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Abstract 
 

Recently, there has been a growing emphasis on basic number processing 

competencies (such as the ability to judge which of two numbers is larger) and their role 

in predicting individual differences in school-relevant math achievement. Children’s 

ability to compare both symbolic (e.g. Arabic numerals) and nonsymbolic (e.g. dot 

arrays) magnitudes has been found to correlate with their math achievement. The 

available evidence, however, has focused on computerized paradigms which may not 

always be suitable for universal, quick application in the classroom. Furthermore, it is 

currently unclear whether both symbolic and nonsymbolic magnitude comparison are 

related to children’s performance on tests of arithmetic competence and whether either of 

these factors relates to arithmetic achievement over and above other factors such as 

working memory and reading ability. In order to address these outstanding issues, a quick 

(two-minute) paper-and-pencil tool was designed to measure children’s ability to 

compare symbolic and nonsymbolic numerical magnitudes. Individual differences in 

children’s performance on this test were then correlated with individual differences in 

arithmetic achievement.  

 Chapter 2 demonstrated that both symbolic and nonsymbolic number comparison 

accuracy were related to individual differences in arithmetic achievement; however, only 

symbolic number comparison performance accounted for unique variance in arithmetic 

achievement. Results also revealed that symbolic scores accounted for unique variance in 

children’s arithmetic scores when controlling for age, IQ, reading skills and working 

memory. 

Chapter 3 assessed the soundness of the paper-and-pencil test. Results indicated 
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that the paper-and-pencil test demonstrated criterion-related validity, levels of convergent 

validity and test-retest reliability. Findings again revealed that only children’s 

performances on symbolic items accounted for unique variance in arithmetic scores.   

In Chapter 4, further evidence of the convergent validity of the paper-and-pencil 

test was demonstrated, and again, symbolic processing accounted for unique variance in 

children’s arithmetic achievement.  Results also demonstrated that participants’ 

performance on the paper-and-pencil test in kindergarten was a significant predictor of 

their math grade in Grade 1.       

Together these three studies give evidence to suggest that a simple two-minute 

paper-and-pencil test is a valuable and reliable tool for assessing basic magnitude 

processing in children from kindergarten to the third grade. 

Keywords:	
  children, arithmetic, assessment, numerical magnitude processing, number 

comparison, numerical cognition. 
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Chapter 1 

1. General Introduction 
 

1.1. Why Study Number? 

The importance of understanding and knowing how to work with numbers is 

evident in a society such as the one in which we live. Understanding how numbers work 

allows us to ask and answer everyday questions such as, how old are you?  How much 

does that cost?  What is the temperature today?  What time is it? In recent years, research 

has shown that competence in mathematics is crucial to one’s success in school and the 

workplace (Finnie & Meng, 2001).   Furthermore, low numeracy skills are associated 

with greater likelihood of criminal behaviour and incarceration, as well as higher risk for 

depression and other illnesses (Parsons & Bynner, 2005).   

Since working with numbers is such a central part of our everyday existence, it is 

understandable that an in-depth understanding of how the brain develops the ability to 

process numerical quantity and the mechanisms underlying this skill have been the focus 

of much research in recent years.  While a great deal of progress has been made in 

furthering our knowledge about the underlying mental processes involved in number 

processing and how these develop (as presented in the literature review below), less work 

has centered on how to accurately measure basic number processing skills.  These basic 

skills are essential, in that, they are thought to lay the foundation on which higher-order 

math abilities are built.  In other words, they are the foundational competencies of 

numeracy.  

In contrast, the domain of literacy has progressed in reliable measurement of 

foundational competencies of reading (Mee Bell & McCallum, 2008).  Furthermore, the 
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link between these foundational competencies and the role they play in the development 

of children’s reading skills is well understood (Goswami, 2003; Stanovich, 1986; 

Vellutino & Scanlon, 1987).  For example, we now know that a child’s ability to hear, 

identify and manipulate phonemes, the individual sounds that make up a word, is an 

essential building block for good reading skills (Adams, 1990).  For instance, strong 

readers recognize that the word ‘cat’ can be broken down into three phonemes: the 

beginning sound “c”, the middle sound “a” and the ending sound “t.”  Each one of these 

sounds is a phoneme.  Children who are unable to properly hear and identify phonemes 

demonstrate poor phonemic awareness, and, therefore, struggle with reading.  In many 

instances, this is one of the first signs of severe learning disabilities related to reading, 

such as developmental dyslexia.  Moreover, children’s phonemic awareness is a very 

strong predictor of their later reading fluency and comprehension (Adams, 1990).  Based 

on this knowledge, there now exists a plethora of standardized assessments for measuring 

phonemic awareness at several grade levels.  As a result, years ago, many students who 

would have lagged behind their classmates are now able to receive the early intervention 

they need to succeed in the classroom and remain on par with their peers.  

