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ABSTRACT

In solving terrestrial heat flow problems, the complexity of the earth
wedium and boundary conditions calls for frequent use of nvmerical modeling
techniques.  The ill—posedness of the problems due to lack of perfect knowledge of
the material properties and the boundary conditions requires that inverse theories
be anplied.  Methods that incorporate both numerical techriques and inverse
theories have therefore been gaining attentions in heat flow research.

In this study, an inverse finite element method is developed o solve 2-D
stcady state heat fiow problems involving uncertain material properties and
boundary conditions. The problems are first parameterized using an isoparametric
finite clement nwdel, in which the field variables, the material ;roperties and the
boundary conditions are formulated as discrete parameters. Information on the
parameters is described in the form of Gaussian probabilities. A nonlinear
parameter estimation method of Bayesian type is then used to update our
knowledge of the parameters.  For computational efficiency, a gradient method is
used in the paramcter estimation procedure, and the gradients are derived
analytically at the elemental level.

The method is applied to two types of conductive heat flow problems,
namely the topographic correction and the downward continuation of heat flow
data, and to the problem of coupled thermal and hydmlogical regimes of
sedimentasy  basin scale.  Numerical examples have shown that the method
provides a rigorous treatment of uncertainties in these problems. In the case of the
coupled problem. however, the power of the method is limited by the strong

nonlinearity, and better a priori information is needed to constrain the solution.
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CHAPTER 1I: INTRODUCTION

1.1 Preface

The study of terrestrial heat flow density (HFD) deals with the evaluation
and interpretation of heat {low data measured in the upper few kilometers of the
earth crust. In evaluating the quality of HFD data. the soundness of the nuthods
of measurement, buth in the ficld and in the laboratory . and corrections for varions
transient and steady state perturbing factors, such as climatic variations of surface
temperature and gruundwater flow, are considered. Having established the quality
of the data we then make inferences about the thermal and tectonic state of the
crust and the interior of the carth from the observed nearsucface HEFD pattern to
provide thermal constraints for a unified theory of tectunics and carth histocy.

Physical laws, such as Fourier's law of heat conduction and the laws of
thermodynamics. govern the thermal processes in the carth at the macroscopic
scale; partial differential equations, such as the eguation of heat conduction, are
common mathematica! descriptions of these laws. Solving these equations under
various conditions is a major task of the evaluation and interpretation of HED
data, and is the major concern of this study. The solutions to the equations can e
classified as deterministic or probabilistic, forward or inverse, analytical or
numerical, depending on the nature of the specific problem and the method used.
Definitions for the terms used for the classifications will be given later in this
chapter

The main objective of this research is to develop a numerical method that

1



incorpurates inverse theories o solve steady state subsurface conductive and
conveative heat transfer problemns.

Geophysics as a discipline is the study of icverse problems: data measured
on or near the surface are used to infer the state of the deeper interior of the earth;
it is natural, then, that inverse theories have been weil developed in certain
sub—disciplines of geophysics. Simultaneously, numerical methods based on those
extensively emploved in the engincering sciences are being developed in geophysics
to solved problems in. c.g., solid and fluid mechanics and heat transfer. However,
inverse nwthods incorporating nuinerical techniques have only recently begun to
gain attention in geophysics. although they have been much usel in engineeriag
and groundwater rescarch since mid 70's. A brief review is thercfore given in ihe
next two sections on the anplications of forw>rd and inverse methods to
geophysical research in general and HFD work in particuiar. This review is
followed by 2n outline of the work covered by this thesis.

In the following sections and the rest of the text, three terms will be
frequently used for easy referencing physical quantities pertaining to the partial
differential equations considered in this work. They are described as follows
without strict mathematical and physical definitions.

Material properties. ‘The physical quantities characteristic of the media
that occupy the spatial domain of the problem considered, or their logarithmic
transferms, are called material properties. The thermal conductivity of a rock is a
material propecty; the hieat production rate (or heat generation, heat production,
heat productivity) of a rock is regarded as a material property in this work. Ina
heat transfer problem involving groundwater flow, the material properties of both
the solid phase (rock matrix) and the liquid phase (pore water) that saturates the
rock must be considered.  The material properties of the solid phase include the

thermal conductivity of the materials composing the matrix, the porosity and



intrinsic permeability of the porous medium. The material properties of the fluid
include the density. viscosity. specific heat capacity. thermal conductivity, ete..
Very often, it is more convenient to consider iiwe overall (or offective) material
properties of the mixture of the solid and fluid phase, suck as the bulk thennal
conductivity and the hyvdraulic conductivity. Material propertics are typically
scalars or tensors of the second rank.

Field variables. The physical quantitics distributed continunously in space
and determined by the material properties and initial and toundary conditions ane
called the field variables. In the problems considered in this work, the field
variables are scalars, such as the temperature and the hyvdraunlic head, which will
be defined in Chapter 2.

Boundary flures. The normal component of the acrial density of mass or
energy flow across a point on a boundary of the spatial dumain of the problem is a
boundary flux at that point: examples are the boundary HEFD aud Darcian
velocity. A flow density is a vector in general, but a boundary flux refers only to
its component normal to the boundary and thercfore can be treated as a scalar. In
a forward solution to a partial differential equation, the specification of a boundary

flux is referred to as a Neumann houndary condition.

1.2 Forward methods

When perfect knowledge, which may range frora distinet nuterical values
to statistical moments, of the material properties and the initial and boundary
conditions is given, solving a set of partial differential equations for the field
variables is a forward problemi. For example, given the therinal conductivity

distribution of rock formations. the temperature distribution at ground surface and



the HFD distribution at other boundaries, solving the steady state heat conduction
equation for the temperature distribution is such a forward problem.

Depending on the assumptions made about the intrinsic features of the
physical quantities, a forward method can be either probabilistic or deterministic.
The probabilistic approach becomes necessary when the spatial variability of the
physical quantities is so complex that an exact descripticn of the state of the
quantitics as functions of space and time is impossible. With this approach, the
material properties and hence the field variables are regarded as realizations of
spatial (or temporal) stochastic processes, or random fields. The quaniities are
described in terins of the statistical moments of the random fields, such as the
mean and the auto— and cross—correlations. Principles of the proebabilistic
approach can be found in many text books (e.g., Scong, 1981), and examples of the
applications of stochastic analysis to various geological problems can be found in
Merriam (1976). In groundwater hydrology, stochastic anaivsis of groundwater
flow has developed into a major discipline following the pioneer work by Freeze
(1975). Representative work includes Bakr et al. (1978), Delhomm.e (1978), Smith
and Freeze (1979), Dagan (1982) and Gelhar (1986). The approach was not
formally introduced to the theoretical research of terrestrial HFD unti! 1987 when
Nielsen applied a stochastic model to the steady state 3—D heat conduction
problem in an attempt to interpret the empirical linear relationship between
surface. HFD and surface heat productivity of rock materials. For :he
mathematical foundatios. of this work, however, the deterministic methods are of
more interest.

The deterministic forward techniques for solving partial differential
cquations fall into two categories: analytical and numerical methoas. Most
analytical solutions to the heat transfer equation under various initial and

boundary conditions and domain configurations were derived decades ago, and can




be readily applied to terrestriai heat flow problems. Tarslaw and Jacger (1959),
extensively referenced by botk engineers and heat flow resvarchers, provided a
respectable number of analytical solutions. The applications of some of these
solutioss to the evaluation of heat flow data were summariad by Jacger (1965).
An ensembie of solutions applicable to the evaluation and interpretation of heat
flow data is also available in Cheremenski (1977).

Analytical solutions can be obtained only with simple and regular geometry
and boundary conditions. To use the solutions in a more realistic situation, many
simplifications have to be made to the particular problem. Some numerical
techniques, such as the discrete Fourier transform, can extend the applicability of
analytical solutions to a certain cxtent (Lindqvist, 1984; Clauscr, 1984; Wang ot
al., 1986), but the flexibility is much limited. Although new analytical solutions
with more complex problemi setups can occasionally be seen in the heat flow
literature (e.g., Niclsen and Balling, 1985; Shen and Beck, 19%6), numerical
methods for solving partial differential equations have become increasingly
popular, for their flexibility in coping with irregular boundary con-litions and
complex material property structures. With the availability of high speed
computers, numesical modeling iz now widely regarded as an important technique
in many fields of earth science. Commonly used numerical methods for solving
partial differential equaiions are the finite difference method, the finite eciement
method and the boundary elcment method.

The finite difference method has been developed for a long time and is
widely used for its relative simplicity in computer programing. The general
principl~s of the method are introduced in numerous text books (e.g., Smith,
1978). There are many applications of the the method o the evaluation and
interpretation of heat flow data; examples are, Stromeyer (1984) and Cermak and

Bodri (1986) for the problem of downward continuing heat flow data, Lewis and



Beck (1977) for illustrating the perturbations to the surface HFD value caused by

water flow through an aquifer, Wang et al. (1985) for investigating the effects of
variations of water bottoin temperature and inhomogeneity of lake sediments on
the probe measured temperature—depth rofiles, Henry and Pollack (1985) for
correcting heat flow data for the effects of topography and structure. More
recently, Clauser (1988) used 2—D and 3-D finite difference techniques to model
the interactions between the geothermal and the hydrological regimes.

The finite clement method, which gained popularity in the 1970's, has
matured rapidly in the past two decades. The finite element method is generally
cunsidered more convenient than the finite difference method in dealing with
anisotropic media, complex material property structures and boundary conditions,
and it is possible to set up very general finite element computer programs. It may
also yicld better accuracy and efficiency, compared to the finite difference method,
in many problems. The general principles and technical details are well elucidated
in many text books and treatises in engineering and mechanics (e.g., Zienkiewicz,
1972; Bathe and Wilson, 1976). Ia hydrology, where numerical modeling
techniques are routinely u:ad, there are a number of text books which specialize in
the use of finite element methods t) solve the problems of surface and subsurface
flow, and solute and energy transport (Pinder and Gray, 1977, Huyakorn and
Pinder, 1983). Since the mid-1970's, some examples of the use of the finite
clement method have appeared in terrestrial heat flow research, though not
comparable in quantity to those in groundwater research. For example, Lee and
Henyey (1974) and Finckh (1981, 1983) used the technique for topographic and
structural corrections of measured HFD data. Zhang et al. (1982) and Xiong and
Zhang (1934) used it to aralyze subsurface temperature ficlds. Ba'lard and

Pollack (1987) used a finite element model in the interpretztion of heat flow data

from Archean cratons and the surrounding younger terrains. 2-D or 3-D finite




element numerical modeling was made by Smith and Chapman ( 1933), Wowibury
and Smith (1935). Willett and Chapman (1987). to iavestigate the thermal offects
of groundwater flow. At lcast one text book is dedicated to the use of Gnite
element methods in geothermal research (Zhang and Xiong, 1986).

The boundary element method (e.g., Ligget and Liu, 1933) ix at present less
favored in earth sciences than the finite difference and finite element methods, due
mainly to its limited power in dealing with heterogencous media.  Applications of
the method to heat transfer and geothermal problems can be seen in Pina (1981)
and Powell et al. (1953), respectively.

Anothcr important numerica! method for solving partial differential
equations is the Monte Carlo simulation based on random walks (Nakamwura,
1977), whick has long been applied to engineering heat conduction problems (e.g..
Haji—Sheikh and Sparrow, 1967). Its application to the study of terrestrial heat
flow has not been reported, but ihere is an example of its application to the study
of lunar heat flow (Langseth et al., 1976). The concept ¢f probability is essential
in the random walk based Monte Carlo simulation, but when the material
properties and the boundary and initial conditions are specified deterministically,
the technique is essentially deterministic. The uncertainties in this type of Monte
Carlo solution are due to the solution procedure itself, where the eriors caused by
finite sampling (Nakamura, 1977, p.334) are analogous to the discretization errors
in the above three numerical methods, and not due to the intrinsic randam nature

of the physical quantities which are assumed in the probabilistic approach.

1.3 Inverse methods

An inverse problem alway. exists as the counterraii ui o forward problem.




Both are specified by a mathematical model which is based on physical theories
(that may involve simplifying assumptions) and which relate the field variabies to
the material propertics, and both are subject to initial and boundary conditions.
When the material properties and the initial and boundary conditions are perfectly
known, and the mathematical model is used to determine the distribution of field
variables that are entircly unknown, we are solving a typical forward problem.
Conversely, if the field variables are perfectly known, and the objective is to
determine the valucs of material properties or the initial or boundary conditions
that are entirely unknown. we would be solving an inverse problem in the strictest
sense.  In practice, however, such idealized forward and inverse problems do not
exist because none of the physical quantities would be known perfectly. Thus, a
problem should be posed in a more general sense: to use the mathematical model
and the available information on ficld variables, material properties and initial
and/or boundary conditions to better our understanding of the physical system in
question, i.e., to improve the state of our knowledge. Such a problem is called a
generalized inverse problem, aithough it includes the forward problem as a special
case. A common inverse problem, seen frequently in the literature of grouudwater
bvdrology and cngincering, is system identification where the values of material
properties arc determined, given a finite set of data on field variables and specified
initial and boundary conditions. In terrestrial heat ilow work, on the other hand,
an inverse problem that is of considerable interest is the determination of a
boundary flux, namely (the vertical component of) the HFD at a certain depth,
given limited information on other physical quantities.

To define a problem as forward or inverse is in principle arbitrary. Fe:
example, there is no logical reason why we cannot exchange the positions of the
field variables and the material properties in the above definitions of the forward

and inverse problems. However, over time an implicit agreement appears to have
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developed that an inverse problem can often be recognized by its ill—posedness,
that is, nonuniquencss and instability. Without loss of generality, it is convenient
to discuss the problem of ill-posedness by considering the particular type of
inverse problem, system identification. In a typical system identification problem,
parameters representing the material propertics are to be estimated from data on
the other physical quantiti. . 1d two kinds of nonuniqueness in the determination
of the parameters have to be recognized (Tarantola and Valette, 1952b). One is
due simply to the paucity of data. The other, called nonidentifiability in
hydrological irverse theories (Yeh, 1986; Carcera and Newman, 19586a), is intrinsic
to the structure of the mathematical and physical model, that is, the same set of
data on the field variables and boundary conditions, ro matter how redundant and
accurate, could have beesi produced with more than one set of values of the
material property parameters.  For example, under the assumption of pure
conduction and with a given HFD at a certain depth, identical ground surface
temperature distributions can be produced by an infinite number of combinations
of therma: conductivities and hcat productivities of the rocks; therefore a4 unique
determination of the subsurface distribution of thermal conductivity and heat
production solely from ground surface temperature is impossible.  ‘To limit the
second kind of nonuniqueness, soine independent information on the parameters is
needed. Instability is invariably due to the structure of the mathematical model of
the inverse problem; an example is the comparison between upward continuation,
which is stable, and downward continuation, which is unstable, of potential fields.
Solutions to an inverse problem can be found using a forward method with
a trial and error approach. For ¢. ample, given certain boundary conditions, we
can find the thermal conductivity and heat source distributions by solving the heat
conduction equation many times while adjusting the values of the two material

properties each time, until the computed temperature values are clos» enough. by




10

certain criteria. to the measured temperature values at a given set of points (model
fitting). This method. however. may nat solve the problem of nonuniqueness.
Studies o limit the problems arising from ill-posedness and to find unique and
stable solutions to inverse problems have given rise to inverse methods Jhat
incorpourate alatistical principles. The solution obtained with such a method is
called a formal inversion

Normally. an inverse method has two major steps: parameterization and
parameter estimation. In parameterization. a finite number of parameters
representing the physical quantities are found. and the forward model of the
inverse problemn is transformed into a parametric form such as an algebraic
cquation svstem.  After parameterization (some inverse problems may already be
defined in parametric forms). statistical parameter cstimation methods are used to
estimate the values ot the parameters and to vrovide the degrees of uncertaintics
it the estimates. It should be noted that partial differential equations have been
used above as the mathematical models of the inverse problems, which is a usual
appreach in hydrological inverse theories. In the literature of geophysical inverse
theories, the forward modeis are eften given in functional jorms or as integral
ocquations, most of which are solutions of, or alternative expressions of. partial
differential equations (Oldenburg, 19384; Parker, 1977; Sabatier, 1977). Different
forward mathematical models require different parameterization procedures, but
do not usually influence the choice of a parameter estimation method.

There are a number of different philosophies of statistical parameter
estimation, the two extreme cases being the methods based on sampling theory (or
classical, non-Bayesian) statistics (Hoel, 1954) and the methods based on
Bayesian statistics (Lindley, 1972, Box and Tiao, 1973). Although it would take a
whole book to discuss adequately the various philosophies, a brief summary is

necessary here because the fundamentally different philosophies have become
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characteristic of the different schools of thought in geophysical and hrdrological
inverse methods.

Sampling theory statisticians believe in cbjectiveness. 10 them, “he
para...cters are random variables, and Hobabilities are defined as the wmit of the
frequency of the occurrence of vvents in a sampling procedure.  The parameter
estimation methods based on this theory try to extract all information on the
estimated parameters from objective data, using certain criteria such as minimum
variance and unbiasedness. Methods in this category incude the classical least
squares method (Cooley, 1977) and the classical maximum liklihood method
(Kitanidis and Lane, 1985).

Bayesian statisticians hold that probability is a formal way of stating our
knowledge of the objective world (Jaynes, 1986); the parameters are not random, it
is our imperfect knowledge that gives rise to the "randomness", that is, the
uncertainty. Observed data arc nothing but a component of this imperfect
knowledge, save for the relatively smaller uacertainties; a priori information on the
parameters, such as a rescarcher's personal belief, experience and judgment, is
another indispensable component of this knowledge, often necessarily with larger
uncertainties. Data provide a certain amount of information, and the inference
should be left to the people who use the data. The basic principle of Bayesian
statistics is the Bayes' rule. The a priori information enters the estimation
procedure in terms of an a priori probability (or personal probability, subjective
probability, intuitive probability); the objective data are used in the form of a
likelihood function (Box and Tian, 1973; Berger and Wolpert, 1984).  The
inference, i.e.. the a posteriori probability, made by different researchers will
generaliy be different because of the subjectiveness of the a priori probability
distribution. Since our knowledge is imperfect, it is only ratural that different

people have somewhat different understandings of the parameters.  Inverse



methods of Bayesian type are used by, eg., Gavalas et al. (1976), Tarantola and
Valette (1982b) and Jackson and Matsu'ura (1983).

Information is the key to limiting the ill—posedness of inverse problems
(‘Tarantola and Valette, 1962a). No matter which technique is useC to "constrain”
or "regularize® the problem, some kind of prior information, explicit oc implicit,
objective or subjective, is incvitably introduced into the procedure. For this
rcason, methods based solely on sampling theory statistics are of very limited
practical interest. However, many people find it hard to accept the extreme
Bayesian philosophy. Compromise approaches can be found. One class of
geophysical inverse methods is akin to the Bayesian type but contains elements of
the sampling theory type. that is, the stochastic inversion (Franklin, 1970;
Jackson, 1979). Stochastic inversion requires prior information, but uses the
information formally as objective data, maintaining all the characteristics of the
sampling theory type methods. Another compromise approach between the
Bayesian and non-Bayesian philosophy is the "maximum likelihood :iecthod
incorporating a priori information”, known in probability theory and statistics as
type Il maximum likelihood method (Good, 1965; Berger and Wolpert, 1984), used
frequently in hydrological inverse methods (Neuman and Yakowitz, 1979; Carrera
and Neuman, 1986a) and occasionally in geophysical inverse methods (Menke,
1984).  For linear inverse problems and to the same researcher, there is no
practical difference between the stochastic inversion (or type Il maximum
likelihood method) and the Bayesian estimation (Backus, 1988); which method is
used seems to depend mainly on one's personal preference, especially when the
probability distributions are Gaussian. For nonlinear inverse problems, there is
more fundameatal difference in the calculation and interpretation of the resuits.
This issue will be further examined in section 4.3.

Inverse methods are extensively used in many fields of geophysics; for
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example, seismology (Wiggins. 1972; Cooke and Schneider. 1983 Gauthier ¢t al..
1936. etc.), geomagnetism (Silva and Hohmann, 1933; Gubbins and Bloxham,
1933), atmospheric physics (Rodgers. 1976). geomechanical stress  analysis
(Angeliar et al. 1932). electromagnetic sounding (Constable ot al.. 1987).
seif—potential method {Fitterman and Corwin, 1932), etc.. In terrestrial heat flow
studies, one well known application is the estimation of surface temperature
history or simuitaneous estimation of the surface temperaiure history and the ko al
HFD using temperature or temperature gradient data measured in boreholes or in
lacustrine and oceanic sediments (Cermak, 1971; Vasscur ot al., 1983; Shen and
Beck, 1983; Niclsen. 1936; Wang and Beck, 1937; Shen and Beck, 1988). Another
application is the downward continuation of heat flow data (Huestis, 1975, 1950;
Huestis and Parker, i979; Stromeyer, 1984; Beck and Shen, i9%9).  Inverse
approaches are also used in other cases of evaluation and interpretation of heat
flow data, such as the estimation of HFD using scarce and noisy temperature data
(Vasseur et al., 1986), topographic and structural correction of HFD data (Henry
and Pollack, 1987) and analysis of bottom hole temperature data sets (Speeee ot
al., 1985; Willett and Chapman, 1987; Deming and Chapman, 198X).

In groundwater studics. inverse methods have been used by many
researchers to estimate aquifer parameters using measured hydraulic head data and
other available information. In a sense, the term "invetse method” here is
synonymous with "system identification”. In addition to the use of a unique
random ficld formulation (Kitanidis and Vor-voris, 1983; Hocksema and Kitanidis,
1984), the inverse methods in groundwater hydrology as a whole are characterized
by frequent incorporation of nu.erical methods for solving partial differential
equations. There is an increasing number of publications in this field. Examples
are: Cooley (1977, 1979). Neuman and Yakowitz (1979), Neuman et al. (1950),

Yeh and Yoon (1981), Yeh et al. (1983), Dagan (1985), Sun and Yeh (1985),
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Carrera and Neuman (1956a. b, ¢), Fradiia and Dokter (1987), Loaiciga and
Marino (1987). Woodbury and Smith (1988), Lu et al. (1988). A review of three
decades of work up to 1986 in this field was giver by Yeh (1956).

1.4 Outline of the present work

The objective of the present research is to develop a method that
incorpurates a finite clement numerical modeling technique and a geophysical
inverse theory to solve 2-D steady state probiems of heat conduction and of
coupled hydrological and thermal regimes. For the problems considered in this
rescarch, we possess certain knowledge of all the three types of physical quantities,
namely, the ficld variables, the material properties and the boundary fluxes, some
of which are better known than others. The information on the quantities may be
obtained turough actual field measurements ot provided intuitively by one's
persona: judgment and reasoning. The available information is then used to
improve our knowledge of all components of the physical system. System
identification is a special case in which the field variables and boundary fluxes are
much better known than the material properties so that it is effectivily the
inversion of the former to yicld estimates for the latter. The forward solution is
another special case, where the state of the material properties and boundary
conditions are assurmied to be perfectly known and are used to determine the
previously unknown field variables.

The solution procedure consists of the customary two major steps,
parameterization and parameter estimation. The latter is performed in another

two steps, noniinear parameter estimation and boundary flux updating (linear

parameter estimation).  In the parameterization step, a finite number of




parameters are found to represent the spatially distributed material properties,
field variables and the toundary fluxes, and a parametric redation betwesn these
parameters are established. by using a finite element model.  The resultant
parametric relation, which can be separated into a nonlincar and a lincar part, is
then used in a Bayesian parameter estimation procedure. The nonlincar parameter
estimation procedure gives the estimates and the variances of the parameterized
field variables and material properties. The subsequent lincar parameter
estimation updates our knowledge of the boundary fluxes.

Chapters 2, 3. 4 and 5 lay the theoretical foundations of the approach: the
mathematical model in the form of partial differential equations (Chapter 2), the
finite element parameterization of the problems (Chapter 3), the nonlincar
parameter estimation procedure (Chapier 4), and the boundary flux updating
techniques (Chapter 5). In the developmen's, the problem of heat conduction and
wne problem of coupled thermal and hydrological regimes are considered separately
and in parallel, following the same basic ideas, although the second problem is
technically by no means a simple extension of the first. The much simpler solution
to the former will help explain the development of the more difficult solution to
the latter.

In Chapter 6, the method is applied to two heat conduction problems, one
is the topographic correction for HFD data and the other is the downward
continuation of heat flow data. Ficld examples as well as synthetic data are used.
In Chapter 7, the method is applied to the problem of basal HFD) determination in
the presence of basin scale groundwater flow. Synthetic examples are used to find
the limitations of the method and to examine the general behavior of the solutions;
the behavior of these solutions are much more complicated than that of the
conduction problem. since the forward model consisting of two coupled partial

differential equations is already nonlinear. Since a sufficient data set has so far not
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been found in which the technique's power to predict hitherto unobserved features
can be adequataly tested, the potential of the method in solving field problems is
tllustrated by using >ynthetic data generated from a model based on a real
sedimentary basin.  ‘The conclusions drawn in Chapter 8 include the advantages
and disadvantages of the method and some observations on the performance of the
method.

Three FORTRAN computer codes are developed and used in this research:
FORCUP, to ubtain forward numerical solutions to the 2—-D steady state problem
of heat conduction, isothermal groundwater flow, decoupled and coupled water
flow and heat flow: INVCON and INVCUP, to obtain the inverse solution to the
2-1) steady state problems of heat corduction and coupled water flow and heat
flow. respectively.  Aspects of the computer implementation of the inverse finite

clement method are discussed in the appendices.




CHAPTER 22 MATHEMATICAL MODFELS

2.1 Preface

Two types of problems arc considered in this work: heat conduction in solid
earth media (briefly called the conduction problem) and coupled water tlow and
heat flow in permeable rock formations (briefly called the coupled problem). Both
problems are assumed to be of steady state and 2-1). The mathematical nudeds of
the problems are given here in the form of partial differential equations, and will
be transformed into parametric forms in Chapter 3 before the inverse solutions are
sought.

The coordinate system will be Ca-tesian in a vertical 2-1) plane (geological
or geotectonical cross section) with the x2 axis pointing upwards. Ar a convention,
a letter with subscript(s) i, j, -.., n is used to d=note the component of a vector or
tensor unless otherwise specified; the subscripts i and j are reserved for R2, e i
= 1,2; for a vector, the same letter bold faced but without a subseript 15 used to
denote the matrix form of the vector. In all equations, repeated subseripts aid
superscripts i through n (the default integer variables in FORTRAN computer

language) imply summation.

2.2 Hcat conduction problem

Fourier's law of heat conduction states that

17
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at=-N g (21)
where T is the temperature, qf is the HFD and A§; is the tensor of thermal
conductivit* of the solid medium. The partial difierential equation that governs
the process of steady siate heat conduction is given as (c.g., Carsiaw and Jaeger,
1959)

g8, %;) +R=0 (2:2)
where R is a heat source terin, which, in terrestrial heat flow problems, is due
mainly to the heat produced by the decay of natural radioactive isotopes in the
carth's crust, and is referred to as the heat production rate. A*® and R are regarded
as waterial propertics in this work.

Equation (2.2) is the mathematical modei {or our heat conduction
problems. We make the assumption that A* is a function of x, not of T. This is
valid when the values of tempr:rature considered cre not too high and the range is
not too wide, as in the case of topographic corrections, where the depth range is
generally no more than one or two km and the temperature ranges between
approximately —20 °C and 40 °C. In such a case, equation (2.2) as a forward
problem is lincar. If a wider temperature range is considered, as in the case of
downward continuation of heat flow data, where the temperature varies between a
surface value of about 0 °C to Moho—boundary values of around 1000 °C, the
temperature dependence of A%, and other forms of heat transfer, may become more
significant (Cermak and Bodri. 1986). At temperatures higher than 400—600 °C,
heat transfer by radiation begins to play more important roles and the radiative
conductivity (Clauser, 1988) is a function of temperature. Nevertheless, in order
to simplify the paramcter estimation procedure in this inverse method, the
material properties are not formulated as explicit functions of the field variables.
The validity of this approximation for the problem of downward cortinuation of

heat flow data will be discussed in section 6.4.3.
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2.3 Coupled thermal and hydrological regimes

2.3.1 Governing equations

Our problem is confined to a low Reynolds number, slightly compressibice,
two dimensional Darcian flow of sedimentary basin scale. For nov—isothermal
subsurface flow problems, it is convenient and customary to define a quantity

P¢ -
h= LI
pgT ™ (2-3)

waere P¢ = fluid pressure,
Po = water density at a reference temperature T,
g = the absolute value of gravitational acceleration,

The quantity h was used by Hubbert (1940) and Bear (1972, p.654) to
address the relative importance of buoyancy force versus gravity in the presence of
variable fluid density. Frind (:980) used the same expression under the name
equivalent freshwater hydraulic head. This usage was subscquently adopted by a
number of authors (c.g., Smith and Chapman, 1983; Garven and Freeze, 1954a;
Woodbury and Smith, 1985) in the numerical modeling of non-isothermal flow.
However, when the variation of fluid density is duc only to its temperature
dependence, it is more appropriate to call h the reference hydraulic head (Clauser,
1988; Bachu, 1988, personal communication). Using the reference Lead, Darey's

law of fluid flow in }.orous media takes the form,

w K:: ah .
47 = == P8 (G, + Pebai) (2.4)
where: q} = specific discharge or Darcian velocity of water,

x = permeability of the mediumn, a function of x;,
# = dynamic viscosity of water,

éij = Kronecker d¢lta.



P, = the relative water density, defined as

Py = ’?—b;o ‘ (2.5)

with p Leing the water density at temperature T.
For a slightly compressible steady state Darcian flow, the foliowing
continuity equation ‘s sufficiently accurate (e.g., Bear, 1972),
pot 35, |51 (G + p,8)) = 0 (26)
where the constant pog is left as a scaling factor to make finite element
discretization (Chapter 1) 1nore convenient.
In the existence of fluid flow, the steady state energy balance equation has

an additional convective term as compared to equation 2.2,

d ar aT
Ki)nj ;o pcq’ o= 0 (2.7)

where c is the specific heat capacity of water at constant pressure. It should be
noticed that in cquations 2.1 and 2.2, A® is the thermal conductivity of the solid
medium, but in equation 2.7, A represents the overall (or bulk) thermal
conductivity of the iluid —saturated porous medium. Study of the mathematical
representation for bulk conductivity of a multi—-phase medium in terms of the
structure and the constituent media is beyond the scope of this work; interested
readers are referred to Brailsford and Major (1964), Jeffrey (1973) and Beck
(1976). 'The heat source (cf. equation 2.2) has generally in<ignificant effects over
the depth range of our problem (0-5 km) (Nielsen, 1986; Beck and Shen, 1989j,
and is not included in (2.7).

