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Abstract 

Lithium-ion batteries (LIBs) are promising energy storage media under serious consideration 

for practical applications in electric vehicle (EVs) and hybrid electric vehicles (HEVs). 

However, to meet the requirements for EVs and HEVs, the performance of commercially 

available LIBs needs to be greatly improved in terms of the energy density, cycling life, rate 

capability, safety and cost. It is well known that the LIB performance is highly dependent on 

the choice of electrode materials. Therefore, it is greatly important to develop new electrode 

materials as replacements for graphite/LiCoO2 used in commercial LIBs, in order to achieve 

high-performance LIBs desirable for EV and HEV applications. 

In this thesis, to achieve the above goal, efforts made in this thesis followed into two sections. 

The first section was to develop novel nanostructured electrode materials, which could be 

directly used in LIBs. The other section was to develop various surface-modification 

materials, which could be applied to further improve the LIB performance of electrode 

materials. Various advanced characterization techniques, including field-emission scanning 

electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission 

electron microscope (TEM), high-resolution TEM (HRTEM), Raman spectroscopy, X-ray 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared 

spectroscopy (FT-IR), X-ray absorption near edge structure (XANES) spectroscopy, and 

electrochemical methods, have been applied to analyze the prepared nanomaterials, 

understand their growth mechanisms, and evaluate their battery performance. 

The nanostructured electrode materials included nitrogen-doped carbon nanotubes (NCNTs), 

phosphorus-nitrogen doped carbon nanotubes (PNCNTs), and lithium titanate (Li4Ti5O12). A 

scalable method, ultrasonic spray pyrolysis, was developed inhouse to produce NCNTs with 

tunable structure as potential anode materials. Further attempt to incorporate P element into 

CNTs was made, and it was successful when P and N elements were doped together. The P 

doping effect on the structure of NCNTs was investigated in detail. Furthermore, novel 

nanosctuctured Li4Ti5O12 were prepared by a microwave-assisted hydrothermal method in a 

fast and energy-efficient way. Their electrochemical performance was evaluated, and 

nanoflower-like Li4Ti5O12 showed better LIB performance than nanoparticle Li4Ti5O12. 
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Three different surface-modification materials, ZrO2, AlPO4 and LiTaO3 solid-state 

electrolyte, were developed by atomic layer deposition (ALD), for potential use to improve 

the chosen electrode materials. Deposition of these materials on different substrates, 

including NCNTs, graphene nanosheets, Si (100) and anodic aluminum oxide (AAO) 

template, showed that as-grown thin films of ZrO2, AlPO4 and LiTaO3 were precisely 

controllable in terms of film thickness, film crystallinity and film composition. These 

characteristics enabled by ALD promised ZrO2, AlPO4 and LiTaO3 great potential as surface-

modification materials. One application example of these materials was demonstrated by 

using ALD-ZrO2 coating to enhance the performance of nanoflower-like Li4Ti5O12. 

Keywords 

Lithium-ion battery, Nanomaterial, Nanocomposite, Carbon nanotubes, graphene nanosheets, 

Nitrogen doping, Phosphorus doping, Lithium titanate, Zirconium oxide, Aluminum 

phosphate, Lithium tantalate, Solid-state electrolyte, Atomic layer deposition, Chemical 

vapor deposition, Ultrasonic spray pyrolysis, Microwave-assisted hydrothermal synthesis. 
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Chapter 1 Introduction 

1 Introduction 

1.1 Introduction to lithium-ion batteries (LIBs) 

With the rapid depletion of fossil fuels, there is great demand to seek renewable and clean 

energy candidates, in order to enable sustainable development of human society. During 

the past few decades, various clean energies (such as solar, wind and hydro) have been 

explored as energy alternatives [1]. However, those clean energy resources are highly 

time or region-dependent. Therefore, it is essential to develop effective energy storage 

media in order to make use of those clean energies in an efficient way [2]. Lithium-ion 

batteries (LIBs) are one of the most competitive candidates for energy storage [3]. 

1.1.1 Fundamentals of LIBs 

 

Figure 1.1 Configuration of a lithium-ion battery [4]. 

LIBs are electrochemical energy storage devices that can realize energy storage/release 

by means of charge/discharge LIB cells. LIBs are composed of three main components, 

the anode, cathode and electrolyte, as schematically shown in Figure 1.1. When the LIB 

cell is being charged, lithium ions are extracted from the cathode, transported through the 
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electrolyte, and inserted into the anode. During discharge process of the LIB cell, lithium 

ions are extracted from the anode, while diffusing through the lithium-ion conducting 

electrolyte, and inserted into the cathode [4-6]. LIBs are also referred to as rocking-chair 

batteries, as lithium ions rock back and forth between the anode and cathode electrodes 

when the LIB cell is charged and discharged [6]. 

 

Figure 1.2 Comparison of different battery technologies in terms of volumetric and 

gravimetric energy density [7]. 

The first commercial LIBs appeared in 1991. They utilized graphite as the anode material, 

and lithium cobalt oxide (LiCoO2) as the cathode material. The electrolyte typically used 

was 1M LiPF6 salt in a solvent of ethylene-carbonate (EC) and dimethyl-carbonate (DMC) 

mixed in 1:1 volume ratio. The electrochemical reactions happened in the commercial 

LIBs can be expressed as follows: 

(Anode) C + xLi
+
 + xe

-
              LixC                                                      (1-1) 

(Cathode) LiCoO2              Li1-xCoO2 + xLi
+
 + xe

- 
                                 (1-2) 

The use of graphite as the anode eliminated the poor lithium metal rechargeability, and 

greatly increased the safety aspect of LIBs due to avoided formation of lithium dendrites, 

while LiCoO2 offered good electrical performance and safety [6]. This type of LIBs still 

takes the majority of the current battery market, as they can deliver the highest specific 

Charge 

Discharge 
Charge 

Discharge 
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energy density among the available battery technologies, as presented in Figure 1.2 [7]. 

Thus, LIBs have been widely applied in an increasingly diverse range of applications, 

including portable devices, cell phones, laptop computers and digital cameras, as well as 

military electronics, such as radios and mine detectors [6]. 

1.1.2 LIBs for automotive 

During the past few years, there is growing awareness of the necessity to develop electric 

vehicles (EVs), a term including plug-in hybrids, extended range electric vehicles and all-

electric vehicles [8], in order to reduce fossil fuel dependence and improve environmental 

stewardship. Interest in EVs has surged in auto industries, and manufacturers have started 

to develop new generations of EVs. For example, in 2010, General Motors introduced 

Chevrolet Volt electric vehicle into market, which can travel up to 40 miles using its LIB 

pack. In late 2010, Nissan introduced the Leaf, a 100-mile range EVs that are powered by 

an advanced LIB as its only power source. Besides auto companies, governments also 

initiate policies to simulate the development of EVs. Especially in 2011, US President 

Obama set a goal of putting one million EVs on the road by 2015 [8]. Incentives are also 

announced to support advance of EVs, including rebate up $7500 for purchasing EVs, 

enhanced R&D investments for innovative technologies, and rewarding communities for 

investing EV infrastructure through competitive grants [8]. 

 

Figure 1.3 Total lithium ion transportation battery revenue by region, world markets: 

2012-2020 (source: Pike Research) [9]. 
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At the beginning of EV history, auto companies General Motors, Toyota and Honda used 

lead-acid batteries, later updated to nickel-metal hydride (Ni-MH), to power the electric 

cars [8]. In recent years, LIBs are recognized as the most promising power supply system 

for EV application, as they can deliver the highest energy density among available battery 

technologies [7]. In both Chevrolet Volt and Nissan Leaf launched in 2010, LIBs were 

used as the power supply system [8, 9]. As EVs are becoming the trend, the demand for 

LIBs has been growing explosively. As shown in Figure 1.3, the worldwide LIB market 

for transportation is worth about $3 billion in 2013, and the projected market value would 

reach over $20 billion in 2020, according to Pike Research [9]. Therefore, it is visible that 

LIBs will play a more important role in the near future than ever for EVs. 

1.2 Challenges in LIBs 

Although being commercially available, there still exist big challenges in LIBs in order to 

use them as a sole energy source to power EVs, without compromising car performance, 

such as driving distances, speed, and safety. The limitation of current LIBs is mainly their 

low energy density. The energy density of LIBs is determined by their output voltage (V) 

and specific capacity (mAh g
-1

), which are highly dependent on the choice of electrode 

materials [10, 11]. Present commercial LIBs utilize graphite anode and LiCoO2 cathode, 

which have only theoretical capacities of 372 and 155 mAh g
-1

, respectively [6]. In order 

to increase the energy density of LIBs, it is inevitable to develop new electrode materials 

with high theoretical specific capacities and appropriate working voltages. Figure 1.4 

summarizes a variety of anode and cathode materials presently used or considered for the 

next generation of rechargeable LIBs, and their working voltages and specific capacities 

[7]. For instance, Si anode has a theoretical capacity 4200 mAh g
-1

, over 10 times higher 

than graphite anode, whereas both anodes operate at the similar voltage. Therefore, it is a 

general agreement that developing new electrode materials is an effective pathway to 

increase the energy density of LIBs dramatically. 

Besides high energy density, desirable LIBs for EVs should also possess other properties, 

such as long cycling life, high safety, good rate capability and low cost. Especially safety 

is a major concern for current LIBs. Battery accidents accompanying fires and explosions 

have been reported in news intermittently [12]. This kind of accident is intolerable in EVs. 
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Additionally, long cycling life insures that LIBs can serve in EVs for years without 

replacement with a new battery pack. Good rate capability means LIBs in EVs can be 

fully charged in a very short time (a few minutes) competitive with filling gasoline. Thus, 

it is urgent to develop LIBs with the desirable performance mentioned above in order to 

realize real electrification of commercial vehicles. 

 

Figure 1.4 Voltage versus capacity for anode- and cathode-electrode materials presently 

used or under considerations for next-generation LIBs [7]. 

1.3 The solutions with nanomaterials 

Nanomaterials have attacted great interest because of the unusual mechanical, electrical 

and optional properties endowed by confining the dimensions of such mateials in a range 

of 1-100 nm [11]. Boosted development in nanomaterials have brought opportunities to a 

wide range of fields, of course including LIBs. As proposed by Bruce et al. [13], the use 

of nanomaterials in LIBs has many benefits: (1) they enable new electrode reactions to 

occur; (2) their dimensions at nanoscale increase the extraction/insertion rates of lithium 

ions, by shortening their transport distance within the particles, and similar enhancement 

in electron transport; (3) their high surface area permits a high lithium ion flux across the 
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electrolyte/electrode interface; (4) they possibly change the electrochemical properies of 

electrode materials; and (5) they can better accommodate volume change in nanoparticles 

associated with lithium ion intercalation/de-intercalation than their bulk counterparts [13]. 

Therefore, developing advanced nanomaterials is a main strategy adopted in this thesis in 

order to obtain high-performance LIBs. Different approaches are introduced as follows. 

1.3.1 Development of novel nanostructured anode materials 

Use of graphite as the anode material greatly improves the safety and cycleability of LIBs, 

and helps the commercialization of LIBs in 1991. However, graphite has some limitations 

as an electrode material for in vehicle LIBs. First of all, its theoretical capacity is too low, 

only 372 mAh g
-1

. Secondly, graphite usually has a solid-electrolyte interphase (SEI) on 

its surface, due to its low working potential (< 0.5 V vs. Li/Li
+
) [14, 15]. SEI is a product 

of electrolyte decomposition on the surface of electrode materials. The formation of SEI 

can permanently trap some lithium ions, resulting in capacity loss during the first cycle. It 

has been realized that SEI could affect the battery performance, including the safety, 

power capability, morphology of lithium deposits and cycling life [14]. At last, graphite 

has 12 % volume change during charge/discharge process, which is one of the reasons for 

the degradation of LIB cells [16]. Therefore, developing alternatives to graphite is one of 

the priorities for the development of LIBs for EVs. In this thesis, efforts will be devoted 

to developing carbon nanotubes and lithium titanate, both of which are promising anode 

materials for LIB applications.  

1.3.1.1 Carbon nanotubes (CNTs) 

Carbon nanotubes (CNTs) are one-dimensional (1D) carbonaceous nanomaterials with 

cylinder structure rolled up by graphene sheets [17]. Since Ijima’s report in 1991 [17], 

CNTs have been widely studied and found to possess many outstanding properties, 

including high mechanical properties, excellent electrical conductivity, and high thermal 

stability [18-20]. These properties promise CNTs very desirable materials for a variety of 

applications, such as strength composie additives, nanoscale transistors, fuel cell catalysts, 

and LIB electrode materials. 
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1.3.1.1.1 Synthesis and growth mechanisms of CNTs 

There are three methods mainly used for CNT synthesis, i.e. arc-discharge, laser ablation 

and chemical vapor deposition (CVD). Arc-discharge uses electric arcs that involve very 

high temperatures (~ 4000 
o
C) to evaporate graphite electrodes [21]. The as-grown CNTs 

by arc-discharge are well crystallized, but contain lots of impurities, such as amorphous 

carbon. Laser ablation employs high-power lasers in conjuction with high-temperature 

furnaces to evaporate high-purity graphite target to synthesize CNTs, which have high 

quality and low production yield [21]. The drawbacks of arc-discharge and laser ablation 

restrict their wide applications for producing CNTs with suitable quality and production 

yield. By contrast, CVD method gets involved in catalyst-assisted thermal decomposition 

of hydrocarbons, and is the most popular method for producing CNTs, due to its low-cost 

and scalability for mass production of CNTs [21]. 

 

Figure 1.5 Schematic diagram of a CVD setup in its simplest form [22]. 

Figure 1.5 shows a schematic diagram of the simplest CVD setup [22]. In common, the 

CVD growth of CNTs needs three important components: hydrocarbon sources, catalysts 

and temperature. A typical process (see Figure 1.5) is that a hydrocarbon vapor passes 

through a tubular reactor heated at sufficiently high temperatues (600-1200 
o
C), in which 

a catalyst is placed to decompose the hydrocarbon for the growth of CNTs [22]. The 

hydrocarbon sources could be gas, liquid and solid chemicals containing carbon. Most 

ofen used catalysts are Fe, Co and Ni, which have high solubility and high diffusion rate 

of carbon in them at high temperatures [22]. Fe, Co and Ni catalysts are commonly 

introduced into the tubular reactor by using solid organometallocenes, such as ferrocene, 
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cobaltocene and nickelocene. Depending on different applications, different types of 

CVD setups have been developed from Figure 1.5, such as Joul-Heating CVD, Floating 

catalyst CVD, Aerosol assisted CVD and Plasma enhanced CVD [23]. 

The widely-accepted growth mechanisms of CNTs are illustrated in Figure 1.6 [21]. In 

general, a hydrocarbon vapor comes in contact with a metal catalyst at high temperatures, 

and decomposes into carbon and hydrogen species; the carbon dissolves into the catalyst, 

while the hydrogen species files away; when the catalyst is saturated with the carbon, the 

dissolved carbon precipitates out and forms a cylindrical shape [21]. Depending on the 

location of the catalyst in CNTs during the growth, there are two growth models: tip-

growth model and base-growth model. Tip-growth model happens in the case of that the 

interaction between the catalyst and substrate is weak (Figure 1.6a), while base-growth 

model prevails when the catalyst-substrate interaction is strong (Figure 1.6b) [21]. 

 

Figure 1.6 Widely-accepted growth mechanisms for CNTs: (a) tip-growth model, (b) 

base-growth model [21]. 

 

 



9 

 

1.3.1.1.2 The role of element doping in CNTs 

 

Figure 1.7 Schematic diagram of growth model of bamboo-shaped NCNTs [23]. 

The properties of CNTs could be improved and controlled by different functionalization 

methods, among which doping foreign atoms into CNTs represents an effective approach. 

CNTs can be doped either by electron donors or electron acceptors. Nitrogen (N), as an 

electron donor, is the most widely investigated doping element in CNTs, due to its close 

atomic size to carbon [24]. Because N contains one additional electron as compared to C, 

N doped CNTs exhibited better electronic conductivity than their non-doped counterparts 

[25]. N doping can introduce defects into CNTs, thereby greatly changing their properties. 

For example, N doped CNTs (NCNTs) showed less oxidation resistance than CNTs, due 

to the high reactivity defects along nanotubes [26]. In addition, the incorporation of N 

intro CNTs changed their structure substantially. The NCNTs have bamboo structure, and 

the nanotubes look like many cups stack together oriented to the same direction [23]. It is 

common agreement that the growth of CNTs occurs via surface diffusion (SD) and/or 

bulk diffusion (BD) of carbon species through catalyst particles. Without N doping, 

carbon mainly diffuse through the catalyst surface after dissolved, therby leading to much 

faster SD than BD and forming general CNTs, as seen in Figure 1.7 [23]. When nitrogen 

precursor is used during the growth of CNTs, the dissolution of N into the catalyst 
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particles improves the BD of carbon species, which is responsible for the formation of 

compartments. At the same time, the carbon species precipitated on the catalyst surface 

form the other walls of CNTs. If the N content is very high, BD of carbon is much faster 

than SD of carbon, resulting in much denser and closer compartments, as seen in Figure 

1.7. 

The unique structure and highly reactive sites on the surface promise NCNTs a variety of 

potential applications, such as in fuel cells, field emissions and LIBs. Besides N doping, 

investigations were also carried out on doping boron (B) and phosphours (P) into CNTs, 

albeit very less than N doping. Especially, P can provide more additional electron density 

than N, and thus is expected to change the properties of CNTs greatly. However, it is 

challenging to obtain P doped CNTs, partially due to its larger atomic radius than C. This 

thesis will introduce an easy approach to achieve high P content in CNTs. 

1.3.1.2 Applications of CNTs in LIBs 
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Figure 1.8 Reversible charge/discharge capacity versus cycle numbers of CNTs and 

NCNTs at a current density of 100 mA g
-1

 [29]. 

CNTs have been investigated by many researchers as lithium storage materials, and the 

specific capacities were usually reported to exceed the value of LiC6 for graphite (372 

mAh g
-1

) [4, 27]. For example, the reversible capacity of single-walled carbon nanotubes 

(SWCNTs) synthesized by laser ablation was 600 mAh g
-1

, significantly higher than that 
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the ideal value of graphite (372 mAh g
-1

) [28]. The reasons are attributed to that lithium 

ions can not only be stored into stable sites located in graphitic layers, but also on the 

surface of nanotubes [27]. In addition, the 1D structure of CNTs can shorten the path 

lengths for lithium-ion diffusion, meanwhile keeping excellent electron transport along 

the tubes. Both factors are beneficial for the improvement of LIB performance. Recent 

studies also revealed that defective sites in CNTs could enable reversible lithium storage 

in CNTs [4]. For example, the specific capacity of SWCNTs could be increased from 600 

to 1000 mAh g
-1

 by ball-milling [28]. Another approach to effectively modify CNTs is 

doping foreign atoms [24]. Elemental doping could not only introduce defects into CNTs 

[29], but also improve their electronic conductivity [25]. These factors are beneficial for 

the LIB performance of CNTs. Figure 1.8 compares the cycling performance of NCNTs 

and CNTs. It can be seen that NCNTs could maintain a discharge capacity of around 400 

mAh g
-1

, which is 1 time higher than that of CNTs [29]. Therefore, systemic studies will 

be carried out in this thesis to incorporate different doping elements, such as N and P, 

into CNTs for potential LIB applications.  

1.3.1.2 Lithium titanate (Li4Ti5O12) 

To solve the problems associated with SEI, one way is to employ an anode material with 

higher working voltage than graphite (< 0.5 V vs. Li/Li
+
) to avoid the decomposition of 

electrolytes. From this point of view, spinel lithium titanate (Li4Ti5O12) has gained great 

research attention. Li4Ti5O12 can accommodate three lithium ions at a working potential 

of about 1.55 V (vs. Li/Li
+
), and transform into rock salt structure Li7Ti5O12 according to 

the following insertion reaction [30-33]: 

Li4Ti5O12 + 3Li
+
 + 3e

-
               Li7Ti5O12                                                  (1-3) 

The crystal structures of Li4Ti5O12 and Li7Ti5O12 are depicted in Figure 1.9 [34]. The 

high working potential not only avoids the formation of SEI, but improves the battery 

safety by eliminating the formation of lithium dendrites [32]. Moreover, Li4Ti5O12 has a 

negligible volume change of only 0.2 %, when transformed into Li7Ti5O12, and as a result 

Li4Ti5O12 is also known as a “zero strain” material [32, 35]. Combined with the low cost 

Charge 

Discharge 
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and environmental friendliness, Li4Ti5O12 has been becoming one of the most promising 

anode materials for practical LIBs. 

 

Figure 1.9 (a) Li4Ti5O12 spinel structure type and (b) Li7Ti5O12 rock salt structure type: 

blue tetrahedra represent lithium, and green octahedra represent disordered lithium and 

titanium [34]. 

To achieve high rate capability, lithium insertion materials need to have good electronic 

conductivity and good lithium-ion conductivity. However, Li4Ti5O12 has an exceptionally 

low electronic conductivity (< 10
-13

 S cm
-1

 [36]), due to the empty Ti 3d state with band 

energy of about 2 eV [32]. To improve the rate capability of Li4Ti5O12, it is essential to 

understand the intercalation process of lithium ions into Li4Ti5O12, which involves three 

steps: (1) lithium ions diffuse from the bulk electrolyte solution to the electrode surface; 

(2) a charge-transfer reaction occurs at the surface of Li4Ti5O12, accompanied by 

accepting electrons and lithium ions; and (3) the lithium ions diffuse into the bulk 

Li4Ti5O12 [32]. Accordingly, two general strategies are generally adopted to improve the 

rate capability of Li4Ti5O12: the first one is to enhance the electronic and lithium-ion 

conductivities via surface modification or ion doping, and the other is to reduce the 

lithium-ion diffusion distance in the bulk Li4Ti5O12 by preparing nanosize Li4Ti5O12 

materials [32]. Carbon coating or Li4Ti5O12/carbon nanomaterial composites is proven to 

be effective approaches [32, 33]. Doping with cations and anions (Mg
2+

, Ni
3+

, Al
3+

, Cr
3+

, 

Co
3+

, Fe
3+

, Mn
3+

, Ga
3+

, Zr
4+

, Mo
4+

, V
5+

, Ta
4+

, Fe
-
 and Br

-
) in Li, Ti or O sie has been 

widely studied to be able to tail the conductivity of Li4Ti5O12 [32, 33]. Li4Ti5O12 with 

various morphologies, such as nanoparticles, hollow structure, nanowires and nanotubes, 
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have been synthesized [32, 33]. Preparing novel nanostructured Li4Ti5O12 is the approach 

adopted in this thesis. 

1.3.2 Development of surface-modification materials 

1.3.2.1 The role of surface modification in LIBs 

Surface modification is an effective approach to improve the LIB performance of 

electrode materials, such as cycling stability, rate capability and safety. It is achieved by 

coating the surface of electrode materials with additional materials for the purpose of 

preventing or alleviating undesirable side reactions between electrode materials and 

liquid electrolytes. During the past decades, surface modification has been widely used as 

an easy but effective way to enhance the LIB performance of both the anode and cathode.  

 

Figure 1.10 (a) The cycling-life performances for ZrO2-, Al2O3-, TiO2-, B2O3- coated and 

uncoated (bare) LiCoO2 (n: cycle number, x: discharge capacity); (b) Lattice constant c in 

ZrO2 (■), Al2O3 (+), TiO2 (□), B2O3 (∆) coated and bare  LiCoO2 (●) as a function of x in 

Li1-xCoO2 during the first charge (c = lattice constant) [31]. 

Surface coating on cathode materials has been proven to be able to prevent their direct 

contact with the electrolyte solution, suppresss the phase transition, improve structural 

stability, and decrease the disorder of cations in crystal sites, therefore improving their 

electrochemical performance [37]. For example, the reversible amount of lithium x in Li1-

xCoO2, the most commercialized cathode material, is general below 0.5, as lithiation of x 

over 0.5 at potential higher than 4.2~4.3 V (vs. Li/Li
+
) leads to rapid deterioration of the 

stability [38]. The reason is due to the fracture of Li1-xCoO2 particles resulted from the 
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volume change and cation disorder, and the structural degradation of LiCoO2 related to 

the dissolution of Co
4+

 into the electrolyte solution when x > 0.5 [37]. Extensive studies 

have shown that the above problems could be addressed by nanoscale coating layers on 

the LiCoO2 powders. Different kinds of coating materials, including Al2O3, ZrO2, TiO2, 

SnO2, ZnO, B2O3, metal phosphates and metal fluorides [37, 39], have been explored for 

the purpose of surface modification. Figure 1.10a compare the cycling performance of 

bare LiCoO2 and LiCoO2 coated with ZrO2, Al2O3, TiO2, and B2O3 [39]. It is obvious that 

LiCoO2 with coating materials exhibited better cycling life than that without coating, and 

ZrO2 coating had the best influence on LiCoO2 performance among the coating materials 

studied [39]. More interestingly, the cycling improvement of LiCoO2 could be associated 

with the suppression of non-uniform strain during delithiation by surface coatings, as 

indicated by the change in c lattice constant in Figure 1.10b. This strategy is applicable to 

other cathode materials, such as LiNiO2, LiMn2O4 and LiNi1/3Co1/3Mn1/3O2 and so on. 

For instance, surface coating on LiMn2O4 could prevent the dissolution of Mn
4+

 by HF 

generated from F-containing inorganic electrolyte salt, and then improve its cycling 

behavior, especially at elevated temperatue [37]. In addition, surface coating also served 

to improve the electric conductivity of LiMn2O4 (10
-6

 S cm
-1

) for better rate capability of 

LIBs. Li2O·2B2O3 glass, MgO, Al2O3, Li1-xCoO2 (x ≥ 0), ZnO, ZrO2, composite oxides, 

conductives and polymers have been applied as coating materials for LiMn2O4 [37]. 

Besides cathode materials, surface modification was also used in their anode counterparts. 

Graphite was one representive example. It is well know that the performance of graphite 

fades gradually during long-term cycling, mainly due to graphite exfoliation associated 

with co-intercalation of the electrolyte into its graphene layers during charging [40]. 

Moreover, the formation of SEI combined with the graphite exfoliation leads to first-

cycle irrversible capacity [14, 15, 40]. Many effors have been devoted to minimizing the 

side reactions, and it has been proven as an effective approach to coat graphite particles 

with an artifical layer. Different coating materials, including AlF3, ZrO2, Al2O3 and 

AlPO4, have been studied and shown to affect the LIB performance of graphite anode 

positively [40-43]. For example, ZrO2 film was coated on graphite using a sol-gel method 

followed by thermal annealing, and the ZrO2 coated graphite exhibited a capacity higher 

than the theoretical value and a pronounced stability upon cycling [42]. The reason was 
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attributed to the protection effect of nanocrystalline-ZrO2 and in situ formed surface films 

on graphite from destruction [42]. Similarly, AlPO4-coated graphite showed more stable 

cycling performance than non-coated one, due to its much smaller charge-transfer 

resistance than the latter [41]. 

1.3.2.2 The opportunity of atomic layer deposition for surface-modification materials 

 

Figure 1.11 Schematic of three types of surface coating: rough coating, core-shell 

structure and ultra thin film [44]. 

The surface-modification materials were usually coated on the electrode materials by a 

wet-chemical method in previous studies [37-43], which lacks control on the quality of 

the coating layers. Recently, it has been realized that the morphology of coating layers is 

critical to suppress or alleviate undesired side reactions between the electrode materials 

and electrolyte solution. To achieve maximized surface-modification effect, the ideal 

coating layers on the electrode materials should be ultra thin and continuous films, as 

schematically shown in Figure 1.11Figure 1.10 [44]. A rough coating would leave some 

bared electrode materials directly exposed to the electrolyte, while a thick coating layers 

in core-shell type structure would impede the diffusion of electrons and lithium ions, 

considering the fact that most of the available coating materials, such as ZrO2, Al2O3, and 

TiO2, are non-conductive or poorly conductive of both electrons and lithium ions. By 

contrast, coating with ultra thin and continuous films could effectively prevent the 

undesired side reactions by forming dense layers on the electrode surface, and meanwhile 
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keep the fast transports of electrons and lithium ions through the thin coating layers. 

From this aspect, atomic layer deposition (ALD) has an exclusive advantage over other 

film deposition techniques, such as sol-gel method, chemical vapor deposition (CVD), 

physical vapor deposition (PVD). 

1.3.2.2.1 Fundamentals of ALD 

ALD can be defined as a film deposition technique that is based on the sequential use of 

self-limiting gas-solid reactions. The concept of ALD was first realized by Suntola and 

co-workers from Finland in 1970s [45]. Distinct from other film deposition techniques, 

such as CVD and PVD, in a ALD process, the chemical source vapors are introduced into 

the reaction chamber alternatively, one at a time, separated by purging or evacuation 

periods, as shown in Figure 1.12 [46]. Each precursor exposure step saturates the surface, 

resulting in the self-limiting film growth by ALD [46]. 

 

Figure 1.12 Schematic representation of ALD using self-limiting surface chemistry and 

an AB binary reaction sequence [46]. 

To demonstrate reaction mechanism of an ALD process, a model system binary Al2O3 

deposited by ALD from trimethylaluminum (TMA) and water is taken as an example, 

and the process is illustrated in Figure 1.13. The overall reaction between TMA and water 

happened in a CVD process is described as follows [46, 47]: 

2Al(CH3)3 + 3H2O → Al2O3 + 6CH4            ∆H = - 376 kcal               (1-4) 
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The driving force for this reaction is the formation of a very strong Al-O bond, and this 

reaction has very high reaction enthalpy [47]. In comparison, ALD of Al2O3 proceeds in 

two half reactions suggested as follows [46, 47]: 

‖-OH + Al(CH3)3 →‖-O-Al(CH3)2 + CH4                                         (1-5) 

‖-O-Al(CH3)2 + 2H2O →‖-O-Al(OH)2 + 2CH4                                                 (1-6) 

where “‖” represents the substrate surface. The two half reactions are carried out in four 

steps: (i) chemisorption reaction of the TMA precursor (step 1); (ii) purge or evacuation 

to completely remove the unreacted TMA precursor and gaseous byproducts (step 2); (iii) 

chemisorption reaction of the water precursor (step 3); (iv) purge or evacuation to remove 

the unreacted water precursor and gaseous byproducts (step 4), as seen in Figure 1.13. 

The four steps achieve one ALD cycle, which can be repeated as many as necessary to 

realize Al2O3 thin film with desirable thickness. 

 

Figure 1.13 Schematic of ALD deposition of Al2O3 using TMA and water as precursors. 

In an ALD process, there are a few important terms deserved to be emphasized as follows.  
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(1) ALD cycles. As introduced in Al2O3, the film growth by ALD takes place in a cyclic 

manner. In the simplest binary case, one ALD cycle consists of four steps: (i) exposure of 

the first precursor; (ii) purge or evacuation of the reaction chamber; (iii) exposure of the 

second precursor; (iv) purge or evacuation of the reaction chamber [48]. The thickness of 

the deposited thin films is precisely controlled by repeating different ALD cycles. 

(2) Growth rate per cycle (GPC). Growth rate of thin films deposited by ALD is usually 

expressed in terms of thickness increment per cycle, which is nanometer per cycle or 

angstroms per cycle. After obtaining thin films, its GPC can be determined by dividing 

the measured film thickness by the number of ALD cycles applied. 

 

Figure 1.14 Growth rate per cycle vs pulse time in ALD processL (a) fast and (b) slow 

chemisorption reactions with no decomposition or etching, (c) chemisorption reactions 

followed by precursor decomposition, and (d) chemisorption reactions followed by 

etching reaction [48]. 

(3) Pulse time. Pulse time directly represents the amount of precursors introduced into 

the reaction chamber. In an ideal ALD process (as seen Figure 1.14a, b), the pulse time 

should be long enough to realize saturated growth of thin films. In this case, the GPC will 

remain constant with further increase of pulse time. One the other hand, if pulse time is 

too short, the supplied precursors are not sufficient to react all of the surface species, thus 

resulting in the decreased GPC and compromised film uniformity. In real cases, the GPC 

might increase with more pulse time with no saturation, due to the thermal decomposition 
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of the precursor (Figure 1.14c), or the GPC might increase and then continuously 

decrease with increasing pulse time, as a result of film etching from reaction byproducts  

(Figure 1.14d) [48]. 

 (4) Purge time. In one ALD cycle, the second and fourth steps are to purge or evacuate 

the reaction chamber. The time for purge or evacuation should be sufficient to remove the 

entire remaining precursor and any byproducts, in order to prevent the appearance of two 

precursors in the reaction chamber at the same time. 

 

Figure 1.15 various growth rate vs temperature in ALD processes. S1: self-limiting 

growth with temperature-independent rate; S2: self-limiting growth with temperature-

dependent rate; L1: self-limiting not reached because of slow reaction; L2: self-limiting 

growth rate exceeded because of multilayer adsorption or condensation; H1: self-limiting 

not maintained because of precursor desorption; H2: self-limiting growth rate exceeded 

because of precursor decomposition [48]. 

(5) ALD window. ALD window is a temperature range where self-limiting growth of thin 

films by ALD can be achieved (Figure 1.15). In ALD window, the GPC can be constant 

regardless of temperature (S1 in Figure 1.15), or can change as a function of temperature 

(S2 in Figure 1.15). In the latter case, the reason is usually due to the change of surface 

reactive sites or/and reaction mechanisms with temperature [47, 48]. Out of ALD window, 

the GPC might increase due to the condensation (L2 in Figure 1.15) or decomposition 

(H2 in Figure 1.15) of precursors, or the GPC might decrease as a result of the slow 
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reaction (L1 in Figure 1.15) or precursor desorption from the surface (H1 in Figure 1.15). 

In any of these cases, the deposition of thin films lacks of controllability and is not a real 

ALD process any more. 

1.3.2.2.2 Benefits of ALD 

The unique working mechanism enables ALD many benefits for deposition of thin films. 

First of all, ALD can achieve the highest step coverage of thin films among available 

deposition techniques. Figure 1.16 compares the step coverage of different thin film 

deposition techniques [49]. PVD has very poor step coverage on 3D substrates, mainly 

due to line-of-sight deposition, and the application of PVD is limited to planar substrates.  

 

Figure 1.16 Schematic diagram of step coverage of different thin film deposition 

techniques: (a) sol-gel; (b) PVD; (c) CVD; (d) ALD [49]. 

The thin films deposited by CVD can somehow cover the surface of 3D substrates. But 

the film thickness varies along the flow direction, due to the presence of boundary layer 

and precursor concentration gradient. By contrast, ALD can achieve thin films with good 

step coverage in 3D substrates, even on high-aspect-ratio structures [50]. Secondly, the 

thickness of thin films deposited by ALD can be precisely controlled at atomic level, 

owing to its self-limiting nature. The growth rate of thin films is usually at the order of 

magnitude of angstroms. For example, the growth rate of ALD-Al2O3 using TMA and 

water as precursors was about 1.3 Ǻ/cycle [51]. Thirdly, the thin films deposited have 

excellent uniformity and conformality. Figure 1.17 shows a SEM image of uniform Al2O3 

deposited by ALD on a Si substrate with trend structure [52]. Furthermore, ALD is 

featured with the low temperature deposition (usually ≤ 400 
o
C), even down to room 
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temperature (RT) in some cases. This characteristic makes ALD suitable for deposition of 

thin films on sensitive substrates. 