While, presently, there are standardized tests available to teachers to evaluate 

students’ numeracy skills, very few focus on assessing the foundational competencies, or 

building blocks, of math. Most of these tests, instead, focus on more complex skills such 

as arithmetic and problem solving.  Although these skills are certainly contributing 

factors to the development of children’s numeracy capabilities, knowledge of how a child 

is performing on more basic and foundational skills can allow teachers to gain better 

insight into what their students understand. Moreover, current tests assess what children 
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learn in school, and the knowledge they bring to school is disregarded.  By testing 

foundational competencies, teachers are able to assess students at a much earlier age, 

which can help students to experience a successful start to their academic careers.  

As mentioned, phonemic awareness is an essential skill for becoming a good 

reader. One well-established building block of numerical development involves the 

ability to process numerical magnitude. Numerical magnitude can be defined as the total 

number of items in a set.  This number can be exact or approximate, depending on 

whether the sets of items are counted or estimated (Ansari, 2008).  Numerical magnitude 

processing can be tested by assessing an individual’s ability to discriminate between two 

sets of objects (nonsymbolic magnitude processing) or two Arabic digits (symbolic 

magnitude processing).  For example, researchers can ask an individual to identify which 

is the larger in a pair of magnitudes (i.e., Which group has more stars? **** vs.***, or 

which number means the most things? 6 vs. 5).  As you will read in this chapter, this 

simple skill has recently been identified as a scaffold that is thought to support children’s 

math development, but one that has generally been overlooked in formal, educationally 

useable math assessments. The goal of my thesis is to fill this gap by designing a simple 

tool to measure children’s basic magnitude processing abilities.  

The focus of the following literature review will be to explore numerical 

magnitude processing abilities which are the foundation upon which higher order math 

skills, such as arithmetic, are built. I will begin with a detailed description of the 

underlying processes involved in number processing, how they develop and change 

across time, and describe theories of numerical development and evidence of basic 

numerical representation in animals and infants.  A discussion of the effects and models 
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of numerical magnitude comparison and the typical and atypical developmental changes 

of comparing numerical magnitudes will follow.  Next, I will present research on the 

ongoing debate regarding the role of symbolic and nonsymbolic processing in children’s 

math development. In conclusion, a description of the educational implications of the 

studies presented will be discussed which include the role of magnitude processing in 

educational assessment, when it should be assessed and how it should be tested. 

1.2 Numerical Magnitude Processing 

For years, researchers often questioned the origins of our ability to use and think 

about number. The most plausible explanation was that we learn and acquire a sense for 

number, or number sense, over the course of learning and development. There is, 

however, now evidence to suggest that an awareness of numerical magnitude is present in 

very young children long before they enter their first classroom or even take their first 

step. This is supported by research indicating that infants, still without language and 

knowledge of number symbols, display notions of magnitude as demonstrated by their 

ability to discriminate between small numbers (Starkey & Cooper, 1980; Wynn, 1992; 

Xu & Spelke, 2000). In the literature, there is also a collection of studies revealing that 

even animals (Brannon, 2006; Dehaene, Dehaene-Lambertz & Cohen, 1998; Meck & 

Church, 1983) are capable of this ability as well.  

Evidence suggesting that both animals and infants have the ability to discriminate 

between two numerical magnitudes demonstrates the importance of this basic, 

foundational skill. Moreover, the fact that adults and beings with no language capacity 

share an ability to discriminate between numbers suggests we come equipped with an 

aptitude to complete these kinds of basic numerical tasks.  
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Studies that administer magnitude comparison tasks provide more support for this 

shared ability between individuals and species. In the next section, I describe these 

comparison tasks and classical effects that can be observed during their completion.  

1.3 Classical Effects of Magnitude Comparison 

To measure numerical magnitude discrimination, researchers frequently employ 

numerical magnitude comparison paradigms.  In magnitude comparison tasks, 

participants are asked to choose which of two symbolic or two nonsymbolic magnitudes 

is larger. Symbolic magnitudes are represented using symbols such as Arabic digits, 

number words or Roman numerals.  On the other hand, nonsymbolic magnitudes are 

represented using objects, such as arrays of dots or sequences of tones or touches of the 

hand. Two effects that have been identified in studies of magnitude comparison (i.e., 

judging which of two simultaneously or sequentially presented numerical magnitudes is 

numerically larger or smaller), using both symbolic and nonsymbolic representations, 

include the numerical distance effect (NDE) and the numerical ratio effect (NRE).  