Equations (2.6) and (2.7), subject to appropriate boundary conditions,
constitute the mathematical model of our problem. The two equations are coupled

and the coupling is due to the temperature dependence of p and x4 in (2.6) and the

convective term in (2.7).




2.3.2 Temperature dependence of physical properties of water

The physical p.uperties of water appearing in the governing cquations
include the density p. the specific heat capacity at constant pressure ¢ and the
dynamic viscosity u.  The thermal conductivity of water is not coawidered
separately, because it is the formation thermal conductivity of the solid—fluid
complex that is of interest in our problem.

The fuli expression for the steady state continuity equation is

. paD =0 (28)

ie,

2w W

%‘1: + %i %i =0 (2.9)
If the overall variation in p over a characteristic lengu. scale L' is Ap, the first left
hand side term of (2.9) is of the orde f;. where q' is the characteristic value of the
Darcian velocity. The order of magnitude of the second term is then il: %1'-: Since
%’5 << 1 in the problem under study, only the first term of (2.9) remains, which
leads to (2.6).

In the cases of low topographic reliel, however, the buoyancy termm pedy; in
equation (2.6) may not be negligible compared to the gravity terin gi:!j although in
tnost cases it is indced very insignificant. The thermal dependence of water
density p is taken intc account mainly because of the buoyancy termn in this
equation.

In the energy balance equation (2.7), the first and second tevm represent
heat transfer by conduction and advection (forced convection), respectively. If the
overall temperature variation over a certain length scale L' is AT, and the
characteristic value of the thermal conductivity is A', the orders of magnitude of
the two terms in (2.7) are then %:'I‘__z and l’c%i, . respectively, where the

dimensionless quantity
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pe = £9L° (2.10)

is the Peclet number. Pe is a measure of the relative importance of the conduciive
and advective heat transfer in a system or a local portion of a system; thus if Pe
>> 1, advectiv> heat transfer dominates.

For a given geometry and given thermal conductivity values, Pe is
determined by p, ¢ and q'. It is 2 common practice to consider pc, the specific
thermal capacity, as a single physical quantity, because the variations of p and ¢
with changing temperature tend to offset each other for most materials (Beck,
1988). The pc of water varies with temperature by only a few percent within the
temperature range (0 — 126 °C) of the problem, as shown in Fig.2.1, therefore it is
reasonable to take it as a constant. The Darcy velocity, and hence Pe, is inversely
proportional to u, the dynamic viscosity of water. Since g varies by 400 to 500 %
in the same temperature range (Fig.2.1). its thermal dependence must by taken
into consideration.

A number of precise expressions for p and gz as functions of T caist in the
literature (c.g., Mercer et al., 1975; Straus and Schubert, 1977), but the following
lincar approximations illustrated in Fig.2.1, which have the merit of being
convenient for analytical manipulation, are adopted in this work:

p = po— (T —To) (2.11)

#w'=pot + 9T — To) (2.12)

where J and 5 are constants. It is easy to see that if better accurac; for p and p,
or if a wider temperature range is required, it is not difficult to replace (2.11) and
(2.12) with multi—section linear forms. Parameter constants used in this study are

listed in Table 2.1.

2.3.3 On the Peclet pumber Pe

The dimensionless number Pe is frequently used in the study of thermal
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effects of groundwater flow or subsurface energy transport problems, somctines
with slight variations in its definition (e.g., Bachu, 1935; \Woodbury ot al., 1938).
Equation (2.10) is the most general definition of the Peclet number.  Frow: (2.10),
we have the following three observations:

1) For a 2-D cr 3-D case, if the two vectors Q. the Darcian velocity, and
VT, the temperature gradient, are nearly orthogonal to cach other, nu matter how
large Pe is (but within the limit of lamiinar flow), the couvective term in (2.7) is
alwa, s negligible.

2) Using a single Peclet number (no matter how it is defined) to deseribe a
whole system, as was done in Woodbury and Smith (1983), may be appropriate in
some limited cascs, but certainly not in all. For example, in a sedimentary basin
where heat flow is essentially vertical, it is only in the regions of groundwater
recharge and discharge, where the vertical component of water flow may In
prominent, that the convective heat transfer can be significant; in regions where
groundwater flow is largely horizontal, the transfer of heat (in the vertical
direction) is mainly by conduction. Therefore, a PPe nummber can be applicd
meaningfully only in a local portion of the system t- .how the refative imp. ctance
of the two mechanisms of heat transfer in that particular portion.

3) The Peclet number only gives an idea of the relative importance of the
two types of heat transfer by orders of magnitude, as can be seen from tie way it
is defined; comparing two Peclet numbers with similar magnitudes (e.g., 2 and 3)
is not very meaningful.

Based on the above observations, it can be concluded that the Peclet
number, as one of the many ways of characterizing qualitatively the relative
importance of convective to conductive heat transfer, is convenient to use in
simple cases, especially 1-I) cases, but may not be convenient in more complex

Cases.
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2.3.4 On mechanical thenpal dispersion
A simplification made in equation (2.7) worthy of remark is the neglect of
unchanical thermal dispersion due to irregular motion of fluid particles in the void
space of the porous medium (Bear, 1972). With the mechanical thermal dispersion
taken into account, the HFD by -onduction and dispersion at a point is given in a
form resembling Fourier's law,
h_ _Dn.. ar ‘0
q; = — Dj; Hx—j 2.13)
where Dj; is the cocfficient of thermal diffusion, given as (Bear, 1972; Sauty,
1952a: Garven and Freeze, 1931a),
Dij = Aij + ¢pcD} (2.14)

:'j‘ is the coefficient of mechanicai

where ¢ is the porcsity of the porous medium; D
thermal dispersion. and was studied in detail by Scheidegger (1961).

Based on dimensional analysis, Bear (1972, p.651) concluded that for the
range of Reynolds number (< 10), within which Daccy's law is valid, mechanical
thermal dispersion is negligible. Even for large scale problems, numerical results
show that the effects of mechanical thermal dispersion are often insignificant
{Mercer et al., 1975; Woodbury and Smith, 19858). For these reasons, plus the fact
that the mechanism of mechanical thermal dispersion is not fully understood and is
controversial, it is reasonable to neglect the dispersion term in writing (2.7) for the
inverse problem at the current stage of this study. This approximation can al<o be
understood philosophically as lumping all effects into one coefficient (Mercer and
Faust, 1980). and calling it the thermal conductivity, but keeping in mind that it

may partially include the effects of mechanical dispersion, if the latter is not

negligible,




Table 2.1. List of parameter constants in equations (2.6), (2.7), (2.11) and (2.12).

Constant Value Unit
To 30 o
Po 995.91 kg m3
J 0.53625 Kg 3t
I 1253.1 smkg!
n 32579 ms kgth!
'y 418 x 108 JmIK!
4 9.8 ms?
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rig.2.1.  The specific thermal capacity pc (J em iK<1), density p
(g em3) and dynamic viscosity p (kg s"im™1) of water as functions of
temperature.  The actual p and o as given by Bejan (1984) are
represented by dashed lines, and pc by dot—dashed line; dotted line is
'l The linear approximations of p and ! (cquations 2.11 and 2.12)
are shown by solid lines.




CHAPTER 3: FINITE ELEMENT PARAMETERIZATION

3.1 Introduction

To use a discrete parameter estimation technire & . estimate a spatially or
temporally distributed physical quantity, a finite numbe. of parameters that are
sufficiently representative of the quantity must be found. This process, known as
discretization ¢ parameterization, is usually the first step of an inverse method.
Since the dimensionality is reduced from an infinite to a finite number,
assumptions and approximations arc neccessarily invoked.  Superficially, the
parameterization of a physical quantity can be perforined in two different ways,
corresponding to the probabilistic and deterministic forward methads mentioned in
section 1.2.

From a probabilistic point of view, material properties and/or field
variables are regarded as realizations of stochastic processes or random fields.
With certain stationarity assvmptions, these physical quantities can be describusd
by statistical moments of :he processes. ‘The governin, partial differential
equations become stochastic partial differential equations.

The pmbabilistic approach based on statistical moments was used by
Kitanidis and Vomvoris (1983) and Hoecksema and Kitanidis (1954, 19585b) in
inverse problems of aquifer system identification. In their formulation, there are
m point measarements of (logarithmic) transmissivity (Y) and n  point
measurements of hydraulic head (h) for an aquifer, from which the spatial
distribution of the (log) transmissivity (Y) of the aquifer is to be estimated. The
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actual h and Y are viewed as the realizaions of random fields. The large scale
spatial variability of Y. the trend in the mean, is described deterministically as a
function of pousition x with a few unknown parameters, the small scale spatial
variability is described statistically as a function of relative position Ax by a
covariance function again with a few unknown parameters. Once the parameters
in the trend and the covariance function are determined. the Y field is defined and
the value at any point can be estimated (e.g.. via kriging) with certain
assumptions about stationarity of the random field. In the subsequent parameter
estimation prucedure, the measured values Y; and h; are combined into a single N
(N = m + n) dimensional vector z, which is assumed to have a jointly Gaussian
probability density function
P(x] ) = (20) /2] C| V2exp| 3 (2 — 2):C"1(x - zo)]

where #is the vector of parameters in the trend and covariance function, and the
expectation %, and covariance matrix C are functions of # These functional
relations are deiermined. as part of the parameterization procedure. by considering
the first order perturbations to Y and h in the stochastic partial differential
cquation relating the two quantities. #(z|#) can be maximized to give the
maximum likelihood estimation of #.

The vector 2 can be a wortain transform of the measurement vector (Y,
Yz....Ya hy, hahn. In that case C is correspondingly mouified. A source term
can be added to the partial differential equation; if this term is uncertain, it is also
expressed as a function of unknown parameters. An apparent advantage of such a
probabilistic approach is that a very small number of parameters are used while
the arbitrary heterogeneity of the material property is still accounted for.

Any formal inversion is probabilistic. However, many paraneterization
methods need not invoke the concept of random fields, and the parameterization

can be formally performed in a deterministic manner. A physical quantity can be
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mapped oato a function space with a finite number of basix functions. Then the
parameters to be estimated are usually the generalized cvordinates of the bases.
The simplest basis functions are step functions, and a generalized coordinate is the
average value of the variable over the corresponding step length (or block, for more
than one dimension) (Jackson. 1979). In the usual finite clement formulation in
hydrological inverse methods (Cooley, 1977; Neuman and Yokawitz, 1979; Sun and
Yeh, 1985; Carrera and Neuman, 19386a.b,c; \Woodbury and Smith, 1938), material
preperties are parameterized using step functions, that is, cach element or a group
of elements is assigned the same material property value (zonation); the fidd
variables, on the other hand, are parameterized using the polynonial basis
functions, with the generalized coordinates being the nodal values of the variablex
(interpolation). In some cases, the material properties are also parameterized by
interpolation, using basis functions and nodal values (Yoon and Yeh, 1976; Yeh
and Yoon, 1931). There are numecious other ways  of deternunistic
parameterization; alimost any numerical technique can be listed as an example.
Although conceptually very different, the two approaches are closely related
in certain ways. If the generalized coordinates based on step—functions are viewed
as random variables, tkey can be considered as approximations to a spatial
stochastic process if the correlations between the steps are appropriately defined;
the goodness of the approximation depends on the size of the steps (blocks). This
fact permits the use of Monte Carlo methods in the analysis of the spatial
variability of physical propertics of subsurface porous media (Freeze, 1975; Smith
and Freeze, 1979). Similarly, the discrete spectral representations of a time or
space series in the inverse methods of Gavalas et al. (1976) and of Wang and Beck
(1987) can be regarded as cither probabilistic or deterninistic.  In fact, any
deterministic parameterization method can have a probabilistic interpretation.

For example. one may regard zonation as probabilistic, saying that the material
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property is a stochastic process that has a perfect auto—correlatiou in each zone;
onc may also regard interpoiation as probabilistic, maintaining that it is the first
moment of the stochastic process that is interpolated. A comparison made by
Kuiper (1956) shows that the deterministic approach based on finite elements,
despite its simplicity, may perform as well as or better than the probabilistic
approach based on statistical moments in 2—-D inverse groundwater modeling
prublems.

In this work, the deterministic approach is chosen and the problems are
pacameterized with a 2-D finite element model. With this model, the spatial
domain of the problem is first divided into a number of elements. each having a
constant material property value. There are N, nodal points in one element, and
Ng in the global finite element mesh. The field variables are interpolated using
their nodal values and polynomial basis (or shape, interpolation) functions Hy(x),
k = 1. 2, .... Ne. in cach element. The boundary fluxes are interpolated for each
clemental boundary using the nodal values and the shape functions related to the
nodes at the boundary.

The discretization of the conduction problem and of the coupled problem
are performed separately in the following sections; some remarks on the 2-D

isoparametric finit> element model are made in the last section.

3.2 Paramcterization of the hcat conduction problem

The field variable, temperature T, at any point x in an eclement is
interpmated from the nodal values Ty, k = 1, 2, ..., N, using the shape functions
Hy(x).

T = HyTy (3.1)




31

Here the subscript k i< understood as the elemecintal nodal number. Fach dlemental
nodal number is associated with a global noda! number. When the clemental
matrices and vectors with dimension Ne are written into global matrices and
vectors of dimension Ng. the subscripts of the entrics are correspondingly
transformed into the global nodal numbers. Without creating ambiguity. the sanwe
notation for the subscripts are used to number the nodex in both the clemental and
global dimensions. When the dimensions of the matrices and vectors are specified,
the transformation between the elemental and global is self—evident.

If one of the boundaries of an element is a'so a part of the global beundary
where the HFD is specified or to be cstimated, the HED oo this boundary is
interpolated in the same fashion as the temperature using the nodai HFD values,

q=H.q, (3.2)
k =1, 2, ..., Np, where Ny, is the number of nodes on the elanental boundary
(normally three in this work). In 3.2), and the rest of the derivation for the
conduction problem, the right superscript of q used to denote heat (i, the "h") is
dropped; the superscript will be necessary in the coupled problem to distinguish
between the HFD qP and the Darcian velocity q®. (3.7 differs from (3.1) in that
the interpolation is performed over a line rather than an arca, and only those shape
functions Hy that are related to the boundary nodes are needed.

Applying the Galerkin weighted residual method (e.g.. Zienkiewicz, 1972)
to heat conduction equation (2.2), we have, for clement »,

Jnc u,{giiAgj gxﬁj + N}dﬂ =0 (3.3)
1 =1,2, .., N, where the integration is performed over the whole element domain

1%. Using Gauss' theorem, or integrating by parts, we obtain
dH, JT _ Jr . .
J oY TG a0 JQQ Hy R dQ + 3£. i, A3 GE o s (3.4)

where s¢ is the boundary path of the element, n is a unit vector normal to s®




puinting outwards from the clement doinain.

If we define heat flux going into the element as positive and that going out

as negative, the heat flux input at an elemental buundary point is then

With (3.1}, (3.2) and (3.5), (3.4) becomes
aH, oH _ 3
o Y T B e Ty = ane H, d0 X + §s' H,Hy ds q, (3.6)

in matrix form, equation (3.6) is the following aigebraic equation system

K- T—-W¢-Ve.q=0 (3.7)
where K€ is the elemental conductivity matrix, with

- oH, ol

- $ !

k= e A% Fx, 3;’; dn (3-5)

W* is the clemental source—equivalent nodal flow vector, with
. = J Hy & d02 (3.9)
QC

and the symmetric matrix V¢ is the elemental boundary flux transfermation

matrix, defined as

ve, = §s' H,H, ds (3.10)

The use of the global vectors of nodal temperature T and nodal HFD q in
(3.7) indicates that K€, W® and V¢ arc all of global dimension Ng, with the entries
not relevant to the considered clement being zeros. It should be noticed ihat the
heat svurce teri could Le pararaeterized in exactly the same way as the boundary
HFD. that is, using nodal value representation and shape function interpolation,
and W€ would have an expression similar to the third term in (3.7). However, in
this work, a constant heat source in each element is believed to be an adequate
approximation to reality, considering our poor knowledge of the heat source
distribution in the crust.  Thus, a higher order parameterization is deemed

unnecessary.
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The global algebraic equation system of the problem,

K-T-W-V-q=0 3.1
is the simple combination of the clemental systems (3.7) over all dlements, with
k= §l\" (3.12)
W= §“” (3.13)
V=SV (3.1

Equation (3.11) is the discretized forin of the partial differential equation
(2.2). This static algebraic system defines a paran.etric relation between the
discretized temperature:, thermal conductivities, heat sources and boundary HEFD.
In a forward problem in which T is the only unknown quantity to be solved, (3.11)
is a lincar system. For an inverse problem, however, the thermal conductivities,
heat ecurces and/or the boundary fluxes are to be estimated as well, and hence
{3-11) is a nonlincar system. At the curreni stage, only isotropic media are
considered, so that the thermal conductivity in the above derivations is reduced to
a scalar.

In our problem, there is a "hard" constraint on the material property
values, that is, thcy are never less than zero. This constraint can be conveniently
implemented in the parameter 2stimation proceduie by changing of variables using

the following trivial mathematical equivalence,

A* = cxp(7 Inl0) (3.1%)
R = exp(¢ In10)} (3.15h)
where
v = logA®* (3.16a)
« = logR (3.16h)

are the parameters to be cstimated.  The logarithmic conductivity 5 and heat
source ¢ are invoked into the above equations simply by replacing A and R by

(3.15).
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We define a parametcr vector P that includes as its components all the
nodal temperatures, the discretized 7 and ¢ values and the nodal HFDs. Using the
parameter vector P, we can write (3.11) as

F(P)=0 (3.17)
Wh(‘f(?
Fy(P) = Ky (A) Ty = Wy() = V), g, (3.18)

In equation (3.18), the third right—hand—side term is the multiplication of a
constant matrix and the parameters *hat do not appear in other terms, and is
cailed the lincar part of F, denoted by f, which, for obvious reasons, is also called
the flux—equivalent nodal flow vector:

fi = Vs (3-19)
The other two terms of (3.13) constitute the nonlinear part of F, denoted by g, i.e.,
£1 = Ky (A) Ty — Wi(e) (3-20)

This separation has correspondingly divided the total parameter vector P inte two

p=[ﬂ (3.21)

where the nonlinear part p includes all the nodal temperatures and the discretized

parts,

log conducti sities, and the linear part q includes the nodal values of the boundary
HFD. Therefore, (3.17) becomes
gp)-Kq) =0 (3-22)

The advantages of separating the nonlinear and linear parts wiil be seen in
Chapter 4 and 5.

3.3 Parameterization of the nonlincar coupled system

The field variables now are the temperature T and the reference hycraulic
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head h, and the material properties are the thermal conductivity \ and the
permeability A. Similar to the discretization of the conduction problem, I and b
at any point :n an element are interpolated from their nodal values using the shape
functions Hy,

T = HyT (3.23a)

h = Hihy (3.23b)
k = 1. 2, .... Ng and the boundary HFD and Darcian velocity at any point at an
elemental boundary are interpolated in the same way,

q" = H,qb (3.24a)

q" = H,qf (3.24b)
wlore b is the conductive heat flux defined by (2.i), with A* replaced by A, and
q" is the water flux input at the elemental boundary. The total heat flux across a
boundary also includes a convective term, pc’Tqw, i.e., the heat transported by
flowing water, but in this thesis, the term bourdary heat flux (or boundary HIFD)
always implies the conductive component.

Applying the Galerkin weighted residual method to (2.7), we have, for

element e,

g, AT eIl )io
Jne "l{mi"ija;j - ldn =0

Using Gauss' theorem leads to

Jne{,\;jg‘;‘li%j +Illpcq‘l'g£}d(l i ty X 1

where §2¢, se and n have the saime meaning as in the conduction problem.

Substitution of (2.4), (3.5), (3.23) and (3.24a) into (3.26) vields
O M, _ ki o O .
Jnf (s O, Gt P RGRE by + p,a.,i)u,;,;: A0,
- § H,H, ds o} (3.27)
SC

Similarly, applying the Galerkin weighted residual method to (2.6), we

have, after some manipulation,




f Kij , oH, 9H K
[ Sip g it e an]n, - U ;%31 g3 GH, dn)|T,

Qe i
=§ HH, dsqf (3.28)
st
again the inward going flux ¢ to an element is defined as positive, i.e.,
q' = —q: ] = -_llpog(a + pr62 )ﬂ ‘:3'29)
The secoud term on the left hand side of (3.28) appears because p is a linear
function of T as> given by (2.11).

Defining a vector U in the {T, h) plane,

o~ (4]~

o= [ - (2]

we can combine (3.27) and (3.28) into

and correspondingly,

In (3.32) K€ is the clemental conductivity matrix, the (1,k)¢h entry of which being

K{, = (3.33)

UKf, "“Kf,
uge, 2K,

with

e, = Jsz'{ ;L %Ij,; pcq” H, 3—kld9 (3.342)
BR§ =0 (3.34b)
MKy, = —jne ki 16y, g!lx_: H, dQ (3.34¢)
nKlk =g Jge "ijl‘" g%g%: dn (3.34d)
where % is defined by (2.4), and gt by (2.12), with the T and h values

interpolated using (3.23).
The boundary flux transformation matrix V¢ is similar to that defined by

(3.11). but each entry V§, has four subentries,

ve = § H, ds (3.35)
s
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The above derivation is similar to that of Huyvakorn and Pinder (1983,
p-204).

From the elemental system (3.32). the global system is obtained

K-U-V.q=0 (3.36)

The algebraic system (3.36) is the discretized form of the partial differential
equations (2.6) and (2.7). Apart from the difference in physical meanings, there
are two rigjor mathematical differences between the static svstems (3.11) and
(3.36). The first difference is: the conductivity matrix K in (3.11) is a function of
the material propertics only which are independent of the field variables, but the K
reatrix in (3.36) is a function of the field variables as well because of the
temperature “ependence of p and g, and the convection term in (2.7); therefore |
for a forward pcoblem where the field variables are the only unknowns, (3.11) is
iincar but (3.36) is nonlinear. The second difference is: in (3.11), K and V' have
the global dimension of Ng. the total number of nodal points, because cach node
has one degree of freedom; while in (3.36), cach eatry of K and V has four
sub—entries and cach entry of U and q has two sub—entries, and the global
dimension i5 2Ng instead of Ng, hecause each node has two degrees of freedom, P
and h, rather like the two components of displacement in a 2 1) mechanics
problem.

For a forward finite clement solution to the coupled problem deseribed by
cquations (2.6) and (2.7), the above procedure is by no means the maost efficient
method. A better approach is a sequential solution procedure (Huyakorn and
Pinder, 1983, p.198}, in which the two equations are solved alternately. - ach tine
using the updated p and p in (2.6) and q% in (2.7) as functions of space, but not of
temperature or head. thus making the equations linear, until both field variables,
namely T and h, converge. Becav e the scheme has the nice property of using

minimal computer memory and is easy to program, it was used almost exclusively
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in the forward finite clement numerical modeling of coupled systems ( Andrews and
Anderson, 1978, 1979:; Sauty «t al.. 19823, b; Garven and Freeze, 1954a. b; Smith
and Chapman. 19583: Woodbury and Smith, 1985; Doligez et al., 1986; Burrus and
Pessis, 1986). ‘The scheme is also applicable to a nonlinear inverse problem. if
gradient methods are not used in parameter estimation or if the gradients are
obtained numerically. In order to use a computationally much more efficient
analytical gradient method (see next chapter), the more suitable finite element
coupled solution procedure as outlined above has been adopted for this work.
As in the conduction problem, we consider only isotropic media. and ue
the logarithmic transform of the maizrial properties,
y=log A (3.372)
v=logx (3.37b)
A parameter vector P ois defined that includes as its components all the
discretized (after zonation) 7 and y, defined by (3.37), all the nodal values of T
and h, and all the nedal values of gt and q¥, and (3.36) is written into the
standard form to which a parameter estimation procedure is to be applied.
F(P)=0 (3.33)
where
FY(P) = UK (0 UNU, = Ty, g, (3.39)
Similar to the conduction problem, the first and second right-hand—side
term of (3.39) are the nonlinear and linear parts of the system F, respectively, with
igl = inlk('?v';"-U)jUk (3.40)
if, = vy, g, (3.41)
and (3.38) can be formally written into the same form as (3.22),
gp)-f(q) =0 (3.42)
where q contains the nodal flux values, and p contains the rest of the components

of P




3.4 2-D isoparametric finile dement modcl

The finite clement discretization procedure developed in the previous two

sections is general for any finite clemes. model.  In an actual forward

implementation of a finite clement model, some authors favor lower degroes of

interpolation and hence fewer nodes in each clement but correspondingly more
nodes and elements in the whole mesh, while others prefer higher degroees of
interpolation and ience more nodes in cach clement boet fewer nodes and elements
in «ue whole mesh. The extensively used lincar triangular clement nuxdd is an
example of the former: it has the advantage that K® and ff can be readily obtained
without performing numerical integration, but large numbers of nodes and
elements are required to maintain a satisfactory accuracy of the discretication. In
our inverse approach. all of the field variable nodal values are parameters, and

herce it is cxpedient that we choose the latter to reduce the total number of

parameters. In this work, a two—dimensional quadratic quadrilateral
isopa-ametric finite element model is employed.

Lagrange and Serendipity are the nam=s of the two familics of isoparametric
finite elements. A 2-I) quadratic quadrilateral Lagrange element has nine nodes,
with eight on the four sides and one in the middle of the element domain; the
corresponding Serendipity element has only eight nodes on the four sides, with the
middle point missing, therefore the polynomial interpolation is not comnplete (there
are a total of nine possible monomials in a 2-1) case). The Serendipity model is
used in this work.

A typical quadrilateral Serendipity isoparametric finite element is shown in
Fig.3.1. The middle node on cach side can be omitted if necessary, making the

construction of a finite element mesh very flexible, but withi loss of degres of
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interpolation.  In such a quadrilateral element, a natural coordinate system (r;) is
established. with r; ranging from —1 0 +1. The coordinates in the x; system are
transformed into the natural system by a set of shape functions Hy(r),

xi(r) = Hx(r)xix (3.43)
where the summation s over all the nodes in the element; x;. denotes the x;
cvordinates of node k. The Hy in (3.43) are exactiv the same shape functions used
to interpolate the field variables in equations (3.1), (3.2), (3.23) and (3.24) (and
this is why the finite element was termed “isoparametric™). In other words, the
nonlincar transformation maps the quadrilateral in the x; space onto a square in
the r; space. The transformation defined by (3.43) is 11, i.e., the Jacobian of the
transformation is nonsingular, or, there exists the inverse transform. The
interpolation of the field variables is therefore actually performed in the x domain
using Hy[r(x)).

Since the coordinate transformation is performed for every element, all the
clements become identical after the transformation.  Therelore the efficient
Gauss—Legendre numerical integration scheme (Appendix A) can be applied to all
these elements to perform the integrations in computing K and V, and later in
computing the gradient matrix required by the parameter estimation procedure
{xee section 4.3).

The shape functions Hy(r) for four—to—eight—node elements, as well as
other technical details of the Serendipity isoparametric finite element model, are
giver it Hathe and Wilson (1976). The efficiency of the isoparametric finite
clement method applied to groundwater research was demonstrated by Pinder and
Frind as early as 1970. Further discussions on the advantages and disadvantages
and recent improvements of the isoparametric finite element model can be found in

Celia and Gray (1984).




Fig.3.1. A typical 2-D quadratic Serendipity finite element.  The
element in the x coordinate system is mapped anto a square in the r
coordinate system. In the figure, y = xa, and 3 = ra. After Bathe and
Wilson (1976).

1l




CHAPTER 4: PARAMETER ESTIMATION

4.1 Introduction to Bayesian cstimition

1.1.¢ Hayes' rule

In equations {3.17) and (3.38), the parameter vector P cousists of the
discretized values of the field variables, the material properties and the boundary
fluxes. Very often we have some knowledge about every parameter, but we do not
have complete knowledge about any parameter. For example, without any
measurcinent, we know that the temperature at 1 km depth is unlikely to be below
the freezing point at a latitude of 40°N; on the other hand. ¢ven with high
precision instrument, a temperature measurement will stiil have uncertainties. In
Bayesian statistical inference, this state of information is conveniently depicted by
a probability distribution of P.

The phyical theories may also not be exact, and the discretization leads to
discretizing errors.  To account for these urcertainties, an error term e, called
model error, is added to the right—hand side of equation (3.17) and (2.38), so that

F(P)=c¢ (4.1)

If the probability density function (PDF) of a vector r is denoted by #(r)

and the conditional PDF of ry given rp by #(r;|r2), Bayes' rule states that
AP|e) = -’—i%'ff-éﬂﬂ (4.2)

2(P). which tells us what is known about P without the knowledge of e, or
in other words, without using the relation (4.1). is called the a priori PDF of P;
P(P|e). which tells us what ix known about P given the knowledge of e, is called

42
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the a posteriori PDF of P. #(P) is defined in an arbitrary manner using the
available information on P based on observation, previous study or the personal
experience and engineering judgment of the rescarcher.  Here the word "arbitrary™
is used to mean that physical laws such as equations (3.16) or {3.33) are not
necessarily involved. On the other hand. by definition of conditional probability,
P(e|P), the PDF ~f ¢ given P does involve the physical laws. If Ae|P) is
regarded as a function of P, not of ¢. it represents the likelihood for P given e, and
is thus called the likelihood function for P.

The denominator £(e) in (4.2) can be shown to be a constant and of no
importance in the estimation of P (Box and Tiao, 1973).  Bayes' rule (1.2)
provides a mathematical formulatior: of how knowledge frome different sources can
be combined to give new knowledge. The knowledge of ¢, in the form of P(e]P),
consists not only of the values (obviously, the conditional expectation of ¢ given I°
is zero), but most impoctantly. also of the physical laws governing the relation
between different components of P.

In this work we make the assumption that 2(P) and 2(e|P) are Gaussian,
with expectations P, and 0, and covariance matrices (' and Cee, sespectively. The
a posteriori PDF defired by (1.2) is then,

const-exp J{[F(P)]t C2L [F(P)] + [P = PJe ¢ [P - 1]}

(1.3)
Support for the assumption of the probability of the logarithmic transforms of the
thermal conductivity. heat production rate and permeability to be Gaussian
includes evidence such as the well recognized log normal distribution of subsurface
material permeability (Freeze, 1975) and the log normal--like shape of most of the
thermal conductivity histograms compiled by Roy et al. (19%1). Tarantola (1987,
P-42) has also pointed out that the a priori information on this kind of positive

quantities are best described by log—normal probabilities. When the STD of the
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Gaussian PDF of the logarithmic transform of a parameter r is very small. for a
given expectation log(ry). the probability distributions of log(r) and of r become
almost identical: this is often the case for thermal conductivity values.

With a typical Bayesian approach, the a priori information on the
parameter vector P is purely intuitive. With a less typical Bayesiar approach, the
a priori information of P can be of objective as well as subjective origin, suzh as
the information on the three typ  of physical gnuantities used in this method. Fo:
this reason. the parameter cstimation procedure followed in this method is

Bayesian in a broad sense.