 

Figure 1.17 Cross-sectional SEM image of an Al2O3 ALD film with a thickness of 300 

nm on a Si wafer with a trench structure [52]. 

1.3.2.2.3 Applications of ALD in surface modification for LIBs 

 

Figure 1.18 (a) High resolution transmission electron microscopy (HRTEM) image of 

the Al2O3-coated nanosized LiCoO2 particles by 6 ALD cycles on the bare powders; (b) 

cycling performance of the bulk LiCoO2 electrode, nanosized LiCoO2 electrode without 

and with 2-cycle Al2O3 coating [53]. 

Given the aforementioned advantages, ALD is an ideal technique to realize ultra thin and 

continuous films required for surface modification in both the cathode and anode of LIBs. 

It is not until last three years that the potential of ALD for surface-modification in LIBs 

was recognized, and up-to-date research in this field is summarized in Table 1-1 [53-69]. 

Scott et al. [53] reported that nanosized LiCoO2 electrode coated with only 2-cycle Al2O3 
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by ALD had dramatically improved cycling stability and rate capability than bare LiCoO2, 

and it could deliver a discharge capacity of 133 mAh/g at a high current density of 1400 

mA/h (7.8 C), as presented in Figure 1.18. It is worth noting that Al2O3 deposited with 6 

ALD cycles was very uniform and thin, only ~ 1 nm in thickness, as seen in Figure 1.18a. 

This study showed that to achieve improved LIB performance, it was critical to deposit 

Al2O3 directly on LiCoO2 electrode, rather than on LiCoO2 powders. In the latter case, the 

Al2O3 coating would isolate the LiCoO2 powders, resulting in blocked diffusion pathway 

for lithium ions and electrons. Later on, researches by other groups confirmed the similar 

influence of ALD-Al2O3 coating on the LIB performance of LiCoO2 electrode [54, 55, 

57]. The work by Cheng et al. [57] compared Al2O3 (TMA-H2O) and TiO2 (TTIP-H2O) 

coatings on the LIB performance of LiCoO2. They found that a 10-cycle Al2O3 coating 

could eliminate capacity fading effectively, while TiO2 coating needed 50 cycles in order 

to achieve similar improvement, as shown in Figure 1.19. Another contribution of this 

work is that the authors related the LIB performance improvement to the band gap of 

coating materials. They pointed out that large band gap materials should be considered as 

ALD coating layers on cathode materials [57]. 

 

Figure 1.19 Discharge capacity as a function of cycle number of the cells with (a) 0, (b) 

10 Al2O3, (c) 50 TiO2 ALD cycles performed on the LiCoO2 electrode [57]. 

Besides in LiCoO2, ALD coating strategy has been applied in other cathode systems, 

including LiMn2O4 [56, 61, 62], LiNi1/3Mn1/3Co1/3O2 type [58-60]. In addition to ALD- 

Al2O3, ALD-ZrO2 and ALD-ZnO were also found to be capable of improving the cathode 
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performance [61, 62]. It was reported that LiMn2O4 coated with 2-10 cycle ZrO2 (ZTB-

H2O) exhibited much higher capacity than the bare LiMn2O4 at a testing condition of 55 

o
C [61]. ZnO deposited from DEZ and water at 120 

o
C had the similar function as Al2O3 

and ZrO2, in terms of improving LIB performance of LiMn2O4 [62]. In all cases, the 

improvement of cathode performance was more obvious at higher temperatures for cell 

cycling than at lower ones. Up to now, Al2O3, ZrO2, ZnO and TiO2 by ALD have been 

explored as coating materials in the cathode system, as summarized in Table 1-1. 

 

Figure 1.20 Schematic representation of the effects of volume expansion upon (a) bare 

particles, (b) an ALD coated nano-MoO3 particle and (c) a particle from an ALD coated 

porous electrode [69]. 

ALD coating of metal oxides was also used in the anode materials, including graphite, Si, 

Li4Ti5O12, MoO3 and Fe3O4 [54, 63-69]. ALD coating of Al2O3 and TiO2 on commercial 

graphite could improve its cycling stability, coulombic efficiency and thermal stability, 

especially at elevated temperatures (50-55 
o
C) [53, 63]. It was explained that the metal 

oxide coatings by ALD could act as artificial layers to prevent the decomposition of the 

electrolytes [63]. In these studies, it was revealed that the metal oxides were better coated 

on graphite electrode than on graphite powders, for the same reason in the cathode. For Si 

and MoO3 anode materials, ALD coating of metal oxides still could enhance their cycling 

performance, but attributed to a different working mechanism [63, 65, 69]. Figure 1.20  
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Table 1-1 Summary of ALD coating to improve the LIB performance of the cathode and 

anode [53-69]. 

ALD coating 

material 
Precursors Temperature Electrode materials Ref. 

Cathode 

Al2O3 TMA, H2O 180 
o
C LiCoO2 53-55 

Al2O3 TMA, H2O 120 
o
C LiMn2O4 56 

Al2O3 TMA, H2O 120 
o
C LiCoO2 57 

TiO2 TTIP, H2O 120 
o
C LiCoO2 57 

Al2O3 TMA, H2O 180 
o
C LiNi1/3Mn1/3Co1/3O2 58 

Al2O3 TMA, H2O 80 
o
C Li1.2Ni0.15Mn0.55Co0.1O2 59 

Al2O3 TMA, H2O 180 
o
C Li1.2[Li0.20Mn0.54Ni0.13Co0.13]O2 60 

ZrO2 ZTB, H2O 120 
o
C LiMn2O4 61 

ZnO DEZ, H2O 120 
o
C LiMn2O4 62 

Anode 

Al2O3 TMA, H2O 180 
o
C Graphite 54 

Al2O3 TMA, H2O < 150 
o
C Graphite 63 

TiO2 TiI4, H2O < 150 
o
C Graphite 63 

Al2O3 TMA, H2O 250 
o
C Si 54 

Al2O3 TMA, H2O 180 
o
C Si 65 

Al2O3 TMA, H2O 180 
o
C Li4Ti5O12 66 

TiN TiCl4, NH3 500 
o
C Li4Ti5O12 67 

Al2O3 TMA, H2O 180 
o
C Fe3O4/mesocellular carbon foam 68 

Al2O3 TMA, H2O 180 
o
C MoO3 69 

Note: TTIP represents titanium isopropoxide (Ti(OCH(CH3)2)4); ZTB is zirconium tert-

butoxide (Zr(OC(CH3)3)4; DEZ stands for diethylzinc Zn(CH2CH3)2. 

illustrates the evolution of a MoO3 nanoparticle during one cycling [69]. Since MoO3 is 

an electrical insultor, the carbon additive (the black small circles in Figure 1.20) and 

MoO3 (the white circle in Figure 1.20) interface is critical to the overall conductivity and 

electrical resistance of the electrode. As shown in Figure 1.20a, the large volume change 

in bare MoO3 nanoparticles during charge/discharge process leads to the pulverization of 

the active particles and loss of physical connection with carbon additives, which are 

responsible for the rapid degradation of the LIB performance. Direct coating of ALD-

Al2O3 layer on the electrode can maintain the electrical contact of MoO3 nanoparticles 

and carbon additives, thereby delaying the fading of the LIB performance, as shown in 

Figure 1.20c. In comparsion, ALD-Al2O3 coating can result in worse LIB performance of 
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MoO3 nanoparticles, because of the physical insulation of MoO3 from carbon additives. 

Besides widely used Al2O3, TiO2, and TiN prepared by ALD have been investigated in 

the anode [63, 67] 

From above discussion, we can clearly see that ALD technique is advantageous for 

modifying electrode materials with ultra thin and uniform coating layers, thanks to its 

unique self-limiting nature, Even though some progresses have been made so far, ALD 

deserves to be explored further for surface modification purpose in LIBs. For instance, 

current research in this area was mainly focused on ALD-Al2O3 from TMA and water, 

the most successful ALD system. Many good coating materials with potentials in LIBs 

[29], such as AlPO4, ZrO2, should be developed by ALD, and then applied for surface-

modification applications. Furthermore, more efforts should be devoted to understanding 

the underlying mechanism for performance improvement by ALD coating. 

1.4 Thesis objectives 

LIBs are promising on-board power supply systems for EVs and HEVs, which can reduce 

humankind’s reliance on fossil fuels and solve related environmental problems. However, 

current LIBs composed of graphite/LiCoO2 are too limited in their overall performance, 

especially the low energy and power density, and cannot meet the requirements in EVs 

and HEVs. As LIB performance is highly dependent on the choice of electrode materials 

(the anode and cathode), development of new electrode materials with high theoretical 

specific capacities becomes a key step to obtain suitable LIBs for EVs and HEVs, which 

should exhibit higher energy density, better rate capability and higher safety performance. 

Due to their unique properties, nanomaterials and nanotechnology, are expected to play a 

critical role in reaching the above goal, and brings EVs and HEVs into commercialization. 

In this content, the author will be devoted to developing a variety of advanced 

nanomaterials for high-performance LIBs. 

Part I: To synthesize novel anode nanomaterials 

(1) To develop scalable method to produce nitrogen-doped carbon nanotubes as potential 

anode materials and components for hybrid nanocomposites. A relation between different 
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experimental parameters and the quality of nitrogen-doped carbon nanotubes will be 

established. 

(2) To explore a feasible way to incorporate phosphorus element into carbon nanotubes 

for potential anode application. The influence of phosphorus doping on the structure and 

morphology of carbon nanotubes will be investigated, and its working mechanism will be 

explored. 

(3) To develop a fast and energy-efficient approach to synthesize Li4Ti5O12 nanomaterials. 

Controlled synthesis of different Li4Ti5O12 nanostructures will be achieved by adjusting 

experimental parameters, and their electrochemical performance will be evaluated. 

Part II: To develop various surface-modification materials by ALD 

(4) To develop different kinds of coating materials by ALD for the purpose of surface 

modification in LIBs. The coating materials include ZrO2, AlPO4, and LiTaO3 solid-state 

electrolyte. Different substrates, including nitrogen-doped carbon nanotubes, graphene 

nanosheets, Si (100) and anodic aluminum oxide (AAO) template, will be used in 

different systems. 

(5) To study the growth characteristics of different coating materials, including ZrO2, 

AlPO4, and LiTaO3 solid-state electrolyte, on various substrates at different temperatures. 

Substrates are playing an important role for the start of ALD deposition of thin films, 

while temperatures have big influence on the morphology and crystallinity of deposited 

thin films.  

(6) To investigate the effect ALD-ZrO2 coating on the electrochemical performance of 

Li4Ti5O12 anode material. More importantly, the underlying mechanism of ZrO2 coating 

will be revealed and discussed. 

1.5 Thesis organization 

This thesis consists of twelve chapters (two introductory chapters, eight articles and one 

conclusive chapter), and are organized in an “Integrated-Article” format as outlined in the 
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Thesis Regulation Guide by the School of Graduate and Postdoctoral Studies (SGPS) of 

the University of Western Ontario. Specifically, this thesis includes the following parts. 

Chapter 1 gives a general introduction to lithium-ion batteries (LIBs), challenges existed 

in LIBs used for electric vehicles and hybrid electric vehicles, and the solutions offered 

by nanomaterials and nanotechnology. Moreover, the research objectives and the thesis 

structure are also stated clearly. 

 

Figure 1.21 Thesis structure and interrelationships between chapters. 

Chapter 2 outlines the methods used for synthesis of nanomaterials in this thesis, and the 

characterization techniques used to analyze their physical and electrochemical properties. 

The principle research results are presented in chapters 3-10 in this thesis and their 

interrelationships are shown in Figure 1.21. 

Chapter 3 reports a new method, ultrasonic spray pyrolysis, to synthesize high-quality 

nitrogen-doped carbon nanotubes with tunable structure on a large scale. The effect of 

different experimental parameters on the morphology, structure, nitrogen-doping content 

and quality of nitrogen-doped carbon nanotubes was investigated in detail. 
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Chapter 4 presents the attempt to prepare phosphorus-nitrogen doped carbon nanotubes 

by a chemical vapor deposition method. It demonstrated that the structure of phosphorus-

nitrogen doped carbon nanotubes changed dramatically with the amount of phosphorus 

precursor (triphenylphosphine) used during synthesis process. The underlying mechanism 

for the structure change was explored and discussed.  

Chapter 5 describes synthesis of nanoflower-like and nanoparticle Li4Ti5O12 prepared by 

a microwave-assisted hydrothermal method and their electrochemical performance as 

anode materials. LIB performance of the nanoflower-like and nanoparticle Li4Ti5O12 was 

compared, and the result indicated that the nanoflower-like Li4Ti5O12 exhibited much 

higher specific capacity than the nanoparticle Li4Ti5O12, due to the larger specific surface 

area of the former sample. 

Chapter 6 fulfills the fabrication of ZrO2 on nitrogen-doped carbon nanotubes by atomic 

layer deposition technique. The study found that the as-deposited tubular ZrO2 were well 

tunable in its crystallinity by simply changing deposition temperature, from amorphous at 

100 
o
C, crystalline at 250 

o
C, and a mixture of the former two phases at 150-200 

o
C. 

Moreover, the thickness of ZrO2 thin films could be simply but precisely controlled by 

adjusting ALD cycles. Furthermore, the growth mechanisms for ZrO2 thin films by ALD 

were discussed and proposed at last. 

Chapter 7 represents an extended study of atomic layer deposition of ZrO2 on a new 2D 

carbon substrate, graphene nanosheets. It showed that the morphology of ZrO2 evolved 

from nanoparticles to thin films with ALD cycles, and the phase of ZrO2 trended to be 

more crystalline with elevating ALD deposition temperature. The growth mechanisms for 

ZrO2 were proposed based on the morphological and structural evolution. 

Chapter 8 gives an example of application of atomic layer deposition in anode materials. 

Ultrathin atomic layer deposited ZrO2 was used to coat nanoflower-like Li4Ti5O12 anode 

material, aiming at enhancing its LIB performance in an extended voltage range (0.1-2.5 

V). The investigation revealed that ZrO2 coating with no more than 5 ALD cycles could 

effectively improve the specific capacity and rate capability of Li4Ti5O12. The underlying 

reason for the performance improvement was explored and discussed. 
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Chapter 9 reports development of aluminum phosphate (AlPO4), an excellent coating 

material in LIBs, by atomic layer deposition method. Two ALD subcycles, Al2O3 (TMA-

H2O) and POx (TMP-O3), were combined to obtain aluminum phosphate. The Al/P ratio 

in aluminum phosphate was controlled by adjusting the subcycle ratio of Al2O3 to POx. 

The aluminum phosphate deposited by using 1 Al2O3 subcycle and 10 POx subcycles had 

a composition of Al1.3PO5.1, showing thickness dependence on ALD cycles.  

Chapter 10 describes atomic layer deposition of lithium tantalate (LiTaO3) thin films, 

which can be used as both solid-state electrolytes and surface-modification materials. 

Lithium tantalate thin films were deposited by combining subcycles of Li2O and Ta2O5. 

The film composition varied with the subcycle ratio of Li2O to Ta2O5. Moreover, as a 

solid-state electrolyte, lithium tantalate with a composition of Li5.1TaOz exhibited a 

lithium-ion conductivity of 2 × 10
-8

 S/cm at 299 K. Furthermore, the lithium tantalate 

thin films prepared by ALD showed excellent uniformity and good coverage on a 3D 

substrate (AAO template). 

Chapter 11 summarizes the results and contributions of this thesis work. Furthermore, 

the author gives some personal opinions and suggestions for future work. 
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Chapter 2 Experimental Apparatus and Characterization 

Techniques 

2 Experimental 

2.1 Experimental apparatus 

2.1.1 Ultrasonic spray pyrolysis 

  

Figure 2.1 Schematic illustration of ultrasonic spray pyrolysis. 

Figure 2.1 shows the schematic illustration of ultrasonic spray pyrolysis method for the 

growth of powder-based nitrogen-doped carbon nanotubes. This setup mainly consists of 

three parts called the injection part, the ultrasonic part, and the deposition chamber. In the 

injection part, the solution stored in a syringe is injected into the ultrasonic part at a 

certain feeding rate, which can be precisely controlled on the syringe control panel. In the 

ultrasonic part, the solution fed by the injection part is atomized in an ultrasonic 

processor (VCX 130 PB, Sonics & Materials Inc.), and sprayed out as tiny droplets into 

the deposition chamber. Ultrasonic frequency of the solution can be controlled on the 

control panel of the ultrasonic processor. The deposition chamber consists of a vertical 
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electrical furnace (50 cm length), a quartz tube (Ø2.2× 70 cm) with two gas inlets at the 

top and one gas outlet at the bottom, and a quartz plate (1×20×90 mm) attached on a 

substrate support as the substrate for the growth of nitrogen-doped carbon nanotubes. 

Once sprayed out by the ultrasonic processor, the solution droplets will be carried by 

argon (Ar) gas into the center of the furnace, where the pyrolysis occurs. 

2.1.2 Floating catalyst chemical vapor deposition 

 

Figure 2.2 Schematic illustration of floating catalyst chemical vapor deposition. 

Figure 2.2 shows the setup of floating catalyst chemical vapor deposition (FCCVD). The 

temperature is controlled by a tube furnace (Linderg/Blue M, Thermal Scientific). A 

quartz tube (Ø 2.2 cm) with one inlet and one outlet is put in the tube furnace. Ar gas 

(99.999 % in purity) is applied as the carrying and protecting gas. Substrate is placed in 

the center of the tube furnace, while chemicals are located at the furnace entrance.  

2.1.3 Microwave-assisted hydrothermal method 

 

Figure 2.3 Microwave-assisted hydrothermal apparatus [1]. 
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Synthesis of materials using microwave-assisted hydrothermal method is performed in a 

Synthos 3000 instrument (Anton Paar), as seen in Figure 2.3. This instrument can deliver 

1400 W of continuous, unpulsed microwave power via two magnetrons, ensuring fast and 

effective heating rates as well as smooth reaction control [1]. This system also allows 

reactions under extreme conductions. For example, using XF100 model, the operating 

pressure can reach 60 bar, while the maximum temperature is 260 
o
C [1]. In addition, this 

apparatus enables direct scale-up of reactions from batch sizes up to liter volumes. 

2.1.4 Atomic layer deposition system 

 

Figure 2.4 A picture of Savannah 100 ALD system. 

Synthesis of materials using atomic layer deposition (ALD) technique is performed in 

Savannah 100 ALD system (Ultratech/Cambridge Nanotech., USA). Figure 2.4 shows a 

picture of Savannah 100 ALD system used in our laboratory. Figure 2.5 illustrates the 

setup of the Savannah 100 ALD system and its controlling program. This ALD system 

consists of precursor bottles, manifold, a reaction chamber, a pressure sensor, a vacuum 

pump, an e-box for controlling the system and a computer. The deposition temperature in 

the reaction chamber varied from room temperature (RT) to 400 
o
C. The precursor bottles 

can be heated up to 200 
o
C to provide sufficient vapors for ALD processes. The system 

operating pressure is about 0.4-0.5 Torr sustained by the vacuum pump. Ar gas (99.999% 

in purity) is used as a carrying gas at a flowing rate of 20 sccm. All parameters for ALD 
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synthesis and the ALD processes are controlled by LABVIEW program installed in the 

computer, and an example of the program in an exposure mode is presented in Figure 2.5. 

In the left panel of Figure 2.5, the upper part shows the sequences of an ALD process, 

while the bottom part gives real-time monitoring of the system pressure.  

 

Figure 2.5 A screen snapshot showing the setup of Savannah 100 ALD system and its 

controlling program. 

2.2 Characterization techniques 

2.2.1 Physical characterizations 

A variety of analytical techniques, including SEM, TEM, HRTEM, XRD, Raman, XPS 

and FTIR, have been used to fully characterize the physical and chemical properties of 

the prepared samples. 

High-resolution scanning electron microscope (SEM, Hitachi S-4800) equipped with 

energy dispersive X-ray spectroscopy (EDS), is used to observe the morphology of the 

produced samples and to analyze their elemental compositions. The magnification of 
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Hitachi S-4800 is in a range of × 20 - × 800, 000. The resolution of secondary electron 

image is 2.0 nm at 1 kV in a standard mode. The instrument is shown in Figure 2.6. 

 

Figure 2.6 A picture of Hitachi S-4800 high-resolution scanning electron microscope. 

 

Figure 2.7 A picture of Hitachi H-7000 transmission electron microscope. 

Transmission electron microscope (TEM, Hitachi H-7000) is applied to obtain structural 

information of the prepared samples. The resolution of Hitachi H-7000 TEM is 0.4 nm at 

125 kV, higher than that of Hitachi S-4800 SEM. A picture of this instrument is given in 

Figure 2.7. Besides conventional TEM, high-resolution TEM (HRTEM, JEOL JEM-2100) 

operating at 200 kV is also used to analyze the structure of the samples. JEOL JEM-2100 
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HRTEM is available at Canadian Center for Electron Microscopy (CCEM) located at 

McMaster University. 

Power X-ray diffraction (XRD, Rigaku RU-200BVH) is used to gain phase information 

of the prepared samples. The Rigaku RU-200BVH is operated using a Co-Kα source 

( λ=1.7892 Å). 

 

Figure 2.8 A picture of HORIBA Scientific LabRAM research Raman spectroscopy. 

Raman spectroscopy (HORIBA Scientific LabRAM) is used as a supplementary tool to 

analyze the structure or the phase of the samples. Raman spectroscopy is operated with 

an incident laser beam (green light) at 532.03 nm. This instrument is available in our 

laboratory, and its picture is shown in Figure 2.8. 

X-ray photoelectron spectroscopy (XPS, Kratos AXIS Ultra Spectrometer) is used to 

analyze elemental composition of the prepared samples and the chemical environments of 

detected elements. This instrument is available at Surface Science Western. 

Fourier transform-infrared spectroscopy (FTIR, Nicolet 6700 FTIR spectrometer) is used 

to obtain useful information about functional groups sitting at the surface of the prepared 

samples. 
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2.2.1 Electrochemical characterizations 

 

Figure 2.9 A picture of VMP3 Potentiostat/Galvanostat/EIS system. 

 

Figure 2.10 A picture of Arbin BT-2000 battery test station. 

Cyclic voltammogram (CV) performance of the anode materials is evaluated in a VMP3 

Potentiostat/Galvanostat/EIS system (see Figure 2.9). Cycling stability and rate capability 

of the anode materials are tested in a Arbin BT-2000 battery test station (see Figure 2.10). 

Coin-type half-cells composed of a prepared electrode, polypropylene separator (Celgard 
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2400), and lithium foil as the counter electrode, are employed for electrochemical 

characterizations. The electrolyte consists of 1M LiPF6 dissolved in ethylene carbonate 

(EC):diethyl carbonate (DEC):ethyl methyl carbonate (EMC) in a volume ratio of 1:1:1. 

The coin cells are assembled in a glove box (Vacuum Atmospheres Conpany) under a dry 

argon atmosphere (concentrations of moisture and oxygen are below 1 ppm). 

References 

[1] www.anton-paar.com 
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Chapter 3 Nitrogen-Doped Carbon Nanotubes with Tunable 

Structure and High Yield Produced by Ultrasonic Spray 

Pyrolysis * 

3 Nitrogen  

Carbon nanotubes (CNTs) are one-dimensional carbon nanomaterials, and potential 

alternative to current widely used graphite anode. It is widely reported that doping with 

foreign elements is an effective approach to modify the structure and properties of CNTs, 

thereby influencing their electrochemical performance as anode materials. Herein, we 

report a scalable method to prepare CNTs doped with nitrogen. Nitrogen-doped carbon 

nanotubes (NCNTs) were prepared by ultrasonic spray pyrolysis from mixtures of 

imidazole and acetonitrile. Imidazole, as an additive, was used to control the structure 

and nitrogen doping in NCNTs by adjusting its concentration in the mixtures. Scanning 

electron microscopy observation showed that the addition of imidazole increased the 

nanotube growth rate and yield, while decreased the nanotube diameter. Transmission 

electron microscopy study indicated that the addition of imidazole promoted the 

formation of a dense bamboo-like structure in NCNTs. X-ray photoelectron spectroscopy 

analysis demonstrated that the nitrogen content varied from 3.2 at.% to 5.2 at.% in 

NCNTs obtained with different imidazole concentrations. Raman spectra study showed 

that the intensity ratio of D to G bands gradually increased, while that of 2D to G bands 

decreased, due to increasing imidazole concentration. The yield of NCNTs made from 

mixtures of imidazole and acetonitrile can reach 192 mg in 24 min, which is fifteen times 

that of NCNTs prepared from only acetonitrile. The aligned NCNTs, with controlled 

nitrogen doping, tunable structure and high yield, may find applications in developing 

non-noble catalysts and novel catalyst supports for fuel cells.  

Keyword: Carbon nanotubes; spray pyrolysis; nitrogen doping; chemical vapor 

deposition. 

                                                 

*
 Part of this chapter has been published in Appl. Surf. Sci. 2011, 257, 7837-7844. 
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3.1 Introduction 

Over the last decade, carbon nanotubes (CNTs) [1] have been widely studied due to their 

unique properties and potential applications in various fields, such as electronics, optics 

and energy conversion [2, 3]. Depending on the requirement of different applications, the 

properties of CNTs can be modified through different functionalization methods, of 

which doping foreign elements is an effective and frequently used approach [4]. Due to 

its similar atomic size with carbon, nitrogen (N) is widely studied as a doping element in 

CNTs. It is revealed that the incorporation of N could change the nanotube structure [5], 

chemical reactivity [6], electrical conductivity [7, 8], and mechanical properties [9] of 

CNTs. Due to the tunability of these properties, nitrogen-doped carbon nanotubes 

(NCNTs) have shown promising application potentials in various fields. For example, 

Dai et al. [10] have reported that aligned NCNTs could provide high electrocatalytic 

activity for oxygen reduction reactions (ORR) in fuel cells as a metal-free electrode. It 

has been found that the field emission property of CNTs could not only be improved by 

N doping [11], but also be tailored by controlling the graphitic/pyridinic N substitution 

[12]. In addition, uniform and dense Pt nanoparticles have been achieved by using 

NCNTs as substrates [13, 14]. The NCNTs supported Pt nanoparticles exhibit greatly 

improved stability [13] and electrocatalytic activity [14] for ORR in proton-exchange 

membrane fuel cells, compared with Pt nanoparticles supported on CNTs. 

Recently, the doping techniques, especially in a controllable manner, have been widely 

studied. Various synthesis methods have been developed to produce NCNTs, including 

arc discharge [15], laser ablation [16], and chemical vapor deposition (CVD) [17]. The 

CVD method has been proven to be more controllable and more cost effective than the 

others. However, the practical application of NCNTs requires the production of fairly 

large amounts of high-quality NCNTs at a commercially viable price. Among various 

CVD based techniques, spray pyrolysis and aerosol assisted CVD (AACVD) seem to be 

suitable methods for industrial scale production of NCNTs. For example, both methods 

allow continuous injection of carbon and catalyst precursors, and require no additional 

catalyst preparation step [18, 19]. Using these two methods, it is possible to produce 

NCNTs without any flammable or corrosive gases such as hydrogen and ammonia [18]. 
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Looking at these two methods, one can find that spray pyrolysis can spray solution 

directly into the synthesis system at controlled flow rates [18], whereas AACVD can 

generate solution droplets with controlled sizes [19]. Nevertheless, these desirable 

features have not been realized in one setup till now. Herein, by combining the 

advantages of spray pyrolysis and AACVD, we designed an improved spray pyrolysis 

method, called ultrasonic spray pyrolysis. In ultrasonic spray pyrolysis, an ultrasonic 

processor is used to generate fine solution droplets, which are directly sprayed into the 

synthesis system at controlled flow rates. Moreover, ultrasonic spray pyrolysis also 

features several other advantages including: (1) no need for preformed substrates; (2) 

possible use of mixtures of solid and liquid precursors; (3) easy scaling into an industrial 

scale process. 

Besides the synthesis method, the controllable doping of N in CNTs also relies on the 

choice of precursor, catalyst, reaction temperature, reaction time and gas flow rate [20-

24]. Recently, some interesting progress has been made in controlling the morphology 

and structure of NCNTs by using different liquid N precursors [21-23]. For example, a 

CNT array doped with a gradient of N concentration was achieved by gradually 

increasing the pyridine concentration in xylene [21]. Koós and co-authors reported that 

NCNTs with different structures were prepared by using the mixture of benzylamine and 

toluene [22, 23]. It was found that bamboo shaped nanotubes increased with the increase 

of benzylamine concentration, but the length and diameter of the nanotubes decreased 

dramatically [22, 23]. In those studies, controlled doping of N in CNTs was realized by 

adjusting the concentration of the N-containing precursor in the N-free precursor. 

However, the involvement of the N-free precursor inevitably leads to decreased N 

content in NCNTs [22], which is not desirable for the practical applications of NCNTs. 

Moreover, the addition of N-containing precursor in N-free precursor significantly 

suppresses the growth of NCNTs and results in a dramatically decreased yield [23, 24], 

which makes it difficult to produce NCNTs on a large scale.   

In this work, NCNTs with controlled N doping, tunable structure and high yield have 

been prepared by ultrasonic spray pyrolysis. The solution used for the synthesis of 

NCNTs consists of a liquid N precursor (acetonitrile) and a solid N precursor (imidazole), 
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acting as the solvent and the solute respectively. The use of this kind of solution avoids 

the decrease of N content in NCNTs, because both components are N-containing 

precursors. And it is reported that imidazole can produce NCNTs with an N content as 

high as 25.7 at% [25]. Therefore, it is expected that the addition of imidazole in 

acetonitrile will increase the N doping in NCNTs. 

3.2 Experimental section 

Figure 2.1 shows the schematic illustration of ultrasonic spray pyrolysis. This setup 

mainly consists of three parts called the injection part, the ultrasonic part, and the 

deposition chamber. In the injection part, the solution stored in a syringe is injected into 

the ultrasonic part at a certain feeding rate, which can be precisely controlled on the 

syringe control panel. In the ultrasonic part, the solution fed by the injection part is 

atomized in an ultrasonic processor (VCX 130 PB, Sonics & Materials Inc.), and sprayed 

out as tiny droplets into the deposition chamber. Ultrasonic frequency of the solution can 

be controlled on the control panel of the ultrasonic processor. The deposition chamber 

consists of a vertical electrical furnace (50 cm length), a quartz tube (Ø2.2× 70 cm) with 

two gas inlets at the top and one gas outlet at the bottom, and a quartz plate (1×20×90 

mm) attached on a substrate support as the substrate for the growth of NCNTs. Once 

sprayed out by the ultrasonic processor, the solution droplets will be carried by argon (Ar) 

gas into the center of the furnace, where the pyrolysis occurs.  

In a typical process, different amounts (0.5 g, 1 g and 2 g) of imidazole (C3H4N2, Alfa 

Aesar 99%) and 200 mg of ferrocene (Fe(C5H5)2, Aldrich 98%) were added into 10 ml of 

acetonitrile (CH3CN, 99.5+%), and the mixture was put into an ultrasonic cleaner for 10 

min to obtain a homogeneous solution. The solution was then transferred into the syringe 

in the injection part. The quartz plate used as the substrate for NCNTs was placed in the 

center of the furnace, with the help of the substrate support. Before the furnace was 

heated, Ar (99.999% in purity) gas was introduced into the deposition chamber from both 

inlets for 20 min, and the Ar gas flow rate at each inlet was maintained at 150 sccm. Then 

the furnace was heated to 850 
o
C at a rate of 60

o
C/min. Once the furnace reached the 

desirable temperature, 6 ml of the solution prepared as above was injected into the 

ultrasonic processor at different flow rates (0.25, 0.5 and 0.75 ml/min), and sprayed out 
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as tiny droplets by the ultrasonic processor at different amplitudes (45% and 85%). Then 

those droplets were carried into the center of the furnace, where the growth of NCNTs 

occurred. After 6 ml of the solution was injected, the furnace was turned off and the 

system cooled down to room temperature in the flowing Ar gas. NCNTs were collected 

from the quartz plate for future analysis. 

The NCNTs were characterized by various analysis techniques including Hitachi S-4800 

filed-emission scanning electron microscopy (FE-SEM) operated at 5kV, Philips CM10 

transmission electron microscopy (TEM) operated at 80 kV, Kratos Axis Ultra Al (alpha) 

X-ray photoelectron spectroscopy (XPS) operated at 14 kV, and a HORIBA Scientific 

LabRAM HR Raman spectrometer operated with an incident laser beam at 532.03 nm. 

3.3 Results and discussion 

3.3.1 Morphological investigation by SEM 

3.3.1.1 Effect of imidazole concentration 

The effect of imidazole concentration on the growth of NCNTs is studied in terms of the 

nanotube diameter, nanotube length, growth rate and yield. Figure 3.1 shows the SEM 

images of NCNTs prepared from solutions with different imidazole concentrations. It can 

be seen that the nanotube diameter of NCNTs changes with the variation of the imidazole 

concentration. With the increase of the imidazole concentration, the nanotube diameter of 

NCNTs gradually decreases. The diameters of at least 150 nanotubes were measured on 

TEM images of each sample. Based on these data, their mean diameters are calculated 

and compared in Table 3-1. In Table 3-1, it can be found that when the imidazole 

concentration increases from 0 to 50, 100 and 200 mg/ml, the mean diameter of NCNTs 

gradually decreases from 89 to 70, 66 and 54 nm, respectively. It is noteworthy that a 

narrower distribution of diameters can be achieved by increasing imidazole concentration. 

Koós et al. [22, 23] reported that a reduction of nanotube diameter was observed by 

increasing benzylamine (N-containing precursor) concentration in toluene (N-free 

precursor). A theoretical calculation [26] shows that the reduced nanotube diameter is 

mainly due to the presence of N in NCNTs, which prefers to stay on the tube edge and 

thus induces the closure of the nanotubes. This is in accordance with our result. As shown 
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in section 3.3.3, the addition of imidazole into acetonitrile leads to the incorporation of 

more N atoms into NCNTs, which is accompanied by the reduction of nanotube 

diameters. 

 

 

Figure 3.1 SEM images of NCNTs produced from solutions with different imidazole 

concentrations: (a) 0 mg/ml; (b) 50 mg/ml; (c) 100 mg/ml; (d) 200 mg/ml. (Solution flow 

rate 0.25 ml/min; amplitude 45%). 

Table 3-1 Variation of mean nanotube diameter, nanotube length, growth rate and yield 

of NCNTs produced from solutions with different imidazole concentrations. 

Imidazole 

concentration 

(mg/ml) 

Mean 

nanotube 

diameter 

(nm) 

Mean 

nanotube 

length (μm) 

Growth rate 

(μm/min) 

Yield 

(mg/6ml) 

0 89±5 78±8 3.3 12 

50 70±4 112±12 4.7 24 

100 66±4 154±9 6.4 60 

200 54±3 397±18 16.5 192 
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The nanotube length of each sample was measured, and the results are listed in Table 3-1. 

