πiV

i
r (π; p4).

The next lemma characterizes priors such that information acquisition strategy

p3 is strictly preferred to information acquisition strategy p2.

Lemma 1.19 Define α := π2/(π2 + π3). There exists πr(p2) < 1 and α < 1 such

that for all π1 ∈ (πr(p2), 1) and α ∈ (α, 1) the unique payoff following information

acquisition strategy p2 is the p2-RSW payoff and the p3 payoff is strictly larger.

Proof The continuation game following information strategy p2 is a two state game

with priors (π1, π2+π3). Define κ(p2) := supyMC1(y)/ (αMC2(y) + (1− α)MC3(y)).

According to Proposition 1.2, if κ(p2) is sufficiently small, there exists πr(p2) such

that πr(p2) < 1, the unique payoff following information acquisition strategy p2 is the

p2-RSW payoff for all π1 ∈ (πr(p2), 1) and the p3 payoff is strictly larger.

I now show that κ(p2) can be made sufficiently small given the hypotheses of the

proposition κ(p2) < κS1 /
(
α + (1− α)/κS2

)
. For fixed κS2 , if we take α and κS1 close

enough to 1, κ(p2) can be made sufficiently small to apply Proposition 1.2. The

lemma is proved.

The next lemma characterizes priors such that information acquisition strategy

p3 is strictly preferred to information acquisition strategy p5.

Lemma 1.20 Let α = π1/(π1 +π3). There exists α < 1 and πr(p5) < 1 such that for

all α ∈ (α, 1) and π1 ∈ (πr(p5), 1) the unique payoff following information acquisition

strategy p5 is the p5-RSW payoff and the p3 payoff is strictly larger.

Proof By Lemma 1.16, there exists an α̂ such that for α ∈ (α̂, 1) the problem for

the principal who chooses information acquisition strategy p5 = {{1, 3}, {2}} is a two

state informed principal problem with priors (π1 + π3, π2) that satisfies Assumption

1.2.
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Define κ(p5) := supyMC13(y)/MC2(y). Proposition 1.2 applies and the claim is

proved if κ(p5) is sufficiently close to 1. I now check whether κ(p5) can be sufficiently

close to 1. Note that κ(p5) ≤ ακS1 + (1 − α)/κS2 < ακS1 + (1 − α) where the first

inequality follows from the convexity of the supremum operator. Choosing α less

than but close to 1 and small κS1 , we can make κ(p5) small and Proposition 1.2

applies.

Finally, note that for the informed game with state space p1, the first best payoff

has been achieved since each p1-state principal is producing her efficient output. It

follows from Proposition 1.3 that introducing further ignorance (i.e. an information

strategy of p3) will not improve payoffs. Thus, information acquisition strategy p1 is

strictly preferred to information acquisition strategy p3 for any priors.

By Lemma 1.19, the principal prefers p3 to p2 for appropriately restricted priors for

any equilibrium following the choice of p2; thus, she prefers p1 to p2 on these priors

as well. Moreover, by Lemma 1.20 the principal prefers p3 to p5 for appropriately

restricted priors for any equilibrium following the choice of p5; thus, she prefers p1 to

p5 on these priors as well.

To see that the intersection of the sets characterized in Lemmas 1.18 to 1.20 is

open and nonempty, note that any priors such that π1 is sufficiently large (but less

than 1) and π2 is sufficiently larger than π3 is in this intersection.

(B) Follows same procedure as part (A).

(C) As in part (A), this part is shown in a series of lemmas each characterizing the

set of priors such that ignorance is better than each of the other information acqui-

sition options. The first lemma characterizes the set of priors such that information

acquisition strategy p3 is strictly preferred to information acquisition strategy p1.

Lemma 1.21 There exists πr(p1) such that πr(p1) < 1 and for any π1 + π2 ∈

(πr(p1), 1) the unique payoff following information acquisition strategy p1 is the p1-
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RSW payoff and the completely uninformed principal’s payoff is strictly larger.

Proof Define α := π1/(π1+π2) and κ(p1) := supy (αMC1(y) + (1− α)MC2(y)) /MC3(y).

The game following information strategy p1 is a two state informed principal prob-

lem with priors (π1 + π2, π3). Since the supremum operator is convex κ(p1) <

ακS1κ
S
2 +(1−α)κS2 . Thus, we choose κS1 , κ

S
2 sufficiently small to apply Proposition 1.2

and our claim follows.

The next lemma characterizes the set of priors such that information acquisition

strategy p3 is strictly preferred to information acquisition strategy p2.

Lemma 1.22 There exists πr(p2) such that πr(p2) < 1 and for any π1 ∈ (πr(p
2), 1)

the unique payoff following information acquisition strategy p2 is the p2-RSW payoff

and the uninformed principals payoff is strictly larger.

Proof This proof is analogous to that of Lemma 1.19. Since κ(p2) < supy
MC1(y)
MC3(y)

≤

κS1κ
S
2 we can choose κS1 , κ

S
2 sufficiently small to apply Proposition 1.2.

The next lemma characterizes the set of priors such that information acquisition

strategy p1 is strictly preferred to information acquisition strategy p4.

Lemma 1.23 Define α = π1/(π1 + π2). There exists αr(p4) < 1 and π1 such that

for any α ∈ (αr(p4), 1) and π1 ∈ (π1, 1) the unique payoff following information

acquisition strategy p4 is the p4-RSW payoff and the p1-RSW payoff is strictly larger.

Proof From Lemma 1.9, we know that the state 2 and 3 p4-RSW contracts are

inefficient for sufficiently small κS1 and κS2 respectively. Thus, from Lemma 1.15 item

(iii), there exists priors π the p4-RSW payoff is the unique payoff following information

acquisition strategy p4 for π1 ∈ (π1, 1) and any π2/(π2 + π3) ∈ (π2/(π2 + π3), 1).

This remainder analogous to Lemma 1.18 except we appeal to Lemma 1.8 to

ensure that V 3
r (α; p1) ≥ V 3

r (α; p4) instead of Lemma 1.9.22

22The p4 payoffs are constant in α so the statement trivially holds for all α ∈ [0, 1].
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Our final lemma characterizes the set of priors such that information acquisition

strategy p1 is strictly preferred to information acquisition strategy p5.

Lemma 1.24 Let α = π1/(π1 + π3). There exists, α < 1 and πr(p5) such that

πr(p5) < 1 and for any π1 + π3 ∈ (πr(p
5), 1) and α ∈ (α, 1) the unique payoff fol-

lowing information acquisition strategy p5 is the p5-RSW payoff and the uninformed

principals payoff is strictly larger.

Proof This follows immediately from Lemma 1.20. Although Lemma 1.20 is proved

under the assumptions of claim (A), only the hypothesis that kS1 is sufficiently small

was used in the proof. Since claim (C) shares this hypothesis, the lemma applies here

as well.

To see that the intersection of the sets characterized in Lemmas 1.21 to 1.24 is

nonempty and open, note any priors with π1 sufficiently large (but less than 1) is in

this intersection.

(D) If π1 is small enough, we can achieve the first best ex ante payoff using the same

technique as in Claim 2 of Lemma 1.14. If κI1 and κI2 are large enough, we can show

that the p4-RSW menu is efficient and therefore achieves the first best ex ante payoff

using the same technique as in Lemma 1.17.

Proof of Corollary 1 If both κS1 and κS2 are close to 1, simply apply Proposition 1.4

(C).

Suppose κS2 is close to 1 and κI2 is large so that p1 is optimal on the set of pri-

ors described in Proposition 1.4 (A): V (π; p1) := (π1 + π2)V
{1,2}
r (α; p1) + π3V

3
r >∑

πiV
i
r . Since V (π; p1) is continuous in π, V (π; p1) → V (π; p3) := V

{1,2,3}
r (π, p3) as

π3 → 0. So for small π3 there exists δ > 0 such that V (π; p1) − V (π; p3) = δ and

V (π; p3)−
∑

i πiV
i
r = V (π; p1)− δ −

∑
i πiV

i
r > 0.

For κI1 large and κS2 small close to 1, the proof is similar.
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1.8.4 Information Acquisition as Hidden Action

Denote the value of the principal’s RSW problem in state k ∈ {0, 1, 2} by

V r
k := max

{(yi,ti)}i∈{0,1,2}
tk − Ck(yk)

s.t. (IC[i, j]) ti − Ci(yi) ≥ tj − Ci(yj) for all i, j ∈ {0, 1, 2} and

(RSW-IR[i]) U i(yi) = ti for all i ∈ {0, 1, 2}

Let (yri , t
r
i ) denote the RSW contract for the state i ∈ {0, 1, 2} principal.23

The following lemma gives the necessary and sufficient conditions for equilibrium

in this environment.

Lemma 1.25 The contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} and the information acquisition

strategy α is an equilibrium if and only if

(MIX) α ∈ argmax
{
α [t∗0 − C0(y∗0)] + (1− α)

∑
i=1,2 πi (t

∗
i − Ci(y∗i ))

}
(IR) α

∑
i=1,2 πi (U

i(y∗0)− t∗0) + (1− α)
∑

i=1,2 πi (U
i(y∗i )− t∗i ) ≥ 0

(IC) t∗i − Ci(y∗i ) ≥ t∗j − Ci(y∗j ) for all i, j ∈ {0, 1, 2}

(NB) t∗i − Ci(y∗i ) ≥ V r
i for all i ∈ {0, 1, 2}

Proof of Lemma 1.25 Sufficiency: Suppose the contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)}

and the information acquisition strategy α satisfy MIX, IR, IC, and NB. Then, the

contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} is an equilibrium contract given α by Theorem 1

in Maskin and Tirole [11]. Moreover, given, the contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)},

the MIX condition ensures that the principal cannot deviate profitably by choosing

a different α.

Necessity: Suppose, IR, IC, or NB is violated. Then by Theorem 1 in Maskin

23I have suppressed the dependance of the uninformed principal’s RSW strategies and payoffs on
priors.
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and Tirole [11] {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} cannot be an equilibrium given α. If MIX is

violated, then the principal has a profitable deviation to another α.

Proof of Lemma 1.1 Due to the IC conditions of the equilibrium tr2 − C2(yr2) ≥

tr0−C2(yr0) and tr1−C1(yr1) ≥ tr0−C1(yr0). Weighting each of these by the appropriate

prior we have
2∑
i=1

πri (t
r
i − Ci(yri )) ≥ tr0 − C0(yr0).

Proof of Proposition 1.5 Let {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} be an equilibrium contract

with information strategy α∗. Due to lemma 1.1, without loss of generality we can

set α∗ = 0. I are therefore considering an equilibrium in a 2 state informed principal

problem (while still respecting the extra incentive compatibility constraint of the

uninformed principal). Thus, by Proposition 1.2, since κ is close to 1, we know that

there exists an interval of priors such that the action is inefficient in at least one state.