4.1.2 The mast probable point estimate

In Bayesian inference. only through a thorough study of the a posteriori
PDF, can our updated knowledge of the parameters be sufficiently described {Box
and Tiao, 1973). For a linear inverse problem based on Gaussian distribution, the
a posteriori PDF is also Gaussian and can be completely characterized by its
expectation anid covariance matrix. In such a case, it is justified to speak of a
point estimate. For a nonlinear inverse problem, a point estimate is generally not
representative of the usually complex behavior of the non—Gaussian a posteriori
PDF. However, for a large multivariate problem, the computation of the a
posteriori PDF is usually an insurmountable task and the presentation of the
results would also be difficult. For these reasons, to seek point estimates is still a
commoin practice in Bayesian type nonlinear iaversion (e.g., Gavalas et al., 1976;
Jackson and Matsu'ura, 1985); in fact, the terin "inverse method" in the most
popular interpretation implies point estimates, but due to the complexity of the a
posteriori PDEF. the choice of a particular estimator is usually a matter of
computational convenience, there being no general selection rule (Schweppe, 1973).

Schweppe (1973) sumimarizod four types of point estimates for nonlinear
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Bayesian problems. cach revealing a different aspect of the a posteriori PDF,
namely. the most probable. the conditional expectation, the median and the
Min—max estimates (for definitions, refer to Schweppe, 1973, p.329).  The most
probab'> estimate, that is. the value of p that maximizes the a posteriori PDF
(4.3), is also referred to as the maximum likelihood point (Menke, 1984; Tarantola,
1987), implying that the a posteriori PDF is regarded as the likelihood function. 1t
1s usually the easiest to compute, and gives the most physically meaningful point
estimate if there has to be one.  The validity of the mwst probable estimate
depends inversely upon the nonlinearity of the pro.  n; for a lincar problem, the
most probable estimate coincides with the a posteriori expectation; for a slightly
nonlinear problenm, the mos. probable cstimate can be used to approximate the a
posteriori expectation; for a very nonlinear problemn, however, the most probable
estimate may bear no relation to the expectation and caution should be taken in
interpreting the results of point estimation.

In the above discussion, a key point is that the Bavesian interpretation of
the inverse method always reminds us that the most probable estimate of a
parameter is only one of the several possible point estimates, which have clear
mathematical meanings. The most important reason for a Bayesian approach to
he used is that intuitive information must recessarily be invoked in the inverse
problems considered in this work. Strictly speaking, when some of the inforination
used is intuitive, and hence the result depends on the researcher who makes the
inference, it is very awkward to call the inverse method non-Bayesian, "One is
more or less a Bayesian depending on the precision with which one is prepared to
make intuitive probability estimates" (Good, 1963, p.10).

Adopting the most probable estimate, our problem becomes one of
optimization with the objective function

= [FP)CLFP) + [P =P O [P - P, (4.4)
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We scek the point P at which 11 reaches the giobal minimum. If the entries of C_!
and C! are regarded as weighting coefficients, 0 and P, arc regarded as data, to
winimize I simply gives the weighted least squares solution of the inverse problem
(Schweppe, 1973, p.339). °t is well known that the least squares method, which
minimizes the Euclidean distance between the estimates and the measured values
(i.c., L2 norm), is intrinsically not robust, in a sense that a few bad data points
{(outliers) may strongly influence the estimates. Introducing different weights to
the least squares method may improve the robustness to a certain extent, but

rcally robust methods are based on other, for example, L, norms (Menke, 1954).

4.1.3 Remarks on "zonation™

Zonation (sce Chapter 3). as used in thi: work, is one way to reduce the
total numter of parameters. Besides saving on computational cost, the more valid
reason for reducing the number of parameters is to constrain the problem and
render it better determined. As mentioned in section 1.3, to constrain an inverse
problem, further information is unexceptionally needed. Zonation utilizes the
geological and geophysical information on, or the researcher's own understanding
of, the structure of the subsurface medium by dividing the medium into a number
of material property zones, cach having distinct material property values.
Therefore, even with a non—Bayesian method, a prior: information would already
have been used if zonation is performed, though not in an explicit way. The
zonation, however, differs from other a priori information in that it implies hard
constraints. Whereas some a priori information is given a probability distribution
leading to updated values and variances, the zone boundaries are not adjustable in
the inversion, and any errors incurred in the division of zones remain to be errors
in the solutions.  Here the term "error” is used instead of "uncertainty" because

these errors may or may not be explivitiy shown in the solutions by the variances.
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Thus, it is expedient that caution be exercised in performing zcnation.

The zonation errors can be reduced with a Bayesian approach as
recommended by Lu et al. (1938). Since zonation is a step function approximation
of the spatial distribution of the material propertics, large number of small zones
are needed to give a good approximation to a complex distribution. lustead of
using very few large zones, one can constrain the problem by assigning a prios
material property values and variances to a greater number of smaller zones. An
extreme case is to treat every eleinent as a material property zone.

It should be emphasized that from a probabilistic point of view, zonation is
a poor representation of the spatial variability of the maierial properties.  The
constant material property value assigned to a zone should be interpreted as the

mean value of the property over this zone.

4.2 RTYV optimization scheme

4.2.1 General form

The objective function defined by (4.4) can be minimized using gradient
methods which use the partial derivatives of Il with respect to the components of
p, and non—gradient methods which compute Il directly. The simplex technique
(e.g., Beveridge and Schechter, 1965, Woodbury et al, 1988) is a classical
non—gradient method. In addition to avoiding the computatios of gradients and
hence being easy to program, an obvious advantage of the simplex teclinique is
that it can be readily applied to objective functions constructed with different
norms. For example, it is much ecasier to adapt the simplex technique to Lyj—norr
minimization, a criterion which is much more robust than the Ly-norm

minimization in the sense that a few bad data points (outliers) would not alter the
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solution drastically (Woodbury et al., 1988). A disadvantage of the approach is
that thousands of forward computations must be performed to solve the governing
partial differential ecuations. If the forward model is linear, such as the
conduction problem described by equation (2.2), a forward calculation can be done
efficiently, and the simplex technique is therefore a practical approach. For
example, Woodbury and Smith (1988), in the simultaneous inversion of thermal
and hydrological data over a small depth range, regarded water density and
viscusity as constants because the temperature range was small; as a result, they
could use the simplex method because the heat transfer equation and the fluid flow
cquation are decoupled and linear, and need be solved only once for each forward
calculation. However, for a ronlincar problem, such as the coupled problem
described by equations (2.6) and (2.7), each forward computation requires,
typically, 10 iterations for convergence, resulting in a 10—{old increase of computer
time. For this reason, a gradient method that does not need numerous forward
runs is preferred.  Of course, a gradient method is a more efficient approach than a
non-—-gradient method also for the linear conduction problem.

‘The commonly used gradient methods for optimization in the hydrological
inverse  theories are  the conjugate gradient method (Neuman, 1980),
Gauss—Newton method (Sur and Yeh, 1985), Newton—Raphson method (Neuman
and Yakowitz, 1979), steepest descent method (Chavent et al., 1975), etc.. The
following iteration scheme (briefly called the RTV scheme) for the optimization of
the objective function I defined in equation (4.4) was derived by Rodgers (1976)
and, independently, by Tarantola and Valette (1982), and later re—examined by
Menke (1984, p.151), Wang and Beck (1987) and Tarantola (1987) from different
perspectives,

Py = Py + C-F18(Coe + FL-C-F) L [FL- (P, - P,) - F(P)))]
{4.5)
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where bold faced subscript k is the iteration step number, aud Fg is the gradient
matrix F' at the ktk iteration:

Fi = (Flah = (g{;') (4.6)

-

=lp=p
The model error e is usually insignificant. 1f this term is ignored. as n the
numerical examples used in this research, (4.5) becomes

Py, = P, + C-Ft(FL-C-FU) L [FL-(Py = P,) — F(P)] (4.7)
It is important to notice that according to (4.7), an arbitrary scaling factor for the
covariance matrix C will not affect the iteration. It is the relative magnitudes of
the entries of C that are of importance to the iteration.

As shown by Rodgers {1976), Tarantola (1957) and Wang and Beck (1987),
the scheme is asymptotically a Newton's iteration algorithm. Newton's iteracion
converges quadratically to a unique solution only when the problem is mildly
nonlinear and when the initial parameter value is reasonably close to the solution
value (Burden ct al., 1981). Given the functional form of the objective function,
the convergence behavior of the iteration scheme depends on the quality of the a

priori information on P.

4.2.2 Separation of nonlincar and lincar parts
In Chapter 3, the system F is separated into a nonlinear and a linear part,

F(P) = g(p) — Va = g(p) - f (1.5)

This is useful because, assuming no covariance between p and q, during iteration

using the RTV scheme, the nonlinear part of P, p, is not influcnced by any change

in the linear part, q, therefore p and q can be estimated separately, which brings

some computational convenience. To prove this point, we follow the example of

Tarantola and Valette (1982h) and rewrite the gradient matrix F' using (1.%),

F' =[G -V] (4.9)




where G is the gradient matrix of g, defined as

Gia = (BY) (4.10)
n
we als write the covariance matrix C into
C = Cpp 0 ] {4.11)
0 Ced)

By substituting (4.10) and (4.11) into (4.7), we obtain,

=Bl G e 18] e 5 2SI

qud i
{[Gy -V} '_’*“fﬂ - [g(in) - Vay)
(Qx —
] A\ ¢ -
= [Po] + [CerC .'] {GCreGE + VCoV} - {Galiy — B,) + Ve, — g(in')
9% —('Q Q\I
(4.12)
From {4.12), py,q is solved as
Prer = Py + CppGy Ry'lfo — 8(Py) + Gy(Py — P,)] (4.13)
where
Ry = Gy CppGy + Cris (4-14)
and
o =Vqo (4.15)
The convergence of iteration algorithm (4.13) is defined as
Hm ||pye—Pll =0 (4.17)
k-

where || - || represents the norm of a vector (for example, Lcn norm).

The covariance matrix Cpp is always positive definite, Cgr is positive
semi—definite, and G is of full rank. Therefore the symmetric matrix R is positive
definite. It is important to notice that q, does not appear in equation (4.13),
which means that the linear part of P influences the iteration of the nonlinear part

only through the a priori expectation q,,, not the updated values.




Now we examine the linear part of the system. From (4.12),
Qo = @ — CaqV R — gly) + Gy — p,)] EREY
Left—multiplyirg both sides of (4.13) by V', we obtain
Fon = b — CaRME — g(Py) + Colby — P (1)
Note that
CerRy! = (Cor + GuUppGi - GuCppGl) Ry = 1 - GCLGE 1!
(4.20)
where 1 is the identity matrix. Substitnting (4.20) into (1.19), and using (1.13),
we have,
iko] = 5P + Gy(Pypor — By (1.21)
If (i.13) converges to p, (1.21) converges to (sec equation <.17)
[ =g(p) (1.22)
and q, in turn, can be determined from f.

It has been demonstrated that the nonlincar and lincar parts of the
parameter vector PP can be estimated separately. This separation ') takes ont the
parameters that do not actively participate in the nonlinear iteration, and pence
reduces the computational cost; 2) makes it convenient to formulate the i priori
covariance matrices Cpp and (gq in different ways (as will be seen later, Cyp s
diagonal, an' Cgyq is generally a full matrix, in practical ceses).  ‘The above
derivation is made, for conciseness, using (4.7), where Cee == 0. It can be easily
extended to the case where ('pe # 0 by lecving Cee in the R matrix. The rest of
this chapter is devoted mainly to the nonlincar part of the problem; further

discussions on the linear part, i.c., boundary flux updating, are left to Chapter 5.

The a pesteriori covariance matrix of the total parameter vector P,C s

defined as
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¢ = E{[P - E(P)|-[P - E{P); } (4.23)
where FiP) stands for the a pusteriori expectation of P. For a linear problem
FP)=F-P=e {4.24)
whete F' is a constant matrix: if the a priori PDF of P and of e are Gaussian. the a
posteriori PDE 2(Ple) is also Gaussian, and the most probable estimate is
idcatical to the & pos.eriori expectation. In that case, the a posteriori Cis given
by (Schweppe. 1973; Rodgers. 1976; Tarantola and Valette. 1952):
C = C=C-Ft(Cee + F'-C-F'Y)1.F'-C {(4.25)
For the nonlinear systems (11) and (31), the a posteriori PDF is generally
not Gaussian and it would be very difficult to develop C. The usual practice is to
lincarize equation (4.6) in the neighborhood of the most probable estimate point P.
approximate the conditional expectation with P, and use (1.25) as a lincar
approxi:uation of the a posteriori covariance matiix (Jackson and Matsu'ura, 1985;
Vasseur et al.. 1956; Tarantola, 1957). In fact, Rodgers (1975) derived iteration
scheme (1.6) by lincarizing FtP) in the first place.
From (1L.11) and (4.25). the a posteriori covariance matrices of p and q can
be teadily obtained as
Cpp = Cpp — CppGIRT G Cpp (4.26)
Caq = Cgq = CagV RV Cog (4.29)
where G and R are evaluated ai point p.
A parameter is said to be "well resolved” when the a posteriori variance, or
its square root, the standard deviation (STD), is significantly smaller than the a
priori one. A different concept of "resolution”, commonly used in inverse methods
that are not directly based on probability theories, was defined by Lackus and
Gilbert ¢1963) for the problem of continucus parameters and by. e.g.. Menke
(O30 tor the discrete cases. Its relation to the resolution concept adopted in this

work was discussed by Tarantola (1987).




4.3 Dcrivation of the gradient matrix

4.3.1 The ciemental gradicnt matrices

For a gradient method of optimization to be officient. one must have an
efficient way of calculating the gradient matrix. In (isothermal) groundwaier
hyvdrowgy. the "gradients” are commoaly the partial derivatives of head with
respect to the aquifer transport paramelers w0 be ostimated., such as the
transmissivities and storativities, and are called the sensitivity coefficients.  The
computation of sensitivity cocfficients is usually a challenging task when nunserical
models are used in the parameterization of an inverse problem, espeeially for
coupled problems such as the one given by the partial differential cquation svstem
{2.6) and (2.7).

In a comparative study. Li et al. (1986) sunmmarized into three types the
metkods commenly used for computing sensitivity coefficients in isothermal
hydroiogical inverse theories incorporating finite element methods: type 1, the
influence coefficiert method (e numerical differentiation), type 2, the sensitivity
equation method (analytical differentiation) and type 3, the variational miethed;
technical details of the methads are given in the quoted paper and Sun and Yeh
(1985). As expected, errors are introduced when the differentiation is performed
numerically, and hence the arcuracy of the first method is the poorest among the
three. If there are Ny head values and N, parameter values, the first rethod
requires Np+!1 (for backward or forward difference approximation) or 2N, +1 (for
central difference approximation) forward simulation runs, the second and the
third methods require Np+1 and Np+1 simulation runs, respectively (Li et al.,
1936).

In this work. parameters are defined in a general sense (soe section 3.2 and
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3.3): the nonlincar part of the parameter vector P, p. includes the nodal values of
the ficld variables s well as the discretized matenial propetties. In addition to
making the inverse solution more flexible, this choice of parameter vector makes
the implementation of the gradient method, namely the RTV schemw, very
officient.  Instead of working with the sensitivity coefficients, we work with the
gradient matrix ;. which can be derived analvtically with basic rules of calculus.
The method for computing the gradients resembles the type 2 method of Li et al.
(1956). but the G matrix is formulated directly, and nence requires oniy one
simulation.

AL first glance, it might appear that the function g, defined by (3.20) and
(3.-10), particularly the latier. is rather difficult to differentiate, but the

differentiation can be done at the elemental level. In the conduction problem.

£= K-'l‘-W:(!'J K')-T-§W'=§(K'-T—W’) (4.28)
and in the coupled problem,
5=K~U=(};‘K')-U=§(K'-U) (4.29)
Therefore in both problems
g=ir (4.30)
and hencee
G, = %51 =3 aimf = LG, (4.31)

where G is the elemental gradient matrix. Since the differentiation is of the first
order, the placement of the ieft superscript i of g right after d should not create
any confusion. The same comment applics to the following derivations.

With (£.30) and (4.31). the function g and matrix G can be derived for
individual clements, and assembled at the global level for each iteration. The
number of nonzero rows in (¥ is the number of equations in ge, and the number of

nonzero columns in G is the number of parameters related to the element, i.c., the
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number of nodal values of field variables plus the number of material properties of
the element. \With the material propertics assuimed to be isotropic, the entries of
the elemental G* matrix are derived as follows. In the following equations, Ng is

the number of nodal points in clement e, and L, m, n. k = 1,2, ... N,

4.3.2 The gradient_matrix for the conduction problew

For the conduction problem, from equations (3.20) and (3.7)

g?‘l = K§, =J)e gﬂlg_ln dN L32)
s
&= My, - 3,-’[ exp(atni0) G M a1y

oA B, i

we oW J .
A exp(ein10) I df2 = - mmJ R 1, d02
% Te 3? 0 o

(1.34)
The elemental G* has N, nonzero rows and N.+2 nonzers columns, since there are
Ne nodal temperatures and 2 material property values {one thermal conductivity

and one heat source).

4.3.3 The gradicnt matrix for the coupled problem

For the coupled problem. from equations (3.40), (3.34) and (3.30),

Jigt e L OVIKT o
.‘.n.il = UK, + _(,n,:lk I

- nxgm-J pextiy (i Jgrrtéy, )""u e, (.43,
Qr

JH

where Vi= pRlgn hn + poby)

wl=p '+ q(lln'l'" -Ty)

Mgt JVIKS, Al ol
:1 l:‘_(,m_lk I, = J p('u'np,glllgﬁlﬂ' “kdQ

m m !

(1.36)
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dief _ LIKT, 'l'x='"‘ojn,*%gg‘.‘d9 T, (4.37)
. i 1 1

ad AN L S (A "’J av iy, Mega T 435

W‘E Rk n n,"c““ vi l:;;‘i k (4.38)

PR gy BNy,  E2K
[ ||

= 2Ky, -Jw sedy il g';':ll,dn T, + .[n* snpgH, g';'-: %’;‘g df by
(4.39)
%’l_ff = 2KS_ (4.40)
g’;sf =0 (4.41)
gxi'!t = Inl0 (PR, Ty + BR{h,) = Inl0 2gf (4.42)

The total number of equations in ge is 2Ne. since each node has two degrees
of freedom (equation 3.25), temperature, indicated by the left superscript 1, and
reference hyvdraulic head, indicated by the left superscript 2. The number of
paraineters is 2Ne+2, the number of nodal values of field variables plus the
number of material properties.  Therefore G has 2N, nonzero rows and (2Ne+2)
nonzero columnns. In actual computer implementation, numerical schemes are used

to perform the integrations in equations (4.32) through (4.42) (Appendix A).

4.4 A priori information

1.4.1 The nature of the a prior information

Because of the Gaussian  assumption for the a priori probability

distributions of both p and q. the a priori information is entered in terms of the

first two moments of the PDF's, namely, the expectations and the variances (and

covariances).  When the information is of objective origin, the a priori variances
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reflect the experiniental uncertainties in the given a priori values.  When the
information is of subjective origin, the variances reflect the rescarcher's pessonal
confidence in the values. With a constramed optimization interpretation, the
variances serve as the "soft" bounds {(Jackson, 1977) or: the paranwters: with a
weighted least squarcs interpretation, they are the weights. For a value that one
regards as the most reliable. a small variance is given that tightly constraius the
parameter; for a value that one has little confidence in. a large vanance is given,
leaving the parameter virtually unconstrained and casily adjusted in the paranwdter
cstimation procedure to accommaodate the tightly constrained parameters; for a
value in which one has modest confidence, an appropriate variance is given so that
the parameter is allowed to be adjusted relatively casiiy but without violating
one's knowledge. The input of boundary conditions will be discussed i the next

chapter, here only the input of p, and Cpy is considered.

4.4.2 Methods for specifying a priori valucs

To specify the a priori information on p, all the discretized material
property values and all the nodal values of the field variables, together with their
variances, must be given. The value of a material property for a zone may be
given as the average of observed values, or inferred from a limited quantity of data
together with other geological and geophysical information on the subsurface
materials. The a priori values of field variables must be specified at every finite
element node. Very often, a crude estimmate of the values using some less
sophisticated methods is possible.  When such methods are net available, to
specify directly the nodal values may pose certain difficuity.  Technicaly, in
dealing with a field problem. the a priori expectation and variances of the field
variables can be directly specified in the following five possible ways, listed in

decreasing order of sufficiency of data:
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1; Actual measurements. The nodal values of the field variables are
determined by fidd measurements, and the variances are given by the
observational uncertainties.  This would be the ideal situation, but is almost
impaossible for obvious practical reasons.

2) Deterministic interpolation. When there is a sufficient number of field
variable data. the value at a nodal point can be interpolated from neighboring
(randomiy spaced) points using various deteriinistic interpolation methods. such
as spline and other piecewise polynomial interpolation schemes. Sometimes.
interpolation may be performed by piecewisely fitting a curve or surface to the
data. The variances of the interpolated values are either calculated in accordance
with the interpolation technique or specified intuitively.

3) Intuitive interpolation. When the field variable data are not sufficient to
allow a point by point deterministic interpolation, the values at some points may
have to be interpolated intuitively. Correspondingly, the variances are specified in
the same manner. The so—called intuitive interpolation is actually the
interpretation of the researcher's own understanding of the relevant physical laws
in terms of numbers, and the variances depict his confidence in the numbers.
Normally, an intuitively interpolated value is necessarily accompanied by a large
variance. \When the measured data contain large experimental errors, the intuitive
interpolation may make more sense than the deterministic approach.

1) Probabilistic interpolation.  When the data are really scarce, a
probabilistic interpolation may be a practical approach. One probabilistic
interpolation technique well known in the mining industry, hydrosciences and
physical geography is "kriging”. The mathematical foundation of (he kriging
wethod is given in Matheron (1973).  Many recent versions of kriging method
under various names can be seen in the literature, such as universal kriging

(Hughes and Lettenmaier, 1981), co—kriging (Freund, 1986), disjunctive kriging
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{Yates et al.. 1936). Bayesian kriging (Omre, 1987), ete., but as an interpolation
technique, the conventional (or simple) kriging technique, e.g.. that descritedd in
the early work of Delfiner (1976) and Dethomme (197X), is appropriate.  In the
conventional kriging method. the material propertics and henee the field variables
are not described as deterministic functions of space, but are regarded as the
realizations of spatial stochastic processes or random: fields.  The spatial relation of
the physical quantities at different points is defined by statistical monents, such
as the mean and the autocorrelations.  The kriging method makes no effort to
recover the exact numerical value of a physical quantity at a location where
measurcinent is not made, it only tells what value the quantity is likely to take at
this point with certain probability. The principal advantage of the knging method
is that covariances due to interpolation uncertainties are rigoroasly developusd,
although with an arbitrary scaling factor. However, simple kriging methods do rot
take the relevant physical laws explicitly into consideration; the governing rules
are certain stationarity assumptions on the random fields introduced by the
generalized covariance functions (Delhomme, 1978). Other kriging methods that
do make use of the physical laws in some ways may be used to perform the
probabilistic interpolation, but the laws are usually invoked in an intnitive manner
(Woodbury et al., 1987). Kriging interpolation was used as a data input technigue
in the finite element inversion of hydrological data by Neuman and Yakowitz
(1979).

A method proposed by Willett and Chapman (19587) for aualvzing Large
data sets of bottcm hole temperatures can also be used as a probabilistic
interpolation technique for temperature data.  In their method, the temperature
distribution is governed by the Fourier's law of heat conduction in the vertical
direction and by statistical laws in the horizontal direction.  Because physical laws

are partially invoked, this approach is expected to give better resuits than the




kriging method.

5) Forward simulation. A forward simulation using the same grid may be
used to provide data for an inversion. This may sound absurd, for an inversion is
needed just because a forward simulation is not as good. However, when the
measured values of field variables are virtually nonexistent in large portions of the
spatial domain considered, such as temperature at depths in the problem of
duownward continuation of heat flow data, this method may be the only choice.
Since there are many uncertain factors when doing such a forward simulation. vne
has to follow a route similar to the trial-and—error method to let the simulated
results as close to the available data and one's own judgment as possible.
Therefore, the values provided by the forward simulation met'ad are largely
intuitive, so must be the variances. It is important to note that the inverse
methed can be formally used as a variance analysis technique for a trial-and—error

approach to an inverse problem.

4.4.3 On the structure of the covariance matrix Cpp

If the a priori information is based on a statistical study or a probabilistic
interpolation technique. such as kriging or the method of Willett and Chapman,
the structure of Cpp is given. Without any statistical study, Cpp is conveniently
assumed to be diagonal, meaning that the uncertainties in the components of p are
considered mutually uncorrelated a priori. This is a conservative choice for the
correlattons (Tarantola, 1987, p.48). It should be remembered that the a priori
PDF of p is ouly a summary of the available information defined in an arbitrary
manner to describe one's knowledge or ignorance of the parameters. Usually, all
one knows about the parameters are their approximate values with variances, and
in such a case, the covariance matiix Cpp has to be diagonal. If one does have

knowledge about the covariances but still assumes a diagonal Cpp . maybe for




61

computational convenience, there is a waste of intormation because fully use is not
being made of the knowledge. In this method. however, physical laws such as
Fourier's law and Darcy's law represented by the partial differential cquations are
explicitly introduced by the likelihood function to control the (deterministicd
spatial relation of the physical quantities. Based on careful numerical experiments
using the RTV" scheme applied to a problem of downward continuation of heat
flow data. parameterized with a finite difference model, Shen (1988, personal
communication) has concluded that if the boundary conditions and the thermal
conductivities were somewhat constrained, the a prioni covariances of the grid
temperatures brought little improvement to the results compared to  those
obtained with a diagonal covariance matrix. After ail, it is very important to
realize that an intuitively specified covariance may violate the applied physical

laws.




CHAPTER 5: APPLYING AND UPDATING BOUNDARY CONDITIONS

5.1 Preface

Two types of boundary conditions for steady state partial differential
equation systems are considered: the Dirichlet condition, or specified field variable
value, and the Neumann condition, or specified boundary flux.

In forward finite clement formulations with the field variables as unknowns,
an algebraic equation is established for each degree of freedom at a nodal point. In
the global algebraic system, the left—hand side is the product of the conductivity
matrix and the nodal field variables, and the right—hand side is the combination of
the source equitalent odal flow vector and the flux—equivalent nodal tflow vector.
The physical interpretation for a Neumann boundary condition is that it provides
the flux—equivalent nodal flow to balance the equation for each degree of freedom
at a boundary node. At an inner node, the flux—equivalent nodal flow is always
zero - and one could follow the Neumann condition interpretation and imagine that
fluves were specified at every clemental boundary (which is not a global boundary)
but, when transformed into the flux—equivalent nodal flows, the flows that went
into and out of the node canceled each other.  Therefore, implicitly, a "Neumann
condition" is needed wherever an equation is to be establshed. In contrast,
Dirichlet conditions do not help establish equations. When the value of a field
variable is specified at a nodal point, a degree of freedom is lost and the
corresponding equation is removed from the uigebraic system, thus keeping the
numbers of unkhnowns and equations equal; corresponding adjustiment is made to

62
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the other equations related o this degree of freedom.  Alternatively, for
computationa! convenience. numerical techniques can be used to transforin a
Dirichlet condition into a Neumann type.

In the current inverse finite element formulation, information on the
Neumann boundary conditions is always given in terms of a PDF, and the nodal
boundary fluxes are formulated into the parameter vector P. Prior field variable
values are specified for every nodal points, including those at the global boundaries
with Neumann boundary conditions. We use the term "Dirichlet condition” at a
boundary to desc.:be the situation that the Neumann condition is not given and
not to be estimated at that boundary. When a nodal boundary flux is not included
in P, no equation can be established for the associated degree of freedom, but,
different from the forward method, the corresponding parameters still exist. When
the ncdal field variables are updated, the Dirichlet boundary conditions are

update.l.

5.2 Updating Neumann boundary conditions

At some boundaries, flux distribution can be reasonably well spe-ified
through actual ficld measurements and they will help constrain the inversion; for
example, the HFD pattern at the ground surface can be found from fieid
measurements of temperature gradient and thermal conductivity. At some other
boundaries, the flux distribution is poorly known a priori and is to be determined
by the inversion, for example, the deep seated or background HED. The latter
situation is the major concern of this section.

The nodal values of boundary flux, q, have been formulated into the total

parameter vector P, and separated as the linear part of P, in Chapter 3. The
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spatial correlation of the components of the nonlinear part of P, p. is incorporated
into the solution by the physical laws upon which the mathematical tnodels are
based. The a priori covariance matrix of p, Cp,, is conveniently constructed as a
diagonal ma!rix (sce section 4.4.3). However, the smoothness of the fieid variable
ficlds depends on the smoothness of the boundary fluxes, and vice versa. If the
uncertainties in the components of both p and q are uncorrelated a priori,
oscillations in the solution may occar, unless many components are tightly
constrained; to stabilize the solution, the spatial correlation of the uncertainties of
q can be specified as part of the a priori information.

‘The diagonal entries of Cgq, the variances, represent the uncertainties in
the nodal boundary fluxes: the o -diagonal entries, the covariances, define the
spatial correlations between the uncertainties in different components of q. If the
covariances in Cyq are governed by physical or statistical theories, they should be
obtained rigorously using the *heories. If the covariances are used just to define
the degree of smoothness of the flux distribution at a boundary, an extensively

used exponential correlation function

ojy = olexp(— ]2 §E—§-—) (5.1)
can be applied; here a7, is the covariance between the two components of q, g; and
qy. separated by a distance S;,. ¢@ the uniform variance of the components of q at
this boundary, and L the correlation length. If the a priori flux distribution is
smooth (for example, a uniformn value), the correlation length determines the
degree of stmoothness of *he a posteriori flux distribution at this boundary. When
L. = 0. no correlation exists, and the boundary flux at any node is allowed to take
a value regardless of the values at adjacent nodes. When L is much larger than the
scale of the length of the boundary, there is very strong correlation between the

uncertaintios in the flux values at different nodes, and the flux distribution tends
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to be a very smooth function at the boundary. > ote tiat Cgy becotes generally a
full matrix.