In Table 3-1, it can be seen that the nanotube length of NCNTs is greatly increased with 

the addition of imidazole. Without imidazole, the nanotube length of NCNTs produced in 

24 min is measured to be ~ 78 μm. With 200 mg/ml imidazole, the length of NCNTs is 

found to be ~ 397 μm. Thus, the growth rate of NCNTs is increased from 3.3 μm/min for 

NCNTs prepared without imidazole to 4.7, 6.4, and 16.5 μm/min for NCNTs obtained 

with 50, 100, and 200 mg/ml imidazole, respectively. Consequently, the yield of NCNTs 

is increased with the addition of imidazole, as seen in Table 3-1. The yield of NCNTs 

was obtained from the product scratched off from the quartz plate. With 200 mg/ml 

imidazole, 192 mg high-quality NCNTs can be easily produced in 24 min. In comparison, 

the yield of NCNTs prepared without imidazole in 24 min is only 12 mg, which is only 

one fifteenth of the former. Therefore, it can be concluded that the addition of imidazole 

in acetonitrile promotes the growth of nanotubes, and leads to an increased nanotube 

length and yield for NCNTs. Because imidazole can generate high quantities of C-N 

fragments at 850 
o
C [25], the solution with imidazole can provide more C-N units than 

that without imidazole for the growth of the nanotubes. Thus it is reasonable that the 

addition of imidazole in acetonitrile promotes the growth of NCNTs by providing more 

C-N sources. The trend of nanotube yield in our case is different from previous studies 

[23, 24], in which the addition of an N containing precursor in an N-free precursor led to 

suppressed growth of NCNTs. The difference is due to the different solvents used in the 

solution. The solvent used in our case is an N containing precursor (acetonitrile), while 

the solvents used in other studies are N-free precursor. It is suggested that pre-existing C-

N bonds in the precursor play a key role for the incorporation of N atoms in NCNTs [27]. 

In our case, both imidazole and acetonitrile contain C-N bonds. Therefore, it is 

reasonable that the doping of N atoms and growth of NCNTs would be easier by using 

the mixture of imidazole and acetonitrile than using a mixture of one N containing 

precursor and one N-free precursor. 
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3.3.1.2 Effect of solution flow rate 

 

Figure 3.2 SEM images of NCNTs produced at different solution flow rates (a) 0.5 

ml/min; (b) 0.75 ml/min. (Imidazole concentration: 200 mg/ml; amplitude 45%). 

The effect of solution flow rate on the growth of NCNTs is studied by using a solution 

with imidazole concentration of 200 mg/ml, and the result is shown in Figure 3.2. In 

Figure 3.2, it can be seen that NCNTs prepared at solution flow rates of 0.5 and 0.75 

ml/min show similarity in the nanotube diameter, which is slightly larger than that of 

NCNTs prepared at 0.25 ml/min, as seen in Figure 3.2d. For NCNTs prepared at a 

solution flow rate of 0.75 ml/min, there are many small catalyst particles attached to the 

surface of nanotubes. This is due to that only part of the catalyst can catalyze the growth 

of NCNTs at the high solution flow rate. Then the excess catalyst will deposit on the 

nanotube surface of NCNTs, forming small catalyst particles. Therefore, the solution 

flow rate mainly affects the quality of NCNTs.  

3.3.1.2 Effect of amplitude 

The amplitude of the ultrasonic processor is the last parameter investigated in our study. 

A solution with 200 mg/ml imidazole was used to grow NCNTs at amplitude 45% and 

85%. The diameter distribution of each kind of NCNTs is shown in Figure 3.3. It can be 

seen that the nanotube diameter of NCNTs trends to decrease from 30~60 nm to 20~50 

nm, as amplitude increases from 45% to 85%. The nanotube diameter is usually related to 

the size of the solution droplet [19]. Higher amplitude of ultrasonic processor can 
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generate solution droplets with smaller sizes, which lead to smaller nanotube diameters. 

Therefore, the amplitude has an influence on the distribution of the nanotube diameter for 

NCNTs prepared by ultrasonic spray pyrolysis.  

 

Figure 3.3 Diameter distribution of NCNTs produced at different ultrasonic amplitudes. 

(Imidazole concentration: 200 mg/ml; solution flow rate: 0.25 ml/min). 

3.3.2 Structural investigation by SEM 

The internal structures of NCNTs prepared from solutions with different imidazole 

concentrations are investigated by TEM, and their typical TEM images are shown in 

Figure 3.4. In Figure 3.4a, it can be seen that without imidazole, the produced NCNTs 

have large nanotube diameters and thin nanotube walls. There exist a few interlinks in the 

internal nanotubes. With the addition of 50 mg/ml imidazole, the nanotube diameter of 

the prepared NCNTs becomes smaller, and interlinks in the nanotubes become denser 

than that of NCNTs synthesized without imidazole, as seen in Figure 3.4b. When the 

imidazole concentration is further increased to 100 mg/ml, the obtained NCNTs show 

similar internal structure with those prepared with 50 mg/ml imidazole. But their 

nanotube diameters are slightly decreased. In Figure 3.4d, the nanotubes of NCNTs 

produced with 200 mg/ml imidazole show stacked-cone structure with periodic 

compartment separation, which is usually called bamboo-like structure. Comparing 
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Figure 3.4 TEM images of NCNTs produced from solutions with different imidazole 

concentrations: (a) 0 mg/ml; (b) 50 mg/ml; (c) 100 mg/ml; (d) 200 mg/ml. (Solution flow 

rate 0.25 ml/min; amplitude 45%). 

Figure 3.4 (a-d), it can be found that the addition of imidazole leads to the formation of a 

dense bamboo-like structure in the internal nanotubes of NCNTs. It is widely accepted 

that the formation of bamboo-like structure is caused by the presence of N in the 

graphitic network in NCNTs, which induces curvature of the graphitic layer [28, 29]. A 

higher content of N doping usually leads to a denser bamboo-like structure in the internal 

nanotubes of NCNTs [22, 23, 28]. In our case, the added imidazole generates many C-N 
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fragments during the synthesis process, which introduces more N atoms into NCNTs 

(proved by XPS result in section 3.3.3). The doping of more N atoms in NCNTs 

eventually promotes the formation of the denser bamboo-like structure in NCNTs by 

inducing curvature of the graphitic layer. The TEM results suggest that the inner structure 

of NCNTs can be controlled by simply adjusting the imidazole concentration in the 

solution. 

3.3.3 Content and bonding environment of N by XPS 

 

Figure 3.5 XPS N1s spectrum of NCNTs produced from solutions with different 

imidazole concentrations: (a) 0 mg/ml and (b) 200 mg/ml. 
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The content and the bonding environment of N are important factors that determine the 

properties of NCNTs. In order to identify the effect of imidazole on the content and the 

bonding environment of N doping in NCNTs, XPS analysis was carried out on NCNTs 

prepared without imidazole and with 200 mg/ml imidazole, and the results are compared 

in Table 3-2 and Figure 3.5. The N content, defined as atomic percent of N/(C+N), is 

estimated by the area ratio between the N peak and the sum of N and C peaks. As seen in 

Table 3-2, the N content increases from 3.2 at.% for NCNTs prepared without imidazole 

to 5.2 at.% for NCNTs prepared with 200 mg/ml imidazole. The XPS N1s spectra of both 

samples are fitted into three or four components located at 398.5~398.8 eV, 401.0~401.7 

eV, 403.5 eV (if applicable) and 405.1~405.2 eV, corresponding to pyridine-like N, 

graphite-like N, molecular N and chemisorbed N oxide, respectively [28], as seen in 

Figure 3.5. The content of each kind of N is calculated and listed in Table 3-2. In Table 

3-2, it can be seen that the contents of pyridine-like N and graphite-like N are obviously 

increased for NCNTs produced with the addition of imidazole. The intensity ratio 

between pyridine-like N and graphite-like N (IpN/IgN) is found to increase from 0.48 for 

NCNTs without imidazole to 0.63 for NCNTs with 200 mg/ml imidazole. It is 

noteworthy that molecular N appears in NCNTs obtained with 200 mg/ml imidazole. 

Previous studies have indicated that molecular N can be encapsulated inside the tubes [29, 

30], or exist as intercalated form between the graphite layers during the growth of 

NCNTs [31]. The content of chemisorbed N oxide is slightly decreased for NCNTs 

obtained with 200 mg/ml imidazole, compared with those produced without imidazole. 

Therefore, the addition of imidazole not only increases the N content in NCNTs, but also 

alters bonding environments of N in NCNTs.  

Table 3-2 Total N content and contents of different types of N in NCNTs produced from 

solutions with imidazole concentration of 0 and 200 mg/ml. 

      N content (at.%) 

 

Imidazole 

concentration 

(mg/ml) 

Total 
Pyridine-

like N 

Graphite-

like N 

Molecular 

N 

Chemisorbed 

N oxide 

0 3.2 0.47 0.97 - 1.76 

200 5.2 1.28 2.03 0.51 1.36 
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3.3.4 Crystallinity of NCNTs by Raman spectra 

 

Figure 3.6 Raman spectra of NCNTs produced from solutions with different imidazole 

concentrations: (a) 0 mg/ml; (b) 50 mg/ml; (c) 100 mg/ml; (d) 200 mg/ml. (Solution flow 

rate 0.25 ml/min; amplitude 45%). 

To obtain the information on the crystallinity of NCNTs, Raman spectra were carried out 

on NCNTs prepared with different imidazole concentrations, and their spectra are 

compared in Figure 3.6. From Figure 3.6, it can be seen that the Raman spectra show two 

main peaks around 1350 and 1590 cm 
-1

, corresponding to the D-band and the G-band 

respectively. The D-band is originated from atomic displacement and disorder induced 

features caused by lattice defect, distortion or the finite particle size [32], while the G-

band indicates the formation of well-graphitized carbon nanotubes [33]. A second-order 

peak located at ~ 2700 cm 
-1

 is also observed and usually named 2D-band, and the 2D-

band is an overtone mode of the D-band [34]. Previous studies [23, 28, 34] have shown 

that N doping in NCNTs usually increases the intensity of D-band while decreases the 

intensity of 2D-band, due to increased defect density in the nanotubes. In our case, the 

increase of imidazole concentration in acetonitrile leads to an increase of the intensity of 
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D-band and a decrease of the intensity of 2D-band. The intensity ratios of D to G and 2D 

to G are calculated to quantitatively show this variation, as shown in Figure 3.7. As the 

imidazole concentration increases from 0 to 50, 100 and 200 mg/ml, the D/G ratio 

gradually increases from 0.57 to 0.61, 0.74 and 1, respectively. Meanwhile, 2D/G ratio 

decreases from 0.32 to 0.28, 0.25 and 0.13.The Raman results indicate that the addition of 

imidazole induces an increase in the defects and disorder in NCNTs. The reason could be 

attributed to the doping of more N atoms in NCNTs with the addition of imidazole. 

 

Figure 3.7 Integrated intensity ratio of D to G bands (ID/IG) and 2D and G band (I2D/IG) 

as a function of the imidazole concentration. 

It is interesting to note that the Raman spectra of NCNTs prepared with imidazole show 

radial breathing mode (RBM) between 180 cm
-1

 and 280 cm
-1

, which is the fingerprint of 

single-wall carbon nanotubes (SWNTs) [35]. The corresponding diameter of SWNTs is 

estimated in the range of 0.9~1.1 nm, by using the empirical relation d (nm) = 248/v (cm
-

1
), where d is the SWNTs diameter and v is Raman shift [35, 36]. The appearance of 

SWNTs in NCNTs is partially due to the decrease of nanotube diameters with the 

addition of imidazole in the solution. Another possible reason is the secondary generation 

of nanotubes during the synthesis process [22, 37]. During the synthesis process, the 

surface of the quartz plate was totally covered by nanotubes within a few minutes. Then 
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incoming catalyst could not reach the quartz plate, and would deposit on the nanotube 

surface for the growth of NCNTs [22, 37]. These new catalyst particles grown on the 

nanotube surface were much smaller than those grown on the surface of the quartz plate 

[37], and this increase the possibility of the appearance of SWNTs. Moreover, NCNTs 

with higher N content have more active nanotube surface, which would be easier for the 

deposition of catalyst particles. Thus, NCNTs with a high N content have more chance 

for the appearance of SWNTs than those with a low N content. This would explain why 

that SWNTs did not appear in NCNTs prepared without imidazole. Therefore, ultrasonic 

spray pyrolysis also shows the potential in the synthesis of N doped SWNTs. Large 

amounts of N doped SWNTs are expected when the catalyst concentration is decreased in 

the solution.  

3.4 Conclusions 

Ultrasonic spray pyrolysis was developed to synthesize nitrogen-doped carbon nanotubes 

(NCNTs) from mixtures of acetonitrile and imidazole. A systematic study was carried out 

on the effect of solution flow rate, amplitude of the ultrasonic processor and imidazole 

concentration on the growth of NCNTs. The results showed that the solution flow rate 

mainly affected the quality of NCNTs, and the amplitude had an influence on the 

diameter distribution of NCNTs. SEM and TEM studies indicated that the increase of 

imidazole concentration decreased the nanotube diameter, while increased the nanotube 

length and the density of bamboo-like structure in NCNTs. XPS and Raman spectra 

analysis showed that the addition of imidazole promoted the N doping and introduced 

more defects in NCNTs. These results suggest that by simply adjusting the imidazole 

concentration in acetonitrile, it is possible to control the nanotube diameter and length, 

internal structure, N content and defect density in NCNTs produced by ultrasonic spray 

pyrolysis. 
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Chapter 4 Synthesis and Characterization of Phosphorus-

Nitrogen Doped Multiwalled Carbon Nanotubes † 

4 Synthesis  

As disclosed in chapter 3, doping foreign elements is an effective way to modify the 

structure of CNTs. Besides the widely studied nitrogen, phosphorus is another choice of 

doping element to alter the structure and properties of CNTs. However, doping CNTs 

with phosphorus is very challenging, partially owing to the much larger atomic radius of 

phosphorus than carbon.Thus,  investigation in doping phosphorus into CNTs is seldom. 

This chapter reports our attempt to incorporate phosphorus into nitrogen-doped carbon 

nanotubes. Phosphorus-nitrogen doped multiwalled carbon nanotubes (PNCNTs) were 

prepared using a floating catalyst chemical vapor deposition method. 

Triphenylphosphine (TPP), as phosphorus (P) precursor, was used to control the 

structure of the PNCNTs. Transmission electron microscope (TEM) observation 

indicated that with the increase of TPP amount, the outer diameter and wall thickness of 

the PNCNTs gradually increased, while their inner diameter decreased. TEM and 

backscattered electron imaging revealed that structural changes of the nanotubes could 

be attributed to the shape change of the catalyst particles, from conical for NCNTs to 

elongated for PNCNTs, with the addition of TPP. X-ray photoelectron spectroscopy (XPS) 

analysis demonstrated that the P content in PNCNTs can reach as high as 1.9 at.%. 

Raman analysis indicated that PNCNTs had a lower crystallinity than NCNTs. 

 

Keyword: Carbon nanotubes; phosphorus doping; chemical vapor deposition. 

 

                                                 

†
 Part of this chapter has been published in Carbon 2011, 49, 5014-5021. 
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4.1 Introduction 

Carbon nanotubes (CNTs) [1] have been widely studied by scientists all over the world in 

the last two decades, due to their outstanding mechanical properties, electrical 

conductivity, and thermal stability [2-4]. These properties not only inspire fundamental 

studies on CNTs, such as band structure and chirality [5], but also make CNTs a potential 

candidate for a wide range of applications, such as semiconductor probes and 

interconnects, field emission display sources, and energy storage and conversion devices 

[6, 7]. Recently, there has been a great interest in controlling and improving the 

properties of CNTs through different functionalization methods, among which doping 

CNTs with foreign atoms has been proven to be an effective approach [8]. For example, 

nitrogen (N) atoms can donate additional electrons to the delocalized л system of the 

hexagonal carbon framework. Thus nitrogen-doped CNTs (NCNTs) exhibit improved 

electrical conductivity, compared with its non-doped counterpart [9]. The oxidation 

resistance of CNTs can be decreased by doping N, which introduces high-reactivity 

defects along nanotubes, or increased by doping boron (B), which poisons carbon active 

sites or forms B2O3 film on the surface of nanotubes protecting them from oxidation [10]. 

Hence, doping has been considered as a feasible strategy in a well-defined way to modify 

the physical and chemical properties of CNTs. 

In addition to N and B, which have been intensively studied for doping in CNTs, 

phosphorus (P) is another doping element to modify the structure and properties of CNTs. 

However, studies on P doping are seldom reported. An early study on P doped diamond-

like carbon (DLC) has shown that P doping could improve the electrical character of 

DLC by reducing the turn-on voltage and increasing the emission current density [11]. P 

doping in singlewalled carbon nanotubes (SWNTs) has been studied both theoretically 

and experimentally [12-14]. The experiment results show that P doping can significantly 

change the optical transition absorptions [12] and thermal conductivity of SWNTs [13]. 

A density functional theory (DFT) study on P doped SWNTs demonstrates that 

substitutional P can create localized electronic states that modify the electron transport 

properties of SWNTs by acting as scattering centers [14]. In addition, the substitutional P 
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doping also alters the mechanical strength of SWNTs, leading to a 50% reduction in the 

elongation upon fracture [14]. 

Recently, phosphorus-nitrogen doped multiwalled carbon nanotubes (PNCNTs) were 

synthesized by a spray pyrolysis method [15]. In this process, iron phosphide (Fe3P) 

acted as the catalyst for the growth of nanotubes. Electron energy loss spectroscopy 

analysis demonstrated that P and N were homogeneously incorporated into the lattice of 

nanotubes, changing the chemical properties of PNCNTs [15]. Nevertheless, it is still 

challenging to synthesize high-content P doped CNTs, while high-content N or B doped 

CNTs have already been achieved [16, 17]. The reason is partially due to the large atomic 

radius difference between C (0.77 Ǻ) and P (1.10 Ǻ), compared with that between C and 

N (0.74 Ǻ) or B (0.88 Ǻ) [18]. This large difference would greatly increase the disorder 

within the hexagonal carbon framework, thus making P difficult to be doped in CNTs. 

However, DFT simulation demonstrated that P-N defects exhibited lower formation 

energy (by ca. 0.45 eV) than P defects in nanotubes [15]. In other words, by doping P and 

N in CNTs at the same time, it is possible to obtain a higher P content than that obtained 

by doping P alone. Furthermore, Kaushik et al. [16] recently reported that NCNTs with a 

N content of 25.7 at.% were prepared by a catalytic chemical vapor deposition method 

using imidazole as N precursor. Therefore, a high P content can be expected in PNCNTs, 

when imidazole and Triphenylphosphine (TPP), as N and P precursor respectively, are 

used at the same time. Meanwhile, the bonding environment of P plays a role as 

important as P content in determining the properties of PNCNTs. However, it has not 

been reported in previous literature.  

In our present work, PNCNTs with a P content of 1.9 at.%, the highest reported so far, 

are synthesized by a floating catalyst chemical vapor deposition (FCCVD) method using 

ferrocene, imidazole and TPP as precursors. The effect of the amount of TPP on the 

structure of PNCNTs is studied. A growth mechanism of PNCNTs is proposed based on 

our observation. Moreover, bonding environments of P in PNCNTs are also examined, 

and possible bonding forms of P in PNCNTs are discussed. 
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4.2 Experimental section 

A silicon wafer coated with an aluminum buffer layer (30 nm thickness) was used as a 

substrate for the growth of NCNTs and PNCNTs. The aluminum buffer layer can 

significantly improve the quality and growth rate of CNTs by helping the formation of 

uniform and well-dispersed catalyst particles on the surface of the substrate [19]. The 

aluminum buffer layer was coated on the surface of the silicon wafer in a sputtering 

system operated under a pressure of 4.0 mTorr and at a power of 300W. 

FCCVD method [19, 20] was applied to synthesize NCNTs and PNCNTs in a horizontal 

quartz tube furnace system. 2 g of imidazole (C3H4N2, Alfa Aesar, 99%) was thoroughly 

mixed with different amounts (10, 30 and 50 mg) of TPP (P(C6H5)3, Aldrich, 99%). Then 

the mixture was put into a small quartz container. 10 mg of ferrocene (Fe(C5H5)2, Aldrich, 

98%) was put into a holder, which was placed over the quartz container to keep ferrocene 

and the mixture separate. A small piece of the substrate described above was placed in 

the center of the quartz tube. Before the furnace was heated, argon (Ar) gas (99.999% in 

purity) was introduced into the quartz tube at a flow rate of 500 sccm for 10 min in order 

to expel the air in the quartz tube. After that, the system was heated to 850 
o
C at a rate of 

60
o
C/min. Then the quartz container was pushed into a location near the entrance of the 

furnace first, where the temperature was around 100 
o
C, suitable for the liquefaction of 

the mixture of imidazole and TPP. Once all the mixture was liquefied, the quartz 

container was pushed further into the entrance of the furnace, where the temperature was 

around 200 
o
C. At this point, ferrocene and the mixture of imidazole and TPP evaporated 

simultaneously. The vapor of all chemicals was brought into the high temperature region 

by the Ar gas where the pyrolysis and synthesis occurred at 850 
o
C. This step lasted for 

10 min. At last, the furnace was turned off and cooled down to room temperature in the 

flowing Ar gas. 

Morphologies of these samples were characterized by Hitachi S-4800 filed-emission 

scanning electron microscope (SEM) operated at 5kV, Philips CM10 transmission 

electron microscope (TEM) operated at 80 kV, and JEOL 2010 FEG high-resolution 

TEM (HRTEM). Composition and element analyses of these samples were carried out by 

Kratos Axis Ultra Al (alpha) X-ray photoelectron spectrometer (XPS) operated at 14 kV. 
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Raman spectra of these samples were examined by a HORIBA Scientific LabRAM 

HR800 Raman spectrometer with an incident laser beam of 532.4 nm. 

4.3 Results and discussion 

4.3.1 Structural characterization of PNCNTs 

 

 

Figure 4.1 SEM images of NCNTs (a) and PNCNTs synthesized with 10 mg (b), 30 mg 

(c), and 50 mg (d) of TPP. 

Figure 4.1 (a-d) shows typical SEM images of NCNTs and PNCNTs obtained with 

different amounts of TPP. It can be seen that NCNTs and PNCNTs grew perpendicularly 

to the silicon wafer with different densities and thicknesses of the CNT layer. As seen in 

Figure 4.1a, the silicon wafer is totally covered by aligned NCNTs with high density. The 

thickness of the CNT layer was measured to be about 42 µm for NCNTs. When TPP is 

used in the synthesis process, the shape of these nanotubes experiences an obvious 

change from curved for NCNTs to straight for PNCNTs. The thickness of the CNT layer 
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decreases from 42 µm for NCNTs to 29, 13 and 12 μm for PNCNTs synthesized with 10, 

30 and 50 mg of TPP respectively, as seen in Figure 4.1 (b-d). And the density of these 

nanotubes also experiences a decrease with the increase of TPP amount. These results 

indicate that the growth of nanotubes is greatly suppressed by the addition of TPP. This 

phenomenon was also observed previously [15], in which the catalyst activity gradually 

deteriorated due to the increasing ratio of Fe2P to Fe3P in the catalyst with the addition of 

TPP and finally hampered the growth of PNCNTs. 

 

 

Figure 4.2 TEM images of NCNTs (a) and PNCNTs synthesized with 10 mg (b), 30 mg 

(c), and 50 mg (d) of TPP. 
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In order to investigate the relationship between the structure of PNCNTs and the amount 

of TPP used, TEM characterization was carried out, and the result is presented in Figure 

4.2. Figure 4.2a shows a typical TEM image of NCNTs synthesized without TPP. It can 

be seen that NCNTs exhibit an irregular and inter-linked corrugated structure, which is 

typical for NCNTs. With the addition of TPP, all PNCNTs show similarities in the inner 

structure to NCNTs, which looks like many cones stacked together. But great differences 

can be observed between NCNTs and PNCNTs in their outer diameters and wall 

thicknesses. The ratio between the inner and the outer diameter (DI/DO) of NCNTs or 

PNCNTs is used to show the variation of wall thickness. At least 100 nanotubes were 

measured to calculate the average value of DI/Do of NCNTs and each kind of PNCNTs. 

The outer diameter of NCNTs is around 70-90 nm, and the wall thickness is around 15-35 

nm, as seen in Figure 4.2a. So DI/Do is around 0.68 for NCNTs. When 10 mg of TPP is 

added to the reaction, the outer diameter and the wall thickness of PNCNTs increase to 

110-130 nm and 60-70 nm respectively, while DI/DO decreases to around 0.48, as shown 

in Figure 4.2b. With 30 mg of TPP, the outer diameter of PNCNTs stays almost 

unchanged, whereas the wall thickness increases to 80-100 nm. DI/DO drops to 0.23. 

When the amount of TPP is further increased to 50 mg, the outer diameter and the wall 

thickness of PNCNTs increase to 150-160 nm and 120-140nm respectively. DI/DO stays 

almost unchanged at around 0.22. These results suggest that the structure of PNCNTs can 

be controlled by changing the amount of TPP used in the reaction. With the increasing 

amount of TPP, the outer diameter and the wall thickness of PNCNTs increase, while the 

inner diameter decreases greatly. Interestingly, it is found that a few small catalyst 

particles with a spherical shape are trapped in the inner nanotubes of PNCNTs 

synthesized with 30 and 50 mg of TPP. 

In order to understand the effect of TPP on the structural changes of PNCNTs, 

backscattered electron (BSE) imaging and TEM were performed on NCNTs and 

PNCNTs synthesized with 30 mg of TPP, focusing on their catalyst particles. From BSE 

images, Figure 4.3 (a) and (b), it can be clearly seen that catalyst particles are located at 

the bottom of nanotubes for both NCNTs and PNCNTs. This phenomenon suggests that 

the growth of NCNTs and PNCNTs follow a base-growth mechanism. This is consistent 

with the root growth model for PNCNTs as reported by Sumpter et al. [21]. In Figure 4.3, 
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Figure 4.3 BSE images of NCNTs (a) and PNCNTs synthesized with 30 mg of TPP (b), 

and corresponding SEM images are inserted on the up-left corner of BSE images. Typical 

TEM images of one individual nanotube for NCNTs (c) and PNCNTs synthesized with 

30 mg of TPP (d). 

it can also be found that there are great differences between NCNTs and PNCNTs in the 

shape and the size of catalyst particles. The catalyst particles of NCNTs have a conical 

shape, and their sizes are around 50-60 nm. In comparison, the catalyst particles of 

PNCNTs are elongated, and the sizes of their top and bottom are about 20-40 nm and 70-

90 nm respectively. These results are further confirmed by TEM observations, as shown 

in Figure 4.3 (c) and (d). In Figure 4.3 (a-d), it can be found that for both NCNTs and 

PNCNTs, the inner diameter of nanotubes is related to the size of the catalyst top. 

Previous studies have shown that the inner layer of NCNTs or PNCNTs is formed from 

the top surface of the catalysts through bulk diffusion, while the outer layer of NCNTs or 
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PNCNTs is nucleated from the side of the catalyst mainly through surface diffusion [22, 

23]. Therefore, the inner diameter of nanotubes depends on the size of the catalyst top. 

Hence, in our case, the smaller inner diameter of PNCNTs than NCNTs could be 

attributed to the smaller top surface of the elongated catalyst than the conical one. The 

shape and size difference between the catalyst of NCNTs and that of PNCNTs is 

probably due to their different melting points. The Fe2P or Fe3P catalysts for PNCNTs 

has a lower melting point (MP) (1166 
o
C for Fe3P, 1370 

o
C for Fe2P) than pure Fe (1538 

o
C) for NCNTs [15, 24]. During the process of nanotube growth, catalyst particles with a 

low MP would be easily deformed and elongated along the direction of nanotube growth 

due to the extrusion force caused by nanotube precipitation [22]. Thus it is reasonable to 

believe that the top of elongated catalyst particles can be separated by the extrusion force 

occasionally, forming small particles trapped in the inner nanotubes observed in Figure 

4.2 (c, d). It is noticed that similar sequential trapping of catalyst particles in CNTs was 

also previously observed by Jourdain et al., and it was due to the inclusion of P into the 

catalyst particles [25]. The growth mechanisms for NCNTs and PNCNTs are shown in 

Figure 4.3f. 

4.3.2 Bonding environments of P in PNCNTs 

In order to determine P content and its bonding environments in PNCNTs, XPS was 

performed on PNCNTs synthesized with 50 mg of TPP, and the result is shown in Figure 

4.4. For comparison, the XPS result of NCNTs is also given out. Figure 4.4a shows full-

range XPS spectra of NCNTs and PNCNTs synthesized with 50 mg of TPP. For NCNTs, 

the main peaks are distinguished at 280.9 eV, 396.35 eV, 528.7 eV and 705.8 eV, 

corresponding to C1s, N1s, O1s, and Fe2p, respectively. For PNCNTs, besides the 

elements above, the existence of P is indicated by the two peaks located at 131.1 eV and 

188.9 eV, which are P2p and P2s respectively. The content of P, defined as atomic 

percent of P with respect to the sum of C and P, is estimated by the area ratio of P peak 

and the sum of P and C peaks (P/(C+P)). The P content of PNCNTs is calculated to be 

1.9 at.%. Because the catalyst particles of PNCNTs are P-rich [15], their contribution to 

total P content should also be considered. The deconvolution of Fe2p3/2 peaks for NCNTs 

and PNCNTs are shown in Figure 4.4 (e) and (f), respectively. For NCNTs, the Fe2p3/2  
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Figure 4.4  XPS survey scan spectra of PNCNTs synthesized with 50 mg of TPP and 

NCNTs (a), deconvolution of P2p (if applicable), O1s, Fe2p3/2 and N1s peaks for 

PNCNTs synthesized with 50 mg of TPP (b, d, f, h) and NCNTs (c, e, g). 
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peak is fitted into Fe
0
, Fe3O4 and FeOOH, located at 706.7, 709.6 and 711.6 eV 

respectively [19]. For PNCNTs, the Fe2p3/2 peak is fitted into two components 707.3 and 

708.5 eV respectively. The first component corresponds to Fe2P or Fe3P [26], and the 

second one is for iron carbide [27], with their respective contributions of 64.3% and 

35.7%. Fe/P ratio of PNCNTs is determined to be 0.19. Therefore, Fe2P or Fe3P in 

catalyst particles contributes 4-6% to the total P content of PNCNTs. The asymmetric 

P2p peak is fitted into two double peaks, as seen in Figure 4.4b. The first two peaks near 

130.0 eV indicate the presence of C-P bonds [28], and the second two ones around 133.0 

eV are associated with oxidized P [28, 29]. It is reasonable to think that a fraction of P at 

the nanotube surface was oxidized during the synthesis process because of the presence 

of oxygen, which can be attributed to several reasons, such as the oxygen released from 

solid precursors and the oxygen adsorbed on the surface of the substrate [30]. However, 

the O/P ratio is as high as 4.3 for PNCNTs, implying that oxidized P only contribute a 

small fraction to the O1s peak. The oxidized P probably exists as P-O or P=O bonds [28, 

29], as seen in Figure 4.4d.  

N doping is an important factor to determine the properties of CNTs. Therefore, the effect 

of TPP addition on the N content and N bonding environments in PNCNTs is studied. 

The N content, defined as atomic percent of N with respect to the sum of C and N, is 

estimated by the area ratio of N peak and the sum of C and N peaks (N/(C+N)). With the 

addition of TPP, the N content decreases from 10.2 at.% for NCNTs to 7.1 at.% for 

PNCNTs. The deconvolution of N1s peaks for NCNTs and PNCNTs is shown in Figure 

4.4 (g) and (h) respectively. It can be seen that, for both samples, N1s peak is fitted into 

two peaks at 400.6 eV and 398.3 eV, which correspond to graphite-like N and pyridine-

like N respectively [20]. The intensity ratio between graphite-like N and pyridine-like N 

(IgN/IpN) is 1.7 for PNCNTs and 1.8 for NCNTs. These results indicate that the addition of 

TPP may suppress the doping of N into PNCNTs, but has little effect on the types of N. 

4.3.3 Crystallinity of PNCNTs 

To obtain information about the effect of TPP addition on the crystallinity of PNCNTs, 

HRTEM and Raman spectra were performed on NCNTs and PNCNTs synthesized with 

50 mg of TPP. The HRTEM images of NCNTs and PNCNTs are shown in Figure 4.5. 
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PNCNTs have very thick nanotube walls (as seen in Figure 4.2d), which make it difficult 

to obtain information about the inner nanotubes by HRTEM. Thus we only compare the 

features of the outer surfaces of NCNTs and PNCNTs. In Figure 4.5, it can be seen that 

both NCNTs and PNCNTs have rough surfaces with a thin amorphous layer. Compared 

with NCNTs, PNCNTs exhibit a slight decrease in the degree of long-range ordered 

crystallinity. 

 

Figure 4.5 HRTEM images of NCNTs (a) and PNCNTs prepared with 50 mg of TPP (b). 
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Figure 4.6 Raman spectra of NCNTs and PNCNTs synthesized with 50 mg of TPP. 

Two first-order Raman spectra of PNCNTs synthesized with 50mg of TPP and NCNTs 

were plotted in Figure 4.6. The band located at ~ 1342 cm
-1

 (D-band) is originated from 

atomic displacement and disorder induced features caused by lattice defect, distortion, or 

the finite particle size [31]. The band at ~ 1568-1582 cm
-1

 (G-band) indicates the 

formation of well-graphitized carbon nanotubes [32]. The intensity ratio between D-band 

and G-band (ID/IG) or the variation of the full width at half-maximum (FWHM) is usually 

used to represent the crystalline order in CNTs [20, 33, 34]. In our case, ID/IG is 

calculated to be 0.94 for both NCNTs and PNCNTs. The FWHMs of D-band and G-band 

increase from 146.3 and 83.6 cm
-1

 for NCNTs to 161.2 and 101.5 cm
-1

 for PNCNTs 

respectively. Narrowing of the Raman modes indicates a better crystallization of the 

nanotubes or a larger crystal planer domain size in graphite sheets and consequently a 

lower degree of disorder [34]. In our case, the broadening of D-band and G-band of 

PNCNTs shows that they have a lower crystalline order than NCNTs. This is in 

accordance with the HRTEM result. Therefore, it can be concluded that the addition of 

TPP during synthesis process leads to a lower crystallinity of PNCNTs than NCNTs. It is 

well known that the decrease of N content in NCNTs usually leads to an increase of 

crystalline order [20, 33]. However, In our case, PNCNTs still exhibit a lower crystalline 

order than NCNTs, although the N content of the former (7.1 at.%) is lower than that of 
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the latter (10.2 at.%). The reason is probably due to the P doping into PNCNTs by 

introducing TPP. A previous study has shown that the incorporation of P into SWNTs 

can cause a substantial increase in D-band intensity [12], which suggests an increase in 

defects and disorder. Therefore, it can be considered that P doping contribute to an 

increase in defects and disorder in PNCNTs. The P and N doping result in a lower 

crystalline order of PNCNTs than that of NCNTs. Moreover, it is noticed that G-band 

undergoes a down-shift from 1582 cm
-1

 for NCNTs to 1568 cm
-1

 for PNCNTs. The G-

band represents the tangential mode vibration of carbon atoms in graphene sheets, and 

shifts of the G-band are interpreted in terms of C-C expansion (or contraction) and the 

changes of electronic structure [32]. The down-shift of G-band could also be attributed to 

the P doping in PNCNTs. P atoms can provide more free electrons than N atoms do. Both 

N and P in PNCNTs can act as electron donors, and improve electron transfer between 

valance and conduction bands. 