Suppose the inefficient state is state 2. Let (y′2, t
′
2) be a contract for the state 2

principal that lies on the same indifference curve as the contract (y∗2, t
∗
2) but is closer

to the efficient level of y. Then the agent receives a higher payoff at (y′2, t
′
2) in state

2 than at (y∗2, t
∗
2).

24

Choose (y′0, t
′
0) to be the (unique) intersection between the state 1 and state 2

indifference curves passing through the points (y∗1, t
∗
1) and (y∗2, t

∗
2) respectively. Then

t∗1−C1(y∗1) = t′0−C1(y′0) and t′2−C2(y′1) = t′0−C2(y′0). Weighting by the appropriate

prior and summing these two equations we get

t′0 − C0(y′0) = π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t′2 − C2(y′1)

)
(1.30)

24To see this note that, fixing the payoff to the principal, the greatest payoff to the agent is at the
efficient level of y: max(y,t){U i(y)−t : t−Ci(y) = V̄ } = max{U i(y)−Ci(y)− V̄ } = U i(yEi )−Ci(yEi )
where V̄ is a constant.
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Now we check the agents IR constraint. First note that

π(U1(y∗1)− t∗1) + (1− π)(U2(y′2)− t′2) > π(U1(y∗1)− t∗1) + (1− π)(U2(y∗2)− t∗2) ≥ 0

where the first inequality follows by our choice of (y′2, t
′
2) and the second follows since

{(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} is assumed to be an equilibrium and α∗ = 0. Thus, there

exists α′ > 0 such that

α′
(
U0(y′0)− t′0

)
+ (1− α′)

[
π(U1(y∗1)− t∗1) + (1− π)(U2(y′2)− t′2)

]
= 0.

Since (y′2, t
′
2) is on the same indifference curve as (y∗2, t

∗
2)

π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t∗2 − C2(y∗1)

)
= π

(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t′2 − C2(y′1)

)
and due to equation (1.30)

α′
(
t′0 − C0(y′0)

)
+ (1− α′)

[
π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t′2 − C2(y′1)

)]
=

π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t∗2 − C2(y∗1)

)
.

Thus, the expected payoff to the principal from offering contract {(y′0, t′0), (y∗1, t∗1), (y′2, t′2)}

with α′ is equal to the expected payoff from offering {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} with

α∗.

If the state 1 contract is inefficient, we can similarly find a payoff equivalent menu

with positive probability of being ignorant.
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Chapter 2

When Should an Employer Offer a

Menu Contract?

2.1 Introduction

When a privately informed employer is contracting with a worker, the employer needs

to design a contract that releases the right information at the right time to optimally

exploit her information asymmetry. For example, consider a law firm which has

advanced knowledge about the likelihood of winning a trial and needs to assign an

attorney to the case. In addition, the law firm cannot observe the effort the attorney

exerts for the case. A number of papers have analyzed such environments but have

restricted the contracts proposed by the principal to be point-contracts: contracts

that leave the principal no discretion once a contract is accepted (see for example

Beaudry [1]; Inderst [3]; Chade and Silvers [2]1; Kaya [4]; Silvers [10]). For example,

the law firm may be restricted to paying a wage based on the only observable outcome:

whether the trial is won or lost. On the other hand, she could in addition specify

1Chade and Silvers [2] do consider more general contracts as a robustness check but mainly focus
on point contracts. See below for more details.
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bonuses to be paid that depend on the difficulty of the case. In this paper I allow

the principal to propose contracts that allow her further discretion after the contract

has been accepted. Such contracts are called menu-contracts in the literature since

they take the form of a list of contracts that is offered to the agent from which the

principal chooses after the agent has accepted.

First, I prove that allowing menu-contracts removes implausible inefficient equi-

libria that exist when only point-contracts are considered without needing to make

ad-hoc assumptions on the set of equilibria studied; typically, these inefficient equi-

libria are avoided in the literature via equilibrium refinements or by assuming the

principal will separate in the least costly way. These equilibria exists because point-

contracts can subject the principal to the agent’s arbitrary off-path posterior beliefs

that deter her from exploiting her private information. For example, very inefficient

contracts can be supported in equilibrium by punishing deviations from said contracts

with agent’s beliefs that put probability 1 on the worst state. I characterize the lower

bound payoff for each principal type in a two-type principal-agent model with moral

hazard when the principal is unrestricted in her contract choice. The contract that

achieves this lower bound is belief free: it is acceptable to the agent regardless of her

beliefs about the principal’s type and is therefore not susceptible to the punishing

off-path beliefs mentioned above. Moreover, I show that this lower bound is always

strictly higher than the lower bound when the principal is restricted to offering point-

contracts. In particular, the set of menu-contract equilibrium payoffs is higher than

the set of point-contract equilibrium payoffs in the strong set order.

Further, depending on the specific environment, the restriction to point-contracts

can strictly reduce the informed principal’s ex ante payoff, and thus the value of in-

formation to the principal. While Myerson’s [7] inscrutability principle implies that

the principal cannot lose by remaining inscrutable via menu-contracts, I characterize
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precisely when this ability to remain inscrutable and retain discretion after the con-

tract is accepted is strictly beneficial to the principal. If one wants to understand the

principal’s incentives to gather information prior to entering a contract, restricting

the space of contracts to point-contracts can skew results towards ignorance.

Myerson [7] defined the general problem of the privately informed principal while,

in a specialized environment, Maskin and Tirole [5] characterize the equilibria in the

model and derive their properties. In particular, Maskin and Tirole characterize a

lower bound in informed principal problems in environments with pure adverse selec-

tion (i.e. environments with no hidden actions). Segal and Whinston [9] successfully

apply Maskin and Tirole’s methodology to reduce the indeterminacy of equilibria in

a class of bilateral contracting problems. Like our work, Segal and Winston use the

concept of menu-contracts to eliminate very inefficient equilibria. Their work dif-

fers from the current paper in that the private information of the principal is her

own hidden effort, in particular her profile of trade with other agents, and therefore

endogenous in their model.

To my knowledge, there has not been a complete characterization in the literature

of the equilibria in a model of moral hazard when the principal has private information

of the productivity of the agent’s effort and is not restricted in her contract choice.

Notably, Chade and Silvers [2] consider menu-contracts in a robustness check of one

of their main results. They show that the equilibrium payoff in their result, the least-

cost separating payoff, can be supported by a menu-contract equilibrium. I show

that the principal can never do worse than under the menu-contract equilibrium they

construct and depending on the parameters of the model there may exist menu-

contract equilibria under which the principal can do strictly better.

73



2.2 Model

2.2.1 Preferences and Technologies

I adopt a model similar to Silvers [10]. The agent (e.g. the potential worker) is

(weakly) risk averse and maximizes expected utility. Her von Neumann-Morgenstern

utility function over wage income, w, and effort, a, is given by U(w)−a with U ′(w) > 0

and U ′′(w) ≤ 0. The agent chooses an effort a from a set A := {a1, a2} ⊂ R2
+ with

0 ≤ a1 < a2 <∞. Let h := U−1 denote the inverse of U .

The effort chosen induces a conditional probability distribution over the set of

possible outcomes Q := {qs, qf} ⊂ R2
++ where qf < qs <∞ (the subscript f denotes

failure while s denotes success). These outcome are the principal’s revenues. Thus,

if she pays wage w and outcome qn is realized her payoff is qn − w.

The principal (e.g. the employer) is a risk neutral expected profit maximizer who

needs to hire the agent to complete a task. Task productivity can either be high or

low. In particular, each type of task is associated with a set of conditional probabil-

ity distributions that determines the probability of the task being successful given a

particular effort level. The task of type i ∈ {H,L} has conditional probability dis-

tribution Πi = {πi(a1), πi(a2)} where πi(a) = (πis(a), πif (a)) denotes the conditional

probability distribution across Q when the effort is a ∈ A. Set πHs(a2) > πLs(a2) and

πHs(a1) ≥ πLs(a1) so that the type-H task is more productive that the type-L task.

Let λ ∈ (0, 1) be the common prior probability that the task is of high probability;

i.e. has conditional probability distribution ΠH . I will refer to a principal who has

task type i as a type-i principal.

I assume that the probability distributions satisfy the monotone likelihood ratio

property (MLRP): the relative likelihood of a higher outcome to a lower outcome is
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increasing in the effort. Formally, for both i ∈ {H,L}

πis(a1)

πif (a1)
<
πis(a2)

πif (a2)
.

2.2.2 Contracts

A point-contract is a set of payments from the principal to the agent w ∈ [w,∞)2

such that the principal pays the agent wn when outcome qn is realized where w > −∞

for n ∈ {s, f}.

A menu-contract is a direct revelation mechanism that specifies a set of point-

contracts {wH ,wL} such that wi ∈ [w,∞)2 for all i ∈ {H,L} and allows the principal

to choose from amongst this set after the agent has accepted the offer.2 Note that a

point-contract can be seen as a degenerate menu-contract where wH = wL.

I will generically refer to a contract offered for corresponding to outcome qn with

the notation Cn with Cn = {CHn, CLn}. A contract Cn, for n ∈ {s, f} could be a

menu-contract (i.e. Cn = {wHn , wLn}) or a point-contract (i.e. Cn = wn).

2.2.3 Information

I assume that the principal perfectly observes the task productivity while the agent

does not. Let ρ(C) := {ρ(C;H), ρ(C;L)} denote the agent posterior belief over the

type of the principal after observing the proposed contract C. Further, let

p(a; ρ(C)) := ρ(C;H)πH(a) + ρ(C;L)π2(a)

denote the agent’s expected probability distribution over Q conditional on having

chose effort a ∈ A where pn(a; ρ(C)) is her expected probability of outcome qn con-

2The formal timing of the game is outlined in Section 2.2.4.
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ditional on having chosen effort a ∈ A for n ∈ {s, f}.

2.2.4 Timing

The timing of the game is as follows:

Realization of
Information

1

Contract
Offer

2

Agent
Response

3

Contract Choice

4(a)

Realization of outcome
and Implementation

4(b)

In stage 1, nature chooses the principal’s technology and this is observed by the

principal. In stage 2, the principal offers the agent a contract. The agent accepts

or rejects the contract in stage 3. If the agent rejects the contract, the principal

receives zero utility and the agent receives utility Ū . In stage 4, if a point-contract

was offered, the game skips to stage 4(b); the agent chooses her effort level, the

outcome is realized and the corresponding wage is paid. If a menu-contract was

offered, the principal chooses from the menu of contracts in stage 4(a). Then stage

4(b) follows as before: the agent chooses her effort level, the outcome is realized and

the corresponding wage is paid.