The updated flux—equivalent nodal flow vector fis given by equation
(4:22). A lincar inversion of the components of the updated f using equation
(L19) or (3.41) will give the updated boundary Nux vector

q= Vit (5.2)

From (5.2), the covariance matrix of q, Cyg is

(qq = V1-Cyg- V1 (5.3)
Ci¢ is related to Cpp (as a linear approximation) by

Crr = E{(f - DT — D)) = GE[(e - )P — DG = G- Cpp

where G is evaluated at point . Equation (5.1} leads to
Coy = V0GCppe GR VL (5.5)
Because updating q fiom [ is a weli determined linear inverse probien (Vs
square), any method will lead to the same Kramer solution (3.2) and the
covariance matrix (5.3).
To show that (5.5) is equivalent to (4.27), we denote G-Cpu-GU by R and
substitute (4.26) into (5.4), thus,
Cip=R —R-(R' + Cyg) R
=R = R'-(1' 4 Co) - (R + Cyp — Cye)
=R —R“[I = (R + Cye) V- Cy
= R"-(R" + Cqg) - Cqy
= (R" + g = Cgg) (R + Cyg) - Cyg
= Cpg = Ceg- (R + Cyg)1-Cyg {5.6)
Using (5.3) after substituting (1.16) into (5.6). we obtain equation (4.27).
Equation (4.27) ruakes the computation of (".N much more efficient than

(5.3), because we can 1) cheose to compute caly those entries of Cg thet are
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redated to the boundary fluxes that interest us. such as the background HFD. 2;
avoid the tinie consuming computation of C,,s and ('n. and 3) directly use the
factorized form of R { Appendix B) from the last iteration of the noalinear part of
the system.

The updated beundary flux q at any boundary point of an clement is
interpolated with the updated nodal values of boundary flux of 1he element using
(3.2) and (2.21). i.ein 1 atrix form.

q=H-q (5.7)
The variance of ¢ 15 then

72 = H-Coq- (5.8)

5.3 An alternative approach to dea'ing with heat sources

Heat souree Nis formulated into the nonlinear part of the system (3.11).
h-T-W-f=0 (5.9)
because its logarithmie transforin ¢ is used in oruar to constrain the heat sourees to
be positive.

If the heat sources are well known a priori and hence well coustramed to
stay positive. R instead of o0 can be formulated as parameters.  If formulated as
such. ® will be a linear part of the paramoter vector P (Lee cquation 3.9) together
with q. and the nonlinear part of the parameter estimation will have a smaller
dimension and the computation will be mere efficient.  Again, it is assumed that
the uncertainties of the nontinear and lineas parts of P are uncorrelated.  The
problein with  this approach is  that the updatel sour-e—equivalent and
flux- equivalent nodil flows are given by one vector W + {. as can be scon from

(0.0 Separating these two contributions  poses problems.  However,  this
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procedure can be simplified if W oand { can be separated in the first place in the
parameterization of the problem (ie., for any non—zero component of one vector,
the corresponding component of the other is zerol.

it is casily observed from equation (3.9) and (3.107 that non zero
components of f are associated with global boundary nodal puints ouly, while
non—zero componecats of W with non-zero heat source elements only. Fhe mixing
of the two effcts occurs only at those global boundary nodal points where the
finite elements related to these points have non—zero heat sources. Therefore, the
two effects can be separated if the elements related to the boundary nodal points
do not have heat sources.  Some auxiliary elements with constant  thermal
conductivity ant zero heat source can be added to the boundary. I the geomeiry
of the boundary is smooth, the shape of the new boundary is simply dupheated
from that of the old one; and if the auxiliary elements are "slim™ enough, the heat
fluxes of the new boundaries will very closely approximate those of the old ones,

Once W and f are separated, updating R from W and q from [ income two
independent, it sinutar, problems. The forner differs from the fatter in that s

an over determined problem. e, there are more independent equations than heat

source values.




CHAFPTER 6: CONDUCTIVE HEAT FLOW PROBLEMS

6.1 Preface

Inverse methods were applied to heat conduction problems in mechanical
engineering as early as 1960 (Stolz. 1960). The inverse problems considered there
form a specific class, "where the temperature histery is known at some interior
point 1o the body and the transient surface temperature and surface heat flux are
to be determined” (Bass, 7980). One should notice the analogy between this type
of inverse problems and the problem studied by Wang and Beck (1937) and Shen
and Beek (1988), where probe measurements are taken in lake sediments a few
times over a time period, and the data are used to determine the water bottom
temperature history and the steady state local HFD. A major advantage one has
in the engineering study is that the thermal conductivity of the material
considered is usually accurately known. It the conductivity is not temperature
dependent, the inverse problem is linear; if it is temperature dependent, the
problery is nonlincar.  Inverse methods were developed for both linear and
nonlinear problems (Beck. 1970). The fisst inverse finite element solution. to (he
1-D lincar inverse heat cocduction problem was obtained by Hore et al. (1977),
and to the 1-D nonlinear problem by Bass (1980). A 2-D inverse firite element
method was developed by Macqueene (1981) for dealing with problems .eclated to
welding processes. Further studies on the inverse finite element methods for such
heat conduction problems can be seen in Krutz and Akau (1983).

Fhe inverse problems of conductive terrestrial heat flow bear more

6
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production rate of & = 0.1 W m'3. The upper and lower boundaries are insulators.
The jeft end of the budy (x = 0 mj is kept at a constant temperature of 30 °C. and
the right end (x = 3 m) has a constant in flowing HFD of 2.0 W m2. With these
valws of material propertiee: and boundary conditions, the nodal temperature
valun are computed for all the 23 nodes with a forward calculation. The
cotitinuuus temperature distribution in the x direction is shown in Fig.6.1b. This
temperature distribution: appears almost linear because the contribution from the
internal heat sources is very smali, compared with that of the boundary HFD.

lo itlustrate the general inverse method using this model, we assume that
we know the structure of the body to such an extent that we can assign a uniform
A W eleent 1 oand 2, another uniform A to element 3 and 4, and two distinct R
values for dletent 2 and 3, respectively. The three boundary HFD nodal values at
the right end fnodes 21, 22 and 23) are also taken as parameters. The two A
vahies, two R vadues, three boundary nodal HFDs, and the 23 nodal temperatures
compuse the 30 compenest parameter veetor P, in which the nonlinear part p has
27 components and the lincar part @ has 3. The left end boundary has the
Dirichie: boundary condition. therefore the three finite element algebraic equations
asoctated with neaes 1, 2 and 3 are crossed out, leaving g and f in cquation (3.22)
with 20 components.  Some of the parameters are assumed to be better known
than others in the following case studies, but every parameter is assigned a
non-vanishing  alue of STD. Sometimes, an incorrect value is used as the a priori
value for a parameter, with the intention to see whether, or how well, the correct
vatue can be recovered by the inversion.

The actual (fully G matrix would have 20 x 27 entries, but the parameters
in p are wunbered in such a way that the G matrix is somewhat banded (Fig.6.2),
and the zero entries bevond the ckylines (st.own in the figure) are not stored

during the computation. Similariv, only the apper part of the symmetric matrix R



(equation 4.4} is stored.  Proper numbering of parameters may casily teduee by
two thirds the computer memory required, which is a significant amount for very
large problems. As can be reasoned from Fig6.2, using a larger number of
material property zoues will increase the dimension of the G matrix, and leave the
dimension of the R mairix unchanged. but it may significantly rduce the
dimensions of the actual storage arrays for the G and B matniess if parameters are
properly numbered. The G and R matrices fer the coupled problem are stored

using the same scheme.

6.2.2 A “forward" problemn

When the values of the material properties and the boundary conditions are
perfectly known, but the temperawure distribution in the Lody is unknown, we
have a forward proldem. To use this current inverse method to solve the forward
problem, we approximate “perfectly known” with "accurately  known", and
"unknown" with "extremely poorly known".  The correet vidues of the material
propertics and boundary conditions are thus tightly constrained with very small
STDs of 0.0001 (SI units), and the randomly guessed temperature values (30 °C)
are assigned a large STD of 5 K. The inverse solution gives the correct
temperature values, i.c., those given by the forward calculation, with the STDs in
the order of 10°4 K. If the temperature values thus ehtained are plotted, they will

be indistinguishable from those shown in Fig 6. h.

6.2.3 A "system identification” probicm

When good knowledge of temperatures and boundary conditions is used to
determine all or some of the much more poorly known material properties, we have
a typical system identification problem.  In this case, the correet nodal

temperatures are perturbed with Gaussian noise of STD == 0.0i K, and then used



as the a priori values with the same STD. At the right boundary the correct HFD
values are used as the a priori values with STDs of 0.01 W m™2. A priori values
that differ significantly from the correct values are assigned to the material
properties with large STDs.  As shown in Table 6.1, two conductivity values are
wall resolved. but the heat source values are not. This is because the heat source
values are very small, and their contribution to the temperature distribution. i.e.,
causing a slight curvature, is hardly detectable in the noisy temperature data. If
the noise in the a priori temperatures is reduced to STD = 0.001 K, the solution is

much improved (Table 6.2).

6.2.4 Updating boundary HFD

In this case, information on the nodal temperatures and material properties
are used o update our knowledge of boundary HFD. The nodal temperatures
contain Gaussian noise of STD = 0.01 K, except that those of nodes 1, 2 and 3,
where accurate Dirichlet boundary condition is applied, have STDs of 0.0001 K.
‘The boundary HFD at the right boundary is assigred an incorrect a priori value of
2.2 ¢ 0.2 W n'Z our knowledge that the HFD across this boundary should be
uniform is expressed by a large correlation length (see section 5.2) L = 5 m.

When the material properties are accurately known, with log STD = 0.0001
(ST units), the boundary HFID is well resolved to be 2.00 £ 0.02 W in"2.

When the heat sources are accurately known, with log STD = 0.0001 (SI
units). but the thermal conductivities are poorly known as in the examples of
"system identification”, the a posteriori boundary HFD is 2.14 £ 0.19 W m"2. The
a posteriori STD is almost the same as the a priori one, meaning that the HFD is
very poorly resolved.  This is an example of non—identifiability (section 1.3). In
the case of small internal heat sources, the temperature data can only resolve the

ratio of the HFD and conductivity, i.e., the temperature gradient. When the
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conductivities are accurately known, but the heat sources are poorly known, it way
be difficuit to distinguish the contributions to the temperature distribution from
the sources and from the boundary HFD, depending on the noise level of the

temperature data and toe intensity of the heat sources.

6.3 llcat fMlow in the presence of Lopography

6.3.1 lntroduction

"Terrain disturbances” are the differences between the observed geotheninal
field and that of an ideal solid carth medium with a flat isothermal surface.
Terrain effects may be steady state or transient, and may involve gronndwater
flow: topographic effects are the small scale (usually a few k) terrain
disturbances due purely to the presence of a real topographic surface. Corrections
for the topographic effects can be performed Ly subtracting the computed
disturbance field from the observed field to find the undisturbed  field, or
equivalently, modeling the actual field to find the undisturbed values away from
the disturbing sources.  Aunalytical techniques are often used with the former
approach, and nuinerical methods are frequently used with the latter. A
comprehensive review of topographic correction methods was given by Powell «
al. (1983).

Analytical methods, such as the widely used solid angle method (Birch,
1950), the spectrum method (Blackwell et al, 1980) and the source function
method (Brott et al.. 1931). usually require the assumption of a homogeneous
thermal conductivity.  For some methods, a particular funetional form of the

surface temperature distribution, such as a linear function of elevation with an

clevation intercept and a lapse rate, is used.  Unless favorable conditions exiat, the
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crrors imtroduced by the suuplifications may overshadow the merits of the
methods, such as being casy o apply and interpret.  Numerical methods allow
heterugensous  and  anisotropic thermal conductivity and  arbitrary  surfare
tenperature distributions to be modeled. and are superior to the analyvtical
ur-thods in many applications.

When numericai meshods  are applied to a problem of topographic
currection, a direet modeling approach can be stated as follows. Give the thermal
coaductivit| structure and values. the measured borehole temperature data and
the temperature distribution at the upper boundary and symmetry condition at
the vertical boundaries, estimate the constant HFD at the lower boundary. This is
an inverse problem. and tnial-and—error approaches that adjust the background
HED value to fit the computed temperature field to the mea: ared temperature
data are often used. Henry and Pollack (1985) used a least squares criterion in the
fitting procedure and allowed some parameters in the surface temperature
distribution. assumed to be a lincar function of elevation, to be adjustable.

In thix work. the problem is posed in a general sense described in section
1.1: we know the o nmetry condition at the vertica! boundaries and the thermal
conductivity structure, we have certain knowledge of the thermal conductivity
values, the temperature distribution at the upper boundary and the subsurface
temperature field, in which some borchole temperatures have very small
uncertaintics, we also have some idea, through some kind of analysis and
reasoning, about the constant background H¥D value; what are the most probable
values and uncertainties of the thermal conductivities, the temperature field, as
well as the HFD at the lower boundary. according to the available information.
All the three types of phye * nantities are the parameters to be estimated. Our
final state of knowledge is determined by the relative quality of the a priori

information on the parameters: the parameters poorly known a priori are adjusted
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to a larger extent in the inversion while those well known a priori w0 a lesser
extent. The uncertainty in the estimated HED value reflects our unocriaintios in
all the parameters: all uncertaintics are educed by the combination  and
recrganization of our a priori knowledge and the relevant physical laws deserilnd
by equation (2.2).

Many methods for topographic corrections can be used ax  data
preprocessors to provide, for our inverse formulation, the a priori valws of the
parameters, especially the background HFD.  The uncertaintics in these a priori
values depend on our confidence in the particular methods. Even in less complex
situations, where the HFD values given by soine existing methads are quite
accurate, it is still worthwhile (o apply the current inverse methad for a formal

variance analysis.

The synthetic example used by Henry and Pollack (1985) is used here to
illustrate the current inverse method.  With the isoparametric finite element
model, it is possible to construct a structure model that has a smooth ground
surface with a small number of nodal points (Fig.6.3a). The temperature at the
ground surface decreases with increasing elevation with a lapse rate of 0.066 K m !
to a minimum value of 6 " at the highest elevation. The HFD across the lower
boundary is a uciform 60 mW m'2, and there is zero horizontad HED at the two
vertical boundaries. The conductivity of the medium is 4 W m 'Kt Using these
boundary conditions and the thermal conductivity values, the "true" temperature
field was obtained with a forward calculation.

Henry and Pollack used synthetic data from four boreholes) presumably
drilled at different locations along the topographic profile, and the known surface

temperature lapse rate to estimnate the background HEFD. With a strong constraint




that the background HFD is uniform and with reasonable knowledge of the surface
temperatures, a data set from one borehole is in fact adequate. The borehole is
assumned to have been drilled in the valley, and the solid circles in Fig.6.3a indicate
where accurate temperature data has been obtained. For the inversion, all the
"true" nodal temperatures are perturbed with Gaussian random noise, then used as
the a priori values: the STDs of the noise added are used as the a priori STDs of
these values. The best known temperature values are the borehole measurements,
and Gaussian noise with small STD of 0.01 K is used to simulale experimental
errors.  The surface temperature values, as uncertain Dirichiet boundary
conditions, contain Gaussian noise with an STD = 0.5 K. The rest of the a prion
nodal temperature values contain Gaussian randomn noise with an STD as large as
4 K and thorefore are extremely poorly known. A background HFD is guessed to
be 70 ¢ 70 mW m? to show our unceriainty, and a correlation length of 5 km is
used to make the HFD essentially uniform. There is only one conductivity zone,
that is the whole spatial domain, and there is no heat source present. Ciearly, in
such a problem, the HEFD and the conductivity cannot be estimated separately, but
ouly their ratio, i.e., the temperature gradient, can be determined. Therefore, the
uncertainties in the thermal conductivity are not formally considered in the
inversion.  'This makes the problem linear, and only one iteration is needed to
obtain the a posteriori values. If there is any uncertainty in the thermal
conductivity value, the same percentage uncertainty should be added to the HFD
estimate.

The background HFD estimates and the one STD uncertainty range are
shown in Fig.6.3b.  The estimated HFD distribution is always better resolved in
the center part of the profile than at the two ends. This is true even if there is no
assumed  borehole and all the a priori nodal temperatures have the same

uncertaintics (necessarily smaller than the 4 K used in the above example for a



physically reasonable solution). The pattern of the resolution of the HED reflects
the pattern of the resolution of the a posteriori subsurface temperature values.
Compared to a nodal temperature on a vertical boundary, a nodal temperature in
the center part of the domain is counstrained by, among other factors, wwore
neighboring temperatures, and hence is better resolved.  The borehole located near
the center has amplified the effects. [t should be noted that the HFD beiag
uniform at such a shallow depth as in this example does not represcat real

situations; the topographic perturbations affect much deeper regions.

6.3.3 An exan-ple from Bolivian Aundes

This example was used by Henry and Pollack (1985) to illustrate o method
to obtain local HFD values in the presence of topography. The data were collected
from the Bolivar mine in Bolivia, where the structurally controlled topography wis
developed along axial anticlines and synclines in folded Devonian shales, so that a
2-D model is a good representation of the topography and structure. Fig.6.1a
shows the topography of the cross section considered by Henry and Pollack,
together with the locations of the four boreholes drilled at the lowest level of a
mine into the undisturbed rock. Henry and Pollack have also shown that it s
reasonable to apply the symmetry boundary condition at the two vertival
boundaries of the cross section. Details of the local and vegional geology and the
data acquisition procedure can be found in Henry's Ph.D. thesis (1981). I
applying the inverse finite element method to this example, the issumptions of
2-D, steady state and pure conduction made by Henry and Pollack {19%5) are
assumr to be valid.

The measured temperatures from the four horeholes are shown as crosses in
Fig.6.4b where temperatures from inclined boreholes 7% -21 and 78 10 have been

projected onto vertical lines extending from the collars of the hole 1w
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vonspicuons features of the plotted data cannot be explained as topographic effects.
First, the temperatures in hole 7 3-10 are abnormally high compared to those in
the other holes: for example, belo v 50 m, the temperatures are higher than those
in the adjacent 78-25 by more than 1.5 K. The existence of an isolated "warm
hole” is hard to explain by any steady state conduction mecharism. The sudden
temperature rise at about 20 meters depth might suggest water flow, yet there
migit be some other unknown local effects  To accept the assumntion of steady
state pure conduction for the purpose of comparing results, the data fiom this hole
are discarded in the following calculation. Henry and Pollack (1985) also had
problems fitting a model to the data from this borehole. Second, there appear to
he some very local warming effects in tl wop 20 meters of 78-25; if the curvature
in that portion were to be explained Yy the variatio. of thermal conductivities, the
conductivity values would be too low to be acceptable. Therefore, temperatures
between 20 to 50 meter depth were extrapolated upwards to the mine bottont, and
the extrapolated values used as the data.

The rocks in the area are reported to be rather homogeneous, and a uniform
thermal conductivity of 1.9 W m! K-! was used in Henry and Pollack's model
fitting. By examining the measured temperature profiles, however, it is felt that
some spatial variations in conductivity must exist. Therefore, in applying the
finite element inverse method, the domain is arbitrarily divided into 23
conductivity zones (Fig.6.1a).  All the zones are assigned the same a priori value of
A= L9 W IR L and the STD of log(A) is identically 0.1 (Fig.6.4c).

The ground surface temperature distribution is essential in topographic
cotrection of HEFD data. The usual approach is to assmine a temperature
distribution that is a lincar function of descending elevation with a given lapse rate
and an elevation-intereept. The assumed “inction form may introcuce large

ore ©the corrected YTED value, Herrv and Pollack (1985) made * e
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approach slightly more flexibie by allowing the intercept 1o e adjustabke dunne
model fitting. In the case of 4 sintle borchole without indeyrendent infmatnen o
the surface temperature distribution, to assume a function fons: might e the onh
chuice, but when there are a few borcholes such as in the curnent case, 1t i preaalbsie
to construct a temperature distnibution from data.  Bofore doine thix, we can take
another advantaee of the Bolivar Mine data set as follows.

All the borcholes were dritled from the sane devel, defined as @ depth s
Fig.6.1a. This level. instead of the ground surface, is usd as the upymer boundan
of the spatial domain for the cadeulation, and a temperatuie distributnon i
constructed by hand using the measured data. I the honzontal temperature
variations at this level are caused by the temperature variations at the ground
surface only. specifyving the Dirichlet conditton at this devel v equivalent o
specifving the corresponding Dirich!et condition at the sutface. Sinee the 0 dep b
temperatures are less influenced than ground surface temperatures by the clunatic
temperature perturbation, there is no reason to believe that any assuamed surface
temperatur * distribution would be better than the one constrnctesd wt this level,
The temperature nodal values specified here still have ancertainties becataes of the
paucity of data and the extrapolation made for 7825, although these uncertiuntios
are probably smaller than those of an assumed surface temperature fanction: an a
priori STD of 0.5 K is assigned to each value.  The temperature distribntion
constructed at 0 depth, nor the upper boundary of the nesiel, i shown in
Fig.6.-4d.

The two verticw boundanes have the syimnetry condhition, e 210
horizontal heat flux. At the lower boundary, a very uncertain Neunann condition
is applied: nodal HFD valves on this boundary are the parameters of our imterest,
A large a priori correlation length, L = 10 ki, for the nodal HED i« uesd mahang

the HFD essentially uniforin along the lower boundary Lo provde the o pron
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approach slightly more flexible by allowing the intercept to be adjustable during
model fitting. In the case of a single borehole without independent information on
the surface temperature distribution, to assume a function form: might be the only
choice, but when there are a few boreholes such as in the current case, it is possible
to construct a temperature distribution from data. Before doing this, we can take
another advantage of the Bolivar Mine data set as follows.

All the boreholes were drilled from the same level, defined as 0 depth i
Fig.6.4a. This level, instead of the ground surface, is used as the upper boundary
of the spatial domain for the calculation, and a temperature distribution is
coustructed by hand using the measured data. If the horizontal temperature
variations at this level are caused by the temperature variations at the ground
surface only. specifying the Dirichlet condition at this level is equiviaent to
specifying the corresponding Dirichlet condition at the surface. Sinee the ¢ dep b
tetuperatures are less influenced than ground surface temperatures by the climatic
temperature perterbation, there is no reason to believe that any assumed surface
temperature distribution wonld he better than the oue constructed af this level,
The temperature nodal values specified here still have ancertainties becanse of the
paucity of data and tk.. extrapolation made for 78-25, although these nncertaintios
are probably smaller than those of an assumed surface temperature function; an a
priori STD of 0.5 K is assigned to each value.  The temperature distribution
constructed at 0 depth, now the upper boundary of the model, 1 chown in
Fig.6.4d.

The two vertical houndaries have the symnetry comdition, i 2010

horizontal heat flux. At the lower boundary, a very uncertain Nenrmann condition
is applied: nodal HFD values on this boundary are the parameters of onr interest,

A large a priori correlation length, I — 10 ki, for the nodad HEDs ivoused | nuaking
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HFD value, a trial and error nthod is used. in which the a prioci upper boundary
condition and thermal conductivity values are used. and the HFD value is adjusted
to let the computed temperatures at the borchole locations approach, by naked
eve, the measured values. A crucial estimate of 120 mW w2 is obtaimd with a
couple of trial runs, and the value is used as the a priori ilFD value, with an STD
of 100 mW m2 representing our uncertainties.

The finite clement mwesh of this example extends from the collars of the
holes to a depth of 2400 m where. based on some simple rumerical experiments,
the topographic effects ire belicved to be negligible so that the HFD at the bottom
boundary of the mesh can be safely taken to be uniform. The temperature nodal
values obtained with the estimated HFD of 120 mW m 2 are used as the a prior
values. In the inverse calculation, these values, excleding those at the data points,
are assigned a priori STDs which increase with depth from a value of 0.5 K at the
upper boundary to 24 K at the lower boundary. because our uncertainties in the
nodal temperature values are likely to incrcase with depth.  All the borehole
temperature data below 0 m depth are assumed to have STDs of 0.02 K to account
for experimental errors.

The a posteriori values of the parameters obtained in the finite element
inversion are shown in Fig.6.1, together with the a priori values. The estimated
background local HFD is about 131 + 10 mW m? (Fig.64e). The value 1258

mW m-? obtained by Henry and Pollack is well within one STD of this extimnate,

6.3.4 Conclusions

The general inverse finite element methad has been applicd to a synthetie
example and a field example. The problem of topographic correction of HFD data
is stable, because, based on the small spatial scale of the problem, the background

HFD is assumed to be a constant in the horizontal direction. Given knowledge of
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the upper boundary temperature distribution and some borehole temperatures, a
unique solution can be obtained. From the examples, we can draw the following
conclusions.

1) The solutions are comparable to those by other methods. The HFD
value obtaized by Henry and Pollack (1985) for the Bolivar Mine is within one
STD of the current solution.

2) By allowing uncertaintics in the upper boundary nodal temperatures, our
uncertaintics in this boundary condition are taken into account in the estimate of
the HFD value.

3) The knowledge of the thermal conductivities of the subsurface medium
can also be updated. In more general cases, the distortion of the observed surface
HFD due to subsurface conductivity contrasts can be corrected together with the
topographic cffects.

1) An uncertainly range is rigorously given, for example, by a one STD

error bar, for the HFD estimate and each of the other estimated parameters.

6.4 Downward continuation of HFD data

6.4.1 lntroduction

For interpretation of HFD data, one important nced is to infer, by
downward continuation, the HFD and temperature fields at a depth of interest, for
example, the Moho—discontinaity. "Extrapolating” surface HFD data on such a
scale is a complicated problem; the thermal effects of many geophysical,
geuchemical and geodynamical processes, such as geotectonical movements, phase
changes of rock minerals and mantle convection, may contribute to the near

surface HFD pattern.  Downward continuation, at the current level of HFD
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research. however. wsually implies the assumption of steady state and purdy
conductive heat flow in a solid earth medium. which is probably reasonable at
temperatures less than 1200 °C.

A classical downward cuntinuation problem is formulated as: given HED {or
lemperature gradient) and temperature distribution (usually conveniently taken as
0 °C) at the ground surface (depth = 0), given distribution of thermaal
conductivities in the subsurface medium free of heat production, the temperature
and HFD fields at a greater depth are to be determined. 1t is called "dowsward”
in the potential theory because the continuation is toward the source of heat flow.
A unique formal soluticn to such an inverse problem may exist, but is notoriously
unstable, in the sense that a slight variation (say, duc to an experimental error) in
the surface boundary conditions may result in a drastic change in the solution at
depth. The instability of the preblem puts into considerable doubt the validity of
using the HFD data. which are known to contain many experimental errors, as the
surface boundary counditions. In more realistic carth maodels, heat production
(distributed heat sources) of significant quantity may cxist in the medinm into
which the .cmperature field is continued, and the values of the heat production
rates and thermal conductivities are known witl, large uncertainties; the solution
to such a problem is unstable and non—unique.

The instability results in physically unreasonable oscillations of the
continued field in the horizontal direction. Methods for nunerical downward
continuation all focus on minimizing such oscillations. It is well know, as shown
by the Fourier transform solution by Bodvarsson (1973) and Mareschal et al
(1985), that large oscillations at depths are related to short wavelength variations
of the surfacc boundary conditions; as the wave number tends to infinity, the
solution diverges. To stabilize the solution, the quoted authors chose to set up a

cutoff wave number. and discarded higher wave number terms (Bodvarsson, 1973)
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ur regarded ther as the eoffects of shallow heat sources (Mareschel, 1935). Huestis
and Parker (197Y) stated the downward continuation problem as a Backus—Gilbert
inverse probiem.  The Backus and Gilbert solution (1968) seeks the local average
of the continued fivid and hence provides a smootked version of the solution, i.e.,
increases stability by decrcasing resolution (Backus—Gilbert concept of resolution
is different froin that used in the rest of the thesis, as explained in section 4.2.3).
The weighted least squares method used by Stromeyer (1984) with a finite
dificrence formulation smoothed the continued HFD by introducing a regularizing
factor that bounded the magnitude of the first derivatives of the downward
continucd HHFD with respect to the horizontal coordinate. Beck and Shen (1939)
used the RTV scheme (section 4.2) with a finite difference formulation, and
stabilized the HFD solution using the appropriate smoothly distributed a priori
HFD values and variances; the latter tends to weep the cstirated HFD values
within a reasonable neighborhood of the a priori values in the parameter space. It
is not difficult to relate the referred inverse methods 10 the low wave nuinber
solution of Bodvarsson (i973), because all the smocthing or regularizing methods
are cffc ctively some kinds of "low pass filter". An extreme case of the smoothed
field is in the topographic cerrection discussed in the previous section, where the
continued HEFD is kept essentially uniforin in the horizontal direction, and hence
stability is not a problem.  In the less rigorous trial -and—error approach to the
it verse problem of downward continuation of HFD, smocthness and boundedness
arc already implicitly assumed by the researcher in the Neumann condition
specified at the lower boundary (Cermak and Bodri, 1936).

The existence of heat production by the decay of natural radioactive
isotopes in the carth's crustal material further complicates the downward
continuation problem. To make things worse, direct measureraents can so far be

made only on a very limited number of specimens of the near surface 10cks, and
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our understanding of the heat production distribution with depth is limited to a
very small depth range and is based upon an empirical lincar relation between the
surface HFD and near surface heat production (Birch et al.. 1963; Lachenbruch,
1963; Jaupart, !983: Nielsen. 1987). Our knowledge of the heat production
distribution in the deeper parts of the lithosphere has been largely speculative and
qualitative. The most pervasive geophysical survey of the carth's lithosphere i
performed by seismological methods, «nd hence efforts are being made to relate
other geophysical quantities to the seismic velocities. On the basis of laboratory
experiments, Rybach and Buntebarth {1984) proposed a general empiricai linear
relation between P—wave velocities and logarithmic heat production rates for rocks
of different ages and types. Cermak and Bodri (1936) ured tae relation, with
further corrections. to obtain heat source distributions in the lithosphere
Unfortunately. the data set on which the relation is based is small and there is not
a convincing theoretical explanation so that the relation has not been widely
accepted. In any case. it can be seen that no matuwer how a heat source
distribution is obtained, the uancertainties are likely to be large, perhaps orders of
magnitude. Such large uncertainties should be considered in an scheme of
downward continuation of HFD) data. In Huestis (1980), the heat sources were
assigned rather narrow bounds. [In Stromeyer (1984), the contributions to the
observed surface HED from the heat sources in the crustal rocks and from the
background HF1) were investigated separately. In the BTV approach of Beck and
Shen (1989), both the heat sources and background HED were formalated as
parameters and estimated simultancously by the inversion.

The method proposed in this work i3 very similar to that of Beck and Shen
(1989). The main differences are in the finite element parameterization approach,
in invoking the auto—covariances of the boundary HFID as part of our a priorn

information. and in using logarithinic heat production rates as parameters (see
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Chapter 3). The use of log/R} is convenient because the values of heat production
rates are very small (compared to other parameters, in coasistent units), and could
otherwise be casily assigned negative values by the automatic inverse procedure,
unkess tightly cunstrained by small a priori STDs. As mentioned above, a small
STD will not reflect our large uncertaintics in the heat production rates, no matter
how the values are obtained. Using logarithmic transforms allows the a priori
STDs to be given in orders of magnitude if observed on the original linear scale
and never result in negative a posteriort & values. When our uncertainties in a
small, positive physical quantity is of orders of magnitude, a log—normal
probability distribution is much more reasonable than a linear normal distribution.