4.4 Conclusions 

Aligned phosphorus-nitrogen doped multiwalled carbon nanotubes (PNCNTs) with 

tunable structure have been synthesized on a silicon wafer by a simple FCCVD method. 

SEM analysis showed that the length and yield of PNCNTs decreased dramatically with 

an increase in the amount of TPP. TEM observations indicated that with an increasing 

amount of TPP, the outer diameter and the wall thickness of PNCNTs gradually increased, 

while the inner diameter decreased, represented by the decrease of DI/DO from 0.68 for 

NCNTs, to 0.68, 0.23 and 0.22 for PNCNTs with TPP amount of 10, 30 and 50 mg, 

respectively. TEM and BSE imaging studies revealed that the shape changes of catalyst 

particles, from conical for NCNTs to elongated for PNCNTs, was responsible for these 

structural changes. XPS result revealed that PNCNTs had a P content of 1.9 at.%, with 4-

6% contribution from the P-rich catalyst particles. The P in PNCNTs existed in C-P 

bonds, and part of P at the nanotube surface was oxidized. Raman analysis showed 

PNCNTs exhibited broader FWHM for both the G-band and D-band, and a lower 

position of the G-band than for NCNTs due to P doping. Both XPS and HRTEM results 

indicate that PNCNTs was less crystalline than NCNTs. 
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Chapter 5 Microwave-Assisted Hydrothermal Synthesis of 

Nanostructured Spinel Li4Ti5O12 as Anode Materials for 

Lithium-Ion Batteries ‡ 

5 Microwave  

NCNTs and PNCNTs synthesized in chapter 3 and 4 are very promising anode materials 

for LIBs. However, due to their low working voltage below 0.5 V, carbon materials suffer 

from the formation of solid-electrolyte interphase (SEI), which could result in low battery 

efficiency and bring safety problems. To avoid these problems, one way is to find another 

anode material with higher working voltages. Lithium titanate (Li4Ti5O12), with voltage 

potential at 1.55 V (vs. Li/Li
+
), is free the formation of SEI, and thereby one alternative 

to carbon materials.  

In this chapter, we report the synthesis of nanoflower-like and nanoparticle spinel 

Li4Ti5O12 by a microwave-assisted hydrothermal (MH) method following calcinaition. 

As-prepared Li4Ti5O12 was characterized by scanning electron microscopy, transmission 

electron microscopy, X-ray powder diffraction and cyclic voltammetry. The nanoflower-

like and nanoparticle Li4Ti5O12 exhibited discharge capacities of 176.7 and 109.8 mAh g
-

1
 respectively, for the first cycle, and maintained reversible capacities of 138.4 and 91.7 

mAh g
-1

 respectively, at a 1.1 C-rate (200 mA g
-1

)  after 100 cycles. The better 

performance of nanoflower-like Li4Ti5O12 relative to nanoparticle Li4Ti5O12 is attributed 

to the larger specific surface area and shorter Li
+
 diffusion path of the former relative to 

the latter. The MH preparation process is straightforward and fast; thus it shows promise 

for widespread lithium ion battery applications. 

Keyword: Li4Ti5O12; microwave-assisted hydrothermal method; lithium ion batteries; 

anode material. 

                                                 

‡
 Part of this chapter has been published in Electrocheim. Acta 2012, 63, 100-104. 
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5.1 Introduction 

Lithium ion batteries (LIBs) are the most developed energy storage system for portable 

devices, electric vehicles (EVs) and hybrid electric vehicles (HEVs) due in large part to 

their high energy density and long cycling life [1-4]. At present, graphite is widely used 

in commercial LIBs as the anode material, but it suffers from poor abuse tolerance for EV 

and HEV applications [5]. Recently, spinel Li4Ti5O12 has attracted much interest as a 

promising anode (negative electrode) material for LIBs due to its unique advantages [4-

20]. The potential for unusually high-power cells has spurred much of this research [21-

24]. The working voltage of spinel Li4Ti5O12 is approximately at 1.55 V (vs. Li/Li
+
), 

which avoids the formation of a conventional solid electrolyte interphase (e.g. as seen 

over graphite), as the electrolyte is not exposed to strongly reducing potentials; thus, high 

coulomic efficiencies result [18]. In addition, the zero-strain of spinel Li4Ti5O12 upon 

lithiation and delithiation yields excellent structural stability and reversibility during 

charge and discharge processes [19]. Moreover, the high lithium ion mobility in 

Li4Ti5O12 provides good rate capability in LIBs, which is desirable for traction 

applications [20]. 

In recent years, much effort has been devoted to developing nanoscaled spinel Li4Ti5O12, 

which can improve the charge/discharge rate by shorting diffusion path of electrons and 

lithium ions. Spinel Li4Ti5O12 nanomaterials with different morphologies, such as 

nanotubes and nanowires [25, 26], nanosheets [27, 28] and porous microspheres [29], 

have been successfully synthesized by solvothermal [25] and hydrothermal [26-29] 

methods. Recently, microwave-assisted hydrothermal (MH) methods have been 

employed and found to be efficient for the synthesis of nanomaterials [30-37]. MH 

methods rely on the interactions of dielectric materials, be the liquid or solid, with 

microwave radiation that causes direct dielectric heating [30]; the process yields very 

rapid heating relative to less direct conventional hydrothermal (CH) methods [31]. In 

general, it takes only 1 to 3 minutes to heat water up to 100 to 150 
o
C by MH methods, 

while 60 to 100 minutes are often required using CH methods [31]. In addition, MH 

methods have several advantages over CH methods: (1) short reaction time and low-

temperature processing [32, 33], (2) extremely rapid kinetics of crystallization [34], and 
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(3) low energy consumption [32-34]. Up to now, MH methods have been used 

successfully to synthesize nanomaterials of MnO2 [30], WO3 [31], Co3O4 [35] and 

LiFePO4 [36, 37].  

Herein, we report the synthesis of nanostructured Li4Ti5O12 by a MH method and 

following heat treatment. Nanoflower-like and nanoparticle Li4Ti5O12 were obtained at 

different temperatures. The electrochemical properties of the nanoflower-like and 

nanoparticle Li4Ti5O12 were investigated as anode materials for LIBs. The effect of 

morphology on the LIB performance of Li4Ti5O12 is discussed. 

5.2 Experimental Section 

5.2.1 Sample preparation and characterization 

In a typical process, 191.6 mg LiOH and 1 mL 30% H2O2 was dissolved into 20 mL 

deionized water, and the mixture was stirred for several minutes until a clear solution was 

obtained. Then 0.59 mL titanium tetraisopropoxide (TTIP) was dropwise added into the 

clear solution with stirring. After stirring for 30 min, 15 mL of the obtained solution was 

transferred to an 80 mL Teflon-lined PTFE autoclave vessel, which was sealed and 

heated to desired temperatures (130 and 170 
o
C), with a holding time of 20 minutes in a 

microwave-assisted hydrothermal synthesis system (Anton Paar Synthos 3000). After the 

autoclave was cooled to room temperature, products were collected by centrifugation, 

washed with deionized water thoroughly, and dried in an oven at 80 
o
C for 12 h. Last, the 

as-prepared products were calcined in a quartz tube furnace at 550 
o
C for 6 h in air.  

The materials were characterized by X-ray diffraction (XRD, Rigaku RU-200BVH with a 

Co-Kα source, with λ=1.7892 Å), field emission scanning electron microscopy (SEM, 

Hitachi S4800), transmission electron microscopy (TEM, Hitachi H-7000), and high 

resolution TEM (HRTEM, JEOL 2010 FEG microscope). N2 adsorption/desorption 

isotherms were obtained using a Folio Micromeritics TriStar II Surface Area and Pore 

Size Analyzer. 
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5.2.2 Electrochemical characterization 

Electrochemical measurements were performed by using coin-type half cells assembled 

in an argon-filled glove box ([O2]<1 ppm, [H2O]<1 ppm). The electrolyte was 1M LiPF6 

solution in ethylene carbonate and dimethyl carbonate with a volume ratio of 1:1. To 

prepare the electrode, the active material powder, acetylene black and polyvinylidene 

fluoride binder, with a weight ratio of 80:10:10 were mixed until substantially 

homogeneous, and pasted onto a copper foil. Each electrode foil has a surface area of 1.6 

cm
-2

 and contains active material of ~ 5 mg. Then the electrode was dried under vacuum 

at 110 
o
C for 12 h. The coin cells were cycled at a current density of 200 mA g

-1
 with 

cutoff voltages of 1.0 and 2.5 V by using an Arbin BT-2000 Battery Test System. 

5.3 Results and Discussion 

 

Figure 5.1 XRD patterns of the samples synthesized at 130 
o
C (a, b) and 170 

o
C (c, d). (a, 

c) as-prepared, (b, d) after calcination at 550 
o
C for 6 h in air. 

Figure 5.1 shows XRD patterns of the products as-prepared at 130
 
and 170 

o
C, and after 

calcination at 550 
o
C for 6 h in air. In Figure 5.1a, it can be seen that the product as-

prepared at 130 
o
C is in agreement with lithium titanium oxide hydrate (JCPDS Card No. 
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47-0123). It is reported that lithium titanium oxide hydrate can be transformed into spinel 

Li4Ti5O12 by heat treatment above 350
o
C [38]. For the sample as-prepared at 170 

o
C, it is 

composed of Li2TiO3 (JCPDS Card No. 33-0831) and anatase TiO2 (JCPDS Card No.89-

4921), as shown in Figure 5.1c. Li2TiO3 and anatase TiO2 are two precursors widely used 

for the synthesis of spinel Li4Ti5O12 by solid-state methods, as they can react with each 

other to form spinel Li4Ti5O12 at elevated temperatures [39]. After calcined at 550 
o
C for 

6 h, both samples can be indexed as spinel lithium titanate, in accordance with spinel 

Li4Ti5O12 (JCPDS Card No. 49-0207), as seen in Figure 5.1 (b, d).  In the two XRD 

patterns, no other phases are found, implying high purity of the two samples. 

Figure 5.2 presents morphologies of Li4Ti5O12 synthesized at 130 and 170 
o
C. In Figure 

5.2a, it can be seen that the Li4Ti5O12 prepared at 130 
o
C possesses nanoflower-like 

spheres with diameters ranging from 500 to 900 nm. Each nanoflower-like sphere 

comprises many vertical nanosheets. The thickness of the nanosheets is on the order of 10 

nm (Figure 5.2 (b, e)).  Selected area electron diffraction (SAED) pattern (inset in Figure 

5.2b) shows the highly crystalline features of spinel Li4Ti5O12. An HRTEM image of one 

nanosheet is shown in Figure 5.2e. The lattice distance is measured to be 0.48 nm, which 

is well in accordance with the d(111) spacing of spinel Li4Ti5O12. The morphology of the 

Li4Ti5O12 produced at 170 
o
C is shown in Figure 5.2 (c, d). This kind of Li4Ti5O12 

consists of numerous nanoparticles, the size of which varies from tens of nanometers to 

hundreds of nanometers, as seen in Figure 5.2d. Those nanoparticles agglomerate and 

form micro-size particles, as shown in Figure 5.2c. Based on the above results, it can be 

concluded that nanoflower-like and nanoparticle Li4Ti5O12 with high purity and high 

crystallinity are successfully synthesized by the MH method and following heat treatment. 
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Figure 5.2 SEM (a, c) and TEM (b, d) images of Li4Ti5O12 synthesized at 130 
o
C (a, b) 

and 170 
o
C (c, d). SAED pattern in the inset of (b) shows reflection rings corresponding 

to spinel Li4Ti5O12. A HRTEM image (e) of Li4Ti5O12 synthesized at 130 
o
C shows the 

image of lattice fringes and d(111) = 0.48 nm. 
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Figure 5.3 N2 adsorption-desorption isotherms for Li4Ti5O12 synthesized at 130 
o
C and 

170 
o
C. Inset shows pore size distribution for both samples. 

Figure 5.3 shows the N2 adsorption/desorption isotherms and pore size distribution (inset) 

for the nanoflower-like and nanoparticle Li4Ti5O12. The N2 adsorption/desorption 

isotherms of both samples show type IV isotherms (IUPAC classification) with distinct 

hysteresis loops at high partial pressures, indicating the presence of mesopores and 

macropores [38]. Nanoflower-like and nanoparticle Li4Ti5O12 show similar pore size 

distributions, with a narrow peak at about 3 nm and a broad peak centered at 19 nm. 

Brunauer-Emmett-Teller (BET) analysis shows that nanoflower-like Li4Ti5O12 has a 

specific surface area of 46.8 m
2
 g

-1
, which is much larger than that of the similarly 

measured 12.1 m
2
 g

-1
 for the nanoparticle Li4Ti5O12. The pore volumes of nanoflower-

like and nanoparticle Li4Ti5O12 are 0.21 cm
3
 g

-1
 and 0.06 cm

3
 g

-1
, respectively. 
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Figure 5.4 CV curves of Li4Ti5O12 prepared at (a) 130 
o
C and (b) 170 

o
C in the first three 

cycles at a scan rate of 0.2 mV s
-1

. 

Figure 5.4 (a, b) show the cyclic voltammograms (CVs) of nanoflower-like and 

nanoparticle Li4Ti5O12 respectively, for the first three cycles. In the first cycle, one pair of 

redox peaks appears at 1.48 (reduction) and 1.65 (oxidation) V in nanoflower-like 
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Li4Ti5O12, and 1.44 (reduction) and 1.75 (oxidation) V in nanoparticle Li4Ti5O12. Those 

two peaks correspond to the Li
+ 

insertion (reduction) and extraction (oxidation) processes 

[27-29]. The potential differences between anodic and cathodic peaks for nanoflower-like 

Li4Ti5O12 and nanoparticle Li4Ti5O12 are 0.17 and 0.33 V, respectively, suggesting a 

lower electrode polarization for the former [40]. Comparing Figure 5.4a with Figure 5.4b, 

we can see that the peak currents of anodic and cathodic reactions are comparable for 

nanoflower-like Li4Ti5O12, while they are asymmetric for nanoparticle Li4Ti5O12. The 

asymmetric peak currents have been observed in CVs of bulk spinel Li4Ti5O12 and can be 

attributed to the slow lithium ion diffusivity in bulk spinel Li4Ti5O12 [26]. It is believed 

that the agglomeration of nanoparticle Li4Ti5O12 after heat treatment is responsible for its 

asymmetric peak currents in the CVs and less reversible behavior. For nanoflower-like 

Li4Ti5O12, the thin nanosheets keep their shapes after calcination, and symmetric peak 

currents in CVs result, along with less polarization. Further supporting this observation, 

in Figure 5.4, it is shown that the initial three cycles almost overlap for nanoflower-like 

Li4Ti5O12, while slight mismatch is observed for nanoparticle Li4Ti5O12. This difference 

suggests that nanoflower Li4Ti5O12 has better reversibility than nanoparticle Li4Ti5O12 

during the insertion/extraction processes of Li
+
 into/from Li4Ti5O12 [41]. 

 

Figure 5.5 Galvanostatic charge/discharge curves for Li4Ti5O12 prepared at 130 
o
C and 

170 
o
C between 1 and 2.5 V at a current density of 200 mA g

-1
. 
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Figure 5.5 shows the initial three charge/discharge curves for nanoflower-like and 

nanoparticle Li4Ti5O12 samples. It can be seen that both samples exhibit flat plateaus 

around 1.5-1.6 V (vs. Li/Li
+
), which corresponds to the reversible two phase transition 

between Li4Ti5O12 and Li7Ti5O12 [25, 26]. For nanoflower-like Li4Ti5O12, the first 

discharge capacity reaches as high as 176.7 mAh g
-1

, and an irreversible capacity of 14% 

is obtained at the first cycle. Nanoparticle Li4Ti5O12 delivers a capacity of 109.8 mAh g
-1

, 

and shows an irreversible capacity of 12 % for the first cycle. A similar irreversible 

capacity during the first charge/discharge cycle has been reported [39, 41]. It is usually 

attributed to the dissolution of surface impurities, such as adsorbed trace water, from the 

electrodes into the liquid electrolyte [29, 31]. From Figure 5.5, it can also be seen that 

nanoflower-like Li4Ti5O12 has a smaller difference between charge and discharge plateau 

potentials than nanoparticle Li4Ti5O12. This result is consistent with the CVs and suggests 

faster overall kinetics for the nanoflower-like Li4Ti5O12 relative to the nanoparticle 

Li4Ti5O12. The reason could be attributed to the shorter diffusion path of Li
+
 in 

nanoflower-like Li4Ti5O12. The larger specific surface area of nanoflower-like Li4Ti5O12, 

relative to the nanoparticle Li4Ti5O12 also insures a larger contact area between electrode 

and electrolyte, which is beneficial for the Li
+ 

exchange. 

 

Figure 5.6 Cycling performance of Li4Ti5O12 prepared at 130 
o
C and 170 

o
C measured at 

a current rate of 200 mA g
-1

. 
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The cyclic stabilities of nanoflower-like and nanoparticle Li4Ti5O12 are studied at a rate 

of 200 mA g
-1

, and the results are shown in Figure 5.6. It can be seen that the specific 

capacity of nanoparticle Li4Ti5O12 remains stable after the first cycle. For nanoflower-like 

Li4Ti5O12, the irreversible capacity rapidly decreases with upon cycling, and the specific 

capacity stabilizes after ca. 10 cycles. Both samples exhibit high coulombic efficiencies 

after the first cycle, effectively 100% for the measurement employed. After 100 cycles, 

the specific capacities of nanoflower-like and nanoparticle Li4Ti5O12 are determined to be 

138.4 mAh g
-1

 and 91.7 mAh g
-1

, respectively. It has been widely reported that excellent 

electrochemical performance could be achieved in high surface area anodes due to short 

diffusion distance of Li
+
 in solid body [25, 26, 31]. In addition, provided deleterious side 

reactions are not a concern, smaller particles are beneficial in that they provide increased 

surface area for electrochemical reaction and reduced overall reaction resistance. 

Therefore, the larger specific capacity of nanoflower-like Li4Ti5O12 than nanoparticle 

Li4Ti5O12 could be attributed to the larger specific surface area and shorter Li
+
 diffusion 

path of the former relative to the latter. In Figure 5.6, the capacity retention after 100 

cycles is calculated to be 78% and 82% for nanoflower-like and nanoparticle Li4Ti5O12, 

respectively. It should be noted that the capacity retentions in our case are slightly lower 

than those reported in some literatures [42, 43]. Nonetheless, similar capacity retention of 

Li4Ti5O12 was observed previously [39, 41], and the large capacity loss could be 

attributed to several reasons. One reason is that the annealing temperature of Li4Ti5O12 in 

our case (550 
o
C) is relatively lower than those (700-800 

o
C) in Ref. [42, 43]. Higher 

annealing temperature can lead to better crystallinity of Li4Ti5O12 and then a reduced 

initial capacity loss [44]. However, it can also easily result in the agglomeration of 

Li4Ti5O12, which would make its performance worse. Another reason could be the 

adsorbed trace water, surface defects such as surface vacancies or voids, which are 

common for nanomaterials but will lead to irreversible capacity [28, 29, 31]. It should be 

mentioned that nanoflower-like Li4Ti5O12 synthesized by MH method exhibits 

comparable performance to Li4Ti5O12 prepared by CH method, whereas MH process 

takes much shorter time (20 minutes) than CH process (12-36 h) [26, 28, 31]. 
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5.4 Conclusions 

Spinel Li4Ti5O12 with nanoflower-like and nanoparticle morphologies were successfully 

synthesized by a microwave-assisted hydrothermal method and following heat treatment. 

The nanoflower-like Li4Ti5O12 exhibits a layered structure of high specific surface area 

and provides good reversibility and cycling performance. The nanoflower-like Li4Ti5O12 

delivered a specific capacity of 176.7 mAh g
-1

 during the first cycle, and maintained 

138.4 mAh g
-1 

after 100 cycles. 
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Chapter 6 Crystallinity-Controlled Synthesis of Zirconium 

Oxide Thin Films on Nitrogen-Doped Carbon Nanotubes by 

Atomic Layer Deposition § 

6 Crystallinity  

In LIBs, one main reason for the performance degradation is the side reactions 

happening at the interface of electrode materials and liquid electrolytes. For example, in 

the LiCoO2 cathode, HF acid generated from the electrolytes during the cycling can 

dissolve the Co element in LiCoO2, thereby leading to rapid fading of the LIB 

performance. One way to prevent or alleviate the dissolution of Co is coating LiCoO2 

cathode with an artifical thin layer, which is inert to HF acid. Zirconium oxide (ZrO2) is 

one typical coating material. 

In this chapter, ZrO2 thin film was deposited on nitrogen-doped carbon nanotubes 

(NCNTs) by atomic layer deposition (ALD) using tetrakis(dimethylamido)zirconium (IV) 

and water as precursors. The observation using scanning electron microscope and 

transmission electron microscope (TEM) revealed that the tubular films of 100-cycle 

ZrO2 were very uniform and conformal on NCNTs. Further characterization, using X-ray 

diffraction, Raman spectroscopy, selected area electron diffraction and high-resolution 

TEM disclosed that the crystallinity of the deposited ZrO2 films was controllable with 

deposition temperatures in the range of 100 - 250
 o

C. In contrast to the pure amorphous 

ZrO2 film deposited at 100 
o
C, tetragonal crystalline ZrO2 film was prepared at 250 

o
C, 

while a mixture of the former two phases was found between 150 
o
C and 200

 o
C. In all 

cases, the growth of ZrO2 tubular films on NCNTs showed a transformation from an 

“island growth” mode to a “layer-by-layer growth” mode with increasing ALD cycles.  

Keyword: Zirconium oxide, carbon nanomaterials; nanocomposites; nitrogen doping; 

growth mode. 

                                                 

§
 Part of this chapter has been published in J. Phys. Chem. C 2012, 116, 14656-14664. 
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6.1 Introduction 

Since the work by Iijima in 1991[1], carbon nanotubes (CNTs) have been drawing much 

attention from various areas due to their unique properties [2, 3]. Up to now, CNTs have 

been involved in a wide range of potential applications, such as reinforced materials, 

nanoelectronic devices, field emission display sources, and energy storage and 

conversion devices [4, 5]. Recently, great interest has been raised to make one-

dimensional nanocomposites by using CNTs as supports for the deposition of various 

materials [6-9]. In particular, CNTs have been considered as the most promising 

templates for fabricating metal oxide-CNT nanocomposites, which possess exceptional 

chemical, mechanical, and physical properties [10-15]. These advanced nanocomposites 

are likely to become key components in the next generation of magnetic, optical, and 

electronic devices. 

Zirconium oxide (ZrO2) is an attractive material in many fields because of its excellent 

mechanical, thermal, optical and electrical characteristics [16, 17]. ZrO2 can present three 

polymorphic crystalline structures, i.e., monoclinic (below 1170 
o
C), tetragonal (1170-

2370 
o
C), and cubic (above 2370 

o
C) [17]. Recently, there were many efforts devoted to 

fabricate ZrO2-CNT nanocomposites in hopes of broadening the applications of ZrO2 

[18-23]. For example, ZrO2-CNT nanocomposite prepared by a hydrothermal method 

was found to be a good biocompatible matrix for protein immobilization [18]. In addition, 

it was also found that the Pt catalyst supported by ZrO2-CNT nanocomposites exhibited 

significantly improved catalytic activity towards methanol and ethanol oxidation in direct 

methanol and ethanol fuel cells, compared with that supported by either CNTs or 

commercial C [19, 20]. Moreover, CNT transistors integrated with high-k ZrO2 were 

applied as advanced gate dielectrics, which will be crucial for future molecular 

electronics [21]. Thus, ZrO2-CNT nanocomposites are promising for applications in fuel 

cells, batteries, electronics devices, and chemical sensors. 

To fulfill these applications, it is of great importance to controllably synthesize ZrO2-

CNT nanocomposites. In previous studies, the fabrication of ZrO2-CNT nanocomposites 

was mainly achieved by solution-based methods [16, 17, 23-25]. For example, Sun et al. 

[23] synthesized ZrO2-CNT nanocomposites via decomposition of Zr(NO3)4·8H2O in 
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supercritical carbon dioxide-ethanol solution with dispersed CNTs at relatively low 

temperatures. Shan et al. [24] prepared ZrO2-CNT nanocomposites with phase-controlled 

ZrO2 by hydrothermal treatment of CNTs in ZrOCl2·8H2O aqueous solution at 150 
o
C. 

Most of these studies were focused on controlling the phase [17, 24, 25]
 
or morphology 

[16] of ZrO2 coated on CNTs, and the CNTs used in these studies required a pretreatment 

process by either covalent
 
[26]

 
or non-covalent [14, 27] methods to functionalize their 

inert surface. The pretreatment might adversely affect the inherent properties of the CNTs. 

Herein, we developed an alternative approach to synthesize ZrO2-CNT nanocomposites. 

This approach features crystallinity-controlled deposition of ZrO2 tubular films directly 

on nitrogen doped carbon nanotubes (NCNTs) using atomic layer deposition (ALD), 

which has been our research interest both in synthesizing [28, 32] and applications [33, 

34]. ALD is a unique technique which allows the deposition of conformal and uniform 

thin films via sequential and self-terminating gas-solid reactions with controlled film 

thickness at atomic level [35, 36]. The coating of ZrO2 on CNTs was previously achieved 

with the use of ZrCl4 and H2O as precursors, whereas detailed studies are still lacking 

[21]. Moreover, the use of ZrCl4 as Zr precursor may constrain the application of ZrO2, 

because ZrCl4 suffers from serious processing problems including the corrosion of 

deposition system caused by HCl generated during the reaction, high risk of small 

particles being transported into substrates, and high evaporation temperature (165 
o
C) due 

to its low volatility [37]. In comparison, tetrakis(dimethylamido)zirconium (IV) 

(Zr(NMe2)4) as an ALD precursor has several advantages over ZrCl4, such as sufficient 

volatility, thermal stability, and high reactivity to a hydroxylated surface [38-40]. Using 

Zr(NMe2)4 and H2O as ALD precursors, for example, ZrO2 films were successfully 

deposited on Si and glassy carbon substrates, with a growth per cycle (GPC) of 0.096 ± 

0.002 nm in the range of 50 - 250 
o
C [38, 39]. It was reported that the ALD of ZrO2 

(ALD-ZrO2) using these two precursors consists of two half reactions [38]: 

‖- OH + Zr(NMe2)4 (g) →‖- OZr(NMe2)3 + C2H7N (g)                            (6-1) 

‖- NMe2 + H2O (g)→‖- OH + C2H7N (g)                                                  (6-2) 



103 

 

where “‖” represents substrate surface and “(g)” denotes vapor species. Therefore, in 

this work, Zr(NMe2)4 and H2O were employed as precursors for ALD-ZrO2. The NCNTs 

were homemade and suitable for ALD processes without any additional pretreatment 

steps [29, 31]. In summary, this work describes the uniform deposition of ALD-ZrO2 

films on NCNTs, with not only precisely controlled thickness at nanoscale level, but also 

highly tunable crystallinity, from amorphous to crystalline. In addition, the growth 

process of ALD-ZrO2 on NCNTs was explored, and the growth mechanisms of ALD-

ZrO2 on NCNTs were proposed. This kind of ZrO2-NCNT nanocomposites synthesized 

by ALD may find many potential applications, such as fuel cells, batteries, electronics 

and gas sensors. 

6.2 Experimental section 

6.2.1 Synthesis of NCNTs 

NCNTs were prepared by a chemical vapor deposition (CVD) method, using melamine 

(C3H6N6, 99+%, Aldrich) as the only source for both carbon and nitrogen. The substrate 

used for the growth of NCNTs was a carbon paper, which had been sequentially coated 

by an aluminum film (30 nm in thickness) and an iron film (5 nm in thickness) in a 

sputtering system. The aluminum film as a buffer layer could improve the quality and 

growth rate of NCNTs, while the iron film could catalyze the growth of NCNTs [41]. In a 

typical process, NCNTs were grown by the pyrolysis of melamine at 800 
o
C using argon 

(99.999% in purity) as a protective and carrier gas.  More details could be found in our 

previous work [42].
 

6.2.2 ZrO2-NCNTs by ALD 

The deposition of ZrO2 on NCNTs was achieved by alternatively supplying Zr(NMe2)4 

(99%, STREM) and deionized water (H2O) into a commercial ALD reactor (Savannah 

100, Cambridge Nanotech Inc., USA). Zr(NMe2)4 was heated to 75 
o
C, while water was 

kept at room temperature. In that case, sufficient precursor vapors could be supplied for 

the deposition of ZrO2. Additionally, the delivery lines were heated to 100
 o

C to prevent 

the precursors from condensation.  Nitrogen gas (99.999% in purity) was used as a carrier 

gas with a flow rate of 20 sccm, and the ALD reactor was maintained at a low level of 
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base pressure (typically 0.3 - 0.4 Torr) by a vacuum pump (Pascal 2005 I, Adixen). One 

ALD cycle was executed with the following six steps: (1) a supply of Zr(NMe2)4 with a t1 

pulse time; (2) a 3.0 s extended exposure of Zr(NMe2)4 to NCNTs; (3) a purging of 

oversupplied Zr(NMe2)4 and any byproducts with a t2 purge time; (4) a supply of  H2O 

with a t3 pulse time; (5) a 3.0 s extended exposure of H2O to NCNTs; (6) a purging of 

excess H2O and any byproducts a t4 purge time. In short, the deposition procedure can be 

described as t1 - t2 - t3 - t4. ZrO2 was deposited on NCNTs by repeating the above ALD 

cycle at 250, 200, 150 and 100 
o
C, respectively. 

6.2.3 Characterization of ZrO2-NCNTs 

The morphology and structure of as-synthesized ZrO2-NCNT nanocomposites were 

characterized by a field-emission scanning electron microscope (SEM, Hitachi S4800) 

equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron 

microscope (TEM, Hitachi H - 7000), high-resolution TEM (HRTEM, JEOL 2010 FEG), 

micro X-ray diffraction (XRD, Brucker D8, Co - Kα source, λ=1.7892 Å), and Raman 

spectrometer (HORIBA Scientific LabRAW HR800) with an incident laser beam of 

532.4 nm. 

6.3 Results and Discussion 

Figure 6.1 (a-c) shows the morphology and structure of NCNTs prepared by the CVD 

method. From Figure 6.1 (a, b), it can be seen that the carbon paper was totally covered 

by high-density NCNTs with diameters in a range of 20 - 35 nm. TEM image in Figure 

6.1c indicates that the synthesized NCNTs possess a typical bamboo-like structure, which 

is induced by nitrogen doping in the hexagonal framework of carbon layers [42, 43]. 

Raman spectrum of the NCNTs shows two first-order Raman peaks centered at ~ 1342 

cm
-1

  and ~ 1582 cm
-1

, which are so-called D-band and G-band respectively, as seen in 

Figure 6.1d. The intensity ratio between D-band and G-band (ID/IG) is calculated to be 

0.94 for the NCNTs, revealing its high degree of disorder due to nitrogen doping [43]. 
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Figure 6.1 SEM images (a, b), TEM image (c) and Raman spectrum (d) of NCNTs 

synthesized by the CVD method. 

In order to find out the conditions for saturated growth of ALD-ZrO2, the pulse time and 

purge time for both precursors were optimized. The deposition temperature was chosen to 

be 200 
o
C using Zr(NMe2)4 and H2O as precursors [38]. The optimization was carried out 

by changing one parameter at a time while keeping the others constant. The results 

indicated that a 0.5 s pulse of Zr(NMe2)4 and a 1.0 s pulse of H2O are sufficient to realize 

saturated growth of ALD-ZrO2 thin film on NCNTs (Figure SI-6.1). The purge time is 

required at least 30 s in order to avoid CVD-like growth of ZrO2 (Figure SI-6.2 (a, b)) 

and to achieve uniform deposition of ALD-ZrO2 thin film (Figure SI-6.2 (c, d)). A 

prolonged purge time had no obvious effect on the thickness and uniformity of ALD-

ZrO2 thin film (Figure SI-6.2 (e, f)). Therefore, all the ALD-ZrO2 was conducted with the 

procedure of 0.5 s - 30 s - 1 s - 30 s. 
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6.3.1 Crystalline development of ALD-ZrO2 

 

Figure 6.2 XRD patterns (a) and Raman spectra (b) of 100-cycle ZrO2-NCNTs deposited 

at 250, 200, 150, and 100 
o
C. (c) Deconvolution of Raman spectrum of 100-cycle ZrO2-

NCNTs prepared at 250 
o
C. (d) EDS of 100-cycle ZrO2-NCNTs prepared at 100 

o
C. 

The structural phases of 100-cycle ALD-ZrO2 prepared at 250, 200, 150 and 100 
o
C were 

identified by XRD and Raman techniques, and the results are presented in Figure 6.2. 

Figure 6.2a shows the XRD patterns of 100-cycle ZrO2-NCNTs prepared at 250, 200, 150 

and 100 
o
C. It can be seen that all samples exhibit two strong peaks at 30° and 64°, and a 

weak one at 50°, which are indexed as (002), (004) and (100) planes of graphite (JCPDS 

PDF No. 08-0415), respectively. They are apparently induced by the carbon paper and 

NCNTs grown on it. For the ZrO2-NCNTs prepared at 250 
o
C, the other peaks located at 

36°, 41°, 59°, and 71° are well consistent with the planes of (101), (110), (112) and (211) 

of tetragonal ZrO2 (JCPDS PDF No. 79-1768), respectively. The four peaks could be also 

assigned to cubic ZrO2, however, the existence of which is excluded later by Raman 
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examination. With a decrease in deposition temperature, the peak of (101) plane of 

tetragonal ZrO2 shifts to higher degrees and becomes broader in terms of half-width. In 

the meantime, the other peaks belonging to tetragonal ZrO2 become weaker in intensity. 

They totally disappear in the ZrO2-NCNTs prepared at 100
 o
C. The XRD results indicate 

that the ALD-ZrO2 experienced a gradual decrease in its crystallinity when decreasing the 

deposition temperature. Raman spectroscopy was carried out on the above samples in a 

region of 100-800 cm
-1

, and the results are presented in Figure 6.2 (b, c). From Figure 

6.2b, it can be seen that Raman spectra are approximately the same for ZrO2-NCNTs 

prepared at 250, 200 and 150
 o
C. Deconvolution of the Raman spectrum for ZrO2-NCNTs 

prepared at 250
 o

C reveals six peaks located at 140.8, 263.0, 308.0, 452.6, 538.8 and 

637.3 cm
-1

 (Figure 6.2c), which can be clearly assigned to the six Raman active modes 

(A1g + 2B1g + 3Eg) of tetragonal ZrO2 [44,45]. The similar results were also obtained for 

ZrO2-NCNTs prepared at 200 and 150
 o

C. For the ZrO2-NCNTs prepared at 100
 o

C, 

however, broad peaks with weak intensities are observed in its Raman spectrum (Figure 

6.2b), from which it is hard to identify the phase of the deposited ZrO2. This kind of 

Raman spectrum is probably due to the extremely limited long-range periodicity of ZrO2 

prepared at such a low temperature [45]. Nonetheless, EDS analysis verified the presence 

of Zr and O elements in the ZrO2-NCNTs prepared at 100
 o
C, as seen in Figure 6.2d. 