2.2.5 Constraints

Point Contracts

A contract C will implement effort a if it is incentive compatible and individually

rational for the agent. A point-contract is incentive compatible for the agent for

effort ak if

∑
n∈{s,f}

[pn(ak; ρ(C))− pn(ak−1; ρ(C))]U(Cn) ≥ ak − ak−1 (AIC(ak; ρ(C)))
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where a0 = 0 and is individual rationality for effort ak for k ∈ {1, 2} if

∑
n∈{s,f}

pn(ak; ρ(C))U(Cn)− ak ≥ Ū . (AIR(ak; ρ(C)))

A type-i principal who implements effort a ∈ A with contract Ci incurs expected

cost
∑

n∈{s,f} πin(a)win where, again with some abuse of notation, {wis, wif} is either

a point-contract offered by type-i or the type-i part of the menu contact offered,

and reaps expected benefit
∑

n∈{s,f} πin(a)qn. Suppose each type i ∈ {H,L} principal

implements effort a(i). The contract Ci that implements a ∈ A is incentive compatible

for the type-i principal if it satisfies for all i, j ∈ {H,L}

∑
n∈{s,f}

πin(a(i))(qn − win) ≥
∑

n∈{s,f}

πin(a(j))(qn − wjn). (PIC(a; i, j))

Menu Contracts

Due to Myerson’s [7] inscrutability principle, the agent’s individual rationality con-

straint need only be satisfied in expectation. A feasible menu-contract must be indi-

vidually rational for the agent and incentive compatible for both the agent and the

principal. A menu-contract C is individually rational if

λ

 ∑
n∈{s,f}

πHn(a(1))U(wHn )− a(H)

+ (1− λ)

 ∑
n∈{s,f}

πLn(a(L))U(wLn )− a(L)

 ≥ Ū .

A separating menu-contract C (i.e. a menu-contract
{
wH ,wL

}
such that wH 6=

wL) is incentive compatible for the agent if AIC(a(H); {1, 0}) and AIC(a(L); {0, 1})

are satisfied for each a(i) for i ∈ {H,L}. A pooling menu-contract C, like a pool-

ing point-contract, is incentive compatible if a(H) = a(L) = a and it satisfies

AIC(a; {λ, 1 − λ}). If a(i) = a1 for any i ∈ {H,L}, the principal does not have
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to incentivize the agent to take an effort since she has already accepted the menu-

contract.

Finally, a menu-contract C that implements a is incentive compatible for the

principal if it satisfies PIC(a; i, j) for i, j ∈ {H,L}.

2.3 Preliminary Analysis

In this section we establish a number of benchmark equilibrium contracts and their

payoffs. I use these payoffs to establish upper and lower bounds on payoffs that are

supported in equilibrium for the game where only point-contracts are allowed and the

game where menu-contracts can be offered.

I first define the contracts that would result if the task type were common knowl-

edge; the payoff from these contracts is called the public information benchmark. It

is first best ex ante payoff for the principal. Further, we define the lowest payoffs

supported by an equilibrium in the game where only point-contracts can be offered

and the game where menu-contracts can be offered.

2.3.1 The Public Information Benchmark

Let w = {ws, wf} denote a generic point-contract. When the principal’s type is public

information, for each effort a the principal of type i ∈ {H,L} solves

min
w

∑
n∈{s,f}

πin(a)wn s.t. AIC(a; ρ(w)) and AIR(a; ρ(w))
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where ρ(w; i) = 1 for all w. Denote the solution to this problem by w∗(a; i). The

principal then choose the effort a that maximizes

∑
n∈{s,f}

πin(a) (qn − w∗n(a; i)) .

Denote this effort by a∗(i).

2.3.2 Lower Bound Equilibrium Point-Contract Payoff

If

πHs(a2)− πHs(a1) > πLs(a2)− πLs(a1)

then the lower bound point contract payoff is obtained when both principal types

offer w∗(a∗(L);L). It is straightforward to check that this equilibrium is supported

by agent’s beliefs that put probability 1 on the principle being type-L whenever any

contract w′ 6= w∗(a∗(L);L) is offered.

2.3.3 Lower Bound Equilibrium Menu-Contract Payoff

Let a(i) denote the effort implemented by the principal when she has a type-i task for

i ∈ {H,L}. In the spirit of Maskin and Tirole [5] a menu-contract plus induced effort
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set
{(

wH
r , a(H)

)
,
(
wL
r , a(L)

)}
is RSW for i ∈ {H,L} if the type-i principal solves3

U(i) =



max
{(wH ,a(H)),(wL,a(L))}

∑
n πin(a(i)) (qin − win) subject to∑

n∈{s,f}
πin(a(H))U(win)− a(i) ≥ Ū for i ∈ {H,L}

(πis(a(i))− πis(a1))
[
U(wis)− U(wif )

]
≥ a(i)− a1 for i ∈ {H,L}∑

n∈{s,f}
πin(a(i)) (qn − win) ≥

∑
n∈{s,f}

πin(a(j)) (qn − wjn) for i, j ∈ {H,L}

.

When menu-contracts are allowed, the RSW problem generates lower bound pay-

offs for the type-i principal since the agent will accept any RSW menu regardless

of her belief about the type of the principal.4 To see this, note first that the RSW

problem for the type-i principal specifies an entire menu: a contract for each task

type j ∈ {H,L}. This menu must be incentive compatible for every principal type

j ∈ {H,L}, not just type-i. Finally, this menu must guarantee the agent her reser-

vation payoff ex post and induces the appropriate effort level regardless of the type

of task the principal has. Thus, the agent will always accept an RSW menu and

perform the correct effort. The type-i principal can always deviate to her RSW menu

and obtain the associated payoff.5

2.4 The Deficiency of Point-Contracts

Let PM be the set of ex ante equilibrium payoffs for the principal when menu-

contracts are allowed and PP be the set of ex ante equilibrium payoffs for the principal

when only point-contracts are allowed. In our first result, we prove that PM is higher

3RSW is an acronym for Rothchild-Stiglitz-Wilson, a reference to the similar least cost separating
contracts developed in the insurance models of Rothschild and Stiglitz [8] and Wilson [11].

4In terms of Myerson [7], any feasible solution to the RSW problem is safe. The RSW menu for
the type-i principal is her best safe menu.

5For further discussion of RSW menus see Maskin and Tirole [5].
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than PP in the strong set ordering (and the converse is not true).

Proposition 2.1 The set PM is higher in the strong set order than the set PP .

Further, if

πHs(a2)− πHs(a1) > πLs(a2)− πLs(a1), (2.1)

then there exists v ∈PP such that v < min PM .

Condition (2.1) ensures that a separating equilibrium exists. The value of the

RSW contract for the type-i principal provides a lower bound payoff on the princi-

pal’s problem if the principal can offer menu-contracts. As we show in Lemma 2.1

below, the RSW payoff can be obtained using point-contracts: it is the least-cost

separating equilibrium. However, PP also contains strictly lower payoffs. Allowing

menu-contracts eliminates these low value equilibria.

Proof The first statement follows since menu-contracts are generalizations of point-

contracts.

To prove the second statement I characterize the RSW menu-contract and show

that it gives a strictly higher ex ante payoff to the principal than the lower bound

point-contract. Due to the linearity of the principal’s indifference curves (in particu-

lar, the fact that this the linearity endows a single crossing property on the indifference

curves between principal’s types) computing the RSW can be simplified, as we show

in the following lemma.

Lemma 2.1 The RSW allocation is the least-cost separating equilibrium that has

type-L principal offering w∗(a∗(L);L) and the type-H principal offering the solution
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to

IRSW



max
(wH ,a(H))

∑
n πHn(a(H))

(
qn − wHn

)
subject to∑

n∈{s,f}
πHn(a(H))U(wHn )− a(H) ≥ Ū

(AIR(a(H); {1, 0}))

(πHs(a(H))− πHs(a1))
[
U(wHs )− U(wHf )

]
= a(H)− a1

(AIC(a(H), {1, 0}))

∑
n∈{s,f}

πLn(a∗(L)) (qn − wn(a∗(L))) ≥
∑

n∈{s,f}
πLn(a(H))

(
qn − wHn

)
(PIC(a∗(L);L))

.

The RSW menu always exists.

Proof This proof essentially follows that of Proposition 2 in Maskin and Tirole [5].

Let (ŵ(a(H);H), â(H)) be a solution to IRSW .

First, we claim that the constraint AIC (a(H); {1, 0}) in problem IRSW must bind.

Suppose AIC (a(H); {1, 0}) holds with strict inequality and let πHs ≥ πHf . Then,

decrease wHs and increase wHf slightly to (wHs −εs, wHf +εf ) for small εs, εf > 0 so that

AIR (a(H); {1, 0}) and AIC (a(H); {1, 0}) still hold. Since πHs > πLs, (εs, εf ) can be

chosen such that the right hand side of PIC(a∗(L);L,H) (possibly weakly) decreases

while the objective function strictly increases. If πHs < πHf we can increase wHs and

decrease wHf and arrive at a similar result.

Second, we claim that {(ŵ(a(H);H), â(H)), (w∗(a∗(L);L), a∗(L))} is incentive

compatible. This is vacuously true for the type-L principal since PIC(a∗(L);L,H)

is imposed in problem IRSW and w∗(a∗(L);L) is incentive compatible for the agent

by construction. Further, AIC(H, {1, 0}) is imposed in problem IRSW . It remains to
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show that

∑
n∈{s,f}

πHn(â(H))
(
qn − ŵHn (â(H))

)
≥

∑
n∈{s,f}

πHn(a∗(L)) (qn − wn(a∗(L))) . (2.2)

I claim that (2.2) holds with strict inequality. Note that the curve in (ws, wf ) space

implicitly defined by the agents RSW incentive compatibility constraint for the type-

H principal,

(πHs(a(H))− πHs(a1))
[
U(wHs )− U(wHf )

]
= a(H)− a1,

is strictly above that of the type-L principal,

(πLs(a(H))− πLs(aH))
[
U(wHs )− U(wHf )

]
= a(L)− a1

due to inequality (2.1). Further, the indifference curves the type-H principal’s in-

difference curves are steeper than the type-L principal’s. Therefore, the indifference

curves possess the single crossing property. If PIC(a∗(L);L,H) holds with equality,

ŵH lies to the north-west of w∗2 in (ws, wf ) space which implies that (2.2) strictly

holds. Otherwise, ŵH = w∗H and (2.2) strictly holds since πs(a
∗(H)) > πs(a

∗(L)).