In the following text. the proposed method is applied to three European
peotraverses. In each of the three examples, the cross section extends to a depth of
60 ki, the two vertical boundaries are assumed tc have symmetry condition

(horizontal HFD = 0), and the surface temperature is conveniently taken as 0 °C.

6.1.2 A central Europe geotraverse

Hurtig and Oelsaer (1977) constructed three transcontinental profiles across
central Europe with known surface HFD values, and computed the temperature
ficld in each cross section using a 2-D forward finite difference method. The first
of the three geotraverses (CEGTI), extending aimost north—south from South
Swedea to ataly. was later used by Stromeyer (1984) and Beck and Shen (1989) to
demonstrate their inverse methods. The data, upon which the construction of the
2-1) model was based. bave since been updated by other work, but for
“calibrating” the method by comparing -esuits with that of Stromeyer (1984) and
Bock and Shen (1989), the sam. geotraverse is chosen in this work. More detailed
zeological information is given in Hurtig and Oelsner (1977).

In this example, each finite element is taken as a thermal conduct:vity and
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beat production zone, and the zone numbers are given in Fig.6.5. The thermal
conductivity and heat production values given by Hurtig and Gelsner are wsed as
the a priori material property values. An STD of 0.1 {S] units) is assigned to each
a priori log(A) value. A constant HFD of 33.9 mW m? suggested by Stromeyer
(1984) is used as the o« priori value of the HFD at the lower boundary. The
observed curface liFD given by Hurtig and Oelsner is applicd to the upper
boundary with an STD of 10 m\W m? for cach node. Following Beck and Shen's
example, the a priori temperature field is computed using the a priori material
property and HFD values. Six cases involving different a priori information are
investigated as follows.

Case 1. Unknown valucs of background HFD) and lemperalure field. For a
set of parameter values, the approximate expression of "we do not know" is
represented by very large a priori STDs, and zero covariances.  Here the STDs of
the nodal HFD valucs are given as 10 mW m2. The STD of the temperature at
every node is 4000% of the nodal value. The STDs of the log(R) values are the
same as those of the log(A) values, i.e., identically 0.1 (51 units). As is mentioned
in section 4.2.1, as far as the iteration for the parameter values is concerned, the
magnitudes of the variances have only relative meanings, a looser constraint on the
HFD and temperature means a tighter constraint on other parameters.  If we
reduce the STD of all parameters by, say a factor of 100, which means a very small
STD of 0.1 mW m'2 for the surface HFD, the parameter estimates would be
exactly the same, except that the a posteriori STDs of all the parameters would be
smaller by a factor of 102. Therefore, this case approximates a direct downward
continuation (without regularization) with known surface boundary conditions and
subsurface material prepertics. The instability of the solution 1s illustrated by the
oscillations of the continued background HFD in Fig.6.6.

Case 2. The STD of thr background HFD in case I 1s reduced to 50 miy
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m2. In this case, our a priori information on the background HFD is in the form a
stmaller STD of 50 mW m2. but no covariances. As shown in Fig.6.7a, the
stability of the solution is greatly improved, and the a posteriori uncertainties
represented by the error bars are much smaller.

Case 3. The a priori HFD) values in case ! are assigned posilive coveanances.
The a priori STD of the nodal HFDs is still 105 mW m-2? (virtually unknown), but
a correlation length I = 200 km is used that indicate our belief tha: the HFD
should be somewhat smooth. This, in a sense, corresponds to the low wave
nuinber deterministic solution of Bodvarsson (1973), but is stated in a
probabilistic manner. The results (Fig.6.7b) illustrate the increased stability and
decreased uncertainty compared to the solution of case 1.

Case §. Unknown HF1). better known temperature field. Our knowledge of
the HFD, as well as other parameters, is the same as in case 1, but the STDs of
nodal temperatures are reduced from 4000% to 40%. This case corresponds to the
first example of Beck and Shen (1939). The constraints on the temperature field
have stabilized the solution to some extent as shown by Fig.6.7¢.

(‘ase 5. " Reasonable” a priori information on all parameters. The {following
constraints are used: the STDs of the nodal temperature are 40%, the STDs of the
log(®) values are 0.3 (SI units), and the nodal values of the background HFD have
an STD of 100 mW 1.1"2 and a correlation length L = 100 km. The contour maps
of the a posteriori temsperature field and STDs, the a priori and a posteriori
background HFD, the values of thermal conductivities and heat production rates
with their uncertainty rauges are shown in Fig.6.8.

Case 6. Large uncertainlies in heal produciion rates. In this case, we
investigate the »ossibility that the background HFD is very smooth and the
variations of the surface HFD are due mainly to the spatial variations in the heat

production rates. Our poor knowledge of the log(R) values is represented by an
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STD of 1.0 (SI units). corresponding to one order of magnitude on the lhincar scale.
The correlation length of the background HFD is increased to 200 ki from the 100
km in case 3. All the other constraints to the parameters remain the same as in
case 4. The results in Fig.6.9b show that the a posteriori background HFD ix
fairly constant (within an uncertairty range), thercfore the spatial variations of
the surface HFD are du~ to the variations of the heat sources. From the estimated
heat source values shown in Fig.6.9¢, it can be seen that the spatial variations of

the heat sources arc well within our a priori uncertainties in the values.

6.4.3 Two eastern Europe geotraverses
Cermak and Bodri (1936) performed 2-D) forward numerical wexleling of

the temperature ficld along five eastern Europe geotraverses (Fig.6.10).  The
typical values for the thermal conductivities of lithospheric rock categories,
slightly dependent on temperature, were used. The rock heat production rates
were estimated using, with some modifications, the heat production — PP wave
velocity relation proposed by Rybach and Buntebarth (1984). The "ohserved”
surface HFD values were sampled from the HFD map of Europe compiled by
Cermak and Hurtig (1979), and these are necessarily "smoothed" values.  The
background HFD values (as a Neumann boundary condition at the lower boundary
of the model) were adjusted by comparing the computed surface HF1) distribution
with the observed one, until a "best” fit was reached. Two of the five geotraverses
are used in this work to demonstrate the inverse finite clement method: EEGTI,
oriented approximately north—south, going through the Alpine geosyncline,
Bohemian Massif and East Furopean platform; and EEGTS, oriented roughly
east—west, through the Bohemian Massif, Pannonian Basin and kast Carpathians.
Further geological and geophysical description of the maodels are given in Cermak

and Bodri (1986).
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‘The thermal conduciivity as a function of temperature used by Cermak and
Bodri is A = A./(1 + vT), where v is a constant of the order of 10-4-10-3 K-1. At
temperatures below 300 °C, conductivity generally decreases with increasing
temperature, and therefore v > 0; at temperatures above 500 °C, the radiative
conductivity, which incrcases with temperature, becomes more important, and
v < 0. According to the v values Cermak and Bodri gave for rocks at different
depths, the maximum variation of the conductivity values would be about 0.3
W miKl.  Adopting the zeroth order approximation A = A, we obtain
temperature ficlds (results not shown) almost identical to that of Cermak and
13odri, using the same boundary conditions. Thi- is partly because » is small,
partly because different A, values were assigned by Cermak and Bodri to rocks at
different depth ranges, which alrcady accounts for the temperature dependence of
the conductivities te some extent. More importantly, the actual vanations of the
thermal conductivities due to structure and our uncertainties in the A—T relation
and the A, values chosen rcally make the slight temperature dependence a
secondary problemi.  In the following inverse modeling, the zeroth order
approximation of conductivity is used, and the A, values given by Cermak and
Bodri are used as the a priori values for the conductivity of appropriate rock types,
with our uncertainties represented by log—normal probability distributions.

‘The heat production rates of Cermak and Bodri, averaged over each zone,
are used to give the a priori log(R) values. Due to our large uncertainties in these
values, as explained in section 6.4.1, STDs that are of orders of magnitude on the
linvar scale are assigned to them.

Geotraverse EEGT1.  The finite element mesh of the model, and the
thermal conductivity and heat source structures, based on Cermak and Bodri
(1986), are shown in Fig.6.11. The a priori nodal temperatures are given by

forward modeling using the same finite element mesh, the a priori material
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property values. and a background HFD obtained by reducing the observed surface
HFD by 30 m\W m™? (a value that very roughly reflects the magnitude of the
contribution of tiie heat production of the crustal rocks to the observed surface
HFD). An STD that is 40% of the temperature value is assigned to each of these
nodal values. In the inverse mwodeling, a constant a priori background HFLD of 40
mW m2is used. Two cases are considered.

First, we consider this situation {EEGT1 case 1): we have much confidence
that the background HI'D is unlikely to be negative or higher than 30 m\WV 2,
therefore an STD of 40 mW m? is assigned to every lower boundary HED nadal
value; we also feel that the HFD at that deptk is unlikely to change rapidly over
short distances, and hence a correlation length L = 100 ki is used to generate the
covariances between the HFD nodal values. The heat source values obtained from
the empirical relation between heat production rate and P—wave velocity is
assumed to be reliable to an order of magnitude, so that an STD f 1.0 (S units) is
assigned to each of the a priori Ing(R) values; a fairly small STD of 0.1 (5] units) is
assigned to each of the log(A) values. The results of the inversion are presented in
Fig.6.12. The temperature field thus obtained (Fig.6.12a) is similar to that of
Cermak and Bodri. The main contribution here is that our uncertainties in the
numerically modeled field aie explicitly shown by the contour map of the a
posteriori STDs. The high temperatures in the lower loft corner of the cross
section are accompanied by larger uncertaintics. ‘The a posteriori surface HET
(Fig.6.12b) matches the observed HFD pattern more closely than  the
trial-and—crror results of Cermak and Bodri, especially from —100 Fm to 500 k'n
on the profile; in the less well-fitted sections (e.g., <100 kin to --150 km), the
observed values are generally within one STD of the calculated values.  The
updated background HFD is smoother than the surface HFD, which agress with

the common belief that long wavelength variations of the observed surtuwe HED
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have deey origins and the short wave length ones are likely due to the variations of
the nearsurface heat source distribution and experimental errors. It is interesting
o natice in Fig.6.12¢ that the heat sources of deeper zones are almost unresolved
but those of the shallower zones are better resolved by the relatively good surface
LiFD) data; this is alsu because the a priori STDs for the values of the deeper zones,
observed on the lincar scale, are already very small, little more information has
been gained in the inversion.

The second situation (EEGT1 case 2) we consider is different from the first
in that it is assumed that we have less confidence in the a priori values of log heat
production rate values (STD = 2.0) and of log conductivity (STD = 0.2) but a
stronger belicf that the background HFD is smooth and close 1o the a priori value
of 40 mW m2 (L. = 200 km, STD = 30 mW m-2). The results of inversion are
shown in Fig.6.13. Compared to the results for EEGT1 case 1 (Fig.6.12), we see
that the pattern of the observed surface HFD is equally well followed by the a
posteriori suriace HFD, but the background HFD is so smooth that only the
general trend agrees with the surface pattern (Fig.13b). This means that the
background HFD pattern contribuies even less to the small variations of the
surface HFD than in the previous case, and correspondingly, that the variations of
the heat sources and conductivities make more contribution. Some of the heat
production and conductivity values are adjusted accordingly by the inversion to fit
the observed HEID pattern, with the resolution decreasing with increasing depth in
general (Fig.13c¢).

Geotravrarse EEGTS.  The finite element mesh for the model and the
thermal conductivity and heat source structures, based on Cermak and Bodri
(1986) are shown in Fig.6.14. Fewer conductivity zones are needed for this model
due to the simpler geological structure. The a priori nodal temperatures are

generated with the method used for EEGTI, but the lower boundary HFD used in
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the forward calculation was obtained by subtracting 25 mW m2 frow the ahserved
su-‘ace HFD values. Ia the inverse modeling, the a priori ST for a nodal
temperature is also 40% of the temperature value, and again 10 mW m'? is used as
the a priori background HFD value. Two situations. EEGTS case 1 and EEGTS
case 2, corresponding to the two cases for EEGT1 are investigataod.

In EEGTS5 case 1, our a priori knowledge of the paramweters is assuned to
be in the same state as for EEGTI case 1, that is, an STD of 10 mW m? and a
correlation length L. = 100 km for the background HFD, an STD of 0.1 for the
log(A) values and 1.0 for the log(R) values, and an STD of 10 mW m2 for the
observed surface HFD values. The resolved temperature field, similar to that of
Cermak and Bodri, and the STDs are shown by the contour maps in Fig.6.15a. As
expected, and as scen in Fig.6.15h, the comments on the a posteriori surface and
background HFDs for EFGTI1 case 1 a'so apply to this case. The a priori and a
posteriori material property values are shown in Fig.6.15c.

In EEGTS case 2, a priori knowledge of the parameters similar to that of
EEGTI case 2 is assumed. A correlation length of 200 kin ensures a smooth
background HFD distribution. Again 2.0 is used as the ST of the log(R) values,
but our uncertaintics in these values are more emphasized than in EEGTI case 2
by relatively tight constraints on the log(A) values, STH = 0.1. Results are
presented in Fig.6.16. The solution further confirms the observations made on the
results of EEGTI case 2. In Cermak and Bodri (1986), a background HEFD that
"echoed" the details of the observed surface HFD in details had to he postulated o
let the calculated surface HF'D match the observed one. In the current solution
obtained with very loose constraints on the heat production values, however, the
calculated and observed surface HFD is a better match than that of Cermak and
Bodri, but the background HFD (Fig.16b) is smoother, and perhaps more

reasonable; the short wave length variations of the surface HFD) are due mainly to
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the spatial variations of the heat production rates. [t is not meaningful to describe
one solution as more “accurate™ than the other (in fact, Cermak and Bodri's
background HFD values mostly fall into one STD of the current solution): the
comparison betweer: the two only tells us that an "accurate™ solution is not
pussible if we admit large uncertainties in the heat production values. The current
solutivn confirs, in spite of the large uncertainties, the general trend (long wave
length variations) of the background HFD obtained by Cermak and Bodri.

6.4.1 Conclusions and discussions

The general inverse finite element method developed in the previous
chapters has been applied o the problem of downward continuation of HFD data.
Three examples. one central Furope and two eastern Europe geotraverses, were
used. By comparing the inverse solutions using the current method with other
published results, the following conclusions can be drawn.

1) The observations and conclusions of Stromeyer (1984) and Beck and
Shen (1989) on the stabilization or regularization of numerical downward
continuation of HFD data arc rcasonable.

2) The general shape of the background HFDs obtained by Cermak and
Bodri (1986) for two investigated cast Europe geotraverses are rearonable, even if
the uncertaintics in the heat production values are of one or two orders of
magnitude.

3) If viewed as a numerical modelir.g technique, this method, as that of
Beck and Shen (1989), provides uncertainty estimates at all depths for all the
physical quantities involved. This allows us to judge better the significance of the
results. It is natural that these uncertainties depend on our a priori knowledge,
particularly the researchers’ personal beliefs in the methods to ccllect data and

infer parameter values,
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4) The use of logarithmic heat production rates allows us to take account of
uncertainties as large as orders of magnitude in the values. When these laree
uncertainties are considered. only the very long wavelength vanations of the
background HFD can be resolved; in some cases (e.g., case 6 of the central Europe
geotraverse) we may not detect any significant variations in the background HFD.

5) This method does not solve the problem of obtaining accurate values of
downward continued HFD; it does provide a flexible method for solving the
problem of assigning reliable crror bounds on the extrapol:ted ficlds. An accurate
solution calls for better knowledge of the subsurface structure, thermal
conductivity, heat source distributions, etc..

In ali the three examples, the temperature gradient is very smooth,
especially in the horizonta! cirection. This allows very large finite clements to be
used, and the discretization errors thus arising are insignificant.  However, the
zonation of the material properties always introduces errors, and as discussed in
section 4.1.3, these errors arc not cvaluated rigorously. In all the three examples,
the zones are defined in accordance with the structure inferred by seismic surveys.
All these zonations are obviously too coarse to account for the actual spatial
variations of the propertics. However, considering the scale of the problem and
our poor xnowledge of the physical quantiiies involved at the current stage, a finer
zonation is not necessary, although it may result in even better fit to the observed
surface HFD.

Other disturbing factors, such as hydrological and climatic disturbances to
the near surface temperature field, the effects of material phase changes at
temperatures higher than 1200 °C, and the theoretical inconsistencies due to
simplifying the problem into the purely conductive and steady state case, have

been discussed by Cermak and Bodri (1986) and Beck and shen (1989).



Table 6.1. Simple cxample: a “system identification problem”, nodal temperatures
containing Gaussian roise with STD = 0.01 K. The thermal conductivity A is in
W mIK!, and the heat production R in W m™3.

Parameter True A priori A posteriori
Value Value Log STD Value Log STD
A 20 3.000 0.300 2.037 0.016
A2 2C 1.500 0.200 2.027 0.005
& 0.1 0.200 1.000 0.096 0.314
R» 0.1 0.G50 0.300 0.144 0.168

Table 6.2. Simple example: a "system identification problem", nodal temperatures
it

containing Gaussian noise with S

W m'Kk-!, and the heat producticn R in W m-3.

D = 0.001 K. The thermal conductivity A is in

Parameter True A priori A posteriori
Value Value Log STD Value Leg STD
Ay 2.0 3.000 0.300 2,010 0.002
Az 20 1.500 0.200 2.005 0.001
® 0.1 0.200 1.000 0.101 0.032
Ra 0.1 0.050 0.300 0.110 0.026
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Fig.6.1. The 2-D finite element focmulation of a 1-D problem. (a)
The finite clement mesh, nadal numbers, clemental numbers (in

circles) and boundary conditions. (b) The actual temperature

distribution in the x direction.
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Fig.6.3. A synthctic example of topographic correction.  (a) The
finite clement mesh. The small circles are nodal points. The large
solid circles represent borehole data points. (L) The estimated HEFD,
with the dashed lines representing the one STD uncertainly range.
The HFD Las been well resolved (from the a priori value of 70 & 70
mW m-2).
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Fig.6.4. The Bolivar Mine examnle of topographic correction. (a)
The topography and theimal cenductivity zones. The locations of the
horeholes are indicated by the arrows. The finite element mesh used
{not shown) extends to 2400 m depth from the coliars of the holes (0
m). (b) The measured borehole temperatures (crosses), and their a
posteriori values (sclid lines). The problematic data from hole 78-10
were not used in the inversion; the a posteriori temperature for this
hole is shown by the dashed liwe. (c) The thermal conductivity
values. The uniform a priori value is shown by the solid line, and the
one STD uncertainty range by the dashed lines. The a posteriori
values (open circles) are shown with one STD crror bars. For zone
numbers, refer to (a). Sd) Dirichlet condition at the upper boundary
(the 0 depth). The solid line is the a priori temperature distribution,
with one STD uncertainty range (dashed lines). ‘The a posteriori
nodal temperatures are shown by pluses, with the one STD
uncertainty range represented by the length of the vertical bar. (e)
The a posteriori HFD at the lower boundary (2400 in from the collars
of the boreholes) with one STD uncertainty range (dashed lines).
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large amplitude oscillations illustrate the instability of the problem
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CHAPTER 7: COUPLED THERMAL AND HYDROLOGICAL REGIMES

7.1 Introduction

Groundwater movement often provides a much more efficient means of
subsurface heat transfer than pure heat conduction; the hvdrological and thermal
regimes have therefore been studied as coupled systems on various scales for
different purposes.  Groundwater is often used as part of a cooling system to
"dump" waste heat, but therinal pollution could be a potential hazard to the
environment and ecology; various aspects of this have been investigated by, e.g.,
Andrews and Anderson (1978, 1979), Sauty et al (1982a, b), using numerical
modeling techniques. In the petroleum industry, heat transport by flowing water
1s believed to have played an important role in the maturation and migration of oil
{c.g., Hitchon, 1984; Gosnold and Fischer, 1986; Jones et al., 1985) and numerical
modeling techniques have again been used in various studies (e.g., Garven and
Freeze, 1984a,b; Garven, 1985, 1986; Doligez et al., 1986; Burrus and Bessis, 1986).

Hydrodynamic contributions to the geothermal regime have ‘ong been of
concern to terrestrial heat flow researchers, but it was usual to assume that the
offects on the conductive thermal regime were not significant if there were no
obvious warning signatures in the temperature — depth plots. However, in recent
years it has become more evident that this criterion is not valid and that
gravitationally driven groundwater movements may give rise to regional scale
advective heat transfer to disturb substantially, and perhaps control, the
subsurface temperature field; therefore the HFD determined from near surface

119
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measurements may not be representative of the background (deep scated) values.
For example, Majorowicz and Jessop (1951) and Jones et al. (1983) analyzed
bottom hole temperature (BHT) data, thermal conductivity and Precambrian
basement rock heat generation of the Western Canada sedimentary basin and
concluded that groundwater flow is the most plausible reason for the observed
uneven surface HFD pattern of low values in the southwest, where groundwater
recharge takes place, and high values in the northecast, where groundwater
discharge takes place. Their conclusion was supported by the study of the overall
groundwater flow pattern of the basin (Hitchon, 1984). A number of other similar
cases can be found in the literature, e.g., Chapman et al. (1984), Cermak and Jetel
(1985), Wang et al. (1985), Gosnold and Fischer (1986), Willett and Chapman
(1987) and Cermak (1989), although some of the interpretations are largely
qualitative and some conclusions subject to debate (Bachu, !985). Nwmnerical
modeling of the interaction between the thermal and hydrological regimes of vasin
scale has been perforined by, for example, Mercer ct al. (!1975), Smith and
Chapman (1983), Bethke (1985), Wang et al. (1985), Luheshi and Jackson (1986)
and Willett and Chapman (1987) using 2—D modeis and Woodbury and Smith
(1985) using a 3—D model.

The forward numerical simuations of the interaction between  the
hydrological and thermal regimes have led to much insight into the mechanism of
the phenomena. However, because precise knowledge of the parameters and data
is usually lacking in numetical modeling, inverse approaches have been gaining
attention in this field. When there are sufficient data on the field variables, the
very poorly known material properties may be estimated from the data.  In
hydrologically active regions, that is, in regions where groundwater flow is strong
enough to give significant thermal effects, the basal HFD (a Neumann boundary

condition), must be estimated from the thermal and hydrological data and
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whatever other information that is available. Pioneer work on the simultaneous
inversion of thermal and hydrolugical data to estimate aquifer parameters (system
identification) has been done by Kasameyer et al. (1985) with an analytical model
and Woodbury and Smith (1988) with a numerical model.

The inverse finite clement method for the coupled problem developed in
this rescarch can be viewed as a continuation of the work of Woodbury and Smith
(1988). ‘The major differences are: 1) a larger depth scale, and hence a wider
temperature range, is considered, so that the temperature dependence of water
density and dynamic viscosity must be tiken into account, with the consequence
that equations (2.6) and (2.7) are coupled, and not only the inverse but also the
forward problem is nonlinear: 2) in this work, the field variables, material
properties and boundary fluxes are all formulated as parameters; and 3) at the
parameter estimation stage, a gradient method (the RTV scheme) is used.

In this chapter, the feasibility of applying the inverse finite element mathod
to the coupled problem at a basin scale is investigated using synthetic examples,
with particular attention paid to the determination of the basal HFD. Some of the
results have already been given in Wang et.al (1989) and Wang and Beck (1989),
where the base e logarithmic transform of A and x was used. They are recomputed
nere using base 10 iogarithinic transform (section 3.3), which is easier to be

visualized in terms of orders of magnitude.

7.2 Modecl 1: a simple synthetic model of basin scase

7.2.1 Description of the model
The model used here is based on an idealized small trough—type

sedimentary basin, with the cross—section shown in Fig.7.1. Three sedimentary
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formations. each having a distinct thermal conductivity and permeability value
(Table 7.1). overlie an impermeable crystalline basement. The fGrst (top)
geological unit is an aquitatd. the secoad unit iz the major aquiler in the system,
and the third unit is a less permeable aquifer. The upper part of the basement is
included in the model as the fourth layer. The conductive HFD ai.oss the lower
boundary of the cross—section is assumed to be unperturbed by the water
movement in the overlaying permeable uriti. ‘the geometrical and structural
simplicity of the geological model removes the nced to take into accvunt
perturbing factors such as the effects of topographic relief and 3-D structure and
makes it relatively easy to demonstrate the salient features of the inverse solutions
to the coupled problem.

Synthetic data of field variables T and h, are generated from given material
property values (Table 7.1) and appropriate boundary conditions, using a forward
finite element caiculation, which employed a secuential procedure similar to that
of Smith and Chapman (1983). The nodal valucs of the temperature and head
fields obtained by the forward calculation arc shown in Fig.7.2. ‘These values,
together with the logarithmic transform of A and & valces, are taken as the true
values of the components of p, the nonlinear part of the parameter vector P. The
tru® basal HFD across the bottom of the cross—section is taken to be a constant at
a typical value of 60 mW m2. The "measured" ground surface HFD), as well as its
noist level, is a function of position (Fig.7.3), and the water table is assumedd to
coincide with the ground surface; these surface boundary conditions are used in all
numerical experiments pertaining to this example. The nodal values of these
functions and thase of the basal HFD (which may be guessed) constitute the
non—zero components of the nodal boundary flux vec.or q.  The iwo vertical
boundaries are assumed to be impermeable and perfectly insulated.  For our

inverse problem, the "field data" are the values of the parameters together with
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their STDs. Our majur interest is 0 determine the basal HFD using data of
different quality, but we start with a system ide tification problem with well
known basal HFD.

7.2.2 Case 0, 2 system identificalion problem
Because this case is not one of the examples of basal HFD determination, it

is called case 0. Other cases using the same geological modcl are devoted to the
problen: of basal HFD determination.

With rcasraably well known boundary heat fluxes, the inverse method can
resolve the field variables and material properties even with noisy data. For
example, consider a situation where the basal HFD is accurately known to be 60
mW m2? with a standard deviation (STD) of only I mW m2, but the values of the
material properties are unknown. To indicate our lack of knowledge of the
material properties (log(A) and log(x)), we assign to them a priori normal PDFs
with erroncous a priori expectations and large STDs (loose constra.ats) (Table
7.2). To simulate noisy data, the nodal vaiues of T and h obtained from the
forwaid solution are perturbed with Gaussian random noise (Fig.7.4a,b), and then
uscd as the ficld variable data. Because the availability of accurate measurements
and the certainty in the data usually decrease with increasing depth, the noise
added to the nodal values of T and h has been given as increasing with depth, as
shown in the contour maps of the STDs of T and h (Fig.7.4a,b). The inverse
solution shows that the cstimates of most of the parameters are close to their true
values, but the resolutior decreases with increasing depth, as shown by the
tabulated values in Table 7.2. There is not much gain in information on the
perineability of the third layer and the thermal conductivity of the fourth layer,
because of the high noise level in the field variable data at depths. Because the

o ..pled problem is more nonlinear than the pure conduction problem cot.sidered in
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Chapter 6, the power of the inverse method is more limited by the noise level in
the input data. In the current system identification problem. for example, if the
noise in the a priori nodal values of T and h is increased by 25%. an almst
identical solution can be obtained; but if the noise is incrvased by 0%, the
iteration will not converge, unicss better information on the material properties or
on the boundary conditions are given.

We now cuusider the problem of basal HFD determination. In each of the
following cases the basal HFD is assumed to be very pootly knwn a prior, and a
constant value of 70 mW m? is guessed at every lower boundary nodal point; a
large STD of 40 mW m2 is assigned to show our ignorance of the HFD value. The
correlation length L for the basal HFD will be assigned different values for
individual examples. We vary the noise level of other parts of the synthetic data
set to examine the information requirement and the limitations of the technique in

the problem of basal HFD determination.

7.2.3 Case 1, accurate field variable data

In this case, T and h data contain Gaussian random noise with very small
STDs of 0.001 K and 0.1 m, respectively, but the material property values of all
geological units are assumed to be unknown. Our objective is to estunate the
thermal conductivitics and permeabilitics of all the goological units and the hasal
HFD. This is a system identification problem with one very uncertain boundary
condition. Since it is assumed that little is known about the materiai property
values, the same loosely constrained homogencous a priori values of A and of & as
were used for the previous case are taken (Table 7.3); the correlation length for the
basal HFD is taken to be zero. It should be noted that, in this case, bhoth the
boundary heat flux and the thermal conductivities of the medium are poorly

constrained, while the geothermal gradient is tightly constrained hecause the
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temperature field is almost noise free. For a pure heat conduction problem, it is
easy to sec from Fourier's law that if the temperature gradient is the only physical
quantity that is well constrained, an inverse method will tend to find a proper
ratio of HFD and A but not be able to resolve the HFD and X separately, as noted
by Wang and Beck (1987) and Shen and Beck (1988). The current case involves
also convective heat transfer. The head field and its boundary conditions, that is,
the water table and the water fluxes at other three impermeable boundaries, are
well constrained or perfectly known. The hydrological data provide independent
additional information, and thus help to resolve the basal HFD (Fig.7.5) as well as
the material properties (Table 7.3).

We briefly examine the respense of the solution to the assigned a priori
values of the imaterial properties. There can be an infinite number of combinations
of different a priori A and & values, but the general behavior can be demonstrated
by varying x only. The results are given in Table 7.4. Convergence is defined,
using equation (4.17), as when the L_ norm of the difference paramcter vector at
iteration step k, py — py-po become less than 0.01 (SI units). Inasmuch as the
iteration converged, it was found (results not shown) that all solutions were very
sunilar to those shown in Table.7.3 and Fig.7.5. It is interesting to note that a
smaller a priori & may easily render the solution unstable, but a larger value only

tends to cost nore iteration steps.

7.2.4 Case 2, accurate waterial property data

In this case, the values of log(A) and log(x) are all accurately known, with
STDs of 0.001. The noise levels of the T and h data are the same as in case 0
(Fig.7.4a,b). The objective is to estimate the temperature and head field and the
basal HFI). Because the material property values are accurately known and

therefore well constrained, this case is similar to a forward problem except that



126

one boundary condition, the basal HFD. is very uncertain. It is a downward
continuation of HFD data in the presence of groundwater flow, and heance
instability (a+ discussed in Chapter 6) is expected to pose problems, as illustrated
in the following sub—case.

Case 2a, the above described data set, HFD correlation length 1. = 0. With
this data set and the zero correlation for the bara. HFD, the BTV iteration scheme
converges to T values which arc different from .he true values in certain regions uf
the cross—section. as can be seen by comparing the contour maps of the a
posteriori nodal values of the temnperature field of Fig.7.6 with those of Fig.7.2;
consistent with the incorrect temperature field, an incorrect basal HFD
distribution is estimated (Fig.7.7a). The situation tends to be worse in the
discharge and recharge regions where the vertical component of water movement is
prominent, and since the flow of heat in this model is mainly vertical, the thermal
and hydrological regimes are strongly coupled. It can be observed in cquations
(2.6) and (2.7) that, with given material property values, the more strongly
coupled the two regimics are, the more nonlirear the problem becomes, and hence
the more difficult it is for an iteration scheme to converge to a correct solution
when data are noisy (see section 4.2.1 for a discussion on the RTV scheme). If we
consider only the quality of the thermal data, there are three possible ways to
improve the solution: pre—smmoothing the Jata, assigning a suitable correlation
length for the basal HFID), or constraining a few individual data points, as
illustrated by the following three sub—cases.