It should be noted that tetragonal ZrO2 is generally stable at high temperatures (1170 - 

2370
 o

C) [17], while in our case it was not only prepared at temperatures below 250 
o
C 

but also stable at room temperature. The occurrence of tetragonal ZrO2 at low 

temperatures has been reported previously [46-49]. Earlier studies believed that the low-

temperature tetragonal ZrO2 should be ascribed to grain size effect, i.e. ZrO2 with small 

size and high surface area can provide high surface energy to stabilize metastable 

tetragonal ZrO2 at low temperatures [48,49]. In this work, NCNTs acted as promising 

ALD-ZrO2 substrate with high surface area and high surface energy, which in return help 

the stabilization of tetragonal ZrO2 at temperatures below 250 
o
C. 
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Figure 6.3 SEM (a, c, e, g) and TEM (b, d, f, h) images of 100-cycle ZrO2-NCNTs 

prepared at 250 
o
C (a, b), 200 

o
C (c, d), 150 

o
C (e, f), and 100 

o
C (g, h). (Inset in each 

TEM image corresponds to its SAED pattern). 
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The morphologies of 100-cycle ALD-ZrO2 on NCNTs prepared at 250, 200, 150 and 100 

o
C were observed by SEM and TEM, and the results are presented in Figure 6.3. From 

Figure 6.3 (a, c, e, g), it can be clearly seen that NCNTs are homogeneously coated with 

ZrO2 tubular thin films at deposition temperatures of 250, 200, 150, and 100 
o
C. TEM 

observation reveals that these ZrO2 thin films are extremely uniform and conformal on 

NCNTs in all the cases, as shown in Figure 6.3 (b, d, f, h). Furthermore, selected area 

electron diffraction (SAED) was employed and the crystallinity of ALD-ZrO2 was 

revealed, as shown by the insets in Figure 6.3 (b, d, f, h). For the ZrO2-NCNTs prepared 

at 250
 o
C, the SAED diffraction rings can be indexed as (101), (112) and (211) planes of 

tetragonal ZrO2, indicating its polycrystalline feature (see the inset in Figure 6.3b). From 

Figure 6.3 (d) and (f), it can be clearly seen that the diffraction rings become more 

diffusive with the decreasing deposition temperature. In the case of 100
 o
C, only diffusive 

rings are observed, as shown by the inset in Figure 6.3h, manifesting that the ALD-ZrO2 

consists of only amorphous phase. The SAED results indicate that ALD-ZrO2 on NCNTs 

is temperature-dependent in the crystallinity. In particular, the information extracted from 

SAED and XRD results (see Figure 6.2a) are consistent on the crystallinity of the ALD-

ZrO2 prepared at different deposition temperatures. 

The microstructures of 100-cycle ALD-ZrO2 were further investigated using HRTEM, as 

shown in Figure 6.4. Figure 6.4a reveals that ALD-ZrO2 thin film is fully crystalline at 

250 
o
C, and the interplanar spacing of 0.298 nm (as marked in Figure 6.4a) is consistent 

with the spacing distance between (101) planes of tetragonal ZrO2. In the case of 200 
o
C, 

the ZrO2 thin film is composed of both crystalline nanoparticles and amorphous layers. 

These nanoparticles, with tetragonal ZrO2 phase, randomly distribute in the “matrix” of 

the amorphous ZrO2, as shown in Figure 6.4b. At the lower deposition temperature of 

150
 o

C, as shown in Figure 6.4c, it is found that these nanoparticles become sparse, and 

the “matrix” of amorphous ZrO2 layers takes the dominance. At the lowest deposition 

temperature of 100
 o

C, as shown in Figure 6.4d, only amorphous ZrO2 thin film can be 

identified. Based on the above results, it can be concluded that the crystallinity of ALD-

ZrO2 is temperature-dependent, i.e., the deposited ZrO2 shows crystalline tetragonal 

phase at 250 
o
C, amorphous phase at 100

 o
C, and a mixture of the former two in the range 

of 200 - 150 
o
C. 
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Figure 6.4 HRTEM images of 100-cycle ZrO2-NCNTs prepared at (a) 250 
o
C, (b) 200 

o
C, 

(c) 150 
o
C and (d) 100 

o
C, respectively. 

During ALD processes, growth per cycle (GPC) is an important measure to evaluate the 

growth ability of desirable materials. In this work, the GPC of ALD-ZrO2 is calculated 

based on the thickness of 100-cycle ALD-ZrO2 thin films, as shown in Figure 6.4. The 

GPC turns out to be 0.081, 0.085, 0.094 and 0.142 nm, at 250, 200, 150
 
and 100 

o
C, 

respectively (as plotted in Figure 6.5). It can be seen that the GPC of ZrO2 keeps almost 

the same (around 0.085 nm) from 250
 o

C to 150 
o
C. One can also find that the GPC of 

ZrO2 at 100 
o
C (0.142 nm) is apparently higher than those at the other temperatures. 
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Figure 6.5 GPC of ALD-ZrO2 on NCNTs as a function of deposition temperature (inset 

shows the thickness of ZrO2 thin film deposited at 200 
o
C as a function of ALD cycles). 

6.3.2 Growth process of ALD-ZrO2 

 

Figure 6.6 SEM images (a-e) of NCNTs without ZrO2 coating (a) and with ZrO2 coated 

at 200 
o
C after (b) 5 cycles; (c) 10 cycles; (d) 30 cycles and (e) 50 cycles. HRTEM 

images (f-i) of NCNTs with ZrO2 coated at 200 
o
C after (f) 5 cycles; (g) 10 cycles; (h) 30 

cycles and (i) 50 cycles (The scale bar in (a-e) and (f-i) represents 20 nm and 5 nm 

respectively). 
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The morphological evolution of ALD-ZrO2 with ALD cycle was explored by SEM and 

HRTEM on the ZrO2-NCNTs prepared at 200 
o
C, and shown in Figure 6.6. Comparing 

Figure 6.6 (a) with (b), it is obvious that the surface of NCNTs is coated with many 

nanoparticles after only 5 ALD cycles. With the increase of ALD cycle, those 

nanoparticles start to coalesce (Figure 6.6c), and eventually close into a uniform thin film 

after 30 cycles (Figure 6.6d). Further increasing ALD cycle leads to a thicker thin film, 

with its uniformity maintained, as shown in Figure 6.6e and Figure 6.3c. The 

morphological development of ALD-ZrO2 was confirmed by HRTEM in Figure 6.6 (f-i). 

SEM observation on the ZrO2-NCNTs prepared at 250, 150 and 100 
o
C indicates the 

similar growth process of ALD-ZrO2 (Figure SI-(6.4-6.6)). This phenomenon implies that 

the growth of ALD-ZrO2 on NCNTs follows an “island growth” mode at the very early 

stage and a “layer-by-layer growth” mode afterward. 

HRTEM images of the ZrO2-NCNTs prepared at 200 
o
C after different ALD cycles also 

disclose the crystalline development of ALD-ZrO2 with ALD cycles, as displayed in 

Figure 6.6 (f-i). Before 10 cycles, the ALD-ZrO2 exhibits amorphous state, as seen in 

Figure 6.6 (f, g). After 30 cycles, the ALD-ZrO2 thin film is still dominated by 

amorphous phase, in the “matrix” of which some crystalline tetragonal ZrO2 

nanoparticles (diameter around 1.5 nm) can be found (Figure 6.6h). With increasing ALD 

cycle, those crystalline ZrO2 nanoparticles grow into bigger sizes, while the amorphous 

ZrO2 thin film becomes thicker, as shown in Figure 6.6i and Figure 6.3d. Thus, at 200 
o
C, 

the growth of amorphous ZrO2 continues during the whole ALD process, while 

nucleation and growth of crystalline ZrO2 start in the “matrix” of amorphous ZrO2 at the 

intermediate stage. The thicknesses of ZrO2 thin films after different ALD cycles at 200 

o
C are measured in Figure 6.6 (g-i), and plotted as a function of ALD cycle number (see 

the inset in Figure 6.5). In Figure 6.5, it can be clearly seen that the film thickness of 

ALD-ZrO2 shows an almost linear relationship with ALD cycles, indicating the self-

limiting growth of ALD-ZrO2 on NCNTs. 
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6.3.3 Discussion 

From the results in sections 6.3.1 and 6.3.2, one can easily see that ALD is distinguished 

as an innovative approach to synthesize ZrO2-NCNT nanocomposites in a well-controlled 

manner. The deposited ZrO2 thin films not only have highly tunable crystallinity, from 

amorphous to crystalline, but also have precisely controlled thickness at atomic level. The 

first feature is mainly ascribed to temperature-dependence of ALD-ZrO2, whereas the 

second one is resulted from the self-terminating nature of ALD process. To better 

understand the characteristic of ALD-ZrO2, it is essentially important to clarify the 

influence of ALD process parameters, i.e. the temperatures, substrates and precursors 

[36], on the growth process, the GPC and the crystallinity of ALD-ZrO2 on NCNTs. 

As disclosed in section 6.3.2, the growth of ALD-ZrO2 on NCNTs follows an “island 

growth” mode at the very early stage and a “layer-by-layer growth” mode after 

coalescence of these islands into a thin film, in a temperature range of 100 - 250 
o
C. 

Interestingly, island growth of ALD-ZrO2 was also previously observed on the substrate 

of hydrogen-terminated silicon using ZrCl4 and H2O as precursors [50-52]. The reason 

for this undesired ALD process was attributed to the lack of functional OH adsorption 

sites on the hydrogen passivated surfaces, and the island growth of ZrO2 started most 

likely at reactive defect sites of the substrate [50]. Another study reported that ZnO 

nanoparticles could be grown on single-walled carbon nanotubes (SWCNTs) by ALD, 

due to the sparse amount of defective sites on SWCNTs [53].
 
Thus, the NCNT substrate 

in our case is believed to play a crucial role in determining the special growth process of 

ALD-ZrO2. As well-known, NCNTs are rich of surface defects induced by nitrogen 

doping [43]. These N-induced defects make the surface of NCNTs more reactive than 

that of CNTs, thereby suitable for the direct growth of metal nanoparticles or nanowires 

on it [54-55]. In our previous work, NCNTs were also employed as substrates for ALD-

SnO2, and it was found that the surface defect sites, especially induced by pyridine-like N 

and graphite-like N, were preferable sites for the nucleation of ALD-SnO2 [29]. 

Therefore, in this work, it is reasonable to believe that N-induced defect sites at the 

surface of NCNTs are responsible for the island growth of ALD-ZrO2 at the very early 

stage. During the first cycle, Zr(NMe2)4 would chemically bond with these N-induced 
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defect sites, and then H2O introduced would react with the chemisorbed Zr(NMe2)4 via 

Reaction (2), generating –OH group terminated surface [38]. The following ALD cycles 

would happen preferably on the existing ZrO2 surface via Reaction (6-1) and Reaction (6-

2) sequentially, leading to the “island growth” of ALD-ZrO2 on NCNTs (see Figure 6.6 

(b, f)). With further increase of ALD cycle, those ALD-ZrO2 islands would grow in both 

vertical and lateral directions, and finally coalesce into a film (Figure 6.6 (c, d, g, h)). 

From this point on, the deposition of ZrO2 would occur on the film following a “layer-by-

layer growth” mode (Figure 6.6 (e, i) and Figure 6.3 (c, d)). The thickness of ZrO2 thin 

film can be simply but accurately controlled by means of the number of ALD cycle (see 

Figure 6.5). In addition, it was demonstrated that chemically bonded N in NCNTs were 

thermally stable up to 800 
o
C [56], and thus the N-induced defects on NCNTs in our case 

could be considered to remain unaffected by the temperature change from 100 
o
C to 250 

o
C. Moreover, theoretical calculation [57] showed that for Zr(NMe2)4, scission of metal-

ligand bonds was more feasible than scission of N-C bonds, and experiment study [38] 

also indicated that the reaction of Zr(NMe2)4 and H2O in ALD would follow Reaction (6-

1) and (6-2) in the temperature range of 100 - 250 
o
C. Therefore, in our case, it can be 

considered that the temperature change do not affect the substrate and the reaction 

mechanism of precursors. At all deposition temperatures, ALD-ZrO2 followed the similar 

growth process, i.e. “island growth” mode at the very early stage and “layer-by-layer 

growth” mode after the close of these islands into a thin film, as presented in Figure 6.6 

and Figure SI-(6.4-6.6). 

GPC is an important factor to measure the growth of ALD materials. In this work, the 

GPC of ALD-ZrO2 experienced an increase with decreasing temperature (see Figure 6.5). 

In particular, the GPC of ALD-ZrO2 at 100 
o
C (0.142 nm) is obviously higher than those 

at the other temperatures (around 0.085 nm). Earlier studies have shown that the 

temperature could affect the GPC of ALD materials by having effect on the number and 

types of reactive sites on the substrates, and/or the preferred reaction mechanisms [36]. 

As discussed above, the temperature change from 100 - 250 
o
C seemed not to affect the 

reaction mechanism of Zr(NMe2)4 and H2O in the ALD process [38,57]. However, 

temperature does have influence on the -OH groups, which were reactive sites for ALD 

process and generated via Reaction (1). Many previous studies [58-60] have indicated 
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that the number and types of hydroxyl groups were temperature-dependent, and high 

temperature could lead to dehydroxylation. During ALD-ZrO2, the dehydroxylation of 

hydroxyl groups was described as follows [59]:
 

2‖Zr-OH→ ‖Zr- O-Zr‖ + H2O                                                                (6-3) 

Undoubtedly, this dehydroxylation would reduce the number of -OH groups and thereby 

lead to a lower GPC at higher temperatures. Besides hydroxyl groups, physisorbed 

Zr(NMe2)4 and H2O are probably accountable for the higher GPC at 100 
o
C. Ritala et al.  

[61]
 
have shown that even at 500 

o
C, the desorption of water from the hydroxyl-

terminated surface could be slow enough, and long purge periods were needed. 

Hausmann et al. [38] have proved that it took much longer time to purge all surface-

physisorbed Zr(NMe2)4 and H2O at lower temperatures. Therefore, given the same purge 

time in our case, there would be more surface-physisorbed Zr(NMe2)4 and H2O at lower 

temperatures, which would in return contribute to the growth of ZrO2. Surprisingly, the 

ZrO2 thin film at lower temperatures still maintained its uniformity, as shown in Figure 

6.3 and Figure 6.4. A prolonged purge time (60 s) for both precursors did not obviously 

affect the thickness of ZrO2 thin film (Figure SI-6.3). Probably longer purge time than 

60s is required in order to avoid the surface-physisorbed precursors, but it will inevitably 

increase the preparation time of ALD-ZrO2. 

Besides growth mode and GPC, it is of great interest to explain the temperature 

dependence of the crystallinity of ALD-ZrO2. In section 6.3.2, one can find that the 

deposition temperature is the only parameter that distinguishes the four samples in this 

work. Apparently, it plays a crucial role in determining the crystallinity of ALD-ZrO2.  

Similar trend of crystallinity as a function of temperature was also previously reported in 

ALD-grown ZrO2 [38, 62, 63], TiO2 [28, 64], HfO2 [65], and SnO2 [29, 30]. It was 

demonstrated that the temperature had strong effects on surface mobility of absorbed 

species [64, 66], reaction mechanisms [29, 30, 63], and surface reactive sites [29, 63], 

thereby influencing the crystallinity of ALD-grown materials. High temperatures could 

enhance the surface mobility of absorbed species and promote the ordering of the 

structure with minimum energy, thus leading to the growth of crystallites [64, 66]. Meng 
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et al. [29,30] prepared phase-controlled ALD-SnO2 using SnCl4 and H2O as precursors, 

and proposed that the change of reaction mechanism from ligand exchange and 

chlorination with increasing temperatures was responsible for the phase transition from 

amorphous to crystalline. In addition, Scarel et al. [63] suggested that the reaction 

mechanism between -OH species and ZrCl4 could be changed by the decreased density of 

-OH species with increasing temperatures, thus affecting the crystallinity of deposited 

ZrO2. In our case, a higher temperature could help the mobilization of absorbed species, 

and enable the Zr and/or O ions to occupy the positions corresponding to the lowest free 

energy of the crystal [64], resulting in the crystalline phase of ALD-ZrO2. XRD (Figure 

6.2a) and HRTEM (Figure 6.4) results indicated that the ZrO2 was preferentially oriented 

in the [101] direction, which seems to have the lowest free energy. Until now, there is no 

evidence showing that the reaction mechanism between Zr(NMe2)4 and H2O is 

temperature-dependent in the temperature range we employed, as discussed previously. 

Nonetheless, the increase of temperature can modify the surface reactive sites via 

dehydroxylation process described in Reaction (6-3), leading to reduced hydroxyl groups 

at the surface. This might be a reason accountable for the increased crystallinity of ALD-

ZrO2 with elevating temperatures. Unfortunately, there is to date little knowledge about 

the effect of decreased hydroxyl groups on the reaction mechanism and the crystallinity 

of ALD-ZrO2 using Zr(NMe2)4 and H2O as precursors, and further investigations are 

needed. Another potential reason for ZrO2 being amorphous at lower temperatures is the 

residual dimethylamido ligand in the film, which could possibly prevent the 

crystallization of ZrO2. From above discussion, one can clearly see the critical effect of 

temperature on the crystallinity of ZrO2 at given ALD cycle. One the other hand, it 

should be noticed that at a given temperature, the crystallinity of ZrO2 would be mainly 

related to the film thickness, and more crystalline ZrO2 could be found in the thicker film, 

as disclosed in Figure 6.6. This phenomenon was also observed in previous studies, and 

could be explained as follows [39, 67]. At a given temperature, the nucleation events of 

crystalline ZrO2 distributed randomly over the surface of the substrate during each ALD 

cycle. The increase of ALD cycle could lead to the nucleation of more crystalline ZrO2 

nuclei in the thicker film. Once crystalline ZrO2 nuclei formed, the following ALD cycle 

would contribute further mass to the nuclei resulting in the growth of crystalline ZrO2. 



117 

 

Therefore, the thicker film induced by more ALD cycle contained more crystalline ZrO2 

than the thinner film did. It should be emphasized that the ALD of ZrO2 was done no 

more than 100 ALD cycles in this work. Further increase of ALD cycles could lead to the 

change of ZrO2 in its crystallinity (amorphous or crystalline) [33, 67], its phase 

(tetragonal, cubic or monoclinic) [67], or/and even its surface roughness [33].
 

 

Figure 6.7 Schematic diagram for growth mechanism of ALD-ZrO2 on NCNTs at (a) 100 

o
C, (b) 150-200 

o
C and (c) 250 

o
C. 

Figure 6.7 presents a schematic diagram to summarize the crystallite and morphological 

developments of ALD-ZrO2 at temperatures between 100 
o
C and 250 

o
C. It can be seen 

that ZrO2 exhibits only amorphous phase at 100 
o
C, whereas only crystalline phase at 250 

o
C. At intermediate temperature (150 - 200 

o
C), the growth of amorphous ZrO2 starts at 

the very beginning and continues during the whole process, while crystalline ZrO2 

nucleated and grew only during the intermediate process. It should be noted that 

crystalline ZrO2 was embedded in the “matrix” of amorphous ZrO2, not affecting the 

uniformity of the ZrO2 thin film. At all temperatures, the growth of ALD-ZrO2 follows an 
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“island growth” mode at the very early stage and a “layer-by-layer growth” mode after 

the coalescence of those “islands” into a film. 

6.4 Conclusions 

In this work, ZrO2-NCNT nanocomposites were successfully prepared by ALD at 

deposition temperatures from 100 
o
C to 250 

o
C. The results showed that the crystallinity 

of ZrO2 thin film experienced a gradual decrease with the decrease of temperature. 

Deposition temperature of 250 
o
C resulted in pure crystalline ZrO2, while 100 

o
C leaded 

to pure amorphous ZrO2. Mixed phases of crystalline and amorphous ZrO2 appeared in 

ZrO2-NCNTs between 150 
o
C to 200 

o
C. The ZrO2 thin film was very uniform and 

conformal. The GPC of ZrO2 was 0.081, 0.085, 0.094 and 0.142 nm, at 250, 200, 150
 
and 

100 
o
C, respectively. At all deposition temperatures, the growth of ZrO2 followed 

“island-growth” mode during the early stage and “layer-by-layer growth” mode after the 

coalescence of those “islands” into a film. It is expected that such ZrO2-NCNT 

nanocomposites have great potential for various applications in fuel cells, batteries, 

electronics devices, and chemical sensors. 
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Supporting Information 

 

Figure SI-6.1 TEM images of 50-cycle ZrO2-NCNTs prepared at 200 
o
C using recipe of 

(a) 0.2 s - 30 s - 1.0 s - 30 s; (b) 0.5 s - 30 s - 1.0 s - 30 s; (c) 0.8 s - 30 s - 1.0 s - 30 s; (d) 

0.5 s - 30 s -0.5 s - 30 s and (e) 0.5 s - 30 s -1.5 s - 30 s (the error of the thickness 

measurement in TEM images is about 0.5 nm). 
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Figure SI-6.2 SEM (a, c, e) and TEM (b, d, f) images of 50-cycle ZrO2-NCNTs prepared 

at 200 
o
C using recipe of (a, b) 0.5 s - 15 s - 1.0 s - 15 s; (c, d) 0.5 s - 30 s - 1.0 s - 30 s 

and (e, f) 0.5 s - 60 s - 1.0 s - 60 s (the error of the thickness measurement in TEM 

images is about 0.5 nm). 
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Figure SI-6.3 SEM (a, c, e) and TEM (b, d, f) images of 50-cycle ZrO2-NCNTs prepared 

at 100 
o
C using recipe of (a, b) 0.5 s - 15 s - 1.0 s - 15 s; (c, d) 0.5 s - 30 s - 1.0 s - 30 s 

and (e, f) 0.5 s - 60 s - 1.0 s - 60 s (the error of the thickness measurement in TEM 

images is about 0.5 nm). 
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Figure SI-6.4 SEM images of ZrO2-NCNTs prepared at 250 
o
C after (a) 5 cycles; (b) 10 

cycles; (c) 30 cycles and (d) 50 cycles. 

 

Figure SI-6.5 SEM images of ZrO2-NCNTs prepared at 150 
o
C after (a) 5 cycles; (b) 10 

cycles; (c) 30 cycles and (d) 50 cycles. 



131 

 

 

Figure SI-6.6 SEM images of ZrO2-NCNTs prepared at 100 
o
C after (a) 5 cycles; (b) 10 

cycles; (c) 30 cycles and (d) 50 cycles. 
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Chapter 7 Controlled Synthesis of Zirconium Oxide on 

Graphene Nanosheets by Atomic Layer Deposition and Its 

Growth Machanism ** 

7 Controlled  

This chapter was an extended study of ALD-ZrO2 in chapter 6, and the substrate was 

changed from nitrogen-doped carbon nanotubes (NCNTs) to graphene nanosheets (GNS) 

in order to investigate the substrate effect and obtain better understanding on the growth 

behavior of ZrO2. 

Herein, ZrO2 was deposited on GNS by ALD using tetrakis(dimethylamido)zirconium (IV) 

and water as precursors. The results indicated that both morphology and crystallinity of 

the deposited ZrO2 were controllable in a temperature range of 150 - 250 °C. At all the 

temperatures studied, ZrO2 nanoparticles were formed with lower number of ALD cycles 

(< 10 cycles at 150 
o
C and < 30 cycles at 200 and 250 °C), while ZrO2 thin films were 

achieved uniformly with higher number of ALD cycles (> 10 cycles at 150 
o
C and > 30 

cycles at 200 and 250 °C). The crystallinity of the deposited ZrO2 was highly dependent 

on the deposition temperature. The ZrO2 deposited at 150 °C exhibited mainly 

amorphous nature, whereas that prepared at 250 °C consisted of crystalline phase. At 

200 °C, a mixture of amorphous and crystalline ZrO2 appeared in the ZrO2-GNS 

nanocomposite. In all cases, the growth of ZrO2 on GNS showed a transformation from 

an “island growth” mode to a “layer-by-layer growth” mode with increasing ALD cycle. 

Keyword: Atomic layer deposition; zirconium oxide, graphene; island growth; layer-by-

layer growth. 

 

                                                 

**
 Part of this chapter has been published in Carbon 2012, 52, 74-82. 
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7.1 Introduction 

As a two-dimensional (2D) nanostructure composed of sp
2
 hybridized carbon, graphene 

has been drawing worldwide attention since its discovery in 2004 [1]. It possesses high 

thermal conductivity (~5000 W m
-1

 K
-1

) [2], excellent electric conductivity (200 000 cm
2
 

V
-1

 s
-1

) [3], large surface area (theoretical valve, 2630 m
2
 g

-1
) [4], and strong mechanical 

strength [5]. These outstanding properties promise graphene in a wide range of potential 

applications, such as electronics [6], supercapacitors [4], lithium ion batteries [7, 8], fuel 

cells [9], solar cells [10, 11] and bioscience/ biotechnologies [12]. Recently, there is 

increasing interest in using graphene as a building block to fabricate multifunctional 

nanocomposites, which combine desired properties of each component. So far, polymer, 

metal, or metal oxides have been incorporated into graphene for various applications [13-

20]. In particular, metal oxides supported by graphene represent one kind of 

nanocomposites with unique mechanical, catalytic, and electrochemical properties [15-

23]. For example, TiO2-graphene nanocomposites were used for hydrogen evolution from 

water photocatalytic splitting [16]. SnO2-graphene nanocomposites showed enhanced 

cyclic performance and lithium storage capacity [18]. In addition, Co3O4 grown on 

graphene exhibited surprisingly high catalytic activity toward oxygen reduction reaction 

and oxygen evolution reaction due to synergetic chemical coupling effects between 

Co3O4 and graphene [20]. Thus, metal oxide-graphene nanocomposites have great 

potential for applications in fuel cells, lithium ion batteries, solar cells, supercapacitors, 

etc.  

Zirconium Oxide (ZrO2) is an attractive material in various industrial applications due to 

its excellent mechanical, thermal, optical and electrical characteristics [24, 25]. Up to 

now, there have been lots of studies on depositing ZrO2 onto one-dimensional (1D) 

carbon nanotubes (CNTs) [24, 25], and applying ZrO2-CNT nanocomposites for various 

applications, such as catalyst supports for fuel cells [26, 27], biocompatible matrix for 

protein immobilization [28], and transistors as advanced gate dielectrics [29]. As a young 

carbon nanomaterial, graphene holds several advantages over CNTs as supports for metal 

oxides, such as free of metallic impurities, cheap and accessible production from graphite 

[30]. Unfortunately, there are few efforts on developing ZrO2-graphene nanocomposites 
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until now. It was only recently that two literatures reported the synthesis of ZrO2-

graphene nanocomposites by an electrodeposition method, and their use for detection of 

organophosphorus agents and biosensor application [30, 31]. Inspired by the wide 

applications of ZrO2-CNTs, ZrO2-graphene nanocomposites can also be very promising 

for many potential applications, which need to be fully explored. To fulfill this, it is of 

great importance to synthesize ZrO2-graphene nanocomposites, especially in a 

controllable fashion. 

In previous studies, the synthesis of ZrO2-graphene nanocomposites was mainly achieved 

by electrodeposition method [30, 31]. It can also be synthesized by solution-based 

methods, which have been widely used for the production of metal oxide-graphene 

nanocomposites [16-20]. Even though these methods offer the advantages of low cost and 

suitability for large-scale production, they are still suffering from the limitation of 

controlled synthesis with desired material properties. In recent years, atomic layer 

deposition (ALD) emerged as a powerful approach to engineering various nanostructures 

[32-39]. ALD is one kind of chemical vapor deposition (CVD) technique, and proceeds 

in a layer-by-layer manner by two sequential and self-terminating gas-solid reactions [40-

41]. Compared with other kinds of CVD methods (such as plasma-enhanced CVD, 

conventional thermal CVD), ALD has advantages of achieving deposition of thin films 

with highly conformity and uniformity and precisely controlled thickness at Angstrom or 

monolayer level [40, 41]. Moreover, the deposition temperature of ALD is usually lower 

than that of other CVD methods (usually < 400
 o

C), and in some cases it can be even 

down to room temperature, which is beneficial for sensitive substrates [40, 41]. In this 

study, therefore, ALD was employed to prepare ZrO2-graphene nanocomposites, using 

tetrakis(dimethylamido)zirconium (IV) (Zr(NMe2)4) and H2O as precursors, which was 

reported to consist of two half reactions [42]: 

‖- OH + Zr(NMe2)4 (g) →‖- OZr(NMe2)3 + C2H7N (g)                            (7-1) 

‖- OZr(NMe2)3 + 3H2O (g) →‖- O-Zr-(OH)3 + 3C2H7N (g)                     (7-2) 
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where “‖” represents substrate surface and “(g)” denotes vapor species. Homemade 

graphene nanosheets (GNS) were employed as substrates for ALD-ZrO2. To our best 

knowledge, it is the first time of reporting the ZrO2-GNS nanocomposites synthesized by 

ALD in open literatures. The deposited ZrO2 was not only controllable in its morphology, 

either nanoparticles or nanofilms, but also tunable in its crystallinity, from crystalline to 

amorphous phase. This kind of ZrO2-GNS nanocomposites prepared by ALD might find 

potential applications in many fields, such as supercapacitors, fuel cells, sensors and 

electronics. 

7.2 Experimental Section 

7.2.1 Preparation of GNS 

GNS was prepared by thermal reduction of graphite oxide (GO) [43]. Briefly, GO was 

first produced by oxidizing natural graphite using a modified Hummers method [44]; then 

the as-synthesized GO was heated at 1050 
o
C for 30 s under argon gas to obtain GNS. 

More details about the preparation process of GNS can be found in our previous work 

[33,45]. 

7.2.2 ZrO2-GNS by ALD 

In a typical process, GNS powders were firstly loaded into a commercial ALD reactor 

(Savannah 100, Cambridge Nanotech Inc., USA) preheated to a desired temperature. A 

schematic diagram of the ALD reactor can be found in Figure SI-1. Then, Zr(NMe2)4 

(99%, STREM) and deionized water (H2O) were alternatively introduced into the ALD 

reactor for ALD-ZrO2. Zr(NMe2)4 was heated to 75 
o
C while H2O was kept at room 

temperature, in order to provide sufficient vapors for ALD-ZrO2. Delivery lines were 

heated to 100
 o

C to prevent the precursors from condensation. Nitrogen gas (99.999% in 

purity) was used as a carrier gas at a flow rate of 20 sccm, and the ALD reactor was 

maintained at a low level of base pressure (typically 0.3-0.4 Torr) by a vacuum pump 

(Pascal 2005 I, Adixen). One ALD cycle was executed with the completion of following 

six steps: (1) a 0.5 s supply of Zr(NMe2)4; (2) a 3.0 s extended exposure of Zr(NMe2)4 in 

the ALD reactor; (3) a 30 s purge of excess Zr(NMe2)4 and any byproducts; (4) a 1.0 s 

supply of  H2O (5) a 3.0 s extended exposure of H2O in the ALD reactor; (6) a 30 s purge 
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of excess H2O and any byproducts. ZrO2-GNS nanocomposites were prepared by 

repeating above ALD cycle at different deposition temperatures. In this study, three 

deposition temperatures were employed for ALD-ZrO2 on GNS: 150, 200 and 250 
o
C. 

7.2.3 Characterization of ZrO2-GNS 

The as-synthesized ZrO2-GNS nanocomposites were characterized using a field-emission 

scanning electron microscope (SEM, Hitachi S4800) equipped with energy dispersive X-

ray spectroscopy (EDS), transmission electron microscope (TEM, Hitachi H-7000), high-

resolution TEM (HRTEM, JEOL 2010 FEG), micro X-ray diffraction (XRD, Brucker D8, 

Co-Kα source, λ=1.7892 Å), and Fourier transform-infrared (FTIR, Nicolet 6700 FTIR 

spectrometer). 

Electrochemical behaviors of the samples were evaluated with 0.5 M H2SO4 at room 

temperature using an Autolab potentiostat/galvanostat (PGSTAT-30) scanned from -0.66 

to 0.24 V versus a saturated calomel reference electrode (SCE) at a scan rate of 50 mVs
-1

. 

7.3 Results and Discussion 

 

Figure 7.1 SEM image (a), TEM image (b) and FTIR spectrum (c) of the pristine GNS. 

The pristine GNS were characterized by SEM, TEM, and FTIR, and the results are 

presented in Figure 7.1. Figure 7.1a show that the pristine GNS have an accordion-like 

porous structure, which is composed of many thin graphene wrinkles. TEM observation 

reveals that these graphene wrinkles are transparent, as seen in Figure 7.1b. From FTIR 

spectrum in Figure 7.1c, it can be seen that the pristine GNS exhibit two strong peaks 

located at 3450 cm
-1

 and 1635 cm
-1

, which correspond to stretching vibrations of 

hydroxyl group (-OH) and skeletal vibration of graphitic domains (C=C), respectively 
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[45,46]. There are other two peaks observed at 1384 cm
-1

 and 1100 cm
-1

, which are 

assigned to C-OH and C-O stretching vibrations, respectively [45, 46].
 

 

Figure 7.2 SEM images of 100-cycle ZrO2-GNS nanocomposites prepared at (a) 150 
o
C, 

(b) 200 
o
C and (c) 250 

o
C. (d) XRD patterns of 100-cycle ZrO2-GNS nanocomposites 

prepared at 150 
o
C, 200 

o
C and 250 

o
C. 