The RSW problem for the type-H principal is more constrained than IRSW but

(ŵ(a(H);H), a(H)) solves the latter problem and satisfies all the constraints of the

former. Therefore it solves the RSW problem for the type-H principal. Similarly,

the RSW problem for the type-H principal is more constrained than the public in-

formation problem, but (w∗(a∗(L);L), a∗(L)) solves the latter problem and satisfies

all the constraints of the former. Therefore it solves the RSW problem for the type-L

principal.
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To see that this menu-contract exists we first claim that w∗(a;L) exists for any

a. For a = a1, w∗(a;L) = (h(Ū + a1), h(Ū + a1)). For a = a2, the constraints

AIC(a2; {0, 1}) and AIR(a2; {0, 1}) will be satisfied with equality and therefore define

the implicit functions

wf,AIR(ws) = h

(
Ū + a2 − πLs(a2)U(ws)

πLf (a2)

)
, and

wf,AIC(ws) = h

(
U(ws)−

a2 − a1
(πLs(a2)− πLs(a1))

)
.

Since wf,AIR is strictly decreasing and wf,AIC is strictly increasing, they must intersect

exactly once in R2. Denote this intersection point (w′s, w
′
f ). If this (w′s, w

′
f ) ∈ [w,∞)2

we are done: w∗(a;L) = (w′s, w
′
f ) . Otherwise, the solution is w∗(a;L) = (w′′s , w)

where w′′s satisfies wf,AIC(w′′s ) = w. If the type-L principal is indifferent between a1

and a2, set a∗(L) = a2.

I can break IRSW down into separate problems of minimizing the cost of imple-

menting each effort then choosing most profitable effort. Note that a∗(H) = a1 implies

that a∗(L) = a1 since the expected payoff from the agent’s effort is strictly higher for

they type-H principal. Thus if a∗(H) = a1, ŵ(a(H);H) = (h(Ū + a1), h(Ū + a1))

which satisfies all the constraints of IRSW given our previous statement.

If a∗(H) = a2 and PIC(a∗(L);L) does not bind, the solution to IRSW is simply

w∗(a∗(H);H) which exists by our previous argument. Otherwise, the solution to

IRSW is defined by

(πHs(a2)− πHs(a1))
[
U(wHs )− U(wHf )

]
= a2 − a1, and (2.3)∑

n∈{s,f}

πLn (a∗(L)) [qn − wn (a∗(L))] =
∑

n∈{s,f}

πLn(a2)
(
qn − wHn

)
. (2.4)
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Equation (2.3) implicitly defines a strictly increase line in (ws, wf )-space while equa-

tion (2.4) defines a strictly decreasing line in (ws, wf )-space. These lines there-

fore intersect exactly once in R2. Denote this intersection point (w′s, w
′
f ). If this

(w′s, w
′
f ) ∈ [w,∞)2 we are done: ŵ(a2;H) = (w′s, w

′
f ) . Otherwise, the solution is

w∗(a;L) = (w′′s , w) where w′′s satisfies equation (2.3) with wHf = w.

Since

∑
n

πHn (â(H)) [qn − ŵn (â(H);H)] >
∑
n

πHn (a∗(L)) [qn − wn (a∗(L);L)]

the expected payoff to the type-H principal is strictly higher under the RSW menu-

contract than lower bound point contract. The type-L principal is just as well off.

Therefore, the ex ante payoff to the principal of the RSW menu is strictly greater

than the ex ante point-contract lower bound payoff equilibrium payoff.

Let PP
S be the set of ex ante equilibrium payoffs for the principal that can be

earned via separating separating point contracts. Define PM
S similarly. Our next

result characterizes environment such that PM
S is strictly higher than PP

S in the

strong set ordering except at the RSW payoff. I first make the following assumptions.

Assumption 2.1 (a)
∑

n∈{s,f} πHn(a1)qn ≥ h(Ū + a1) for both i ∈ {H,L};

(b)
∑

n∈{s,f} πHn(a2) (qn − ŵ(a2;H)) ≥
∑

n∈{s,f} πHn(a1)(qn − h(Ū + a1));

(c) PIC(a∗(L);L,H) does not hold if the type-H principal implements a∗(H) with

w∗(a∗(H);H); and

(d) πHs(a2)− πHs(a1) > πLs(a2)− πLs(a1).

Part (a) ensures that revenues are such that it is always (weakly) profitable for the

principal to hire the agent. Part (b) ensures that the type-H principal will prefer
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to implement a2 at the least-cost separating equilibrium. Parts (a) and (b) are only

necessary to exclude uninteresting equilibria in which the agent is not hired or she is

hired to exert minimal effort. Part (c) ensures that the first best (i.e. full information)

contract cannot be implemented; in particular, in trying to do so, the type-L principal

would try to mimic the type-H principal. Thus, under this assumption, there is

inefficiency in the least-cost separating equilibrium. Part (d) ensures a separating

equilibrium exists.

2.4.1 Separating Equilibria

Our next proposition gives a necessary and sufficient condition such that under As-

sumption 2.1, equilibrium payoffs can be obtained using menu-contracts which are

strictly higher than any separating equilibrium payoff using point contracts.

Proposition 2.2 If Assumption 1 holds, then PP
S and PM

S intersect only at the

RSW (or least-cost separating) equilibrium payoff and there exist a payoff v ∈ PM
S

such that v > λU(H) + (1− λ)U(L) if and only if

h

(
Ū + a(L)− (a(L)− a1)πLs(a2)

πLs(a2)− πLs(a1)

)
> w. (2.5)

Proof The proposition is a result of the following lemma that proves that (2.5) is a

necessary and sufficient condition for menu-contracts to deliver higher ex ante payoff

to the principal than any separating point-contract.

Lemma 2.2 If Assumption 1 holds, there exists an equilibrium in menu-contracts

that gives higher payoffs to both principal types than the least-cost separating equilib-

rium in point-contracts if and only if (2.5) holds.
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To see why this lemma holds, note that

w∗f (a
∗(L);L) = h

(
Ū + a2 −

(a2 − a1)πLs(a2)
πLs(a2)− πLs(a1)

)

and observe Figure 2.1 (note that a contract that implements effort a∗(L) must be

below the curve wf,AIC and above the curve wf,IR). In panel (a), the least costly

contract that implements a∗(L) is strictly interior. As we have noted, in the least

cost separating equilibrium the type-H principal gives the agent utility strictly greater

than her reservation utility. Moreover, separation requires the type-H principal to

increase the cost of her contract to dissuade the type-L principal from mimicking

her. Using menu-contracts and the inscrutability principle, we can transfer some

of the rents ceded to the agent by the type-H principal to the type-L principal,

effectively shifting her individual rationality constraint down, allowing the type-L

principal to offer a less costly contract and earn more profits. This eases the incentive

compatibility constraint between the principals, allowing the type-H principal to

make her contract less costly and earn more profits herself.

On the other hand, if condition (2.5) fails, as in panel (b) of Figure 2.1, relaxing

the type-L principal’s individual rationality constraint does not generate a less costly

contract for her to offer.

Proof Sufficiency. Suppose the a∗(L) = a2. The contract w∗(a2;L) is the unique

solution to

πLf (a2)U(wf ) + πLs(a2)U(ws) = Ū + a2 (2.6)

(πLf (a2)− πLf (a1))U(wf ) + (πLs(a2)− πLs(a1))U(ws) = a2 − a1. (2.7)
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(a) Condition (2.5) is satisfied. (b) Condition (2.5) is not satisfied.

Figure 2.1: Examples of when condition (2.5) is and isn’t satisfied.

Solving (3.7) and (2.7) we get

w∗f (a2;L) = h

(
Ū + a2 −

(a2 − a1)πLs(a2)
πLs(a2)− πLs(a1)

)
> w

by assumption.

By hypothesis

πHs(a2)

πHf (a2)
>
πLs(a2)

πLf (a2)

and it is clear that w∗s(a2;H) > w∗f (a2;H). Thus we can apply Lemma 1 of Silvers [10]

to conclude that IR(a2; {1, 0}) is satisfied with strict inequality: when the principal’s

type is her private information, in the least cost separating equilibrium the principal

of type-H cedes rents to the agent ex ante. Thus,

∆ :=
λ

2(1− λ)

[∑
n

πHnU(ŵn)− a2 − Ū

]
> 0.

Since for menu-contracts individual rationality only needs to be satisfied in expecta-

tion, we can transfer the half of rents ceded to the agent from the principal of type-H

to the principal of type-L, essentially relaxing her individual rationality constraint by
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∆. The type-L principal’s contract can then be solved as the unique solution to (2.7)

and

πLf (a
∗(L))U(wf ) + πLs(a

∗(L)U(ws) = Ū + a∗(L)−∆. (2.8)

I can solve (3.7), (2.7) and (2.8) for wf as a function of ws:

wf,AIR(ws) = h

(
Ū + a2 − πLs(a2)U(ws)

πLf (a2)

)
wf,AIC(ws) = h

(
U(ws)−

a2 − a1
(πLs(a2)− πLs(a1))

)
wf,IR∆

(ws) = h

(
Ū + a2 −∆− πLs(a2)U(ws)

πLf (a2)

)
.

Taking the derivative of wf,AIC(ws):

w′f,AIC(ws) = h′
(
U(ws)−

a2 − a1
(πLs(a2)− πLs(a1))

)
U ′(ws) > 0.

Note that w∗(a2;L) is the solution to wf,IR(ws) = wf,AIC(ws); that is,

wf,IR∆
(w∗s(a2;L)) = wf,AIC(w∗s(a2;L))

= w∗f (a2;L).

Let w̃(a2;L) be the solution to wf,IR∆
(ws) = wf,AIC(ws) if w̃f (a2;L) ≥ w and

w̃(a2;L) := (w,wf,IR∆
(w)) otherwise. Since wf,AIC(ws) is decreasing and wf,IR∆

< wf,IR ,

we have w̃(a2;L) � w∗(a2;L).6 Thus, w̃(a2;L) implements a2 at a lower cost than

w∗(a2;L).

6If a and b are two vectors of the same size, a � b indicates that each element of a is strictly
less than each element of b.

89



Meanwhile, at w̃(a2;L), the constraint PIC(a∗(L);L) is relaxed (since the type-L

principal now implements a∗(L) at a lower cost and therefore receives a higher payoff)

and therefore the type-H principal can implement her effort at a lower cost. Thus,

both types of the principal are strictly better off.

If a∗(L) = a1, then w∗f (a1;L) = w∗s(a1;L) = h(Ū + a1). Let z = min{Ū + a1, w}.