When individuals compare numerical magnitudes, an inverse relationship between 

the numerical distance of two magnitudes and the reaction time required to make a 

correct comparison is typically obtained.  In other words, individuals are faster at judging 

which of two numbers is greater when the numbers are numerically farther apart (e.g., 1 

vs. 9) than when they are numerically close (e.g., 8 vs. 9).  This phenomenon is known as 

the numerical distance effect (see Fig.1.1).   
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Figure 1.1.  Numerical distance effect.  As the numerical distance between two numerals 

increases, the faster an individual’s reaction time. 

 

Moreover, when participants are asked to perform numerical magnitude 

comparison, it is also found that participants more quickly and accurately compare two 

numbers of a smaller magnitude versus two numbers of a larger magnitude, even when 

the distance between the numbers remains constant (i.e., 3, 4 vs. 8, 9, where it takes 

participants longer to judge that 9 is larger than 8 (ratio of .89) than it does for them to 

decide 4 is larger than 3 (ratio of .75)).  This is known as the numerical ratio effect (see 

Fig. 1.2). Both of these effects have been replicated in humans (Brannon & Terrace, 

2002; Dehaene, 1996; Moyer & Landauer, 1967; van Oeffelen & Vos, 1982, Xu & 

Spelke, 2000) and have also been observed in animals (Brannon & Terrace, 1998; 

Brannon & Terrace, 2002; Rilling & McDiarmid, 1965; Washburn & Rumbaugh, 1991).   
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Figure 1.2. Numerical ratio effect.  In magnitude comparison tasks, reaction times 

become slower as the ratio between magnitude pairs increases. 

 

For example, monkeys in Washburn’s and Rumbaugh’s (1991) study learned that 

Arabic numerals 0-9 represented corresponding quantities of food pellets and were able 

to choose the numeral of greatest value in a comparison task.  During this task, they 

demonstrated fewer errors when the distance between the numerals being compared was 

greater than five.  Brannon and Terrace (1998) found that monkeys could be trained to 

correctly order nonsymbolic numerosities of 1-9 in ascending order.  It was revealed that 

the numerical distance between the numbers being ordered had a significant effect on the 

accuracy of the animals’ performance in such a way that pairs separated by a relatively 

large numerical distance were ordered more correctly than those with a relatively small 

distance.    

Like the NDE, the NRE has also been observed in humans as well as animals.  

Cantlon and Brannon (2006) tested nonsymbolic magnitude processing in college 

students and monkeys using the same paradigm.  In this task, both groups were required 
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to select the smaller of two arrays that were made up of square-shaped elements which 

appeared on a touch screen monitor.  Arrays were made up of values 1 through 9, 10, 15, 

20 or 30.  The final analysis revealed that both species displayed a similar NRE, in that, 

when the distance between a pair of numbers was held constant but the magnitudes of the 

numbers increased, errors and response time also increased.   For instance, adult humans 

and monkeys took longer to select 7 as smaller than 8, than to select 3 as smaller than 4, 

even though both sets of pairs were separated by a numerical distance of one.   

Research has also demonstrated the NRE in infants as young as 6 months old.  In 

their study, Xu and Spelke (2000) attempted to assess whether infants could represent 

approximate magnitudes using the standard habituation-dishabituation-of-looking time 

procedure. This method is based on the premise that babies gaze significantly longer at 

novel stimuli and lose interest (habituate) when a familiar stimulus is repeatedly 

presented.  The experimenters presented test slides on a screen.  Each slide contained 

either 8 or 16 dots (ratio of .5) in various positions and sizes across each trial.  Once the 

infant had habituated to a test slide displaying one of the numerosities, the experimenter 

would present a new image with either the same numerosity or the alternative, novel 

numerosity.  It was revealed that the infants spent more time looking at the slides with the 

new versus familiar number of dots.  In a second part of the experiment, Xu and Spelke 

found that 6-month-old babies did not notice the difference between 8 and 12 dots (ratio 

of .67).  This suggests that infants as young as 6 months can discriminate between 

numerosities provided that their ratio is sufficiently small.  