ZrO2-GNS nanocomposites were prepared at 150, 200 and 250
 o

C with different numbers 

of ALD cycles. 100-cycle ZrO2-GNS nanocomposites were characterized by SEM and 

XRD, and the results are shown in Figure 7.2. In Figure 7.2 (a-c), it can be clearly seen 

that after 100-cycle ALD-ZrO2, the graphene wrinkles of GNS are totally coated with 

smooth thin films at all three deposition temperatures. Low-magnification SEM images 

(Insets in Figure 7.2 (a-c)) indicate that these thin films are very uniformly deposited onto 

the whole GNS powders. The thickness of the coated wrinkles is measured to be 25±0.5, 

22±0.7 and 19±0.4 nm, for 100-cycle ZrO2-GNS nanocomposites prepared at 150, 200 

and 250
 o

C, respectively (Figure 7.2 (a-c)). Furthermore, if we suppose the pristine 
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graphene wrinkles are about 4 nm in the thickness with a conservative estimate (as 

indicated in Figure SI-7.1 of the Supporting Information), the growth per cycle (GPC) of 

ALD-ZrO2 would be roughly evaluated as 1.05, 0.90, and 0.75 Ǻ, at 150, 200 and 250
 o
C, 

respectively. The GPC is calculated by the following equation: GPC = (thickness of 

coated wrinkles – thickness of pristine winkles) / (2 × cycle numbers) [33]. Figure 7.2d 

shows the XRD results of 100-cycle ZrO2-GNS nanocomposites prepared at 150, 200 and 

250
 o

C. It can be seen that all samples exhibit one strong peak at 29° and one weak one at 

50°, which correspond to the (022) and (100) planes of graphite (JCPDS PDF No. 08-

0415), respectively. Apparently, those two peaks were induced by GNS powders. For the 

ZrO2-GNS nanocomposite prepared at 250
 o

C, there also appear several strong peaks 

located at 35°, 40°, 59° and 70° in its XRD, which can be assigned to the planes of (101), 

(110), (112) and (211) of tetragonal ZrO2 (JCPDS PDF No. 79-1768), respectively, 

or/and (111), (200), (220) and (311) of cubic ZrO2 (JCPDS PDF No. 81-1550), 

respectively. These strong sharp peaks in XRD reveal the crystalline state of deposited 

ZrO2 at 250
 o

C. With a decrease of deposition temperature, the peaks of ZrO2 become 

weaker in the intensity and boarder in the half-width. Except T(101) or/and C(111) peak, 

the others of ZrO2 becomes almost invisible for the ZrO2-GNS nanocomposite prepared 

at 150
 o
C. The XRD results indicate that the crystallinity of deposited ZrO2 experienced a 

gradual decrease with the decrease of deposition temperature. Based on the above results, 

it can be concluded that ZrO2 thin films were successfully deposited on GNS at 150, 200 

and 250
 o

C with 100 ALD cycles, and the GPC and crystallinity were temperature 

dependent. 

To further understand the characteristics of ALD-ZrO2, the morphological evolution of 

ALD-ZrO2 on GNS with increasing cycle numbers was explored, and Figure 7.3 presents 

the development of ALD-ZrO2 on GNS after 10, 30 and 50 cycles at 150, 200 and 250
 o
C. 

At 150
 o
C, the graphene winkles are coated with dense ZrO2 nanoparticles after 10 cycles 

(Figure 7.3a). After 30 cycles, the ZrO2 coating on the graphene winkles becomes very 

smooth thin films, and the thickness of the coated winkles is measured to be around 

12±0.5 nm, as seen in Figure 7.3b. Figure 7.3c indicates that 50-cycle ZrO2 coating leads 

to thickness increase of the coated winkles to about 14±0.7 nm, with the uniformity of 

ZrO2 thin films maintained. The growth of ALD-ZrO2 on GNS at 200 and 250
 o
C exhibits 
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the similar trend of morphological evolution as that at 150
 o
C, as shown in Figure 7.3 (d-

g). The deposited ZrO2 on GNS are nanoparticles with lower ALD cycles (<10 at 150 
o
C 

and <30 at 200 and 250 
o
C), while thin films with higher ALD cycles (>10 at 150 

o
C 

and >30 at 200 and 250 
o
C). This phenomenon suggests the growth of ALD-ZrO2 on 

GNS follows an “island growth” mode at the very beginning, and a “layer-by-layer 

growth” mode after those “islands” coalesce into thin films. From Figure 7.3, one can 

also find that the GPC of ZrO2 on GNS increases with the elevating temperature at the 

same ALD cycles. For example, with 10 cycles, the size and density of ZrO2 

nanoparticles obviously increase with the decreasing temperatures, as revealed in Figure 

7.3 (a, d, h). Low-magnification SEM images of 10-, 30-, and 50-cycle ZrO2-GNS 

nanocomposites at 150, 200 and 250
 o
C can be found in Figure SI-(7.2-7.4). 

 

Figure 7.3 SEM images of ZrO2-GNS nanocomposite prepared at 150 
o
C (a, b, c), 200 

o
C 

(d, e, f) and 250 
o
C (h, i, g) with 10 cycles (a, d, h), 30 cycles (b, e, i) and 50 cycles (c, f, 

g). 
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Figure 7.4 TEM (a, c, e) and HRTEM (b, d, f) images of ZrO2-GNS nanocomposite 

prepared at 150 
o
C (a, b), 200 

o
C (c, d) and 250 

o
C (e, f) with 10 cycles. 

The morphology and structure of 10-cycle ZrO2-GNS nanocomposites prepared at 150, 

200 and 250
 o
C were further studied by TEM and HRTEM, and the results are presented 
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in Figure 7.4. In Figure 7.4 (a, c, e), one can easily find that the GNS after 10 cycles at 

150, 200 and 250
 o
C become opaque in a large part, compared with the initial transparent 

GNS (Figure 7.1c), indicating the deposition of dense ZrO2 nanoparticles. The structural 

difference of the ZrO2 nanoparticles among those three samples is disclosed by the 

HRTEM result. HRTEM image in Figure 7.4b reveals the disordered nature of the 

deposited ZrO2 nanoparticles at 150 
o
C, implying the dominance of amorphous phase in 

this sample. The EDS result confirms the presence of Zr and O elements in 10-cycle 

ZrO2-GNS nanocomposite prepared at 150 
o
C (see Figure SI-7.4 of the Supporting 

Information). For the sample prepared at 200 
o
C, the HRTEM image (Figure 7.4d) 

indicates the coexistence of single crystalline nanoparticles (as indicated by dash circles) 

and amorphous ones (as marked by solid circles). The interplanar spacing of one of the 

single crystalline nanoparticles is measured to be 0.298 nm, agreeing well with the lattice 

distance between (101) planes of tetragonal ZrO2, as seen in Figure 7.4d. Figure 7.4f 

shows the HRTEM image of 10-cycle ZrO2-GNS nanocomposite prepared at 250
 o

C. 

Clear interplanar spaces can be observed in most of the nanoparticles in this sample 

(dash-circled in Figure 7.4f), even though their sizes are really small (down to 1 nm), and 

crystalline ZrO2 is suggested to dominate in this sample. By comparing Figure 7.4b, 

Figure 7.4d, and Figure 7.4f, it can be found that the crystallinity of the deposited ZrO2 

increases with the elevating temperature. The HRTEM result is well consistent with XRD 

result in Figure 7.2d. Based on the above studies, it can be concluded that the deposited 

ZrO2 was dominated by amorphous phase at 150 
o
C and crystalline phase at 250 

o
C, and 

amorphous and crystalline ZrO2 coexisted in the ZrO2-GNS nanocomposite prepared at 

200 
o
C. 

In the following part, we will discuss the reasons responsible for the controlled 

morphology and crystallinity of ALD-ZrO2 on GNS, the role of GNS as substrates for the 

growth of ALD materials, and propose the growth mechanism of ALD-ZrO2 on GNS. 

From the above results, it has been evidenced that the ALD-ZrO2 on GNS were not only 

controllable in its morphology, either nanoparticles or thin films, but also tunable in its 

crystallinity, from amorphous to crystalline. The morphology of the ALD-ZrO2 was 

dependent on the ALD cycles at a given temperature, i.e. ZrO2 nanoparticles were 
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obtained with low ALD cycles, while ZrO2 thin films were achieved with high ALD 

cycles. This phenomenon indicates that ZrO2 followed an “island growth” mode at the 

early stage, while a “layer-by-layer growth” mode after the coalescence of those ZrO2 

“islands”. During an ALD process, a prerequisite is the substrate surface terminated with 

hydroxyl groups, which serve as reactive sites for the nucleation and growth of ALD 

materials [40, 41]. Previous studies have shown that island-growth of ALD-ZrO2 

happened on hydrogen-terminated silicon, which was lack of functional OH adsorption 

sites [47-49]. A recent study showed that ZnO nanoparticles could be grown on single-

walled carbon nanotubes, which had a sparse amount of reactive sites for precursor 

chemisorptions [50]. In this work, the substrates for ALD-ZrO2 are GNS produced by 

thermal reduction of GO, which usually have hydroxyl groups bonded to the carbon 

network [51, 52]. The FTIR spectrum in Figure 7.1c confirms the existence of a 

significant amount of hydroxyl groups on GNS, as illustrated in Figure 7.5 (A1). During 

the first half-cycle, Zr(NMe2)4 would preferably react with –OH groups on GNS via 

Reaction (7-1), as schematically shown in Figure 7.5 (A2, A3). After that, H2O 

introduced in the second half-cycle would react with Zr(NMe2)4 chemically bonded on 

GNS through Reaction (7-2), generating –OH groups at the outer surface of GNS (see 

Figure 7.5 (A4, A5)). Then the deposition of ZrO2 would be achieved by repeating the 

above ALD cycle. Therefore, those hydroxyl groups dispersed on GNS would account for 

the island growth of ZrO2 with low ALD cycles. With further increasing ALD cycles, 

those ZrO2 ‘islands” would coalesce and finally close into thin films, as observed in 

Figure 7.3. From this point on, the growth of ZrO2 would happen in a layer-by-layer way, 

leading to deposition of uniform thin films. From Figure 7.2 and Figure 7.3, it is also 

obvious that with a given ALD cycle, the size of ZrO2 particles or the thickness of ZrO2 

thin films varies with the deposition temperature. Higher deposition temperature would 

lead to smaller ZrO2 particles or thinner ZrO2 thin films. It can be explained by the 

temperature-dependent nature of hydroxyl groups, and high temperature could lead to 

dehydroxylation, as described as follows [53]: 

2‖- OH→ ‖- O + H2O                                                                (7-3) 
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Obviously, the dehydroxylation would reduce the density of hydroxyl groups, thereby 

leading to the smaller ZrO2 particles or thinner ZrO2 thin films of ALD-ZrO2 at a higher 

temperature. Besides hydroxyl groups, physisorbed Zr(NMe2)4 and H2O are probably 

another reason for the higher GPC at 150 
o
C. Hausmann et al. [42] have proved that it 

took much longer time to purge all surface-physisorbed Zr(NMe2)4 and H2O at lower 

temperatures. Therefore, given the same purge time in our case, there would be more 

surface-physisorbed Zr(NMe2)4 and H2O at lower temperatures, which would in return 

contribute to the growth of ZrO2. As to the crystallinity of ALD materials, previous 

studies have demonstrated that the temperature could affect the crystallinity of ALD 

materials by having influence on the reaction mechanisms [37, 56], and surface mobility 

of absorbed species [53, 55]. For Zr(NMe2)4, theoretical calculation showed that scission 

of metal-ligand bonds was more feasible than scission of N-C bonds [57]. Moreover, 

experiment study has revealed that the reaction of Zr(NMe2)4 and H2O in ALD would 

follow Reaction (7-1) and (7-2) in the temperature range of 150 - 250 
o
C [42]. Therefore, 

it can be considered that the reaction mechanism of Zr(NMe2)4 and H2O was not affected 

by the temperature change in this study. During an ALD process, high temperatures could 

improve the surface mobility of absorbed species and promote the ordering of the 

structure with minimum energy, thus leading to the growth of crystallites [54, 55]. In our 

case, a higher temperature could enhance the mobility of absorbed species, and enable the 

Zr and/or O ions to occupy the positions corresponding to the lowest free energy of the 

crystal [55], thus resulting in the crystalline phase of ALD-ZrO2 at 250 
o
C. At a given 

temperature, the crystallinity of ALD-ZrO2 could be also related to the film thickness, 

and more crystalline ZrO2 could be found in the thicker film [58]. The nucleation events 

of crystalline ZrO2 were even during each ALD cycles. The increase of ALD cycles 

could result in the nucleation of more crystalline ZrO2 and thicker film. Therefore, the 

thicker film might contain more crystalline ZrO2 than the thinner film does. 

From above discussion, one can see that the surface nature of GNS plays a critical role in 

the nucleation and growth of ALD-ZrO2, and GNS with hydroxyl groups are desirable for 

this ALD process. Previous study by Dai et al. indicated that ALD-Al2O3 could hardly 

grow on pristine graphene prepared by peel-off method, due to the lack of surface 

functional groups [59]. Ozone pretreatment [60]
 
and wet chemistry pretreatment [61]
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have been shown as effective methods to render the graphene surface more suitable to 

oxide precursor bonding. In this work, it is demonstrated that the as-prepared GNS by 

thermal reduction of GO could be directly used for the uniform deposition of ALD-ZrO2. 

The functionalized GNS (Figure 7.1c) could be resulted from the uncompleted reduction 

of GO at 1050 
o
C during the preparation process [45]. 

 

Figure 7.5 (A) Schematic diagram of one ALD cycle using Zr(NMe2)4 and H2O as 

precursors [42]; (B) Schematic diagram of ZrO2-GNS nanocomposites prepared at 150, 

200 and 250 
o
C. 

Figure 7.5B presents a schematic diagram to summarize the ZrO2-GNS nanocomposites 

prepared at different deposition temperatures. At all temperatures, ALD-ZrO2 on GNS 

are nanoparticles with low ALD cycles, while thin films with high ALD cycles. The 
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phase of deposited ZrO2 is dominated by amorphous at 150 
o
C, and crystalline at 250 

o
C. 

The former two phases coexist in the ZrO2-GNS nanocomposite prepared at 200 
o
C. 

7.4 Conclusions 

In this work, ZrO2-GNS nanocomposites were prepared by ALD at deposition 

temperatures from 150 
o
C to 250 

o
C. The results showed that the crystallinity of the 

deposited ZrO2 experienced a gradual decrease with the decrease of temperature. The 

dominant phase of the deposited ZrO2 was crystalline at 250 
o
C and amorphous at 150 

o
C.  

Mixed phases of crystalline and amorphous ZrO2 were found in the ZrO2-GNS 

nanocomposite prepared at 200 
o
C. At all the temperatures, the ZrO2 deposited with 

lower number of ALD cycles showed nanoparticle morphology, while that produced with 

higher number of ALD cycles exhibited as uniform thin films. In all cases, the growth of 

ZrO2 on GNS followed an “island growth” mode at the early stage, and a “layer-by-layer 

growth” mode after the coalescence of those ZrO2 “islands”. It is expected that this kind 

of ZrO2-GNS nanocomposites, with controlled morphology and crystallinity of ZrO2, will 

find potential applications in various fields, such as supercapacitors, fuel cells, batteries 

and electronics. 
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Supporting Information 

 

Figure SI-7.1 HRTEM image of ZrO2-GNS nanocomposite prepared at 200
 o
C with10 

cycles showing the thickness of graphene wrinkles. 
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Figure SI-7.2 Low-magnification SEM images of ZrO2-GNS nanocomposites prepared 

at 150
 o
C with (a) 10 cycles, (b) 30 cycles and (c) 50 cycles. 

 

Figure SI-7.3 Low-magnification SEM images of ZrO2-GNS nanocomposites prepared 

at 200
 o
C with (a) 10 cycles, (b) 30 cycles and (c) 50 cycles. 
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Figure SI-7.4 Low-magnification SEM images of ZrO2-GNS nanocomposites prepared 

at 250
 o
C with (a) 10 cycles, (b) 30 cycles and (c) 50 cycles. 

 

Figure SI-7.5 EDS result of ZrO2-GNS nanocomposite prepared at 150
 o
C with 10 cycles. 
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Chapter 8 Ultrathin Atomic Layer Deposited ZrO2 Coating to 

Enhance the Electrochemical Performance of Li4Ti5O12 as an 

Anode Material †† 

8 Ultrathin  

Solid-electrolyte interphase (SEI) is a product of the decomposition of liquid electrolytes 

on the surface of anode materials. To solve the problems associated with SEI, one way to 

prevent or alleviate the SEI formation is coating anode materials with an artificial layer, 

such as ALD-ZrO2 developed in chapter 6 and 7. 

In this chapter, Li4Ti5O12 synthesized in chapter 5 is used as a model to investigate the 

influence of ALD-ZrO2 coating on the SEI formation and thereby the electrochemical 

performance of Li4Ti5O12. ALD was used to deposit ZrO2 directly on Li4Ti5O12 electrode. 

The thickness of the deposited ZrO2 was controlled by adjusting ALD cycles from 0 to 1, 

2, 5, 10 and 50. The electrochemical performances of the Li4Ti5O12 electrodes with and 

without ZrO2 coating were compared. The cyclic voltammetry result indicated that ZrO2 

coating with 2, 5 and 10 ALD cycles could effectively reduce the electrochemical 

polarization of the Li4Ti5O12 electrode. Charge-discharge test revealed that the Li4Ti5O12 

electrodes with 1-, 2- and 5-cycle ZrO2 coating exhibited higher specific capacity, better 

cycling performance and rate capability than the pristine Li4Ti5O12 in a voltage range of 

0.1-2.5 V. However, ZrO2 coating with more than 5 ALD cycles could lead to degraded 

performance of Li4Ti5O12. Mechanism for the enhanced electrochemical performance of 

Li4Ti5O12 was explored by electrochemical impedance spectroscopy, and the reason was 

attributed to the suppressed formation of solid electrolyte interphase and the improved 

electron transport by ultrathin ZrO2 coating. 

Keyword: Zirconium oxide; atomic layer deposition; lithium-ion battery; lithium titanate. 

                                                 

††
 Part of this chapter has been published in Electrochim. Acta 2013, 93, 195-201. 
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8.1 Introduction 

Recently, considerable efforts have been made to developing high performance Li-ion 

batteries (LIBs) in the applications of power plug-in hybrid electric vehicles (PHEVs) 

and electric vehicles (EVs) [1, 2]. As the electrochemical performance of LIBs strongly 

depends on the electrode materials, it is of great importance to select proper anode and 

cathode materials. At present, graphite is widely used in commercial LIBs as the anode 

material, but it suffers from poor abuse tolerance for PHEV and EV applications [3]. 

Spinel Li4Ti5O12 (LTO) has attracted increasing attention as an alternative to graphite due 

to its high working potential of the redox couple Ti
4+

/Ti
3+

 (ca. 1.55 V vs. Li/Li
+
) [4]. One 

advantage of LTO over other anode materials is the negligible volume change during 

charge/discharge process, because of which LTO is known as a “zero-strain” material [5, 

6]. Beside the structural stability, LTO is also found to exhibit good thermodynamic 

stability due to its compatibility with electrolyte, promising LIBs a good safety for PHEV 

and EV applications [7]. However, LTO exhibits an inherently insulating property owing 

to the empty Ti 3d-sates with band gap energy of ~ 2 eV, which seriously hinders its 

high-rate performance [6, 8]. To solve this problem, two strategies are generally adopted, 

i.e. reducing the physical diffusion length of electrons and Li-ions by preparing nanosized 

LTO materials [9-14], or/and enhancing the Li-ion diffusion and electronic conductivity 

via surface modification or ion doping [9, 10, 15-18]. By means of these methods, the 

drawback of LTO has been overcome to a great extent, and its high rate performance has 

been improved greatly [9-18]. Currently, LTO has been considered as one of the most 

promising anode materials in practical energy applications [19].
 

In most previous studies, the electrochemical performance of LTO was evaluated in a 

voltage window of higher than 1 V, because the redox couple Ti
4+

/Ti
3+

 operates at 1.55 V 

(vs. Li/Li
+
) [4]. Recently, there is increasing awareness that it is necessary to study the 

LIB performance of LTO at a lower voltage than 1 V, in view of the following aspects: (1) 

It is important to study the over-charge behaviours of LTO for safety concern, as uneven 

electrodes will result in local polarization and local overcharge during lithium uptake 

process [20, 21]; (2) LTO electrodes operate at a lower voltage could offer a higher 

discharge capacity and a higher cell voltage, thereby resulting in higher energy density of 
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LIBs [22-26]. It was widely reported that the discharge capacity of LTO could exceed its 

theoretical capacity of 175 mAh g
-1

 (based on Li4Ti5O12/Li7Ti5O12 transition), when the 

voltage window extended down to 0 V [22-26]. For example, LTO powders prepared by 

a solid state method exhibited a discharge capacity of 155 mAh g
-1

 after 50 cycles 

between 1-2 V, while a higher specific capacity of 190 mAh g
-1

 after 50 cycles could be 

achieved in a voltage range of 0.1-2 V [24]. The extra discharge capacity resulted from 

the further reduction of Ti
4+

 between 0.6 and 0.1 V, which was repeatable in the 

subsequent cycles [22-27]. However, the increased capacity of LTO by extended voltage 

window was accompanied by the decomposition of electrolyte between 0.5-1 V, which 

would lead to the formation of solid electrolyte interphase (SEI) [21]. Therefore, 

suppressing the formation of SEI becomes important in order to enhance the cycling 

performance and coulombic efficiency of LTO in an extended voltage window [28, 29]. 

Recently, atomic layer deposition (ALD) technique has attracted increasing attention in 

the field of LIBs [30, 31], for its capability to realize excellent coverage and conformal 

deposition of thin films with precisely controlled thickness at nanoscale level [32]. As to 

the application in anodes, ALD-Al2O3 is the most studied coating material, and Al2O3 

coating has been found to be able to alleviate the cracking of the anodes during charge-

discharge process [33, 34],
 
suppress the side reactions between anodes and electrolyte 

[33-36], mitigate the decomposition of SEI, especially at elevated temperatures [34, 37], 

and preserving mechanical integrity of the electrodes by “knitting” the active materials to 

the conductive additive [37, 38], thereby improving the LIB performance. Besides Al2O3, 

ZrO2 is another excellent coating material for both anodes [39] and cathodes [40, 41] in 

LIBs. To our best knowledge, ALD coating of ZrO2 has not been demonstrated in the 

application of LIB anodes so far. In the present work, therefore, we use ALD-ZrO2 

coating to modify the LTO electrode in order to improve its LIB performance in an 

extended voltage window (0.1-2.5 V). The effect of ZrO2 coating with different 

thicknesses on the LIB performance of the LTO electrode was investigated in details, and 

it was demonstrated that only ZrO2 coating with no more than 5 ALD cycles can enhance 

the electrochemical performance of the LTO. Underlying mechanism for the 

improvement was explored and discussed. 
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8.2 Experimental Section 

8.2.1 Material preparation and characterization 

Nanoflower-like LTO powders were synthesized by a microwave assisted hydrothermal 

method and following heat treatment, and the detailed process was described in our 

previous work [42].
 
To prepare the electrode, the LTO powders, acetylene black and 

polyvinylidene fluoride binder (PVDF), with a weight ratio of 80:10:10, were mixed 

homogeneously, and then the slurry was pasted onto a copper foil. The obtained electrode 

was dried under vacuum at 110 °C for 12 h. ALD-ZrO2 was achieved using 

tetrakis(dimethylamido)zirconium (IV) and water as precursors at a deposition 

temperature of 100 °C. Detailed procedure of ALD-ZrO2 was reported in our previous 

study [44]. Coating of ALD-ZrO2 was conducted directly on the as-prepared LTO 

electrode, with different ALD cycles (0, 1, 2, 5, 10 and 50). In the following section, the 

LTO electrode coated with 0, 1, 2, 5, 10 and 50-cycle ZrO2 is referred as LTO-0, LTO-1, 

LTO-2, LTO-5, LTO-10 and LTO-50, respectively. The loading of active materials 

(including ZrO2 if applicable) is ~ 2.23, 2.32, 2.39, 2.41, 2.46 and 2.71 mg for LTO-0, 

LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50, respectively. 

The morphology and structure of the above samples were characterized by a field-

emission scanning electron microscope (SEM, Hitachi S4800) equipped with energy 

dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron 

microscope (HRTEM, JEOL 2010 FEG). 

8.2.2 Electrochemical characterization 

Electrochemical measurements were performed by using coin-type half cells assembled 

in an argon-filled glove box ([O2] < 1 ppm, [H2O] < 1 ppm). The coin-type half-cell 

consisted of the LTO electrodes prepared above, polypropylene separator (Celgard 2400), 

and lithium foil as the counter electrode. The electrolyte was 1M LiPF6 solution in 

ethylene carbonate (EC): diethyl carbonate (DEC): ethyl methyl carbonate (EMC) with a 

volume ratio of 1:1:1. The electrochemical performance of the coin-type half cells was 

tested in an Arbit BT-2000 Battery Test System. 
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8.3 Results and Discussion 

 

Figure 8.1 Schematic diagram of LTO and LTO coated with ZrO2 by ALD. 

It was reported that ZrO2 could be deposited by ALD using Zr(NMe2)4 and H2O as 

precursors in a wide temperature range of 50-300 °C [43, 44]. In this work, the same 

precursor combination was adopted for ALD-ZrO2, which was directly applied on the 

LTO electrode at 100 °C. Typically the first ALD-ZrO2 reaction requires a hydroxyl-

terminated surface, which is present on metal oxides [35]. According to published work 

[43, 44], each ALD cycle should deposit a uniform ZrO2 layer of approximately 0.096-

0.142 nm in thickness.
 
After different ALD cycles, the surface of LTO was covered by 

uniform ZrO2 film, as schematically shown in Figure 8.1. 

Figure 8.2 displays the morphologies of the LTO electrodes with and without ZrO2 

coating. The initial LTO consists of many nanosheets with wall thickness of ~ 18 nm, as 

seen in Figure 8.2a. For LTO-1 and LTO-2, there is no visible change in the morphology, 

as indicated in Figure 8.2 (b, c). For LTO-5, the edges of nanosheets are lighter than the 

central parts, which might be induced by the ZrO2 coating, as presented in Figure 8.2d. In 

Figure 8.2e, it is obvious that LTO-10 has thicker nanosheets and slightly rougher surface 

than LTO-0, due to the ZrO2 coating. 50-cycle ALD leads to the growth of ZrO2 film on 

the surface of nanosheets, the thickness of which is measured to be ~ 35 nm for LTO-50. 

The higher growth per cycle of ZrO2 in this case is due to the large surface area of 

nanoflower-like LTO (46.8 m
2
 g

-1
) [42], which makes completely purge of H2O from 

reactor difficult. During the pulse of Zr(NMe2)4, the presence of H2O in the reactor leads 

to slightly enhanced growth per cycle resulting from some chemical vapour deposition. 

SEM images of the above samples at low magnification are included in Figure SI-8.1 of 
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the Supporting Information. EDS analysis confirms the existence of Zr and O elements in 

the ALD-ZrO2 coated samples, and the intensity of Zr element increases with ALD cycles 

(Figure SI-8.2 of the Supporting Information). Furthermore, the EDS mapping reveals the 

uniform distribution of Zr and O elements on the LTO, and Figure 8.3 shows the EDS 

mapping result of LTO-10 as an example. 

 

Figure 8.2 SEM images of (a) LTO-0, (b) LTO-1, (c) LTO-2, (d) LTO-5, (e) LTO-10 

and (f) LTO-50 (The scale bars in the insets of Figure 8.2a, e represent 30 nm). 
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Figure 8.3 EDS mapping of LTO-10. 

 

Figure 8.4 HRTEM image of LTO-10 (inset shows the EDS result). 

To further study the ZrO2 coating on the LTO, HRTEM was performed on LTO-10, and 

the result is showed in Figure 8.4. The lattice distance of LTO-10 is measured to be 0.485 

nm, in agreement well with d(111) spacing of spinel Li4Ti5O12 (JCPDS PDF No. 49-0270). 

In Figure 8.4, it is evident that the surface of LTO-10 is covered by a dense and uniform 
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thin film, as marked by the red dash lines. EDS of HRTEM further verifies the presence 

of Zr and O elements in LTO-10. The ZrO2 coating layer is determined to be ~ 2 nm in 

thickness. Based on the results of SEM, EDS and HRTEM, it can be concluded that 

uniform ZrO2 films with different thicknesses were successfully coated on the LTO 

electrode by ALD. 

 

Figure 8.5 CV curves of LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50 during 

the (a) first, (b) second and (c) third cycle at a scanning rate of 0.1 mV s
-1

 between 0.1-

2.5 V (insets show the enlarged parts below 1 V). 

The electrochemical performance of the LTO electrodes with and without ZrO2 coating 

was evaluated in order to study the ZrO2 coating effect systematically. Figure 8.5 shows 

the cyclic voltammograms (CVs) of different samples in the first three cycles. In Figure 

8.5, one can see that between 1-2.5 V, one pair of redox peaks appears at about 1.70 V 

(anodic) and 1.47 V (cathodic) for all the samples, which are correlated to the 

spinel/rock-salt phase transition (Li4Ti5O12/Li7Ti5O12) [12-15]. It is obvious that even at 

such a low scanning rate (0.1 mV s
-1

), the degree of the electrochemical polarization is 
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different among the samples. Table 8-1 compares the potential differences between the 

anodic and cathodic peaks in the first five cycles (anodic and cathodic peak potentials are 

included in Table SI-8-1 of the Supporting Information). It can be found that the potential 

difference gradually decreases with ZrO2 coating up to 10 ALD cycles, and then 

experiences an increase with 50-cycle ZrO2 coating. For example, the potential difference 

in the fifth cycle is 0.315, 0.281, 0.171, 0.178, 0.178 and 0.321 V for LTO-0, LTO-1, 

LTO-2, LTO-5, LTO-10 and LTO-50, respectively. The narrowed potential differences of 

LTO-2, LTO-5 and LTO-10 indicate reduced polarization and enhanced electrochemical 

kinetics of the LTO electrodes by ZrO2 coating with no more than 10 ALD cycles. Insets 

of Figure 8.5 show the enlarged CVs below 1 V, and one can find another couple of 

reduction and oxidation peaks located between 0.1-0.6 V. Those two peaks are observed 

to be repeatable in the subsequent cycles, and therefore enlarging the potential window 

can increase the reversible capacity of the LTO electrode. The reduction peak below 0.6 

V could be attributed to the further reduction of Ti
4+ 

[27]. When Li4Ti5O12 is charged to 

Li7Ti5O12, only one Ti
4+

 is reduced and there are still 2/3 Ti
4+

 remaining in the reduction 

production of Li7Ti5O12 to accept electrons [27, 45]. Further intercalation of lithium ions 

into Li7Ti5O12 below 0.6 V could occupy the tetrahedral (8a) sites, leading to the 

increased reversible capacity of spinel Li4Ti5O12 [45]. 

Table 8-1 Potential differences (V) between anodic and cathodic peaks in the first five 

cycles. 

    1
st
 cycle 2

nd
 cycle 3

rd
 cycle 4

th
 cycle 5

th
 cycle 

LTO-0 0.398 0.243 0.213 0.250 0.315 

LTO-1 0.297 0.247 0.253 0.268 0.281 

LTO-2 0.196 0.167 0.165 0.152 0.171 

LTO-5 0.197 0.176 0.176 0.175 0.178 

LTO-10 0.201 0.184 0.175 0.184 0.178 

LTO-50 0.289 0.268 0.264 0.271 0.321 

Figure 8.6 displays the charge/discharge profiles of the LTO electrodes with and without 

ZrO2 coating during the first two cycles.  It can be seen that all the samples except LTO-

50 exhibit flat plateaus near 1.55 V and inclined curves between 0.1 to 0.6 V (vs. Li/Li
+
), 

which agree well with the two pairs of redox peaks in the CVs (Figure 8.5). LTO-50 

shows continuously decreased potential with the intercalation of lithium ions in the LTO 
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during the first cycle, which is probably due to the inhibited lithium ion diffusion by thick 

insulating ZrO2 layer. In Figure 8.6, it is apparent that the discharge/charge capacities of 

LTO-0 are lower than those of LTO-1, LTO-2, LTO-5 and LTO-10, but higher than 

LTO-50. For example, the discharge capacity in the second cycle is 216, 226, 230, 224, 

222 and 180 mAh g
-1

 for LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50, 

respectively. This result suggests that appropriate ZrO2 coating can improve the 

discharge/charge capacities of the LTO. For all the samples, there are obvious capacity 

losses after the first cycle, which could be attributed to the SEI formation below 1 V [28, 

29]. 

 

Figure 8.6 Charge/discharge profiles of LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and 

LTO-50 in the 1
st
 and 2

nd
 cycles between 0.1-2.5 V at a current density of 200 mA g

-1
. 
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Figure 8.7 (a) Cycling stability, (b) coulombic efficiency (c) rate capability and (d) 

discharge capacity vs. current density of LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and 

LTO-50 between 0.1-2.5 V (insets in Figure 8.7a and Figure 8.7c show the discharge 

capacity in the first cycle). 

Figure 8.7 presents the cycling stabilities and rate capabilities of the LTO electrodes with 

and without ZrO2 coating between 0.1-2.5 V. The cycling stabilities in Figure 8.7a 

indicates that LTO-1, LTO-2, LTO-5 and LTO-10 exhibit higher specific capacity and 

better cycling performance than LTO-0 and LTO-50 at a current density of 200 mA g
-1

. 

The initial discharge capacity is 310, 330, 343, 350, 343 and 216 mAh g
-1

 for LTO-0, 

LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50, respectively. All the samples show 

obvious capacity losses in the second cycle, due to the irreversible lithium ions trapped in 

the SEI [28, 29]. Then the irreversible capacity rapidly decreases upon cycling, and the 

reversible capacity stabilizes after ca. 20 cycles. After 100 cycles, LTO-0, LTO-1, LTO-2, 

LTO-5, LTO-10 and LTO-50 can maintain a specific capacity of 152, 169, 168, 168, 166 
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and 148 mAh g
-1

, respectively. The coulombic efficiency (CE) of each sample is 

compared in Figure 8.7b. The CE in the first cycle is determined to be 63%, 62%, 62%, 

60%, 60% and 53% for LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50, 

respectively. In the following cycles, the CE increases greatly for all the samples, and 

keeps at ~ 100% after 20 cycles. In the inset of Figure 8.7b, one can easily find that LTO-

50 has much higher CE than the others after the first cycle, suggesting that ZrO2 coating 

can effectively suppress further decomposition of electrolyte and the formation of SEI 

after the first cycle. Figure 8.7c presents the rate capabilities of all the samples at various 

current densities (50-1600 mA g
-1

), and the second-cycle discharge capacity at each 

current density is compared in Figure 8.7d.  In Figure 8.7c, it can be found that the rate 

capabilities of LTO-1, LTO-2 and LTO-5 are obviously better than that of LTO-0, 

especially at a high current density of 1600 mA g
-1

, while LTO-50 shows worse rate 

capability than LTO-0. The rate capability of LTO-10 is comparable with that of LTO-0. 

With the increase of the current density, the discharge capacity gradually decreases for all 

the samples, as seen in Figure 8.7d. At a current density of 1600 mA g
-1

, the discharge 

capacity is 90, 103, 101, 106, 86 and 41 mAh g
-1

 for LTO-0, LTO-1, LTO-2, LTO-5, 

LTO-10 and LTO-50, respectively. Moreover, all the samples can recover the initial 

reversible capacity at 50 mA g
-1

. Based on the CV and charge-discharge tests, it can be 

concluded that ZrO2 coating with no more than 5 ALD cycles can improve the specific 

capacity, cycling performance and rate capability of the LTO electrode. 