Case 2b, smoolher a prion T and h values. In case 2a, spatially
uncorrelated noise was added to the true nodal values of T and h to forin a noisy
data set, so that there are some drastic, and possibly unrealistic, variations in the
a priori T and h patterns as can be seen in Fig.7.6a,b. Since these T and h values

were used as initial values for the iteration, the large magnitude errors in them had
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an undue influence on the convergence, the problem being sufficiently noanlinear. If
the noisc in the a priori nodal values of T and h is reduced by 50% but the same
variances arc used, that is, the initial values are closer to the true solution
although the uncertainties in these values remain the samme, the results are
improved (Fig.7.7b). In a real case, data would likely be processed, e.g., filtered,
before being used and hence be smoother than in the synthetic case. Spatial
correlations of the input nodal values, which are sometimes obtained by the data
nrocessing procedures, may also help to constrain the solution.

Case 2¢, HF1) correlation lerngth L. > 0. The assumption of zero correlation
length in case 2a allows the basal HFD to have variations of short wave lengths. A
corrclation length L > 0 may smooth the results. The same case as shown in
Fig.7.6 was recomputed vith L = 20 km, and the results were obviously improved
(Fig.7.7c). However, unless other information is available, either from theoretical
or experimental studies, all we know about the spatial correlation of the HFD is
that L is unlikely to be zecro; the value of L is usuaily purely subjective
information, as in the cases of downward continuation of HFD data considered in
Chapter 6.

Case 2d, a few well constrained temperature values. Even without
smoothing the data and without choosing L > 0, the solution may be greatly
improved by tightly constraining a few temperature points in certain regions; in a
real case this would mean that we have to obtain a few accurate borehole
temperatures.  For example, if the noise in the nodal temperatures at the seven
circled points itlustrated in Fig.7.6a are reduced to STD = 0.005 K, while those in
the other nodal temperatures and the head values remain unchanged, the basal
HFD is much better determined in the discharge region (Fig.7.7d); similar
conmuents apply to the recharge region.

(‘ase 2b, 2c and 2d show the possibilities of improving the solution for case
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2a in different ways. Based on more numerical experiments. it was found that
there are exceptions to the success of the methods in case 2c and 2d, when different
realizations of the Gaussian random noise, with the same STDs, are used to
“corrupt™ the nodal values of temperatuie and head; ie., the behavior of the
method may depend not only on the probability distribution of the noise but also
on the particular realizations. For some realizations, the iteration fails to
converge. Such a behavior, which was not observed in the application of the same
method to the conduction problems (Chapter 6), is apparently due to the stronger
nonlinearity of the coupled problem, and it may be conjectured that the method
may even be less robust if the problem is more nonlinear. This calls for further
investigation in the future. However, it is interesting to note that many
simulations of case 2c and 2d with different realizations of the Gaussian noise were
performed, and it was observed that when the solution for case 2c¢ failed, that for

case 2d would succeed, and vice versa; no exception was found.

7.2.5 Case 3, field variable and material properly data with varying quaiity

Ir: a realistic situation, some information is often available for cach of the
physical quantities involved, but neither the field variabics nor the material
properties are perfectly known, and the data quality will vary from place to place
in 2 study area. To test the inverse method for such a situation, the following case
is considered.

The noise in the temperature and head data is the same as in case 0 and
case 2a. Some of the matcrial properties are better known than others, but only
the thermal conductivity of the first layer (A;) is well constrained (‘Fable 7.5).
The a priori basal HFD is assumed to have a correlation length L. = 20 kin. ‘Thus,
the information on the field variablrs and boundary fluxes is the same as in case

2c. The inverse results show that the field variables (I'ig.7.8a) and the hasal HFD)
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(Fig.7.8b) arc well resolved and that the resolition for the material properties
(Tabie 7.5) decreases with increasing depth.

However, it should be noted that when the a priori information is not
sufficient, a rcasonable solution may not be obtained. For example, if log{A,) is
also poorly constrained (STD = 0.1), the iteration does not converge, unless some

other parameters are better constrained.

7.2.6 Casc 4, accurale material property and h data, almost unknown T

This rather unrealistic but very intere:ting case is used to illustrate further
the important feature of the inverse method, information compensation between
different physical quantities.

The a priori information on the material properties is the same as in case
2a, and the head data are the same as in case 1, but the temperature is assumed to
be essentially unknown. Ignorance of the temperature field is depicted by large
noise in all the nodal temperatures with an identical STD as large as 30 K
(Fig.7.9a), which makes the a priori values for this field variable very noisy and
virtually unconstrained. Although the temperature data do not contribute to the
inversion in a very positive way, the basal HFD is still well resolved (Fig.7.9b).
This is because the lack of information on temperature is cornpensated by good
knowledge (well constrained values) of head and material properties. A real
situation is unlikely to be as extreme as in this case, but the principles of
information compensation prevail. However, information compensation depends
on the physical laws involved. Obviously, if the interaction between two physical
quantities is weak, the information compensation link is also weak, as was
observed by Woodbury and Smith (1988). For example, if the order of magnitude
of the second term in equation (2.7) is not comparable to that of the first term,

due either to a low Darcian velocity or to the orthogonality of the Darcian velocity
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to the temperature gradient. little information on the temperature fidd can be

extracted from the head values, even if they are perfectly known.

7.3 Model 11, a more realistic example

Some general features of the solution to the problen: of coupled therinal and
hydrological regimes at basin scale have been demonstrated by the study of model
[ in the preceding section. A more realistic situation, i.e., a model thai better
approximates a real sedimentary basin, requires a finer finite clement grid, more
nodal points and more material property zones, but in principle, means only more
computational cost. Such a model is briefly examined in this section.

The basin model considered here is based on the geological structure of the
Rhine Grabea as described by Clauser (1988). Rhine Graben is a trough type
sedimentary basin in the central Europe which originated 60—15 Ma; and
symmetrical normal faulting of the crust under horizontal tensile stress due to the
upwelling of upper mantle materials is believed to be the mechanism of its
formation. Clzuser (1988) carried out a detailed analysis of the thermal and
hydrological processes in the basin, and numerically modeled the interaction
between the two regimes using a forward finite difference technique. At the
present stage, the available data set is insufficient for an inverse modeling. To
apply the inverse finite element method, the approach of the preceding section is
used, that is, the nodal values of temperature and head are first gencrated by
forward simulation using known geological structure, material property values and
boundary conditions, these values are then perturbed with Gaussian random noise
and used as the field variable data.

The NW-SE cross—sertion of the basin is divided into 15 material property
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zones (Fig.7.10), each having distinct values of thermal conductivity and
permeability. The division of the zones is based on the geological cross—section
provided by Munck and Sauer (1979) as referenced by Clauser (1988), with some
simplifications such as using highly permeable narrow vertical zone: (zones 10, 11
and 12 in Fig.7.10) to represent fault zones (these “narrow" zones are probably
still much w00 wide to be realistic). The spatial scale of the detailed structure of
the simplitied cross—section may not closely follow that of the real situation. The
material property values for these zones, shown in Table 7.6 and 7.7 as the "true
values", are based on the information provided by Clauser (1988). In Clauser
(1988), seven rock types were identified, each of which was assigned a thermal
conductivity value and a permeability value; for better flexibility, more zones are
used in this inversion. For example, three zones (10, 11 and 12) are used for the
highly permeable fault zone naterial, and five zones (1 through 5) are used for the
very low permeability crystalline basement rocks.

Across the iower boundary of the cross—section, there is a constant vertical
HFD of 30 mW m-2 but no ~ater flux. Again, the two vertical boundaries are
assumed to be impermeable insulators. The water table is approximated by the
ground surface, which is assumed to be the 10 °C isotherm. With these boundary
conditions and the "true" material prcperty values, the "true”" nodal values of the
field variables are obtained by a forward simulation as described in section 7.2.1,
and are shown in Fig.7.11.

In the inverse modeling, uncertainties in the physical quantities arc
simulated as foliows. The basal HFD is assumed to be very poorly known, and a
guessed constant value of 60 mW m-2 is used as the a priori value, with an STD of
40 mW m? and a correlation length L = 20 km. Some of the material properties
are assumed better known than others (Table 7.6 and 7.7). The low permeability

value (10°2% m2) of the basement rocks (zones 1 through 5) is tightly constrained
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because we know that the rocks are almost impermeable; the hydrological
information of these zones will later be shown to be of little importance. The
position of the water table is assumed to be accurately known (ST = 0.1 m).
The ground sarface HFD distribution is not used as a Neumann boundary
condition, but instead, the nodal temperatures at and above the zero elevation are
assumed to be accurately knowr (STD = 0.001 K). This is nearly equivalent to an
unce:iain surface HFD condition because some the a priori thermal conductivities
above the zero elevation are poor!y constrained. All the a priori nodal values of
the temperature and head ficlds contain Gaussiar random noise, with the SThs
increasing with depth, as shown in Fig.7.12 and 7.13.

The temperature field has been well resolved (Fig.7.14). it is not surprising
that the head field in the basement rocks is almost unresolved (sce both the
contour maps of the a posteriori nodal values and of the STDs in Fig.7.15). With
a permeability as low as 10-20 m2, the Darcian velocities in these rocks are so small
that the contributions of the water flow in these regions to the whole flow system
is insignificant. The thermal data cannot provide noticeable help because of the
weak interaction between the heat and water flows at such low Darcian velocity
(see discussion in section 7.2.6). Similar comments apply to the head values in
zone 9, which also has a low permeability. In the other zones, the resolution of the
head values is much better, as shown by the a poste-iori §T'Ds in Fig.7.1%. ‘The
results for the material properiies are tabulated in Table 7.6, for the thernmal
conductivities and Table 7.7, for the permeabi'ities. The resolution of the materia!
property values depends on their a priori values and STDs, the quality of the field
variable data, the magnitude of the Darcian velocity, the magnitude of the true
permeability and therefore the interactions between the thermal and hydrological
regimes in each particular zone. The accurately known and well constrained

material property values of zone 15 obviously influence the resolution of the values
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of the neighboring zones (5 and 12). The basal HFD is we!ll resolved (Fig.7.16),
with the best resolution occurring beneath zoae 15.

7.4 Conclusions aund discussion:

The inverse finite element method has been applied to the problem of the
coupled thermal ane hydrological regimes of basin scale. Based on two synthetic
models, the following conclusions can be drawn.

1) With reasonably sufficient data, the gradient method for the Bayesian
parameter estimation (the RTV scheme) can be used to solved the inverse problem
of the coupled thermal and hydrological regimes.

2) When the two regimes are closely coupled, they shoulc be considered
simultancously and the coupling should be included in the mathematical model of
the problem. The information on one regime may help to improve knowledge of
the other, depending on the strength of the interaction between the two.

3) While the interacuion between the heat flow and water flow provides the
information link between the two regimes, the coupling also increases the
nonlinearity of the problem. The performance of the inverse method for the
coupled problem therefore depends more on the quality of data and a priori
information than for the pure conduction problem.

4) Similar to the problem of downward continuation of HFD data discussed
in Chapter 6, some knowledge about the correlation length for the a priori basal
EFD may be essential for obtaining a solution.

In the presence of convective heat transfer, the element size is a major
concern in forward numerical modeling using finite element techniques, because

the convective terin in the heat transfer equation (2.7) may result in large



134

off—diagonal entries in the conductivity matrix and cause numerical instabilities
(Huyakorn and Pinder. 19383). With the quadratic isoparametric finite element
model, it is pessible to use quite large elements. The forward solution for the
simple synthetic example in section 7.2 (Fig.7.2) was compared with the solution
for the same problem but obtained using a much finer finite clement mesh (483
nodal points and 144 elements). and the results were found to be nearly identical.
The maximum temperature in moedel 1l is nearly 200 °C. At such high
temperatures the linear approximation for the density p and dynamic viscosity p of
water, equation (2.11) and (2.12) as functions of temperature will not be valul.
However, the bottorn part, about 2 km thickness, of the basin model in thas
example is mostly occupied by nearly impermeable basement rocks, and the
significant therral effects of water flow occur only in the overlaying aquifer
formations and fault zones. For the temperature range in the upper part of the

model, the linear approximations for p and p are valid.



Table 7.1. Material property values for model [ (refer to Fig.7.2 for the zone
numbers).

zone A Value K value
aumber (W mKk-Y) (10°B m2)
l 20 0.05
2 2.0 10.0
3 2.5 1.0

4 3.0 0.0

135
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Table 7.2. A priori and a posteriori 1.aterial property values for case 0 (modet 1):
a system identification prorl):m. T.x thermal conductivity \ is in \WW m'K-L, the
permeability x in 107 m2 (refer to Fig.7.1 for zone numbers).

Parameter True A priori A posteriori
Valuve Value Log STD Value Log STD
At 20 235 0.1 1.992 0.011
Az 2.0 25 0.1 1.939 0.01y
A3 25 235 0.1 2516 0.031
As 3.0 2.3 0.1 2674 0.045
N 0.05 1.0 1.0 0.050 0.053
K2 10.0 1.0 1.0 10.076 0.097
K3 1.0 1.0 1.0 0.675 0413

Table 7.3. A priori and a posteriori material property values for case 1 (madel §):
accurate field variable data. The thermal conductivity A is in W m'k!, the
permeability x in 10°'5 m2 (refer to Fig.7.1 for zone numbers).

Parameter True A priori A posteriori
Value Value Log STD Value Log STD
A\ 20 25 0.1 1988 0017
A2 20 2.5 0.1 I.988 0017
A3 2.9 2.5 0.1 2.4%6 0.017
Ad 3.0 25 0.1 2.953 0.017
K 0.05 1.0 1.0 0.050 0.017
- 10.0 1.0 1.0 9.944 0.017

K3 1.0 1.0 1.0 0.991 0.017
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Table 7.4. Convergence behaviour of the soiition for case ! (model 1), responding

to differcnt a priori permeability & values. Tae a priori values of A and x are

uniformly constant (a priori thermai conduct vity A = 2.5 W m 'K in all cases).

The true values are shown in Table 7 1.

« value Log STD Convergence
(m?) Behaviour
106 10.0 27 iterations
107 9.0 25 iterations
10°% 5.0 22 iterations
109 7.0 20 iterations
1010 6.0 18 iterations
10 5.0 15 iterations
10°12 1.0 13 iterations
1013 3.0 11 iterations
1014 2.0 9 iterations
1015 19 6 iterations
10-16 20 18 iterations
1017 3.0 27 iterations
1018 1.0 40 iterations
10719 5.0 non—convergent
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Table 7.53. A priori and a posteriori material property values for case 3 (mded 1):

fieid variable and material property data vary
conductivity A is in W m'K-1, the permeability x in 133 m?

zone numbers).

in quahl\

The thermal

? (refer to Fig.7.1 for

Parameter True A priori A puosteriori
Valne Value Log STD Value Log ST
A 20 20 0.0005 2.000 0.0005
A2 20 19 0.05 1.911 0.021
A3 25 2.5 0.1 2 501 0.031
Aq 3.0 33 0.1 2888 01N
K 0.05 0.01 0.5 0.048 0.060
K2 10.0 1.0 1.0 9.961 0.095
K3 1.0 1.0 1.0 0.459 0.666
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Table 7.6. A priori and a posteriori thermal conductivity values (W m1K"?) for
model Il (refer to Fig.7.10 for zone numbers).

Zone true A priori A posteriori
number Value Vv ilue Log STD Value Log STD
1 34 34 0.1 3.467 0.020
2 34 3.3 0.1 3.235 0.025
3 34 3.4 0.1 3.379 0.015
4 34 34 0.1 3.589 0.038
5 3.4 34 0.1 3.333 0.008
6 34 34 0.1 3.340 0.034
7 28 3.0 0.2 2.834 0.030
S 2.1 20 0.1 2.059 0.017
9 2.1 2.1 0.1 2.078 0.069
10 2.5 24 0.1 2.206 0.033
1 2.5 2.3 0.1 2.328 0.063
12 25 25 0.1 2.441 0.011
13 2.8 28 0.1 2.772 0.013
14 2.5 2.5 0.05 2.466 0.010

15 238 23 0.0001 2.800 0.0001
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Table 7.7. A priori and 2 posteriori logarithmic permeability values (log(a)) for
model [1 (refer to Fig.7.10 for zone numbers). Example: —20.0 represents a
permeability value of 10720 m 2,

Zone true A priori A pousterion

number Value Value STD Value STD
1 =20.0 -20.0 0.0001 —20.0 0.0001
2 -20.0 -20.0 0.0001 -20.0 0.0001
3 -20.0 -20.0 0.0001 -200 0.0001
4 -20.0 —20.0 0.0001 =200 0.0001
5 -20.0 =20.0 0.0001 ~20.0 0.0001
6 -16.0 ~15.0 1.0 ~18.0 0130
T -15.0 -15.0 1.0 -15.0 0.008
8 -16.0 -15.0 1.0 -15.3 0.407
9 -15.0 -17.0 1.0 -17.8 0.595
10 -14.0 ~15.0 1.0 -15.8 0.258
11 -14.0 -12.0 1.0 -13.4 0.083
12 -14.0 -14.0 0.1 -14.0 0.010
13 -15.0 -15.0 0.1 -15.0 0.011
14 -14.0 -14.0 0.5 -13.7 0.450)

15 -15.0 -15.0 0.05 ~15.0 0.002
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Fig.7.3. The nearsurface HIFD distribution used as the upper thermal
boundary conditio. for all the inverse solutions for model 1. The
dashed lines represent one STD uncertainty range.
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Fig.7.9. ‘The solution for case 4 (model I), with nearly noise {rce head
and matcrial property data but very uncertain temperature data. The
a priori STD for nodal temperatures is a uniform 30 K. (a) Contour
maps of the a priori T and the a posteriori T and STD's. The contour
interval for the a priori temperature is 50 K. (b) The updated basal
HI'D distribution; the one STD uncertainty range cannot be clearly
seen because it is very small (< 0.18 mW m2).
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Iig.7.10. The finite element mesh and the material property zones (for
hoth thermal conductivity and permeability) for model 1. There are
93 nodal points, shown by circles, and 183 elements.
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Fig.7.11. The "true" temperature (°C) and head (in) fields of model
11, obtained by forward calculation, for the subsequent inversion.
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Fig.7.14. The contour maps of the a posteriori nodal temeprature
values and the STDs for the inverse solution of model II.
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CHAPTER 8: CONCLUSIONS

8.1 Summary

An inverse finite element method has been developed in this rescarch o
solve the partial differential equations for 2-1), steady state terrestrial heat flow
problems, namely. the problem of heat conduction and the problem of coupled
thermal and hydrological regimes. The problems are first parameterized using an
isoparametric finite element model, in which the field variables and boundary
fluxes are represented by their nodal values and the material propertics by zounal
values assigned to elements or element groups. The nodal values of ficld variables
and the zonal values of material properties constitute the components of a
parameter vector, related by an algebraic system in cach problem. A Bayesian
type nonlinear inverse method is then applied to the statistical estimation of the
parameters, in which the a priori information on the parameters are described by
an a priori PDF, assumed to be jointly Gaussian. The most probable point
estimate is obtained by maximizing the a posteriori PDEF of the parameters, and a
gradiert method, namely the RTV scheme, is employed for the maximization.

Two types of heat conduction problem have been  cousidered,  the
topographic correction of local HFD dati and the downward continuation of
surface HFD along geotraverses, the former being, mathematically, a special case
of the latter. A synthetic example and a field example of the topographic
correction were considered; in both cases, good estimates of the local HED were
obtained. Data from three Furopean geotraverses were used to demonstrate the
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use of an inverse approach to the downward continuation of HFD data. Positive
spatial corr: lations of the a priori background HFD can be incorporates to ens e
further the statility of the solution, and logarithmic transforms used to allow large
uncertainties in the a priori heat production rates to be taken into account. Since
the conduction problems are only weakly nonlinear, the RTV iteration sct.eme can
be used in cases where data may contain relatively large noise, and convergence to
the global :naximum of the a posteriori PDF is generally not a problem.

‘The problem of coupled thermal and hydrological regimes of basin scale
have been investigated using synthetic models. The forward problem is nonlinear
in the ficld variables, and the inverse problem is nonlinear in the material
properties as weil. The stronger nonlinearity of the inverse coupled problem
renders the solution based on the adopted gradient method more difficult than in
the pure conduction problem, and the behavior of the solution is more complex.
With a simple synthetic example (model I), the general features of the solutions
have been illustrated, although the illustration is neither complete nor systematic
at the current stage. With reasonable constraints, i.e, a priori information on the
parameters, our knowledge about the whole system can be updated. The potential
usefulness of applying the method to field problems was demonstrated in a "more

realistic” model (model I1) based on the Rhine Graben in Central Europe.

8.2 Advantages and disadvantages of the method

The finite element inverse method provides a, perhaps more flexible, way of
optimally using the available information in solving heat flow problems. In
common with other inverse methods incorporating statistical principles, this

apmoach formally takes into account the uncertainties in the field variables,



162

material properties and the boundary conditions, aad optimally utilizes the
available a priori information. The ill—poseduness of the probiems is minimized by
incorporating the a priori information. The solutions are given as the most
probable point estimates, with uncertainty ranges. !n additior to the specific
advantages and disadvantages of applying the method to the conduction and
coupled prcblems as discussed in section 634, 644 and 7.1, some general
advantages and disadvantages of the method can be summarized.  However,
"advantages” and “"disadvantages" must be appreciated in a relative sense; a gain
in one thing is often accompanied by a loss in son 'thing clse.

The advantages of the method:

1) The field variables, the material properties and the boundary fluxes are
formulated equally as paramcters, which introduces some practical flexibility in
dealing with data of variable quality.

2) The use of a gradient methud, namnely the TV scheme, makes the
computation very efficiecnt. For example, in the inverse problem of section 7.3,
there ar. a total of 1253 parameters in the paramecter vector 1P, the total
computation, including 50 itcrations in the nonlincar parameter estimation, the
linear boundary flux updating and the computation of the a puosteriori variances,
took 11 minutes on an ETA—-10. Of course, more time would be needed if the a
posteriori covariances were computed. The computer time required by cach
solution in Chapter 6, for the less nonlincar pure conduction problem, varied
between 1 to 20 seconds.

3) The gradient mairix G is derived analytically at the elemental level and
assembled at the global level, together with the conductivity matrix K. This is, hy
far, the most efficient way of computing the gradient matrix when a finite element
model is used to parameterize the problems.

The principal disadvantages of the method:
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2) Phase 2, iteration.

Gradieni matriz G. Subroutine ELEMENT is called at each iteration to
cumpute the clemental g and G for all elements and to assemble the global g and
G. The subroutines needed to compuwe the elemental g and G are listed in
Appendix . The coordinate—related quantities for each element computed in the
input phase are used in this phase. The G matrix for the coupied problem has a
similar structure to that for the conduction problem (Fig.6.2). The entries
between the sky lines are stored by rows in a one dimensional array, which is
called the compact GG matrix.

lteration. Subroutine I'TERAT is called to perform one iteration. The L,
norim of (pyeg — Py) is represented by the argument AB. If AB is less than a
prescribed ciiterion STP, or the total number of iteration steps has exceeded a
specified limit MIT, the iteration is stopped. The first thing that subroutine
ITERAT docs is to form the R matrix using Cyr, Cpp and the G matrix cevaluated
at the current value of p. For cach iteration, a linear algebraic equation system
with R as the cocfficient matrix must be solved (see equation 4.13). Since R is
positive definite, the very efficient LDL® factorization (or decompozation) method
can be used, in which R is factorized into a diagonal matrix D, a lower triagular
matrix L and its transpose L'. Subroutine COLSOL, proviled by Bathe and
Wilson (1976, .257), is used with slight modification. COLSOL requires the R
matrix to be stored in a compact form, that is, the upper triangle below a skyline
(above which all entries are zeros) is stored by columns in a one dimensional array.

3) Phase 3, computing the a posteriori variances of p

Subroutine COVARE is called to compute the a posteriori variances of p.
It can be seen from equation (4.26) that there are as many linear algebraic

equation systems as the number of parameters in p to be solved. Since these

systems all have R evaluated at p, as the coefficient matrix, the factorized form of
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variabl: distributions along a boundary and consequently allow Dirichkt condition
containing large uncertainties to be considered.  This will resuit in son nonzero
off-diagonal entnes in the a priori covariance matrix Cpp.  However, sinee
Dirichlet conditions invoive only a small number of nodal points, computation
efficiency can be maintainud.

3) Spatial correlations of the uncertainties in the a priori material property
values can be modeled. This will help constrair the solution when a very large
number of finc material property zones are used, cspecially in the case of large
uncertainties. If the correlations are appropriately defined, zonation will be more
closely related to the probabilistic parameterization approach.  However, the
off—diagonal entries of the a priori covariance matrix Cgup. will make the
ocomputation less efficient.

4) The linear approximations for the density and dynamic visewsity of water
as functions of temperature. cquations (2.11) and (2.12), can be replaced by
piecewise linear funciions, so that the method can be applied to coupled problems
involving wider temperature ranges.

The work for the longer term:

1) Monte—Carlo methods may be used to compute the a posteriori PDE.
At the expense of probably hundred—fold computing cust, very noulincar problets
with very poor a priori information can be studied using such methods, but ways
have to be found to present the results.

2) The inverse finite element method can be extended to 53— cases. With
the isoparametric finite element model, the extension is not difficult in principle.

3) The inverse formulation of the coupled problem can e applied to single
phase solute transport problems. An advantage in dealing with such problons is
that the equations for water flow and solute transport are usually decouplied: a

dizadvantage is that the effects of mechanical dispersion must bee considered




APPENDIX A: GAUSS—-LEGENDRE NUMERICAL INTEGRATION

The contents of this appendix are mainly from Burder et al. (1981) and
Bathe and Wilson (1976).

The basic method of numerical integration of a function f(r),

rl'(r) dr (A1)

involves the use of a Lagrange interpolating polynomial
n
2 f(re) Lu(r) (A2)
to approximate f(r) over [a, b, where ry are (n + 1) sample points, and Ly(r),
polynomials of degree r, are defined as

e = ==l (A3)

For almost all functions of practical interests, better accuracy of the interpolation

(A2) is obtained with larger n. The approximation
r'_’(r) drs & wy f(n) (A4)
a i'o
i called the quadrature formula, with the weights wy obtained using (A2)
b
¥l =I Ly(r) dr (A5)
a

The degree of precision of a quadrature formula is a positive integer N such that
the approximation (A4) is exact for any polynomial function f(r) of degrce n when
n < N, and may be inexact when n > N.

It can be shown that the possible mavimum degree of precision of a
quadrature formula using n sample points ry is (2n — 1). It can also be shown

that. if n is even, quadrature formulas that use n or (n + 1) eq:aly spaced sample
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points, such as the Newton—-Cotes quadrature, can only have a degree of precision
of n + 1. The idea of Gauss quadrature is to chouse n uncqually spaced sample
points 0 that the degree of pricisior (2n — 1) can be reached.

Without loss of generality, we consider thecasea = -l and b = L. It s
well known that an arbitrary polynomial P(r) of order k. k < (2n - 1), can In
wtitten into the form

P(r) = Q(r)Pa(r) + R(r) (A6)
where Q and R aic both some polynomials of degree less than n, and Py ix tw
Legendre polynomial of degree n, which can be shown to have n distinct rools ry in
[-1, 1]. Obwiously, the second right—hand-side term can be exactly interpolated

from Lhese roots,
R(r) = |‘:f,ln(r.‘) Lafr) (AT)
If 2 quadrature formula cunstructed using the points ry
1
[RGEEREN N (A%)
-1 k=l
is applied to the integration of R{r), we have, exactly
1
J R(r) dr = .i."" R(ry) (A9)
.l L ]

becase the interpolation (AT) is exact. The first term on the right-hand--side of
equation (A6) vanishes at all ry, since the latter are the roots of IPy; therefore, as a
consequence of (A9), the integration of P(r) using the same quadrature formula is

also exact,
I_ll’(r) dr =.i.|:1“’" P(ry) = .)?n"‘ [Q(ry)Palrs) < Riry)]

n
=0+ IlXlw.‘ R(ry) (A10)
Equation (A10) means that the quadrature forinula (AX), constructed using
the n roots of P, as the sample points, has the degree of precision (2n - 1

Because of the use of Legendre polynomials o determine optitnally the sample



167

puints, the numerical method using Gauss quadrature (A8) is called the
Gauss—Legendre numerical integration method. Once the sample points are
determined. the weights can be calculated using (A3). The numerical values of the
sample points and weights upto n = 6 are tabulated in Table A.1.

‘The Gauss—Legendre numerical integration method can be easily applied to
the integration of a function of two independent variables f(ry, r2), r; € [-1, 1],

1t a =a
j_l I_‘f(n.rz) drydrp = lgl ‘gl wy wy f(rn.ra1) (Al1)

where iy is the kth sample point of coordinate r;. The total number of sample
puints in the square dotnain is thus n2. Simple extrapolation can be made for cases
involving morce independent variables.
The eatries of the conductivity matrix K and the gradient matrix G have
been given in Chapter 3 and 4, respectively, as integrations with the goneral form
jn' f(x) dO2 (A12)

To apply the Gauss—Legendre numerical integration method, the domain R in the
x courdinate system is mapped onto a square in the r system in the isoparametric

finite element model using shape functions, thus

Lx' f(x) R = I: J.:f(r) det dr (A13)

where f is the transformed function; det is the Jacobian of the coordinate
transformation, a function of r, and is a part of the integrand. In actual computer
implementation, a subroutine is called to evawate [f(r) det] for the entries of K

and G at all Gauss—Legendre sample points in each element.
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Table A.l. Sample points and weights in Gauss—Legendre numnerical integration. n
is the number of sample points, ry are the sample points (the roots of Legendre
polynomial of degree n in [—1. 1]), and w; the curresponding weights.

n

hod §

0.00000 00000 90000
20.57735 02691 539626

+0.77459 66692 11453
0.00000 00000 00000

£0.86113 63115 94053
£0.33998 10435 34856

£0.90617 98459 33664
+0.53846 93101 05633
0.00000 00000 00000

£0.93246 95142 03152
£0.66120 93864 66265
+0.23361 91360 33197

0.00000 9000¢ 00000
1.00000 00000 00000
0.3555355 353535 5355
0.53383 38883 8888Y
0.34735 43451 37451
0.65214 51548 62516

0.23692 63850 561589
0.47862 86704 99366
3.56588 38838 I8R8Y

0.17132 44923 79170
0.36076 15730 46139
0.46791 39345 72691
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APPENDIX B: INTRODUCTION TO COMPUTER PROGCRAM INVCUP

Program INVCUP, in standard FORTRAN V, is used to perform inverse
finite clement analysis of the probiem of coupled thermal and hydrological regimes.
INVCUP consists of a main program and 45 subroutines, with a total of about
2500 statements (including comment statements). A list of the names and
principal functions of ihe subroutines is given in Table B.1. The main program
and somne of the subroutines are listed in Appendix C. The mathematics involved
in the construction of the program is presented in Chapters 2, 3, 4 and 5 of this
thesis.  Another computer program INVCON, for the inverse finite element
analysis of heat conduction probleins, has a structure similar to that of INVCUP,
and is not introduced here.