Then w̃f (a1;L) = w̃s(a1;L) = h(z) implements a1 in menu-contracts. As before

at w̃(a1;L), the constraint PIC(a∗(L);L) is relaxed (since the type-L principal now

implements a∗(L) at a lower cost and therefore receives a higher payoff) and therefore

the type-H principal can implement her effort at a lower cost. Thus, both types of

the principal are strictly better off.

Necessity. To show necessity, suppose that w∗f (a
∗(L), 2) = w. By definition,

wf,AIC(w∗s(a
∗(L);L)) = w.

But then, since wf,AIC is strictly increasing, there is no w̃s that implements a∗(L)

such that w̃s < w∗s(a
∗(L);L), even for the relaxed individual rationality constraint.

So the least cost contract that implements a∗(L) remains (w,w∗s(a
∗(L);L)).

2.4.2 Pooling Equilibria

In any complete pooling equilibrium with contract C, the agent’s posterior is her

prior: ρ(C) = (λ, 1− λ). The high effort complete pooling contract wp is the defined

by

(λδH + (1− λ)δL)
[
U(wps)− U(wpf )

]
= a2 − a1 and∑

n∈{s,f}

[(
λπHn(a2) + (1− λ)πLn(a2)

)
wpn −

(
Ū + a2

)]
.
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Contract wp exists since the first equation is strictly increasing and the second is

strictly decreasing in (ws, wf ) space (possibly needing to enforce the lower bound

wage w). Define δi := πis(a2)− πis(a1) for i ∈ {H,L}.

Assumption 2.2 (a) wp ∈ (w,∞);

(b)
∑

n∈{s,f} πLn(a2)(qn − wpn) ≥
∑

n∈{s,f} πLn(a2)
(
qn − h

(
Ū + a1

))
;

(c) U is strictly concave.

Part (a) of Assumption 2 requires the solution to be interior. This is guaranteed if

δH and δL are sufficiently large (i.e. if high effort is sufficiently worthwhile). Part (b)

ensures that the type-L (and hence the type-H) principal prefers to implement high

effort in the pooling contract. This is guaranteed if qs is sufficiently large.

Proposition 2.3 Suppose Assumption 1 parts (a) and (c) and Assumption 2 hold.

There exists δ̄ such that if δL − δH ∈ (0, δ̄), then there exists a menu-contract that is

more profitable for the principal ex-ante than the complete pooling contract for any

λ ∈ (0, 1).

The condition for the proposition are satisfied, for example, for U(·) = ln(·) or

U(·) =
√
·,

πHs = 0.9

πLs = 0.8

δH = 0.45

δL = 0.6

and any costs of effort a1 < a2 and any reservation Ū such that revenues satisfy Part

(b) of Assumption 2.
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Proof Let wp denote the complete pooling contract. Define

Ki
p := πis(a2)w

p
s + πif (a2)w

p
f .

Define a menu-contract {wH ,wL} that satisfies

πis(a2)w
i
s + πif (a2)w

i
f = Ki

p and (2.9)

(πis(a2)− πis(a1))
[
U(wis)− U(wif )

]
= a2 − a1. (2.10)

I claim that

λ
(
πHs(a2)U(wHs ) + πHf (a2)U(wHf )

)
+(1−λ)

(
πLs(a2)U(wLs ) + πLf (a2)U(wLf )

)
> Ū+a2

(2.11)

if the conditions in the proposition are met. Thus, {wH ,wL} constitutes a menu-

contract that provides the agent with more (ex ante) utility than is needed for her

to agree to the contract. I can reduce wages wH by an amount that is small enough

such that the principal’s incentive compatibility constraints are satisfied. This new

contract is thus strictly preferred to wp.

The pooling equilibrium solves the following problem:

Ki
p(λ) =


min
w

∑
n∈{s,f} πin(a)wn

subject to AIC(a; {λ, 1− λ})

AIR(a; {λ, 1− λ})

. (P)

Since both constraints are linear in λ, Ki
p must be concave in λ.

I will use the following lemma below.

Lemma 2.3 wHs > wLs > wLf > wHs .
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Proof Since both constraints in problem (P) bind

∑
n∈{s,f}

[(
λ (πHn(a2)− πHn(a1)) + (1− λ) (πLn(a2)− πLn(a1)

)
U(wn)− (a2 − a1)

]
= (λδH + (1− λ)δL)

[
U(wps)− U(wpf )

]
− (a2 − a1).

Since δH < λδH + (1 − λ)δL either wHs > wps , w
H
f < wpf or both. By equation (2.9),

wHs > wps if and only if wHf > wpf . Thus, we have both wHs > wps and wHf < wpf .

Similarly, since δL > λδH + (1− λ)δL we have both wHs < wps and wHf > wpf .

Using (2.9) and (2.10), we can rewrite the left hand side of (2.11) as follows

λ
(
πHs(a2)U(wHs ) + πHf (a2)U(wHf )

)
+ (1− λ)

(
πLs(a2)U(wLs ) + πLf (a2)U(wLf )

)
= (a2 − a1)

(
λπHs
∆H

+
(1− λ)πLs

∆2

)
+ λU(wHf ) + (1− λ)U(wLf )

= Ū + a2 −
[
Ū + a2 − (a2 − a1)

(
λπHs
∆H

+
(1− λ)πLs

∆2

)]
+ λU(wHf ) + (1− λ)U(wLf )

= Ū + a2 −
[
λ

(
Ū + a2 − (a2 − a1)

πHs
∆H

)
+ (1− λ)

(
Ū + a2 − (a2 − a1)

πLs
∆2

)]
+ λU(wHf ) + (1− λ)U(wLf )

= Ū + a2 + λU(wHf ) + (1− λ)U(wLf )− λU(w∗f (a2;H))− (1− λ)U(w∗f (a2;L))

(2.12)

=: S(λ).

I claim that S(λ) is a concave function. To see this note

S ′′(λ) = 2

(
∂U(wHf (λ))

∂λ
−
∂U(wLf (λ))

∂λ

)
+ λ

∂2U(wHf (λ))

∂λ2
+ (1− λ)

∂2U(wLf (λ))

∂λ2
.

(2.13)

The following lemma shows that the first term in (2.13) is negative.
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Lemma 2.4
dU(wi

f (λ))
dλ

<
dU(wi

f (λ))
dλ

.

Proof The Lagrangean of problem (P) is

∑
n∈{s,f}

πin(a)wn + θAIC
∑

n∈{s,f}

[(
λ (πHn(a2)− πHs(a1))

+ (1− λ) (πLn(a2)− πLn(a1)
)
U(wn)− (a2 − a1)

]
+ θIR

∑
n∈{s,f}

[(
λπHn(a2) + (1− λ)πLn(a2)

)
wn − Ū

]
.

where θAIC and θIR are (non-positive) Lagrange multipliers for the first and second

constraints in problem (P) respectively. By the envelope theorem (see Milgrom and

Segal [6]),

dKi
p(λ)

dλ
=θAIC (δH − δL)

(
U(wps(λ))− U(wpf (λ))

)
+ θIR

(
πHs(a2)− πLs(a2)

) (
U(wps(λ))− U(wpf (λ))

)
. (2.14)

Since both constraints are binding, θAIC , θIR < 0. Thus, if δH−δL is not too negative,

Ki
p(λ) is decreasing. Further, by equation (2.10) the sign of dwi

n(λ)
dλ

must be the same

for all n ∈ {s, f} and all i ∈ {H,L}. Therefore, since Ki
p(λ) is decreasing, dwi

n(λ)
dλ

< 0

for all n ∈ {s, f} and all i ∈ {H,L}. Note that (2.14) does not depend on i.

Taking the total derivative of (2.10) and rearranging we get

dU(wis(λ))

dλ
−
dU(wif (λ))

dλ
= U ′(wis)

dwis(λ)

dλ
− U ′(wif )

dwif (λ)

dλ
= 0.

Since wis > wif and U is concave, it must be that

dwis(λ)

dλ
>
dwif (λ)

dλ
.
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Further

U ′(wHs )
dwHs (λ)

dλ
− U ′(wHf )

dwHf (λ)

dλ
= U ′(wLs )

dwLs (λ)

dλ
− U ′(wLf )

dwLf (λ)

dλ
⇔

U ′(wHs )
dwHs (λ)

dλ
− U ′(wLs )

dwLs (λ)

dλ
= U ′(wHf )

dwHf (λ)

dλ
− U ′(wLf )

dwLf (λ)

dλ
(2.15)

U ′(wLs )

(
dwHs (λ)

dλ
− dwLs (λ)

dλ

)
< U ′(wHf )

(
dwHf (λ)

dλ
−
dwLf (λ)

dλ

)
(2.16)

where the inequality follows since U is concave and wHs > wLs and wHf < wLf .

Now, taking the total derivative of (2.9) and applying the observation that

dKH
p (λ)

dλ
=
dKL

p (λ)

dλ
=: K̄

we get

πHs(a2)
dwHs (λ)

dλ
+ πHf (a2)

dwHf (λ)

dλ
= πLs(a2)

dwLs (λ)

dλ
+ πLf (a2)

dwLf (λ)

dλ
.

Thus, either dwH
s (λ)
dλ

< dwL
s (λ)
dλ

or
dwH

f (λ)

dλ
<

dwL
f (λ)

dλ
or both. From inequality (2.16), we

conclude that dwH
s (λ)
dλ

< dwL
s

dλ
(otherwise we contradict the previous statement). By

equation (2.15)

U ′(wHf )
dwHf (λ)

dλ
− U ′(wLf )

dwLf (λ)

dλ
< U ′(wHs )

wHs (λ)

dλ
− U ′(wHf )

wLs (λ)

dλ

< U ′(wHs )
wHs (λ)

dλ
− U ′(wHf )

wHf (λ)

dλ
= 0

where the first inequality follows since wHf < wLs (see Lemma 2.3) and the second

follows since
dwHf (λ)

dλ
<
dwHs (λ)

dλ
<
dwLs (λ)

dλ
.
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Thus,
dU
(
wif (λ)

)
dλ

<
dU
(
wif (λ)

)
dλ

as needed.

Lemma 2.5 U
(
wif (λ)

)
is concave.

Proof Suppose not: U
(
wif (λ)

)
is convex. Then, since U is concave, wif (λ) must be

convex. Further, rearranging (2.10) we have

U
(
wis(λ)

)
=

a2 − a1
πis(a2)− πif (a1)

+ U
(
wif (λ)

)
so that U (wis(λ)) must also be convex. Again, since U is concave wis(λ) must be

convex. Thus πis(a2)w
i
s(λ) + πif (a2)w

i
f (λ) is convex. But

πis(a2)w
i
s(λ) + πif (a2)w

i
f (λ) = Ki

p

and, as we noted above, Ki
p is concave. Thus we have a contradiction.