To find out the reason for the improved electrochemical performance, electrochemical 

impedance spectroscopy (EIS) measurement of the LTO electrodes with and without 

ZrO2 coating was carried out at about 1.5 V in a frequency range from 0.1 to 10
4
 Hz, and 

typical Nyquist plots are given in Figure 8.8. It can be seen the Nyquist plots of LTO-0, 

LTO-2, LTO-5, LTO-10 and LTO-50 are composed of two partially overlapped and 

depressed semicircles in the high-frequency and middle-frequency ranges, and one 

inclined line at low frequency (except LTO-50). The EIS curves are simulated using the 

equivalent circuit in the inset of Figure 8.8, and one can find that the experimental and 

simulated data are almost coincident. Accordingly, the depressed semicircles at high 

frequency can be attributed to the resistance of SEI film (Rsei), those at middle frequency 

are caused by charge-transfer resistance (Rct) at the interface of electrolyte and electrode, 
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and the sloped lines at low frequency can be considered to be the Warburg impedance (W) 

[25, 28, 29]. Rs is the solution resistance, and CPE1 and CPE2 are placed to represent the 

double layer capacitance and passivation film capacitance [18]. The values of Rs, Rsei and 

Rct are obtained from the simulated data of EIS in Figure 8.8, and listed in Table 8-2. In 

Table 8-2, it can be seen that the Rsei of LTO-2, LTO-5, LTO-10 and LTO-50 are 

obviously lower than that of LTO-0, implying thinner SEI film formed on the former 

ones than the latter one [28]. one can also see that the Rct of LTO-0 (32.35 Ω) is higher 

than that of LTO-2 (14.77 Ω) and LTO-5 (16.94 Ω), but lower than that of LTO-10 

(44.25 Ω) and LTO-50 (657.80 Ω), indicating that only ZrO2 coating with appropriate 

thickness (no more than 5 ALD cycles) can increase the charge-transfer reaction at the 

interface of electrolyte and electrode. Combining EIS with electrochemical performance 

results, it can be found that LTO electrodes with lower Rsei and Rct values (LTO-2 and 

LTO-5) exhibit better LIB performance than those with higher Rsei or/and Rct (LTO-0, 

LTO-10 and LTO-50). Furthermore, it should be noted that LTO-2, LTO-5 and LTO-10 

exhibit lower Rs value than LTO-0 does, suggesting the decreased overall internal 

resistance with less than 10-cycle ZrO2 coatings. This also partially accounts for the 

enhanced LIB performance of LTO-2 and LTO-5. The reason is attributable to improved 

mechanical adhesion of electrode materials to the current collectors by appropriate ZrO2 

coatings [38].  

 

Figure 8.8 Nyquist plots of LTO-0, LTO-2, LTO-5, LTO-10 and LTO 50 (solid symbols 

and solid lines represent experimental and simulated data respectively, and the equivalent 

circuit is shown in the inset). 
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Table 8-2 Values of Rsei and Rct obtained by simulated data in Figure 8.8. 

              Resistance 

Sample 
Rsei (Ω) Rct (Ω) 

LTO-0 79.43 32.35 

LTO-2 30.57 14.77 

LTO-5 23.16 16.94 

LTO-10 41.84 44.25 

LTO-50 38.64 657.8 

For the interpretation of the impedance response measured with LTO electrodes, no 

general consensus has yet been reached, and the results and explanations vary in 

literatures. For example, Ahn and Xiao [29] claimed that Al2O3 coating on LTO electrode 

could act a barrier restraining the SEI formation, thereby improving the cycling stability 

and coulombic efficiency of LTO electrode. In another study, carbon coating was found 

being able to improve the LIB performance of LTO electrode, by promoting formation of 

thick and successive SEI film on its surface [28]. In the following part, we will try to 

explain the effect of ZrO2 coating on the LIB performance of LTO electrode based on the 

EIS results and electrochemical reaction: 

Li4Ti5O12 + xLi
+
 + xe

-→ Li4+xTi5O12                               (8-1)  

The Li-ion insertion into Li4Ti5O12 consists of three processes: (1) the solvated Li ions 

diffuse from electrolyte solution to the surface of Li4Ti5O12; (2) a charge-transfer reaction 

occurs at the interface between Li4Ti5O12 and the electrolyte, accompanied by accepting 

electrons coming from current collector and Li ions from the electrolyte; (3) Li ions 

diffuse into the bulk Li4Ti5O12 [9].
 
Obviously, ZrO2 coating could mainly affects the 

charge transfer reaction happened at the interface between Li4Ti5O12 and the electrolyte, 

and the working mechanism could be explained by the influence of ZrO2 coating on the 

transport of electrons or/and Li ions. (1) On the Li-ion transport. On one hand, EIS result 

indicates that ZrO2 coating could effectively accelerate the diffusion of Li ions through 

SEI film, by reducing the SEI resistance (Table 8-2). The reason is most likely due to the 

fact that ZrO2 coating could prevent the direct contact between LTO and electrolyte, and 

cover the catalytic sites on the LTO surface for the decomposition of electrolyte, thereby 

restraining SEI formation and reducing SEI resistance. On the other hand, the artificial 
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ZrO2 coating layer could also hinder the diffusion of Li ions, because it is not Li-ion 

conductive. Thus, ZrO2 coating is a double-sided sword for Li-ion diffusion. The 

thickness of ZrO2 coating becomes critically important: it has to be thick enough to 

reduce SEI resistance, while also has to thin enough to avoid blocking Li-ion diffusion 

through it. Our study indicates that ZrO2 coating with no more than 5 ALD cycles is the 

optimized parameter. (2) On the electron transport. Previous studies have shown that 

direct metal oxide coating on electrode could not only maintain the electron pathways 

between active materials and carbon additives [35], but also improve the adhesion of 

electrode materials to the current collector [38], thereby improving the electron transport 

among them.
 
In our case, therefore, it can be considered that direct ZrO2 coating on LTO 

electrode acts as the similar way to improve electron transport (as disclosed by the 

reduced Rs in Table 8-2) and contribute to the reduced charge-transfer resistance of LTO-

2 and LTO-5 compared with that of LTO-0 (Table 8-2). It is worthy to mention that the 

increased charge-transfer resistance of LTO-10 and LTO-50 results from the blocked Li-

ion diffusion due to thicker ZrO2 coating with low electronic conductivity. In those cases, 

the improvement from electron transport becomes neglected. 

In summary, ZrO2 coating with less than 10 ALD cycles can enhance the specific 

capacity, cycling performance and rate capability of the LTO between 0.1-2.5 V. The 

reason could be attributed to the suppressed SEI formation and the improved electron 

transport by coating ultrathin ZrO2 film directly on the LTO electrode. ZrO2 coating with 

more than 10 ALD cycles would worsen the electrochemical performance of the LTO, 

probably due to the blocking effect of thick ZrO2 coating on the lithium ion diffusion. 

Moreover, ZrO2 coating can decrease the specific capacity of the LTO by adding extra 

weight to the electrode materials, without contributing any capacity to lithium ion storage. 

This situation becomes more and more non-negligible with increasing ALD cycles. As a 

result, LTO-50 has obvious higher weight of the electrode materials than the others due 

to the thick ZrO2 coating. Therefore, the additional weight of ZrO2 coating is another 

reason for the lowered specific capacity of LTO-50 than LTO-0 (Figure 8.7). 

8.4 Conclusions 

ZrO2 coating was conducted directly on the Li4Ti5O12 electrode by atomic layer 
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deposition with different cycles (0, 1, 2, 5, 10 and 50). The results indicated that ZrO2 

coating with less than 10 ALD cycles could enhance the specific capacity, cycling 

stability and rate capability of the Li4Ti5O12 electrode in a voltage range of 0.1-2.5 V. The 

mechanism study by EIS revealed that the reason for the enhance LIB performance was 

mainly due to the suppressed SEI formation and the improved electron transport by 

ultrathin ZrO2 coating. This work provides a novel and effective approach to improve the 

electrochemical performance of anode materials via surface-modification by atomic layer 

deposition. It is believed that this work will be inspirable for other researchers and 

beneficial for the development of lithium ion batteries used in PHEVs and EVs. 
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Figure SI-8.1 SEM images of LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50 at 

low magnification. 
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Figure SI-8.2 EDS spectra of LTO-0, LTO-1, LTO-2, LTO-5, LTO-10 and LTO-50. 

 

Table SI-8-1 Potentials (V) of anodic peaks (φpa) and cathodic peaks (φpc) in the first five 

cycles 

 
1

st
 cycle 2

nd
 cycle 3

rd
 cycle 4

th
 cycle 5

th
 cycle 

 φpa φpc φpa φpc φpa φpc φpa φpc φpa φpc 

LTO-0 1.800 1.402 1.676 1.433 1.689 1.476 1.711 1.461 1.735 1.420 

LTO-1 1.714 1.417 1.706 1.459 1.706 1.453 1.721 1.453 1.724 1.443 

LTO-2 1.672 1.476 1.656 1.489 1.669 1.504 1.653 1.501 1.672 1.501 

LTO-5 1.665 1.468 1.669 1.393 1.672 1.496 1.672 1.497 1.672 1.494 

LTO-10 1.673 1.472 1.672 1.488 1.675 1.500 1.675 1.491 1.675 1.497 

LTO-50 1.730 1.441 1.717 1.449 1.717 1.453 1.720 1.449 1.767 1.446 
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Chapter 9 Atomic Layer Deposited Aluminum Phosphate Thin 

Films on Nitrogen-Doped Carbon Nanotubes ‡‡ 

9 Atomic 

Besides ZrO2 developed in chapter 6 and 7 and applied in chapter 8, aluminum 

phosphate (AlPO4) is another excellent coating material widely used in LIBs for surface 

modification. However, the deposition of AlPO4 has been seldom reported. 

Herein, Amorphous aluminum phosphate (AlxPyOz) thin films were deposited on nitrogen-

doped carbon nanotubes (NCNTs) by atomic layer deposition (ALD) at 150°C by 

combining subcycles of trimethylaluminum (TMA) – H2O and trimethylphosphite (TMP) 

– O3. TEM and HRTEM observation indicated uniform and conformal deposition of 

AlxPyOz thin films on NCNTs. EDS analysis showed that the P/Al atomic ratio in AlxPyOz 

thin films was controllable by varying the subcycle ratio between TMA – H2O and TMP – 

O3. The composition was determined to be Al1.3PO5.1 by XPS for aluminum phosphate 

prepared using sequence of 1 × (TMA – H2O) – 20 × (TMP – O3). The thickness of 

Al1.3PO5.1 thin film was linearly dependent on ALD cycles, with growth per cycle of 1.9 

Ǻ/cycle. XPS and XANES studies disclosed the existence of P-O-Al structure in Al1.3PO5.1, 

similar as that in standard AlPO4. In addition, thermal stability testing showed that the 

oxidation resistance of NCNTs could be greatly improved by coating with 50-cycle 

Al1.3PO5.1 (16 nm in thickness).  

Keywords: Atomic layer deposition; aluminum phosphate; carbon nanotubes; low 

temperature deposition.  

 

 

                                                 

‡‡
 Part of this chapter has been published in RSC Adv. 2013, 3, 4492-4495. 
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9.1 Introduction 

Aluminium phosphate (AlPO4) has long been known as a catalyst support for numerous 

catalytic applications [1, 2]. AlPO4 itself has been used to catalyze the dehydration of 

methanol to dimethyl ether, which is a clean alternative fuel for diesel engines and a 

potential aerosol propellant in the cosmetics industry [3]. AlPO4 coating on cathodes has 

been considered as an effective strategy to improve both the safety and cycle-

performance of lithium secondary batteries [4]. In addition, AlPO4 protective layer has 

been shown to inhibit the oxidation of carbonaceous materials [5]. 

AlPO4 has been generally synthesized through a co-precipitation process followed by 

heat treatment previously [1-5]. Unfortunately, this route is incapable of achieving 

uniform aluminium phosphate thin film and lacks flexibility to tune its chemical 

composition (P/Al ratio). Uniformity and tunable composition have been proven to play a 

critical role in determining practical applications of AlPO4 [3-6]. Recently, atomic layer 

deposition (ALD) has been emerging as a powerful technique for thin film deposition [7, 

8]. Unlike other physical or chemical vapour deposition processes, ALD employs 

alternative precursor doses and self-limiting surface reactions, which result in material 

growth of one monolayer (or less) per cycle. Thus, ALD offers exquisite control over the 

thickness and composition of thin films. However, there have been very few studies on 

the preparation of aluminium phosphate by ALD [9-11]. Aluminium phosphate was 

found to form in P-doped aluminium oxide with P doping greater than 10 wt% at 450 and 

500 °C using AlCl3 or aluminium n-propoxide, 2-methyl-2-propanol and P2O5 as 

precursors [10].
 

However, the high deposition temperature seriously hinders its 

applications, especially for sensitive substrates. In another study, aluminium phosphate 

was obtained from AlCl3 and trimethylphosphate at deposition temperatures between 150 

and 400 °C [11]. This route simplifies ALD process by sacrificing the controllability on 

the chemical composition of aluminium phosphates. Moreover, the use of metal chlorides 

is undesirable in ALD process, because it may lead to corrosion of ALD system caused 

by HCl generated during reaction and leave Cl impurity in the deposited films [11, 12]. 

Herein, we report a new ALD approach to fabricate amorphous aluminium phosphate 

(AlxPyOz) thin films. It is featured with low-temperature deposition, controllable film 
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thickness, variable film composition, and free of metal chlorides. AlxPyOz thin films are 

deposited by combining subcycles of Al2O3 and POx, and one ALD cycle consists of 1 

Al2O3 subcycle and n POx subcycles (5 ≤ n ≤ 20), as schematically shown in Figure 9.1. 

The popular trimethylaluminum (TMA)-H2O is adopted for the Al2O3 subcycle, and 

trimethylphosphite (TMP)-O3 is used for the POx subcycle. The composition (P/Al ratio) 

of AlxPyOz thin films is controlled by varying POx subcycles while keeping Al2O3 

subcycle unchanged. 

 

Figure 9.1 Illustration of ALD process for aluminum phosphate. 

9.2 Experimental Section 

9.2.1 Material synthesis 

Nitrogen-doped carbon nanotubes (NCNTs) directly grown on carbon papers were used 

as the substrates for the deposition of aluminum phosphates, because of their high quality 

and clean surface. The as-prepared NCNTs were loaded into the reaction chamber of 

ALD system (Savannah 100, Cambridge Nanotech Inc., USA). The deposition of 

aluminum phosphates were achieved by alternatively supplying TMA – H2O and TMP – 

O3. All precursors were kept at room temperature. The pulse time for TMA, H2O, TMP 

and O3 was 0.5 s, 1 s, 1s and 1s respectively, and the purge time was 15 s after each 

pulsing. 150 °C was chosen as deposition temperature. The ratio between Al2O3 subcycle 

and POx subcycle varied from 1:5, to 1:10 and 1:20, and 50 ALD cycles were applied in 

each sample. 
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9.2.1 Material characterization 

The morphology and structure of the deposited thin films were characterized by a field-

emission scanning electron microscope (SEM, Hitachi S4800) equipped with energy 

dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron 

microscope (HRTEM, JEOL 2010 FEG). The phase was analyzed using micro X-ray 

diffraction (XRD, Brucker D8, Co - Kα source, λ = 1.7892 Å). Compositions and element 

analysis was carried out in Kratos Axis Ultra Al (alpha) X-ray photoelectron 

spectrometer (XPS) operated at 14 kV. The X-ray absorption near-edge structure 

(XANES) spectroscopy experiment was conducted on the Variable Line Spacing Plane 

Grating Monochromator (VLS PGM) beamline at the Canadian Light Source (CLS) 

located at the University of Saskatchewan in Saskatoon. 

9.3 Results and Discussion 

The initial NCNTs have diameters of about 60 nm (Figure 9.2a) and exhibit typical 

bamboo-like structure (see Figure SI-9.1). Figure 9.2b shows a SEM image of a 100-

cycle AlxPyOz thin film deposited on NCNTs using the sequence of 1 × (TMA – H2O) – 

20 × (TMP – O3). It is apparent from Figure 9.2 (b) and (c) that the coating of the thin 

film is uniform and conformal on NCNTs, and the diameter of the nanotubes increases to 

~ 100 nm. Selected area diffraction pattern (SAD) in Figure 9.2c indicates that the 100-

cycle AlxPyOz thin film is amorphous, which is confirmed by XRD pattern (Figure SI-9.2) 

and HRTEM image in Figure 9.2d. From Figure 9.2d, the thickness of AlxPyOz thin film 

is measured to be 16.4 nm. Figure 9.2e presents EDS elemental line-scanning result of 

the 100-cycle AlxPyOz thin film from scanning transmission electron microscopy (STEM). 

Figure 9.2e clearly indicates the homogeneous distribution of Al, P and O elements along 

carbon nanotube. XPS analysis shows that the composition of Al, P and O elements is 

15.4, 11.5 and 57.8 at.% respectively, as shown in Figure 9.2f (deconvolution of Al 2p, P 

2p and O 1s peaks is provided in Figure SI-9.3). Thereby, the chemical formula is 

determined to be Al1.3PO5.0 for the aluminium phosphate thin film deposited using ALD 

sequence of 1 × (TMA – H2O) – 20 × (TMP – O3). 
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Figure 9.2 (a) SEM image of NCNTs; (b) SEM image, (c) TEM image, (d) HRTEM 

image, (e) STEM-EDS line-scanning and (f) XPS spectrum of NCNTs coated with 100-

cycle AlxPyOz thin film deposited using sequence of 1 × (TMA – H2O) – 20 × (TMP – 

O3). 



182 

 

 

Figure 9.3 (a) Film thickness of Al1.3PO5.0 as a function of ALD cycle number and (b) 

P/Al atomic ratio in AlxPyOz thin films deposited using 1 × (TMA – H2O) – n × (TMP – 

O3) (n = 5, 10 and 20). 

Al1.3PO5.0 thin films produced with 25, 50 and 75 ALD cycles are also examined, and 

their uniformity on NCNTs is observed in TEM and HRTEM images (Figure SI-9.4). The 

thickness of the thin film is measured to be 3.5, 9.5 and 12.2 nm for Al1.3PO5.0 deposited 

with 25, 50 and 75 ALD cycles respectively. Then film thickness is plotted as a function 

of ALD cycles in Figure 9.3a. The film thickness has a linear relationship with ALD 

cycle number, indicating the self-limiting nature of this ALD process. Growth per cycle 

for the Al1.3PO5.0 thin film at 150 °C is determined to be 1.7 Ǻ/cycle by fitting the data in 

Figure 9.3a linearly. Thus, an aluminium phosphate thin film with desirable thickness can 

be easily obtained by choosing appropriate ALD cycle number. The growth rate of 

Al1.3PO5.0 is slightly higher than that of aluminium phosphate deposited by ALD from 

AlCl3 and trimethylphosphate (1.4 Ǻ/cycle) at the same deposition temperature [11].
 

To demonstrate the flexibility to modify the composition of AlxPyOz through this ALD 

approach, we use the subcycle number of POx varying from 20 to 10 and 5, while the 

Al2O3 subcycle is kept unchanged. The average P/Al atomic ratio of each sample is 

obtained from 10 EDS results (Figure SI-9.5), and is plotted as a function of POx 

subcycle number in Figure 9.3b. One can see that the P/Al atomic ratio decreases from ~ 

0.8 to 0.4 to 0.3, when POx subcycle is reduced from 20 to 10 to 5 respectively. It is 

worth noting that the P/Al ratio in AlxPyOz thin films could be adjusted to be either higher 
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or lower by changing the subcycle number of POx in this ALD receipt. It also should be 

mentioned that the growth rate of AlxPyOz thin films would be reduced with lowering 

P/Al atomic ratio or POx subcycle number (Figure SI-9.6), due to less contribution of POx 

subcycle to the thin film. 

 

Figure 9.4 XANES Al L3,2-edge (a) and P L3,2-edge (b) spectra of Al1.3PO5.0 in this work, 

and standard AlPO4, Al2O3 and P2O5. 

The structure of the amorphous Al1.3PO5.0 thin film is analyzed by XANES spectroscopy. 

Figure 9.4 displays XANES at the Al L3,2-edge and P L3,2-edge for Al1.3PO5.0, in 

comparison with standard crystalline AlPO4, Al2O3 and P2O5. Figure 9.4a indicates that 

Al1.3PO5.0 has very similar Al L3,2-edge spectrum to standard AlPO4, except that the first 

transition of Al1.3PO5.0 exhibits only one broad peak at 78.3 eV, instead of two well 

resolved peaks at 77.9 and 78.3 eV for standard AlPO4. This observation is attributable to 

the amorphous state of Al1.3PO5.0 [15]. The first transitions in Al1.3PO5.0 could be 

assigned to transitions from the Al spin-orbit split 2p orbitals to the unoccupied densities 

of states of 3s character (L3 and L2 edges), and the second one corresponds to transitions 

from the Al 2p to the upper bands and is sometimes referred to as a multiple scattering 

resonance of which the energy position relative to the threshold is related to the inter-

atomic distance (r) between Al and its nearest neighbouring atom O with a ~ 1/r
2
 

correlation [16]. A small shift in this resonance to higher energy indicates that the Al-O 

inter-atomic distance is shorter in Al1.3PO5.0 compared to AlPO4 albeit very slightly. It 

should be noted that the Al L3,2-edge spectrum of Al1.3PO5.0 distinctly differs from that of 
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Al2O3, owing to different local bonding environment of the Al sites, i.e. P-O-Al in 

Al1.3PO5.0 and Al-O-Al in Al2O3 [15]. In Figure 9.4b, Al1.3PO5.0 and standard AlPO4 

exhibit the same four peaks centred at 137.7, 138.7, 140.0 and 147.9 eV in the P L3,2-edge 

XANES spectrum, suggesting the same coordination of P (P-O-Al) in both samples and 

that the local structure of the PO4 moiety remains intact. The result is in agreement with P 

L3,2-edge XANES spectrum reported for AlPO4 in literature [17]. The P L3,2-edge 

XANES spectrum of Al1.3PO5.0 is apparently different from P2O5 (P-O-P). XANES result 

provides strong evidence of P-O-Al bonds existing in amorphous Al1.3PO5.0 thin film 

prepared by ALD. 

9.4 Conclusions 

In conclusion, we report a new low-temperature ALD process to synthesize aluminium 

phosphate thin films on NCNTs in a well-controlled manner. The film thickness of 

aluminium phosphates is tunable at nanoscale lever by simply varying the ALD cycle 

number, and the film composition (P/Al ratio) is tailored by changing the subcycle ratio 

between Al2O3 and POx during the ALD process. The strategy reported in this work is 

applicable to the development of other metal phosphates (FePO4, TiPO4) and phosphate-

containing compounds (NASICON-type all-solid-state electrolyte, LiM2(PO4)3 (M = Ti, 

Zr, Ge and Hf)), which will be key components in the next-generation of microbatteries.
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Supporting Information 

 

Figure SI-9.1 TEM image of NCNTs. 

 

Figure SI-9.2 XRD pattern of NCNTs coated with 100-ALD cycle aluminum phosphate 

using sequence of 1 × (TMA – H2O) – 20 × (TMP – O3). 
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Figure SI-9.3 Deconvolution of Al 2p, P 2p and O 1s peaks together with theoretical fits 

and background. 
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Figure SI-9.4 TEM (a-c) and HRTEM (d-f) images of NCNTs coated with thin films 

using sequence of 1 × (TMA – H2O) – 20 × (TMP – O3) for 25 (a, d), 50 (b, e), and 75 (c, 

f) ALD cycles. 
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Figure SI-9.5 EDS results of NCNTs coated with 50-ALD cycle aluminum phosphates 

using sequences of (a) 1 × (TMA – H2O) – 5 × (TMP – O3); (b) 1 × (TMA – H2O) – 10 × 

(TMP – O3) and (c) 1 × (TMA – H2O) – 20 × (TMP – O3). 

 

Figure SI-9.6 HRTEM images of NCNTs coated with 50-cycle AlxPyOz thin films using 

sequence of (a) 1 × (TMA – H2O) – 5 × (TMP – O3) and (b) 1 × (TMA – H2O) – 10 × 

(TMP – O3). 
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Chapter 10 Atomic Layer Deposition of Lithium Tantalate 

Solid-State Electrolytes 

10 Atomic  

For surface-modificaiton in LIBs, the desirable coating materials should have both good 

electronic and ionic conductivities, in order to insure efficient diffusion of electron and 

lithium ions in the electrodes. From this point, ALD-ZrO2 and ALD-AlPO4, as presented 

in chapters 6-9, are still not ideal for surface-modificaiton, since both of them are poor 

electronic and ionic conductors. Recent studies showed the possibility of using solid-state 

electrolytes, which has good ionic conductivity, as coating materials in LIBs. Therefore, 

it is urgent to develop solid-state electrolyte by ALD. 

In this chapter, lithium tantalate solid-state electrolyte thin films were grown by atomic 

layer deposition (ALD) at 225 °C using subcycle combination of  1 × Li2O + n × Ta2O5 

(1 ≤ n ≤ 10). The Li/Ta ratio in the lithium tantalate thin films was controlled by varying 

Ta2O5 subcycles (n) while keeping Li2O subcycle constant at 1. X-ray photoelectron 

spectroscopy analysis revealed that the composition of the lithium tantalate thin films 

was Li12.3TaOz, Li5.1TaOz and Li0.6TaOz, when Ta2O5 subcycles (n) equaled 1, 6 and 10, 

respectively. All lithium tantalate thin films displayed a linear relationship between film 

thickness and ALD cycle number, indicating self-limiting nature of the ALD process. The 

growth rate per (1 × Li2O + n × Ta2O5) cycle of Li12.3TaOz, Li5.1TaOz and Li0.6TaOz was 

determined to be 2.2, 5.2 and 7.3 Ǻ/cycle, respectively. Furthermore, the lithium tantalate 

thin films grown by ALD showed excellent uniformity and conformity, when deposited in 

anodic aluminum oxide template with an aspect ratio of ~ 300. Impedance testing showed 

that the as-grown Li5.1TaOz thin film exhibited a lithium-ion conductivity of 2 × 10
-8

 S/cm 

at 299 K, with activation energy of ~ 0.55 eV. 

Keywords: Atomic layer deposition; lithium tantalate; solid-state electrolyte; thin-film 

battery. 
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10.1 Introduction 

Microelectronic devices are becoming increasingly incorporated into our daily activities. 

A great deal of effort has been devoted to developing autonomous devices, such as 

medical implants, self-powered integrated circuits and micro-electromechanical systems, 

which need be driven by an on-board power supply system [1, 2]. Lithium-ion batteries 

(LIBs) are a preferable energy supply distribution medium for these types of applications, 

due to their ability to deliver high energy density [2]. In particular, all-solid-state LIBs 

have drawn great attention from various industries, since they can permit greater 

flexibility in the design of batteries, provide improved intrinsic safety due to the absence 

of liquid electrolytes, and facilitate miniaturization of microelectronic devices [1-3]. 

During the past decade or so, researches in the field of all-solid-state LIBs have been 

primarily focused on two-dimensional (2D) thin film batteries [4, 5]. However, it is 

becoming difficult for 2D thin film batteries to meet the elevated power consumption 

demand in modern microelectronic devices, due to their limited energy density per unit 

area [2]. One effective strategy to increase the capacity per unit area (μA h cm
-2

) of all-

solid-sate LIBs is developing three-dimensional (3D) microbatteries instead of 2D thin 

film batteries. 3D microbatteries can offer significantly increased specific surface area of 

active materials in the same areal footprint as 2D thin film batteries, and maintain short 

path lengths for the diffusion of lithium ion, thereby rendering greatly enhanced battery 

capacity per unit area [2, 3]. Given the advantages and demand of 3D microbatteries, 

various concepts for their design have been proposed [1-3, 6-9]. However, it is still 

challenging to fabricate real 3D microbatteries, partly due to the great limitations of 

conventional deposition techniques employed in the fabrication of 2D thin film batteries, 

such as physical vapor deposition (PVD), chemical vapor deposition (CVD) and 

electrochemical deposition. One of the most difficult, but crucial steps in the fabrication 

of 3D microbatteries is the deposition of conformal and pinhole-free thin films onto 3D 

structures. The thin films required in 3D microbatteries must be perfect and free of cracks 

or pinholes, which will result in short circuits and failure of batteries. It has been realized 

that the key to achieving as-desired thin films in 3D architectures is the use of a 

deposition technique that is inherently self-limiting [8, 10].
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Atomic layer deposition (ALD) has been known as a thin film technique being capable of 

depositing high-quality films in 3D structures [11]. Unlike other film deposition methods, 

such as PVD or CVD, ALD employs self-limiting surface reactions via alternating, 

saturated precursor doses [12, 13]. As a consequence, ALD provides exquisite control 

over the thickness of thin films, and the thin films deposited by ALD have excellent 

conformality and uniformity, even in 3D substrates with aspect ratio in excess of 1000 

[14]. These unique features make ALD a suitable technique for fabricating 3D 

microbatteries, and its potential has been demonstrated recently [15-17]. For example, 

anatase TiO2 thin film with 17 nm thickness was deposited by ALD directly on aligned 

aluminum nanorods, which served as current collectors [15]. The 3D TiO2 nanoelectrode 

exhibited a capacity 10 times higher than traditional 2D TiO2 electrode in the same areal 

footprint, and showed excellent rate capability and stability in 50 charge-discharge 

cycling. V2O5 thin films were deposited using ALD on micropillars coated with TMV/Ni, 

forming hierarchical 3D electrodes [17]. The conformal V2O5 thin films on the 3D 

micropillar electrodes enabled much higher energy density and faster charge-discharge 

rate than those on a planar substrate. Even though no real 3D microbatteries have been 

manufactured by ALD, given the aforementioned exclusive advantages, it is expected 

that ALD will play an important role in fabricating 3D microbatteries in the near future.  

Advancement in 3D microbatteries by ALD is highly reliant on the development of 

battery materials, i.e. anodes, solid-state electrolytes and cathodes [18, 19]. Some ALD-

derived materials (mainly metal oxide such as TiO2, SnO2, V2O5) have been adopted as 

anodes or cathodes in 3D microbatteries [18, 19]. However, there have been very few 

reports on the synthesis of solid-state electrolytes by ALD [20-26]. It was not until 2009 

that research relevant to solid-state electrolytes deposited by ALD started to emerge, 

when the ALD process for Li2O was first investigated [25]. Asltonen et al. [21] applied 

ALD to grow lithium lanthanum titanate (LLT) electrolytes at 225 °C by combining 

subcycles of TiO2 (TiCl4-H2O), La2O3 (La(thd)3-O3) and Li2O (LiO
t
Bu-H2O). The LLT 

thin film deposited at saturation conditions had a composition of Li0.32La0.30TiOz, with 

amorphous structure. The LLT thin film was crystallized after annealing at 800 °C in 

oxygen for 3h. Later on, Li2O-Al2O3 thin films were fabricated by the same group using 

ALD of Li2O (LiO
t
Bu-H2O) and Al2O3 (TMA-O3) [22]. The thickness of the Li2O-Al2O3 
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thin film was found to depend on ALD cycles linearly, yielding a growth rate of 2.8 

Ǻ/cycle. Hämäläinen et al. [22, 24] described the deposition of lithium phosphate and 

lithium silicate thin films by ALD. The lithium phosphate was deposited between 225 

and 350 °C using trimethyl phosphate and either of LiHMDS or LiO
t
Bu, and the lithium 

silicate was grown in a temperature range of 150 to 400 °C from LiHMDS and O3. In 

both cases, the growth rate and composition of the thin films were dependent on 

deposition temperature. Furthermore, Li3N was deposited by ALD from LiN(SiMe3)2 and 

NH3 at 167 °C, showing a growth rate of 0.95 Ǻ/cycle [25]. Even though progresses on 

ALD synthesis of solid-state electrolytes have been made, investigation on their lithium-

ion conductivity was seldom conducted. Only Asltonen et al. [22] presented a lithium-ion 

conductivity of 1 × 10
-7

 S cm
-1

 (at 300 °C) for Li2O-Al2O3 thin film, which had been 

annealed at 700 °C for 5h. Unfortunately, the high operating temperature and post-

annealing requirement seriously hinders application of the Li2O-Al2O3 thin film. The 

post-annealing process increases the risk of cracking in solid-state electrolytes, leading to 

short circuits and failure of 3D microbatteries. Therefore, it is essential that the solid-state 

electrolyte thin films are prepared in a “gentle” manner to avoid cracking.  

To fulfill the objective above, lithium tantalate was selected as the solid-state electrolyte 

to be deposited by ALD in this work. Lithium tantalate has the advantages of: (1) being 

lithium-ion conductive with amorphous structure. Previous work has found that 

amorphous lithium tantalate rather than crystalline one was conductive of lithium ions 

[27, 28]. The ALD-deposited lithium tantalate would show disordered structure due to the 

low deposition temperature (225 °C) used herein [20-24]. It was expected that the lithium 

tantalate grown by ALD could be a lithium-ion conductor at the as-deposited condition, 

saving post-treatment process and avoiding possible cracking of thin films during this 

process; (2) displaying acceptable lithium-ion conductivity (10
-5

-10
-8

 S/cm) and (3) 

negligible electronic conductivity at room temperature [27, 28]. In summary, this work 

realized the deposition of lithium tantalate thin films by ALD technique, for the first time. 

The synthesized lithium tantalate thin films were featured with not only precisely 

controlled film thickness, but well-tuned film composition. Most importantly, the lithium 

tantalate thin films by ALD, at the as-deposited state, exhibited moderate lithium-ion 

conductivity at room temperature, with no requirement of further treatments. Furthermore, 
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the ALD approach reported herein could achieve uniform and conformal lithium tantalate 

thin films in a 3D architecture. It is believed that the lithium tantalate thin films deposited 

by ALD, would have great potential as solid-state electrolytes in 3D microbatteries. 

10.2 Experimental Section 

All lithium tantalate thin films were deposited at 225 °C in Savannah 100 ALD system 

(Cambridge Nanotech Inc) by combining ALD subcycles of Li2O and Ta2O5. The Li2O 

subcycle consisted of alternating pulses of lithium tertbutoxide (LiO
t
Bu, (CH3)3COLi) 

and H2O, while the Ta2O5 subcycle consisted of alternating pulses of tantalum(V) 

ethoxide (Ta(OEt)5, Ta(OC2H5)5) and H2O. The source temperatures for LiO
t
Bu, 

Ta(OEt)5 and H2O were 170, 190 and 23 °C, respectively. The system pipelines were 

heated to 190 °C in order to prevent condensation of the precursors. The pulse times of 

LiO
t
Bu and Ta(OEt)5 were varied from 0.2 to 1.5 s, while the pulse time of H2O 

remained at 1 s. All precursor pulses were separated by a 10 s nitrogen purge. One ALD 

cycle was executed using a pulsing sequence of 1 × [LiO
t
Bu (0.2-1.5 s)-purge (10 s)-H2O 

(1 s)-purge (10 s)]-n × [Ta(OEt)5 (0.2-1.5 s)-purge (10 s)-H2O (1 s)-purge (10s)], which 

was expressed as 1 × Li2O + n × Ta2O5 (1 ≤ n ≤ 10) in brief. All lithium tantalate thin 

films were deposited on planar Si (100) and glass substrates. Anodic aluminum oxide 

(AAO, Anodisc 13, Whatman) template with aspect ratio of ~300 was chosen as a 3D 

substrate. All characterizations were carried out on the Si (100) substrate except 

otherwise noted. 