The basic array storage schemes and addressing procedures used in this
program are developed from Bathe and Wilson (1976). All the matrices (including
column and row matrices) are stored in a single array A. At different phases of
computation, the addresses of the matrices in this array are re—organized in order
to minimize the total length of the array at all times.

Seven files are used in the program. Four formatted files are for input of
data and output of resuits, three unformatted files are for the ‘emporary storage of
intermediate results to minimize the central memory required.

The computation consists of 4 major phases: 1) input, 2) iteration for the
cstimate of p. 3) computing the a pusteriori variances for p, and 4) computing the
cstimate of q and the variances. With reference to Fig.B.1 and the list of the main
program in Appendix C. the procedure is outlined as foilows.

1) Phase 1. input.
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Nodal end matcrial property information. After the control variables, such
as the total numbers of nodal points, elements and boundary flux sections, are read
in, subroutine NODEIN is called to input the cvordinates of the finite clemwent
nodes, the a priori nodal values of T and h and their STDs. The arguiwent IDUM
in the calling statement for NODEIN is a Gaussian noise control parameter.
Whem IDUM < 0, no noise is added to the a priori nodal values of T and h; when
IDUM > 0, it is a sced for a Gaussian random number generator, taken from Press
et al. (1936, p.202). The a priori material property values and STDs are then reaud
in by calling subroutine PROPIN. Each material property value is assigned a
property number, as a referring name, and a nodal number, for positioning the
value in the parameter vector p.  Subroutine PARAME re—urganizes the feld
variable nodal values and the material property values to form the vector p. and
the diagonal matrix Cpp.

Elemental information. Subroutine ELEMENT is called Lo input elemental
information, such as the nodal numbers and the material property numbers for
each elemat. F  nents are grouped into a material property zone by having the
same material property number. Some elemental quantitics, related only to the
coordinates of the clemental noda! points, will be repeatedly used in the
subsequent iterations but nerd to be calculated only once, such as det, H(r), gl;'.
etc. at all Gauss—Legendre sample points. These quantities are computed in the
input phase and written onto a file for later use.

Boundary fur information. After the control variables for the boundary
fluxes, such as the numbters of nodes and the rorrelation length L for cach
boundary flux section, ai. { in, subroutine BOUNDRY is called to input the
nodal values of the boundary fluxes and their variances. If 1. > 0, the covariance
matrix Cqq is also computed. These nodal values and covariances are then used o

form the global f vector and C¢¢ matrix.
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2) Phase 2, iteration.

Gradieni matrir G. Subroutine ELEMENT is called at each iteration to
compute the elemental g and G for all elements and to assemble the global g and
G. The subroutines nceded to compuse the elemental g and G are listed in
Appendix C. ‘The coordinate—related quantities for each element computed in the
input phasc are used in this phase. The G matrix for the coupled problem has a
similar structure to that for the conduction problem (Fig.6.2). The entries
between the sky lines are stored by rows in a one dimensional array, which is
called the compact G matrix.

lteration. Subroutine ITERAT is called to perform one iteration. The La
norm of (py., — Py) is represented by the argument AB. If AB is less than a
prescribed ciiterton STP, or the total number of iteration steps has exceeded a
specified limit MIT, the iteration is stopped. The first thing that subroutine
ITERAT docs is to form the R matrix using Cgr, Cpp and the G matrix evaluated
at the current value of p. For cach iteration, a linear algebraic equation system
with R as the coefficient matrix must be solved (see equation 4.13). Since R is
positive definite, the very efficient LDL® factorization {(or decompozation) method
can be used, in which R is factorized into a diagonal matrix D, a lower triagular
matrix L and its transpose L'. Subroutine COLSOL, proviled by Bathe and
Wilson (1976, 1».257), is used with slight modification. COLSOL requires the R
matrix to be stored in a compact form, that is, the upper triangle below a skyline
(above which all entries are zcros) is stored by columns in a one dimensional array.

3) Phase 3, computing the a posteriori variances of p

Subroutine COVARE is called to compute the a posteriori variances of p.
It can be seen from equation (4.26) that there are as many linear algebraic

cquation systeins as the number of parameters in p to be solved. Since these

systems all have R, evaluated at p, as the coefficient matrix, the factorized form of




R from the last iteration can be directly used.

Subroutine RESULT is used to transform the updated p vector back into
the field variable nodal values and material propoerty values in their input order.

4) Phasc 4, updating boundary fluxcs

In subroutine ESFLOW, the g vector cvaluated at p is used to give the
updated value of q using cquation (5.3). To compute the a posteriori variances of
q using equation (4.27), the factorized form of R matrix from the last iteration is
again used. The dimension of the V matrix for each boundary flux section is
reduced to the number of boundary flux nodal values, and ix stored in the same

compact form as the R matrix.
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Table B.1. List of subroutines in computer program INVCUP.

Subroutine Description

ADDBAN* Assemble the compact Cgr and V matrices

ADDCLM  Aan auxiliary subroutine for FORMCFF

ADDG Assemble the compact globa! G matrix

ADDVCLM  An auxiliary subroutine for VCOLUMN

BOUNDRY Input boundary fluxes and compute the V matrices, and the global f

and Cyg

BOUQUAD Perform Gauvss—Legendre numerical integrations in the calculation of
f

CGr Compute the product of the diagonal Cpp and compact Gt

CLEAN Set the values of an array to zeros

COLSOL®  Sulve a linear algebraic equation system. The coefficient matrix is
positive definite and in compact form:

COVARE  Compute the a posteriori variances for p

CUPQUAD  Compute elemental g and G

DIRIC H1 Input Dirichlet boundary -ouditions

DIRICH2  Modify fand Cg¢ for the Dirichlet conditions

ELEMENT  Call subroutines for elemental computation

ELPRIN Input the elemental material property numbers
ESFLOW  Compute updated q and the a posteriori Cqq

FILMAN Read (write) a real array from (onto) an unformatted file
FINEIN [nput elemental information

FSTLST Determine the column numbers of the first and last nonzero entries
fn cach row of the global G matrix (to define the sky.inc:
FOKMCFEF  Compute the global Cygr matrix
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Table B.1. Continued.

Subroutine Description

FORMFF  Compute the global f vecto-

FORMR Form the R matrix at the current p value

GADDRES Determine the addresses of the first nonzero entrics in all the rows of
the compact G matrix

GCOLUMN Take a column from the compact G and put it into a 1-D array

GTIMEP  Compute the product of G (compact) and a column matrix

GTTIMP Compute the product of Gt (compact) and a column matrix

EBDET Evaluate the Jacoubians, shape functions and their derivatives at ail
Gauss—Legendre sample points in one elenent

IFILMAN  Read (write) an integer array from (onto) an unformatted file

INTOUT  Write integer numbers to a formatted file

IRELOAD  Put the contents of an integer array into another integer array

ITERAT Perform one itcration

MFSTINT  Set initial (large) values for array MFST

NBFFIN Read in the global nodal numbers of all boundary flux nodes

NODEIN Read in the coordinates of nodal points and call TOPO

PARAME  Re-organize thc a priori valiics of field variables and material
properties to form p and Cpp

PROPIN Read in the a priori values of material propertics

QUADS Evaluate the elcmenta! g and G at a Gauss—Legendre sample point
in an clement

RADDRES Determine the diagoral addr. ses of the compact R matrix

RELOAD  Put the contents of a real array into another real array

RESULT

Re—organize and output the a posteriori values of p components
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Table B.1. Continued.

Subroutine Description

ROWLTH  Determine the length of each (nonzero) row of the global G matrix
STIFSS An auxiliary subroutine for HBDET

TorO Read in the a priori nodal values of T and h and their STDs, and, if
required, add Gaussian random noise to the nodal values

VADDRES Determine the diagonal addresses of a V matrix in the compact form
VCOLUMN An auxiliary subroutine for ESFLOW
GAUSSN*  Function, to generate Gaussian random numbers

IRRAN1* Function, to gencrate :uiform random numbers on [0, 1]

Netes: * Modifind from Bathe and Wilson (1976).
* Modified from Press et al. (1986).
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=2, NO WATER FLOW; HEAT ONLY
=3, BOTH HEAT AND WATER FLUX EXIST

CRL(I) --- CORRELATION LENGTH OF BF POINTS IN SECTION 1,
POINTS IN DIFFEREXT SECTIONS MUST BE UNCORRELATED
NBFT --- TOTAL NUMBER OF RF POINTS IN ALL SECTIONS
XBF --- NUMNER OF BF POIRTS IN THE LARGEST SECTION
NCQ --- MAXIMUM LENGTH OF CQU MATRIN, NRFS(NBFe1)/2
REWIND NF1
NEQ=NODES:
WRITE(NF3) (MAXV(I),I=1,XRF¢1), (NRFF(1),1=1,N0FT)
N1=0

DO 200 LLL=1,NRL
NBF1=NBFL(LLL,1)
NN=N1+NBF1
NCQI=NBF1*(NRF1+1)/2
CALL CLEAN(NCQ*2,0QQ)
CALL CLEAN(NWV,V)
IF(CRL(LLL).EQ.0.0) THEN

COMPUTE CQQ FOR UNCORRELATED RF POINTS

READ(NF1,*) (QQ(I,1).CQQ(1,1),QQ(1,2),CQQ(!,2),1=1,NRFI)
WRITE(NF2,2001) LLL,0.0,(t ,NRFF{NI+T),Qu(I,1),00G01,1),0a(1,2),
. aQQ(1,2),1=1,NBFI)
DO 1V LNwW=1,2
IF(NDFL(LLL,2).EQ.LHW) GOTO 11
CQQ{1,LHW)=CQQ(1,LHW)*CQQ(1,LlIw)
CQQ(2,LHW)=CQQ(2,LHW)*CQQ( 2, L.LHW)
NNN=NCQ1-NBFl+1
DO 10 I=NBFI1,3,-1
CQQ(NNN,LHW)=CQQ({ I ,LHW)*CQQ( T, Lhw}
CQQ(I,LNwW}=0.0
NNN=NNN-1+1
CONTINUE
CONTINUE
ELSE

COMPUTE CQQ FOR CORRELATED BF POINT:

READ(NF1,%) STD(1),STD(2)
READ(NF1,*) (QQ(1,1),QQ(1,2),1=1,NRF1)
WRITE(NF2,2001) LLL,CRL{LLL),(T,NBFF(N1+1),QQ(1,1),5Th(1),
. QQ(I1,2),STDh(2),1=1,NBFI])
CR=CRL(LLL)*CRI.(LLL)
DO 13 LHW=1,2

TF(NBFL(LLL,2).EQ.LIIW) GOTO 13
VAR=STD(LHW ) *STD( LIIW)
1CQ=0
DO 12 J=1,NRF1
NJ=NBFF(N1+J)
XJ=X(NJ)
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APPENDIX C: LIST OF PARTS OF INVQUP

The main program of INVCUP amd  the subrout ines  PARANE, IMRINDRY,
ITERAT, COVARE, ESFLOW, ELEMENT, CUPQUAD and QUADS are laisted in thax
appendix. A coaplete list of subroutine names with descriptions, and

the relation hetween subrountines, is giv.n in Appendin R

PROGRAM INVCUP

EEERRREERERLL LSS XEREL R LR ERLLEFEREEERSEEFEESERTERERARSEE SRS S

PROGRAM FOR INVERSE FINIT: ELEMENT ANALYS'S OF COUPLED
THERMAL AND RYDROLOGICAL REGIMES

RELIN WANG, 1989
DEPARTMENT OF GEOPHYSICS, UNIVERSITY OF WESTERN ONTARIO

SRELEEEEXERER LS L EE BRI L LS LEL R RS EELEEB XL LR EELE LRS00 88

c
C
C
C
Lof
C
Cc
C
C
Cc
Cc

C
C  CONTROL VARIABLES:

COMMON /BLANK/A( 1000000)
COMMON/CONTRL/NODE , NELT ,NLK , NWG , KWR , NWVU, [ PiI NI'M
COMMON/NOFILE/NF1 ,NF2 ,NF3 NFA NFG NFGNFT
COMMON/POSITN/NI ,N2 ,N2X ,N2Y,N2P N3 N4 NSO, NG NT, NK KU, NI10O NT T,
. NIZ,NIJ N14  MTOT  NFIRST  MAST MIDST
COMMON/MPRINT/NAPIT(11)

COMMON/DIRI/NDR, IDR(S50),IDE(S0,2),ADR(S0,2) , TS0, 2), TEV{ L0, 2)
COMMON/BOUND/NBL ,NBFL(10,2) ,CRL{10) ,NBFT ,NIBF ,N(Q

CHARACTER FNAME1%10,FNAMEZX10,HEADSR()

STIME=SECOND{ )

MTOT=1000000

NFl=1

NF2=2

NF3=7

NFi=8

NF§=9

NF6=10

NF7=11
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C NODE. --~-TOTAL NUNBER OF NODAL POIXTS
¢ NELT ---TOTAL NUMRER ELFEMENTS
~ NLE ---TOTAL NUMBER OF PHYSICAL PROPERTIES (THERMAL
C CONDUCTIVITY AND PERMEABILITY)
C NWG ---LENGTH OF THE GiOBAL G {(GRADIENT) MATRIX
¢ NWR ---LENGTH OF THE GLORAL R MATRIX
C NWV  ---NAXIMIM LENGTH OF THE V MATRICES
« 1Yl ---PHASE FLAG
C =1, INMT
C =2, ITFERATION
Cc =3, COVARIANCE NATRIX CONPUTATION
C =4, UMATING BOUNDARY FLUXES
C NPM  ---NUMRER OF PERMEABILITY ZONES
¢
PRINT®, ' PROGRAM OF FINITE ELEMEXT INVFRSION STARTS'
PRINTE, * °
OPEN(XF1,FILE="CUPIN")
REWIND N¥1
OPEN(NF2,FILE="CUPOUT" )
REWIND NF2
c

c INTERMEDIATE RESULTS PRINT CODES (YES=1; NO=0)
C H(R) LIME(P) V CFF MADR G GP MAXA R P FF

READ®, NAPIT
C MIT --- MNAXIMUM NUMBER OF ITERATIONS

READ®, MIT

OPEN(NF3,FILE="CFFF",FORNM="UNFORMATTED" )

OPEN(NFA ,FILF="CPPP' , FORM='UNFORMATTED' )

OPEN(NFS,FILE="ELLL " , FORM="UNFORMATTED' )

OPEN(NFG,FILE="0OUUU")

OPEN(NFT,FILLE="MTTT")

REWIND NF6

REWIND NF7
(o
CCCCCCCOCCCCCCCCCCCCCCCCCCCCCOUTCCCCCCCCUCCCCCCCCCCCCCCrCrecee:
c 1. INMIT
CCCCCCCCCCCCCCCCCCCCOCCCRCCCCCCCCCCCCCOCCCCCCCCCCCRCCCeCt Ceee
¢

IMH=1

WRITE(NF2,2000) FNAME],FNAME2

READ(NF1,FMT="(A80)"') HEAD

READ(NF1,%) NODE,NELT,NLK1,NPM,STP,SDH,SDW,NRL, IDUM

IF(NBL..GT.1) THEN

PRINTS®, "ARE THERE ',NBL,' BOUNDARY FLOW SECTIONS?'

sSTOP

END IF

WRITE(NF2,2001) HEAD,NODF,NELT,NLK1,NI'M,NRL,STP, IDUM

NLR=NLKT+NIM

NEQ=28&NODE
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XPARA=KEQ+XLK

A(N]) -~- PARA(NPARA) PARAMETERS

A(N2X)-~- X(NORE) X COORDIRATES
A(N2Y)--- Y(NODE) Y COUKDINATES
A(N2P)--- PR(NLK) MROPERTY VALUES
A(NIY -—- ID(NLK) PROVERTY NODAL NUMRERS
A{N4) --- IDP(NEQ) PARAMETER NUMIERS OF NODAL T AND P
A(NS) --- PRV(NLK) VARIANCE OF MR
A(NG) --- CPP(NPARA) VARIANCE OF PARA
A(N7) --- T{NODE) NODAL TEMPERATURE
A(N8) --- TV(NODE) VARIANCE OF T
A(N9) --- P(NODE) NODAL HEAD
A(N10)--- PY(NODE) VARIANCE OF P

R1=1

N2X=N1#NPARA
N2Y=N2X+NODE

N2P=N2Y+NODE

N3=N2P+NLK

N4=NJ+NLR

NS=NA+NEQ+]

NG=NS+KLK

NT=NG+NPARA

NB=N7+NODE

N9=NR+NODE

N10=N9+NODE

N11=N10+NODE

NFIRST=N11

NLAST=NFIRST

CALL NODEIN({NODE,A(N2X),A(N2Y) ,A(NT),A(NR),A(ND},A(NIO), IDUM)
CALL PROPIN{A(N2P),A(N3),A(N5))

CALL PARAME(A(NL),A{N2P),A(N3),A(N1),A(N5) . AINB),A(NT),A(NK),
. A(N9),A(N10))

INPUT SPECIFIED TEMPERATURE AND HEAD INFORMATION

READ(NF!,*) NDR
[F(NDR.GT.0) CALL DIRICHI(A(NA),A(N1),\(NR))

A{N1) --- MADR(NEQe1) FIRST NSON-ZERO COLUMN ADDRSSES OF (G
A(NS) --- MFST(NEQ) FIRST NON-ZERO COLUSNS OF ¢
A(N6) --- MILST(NEQ) LAST NON-ZERG COLUMNS OF
MLTH(NEQ) ROW LENGTHS OF G
NAXA(NEQ+1) DIAGONAL ADDHESSES OF R MATHIX
A{(N7) --- FF(NEQ) THE VECTOR OF EQUIVALENT NObaL FLOW
A(NR) === UNUSED, SET TO = A(N9)
A(N9) === MAXV(NBF#1) DIAGONAL ADDRESSES OF V MATRIX
A(N1IO)=-- V(NWV) CONDENSED BF TRANSFORMATION MATHIX

A(N11)=--- NBFF(NRFT) GLORAL NODAL NUMBERS OF BF POINTS
A(N12)--- QQ(NCQ,2) VARIANCES OF QU
A(N13)=--- QQ(NBF,2) PBOUNDARY FLUX VALUFS
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A(NI4)--- CF¥(NWR) THE COVARIANCE MATRIX OF F¥F

NG=X5+KEQ
N7=NGeNEY+]
NU=NT+NEQ
NFIRST=N8

INPUT ELFMENTAL INFORNATION AXD COMPUTE COORDINATE-DEPENDENT
ELEMENTAL QUAXNTITIES ANC INPUT SOURCE INFORMATION

CALL. MFSTINT(NEQ,A(N5))
CALL CLEAN(NEQ+1,A(N6))
CALL YLEMENT

CALL ROWLTH TO CHANGE MLST INTO MLTH, THEXN CALL GADDRES TO JSE
MILTH {(AING)) TO COMPUTE MADR (A(N4))

CALL ROWLTI(XNEQ,A(NS),A(NB))

CALL GADDRES(NEQ,NWG ,MG,A(NG) ,A(N1)})
IF(NAPIT(5).LE.O) GOTO 20
WRITE(NF2,FMT=" {/4HNFST) ")

CALL INTOUT(NEQ,A{NS) ,N¥2)
WRITE(NF2,EMT=" (/4iIMADR ) '}
CALL INTOUT(NFEQ+1,A(NA),NF2)
CONTINUE

READ(NF1,%) (NRFL{1,1) ,NDFL(],2),CRL(1), =1, ,NBL)

NitF=0

NBFT=0

DO 35 I=1,NRL

IF(NWF.LT.NRFL(I,1)) NRF=NBFL(1,1)

NRET=NBFT#NBFL(1,1)

CONT I NUE

NO=NR

CALL VADDRES(NDF,NWV,A(N9))

NCQ=NBF*(NRF+1}/2

N1O=NO+NNF+?

NI11=N10O+NWV

NIZ=NT11eNRFT

NI3=NI1Z+NCQe2

NlAz=NIdeNUFS?

INPUT GLORAL NODAL NUMRERS OF RBRF POINTS

CALL CLEAN{NEQ+1,A(N6))
CALL NRFFIN,A(NI1),A(NG))

USE MADR AND MFST TO COMPUTE MAXA (A(N6))

CALL RADDRES(NEQ,NWR,MR,A(N1),A(NS),A(NG))
IF(NAPIT(8)}.LE.O) GOTO 30
WRITF(NFZ,FMT="(/1HMAXA) ')

CALL INTOUT(NEQ+1,A(N6),NF2)




Nl
30 CONTINUE
SRITE{NF2,2005) NG,NWG,MR,NWR
N15=N14+XWR
NLAST=X15
CALL CLEAR(XNWR,A(N14))
CALL CLEAN(NEQ,AINT))
o INPUT BOUNDARY CONDITIONS (NEUMANN) AND COMM'TE FF, UFF
'y
CALL POUNDRY (SDH,SIW , A(N2X ), AI(N2Y), AUNG) L AINT) L A(NL L), \(N),
A(NIO) ,A(NLY) ,A(NI2),A(NIZ))
lr(HDR CT.0) CALL DIRICH2{A(NG),A(NT},A(NI1))
CALL FULMAN{NFI1,NWR,A(NI4},-1!
WRITE(NF2,2001%) 1PH,NLAST
C
COCCCCCCCOCCCOCCCCUCCCCCCCCCCCCCCCCrC e CrrrCrCCerCCerrseCerree e
C 2. ITERATION
CCCCCCCCCCCCCCCCCCTCCCCCCCCCCOCCCCCCCCOCCUCUCCCCOCCUCCCCCCCe s
C
IPH=2
N2=N1+NPARA
C
C A(N1) --- "O(NPARA) A PRIORI PARAMETEHR VALUES
cC A(N2Z) --- PARA(NPARA) PARAMETERS
C A(NB) --- G(NWG) G MATRIX IN “OMPACT FORM
c A(N9) --- GP(NEQ) GP VECTOR
C A(N10)--~- CP(NPARA)
C A(N1l)--- R(NWR) R MATRIX IN COMPACT FORM
C A(N12)--- WKF(NEQ) WORK SPACE
C A{N13)--~ WKP{NPARA) WORK S. ACE
C
NO=NR+NWG
N10=N9+NFQ
N11=N10+NPARA
N12=N11+NRWR
N13=N12+NEQ
N14=N13+NDPARA
NFIRST=N10
NLAST=MAXO(N14 ,NFIRST+MIDST)
IF(NLAST.GT.MTOT) THEN
1ERR=101
PRINT®, "PHASE',IPH,' ERROR',ITERR,® MFMORY' NI, FUFRLG' MTOT
sToP
END (F

WRITE(NF2,2C03) TPH,NLAST
CALL RELOAD(NPARA,A(N1), N (N2))
ITER=D

50 ITER=ITER+1

”~

C FORM THE C MATRIX AND GP VECTOR FOR THZ CURKENT STEP

CALL CLEAN(NWG+NEQ,A(NB))




CALL ELFMEXNT
LN COMPUTE FOR NEW PARAMETER VALUES

CALL ITERATUITER,A(ND) AUIN2) ,AINL)LAINEY LA(NG),A(NT),A(NY),
A(NI) ,AINIO) ,A(NIL1),A(N]I2Z),A(N1]),AB)}

RINTS, " ITERATION °,ITER," DIFFERENCE=", AR

WRITF(NF2Z,2007) ITER,AB

IF(ABR.LE.STi') GOTO 200

IF(ITER.LT.MIT) GOTO 50

200 CONTINUE

«

¢

CCCCCrCUCCCCCCCOCCCCCCCCCCCCCCCCCCCCCTCCCOCCCCCCCCCCCOCCCCUCCC

C . COMPMITE A POSTERIORI VARIANCES

COCCCCCCCCOCCCCCCCCCTCCOTCUICCCOCOCOCCOCCrCCCCCCCCCCCCCCCCCCCC

¢

1v=]
CALL COVARE(IV,A(NL),A(N5),A(N3),A{NG) ,A(NB) ,A(NI2),A(NO),
. AINI3)LA(NID))

¢
« A(N12)=-== T(NODE)
¢ A{NI3)=-=-= TVINGDE
¢ A(NI1) === P{NODE)
C A{N1S)--- PV(NODE)
¢
N1J3=N12+NODF.
N1i=N1J4NODE
N1S=N14+NOOE
N16=N152NODE
CALL RESULT(A(N2) ,A(NI)  A(NIO)}  A(NIZ) ,AINEZ) ,A(NTL) LA(NIS))
¢
COCCCCCCCCCCCCCCOCCUCCCCCCCCUCCCOCCCCUCCCCCCCCCCCCCCCCCreC
C 4. COMPIMUTE UPMDATED BOUNDARY FLUXES
CCCCCCCCCCCTCCCCECCCCCCOCCCCCOCCCCOUCCCCCCCCCCCCCrrrceeee
c
1FL=1
TF(IFL.GT.0) THEN
c
¢ A(N1) --- WK(NFQ,3) WORK SPACE
§ A(N2) --- QQ(NDF,2 UPDATED BOUNDARY FLUXES (NEW QQ)
¢ A(NG) -~ MAXA(NEQ+1)
C A(NT) === CQQ(NCQ,2)
C A(NTF)--- FF(NEQ)
C A(NB) --- V(NWV)
¢ A(ND) --- GP(NEQ)
c A(NIO)--- MAXV(NBF+1)
'y A(NIt)-=- R{NWR)
C A(N12)~-~ NBFF(NPFT}
C A(N1d)--- CQN(NRF.J) COVARIANCES OF THE NEV QQ

-
.

Ni=1
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N2=N1+NEQ®2
NTF=NTeNCQS2
N8=NTF+NEQ
NI2=N1Z#NRFT
N14=XN13+NBF%3

CALL ESFLOW(A{N1),A(NZ),A(NE) ,A{NIO), Y {NB)} A(ND)  AINTF)A(NT),

. A(NI1),A(N12),A(XK13))
END IF
RUNTIM=SECOND( )-STINME
PRINT®,'RUNTIME IS ', RUNTIN, . OUTIMIT FILE IS CcUiwWT.’
WRITE(NF2Z,*¥) ' RUNTIME = ' ,RUNTIM,' SECONDS.'
sTop

2000 FORMAT(5X,'INPUT FILE IS ",A%,°, OUTI*T FILE IS ',AT)

200! FORMAT(////AB0///

' NUMBER OF NODES . . . . . . . . . . . (NODE} =",10/
. NUMBER OF ELEMENTS. . . . . . . . (NELT! =",16/
. NUMNER OF THERNAL (\)NDl'(‘TlVlTY 70’"'.3. (NLR1) =°,16/
- NUMNER OF PERMEABILITY ZONES. . . . . .(NIMW) =',16/
G NUMNER OF BOUNDARY FLOW SECTIONS. . . ((NHF) =", 16/
G STOPPING CRITERION. . . . . . . . . . .(STP) =',EH. 1}/
. RANDOM NUMBER StED. . . . . . . . . (tlllm) = I6/

IF IDUM < 0, NO RANDOM NOISE IS AhDER. )
2003 FORFMT(////S‘ 'TOTAL CORE MEMORIES USED IN PHASE®, 12,

------ 'L I8)
2005 FORMAT(////5X.
. 'MAXIMUN ROW LENGTH OF G ----*,14,5X,
. "TOTAL LENGTH OF G ----",18//5X,
. 'MAXIMUM COLUMN HEIGHT OF R ----",14,5X,
. 'TOTAL LENGTH OF R ----",IR)
2007 FORMAT(SX,'ITERATION’,I5,’  DIFFERENCE=",K10.1)

END

SUBROUTINE PARAME(DARA,PR, (D, I1DP, PRV, CPP, T, TV, I, 'L}
C
(ot X222 2222222222222 222222222 222222222222 Rd 222222222 22222222 2
C TO PUT NODAL TEMPERATURES, NODAL HEADS AND PHYSICAL PROPERTIFS
c INTO ARRAY PARA, ASSIGNING EACH PARAMETER A GLORAL PARAMETEN
c NUMBER, AND PUT THEIR YARIANCES INTO ARRAY ©pBp
(g2 2222222232222 322222222322 ¢22 2322202232223 222223322222 282328 2 2
C
COMMON/CONTRL/NODE , NELT ,NLK , NW(; ,NWR _NWV, [ P'Il, NI'M
COMMON/NOFILE/NF1 ,NF2,NF3 ,NF4 .NFL,NFG,NFT
DIMENSION T(1),TV(1), 200,00V (1) ,PARACL) PR Y, 100 ),
. PR(1),PRV(1),1DP(1])
REWIND NF4
C
C SET UP THE PARAMETER ARRAY PARA

K1=NODE+1
DO 100 K=NLK,O0,-1
K2=K1-1

13
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K1=]
IF{K.GT.0) K1=1ABS({ID(K))
IF{(K2.LT.K1l} GOCTO 95
DO 90 1=K2,Kk1,-]
11=281
IK=11+K
ineeIT)=IK
PARALIK)=P{])
CPI{IK)=PV{L)
IK=1K-1
IDP{1I-1)=1IK
PARA(IK)=T(1)
CPPUIR)=TV(L)

20 CONTINUE

95 IF(F.FQ.G) GOTO 100
IR=IK-1
PARA(IR)=PR(K)
CPPIIN =Ry

CHANGE ID FROM PROPERTY NODAL NUMBERS TO PROPERTY PARA. NUMBERS

"nen

IF(ID(K).LT.0) THEN
ID(R)=-1IK
ELSE
ID(R)=IK
END IF
100 CONTINUE
KPARA=NODE®Z+NLK
WRITE{(NF4} (CPP(T),1=1,NPARA)
RETURN
END

SURROUTINE ROUNDRY(SDH,SDW, X,Y.MAXA, FF,CFF,MAXV, V,NIOFF,C(Q,QQ)
c
CESESTREITEEEEELEIRETLIBERTEATTRTTSLSATSASIISITEITELTRASELT LSS ETL 2SS
C TO INPUT NEUMANN DOUNDARY CONDITIONS AND COMPUTE THE
C FLUX-EQUIVALENT NODAL FLOW VECTOR FF, AND SET UP THE CFF MATRIX
CESERESEATARRRLLLALATLALELEASRASEREATACTLEESREREIEEXLETRELE ST IR RA S
C