By the previous two lemmata S(λ) is concave. Further, since

S(0) = S(1) = Ū + a2,

inequality (2.11) holds for all λ ∈ (0, 1).

2.5 Conclusion

I have shown that allowing menu-contracts instead of just point-contracts increases

the set of equilibrium payoffs in the strong set ordering and that allowing menu-

contract eliminates many poor equilibria for the principal; in particular, the principal
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will never obtain less than her least-cost separating equilibrium payoff when offering

menu-contracts. Additionally, I characterize environments where equilibrium payoffs

can be obtained using menu-contracts which are strictly higher than any separating

equilibrium payoff using point-contracts. Thus, in a labour market environment with

moral hazard where the employer has private information about the productivity

of the worker, this paper shows that it can be strictly beneficial for the employer

to maintain discretion over the particulars of the contract after the employer has

accepted the job; moreover, the employer can never do worse by maintaining this

discretion.

Extending the space of efforts and outcomes to any finitely countable set would

be straight forward since none of my results depend on there being only two efforts

and two outcomes.
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Chapter 3

A Note on Bidder-Led Collusion

3.1 Introduction

In this chapter I present an example of a discrete, independent private-value auction

in which a bidder (the proposer) can offer her rival (the receiver) a collusion contract

after agreeing to the seller’s mechanism. A celebrated result by Che and Kim [5]

states that for such auctions, there is a mechanism that eliminates all the effects

of collusion. The example demonstrates that the mechanism developed by Che and

Kim [5] fails to raise the seller her Myerson payoff; that is, the payoff the seller

would earn if collusion were impossible. The Che and Kim mechanism essentially

calls for the seller to charge entrance fees to the bidders that sum to the Myerson

payoff and leave the task of allocating the good to the colluding coalition. In my

example, the expected entrance fee is higher than the expected value of the good for

some lower type bidders; to ensure participation of these types in the Che and Kim

mechanism, higher type bidders must provide sufficient compensation. The proposal

my bidder offers refuses to pay this compensation when she is a higher type and

therefore excludes the lower types of her rivals from participating in the mechanism
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and reduces the seller’s mechanism. This proposal, and the off equilibrium behaviour

that supports it, is shown to dominate the proposer’s strategy of playing the Che and

Kim mechanism truthfully.

I show further that there is no symmetric mechanism that achieves the Myerson

payoff in a discrete, independent, private-value auction in which a bidder can offer

a collusion contract to her rival. To see why this is true, note that any mechanism

that collects more than the low valuation of the good when both bidders have low

valuations is susceptible to the same type of collusion as Che and Kim’s mechanism.

I then show that any mechanism that collects less than the low valuation of the good

when both bidders have low valuations is susceptible to collusion whereby the bidders

always announce they have low valuations.

The model differs from Che and Kim’s in two ways. First, the offer of collusion

is made by a bidder rather than a third party. Second, the reservation utility of the

bidder who receives the collusion offer is determined endogenously, i.e. via equilibrium

play in the seller’s mechanism following rejection of the collusion proposal; this is in

contrast to the assumption of Che and Kim that the lowest level of utility the collusion

contract must offer to ensure participation cannot be lower than the receiver’s initial

reservation utility level – that is, the level of utility that the seller’s mechanism must

deliver to ensure participation.

Once we rid ourselves of the assumption that a third party is organizing collusion,

we are able to consider how the proposer determines her off-path play in order to

maximize her payoff within the seller’s mechanism. This allows me to pin down the

most reasonable equilibrium play in the seller’s mechanism. I find that one type of

the proposer is indifferent between truth-telling and lying in the off-path subgame

following rejection of her collusion proposal, but that she strictly prefers the equi-

librium outcome of the mechanism when she lies. Thus, if dominated strategies are
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ruled out, any equilibrium we consider should break the indifference in this subgame

in favour of lying. This highlights the importance of the second difference between

the current chapter and Che and Kim’s model. The credible threat of lying to the

seller’s mechanism reduces the utility of one of the receiver’s types below her initial

reservation value. Anticipating the actions of the proposer before agreeing to the

seller’s mechanism, this type of the receiver will refuse to participate and therefore

reduce the expected payoff of the seller.

Finally, I outline the bidder’s general problem for designing an optimal collusion

contract.

3.2 Literature Review

There is a large theoretical literature studying collusion. The current chapter be-

longs to a strand of this literature that studies collusion that is explicitly agreed to

by the relevant parties via an enforceable contract. This literature has its genesis in

McAfee and McMillan [16] who characterize the optimal collusion mechanism, orga-

nized by a benevolent and uninformed third-party who maximizes the sum of bidder’s

payoffs, when the seller’s mechanism is fixed to be a first-price auction.

Laffont and Martimort [11, 12] extend this analysis by endogenizing the principal’s

mechanism, allowing her to respond optimally to any potential collusion contract. In

problems of regulating firms and providing public goods, Laffont and Martimort show

that the principal is able to exploit the constraints imposed on the agents’ collusion

contract given their private information to minimize the effects of collusion on revenue.

Che and Kim [5] significantly extend the framework of Laffont and Martimort.

Quesada [15] studies agent-led collusion in a procurement/public goods setting

where the principal has a Leontief production function. She finds that the principal
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can achieve her Myerson payoff when the agents’ types are uncorrelated. However, it

is unclear how much the result depends on the principal’s production technology. The

Leontief function implies that the agents’ actions are perfect complements, whereas

in an auction setting, bidders’ actions are perfect substitutes.

Laffont and Martimort [11, 12] and Che and Kim [5] assume, as in this chapter,

that the collusion contract is designed only after all bidders have agreed to partic-

ipate in principal’s mechanism. A number of more recent papers (see for example,

Dequiedt [7]; Pavlov [14]; and Che and Kim [6]) have studied the collusion problem

when agents can collude prior to entering the principal’s mechanism. Notably, the

ability to collude on participation decision strengthens the ability of the colluders

to extract rents from the principal. Relatedly, Eső and Schummer [8] and Rach-

milevitch [17] look at a particular collusive mechanism: the ability to bribe rivals to

abstain from a second-price and a first-price auction respectively.

A second strand of the literature studies how collusion can be sustained via re-

peated games, both with and without tacit communication between bidders (see for

example Fudenberg, Lavine and Maskin [9]; Athey and Bagwell [2]; Aoyagi [1]; Athey,

Bagwell and Sanchirico [3]; and Skrzypacz and Hopenhayn [18]). In a similar vein,

Garratt, Tröger and Zheng [10] examine how bidders are able to collude in auctions

by participating in resale markets following the initial auction.

Finally, the bidder-led organization of collusion studied this chapter is similar to

the process of reciprocal contracting studied by Celik and Peters [4]. Their contracting

procedure has all players of the game offering contracts that are each conditional on

the contracts offered by the others; if all contracts agree, a cooperative action is

implemented in the default game (e.g. an auction); otherwise, all contracts are void

and the default game is played non-cooperatively. Their work is mostly concerned

with characterizing the outcomes that can be supported as perfect Bayesian equilibria
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of the reciprocal contracting game. While they do suggest how the procedure can

be used to model collusion, much of the analysis of the problem is left for future

research. The reciprocal contracting approach to modelling collusion is best viewed

as complementary to the bidder-led collusion studied in this chapter since it too

dispenses with the assumption that a third-party organizes collusion.

3.3 The Model

Consider a seller facing two potential bidders of one unit of a good. Buyers have

private information about their valuation of the good; valuations for bidder i’s val-

uation vi is drawn independently from some arbitrary measurable set Ti. Valua-

tions for bidder i are distributed according to some distribution Fi ∈ ∆Ti. The

seller offers mechanism M =
{

(qi(·), ti(·))2i=1

}
where qi : T1 × T2 → [0, 1], such that

q1(v1, v2)+q2(v1, v2) ≤ 1 for all (v1, v2) ∈ T1×T2, maps valuations into the probability

that bidder i obtains the good and ti : T1×T2 → R maps valuations into the payment

to be made from bidder i to the seller.

An allocation (q1, q2, t1, t2) with draw (v1, v2) ∈ T1 × T2 gives utility ui(θ1, θ2) :=

viqi − ti to bidder i and w(θ1, θ2) := t1 + t2 to the seller. The reservation payoff for

each player is 0.

After both players have accepted the seller’s mechanism, we allow bidder 1 to

offer a collusion contract to bidder 2. Formally, a collusion contract is a set P ={
m, (φi(·))2i=1 , y(·)

}
where m ⊆ T1 × T2 is a set of messages bidder 1 allows to be

exchanged between bidder 1 and bidder 2; φi : T1 × T2 → T1 × T2 maps the types of

the bidders into a report to the seller for bidder i and y : T1 × T2 → R maps the types

of the bidders into transfers from bidder 2 to bidder 1.1

1Due to the specification of preferences, any reallocation of the good can be replicated via
transfers between the bidders. There is therefore no loss of generality in not allowing the collusion
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The timeline of the full game is as follows:

1. Seller offers mechanism M .

2. Bidders accept or reject seller’s mechanism.

3. If both reject, all players receive reservation utility and the game ends; if one

rejects, the seller’s mechanism is played with the bidder who accepted.

4. If both accept, bidder 1 offers bidder 2 collusion contract P .

5. Bidder 2 accepts or rejects.

6. If bidder 2 rejects, bidders play seller’s mechanism non-cooperatively.

7. If bidder 2 accepts:

(a) the bidders simultaneously make announcements from m to each other;

(b) the bidders announce type to seller (i.e. play seller’s mechanism); and

(c) the transfer is made between bidders.

Before outlining the general contract design problem of bidder 1, I present a

discrete type example to demonstrate how Che and Kim’s [5] mechanism is susceptible

to collusion and develop some of the central problems to studying bidder-led collusion.

3.4 Discrete Type Example

Let T1 = T2 = {vL, vH} with vH > vL. For convenience, I say buyer i with valuation

vθi has type θi where θi ∈ {L,H}. Each bidder draws valuation vH with probability

α. Define ∆v := vH − vL.

contract to reallocate the good.
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Assume that vL − α
1−α∆v > 0; then the optimal allocation for the seller in the

absence of collusion is to sell in all states of the world. In this case, the seller earns

payoff α · vH + (1− α) · vL. This is the seller’s Myerson payoff (i.e. the highest payoff

she can achieve given her lack of knowledge of the bidder’s types).

Suppose the bidders can collude via a benevolent third party who maximizes a

weighted sum of their payoffs. Buyers reveal their types to the third party who can

then manipulate these reports to the seller, reallocate q assigned by the seller and

exchange transfers among the bidders in a budget balanced way. Che and Kim [5]

show that the seller can still achieve her Myerson payoff and implement the Myerson

allocation.