The thicknesses of the lithium tantalate thin films were measured from the cross sections 

of Si (100) using field-emission scanning electron microscopy (SEM, Hitachi-4800). The 

thicknesses of the thin films were obtained by taking average of 10 values measured at 

different locations of each sample. The compositions of the lithium tantalate thin films 

were analyzed by using X-ray photoelectron spectroscopy (XPS) using Kratos Axis Ultra 

Al (alpha) spectrometer. The phases of the lithium tantalate thin films on the glass 

substrate were identified using micro X-ray diffraction (XRD, Brucker D8, Co-Kα source, 

λ=1.7892Ǻ). The Ta L3 edge X-ray absorption near edge structure (XANES) 

measurements were performed on the 06ID superconducting wiggler hard X-ray 

microanalysis (HXMA) beamline at the Canadian Light Source (CLS) with a premirror - 
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double crystal monochromator – postmirror configuration using Si (111) crystals and Rh 

mirrors. CLS operates at 2.9 GeV with 175 mA injection current and the beamline 

wiggler was running at 1.5 T. Measurements were made at room temperature in 

transmission mode for Ta foil with ion chambers filled with 100% of N2, and in 

fluorescence mode for the lithium tantalate thin films using a 32-element Ge detector. 

To prepare the sample for impedance testing, ~ 50 nm Au layer was first sputtered on the 

glass substrate in a Polaron sputtering system under 2 kV for 9 min, and then the lithium 

tantalate thin film was deposited on top of the Au layer using a pulsing sequence of 400 × 

(1 × Li2O + 6 × Ta2O5). Following the ALD deposition, the as-prepared sample was 

immediately transferred into the Polaron sputtering system for coating of another Au 

layer (~ 50 nm in thickness). The thickness of the lithium tantalate thin film (or the 

distance between the two Au layers) was measured to be ~ 200 nm, and the area of 

lithium tantalate thin film was 5 mm × 5 mm. The impedance spectra at different 

temperatures were obtained by applying 50 mV in a frequency range of 200 kHz-10 Hz 

on a CHI Electrochemistry workstation. The sample was left to stabilize at each 

temperature for 30 min before acquiring data. 

10.3 Results and Discussion 

 

Figure 10.1 Growth per cycle of the lithium tantalate thin film as a function of (a) 

Ta(OEt)5 pulse time and (b) LiO
t
Bu pulse time using a pulsing sequence of 400 × (1 × 

Li2O + 1 × Ta2O5). The lines serve as guides to the eye. 
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Figure 10.1 shows the effect of LiO
t
Bu and Ta(OEt)5 pulse times on the growth per cycle 

(GPC) of the lithium tantalate system deposited using a pulsing sequence of (1 × Li2O + 

1 × Ta2O5). It can be seen that the GPC stabilizes at around 2.1 Ǻ/cycle, when pulse times 

for Ta(OEt)5 and LiO
t
Bu are longer than 0.5 and 1 s respectively. Thus, Ta(OEt)5 and 

LiO
t
Bu pulse lengths of 0.5 and 1 s, respectively, are sufficient to achieve saturated 

growth of the lithium tantalate thin film, and are chosen to be employed in subsequent 

experiments. 

 

Figure 10.2 SEM morphology of lithium tantalate thin film deposited using a pulsing 

sequence of (1 × Li2O + 6 × Ta2O5): (a, b) top view of 400-cycle thin film, and (c) cross-

section views of the thin films deposited with different ALD cycles. 

The lithium tantalate thin films are deposited using pulsing sequences of 1 × Li2O + n × 

Ta2O5 (n = 1, 6 and 10), where subcycle number of Ta2O5 (n) is varied in order to change 

film composition (Li/Ta ratio). The morphologies of the as-deposited thin films are 

examined by SEM. Figure 10.2 displays the result of the lithium tantalate thin film 

deposited using a pulsing sequence of 1 × Li2O + 6 × Ta2O5 as an example. From top-

view observation in Figure 10.2a, it can be seen that 400-cycle lithium tantalate thin film 
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is uniformly coated on the whole Si substrate, with a slight roughness associated with the 

film surface (Figure 10.2b). Cross-sectional views in Figure 10.2c clearly show the 

thicknesses of the lithium tantalate thin films deposited with different ALD cycles (low-

magnification images included in Figure SI-10.1 of the Supporting Information). The 

thickness measurements by SEM are plotted as a function of ALD cycle number in 

Figure 10.3. XRD analysis (Figure SI-10.2 of the Supporting Information) reveals 

amorphous structure of the as-grown lithium tantalate thin films. 

 

Figure 10.3 (a) Thickness of the lithium tantalate thin films as a function of ALD cycles 

and (b) the growth per cycle of the lithium tantalate thin films as a function of Ta2O5 

subcycle number, using pulsing sequences of 1 × Li2O + n × Ta2O5 (n = 1, 6 and 10). 

Figure 10.3a shows the ALD-cycle dependence of lithium tantalate film thickness when 

different pulsing sequences are employed.  It is clear that the lithium tantalate film 

thickness is linearly dependent with ALD cycle, demonstrating the self-limiting behavior 

during the ALD process. By fitting the data in Figure 10.3a linearly, the GPC of the 

lithium tantalate thin film is calculated to be 2.2, 5.2 and 7.3 Ǻ/cycle, where n equals to 1, 

6 and 10, respectively, in one (1 × Li2O + n × Ta2O5) cycle (as plotted in Figure 10.3b). 

From Figure 10.3b, one can see that the GPC of the lithium tantalate thin films increases 

monotonously with Ta2O5 subcycle number (n) in one complete ALD cycle (1 × Li2O + n 

× Ta2O5). This trend indicates that the GPC of the lithium tantalate thin films is a linear 

combination of the GPC of the Li2O subcycle and Ta2O5 subcycle. Thereby, two 

parameters could be extracted from the best-linear-fit in Figure 10.3b: the slope 



199 

 

represents the GPC of the Ta2O5 subcycle (~ 0.5 Ǻ/cycle), while the y-axis intercept of 

the linear fit represents the GPC of solely the Li2O subcycle (~ 1.7 Ǻ/cycle). The GPC of 

the Li2O and Ta2O5 subcycles obtained herein have good agreement with reported valves 

of Li2O at 1.7 Ǻ/cycle [29], and Ta2O5 at 0.4 Ǻ/cycle [22]. A better understanding of the 

ALD process can be derived from looking at the reaction mechanism for each subcycle. 

As proposed by Asltonen et al. [22] during the Li2O subcycle, the LiO
t
Bu pulse leads to 

the formation of two layers, resulting in a high GPC of the Li2O subcycle: 

-OH* + LiOC(CH3)3 → -O-Li* + HOC(CH3)3                                                        (10-1) 

-O-Li* + LiOC(CH3)3 → -O(-Li)-LiOC(CH3)3*                                                     (10-2) 

where an asterisk denotes surface species. During the water pulse, the surface species 

generated in Equation (2) are converted to hydroxide groups [22, 30]:
 

-O(-Li)-LiOC(CH3)3* + H2O → -O(-Li)-LiOH* + HOC(CH3)3                             (10-3) 

During the Ta2O5 subcycle, the following surface reaction occurs [31]:
 

n(-OH)* + Ta(OC2H5)5  → (-O-)nTa(OC2H5)5-n* + n HOC2H5                               (10-4) 

(-O-)nTa(OC2H5)5-n* + (5-n)H2O → (-O-)nTa(OH)5-n* + (5-n) HOC2H5                (10-5) 

Therefore, the surface reactions during one complete (1 × Li2O + n × Ta2O5) cycle would 

occur in the following sequence Equations (10-1)(10-2) → (10-3) → (10-4) → (10-5). 

One can find that the film surfaces after Li2O and Ta2O5 subcycles are terminated with 

the same functional groups (-OH). Thus, the surface species available after each Li2O 

subcycle are readily reactive sites for the succeeding Ta2O5 subcycle, and vice versa. This 

condition insures that the Li2O and Ta2O5 subcycles in the combined ALD process 

proceed in the same manner as in each binary oxide, therefore leading to the similar GPC 

of Li2O and Ta2O5 in the ternary system as in each binary system. The self-limiting 

characteristic of the Li2O and Ta2O5 subcycles takes responsible for the linear 

relationship between the lithium tantalate film thickness and ALD cycles (Figure 10.3a), 

and between the GPC of the lithium tantalate films on Ta2O5 subcycle number (Figure 

10.3b). It is worth mentioning that in a ternary or quaternary system deposited by ALD, 

n 
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the GPC of the combined oxide processes is usually lower than what is expected from a 

linear combination of the GPC of each binary oxide [21, 32]. For example, the average 

GPC of La-Ti-O films grown by combining La2O3 and TiO2 subcycles was found to be 

below the theoretical GPC calculated from individual growth rate of La2O3 (0.28 Ǻ/cycle) 

and TiO2 (0.52 Ǻ/cycle) [21]. The reason was most likely due to the difference in the 

surface chemistry between the preceding and the succeeding subcycles, which could alter 

the GPC of one or each binary system when they are combined. This difference was more 

obvious in Li-La-Ti-O system, which was fabricated using Li2O, La2O3 and TiO2 

subcycles. It was found that the pulsing order of the three subcycles had a substantial 

influence on the Li-La-Ti-O films. The films grown by using a sequence of TiO2-La2O3-

Li2O was less rough and more uniform than that deposited using a TiO2-Li2O-La2O3 

pulsing sequence [21]. Thus, precursor combination and pulsing sequence should be 

carefully selected when depositing thin films composed of two or more ALD subcycles. 

From the calculation in Figure 10.3b, one can find that the GPC of the Ta2O5 subcycle (~ 

0.5 Ǻ/cycle) is slightly higher than that of binary Ta2O5 (0.4 Ǻ/cycle) reported in the 

literature [22]. The higher GPC of Ta2O5 in our case might be due to denser regeneration 

of hydroxide groups after each Li2O subcycle (Equation (10-3)) than those produced after 

each Ta2O5 subcycle (Equation (10-5)). Another reason that cannot be excluded is the 

possibility of physisorbed water remaining on the surface after reaction (10-3) or/and 

reaction (10-5). Physisorbed water may lead to CVD-like growth of thin film during the 

Ta(OEt)5 pulse, thus leading to a higher GPC of Ta2O5 than expected. 

The structure of amorphous materials is difficult to be probed and determined by 

diffraction-based techniques due to the lack of long-range order. By contrast, X-ray 

spectroscopy is sensitive to the local environment of the element to be examined, and 

thus is ideal and powerful for analyzing amorphous materials [33]. By comparing the X-

ray spectra of unknown and reference materials, it is possible to gain insight into the 

structure of non-crystalline materials [33, 34]. Thus, XANES and XPS techniques were 

employed to study the structure or/and composition of the amorphous lithium 

tantalatethin films deposited by ALD in this work. Figure 10.4 displays XANES at Ta L3 

edge for the lithium tantalate thin films, in comparison with reference crystalline LiTaO3 

and pure Ta. The peak at the L3 edge arises from Ta 2p3/2 to unoccupied Ta 5d states via 
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dipole transition and its intensity is expected to be higher in LiTaO3 and exhibits a blue 

shift since Ta is in a higher oxidation state (d charge depletion). In Figure 10.4, it can be 

seen that all the lithium tantalate thin films have very similar Ta L3-edge spectrum to 

reference LiTaO3, except that the lithium tantalate thin films exhibit one broad peak at ~ 

9886.5 eV, instead of two well-resolved peaks at 9884.5 and 9886.8 eV for reference 

crystalline LiTaO3 [35]. This slight difference is attributable to the amorphous state of the 

lithium tantalate thin films [36, 37]. In Figure 10.4, it is also obvious that the Ta L3-edge 

XANES of the lithium tantalate thin films are remarkably different from that of pure Ta 

metal as expected. The XANES result indicates that the Ta in lithium tantalate thin films 

have similar chemical binding (Li-O-Ta) as that in reference LiTaO3 with a noticeable 

broadening due to disorder. 

 

Figure 10.4 Ta L3-edge XANES spectra of lithium tantalate thin films deposited using 

pulsing sequences of 1 × Li2O + n × Ta2O5 where (a) n = 1, (b) n = 6, (c) n = 10; (d) 

reference crystalline LiTaO3, and (e) pure Ta. 
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Figure 10.5 (a) XPS survey of the lithium tantalate thin films deposited using pulsing 

sequences of 1 × Li2O + n × Ta2O5 (n = 1, 6 and 10); (b) Li/Ta ratio in the thin films as a 

function of Ta2O5 subcycle number (n); and (c) deconvolution of Ta 4f spectra. In (c), the 

components A and A΄ correspond to the Ta 4f5/2 lines, and the components B and B΄ 

correspond to the Ta 4f7/2 lines. 

Compositions of the lithium tantalate thin films were analyzed by XPS, and the results 

are displayed in Figure 10.5. XPS survey in Figure 10.5a indicates the presence of Li, Ta 

and O elements in all the lithium tantalate thin films (their atomic percentages listed in 

Table SI-10.1 of the Supporting Information). The chemical formula is determined as 

Li12.3TaOz, Li5.1TaOz and Li0.6TaOz, for the lithium tantalate thin film deposited using a 

Ta2O5 subcycle of 1, 6, and 10 respectively, while Li2O was kept constant at 1. XPS data 

reveals that the Li/Ta ratio of the lithium tantalate thin films decreases with increasing 

Ta2O5 subcycle number, as plotted in Figure 10.5b. Figure 10.5c illustrates the chemical 

environment of Ta element in the lithium tantalate thin films by analyzing Ta 4f spectrum. 

For Li12.3TaOz and Li5.1TaOz, the Ta 4f spectrum is fitted into one set of doublet Ta 4f5/2 

(peak A) and Ta 4f7/2 (peak B). The positions of Ta 4f5/2 (peak A) and Ta 4f7/2 (peak B) 

are centered at 27.7 and 25.8 eV for Li12.3TaOz, and at 27.9 and 26.0 eV for Li5.1TaOz, 

respectively. The slight shift of Ta 4f5/2 (peak A) and Ta 4f7/2 (peak B) is due to the 

stoichiometry change from Li12.3TaOz to Li5.1TaOz. The positions of the Ta 4f5/2 (peak A) 

and Ta 4f7/2 (peak B) are very close to those reported in stoichiometric LiTaO3 film [38], 

revealing that the Ta element in Li12.3TaOz and Li5.1TaOz has a similar chemical binding 

(Li-O-Ta) as stoichiometric LiTaO3. Deconvolution of Ta 4f peak of Li0.6TaOz is 
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composed of two pairs of doublets. The one pair of Ta 4f5/2 (peak A) and Ta4f7/2 (peak B) 

at lower binding energy is consistent with those in Li5.1TaOz. The other pair of Ta 4f5/2 

(peak A΄) and Ta4f7/2 (peak B΄) at higher binding energy are located at 29.2 and 27.3 eV 

respectively, which are very close to the binding energy of Ta element in stoichiometric 

Ta2O5 [39]. This result indicates that the Ta in Li0.6TaOz exists in two types of chemical 

environments, i.e. Li-O-Ta and Ta-O-Ta, which make up 82% and 18% respectively. 

Besides the above elements, carbon is also detected in all thin films prepared (Figure 

10.5a). The presence of carbon can be addressed to organic carbons in C-C, C-H (284.8 

eV), C-OH, C-O-C (286.3 eV), O-C=O (288.8 eV) and C=O (287.2 eV) (see Figure SI-

10.3 of the Supporting Information). The source of carbon is a result of ligand residue of 

ALD precursors, as well as hydrocarbons present in ambient air [40]. In Li12.3TaOz, 

another major source of carbon impurity is carbonate (290.1 eV) (Figure SI-10.3 of the 

Supporting Information), which is commonly found in lithium-containing thin films 

produced by ALD [22, 40]. Carbonate present results from a reaction between Li2O and 

ambient carbon dioxide when the thin films are exposed to air [30], and thereby should 

predominantly reside on the topmost surface of the thin film [22, 40]. In Li5.1TaOz and 

Li0.6TaOz, carbonate only accounts for 4-6% of the carbon impurity, compared to 40% in 

Li12.3TaOz (Figure SI-10.3 of the Supporting Information). This difference could be 

explained by the fact that more Ta2O5 subcycles were used in ALD process of Li5.1TaOz 

and Li0.6TaOz than Li12.3TaOz, and resultant thicker Ta2O5 layer in the former films can 

better prevent the reaction of Li2O with ambient carbon dioxide. Li5.1TaOz thin film is 

chosen to be further studied in terms of the lithium-ion conductivity, because it is stable 

in air and easy for operation. More importantly, the excess Li content in Li5.1TaOz thin 

film is beneficial for lithium-ion conduction according to previous studies [28, 41].
 

Lithium-ion conductivity of 400-cycle Li5.1TaOz thin film (~ 200 nm thick) was assessed 

by using electrochemical impedance spectroscopy. Figure 10.6a shows Cole-Cole plots of 

the Li5.1TaOz thin film measured at different temperatures. It can be seen that each Cole-

Cole plot consists of one semicircle in the high frequency region and an inclined tail in 

the low frequency region. The former semicircle could be assigned to the bulk resistance 

of Li5.1TaOz solid-state electrolyte [27], while the latter is attributable to the polarization 

at electrode-electrolyte interface [42]. It is worth noting that the inclined tail in the case  
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Figure 10.6 (a) Impedance plots of the Li5.1TaOz thin film measured at different 

temperatures (inset shows the equivalent circuit for fitting); (b) Arrhenius plot of the 

ionic conductivity of the Li5.1TaOz thin film. 

of ionic blocking electrodes (such as Au used herein) is typical indication of that the 

investigated solid-state electrolyte is predominately ionic conductor in nature [42, 43]. 

The Cole-Cole plots could be well-resolved using the equivalent circuit inset in Figure 

10.6a, in which Rb and C represents the bulk resistance and the resultant capacitance of 

the Li5.1TaOz solid-state electrolyte respectively, Zin denotes the polarization impedance 

of the electrode-electrolyte interface, and Ro is the ohmic resistance of the electrodes [27]. 

Rb values are obtained in Figure 10.5a at different temperatures, and the ionic 

conductivity of the Li5.1TaOz solid-state electrolyte is derived from following equation 

[44]:
 

σ = d/ARb                                                         (10-6) 

where σ is the ionic conductivity, d is the thickness of the Li5.1TaOz film, and A is the 

area of the Li5.1TaOz film between Au electrodes. The ionic conductivity of Li5.1TaOz 

varies from 1.2 × 10
-8

 to 9.0 × 10
-7

 S/cm, at temperatures between 299 and 373 K. 

Furthermore, variation of the ionic conductivity with temperature is shown in an 

Arrhenius representation according to [44, 45]:
 

σT = σ0exp[- Ea/(kT)]                                          (10-7) 
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where Ea denotes the activation energy, k Boltzmann constant, T absolute temperature 

and σ0 is a constant. Activation energy of ~ 0.55 eV is obtained by fitting the 

temperature-dependence of the lithium-ion conductivity in Figure 10.6b. Comparison is 

made between Li5.1TaOz, LixTaOy prepared by RF sputtering, and Li2O-Al2O3 grown by 

ALD in Table 10-1. It can be found that the lithium-ion conductivity of Li5.1TaOz (2 × 10
-

8
 S/cm at 299 K) is comparable with that of amorphous LixTaOy prepared by RF 

sputtering (8 × 10
-8

 S/cm at 300 K) [27]. For the Li2O-Al2O3, its lithium-ion conductivity 

was estimated to be around 1 × 10
-7

 S/cm at 573 K, and no data at room temperature was 

reported [22]. Furthermore, the Li2O-Al2O3 exhibits a much higher activation energy (2.9 

eV) than Li5.1TaOz (0.55 eV) and amorphous LixTaOy (0.25 eV). The lithium-ion 

conductivity of Li5.1TaOz is considerably low compared with popular solid-state 

electrolytes (such as NASICON-type, Garnet-type [46, 47]) in 2D batteries. Nevertheless, 

to be applicable in 3D microbatteries, a solid-state electrolyte should be able to be 

deposited uniformly on a 3D architecture. Successful achievement of this goal will allow 

for significantly reduced ionic conductivity to be a tolerable consequence [27]. 

Table 10-1 Comparison of lithium tantalate and Li2O-Al2O3 solid-state electrolytes. 

Solid-state 

electrolyte 

Substrate type Li
+
 

conductivity 

Activation 

energy 

Preparation 

method 

Ref. 

Amorphous 

LixTaOy 

ITO film (planar) 8 × 10
-8

 

S/cm (at 

300 K) 

0.25 eV RF 

sputtering 

[28] 

Li2O-Al2O3 Sapphire/Si(111) 

(planar) 

1 × 10
-7

 

S/cm (at 

573 K) 

2.90 eV ALD [22] 

Amorphous 

Li5.1TaOz 

Si(100)/glass 

(planar); AAO (3D 

aspect ratio ~ 300) 

2 × 10
-8 

S/cm (at 

299 K) 

0.55 eV ALD Herein 

The capability of the ALD process to achieve the above goal is demonstrated by 

depositing 100-cycle Li5.1TaOz thin film on an AAO template with aspect ratio of ~ 300, 

as shown in Figure 10.7. Top-view images in Figure 10.7 (a, b) indicate that the Li5.1TaOz 

thin film is uniformly and conformally coated around the pores of the AAO template. 

Furthermore, cross-section examination (as seen in Figure 10.7 (c, d)) shows that the 

inner surface of the pores is covered by a tubular thin film of Li5.1TaOz. The thickness of 

the Li5.1TaOz thin film is measured as ~ 50 nm from the top (Figure 10.7b) and the side 
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(Figure 10.7d). The BSE images in Figure 10.7 clearly illustrate that the ALD process 

developed herein is capable of depositing desirable lithium tantalate thin films in high-

aspect-ratio substrates, as required in 3D microbatteries.  

 

Figure 10.7 Backscattered electron (BSE) images of 100-cycle Li5.1TaOz thin film 

deposited in AAO template: (a, b) top-view and (c, d) cross-section view. 

10.4 Conclusions 

Lithium tantalate thin films have been deposited by means of ALD through combining 

subcycles of Li2O (LiO
t
Bu-H2O) and Ta2O5 (Ta(OEt)5-H2O). All lithium tantalate thin 

films were deposited at 225 °C, and they were amorphous at as-deposited state. The 

growth of the lithium tantalate thin films by ALD was proven to be a self-limiting 

process. Composition (Li/Ta ratio) of the lithium tantalate thin films was controlled by 

changing the subcycle ratios of Li2O to Ta2O5 (1 to 1, 1 to 6 and 1 to 10). Both XPS and 

XANES analysis confirmed that Ta element in the lithium tantalate thin films had similar 

chemical environment as that in reference LiTaO3. The as-grown lithium tantalate thin 

film using 1 Li2O and 6 Ta2O5 subcycles exhibited a lithium-ion conductivity of 2 × 10
-8

 

S/cm at room temperature. Moreover, the ALD process developed in this work 
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successfully deposited lithium tantalate thin films with excellent uniformity and 

conformality in a 3D AAO template with an aspect ratio of ~ 300. Given the 

aforementioned unique advantages, the lithium tantalate thin films prepared by ALD 

might find potential applications as solid-state electrolytes in 3D lithium-ion 

microbatteries, which is very promising power supply system for next-generation 

microelectronic devices. 
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Supporting Information 

 

Figure SI-10.1 Low-magnification SEM images of the lithium tantalate thin film 

deposited using pulsing sequence of 1 × Li2O + 6 × Ta2O5 with (a) 100, (b) 200, (c) 300 

and (d) 400 ALD cycles. 

 

Figure SI-10.2 XRD pattern of 400-cycle lithium tantalate thin film deposited using 

pulsing sequence of 1 × Li2O + 6 × Ta2O5 on the glass substrate. 
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Figure SI-10.3 Deconvolution of C 1s/4 spectrum of the lithium tantalate thin films 

deposited using pulsing sequences of (a) 1 × Li2O + 1 × Ta2O5, (b) 1 × Li2O + 6 × Ta2O5 

and (c) 1 × Li2O + 10 × Ta2O5. 

 

 

Table SI-10.1 Elemental compositions of lithium tantalate thin films deposited using 

pulsing sequences of 1 × Li2O + n × Ta2O5 (n = 1, 6 and 10) as measured by XPS 

Ta2O5 

subcycle (n) 
Ta (at.%) Li (at.%) O (at.%) C (at.%) 

Chemical 

formula 

1 1.9 23.4 44.9 29.3 Li12.3TaOz 

6 3.1 15.9 27.3 53.7 Li5.1TaOz 

10 9.8 5.9 49.2 35.1 Li0.6TaOz 
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Chapter 11 Conclusions and Perpectives 

11 Conclusions and Perspectives 

11.1 Conclusions 

A series of experiments were conducted in this thesis to synthesize various 

nanostructured anode materials, and to develop surface-modification materials for 

electrode materials. The applications of some developed materials in LIBs were 

demonstrated. This thesis covered topics of material synthesis, growth characteristics, 

underlying mechniams, and LIB performance. 

Various nanosized anode materials, including nitrogen-doped carbon nanotubes (NCNTs), 

phosphoru-nitrogen doped carbon nanotubes (PNCNTs) and lithium titanate (Li4Ti5O12), 

were produced using different methods, including ultrasonic spray pyrolysis, floating 

catalyst chemical vapor deposition (FCCVD), and microwave-assisted hydrothermal 

(MH) method. Relations between the microstructure of the nanosized anode materials and 

experimental parameters were found out, and the growth mechanisms of these materials 

were explored. In addition, the electrochemical performance of the prepared nanosized 

anode materials was investigated in some cases. 

Firstly, NCNTs were produced from a mixture solution of imidazole and acetonitrile 

using ultrasonic spray pyrolysis. This work detailedly investigated different experimental 

parameters, including solution concentration, injection rate and amplitude of ultrasonic 

processor, on the morphology, internal structure, nitrogen content, defect density, growth 

rate and yield of NCNTs. It was revealed that the structure and nitrogen content could be 

easily controlled by adjusting the ratio between imidazole and acetonitrile. 

Secondly, PNCNTs were prepared by a FCCVD method using triphenylphosphine (TPP) 

as phosphorus precursor. The result showed that the diameter and wall thickness of 

PNCNTs could be controlled by using different TPP amounts. Further study disclosed 

that the structural change of nanotubes was due to the shape change of the catalyst 

particles, with the addition of TPP. PNCNTs with P content of 1.9 at.% was obtained. 
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This work provided valuable information and insightful opinion about P doping in carbon 

nanotubes, which has been seldom investigated in open literatures. 

Thirdly, nanoflower-like and nanoparticle Li4Ti5O12 were synthesized by a MH method, 

and applied as anode materials for LIBs. Electrochemical evaluations indicated that 

nanoflower-like Li4Ti5O12 exhibited better LIB performance than nanoparticle one, owing 

to its unique structure and high specific surface area. It could deliver a reversible capacity 

of ~140 mAh/g at 1.1C after 100 cycles. This MH synthesis method was energy-efficient 

and fast, suitable for industrial applications. 

In the next part, various surface-modification materials, including ZrO2, AlPO4 and 

LiTaO3 solid state electrolyte, were deposited by atomic layer deposition (ALD) on 

NCNTs, graphene nanosheets (GNS), Si (100) and anodic aluminum oxide (AAO) 

template. ALD enabled highly flexibility and controllability of ZrO2, AlPO4 and LiTaO3 

solid state electrolyte, in terms of the film thickness, composition, and/or crystallinity. 

ZrO2 was deposited on NCNTs and GNS by ALD using (dimethylamido) zirconium (IV) 

and water as precursors. The as-deposited ZrO2 were controllable in the crystallinity and 

morphology. Increasing deposition temperature leaded to more crystalline feature of ZrO2 

on both NCNTs and GNS. Moreover, low ALD cycles resulted in ZrO2 nanoparticles, 

while high ALD cycles trended to form ZrO2 nanofilms. Growth of ZrO2 on both NCNTs 

and GNS showed a transition from an island-growth mode to a layer-by-layer growth 

mode with increasing ALD cycles. Difference in the transition ALD cycles was observed 

between NCNTs and GNS, due to different densities of reactive sites on their surfaces. 

This work provided detailed information about how to controllably deposit ZrO2 by ALD. 

Following the above work, study was further carried out to improve the LIB performance 

of nanoflower-like Li4Ti5O12 using ZrO2 coating by ALD. The thickness of ZrO2 coating 

layer was precisely tuned by different ALD cycles at nanoscale level. Systemic 

electrochemical testings revealed that the performance of Li4Ti5O12 in an extended 

voltage range (0.1-2.5 V) could be enhanced by ZrO2 coatings with no more than 5 ALD 

cycles. Impedance measurement disclosed that the improvement was attributed to the 

influence of ZrO2 coating on the formation of solid-electrolyte interphase (SEI) on 
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Li4Ti5O12. This work gave a good example of the applications of surface-modification 

materials developed ALD in LIBs. 

Besides ZrO2, another good coating material AlPO4 was developed by ALD in this work. 

Amorphous aluminum phosphate was deposited by ALD using combined subcycles of 

Al2O3 (trimethylaluminium-H2O) and POx (trimethylphosphite-O3). The film composition 

(P/Al ratio) was tunable by changing the subcycle ratio of Al2O3 to POx. Using 1 Al2O3 

subcycle and 20 POx subcycle, aluminum phosphate with a composition of Al1.3PO5.0 was 

obtained. The structure of Al1.3PO5.0 was confirmed by X-ray photoelectron spectroscopy 

and X-ray absorption near-edge structure spectroscopy. The thickness of Al1.3PO5.0 had a 

linear dependence on ALD cycles, showing typical self-limiting characteristic. 

At last, amorphous lithium tantalate thin films were deposited by ALD using subcycle 

combination of 1×Li2O + n×Ta2O5 (1≤n≤10). The Li/Ta ratio in the thin films was 

controlled by varying Ta2O5 subcycle n while keeping Li2O subcycle constant at 1. The 

growth of all the thin films showed typical ALD self-limiting behaviors. Furthermore, the 

thin film grown using 1×Li2O + 5×Ta2O5 exhibited a lithium-ion conductivity of 2×10
-8

 

S/cm at 299 K. This property made lithium tantalate more advantageous than ZrO2 and 

AlPO4 for surface-modification purpose in LIBs. In addition, this kind of lithium tantalate 

by ALD showed excellent uniformity and conformity in 3D AAO template. Therefore, 

the lithium tantalate developed in this work was very promising solid-state electrolyte in 

all-solid-state LIBs as well. 

11.2 Prespectives 

Despite advancements made in this thesis, futher research and breakthrough is in need in 

order to obtain high-performance electrode materials for EV LIBs. Some suggestions are 

provided in the following part. 

First of all, this thesis achieved successful doping of CNTs with N and P. Further studies 

needs to be carried out on testing the LIB performance of N doped CNTs and P and N co-

doped CNTs. Especially, the research on using P doping CNTs as anode materials is rare, 

and the influence of P doping on the LIB performance of CNTs is still not clear. 
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Moreover, it would be interesting to investigate and clarify the effect of N and P doping 

contents on the LIB performance of CNTs, and the working mechanisms.  

Secondly, three surface-modificaiton materials, including ZrO2, AlPO4 and LiTaO3, have 

been successfully developed by ALD in this thesis. Further studies need to be focused on 

applying these materials to enhance the LIB performance of both the anode and cathode, 

in terms of cycling stability, rate capability, coulombic efficiency, and safety. In addition, 

more efforts should be devoted to understanding and disclosing underlying mechanism 

for performance improvement by surface modification via ALD. 

At last, ALD has been demonstrated to be able to deposit solid-state electrolytes in 3D 

substrates, compared with conventional film deposition techniques. Given its exceptional 

advantages, ALD has great potentials for fabrication of 3D all-solid-state microbatteries. 

ALD could be a suitable technique for making real 3D microbatteries, which has proven 

to be very difficult for other film deposition techniques. Advancement in this field relies 

on the development of active materials, i.e. the anode, cathode and solid-state electrolytes 

by ALD. In particular, it is really challenging for ALD to deposit the cathode and solid-

state electrolytes, which usually contain multi-elements and thereby require combination 

of a few ALD processes. 
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Appendices 

Appendix A: Permission from American Chemical Society 

(ACS) for Published Article 

Published article: Jian Liu, Xiangbo Meng, Mohammad N. Banis, Mei Cai, Ruying Li, 

Xueliang Sun. Crystallinity-controlled synthesis of zirconium oxide thin films on 

nitrogen-doped carbon nanotubes by atomic layer deposition. J. Phys. Chem. C 2012, 116, 

14656-14664. (http://pubs.acs.org/doi/abs/10.1021/jp3028462) 

 

http://pubs.acs.org/doi/abs/10.1021/jp3028462
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Appendix B: Permission from Royal Society of Chemistry (RSC) 

for Published Article 

Published Article: Jian Liu, Yongji Tang, Biwei Xiao, Tsun-Kong Sham, Ruying Li, 

Xueliang Sun. Atomic layer deposited aluminium phosphate thin films on N-doped CNTs. 

RSC Adv. 2013, 3, 4492-4495. - Reproduced by permission of The Royal Society of 

Chemistry. (http://pubs.rsc.org/en/content/articlelanding/2013/RA/C3RA23320K) 

Author Use of Own Material in Theses and Dissertations 

Authors of articles in RSC journals or chapters in RSC books do not need to formally 

request permission to reproduce their article or book chapter in their thesis or 

dissertation. For all cases of reproduction the correct acknowledgement should be given 

in the caption of the reproduced material. The acknowledgement depends on the RSC 

publication in which the material was published. The form of the acknowledgement to be 

included in the caption can be found on the page entitled Acknowledgements to be used 

by RSC authors. 

Please ensure that your co-authors are aware that you are including the paper in your 

thesis. (Source: http://www.rsc.org/AboutUs/Copyright/Permissionrequests.asp) 
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74-82. 

(2) Jian Liu, Xifei Li, Mei Cai, Ruying Li, Xueliang Sun. Ultrathin atomic layer 

deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as 

an anode material. Electrochim. Acta 2013, 93, 195-201. 

(3) Jian Liu, Xifei Li, Jinli Yang, Dongsheng Geng, Yongliang Li, Dongniu Wang, 

Ruying Li, Xueliang Sun, Mei Cai, Mark W. Verbrugge. Electrochim. Acta 2012, 63, 

100-104. 

(4) Jian Liu, Hao Liu, Yong Zhang, Ruying Li, Guoxian Liang, Michel Gauthier, 

Xueliang Sun. Synthesis and characterization of phosphorus-nitrogen doped 

multiwalled carbon nanotubes. Carbon 2011, 49, 5014-5021. 

(5) Jian Liu, Yong Zhang, Mihnea I. Ionescu, Ruying Li, Xueliang Sun. Nitrogen-doped 

carbon nanotubes with tunable structure and high yield produced by ultrasonic spray 

pyrolysis. Appl. Surf. Sci. 2011, 257, 7837-7844. 
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and scholarly purposes without needing to seek permission. 

Table of Authors' Rights 

  Preprint version (with 
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