COMMON/CONTRI./NODE,, NELT, NLK ,NWG, NWR ,NWV, I F1I ,NPM

COMMON/ROUND/NBL ,NBFL(10,2),CRL(10) ,NBFT,NBF,NCQ

COMMON/NOFILE/NF1,NF2,NF3,NF4,NF5,NF6,NF7

COMMON/MPRINT/NAPIT(11)

DIMENSION X{1),Y(1),MAXA(1),CFF(1),FF(1),V(1),MAXV{1),NBFF{1)},

. CQR(NCQ, 2) ,QQ(NBF, 2)

DIMENSION NB(3),XY¥(2,3),5V(6),STD{2)

c

c NBl. --- NUMBER OF BF SECTIONS

c NRFL{1,1) --- NUMBER OF BF POINTS IN SECTIOXN I,
C NRFL(1,2) --- NULL FLUX CODE:

C

=1, NO HEAT FLUX; WATER ONLY
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=2, NO WATER FLOW; HEAT ONLY
=3, BOTH HEAT AND WATER FLUX EXIST

CRL(1) --- CORRELATION LENGTH OF RF POINTS IN SECTION 1,
POINTS IN DIFFEREXT SECTIONS NUST BE UNCORRELATED
NBFT --- TOTAL NUMBER OF BF POINTS IN ALL SECTIONS
NBF --- NUMNFR OF BF POIRTS IN THE LARGEST SECTION
NCQ ~--- NAXIMUM LENGTH OF CQud MATRIX, NHF®(NBF+l)/2Z
REWIND NF1
NEQ=NODE®*2
WRITE(NF3) (MAXV(I),1=1,NRF+1),{NBFF(1), =1 NRFT)
Ni=0

DO 200 LLL=1,NRL
NBF1=NBFL(LLL,1)
NN=N1+NBF1
NCQI=NBF1%(NRF1+1)/2
CALL CLEANR(NCQ*2,0QQ)
CALL CLEAN(NWV,V)
IF(CRL(LLL).FQ.0.0) THEN

COMPUTE. CQQ FOR UNCORRELATED RF POINTS

READ(NF1,*) (QQ(I,1),0QQ{1,1),QQ(1.2),CQQ(1,2),1=1,NBF1)

WRITE(NF2,2001) LLL,0.0,(i,NRFF(NI+T),QQ(I,1),00001,1),0Q(1,2),

. cQQ(1,2),1=1,NBF1)

DO 1' LHW=1,2
IF(NBFL{LLL,2).EQ.LIW) GOTO 11

CQQ(1,LHW)=CQQ(1,LHW)*CQQ(1, LlW)

CQR(2,LHW)=CQQ( 2, LHW)*CQQ( 2, L.HIW)

NNN=NCQ1-NBFl+1

DO 10 I=NBF1,3,-1

CQQ(NNN,LHW)=CQQ( I ,LHW)*CQQ( ! ,Lhw}

CQQ(I,LHW)=0.0

NNN=NNN-1+1

CONTINUE

CONTINUE

ELSE

COMPUTE CQQ FOR CORRELATED BF POINT:

READ(NF1,*) STD{(1),STD(2)
RE!\D(NFI") (QQ“.]).QQ(I.Z).l-‘-l.NliFl)
WRITE(NF2,2001) LLL,CRL{LLL),(I ,NBFF(NI#1),QQ(I,1),5TDh(1),
. QQ(1,2),STD(2),1=1,NBFI)
CR=CRL({LLL)*CRL(LLL)
DO 13 LHW=1,2

IF(NBFL(LLL,2).EQ.LHW) GOTO 13
VAR=STD(LHW ) *STD( LHW)
1CQ=0
DO Y2 J=1,NBF1
NJ=NBFF(N1+J)
XJ=X(NJ)
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YJ=Y(NJ)
D 12 1=3,1,-1
10Q=1CQ+ ]
NI=NBFF(N1+])
XX=X(N!)-XJ
YY=Y{N])-YJ
DIS={XX*XX+YY®YY)/Ch
IF(DIS.GT.200) GUTO 12
QR 1CQ,LHW)=VAR®EXF{ -0.5%DIS)
12 CONTINUE
13 CONTINUE
END IF
READ{NF1,%) NSUR
WRITE(NF2,2002) NSUR
IF(NBFL(LLL,2).NE. 1) WRITE(N¥3) NCQ1,((rQQ(1,J),I=1,NCQ1),J=1,2)

¢
C NR({31) --- BF NUMBFRS OF THE RF POINTS, NOT NODAL NUMBERS, WHICH
C ARE IN NBFF

N=)
15 READ{NF1,*) NB,KK,RN
KRITE(NF2Z,2003) N NB,RK,RN
NipP=1
IF(NR(3).EQ.0Q) NIP=2
N 75 L=1,KN
DO 20 J=1,NIP
JJI=NR(D)
NJ=NBFF{N1+ 1]}
XY(1,J)=X(NJ)
XY(2,J)=Y(NJ)
20 CONTINUE
CALL BOUQUAD(NIP,XY,SV)
CALL ADDBAN(V,MAXV,SV,NE,5IP)
DO 50 J=1,NIP
S0 NB(J )=NR(J) +KK
75 N=N+1
IF(N.LE.NSUR) GOTO 15
IF(NAPIT(3).GT.0) THEN
WRITE(NF2, '(5X,8HV MATRIX)')
DO 100 1=1,NBF)
J1=MAXV(T)
J2=MAXV(1+1)-1
100 WRITE(NF2, ' (15/(5X,10E12.6))") 1,(V(J),J=J1,J2)
END IF
IF(NRFL(LLL,2).NE.1) THEN
WRITE(NF3) (V{I),1=1,NWV])
WRITE(NFR) (V(T1),1=1,NWV)
END 1F
CALL FORMFF(NBF1 ,NBFF{N1+1),V, MAXV,QQ,FF,LLL)
CALL FORMCFF(NBF1,NODE,SDH,SDW NBFF{N1+1),V MAXV,CQQ,CFF ,MAXA,
. QQ,LLL)
200 Ni=NN



SDHH=SDH*SDH
SDWW=SDW3SIW
DO 230 I=1,NODE
[I=1+}
ICI=MAXA(II-1)
IC2=MAXA{I1])
CFF(IC1)=CFF{IC1)*SDHH
CFF(1C2)=CFF(1C2)+SDWW
230 CONTINUE
IF(NAPIT{11).GT.0) WRITE(NFZ, "(/2HFE/(10E12.6)") (FF(1),1=1,NEQ)
TF{RAPIT(4).GT.0) THEN
WRITE(NF2, ' (3UHCFF)")
DO 250 I=1,NEQ
JI=MAXA(1)
JZ=MAXA(I+1)-1
250  WRITE(NF2,’(I5/(5X,10E12.6))") I,{(CFF(J),J=01,02)
END 1IF
RETURN
2001 FORMAT(//5X,’GROUP °,I13,°' DOUNPARY FLOW (RF) POEINTS INFORMATION' //
. 5X, 'CORRELATION [ENGTH = ',E10.1,"' M'//
. 6X, 'BF BF NODAL®,12X,"H E A T",23X,'W AT & R'/
. 4X, "NUMBER NUMBER ',2(6X, 'FLUX',HY,' sTh ' L4X)/
. (5X,11,19,2X,2(2E15.6,1X)))
2002 FORMAT(//5X,15," BOUNDARY FLOW LINES'//5X,
. 'LINE',9X,'BF POINT NUMRER',1iX, 'GENERATION',5X, 1 INES®//
. AX, "NUMBER',7X,'1',9X, 2" ,9Y, "3’ ,7X, "INCREMENT  GENERATED'/)
2003 FORMAT(5X,13,2X,3110,5%,17,8X,15)
END

SUBROUTINE ITERAT(IT, PO, PARA MADR,MEST, ,MAXAL FF,G,GP,CP ],
. WKF,WRkP, Alt)
C
CISSESSRERRRRELEETS LTRSS EASEEELLRBELTLASTLEESAASTRISIASLESS6 82088
C TO PERFORM ONE ITFRATION FOR THE ESTIMATE OF PARA
CSEXSXBIETTEL LSRR EEEEFIASEFEATTLEESEEERANILEESIEABACBERR 4523888808
C
COMMON/CONTRL/NODE ,NELT ,NLK , NWG , NWit ,NWV , 1 I'H, NI'M
COMMON/NOFILE/NF1 ,NFZ ,NFI.NFA,NFS ,NFG  NFT
COMMON/MPRINT/NAPIT(11)
DIMENSION PO(1),PARA(L) ,MADR{ 1) ,MFST(1),MAXA(L),FF(T),0601),
. GP(1),CP(1),R(1),WEF(1),WKP(1])
REWIND NF4
NEQ=NODESZ
NPANA=NEQ+NILK
DO 20 1=1,NPARA
0 PARA(T )=PARA{T)-DPO(T)

READ IN A PRIORI COVARIANCE MATRICFS CPP AND CFF PROM PITE S 3

AN

READ(NF4) (CP(1),I=1,NPARA)
READ(NF3) (R{1),[=1,NWR)
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CALL FORMR(NEQ,MFST,MADR,MAXA,G,CP,R)
IF{NAPIT(6).GT.0) THEN
WRITE(NFZ,FMT=" (4HG MATRIX) ")
po 25 I=1,NEQ
J1=MADR(I)
JZ=MADR(1+1)-1
WRITE(NFZ,FNT="(I5/(5X,10E12.6))") [,{G(J),J=J1,42)
EXD 1F
TFINAPIT(7).GT.0) WRITE(NF2,FMT="(2HGP/(10E12.6))")

. (Gpe(1),1=1,NEQ)
FIF(NAPIT(9).GT.0) THEN
FRITE(NFZ,FMT="(8HR MATRIX)')
DO 30 1=1,NEQ
JI=MAXA(I])
J2=MAXA(I+1)-1
WRITE{NF2, FNT="(15/(5X,10E12.6))") 1,(R(J),J=J1,J2)
END IF

DO 50 I=1,NEQ

WKF(!)=FF(1)-GP(I)

IF{IT.GT.1) THEN

CALL GTIMEP(NEQ,MFST.MADKR,G,PARA,WAP)

Do 70 1=1,NEQ

WKF(1)=WEKF(I)+WKP(I)

END IF

CALL COLSOL(R,WKF,MAXA,NEQ, 2,NER)

IF(NER.NE.O) THEN

PRINT®, "ERROR ' ,NER,’ IN PHASE 2, ITERATION °,IT

PRINT®,'R MATRIX NOT POSITIVE DEFINITE.’

sSTOY

END TF

“ALL CLEAN(NPARA,WKP)

CALL GTTIMP(NEQ,MFST,MADR,G,WKF,WKDP)

ORTAIN THE SOLUTION P-PO

DO KO I=I.Nl'.'\R.-\

WRP{ 1 )=CP{1)*WKD(I)
AR=0.0

DO 100 1=1,NPARA
AASADBS(WRP( 1) -PARA(I))
IF(AR.LT.AA) AB=AA
CONTINUF

ORTAIN THE SOLUTION P BY ADDING PO TO P-PO

PO 120 T=1,NPARA
PARA(T)=WKP(1)+PO(1)

IF(NAPIT{10).GT.0)} WRITE(NF2,FMT="(1HP/(I0E1Z.6))") (PARA(D),
. 1=1,NPARA)
RETURN
END




SURROUTINE OVARE( T\ ,MADR,MFST, ID NAXA, G, FZ,CPLFLLR)

;O

"SEESEEEEET BT EEE LSS RTSESERES AT EEEAEITEEEEEEAISTESECESI2083 S
TO COMPUTE ASYMPTOTIC A POSTERIORI VARIANCES OF THE
PARAMETERS (DIAGONAL ELEMENTS OF THE COVARIANCE MATRIN).

IV A POSTERIORI VARIANCES COMPUTATION FLAG
< 0, THE VARAINCES OF PHYSICAL PROPEKTIFS ONLY
= 0, NO VARIANCES COMPUTED
> 0, ALL VARIANCES COMPUTFD
EEEXLLEELTETEERLRELEEREEIAITTEESSEETATTECATEATXLTERSETTERREE LS

aQgaOOOan

COMMON/CONTRL/NODE ,NELT ,NLK,NWG,NWR , NWV, 1 I'tl ,NI'M
COMMON/NOFILE/NF1 ,NFZ,NF3 NF4,NF5,NFG,NF7

DIMENSION MADR(1),MFST{1),G(1),F2(1),CP(1),F1(1),MAXA{1) R(Y),
. ID(1)

REWIND NF4
NEQ=2*NODE
NPARA=NEQ+NLK

READ IN A PRIORI CPP FROM FILFE NF4

nNan

READ(NF1) (CP(1),t=1,NPARA)
IF{IV) 20,10,30

10 RETURN

2. NN=NLK
GOTO 10

30 NN=NIARA

10 CONT INUE
CALL CGT(NEQ,MFST,MADR,G,CP)
no 100 11=1,NN
ICc=11
TF(IV.LT.Q) TC=T1ABS(ID{1i})
CALL GCOLUMN(IC,NEQ,MFST,MADR,G,F1)
CALL RELOAD{NEQ,F1,F2)}
CALL COLSOL(R,F1,MAXA,NEQ,3,NER)
FF=0.0
DO 50 I=1,NEQ

50 FF=FF+F1(1)%F2(1)
CP{IC)=CP(IC)-FF

100 CONTINUE
RETURN
END

SUBROUTINE ESFLOW{WK,QQ,MAXA ,MAXV,V,GP,FF,CQQ, R NRFF,CQ%)
C
CEESEEBRLRERREBEERELLESELEREREEEEELEREEARRBEERIBEILERALS 87 848
C TO COMPUTE THE UPDATED BOUNDARY FLUXES AND THE VARIANCE
CEESEERSEXBREXETERRLETILETFSEERSASASIENEEIETE 222242833838 33288283
c

COMMON/CONTRI./NODE ,NELT,NLK , NWG , NWR , NWV , T 'l , NP'M
COMMON/BOUND/NBL ,NBFL.(10,2) ,CRLL10) ,NSFT ,NBF ,NOCQ
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COMMON/NOF I LE/NF1 ,NF2 ,NF3 ,NF4  NFS ,NF6 ,NFT

DUIMENSION WK(NODF*2,3),QQ(NBF,2) ,MAXA(1),MAXV(1),V(1),GP(1),
. FF(1),0QQ{%0Q,2),R(1),NBFF(1),CQX(NBF,3)
DINENSION MINUS(Z),Q{31)

DATA MINUS/1,0/

REWIND NF2

WKITE(NFZ,2001)

NEQ=~ODESZ

FILE NF3 CONTAINS THE V NATRIX, NODAL NUMBERS (NBFF), AND
A RIOKD 0QQ MATRIX FOR EACH BF SECTION

READ{NF1) (MAXV(1),I=1,NRF+1), (NRFF(1),1=1,NDFT)
N1=0

nm 200 LLL=1,NBL

NOFI=NB" J(LLL,1)

NN=N1#NBF]

TF(NRFL{LLL,2).EQ. 1)} GOTO 200

READ(NF3) NCQL,{((CQQ(1,Jd),1=1,NCQ1).J=1,2
READ(NF3) (V(1),I=1,NWV)

DO 20 [=1,NDF1

I I=NBFF(N1+1)82

(I, n)=Gr{tt-1)

CONTINUE

CALL COLSOL(V,QQ{1,1).MAXV ,NDF1,2,NER)

READ(NF3) (V(!1),I=1,NWV,

1CQ=1

PO HO IC=1,NIIF]

1CQ=1CQeIC-1

CALL CLEAN{NEQ,FF)

CALL VCOLUM(1C ,NDBF1 ,MINUS(1),NRBFF{NI+1),V /MAXV.CQQ(1,1),FF)
CALL RELOAD{NFQ,.WR{1,2),WR{1,3)}

CALL RELOAD(NEQ,WK{1,1),WK(1,2))

CALL RELOAD(NEQ,FF,WK(1,1))

CALL COLSOL{R,FF,MAXA,NEQ, 3,NER)

KC=3

IF{IC.LT.3) KC=IC

DO 50 KQ=1,KC

Q{RQ)=0.0

M 50 K=1,NEQ

QIRQ)=Q(RQ) +FF(K)*WK(K,KQ}

CONTINUE

CON{IC, 1)1=0QQ(1CQ,1)-Q(1)

IF(IC.FQ.1) GOTO 70

CON(TC-1,2)=20QQ( 1.Q+1,1)-Q(2)

FF(1C.EQ.2) GOTO 70

CQN{IC=2,0)=0QQ( T7Q+2,1)-Q(3)

CON(IC, VI=SQRT(CQN(TC, 1))

CONTINUE

WRITE(NF2,2002) (1,NRFF(N1¢1),QQ(!,1V,CQN{(1,1),1=1,NBF1)
WRITF(NFG,%) NRF1,(NRFF(N1+1),1=1,NBF1),(QQ{I,1),1=1,NRF1),
. ((CQN(T LIy, 1=1,%BF1),J=1,13)




200 N1=NX
RETURN
2001 FORMAT(///5X, "UPDATED DBOUNDARY REAT FLOW®//
. 6X,'BF BF NODAL',12X,"H E A T',23),° '/

. 41X, 'NUMBER  NUNBER °,oX, "FLUX',8X,° ST LX)
2002 ORMAT((5X,11,I9,2X,ZE15.8))
END

SUBROUTINE ELEZMENT

c
CIISETEELTLSTRELETALLSEDTEXEESEELLTRLAEEEITAITITETISEEEETTETIRTR AL
C THIS IS A SWITCH SURROUTIME. ALL ELEMENTAL COMITATION

C SOUBROUTINES HAS TO BE REACHED VIA THIS ONE.

C NELE ---TCTAL NUNBER OF ELEMENTS

c =1, PLANE ELEMENT

c =2, AXI-SYMMETRIC ELEMENT

C NPRS ---THE ORDFR OF GAUSS INTEGRATION

C NDM ---MAXINUN NUMBER OF NODES IN ONE ELEMENT

C NPNP ---TOTAL NUMBER OF GAUSS PO'NTS (NPRSANIPHS)

c NEG ---TOTAL NUNMBER OF CONGRUENT ELEMENT GROUI'S

c IEG ---THE ELEMENTAL NUMBER OF THE LAST ELEMENT OF EACH GROUD
CESEEFLARLRETESEEELETRERLLLARAEELEFEAEASERERTTSTARALEASEEERIETL2 S
c

COMMON/CONTRL /NODE ,NFIL.T ,NLK, NWG ,NWR . NWVU, [ I, NI'™

COMMCN/NOFILE/NF1,NF2,NF3,NF4 ,NF5,NF6,NF7

COMMON/ELECON/NELE, NPRS , NDM, NPNP, NEG, [EG(200)

COMMON/POSITN/N1 ,N2 ,NZX,N2Y,N2P N3, N4 N2 NG N7 NB,NO NTONT T,
. N1Z2,N13,N14 ,MN"OT ,NFIRST ,NLAST ,MIDST

COMMON/BLANK/A( 1000000)

REWIND NFS

NEQ=2%*NCDE

IPH=1, INPUT PHASE. INPUT ELEMENTAL INFORMATION AND COMIMITE
SHAPE FUNCTIONS, DERIVATIVES, JOCORIAN AND SOURCE TFRM.
=2, [TERATION PHASE. COMPUTE G MATRIX AND GP VECTOR.

AICAOO

IF(IPH.GT.1) GOTO 20

NELE=NELT

PEAD(NF1,%) NPRS,NDM, NEG

WRITE(NF2,2001) NELE,1,NPRS ,NDM,NEG

NPNP=NPRSENPRS

WPITE(NF2,2002) (IEG(1),I=1,NEG)
20 CONTINUE

N101=NFIRST

N102=N101+NDM*2*NELE

N103=N102+{NDM*2+2)sNFLE

N:04=N103+NEG

N105=N104 +NEGSNPNDP

N106=N105+NEGENPNPENDM

NIO7=N106+NEGSNPNPENDME2

(L]
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N108=XN107+REGSNPNPENDN*NDM
NIO9=N198eRELES2
C
¢ A(N101) --- IME(NDMZ2,NELE) GLOBAL EQUATION NUMBERS
C A(N102) --- LMP(NDM2+2,NELE) GLOBAL PARAMETER NUMBERS
C A(N103) --- BELL(NEG) NUNBER OF NODES IN EACH C.E. GROUP
i A(NIO4) --- DET(NPNP,NREG) JACOBIAN FOR EACH C.E. GROUP
« A(NIOS) --- HH{NPNPSNDM,NEC)
c A(N10G) --- R{NPNPeNDM®2 A NEG)
C A(NIO7) --- SS{NPNPENDNSNDM, NEG)
( A(N108) --- LID(2,NELE) GLORAL PROPERTY NUMBERS

IF(NLAST.LT.N109) XLAST=N109
IF(NLAST.GT.NTOT) THEN
1ERR=202
WRITE(NF2,%)"PHASE® ,IPtl,' ERROR',IERR,"' MEMORY',NLAST,
. ' EXCEEDS’ ,MTOT
sTop
END IF
MIDST=N103-NFIRST
GOTO (60,100) IPH
60 CONTINUE
CALL ELPRIN{NELE,A{N108))
CALL FINEIN(A(N2X),A(NZY) ,A(N3) ,A(N2),A(NS),A(NG),

. A(N101),A(NLO2),A(N103),A(NIUH),
. A(NIUS),A(NIO6) ,A(N1OT7) ,A(NLIOB) )
CALL FILMAN(NFS,MIDST,A(N1Q1),-1;

RETURN

100  CONTINUE

CALL FILMAN(NFS MIDST,A(N101),1)

CALL CUPQUAD(A{NZ),A(N4),A(NS),A(NB),A(NI) ,A(NIOY),A(N1O2),
A(NIO3) ,A(NTIO4) ,A(N105) ,A(N1OG) ,A(NIDT))

RETURN

2001  FORMAT(////5X,°'2-D FINITE ELEMENT INFORMATION'//
. NUMBER OF ELEMENTS. . . . . . . . . . (uoLE) =",16/
. ELFEMENT TYPE. . . . . . . . . « « o {ITYP) =",16/

ITYP=1, PLANE ELEMENT'/
ITYP=2, AXISYMMETRIC ELEMENT'/
ORDER OF GAUSS INTEGRATION. . . . . . (NPRS) =',16/
MAXIMUM NUMBER OF NODES IN ONF ELEMENT (NDM) =',16/
. NUMBER OF CONGRUENT ELEMENT GROUPS. . .{NEG) =',16)
2002 FORMAT(///5X, "THE ELEMENTAL NUMRBER OF THE LAST ELEMENT OF’,
« ' EACH CONGRUENT ELEMENT GROUP'//(5X,2015))
END

* @ 9 e =

SUBROUTINE CUPQUAD(PARA,MADR,MFST,G,GP, LME, LMP, [ELL, DET, 1IN,
» l‘lss)

¢
CEEETEELRLILERDILTERRLERXLELTELRTLRLLERLRRREL RS EERSELEXXL LB LIRS
¢ TO COMPUTE ELEMENTAL G MATRIX AND GP VECTOR AND ADD THEM TO
¢ THE GLORBAL ONES
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Ctttttttttttt‘ltttttttttttttttttttttttttt.ttttttttttttttttttttlttt
C
COMMON/ELECON/NELE , NPRS , NDN , NPNP  NEG, I EG(20Q)
COMMOXN/NOFILE/NF1 RF2 ,NF3 NFA NF5,NFG NFT
COMMOX/DIR1I/XDR, IDR(50) , IDE(SO,2) ,ADR(50,2), TS50, 2}, TIN50,
DINENSION PARA(1) MAGR(Y) MEST{1).G(1),GP( 1), LME(NINS: 1),
. LMP(NDN®2+2, 1), IFELLLY ) ,DETINIENDE, 1), HILONDNI'SNING, 1),
BUNPNPSNDMS2, 1) ,SS(NINPSNDMSNDN, 1)
DINENSION S(16,18),SP(16),T{(8),*(R)
AL10=ALOG(10.)
NIEG=0
1E=0
DO 200 1=]1,NELE
IF(I.GT.NIEG) THEN
IE=IE+]
NIEG=IEG(IE)
IEL=IELL(IE)
ND=1EL*2
ND2=16
NS=1EL*IEL
END IF
DO 30 L=1,I1EL
L2=L+L
LL=LMP({L2-.,1)
T(L)=PARA(LL)
LL=LMP(LZ,1)
30 P(L)=PARA(LL)
LL=LMP{ND+1,1)
CD=EXP({PARA(L.L)*AL10)
IF(PARA(LL).EQ.0.) CD=0.0
LL=LMP(ND+2,1)
PM=EXP{PARA(LL.)=AL10)
IF(PARA(LL).FQ.0.) MM=0.0
11=1
12=1
13=1
CALL CLEAN(288,S)
CALL CLEAN(ND,SP)

LOOP FOR ALL GAUSS POINTS TO PERFORM NUMERICAL INTFGRATION
In THE COMPUTATION OF G MATRIX

aNesNeNy

DO 100 J=]1,NPNP
CALL QUADS(IEL,CD,PM,T,P,DET(J,IE) HI{(TT,IE),B(12,1L),5,
SP,SS(13,1E),AL10)

I1=T1+1EL
[2=12+ND
13=13+NS
100 CONTINUE
C
C CALL ADDG TO ADD THE ELEMENTAL G MATRIX S TO THE GLORAL oNE
C
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CALL ADDG(ND,ND2,2,IME(1,I),LMP(1,1),NADR,NFST,S,G}
L ADD THE FLEMENTAL GP VECTOR SP TO THE GLOsAL ONE

DO 150 J=1,ND
JI=INE{J, 1)
GIJI)=GI(JI)+SP(T)
150 CONTINUE
200 CONTINUE
c
C DIRICHLET CONDITION TERN ADDED TO GP AND G
C
IF(NDR.LE.O)} RETURN
RR=1
po 110 J=1,2
o 300 I=1,NDR
ITE=IDR{1)*2-KK
1HP=1DE(1,J)
GP(IIL)=GP(IIE)+ADR(1,J)*TP(I,J}
[IG=MADR(IIE)+TIP-MFST(11E)
GIIIG)=G(TIG)+ADR(,J)
J0C  CONTINUE
310  KKR=KK-1
KRETURN
END

SURROUT INE QUADS(IEL,CD,PM,T,P,DET,H,B,S,SP,SS,ALI0)

c
CEEESSEXERTEELEE LT RTINS E BRI LR ERREXAREXEEELSESRES LS EARE LRSS

¢ TO COMPUTE THE ELEMENTAL G MATRIX AND GP VECTOR AT TUE
o CURRENT GAUSS PMOINT (R,S)
CESESELELEETREEEESEEESLELLE RS LSS ESRETETERTLELEEESESSEEES LTSRS S
¢
DIMENSION H(IEL),B(2,IEL),S(16,1),SP(16),T(IEL),P(IEL),SS(1EL,1)
DIMENSION S11(8,4),S521(8,8),522(8,8)
DATA PC,PO,BATA,VS,ATA,TO,GR/4.18E+6,995.9125,.53625,1253.1,

. 32.579,30.,9.8/
c
c PC --- THERMAL CAPACITY [J/M*%#3/K] (CONSTANT)
¢ PO --- RLUFRENCE WATER DENSITY [KG/M$%31] (CONSTANT)
c BATA-- SLOPE OF WATER DENSITY [KG/M$%3] (CONSTANT)
C VO --- REFERFNCE RECIPEROCAL VISCOSITY
¢ ATA--- SLOPE OF DYNAMIC VISCOSITY [M S/XG/K] (CONSTANT)
¢ TO --- PEFERENCE TEMPERATURE
¢ GR --- GRAVITATIONAL ACCELERATION [M/S$22] (CONSTANT)
¢ CD --- THERMAL CONDUCTIVITY [W/M/K] (PARAMETER)
C M --- PERMEARILITY [M*3%2] (PARAMATER)
e
RT1=0.

BTZ=0.
Bri=0.
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BP2=0.

HT=0.

XD=1EL®*2:

DO SO L=1,I1FL

PL=P{ L)

TL=T{L)

BPI=BPl+B(1,L)&Mr.

BF.2=BP2+¢B(2,L)%:’L

BT1=B7T1+B(1,L)sTL

BT2=BTZ2+B(2,L)3TL
=SHTHH(L)STL

CONTINUE

POG=POSGR
VIS=VO+ATASHT
vi=pocEirl
VZ=P0G* (B Z-RATASHT/PG)
PV PMEVISTLET
COT=CD*DET

ALL=I'C¥MMV
AZ1=PMVEGRS$BATA
AZZ2=PMVSPOG

THE FOLLOWING DO LOOP COMPUTES TIE ELEMENTAL TRANSFER MATRIX

DO 80 L=1,IEL

rAll=ALLSH(L)

FA21=A21%0(2,1.)

DO 80 K=!, IEL
S1I(L,K)=SS(L,K)SCDT-FALI&(VISR(1,K) VOsR(2,K))
SZ1(L,K)=-FA21*H(K)

822{I1.,K)=A22%55(L,K)

CONTINUE

FAC=PCEDPM* (ATASVISBT1+ (ATAXV2-RATASGR*VIS ) SBTZ ) SDET
A211=PMSGR*ATA*RATASHT*NET

A212=PM2ATA*POG*DET

ALLPG=ALL*POG

FAK=ALL*(VI*RT1+V2*RT2)

DO 200 L=1,lE.

L2=L+L

L.1=L2-1

FACH=FAC+uLL)

ALLPGH=ALLINSH(L)

FAZ211=AZ11218(2,L)
FAZ212=A212%(B(1,L)*BP1+D(2,1L)*RP2)

DO 180 M=1,lEL

MZ=M+M

M1=M2-1

S(LI,MU)=S(L] M1)+S11(L,M)-FACHSH(M;
S(L1,M2)=S(L1,M2)-ALLPGH®(B(1,M)*BTY+L( 2, M)*RT2)
S(L2,M1)=S(L2,M1)+S21{L MI+H(M)®(FAZTIZ-FALLT)
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S({L2,M2)=S(L2,M2)+S22(L,M)

180 CONTINUE
S(L1,ND+1)=S{L1,ND+1)+CDT®(B(1,L)*BT1+R(2,L)*BT2)3ALID
S(L1,ND+2)=S(L1,NXD+2)-FAK®H(L)*AL10
S{LZ,ND+1)=0.0

200  CONTINUE

DO 250 1.=1, IEL

G1=0.0

G2=0.0

L2=LeL

t.1=L2-1

DO 240 K=1,I1ElL

GI=Gl+S11{L ,K)*T(K)

GZ=GZ+S21(L,K)*T(K)+S22(L,K)*P(K)
240 (CONTINUE

SP(L1)=SP{L]I)+G1

SP(L2)=5P(L2)4G2

S(L2,ND#2)=S{L2,ND+2)+G2#AL10
250 CONTINUE

RETURN

END
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