Proposition 3.1 Let ρ := (α · vH + (1− α) · vL) /2. The following quantity and

transfer schedules achieve the Myerson allocation:

q(H,H) =
(
1
2
, 1
2

)
, q(H,L) = (1, 0),

q(L,H) = (0, 1), q(L,L) =
(
1
2
, 1
2

)
,

t(H,H) = (ρ, ρ), t(H,L) =
(
ρ+ 1

2
vH , ρ− 1

2
vH
)
,

t(L,H) =
(
ρ− 1

2
vH , ρ+ 1

2
vH
)
, t(L,L) = (ρ, ρ).

The resulting expected payoffs are

Ui(H) := Eθj(ui(100, θj)) = vH/2− ρ

Ui(L) := Eθj(ui(50, θj)) = 0.

for j 6= i; i, j ∈ {1, 2}. The seller achieves her Myerson payoff of α · vH + (1−α) · vL.

I will refer to the mechanism in Proposition 3.1 as the Che-Kim mechanism and

its outcome as the Che-Kim outcome.
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Now suppose that, instead of having a third-party propose a collusion contract,

bidder 1 can offer bidder 2 a collusion contract after both have accepted the seller’s

mechanism. It is natural to consider the forward looking incentives of bidder 1 when

determining off-path decisions and pinning down a reasonable equilibrium; in particu-

lar, we are interested in how bidder 1 plays in the seller’s mechanism in the event that

bidder 2 rejects her collusion proposal. An equilibrium satisfies the forward induction

criterion if the associated equilibrium of the normal form representation of the game

is composed of undominated strategies.

Theorem 3.1 No equilibrium of the Che-Kim mechanism satisfies the forward in-

duction criterion and earns the seller her Myerson payoff when bidder 1 can make a

collusion offer to bidder 2.

I first determine the reservation payoff of bidder 2 in the collusion contract game.

Lemma 3.1 There exists an equilibrium in the Che-Kim mechanism such that type

H of bidder 2 earns ū2(vH) := 1
2
vH−ρ and type L of bidder 2 earns ū2(vL) := 1

2
vL−ρ.

Proof Note that when bidder 2 is being truthful, type H of bidder 1 is indifferent

between lying and telling the truth in the Che-Kim mechanism. Further, given that

bidder 1 is lying, being truthful remains a best response for bidder 2. Thus, we have

an equilibrium in the Che-Kim mechanism where bidder 1 always announces that she

is type L and bidder 2 plays a truthful strategy. In case bidder 2 is type H, her utility

is vH − 1
2
vH − ρ = 1

2
vH − ρ; in case she is type L her utility is 1

2
· vL − ρ.

Thus, upon rejection of the collusion contract, if the equilibrium of Lemma 3.1 is

played, the low type of bidder 2 obtains payoff 1
2
· vL− ρ. Supposing this equilibrium

is played upon rejection then the collusion contract offered by bidder 1 must provide

at least 1
2
· vL − ρ for the low type of bidder 2 to be acceptable to her. Note that
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1
2
·vL−ρ < 0 and therefore delivers to type L of bidder 2 less than her initial reservation

utility. Che and Kim [5] explicitly rule out any collusive mechanism that delivers to

the bidders utility less than their utility from rejecting the seller’s mechanism. Since

the collusive contract generates a payoff for bidder 2 that is less than this outside

option, it cannot be considered in Che and Kim’s analysis. This restriction implicitly

rules out the equilibrium where bidder 1 follows the strategy described in the previous

lemma.

I now present a collusion contract that bidder 1 can offer bidder 2. Next, I

show that the strategy of making this offer and always announcing L in the seller’s

mechanism following bidder 2’s rejection of the offer dominates the truthful strategy

leading to the Che-Kim outcome for bidder 1.

Lemma 3.2 There is an equilibrium in the Che-Kim mechanism where Buyer 1 offers

a collusion contract such that both bidders tell the truth and the low type of bidder

2 transfers 1
2
∆v to the high type of bidder 1. In case of rejection, bidder 1 always

announces L to the seller and bidder 2 is truthful.

The resulting expected payoffs are

U1(H) = α 1
2
vH + (1− α)

(
vH − 1

2
vL
)
− ρ, U1(L) = 0,

U2(H) = vH/2− ρ, U2(L) = vL/2− ρ.

Proof Incentive Compatibility For bidder 1 of type H:

α · vH ·
1

2
+ (1− α)

(
vH −

1

2
vL

)
≥ α · vH ·

1

2
+ (1− α) · vH ·

1

2
=

1

2
vH ;
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for bidder 1 of type L:

α
1

2
vH + (1− α)

1

2
vL

≥ α

(
vL −

1

2
vL

)
+ (1− α)

1

2
vL =

1

2
vL.

For bidder 2 of type H:

α
1

2
vH + (1− α)

(
vH −

1

2
vH

)
=

1

2
vH

≥ α
1

2
vL + (1− α)

1

2
vH .

for bidder 2 of type L:

α
1

2
vL + (1− α)vL =

1

2
vL

≥ α
1

2
vL + (1− α)

(
vL −

1

2
vH

)
.

It is clear that the offer is individually rational for bidder 2 given that the equilibrium

from Lemma 3.1 is played following rejection.

Lemma 3.3 Any equilibrium where bidder 1 tells the truth following the rejection of

any collusion proposal is dominated by the strategy of offering the collusion contract

of Lemma 3.2 and announcing type L in the seller’s mechanism following rejection

of her offer.

Proof For bidder 1, any strategy that prescribes being truthful in the Che-Kim

mechanism is weakly dominated by offering the collusive contract and lying (i.e.

always announcing she is L) following rejection of the collusive contract. To see this,

note that the latter earns type H of bidder 1 utility of α 1
2
vH+(1−α)

(
vH − 1

2
vL
)
−ρ >

1
2
vH − ρ (where 1

2
vH − ρ is her utility in the Che-Kim outcome) if type L of bidder
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2 accepts the collusion contract and 1
2
vH − ρ otherwise. A truthful strategy for type

H of bidder 1 following rejection earns her utility 1
2
vH − ρ. Type L of bidder 1 earns

the entrance fee in both cases.

Finally, I can show that there is no equilibrium of the Che-Kim mechanism that

satisfies the forward induction criterion and achieves the Myerson payoff for the seller.

We know from the previous lemma that any equilibrium that satisfies the forward in-

duction criterion in the Che-Kim mechanism will give the low type of bidder 2 strictly

less than her reservation payoff; thus the low type of bidder 2 will not participate in

the seller’s mechanism. In the two states in which bidder 2 is of the low type the seller

only obtains the entrance fee from bidder 1. An upper bound on expected revenue

for the seller is

α2 (α · vH + (1− α) · vL) + α(1− α) ((α · vH + (1− α) · vL)/2)

+ (1− α)α (α · vH + (1− α) · vL) + (1− α)2 ((α · vH + (1− α) · vL)/2)

< α · vH + (1− α) · vL.

A mechanism M offered by bidder 1 is safe if for every type of bidder 1, M

is incentive compatible and individually rational if bidder 2 knew the principal’s

type. See Myerson [13]. A safe mechanism has the advantage that regardless of the

inferences made by bidder 2 about bidder 1 when bidder 1 offers a mechanism, that

mechanism will be accepted by bidder 2.

Proposition 3.2 Buyer 1’s collusion offer (from Proposition 3.2) is a safe mecha-

nism.

Proof Suppose that bidder 2 believes with probability β ∈ [0, 1] that bidder 1 is of the

high type. The high type of bidder 2 expects payoff of β 1
2
vH+(1−β)1

2
vL−ρ = 1

2
vL−ρ

while the low type expects a payoff of β 1
2
vL + (1−β)1

2
vL− ρ = 1

2
vL− ρ. Truth telling
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remains a best response for bidder 2: for bidder 2 of type H:

vH
1

2
− ρ ≥ 1

2
vLβ +

1

2
vH(1− β)− ρ;

for bidder 2 of type L:

1

2
vL − ρ ≥

1

2
vLβ + (vL −

1

2
vH)− ρ.

Since the collusion offer is safe, it cannot be ruled out by any refinement of equi-

libria that restricts β following acceptance of the collusive offer. Moreover, if the

high type of bidder 1 augments his offer with a small acceptance bonus of ε > 0 for

bidder 2, for any beliefs β ∈ (0, 1], acceptance of the offer is strictly optimal (for

β = 0 bidder 2 is indifferent between accepting and rejecting the offer). Further, note

that the proposal requires no exchange of information between the bidders: bidder

1 can determine bidder 2’s report to the seller, and therefore her type, through the

allocation of the good and the payment made to the seller; thus knowing bidder 2’s

type, bidder 1 can extract the appropriate payment from bidder 2.

I have noted that the equilibrium proposed in the Che-Kim mechanism satisfies

the forward induction criterion; in particular, the strategy of announcing L following

rejection is maximal for bidder 1 regardless of bidder 2’s action. This relies on the

fact that type H of bidder 1 is indifferent between announcing H and L following

rejection. The seller could then break this indifference with a small extra payment

to any bidder who announces H. The equilibrium no longer satisfies the forward

induction criterion and our argument that it is a likely outcome breaks down. Thus,

one could argue that the seller can get arbitrarily close to her Myerson payoff with

such a scheme. However, the collusion equilibrium could just as reasonably be said
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to be arbitrarily close to satisfying the forward induction criterion, thus restoring the

argument for choosing such an equilibrium.

Finally, note that the game could be modified such that the bidder who is able

to offer the collusion contract is chosen at random after having entered the grand

mechanism. The low type of bidder i will obtain payoff 0 if she is chosen to make

the offer and 1
2
vL − ρ otherwise. Any expectation over these payoffs is less than

the entrance fee so low types of both bidders will refuse to participate, therefore

maintaining the statement of the corollary.

3.4.1 Impossibility of Earning Myerson Payoff with Symmet-

ric Mechanisms

In this section I show that there is no symmetric mechanism that guarantees the

seller earns her Myerson payoff in expectation. We define a symmetric mechanism

such that t̄ := t1(H,H) = t2(H,H); t := t1(L,L) = t2(L,L); tLH := t1(L,H) =

t2(H,L); tHL := t1(L,H) = t2(H,L) and similarly with q(·, ·).

Proposition 3.3 No symmetric grand mechanism with full participation will earn

the seller her Myerson payoff in any equilibrium that satisfies the forward induction

criterion.

Proof Since the seller sells the good in all states of the world, in a symmetric

mechanism

q̄ = q =
1

2
(3.1)

qHL = 1− qLH . (3.2)
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I first show that the high type of bidder 1 never strictly prefers truth telling to

announcing she is the low type when the seller earns her Myerson payoff.

Lemma 3.4 In any symmetric grand mechanism with full participation that earns the

seller her Myerson payoff, type H of either bidder is indifferent between announcing

H and announcing L.

Proof To ensure participation by the low type of bidder 2 we need

α(qLHvL − tLH) + (1− α)(qvL − t) ≥ 0

or equivalently that

αtLH + (1− α)t ≤ αqLHvL + (1− α)
1

2
vL. (3.3)

Suppose that the high type of bidder 1 strictly prefers to tell the truth in the

seller’s mechanism (i.e. following rejection of her collusion contract):

α

(
1

2
vH − t̄

)
+ (1− α)(qHLvH − tHL) > α(qLHvH − tLH) + (1− α)

(
1

2
vH − t

)
≥ αqLH∆v +

1

2
(1− α)∆v (3.4)

where the second inequality is due to (3.3).

Now note that the maximum expected surplus from the trade is equal to

S := α2vH + 2α(1− α)vH + (1− α)2vL = αvH + (1− α)vL + α(1− α)∆V. (3.5)

Define

W := α(qLHvL − tLH) + (1− α)

(
1

2
vL − t

)
.

112



The expected surplus accruing to the bidders is

2

[
α

(
α

(
1

2
vH − t̄

)
+ (1− α) (qHLvH − tHL))

)
+ (1− α)W

]
> 2

[
α

(
αqLHvL +

1

2
(1− α)vL

)
+ (1− α)W

]
= 2α2qLHvL + α(1− α)∆v + 2(1− α)W (3.6)

where the inequality follows from (3.4). So the maximum payoff accruing to the seller

is

S − 2α2qLHvL − α(1− α)∆v − 2(1− α)W < αvH + (1− α)vL − 2α2qLHvL − 2(1− α)W

≤ αvH + (1− α)vL

where the strict inequality follows from (3.6) and the second inequality follows since

2α2qLHvL ≥ 0 and W ≥ 0 by type L’s individual rationality.

Thus, the seller can only earn her Myerson payoff if type H of bidder 1 is indifferent

between announcing H and L in the seller’s mechanism. But when this is the case

we can construct a collusion contract as in Proposition 3.2 and define a strategy such

that bidder 1 always announces L following the rejection of her contract. Further,

this strategy, along with truth telling by bidder 2, constitutes a forward induction

equilibrium within the seller’s mechanism. Type L of bidder 2 is thus excluded

from any mechanism when we apply the forward induction criterion and the seller’s

expected payoff falls below the Myerson payoff.

Suppose a mechanism earns the seller her Myerson payoff. Since type H of bidder 1

is indifferent between announcing H and L in the seller’s mechanism, t ≤ 1
2
vL; other-

wise one can construct a collusion contract as in Proposition 3.2 and define a strategy

such that bidder 1 always announces L following the rejection of her contract. This
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strategy, along with truth telling by bidder 2, constitutes a forward induction equi-

librium within the seller’s mechanism. Type L of bidder 2 is thus excluded from any

mechanism when we apply the forward induction criterion and the seller’s expected

payoff falls below the Myerson payoff, a contradiction.

Consider the collusion contract that specifies that both bidders always announce

L. If their true types match, each is awarded the good with equal probability and

no additional transfers are made. Otherwise, the type H bidder is awarded the good

with probability 1 and pays her type L rival 1
2
vH . To show that this contract is

incentive compatible for both bidders, we will need the following lemma.

Lemma 3.5 If the seller’s mechanism earns her Myerson payoff, then

1

2
vH − t ≥ α

(
1

2
vH − t̄

)
+ (1− α) (qHLvH − tHL) .

Proof Suppose not: 1
2
vH < qLHvL − tLH ≤ 1

2
vL − tLH where the last inequality

follows from the monotonicity of q. Then

tLH <
1

2
vL −

1

2
vH .

From the type H individual rationality constraint

t̄ ≤ 1

2
vH +

1− α
α

(qHLvH − tHL).
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The seller’s expected payoff is

α22t̄+ (1− α)22t+ 2α(1− α)(tHL + tLH)

< α22

(
1

2
vH +

1− α
α

(qHLvH − tHL)

)
+ (1− α)22t+ 2α(1− α)

(
tHL +

1

2
vL −

1

2
vH

)
= α2vH + 2α(1− α)

(
qHLvH +

1

2
vL −

1

2
vH

)
+ (1− α)2vL

≤ α2vH + 2α(1− α)

(
1

2
vH +

1

2
vL

)
+ (1− α)2vL

= α2vH + αvH − α2vH + αvL − α2vL + vL + α2vL − 2αvL

= αvH + (1− α)vL

a contradiction.

Now we show that the collusion contract is incentive compatible (after the seller’s

mechanism is resolved):

For type H

α
1

2
vH + (1− α)

(
vH −

1

2
vH

)
≥ α

1

2
vH + (1− α)

1

2
vH

where the inequality follows since qLHvL − tLH ≤ 1
2
vH by the previous lemma.

For type L

α
1

2
vH + (1− α)

1

2
vL ≥ α

1

2
vL + (1− α)

(
vL −

1

2
vH

)
.

3.5 The Colluder’s Problem

In this section I write down bidder 1’s collusion proposal problem, given the seller’s

mechanism.

As seen above, an important feature of modelling collusion as a proposal from
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one of the bidders is choosing the appropriate reservation utility for the receiver

to use in the proposer’s mechanism design problem. Here we formally incorporate

the proposer’s posterior following rejection of the proposal. Let βr2 represent bidder

1’s belief over bidder 2’s types following the rejection of the collusion proposal. In

general there are no restrictions on βr2 but applying such refinements as the intuitive

criterion may be used to focus on particular rejection beliefs. Note that due to

Myerson’s [13] inscrutability principle, we can assume without loss of generality that

bidder 1’s proposal reveals no information to bidder 2. The receiver’s reservation

utility is derived as an equilibrium payoff in the seller’s mechanism, given βr2 . Let

E(M,βr2) be the set of equilibrium strategies in the seller’s mechanism M (played non-

cooperatively) given bidder 1’s beliefs βr2 . Suppose the seller offers the mechanism

M = {q1(·), q2(·), t1(·), t2(·)}. Let

U2(v2, β
r
2) ∈

{
Ev1 [v2q2(σ1(v1), σ2(v2))− t2(σ1(v1), σ2(v2))]

∣∣(σ1(v1), σ2(v2)) ∈ E(M,βr2)
}
.

U2(v2, β
r
2) is the reservation utility for bidder 2 given bidder 1’s rejection beliefs βr2 . If

the set on the left hand side is not singleton, bidder 1 would be afforded the greatest

scope for collusion by choosing the infimum element of the set; i.e. imposing the

worst possible equilibrium for bidder 2 following rejection. In general, this can be

any equilibrium. Fix βr2 , and U2(v2, β
r
2). Let Ai(M) ⊆ Ti be the set of bidder i’s types

that participate in the seller’s mechanism M . A collusion proposal P is individually

rational if

Ev1

[
v2q2(φ(v1, v2))− t2(φ(v1, v2))− y(v1, v2)

]
≥ U2(v2, β

r
2) (3.7)

for all v2 ∈ A2. The notation Ev1 is the expectation operator taken over the random

variable v1. A crucial difference from Che and Kim’s [5] model of collusion is that
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their notion of individual rationality requires that the right hand side of (3.7) is 0, or

more generally, equal to the reservation payoff of bidder 2.

Let Ii represent the information bidder i has following the the announcements

made from m and any information revealed by the seller’s mechanism. A collusion

proposal P is incentive compatible if, given Ii, each type of each bidder prefers to

take the actions prescribed P . Formally,

Evi
[
viqi(φ(vi, v−i))− ti(φ(vi, v−i)) + (−1)i+1y(vi, v−i)|Ii

]
≥

Evi
[
viqi(φ(v′i, v−i))− ti(φ(v′i, v−i)) + (−1)i+1y(v′i, v−i)|Ii

]
for all i and all vi, v

′
i ∈ Ai.

Finally, bidder 1’s collusion problem is to choose P to maximize

Ev2

[
v1q1(φ(v1, v2))− t1(φ(v1, v2)) + y(v1, v2)

]
such that P is individually rational and incentive compatible.

3.6 Conclusion

In this chapter I have illustrated the limitations of studying the problem of collusion

in auctions as being managed by a disinterested third party. In particular, I have

shown that Che and Kim’s [5] robustly collusion proof mechanism is susceptible to

collusion when a bidder proposes collusion and equilibria are refined to satisfy the

forward induction criterion.

In future work I will build on the framework outlined in Section 3.5 to study

the general mechanism design problem of the seller who faces bidders who can self-

organize collusion.
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Conclusion

Despite a wealth of important examples of informed parties designing and implement-

ing mechanisms, or instruments of trade, relatively little theoretical work studies the

problem. As I have shown throughout this dissertation, striking differences appear

relative to cases where the mechanism designer is uninformed or the informed player

is not the mechanism designer.

From the technical side, in the first chapter I demonstrate that the unique incentive

constraints faced by the informed principal can lead her to choose to be ignorant in

order to maintain a strategic advantage when offering a contract to an agent. That

the principal refuses to acquire full information despite: (a) it being costless to do so;

(b) being able to employ the most general mechanisms available; and (c) being able to

choose her most favourable full-information continuation equilibria, makes this result

particularly notable.

From a more applied side, I show that considering the informed principal’s problem

forces the modeller to change perspective when considering such details as the space

of mechanisms available to the principal or how to properly refine the set of equilibria.

More specifically, in a moral-hazard environment in the second chapter, I demonstrate

that it can be insufficient to consider only the typical point-contracts that pay a

fixed wage associated with each observable outcome when the principal has private

information about the productivity of the worker; I show when more general menu-
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contracts can improve the principal’s payoff. Further, in the final chapter, I show that

considering bidder-led collusion in auctions forces the modeller to take into account

the proposing bidder’s strategic incentives when deciding on the appropriate set of

equilibria to consider; specifically, the modeller should pay particular attention to

the proposer’s undominated strategies. Such a change in perspective lays bare the

restrictiveness of seemingly innocuous assumption such as forcing collusion contracts

to deliver to the receivers their reservation utility fixed from before entering the

seller’s mechanism. I show that deriving the receivers’ participation constraints via

equilibrium play in the seller’s mechanism and allowing beliefs to change in response

to actions in the collusion contracting subgame can dramatically alter how we expect

collusion to affect the seller’s revenue.
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