The numerical distance effect and numerical ratio effect are even present in 

individuals from societies who have a limited vocabulary for number and no system of 
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numerical symbols.  For example, Pica, Lemer, Izard and Dehaene (2004) administered a 

nonsymbolic magnitude comparison task to an Indigenous group which speaks 

Mundurukú in the Amazon.  In the Mundurukú language there is a lack of words for 

numbers beyond five; however, individuals were still capable of comparing large 

approximate numbers which were absent from their numerical lexicon.  In addition, their 

discrimination performance was dependent on the ratio of the magnitudes being 

compared. 

In sum, from the studies presented above, it can be seen that effects of numerical 

distance and ratio during magnitude comparison tasks can be observed in both individuals 

and animals who lack a symbolic system for representing magnitude.  One area of interest 

that arises from this research is the question of how numerical magnitude is represented 

mentally.   

1.4 Models of the Numerical Distance Effect and Numerical Ratio 
Effect      

 
It is hypothesized that the NDE and NRE are a result of noisy mapping between 

external and internal representations of numerical magnitude.  In particular, magnitudes 

that are numerically closer are thought to have more mental representational features in 

common than those that are farther apart.  Because of this, discriminating between a pair 

of numerical magnitudes is more challenging for quantities that are numerically closer 

together. A number of models have been put forth to explain how this leads to the 

numerical distance and ratio effects and their underlying cognitive processes of numerical 

representation.  Two of these include the logarithmic number line model (Dehaene, 1992) 

and the linear number line model (Gallistel & Gelman 1992).   
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Dehaene (1992) contends that the brain represents magnitude along a “mental 

number line” based on the hypothesis that numbers do not merely suggest a sense of 

quantity but also a sense of space.  Numbers are represented with smaller magnitudes on 

the left and greater magnitudes on the right.  These quantities are represented on a 

nonlinear or logarithmically compressed scale and each quantity has a fixed 

representational distribution likened to a Gaussian Tuning Curve (see Fig. 1.3a). Due to 

their proximity, magnitudes that are close together on the number line have more overlap 

in their distribution and therefore are more difficult to discriminate than magnitudes that 

are farther apart, accounting for the NDE. Furthermore, due to the compressed nature of 

the number line, larger quantities are close together and, therefore, share an even larger 

overlap in their distributions, compared to smaller magnitudes which leads to the NRE. 

In their hypothesis, Gelman and Gallistel (1992) contend that numbers are also 

represented on a mental number line; however, in contrast to the model presented above, 

numbers are represented on a linear scale rather than on a compressed scale.  In addition, 

the distribution of each magnitude is not fixed as seen in Dehaene’s (1992) model, but 

increases as a function of numerical size (see Fig. 1.3b).  The NDE is again accounted for 

by the proximity of magnitudes close to each other and the overlap they share.  Due to the 

scalar variability of the distributions, larger magnitudes share a greater overlap in their 

distributions compared to smaller magnitudes, which leads to the NRE. 
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                            a      b 

 

Figure 1.3.  a) Logarithmic number line hypothesis. Number is represented on a 

compressed number line where variability around each magnitude is constant. b) Linear 

number line hypothesis.  Numbers are placed on a linear scale, and the distribution 

around each number increases as the magnitudes become greater (Reprinted with 

permission from Nieder & Miller, 2003). 
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Both of these models characterize the mental representations of numerical 

magnitude in a different way; however, they each converge to suggest that the NDE and 

NRE are central for modeling representations of numerical magnitude. Consequently, the 

NDE and NRE have been used in multiple behavioural experiments to measure the 

mental representation of numerical magnitude in adults and children (Buckley & 

Gillman, 1974; Butterworth, 2005; Landerl, Bevan & Butterworth, 2004; Moyer & 

Landauer, 1967; Sekuler & Mierkiewicz, 1977).  Studies have also investigated the 

typical and atypical changes of the NDE and NRE across developmental time. A review 

of these studies will be presented in a later section entitled The Development of 

Numerical Magnitude Processing.   

As it was mentioned, magnitude comparison tasks can be either administered 

using symbolic (i.e., Arabic digits) or nonsymbolic (i.e., arrays of dots) stimuli since 

humans have the ability to represent both forms of numerical magnitude.  However, 

researchers are still unclear as to the exact contributions of both symbolic and 

nonsymbolic processing in children’s math development. Does one matter more than the 

other or do both play a significant role? We will now turn to a brief review of this 

controversy in the field and the theories proposed from both sides of this debate. 

1.5 Symbolic and Nonsymbolic Magnitude Processing 

  As presented earlier, evidence suggests that both humans and animals share the 

ability to represent nonsymbolic numerical magnitudes; however, through explicit 

instruction, humans learn to represent these quantities more precisely with number words 

and other numerical symbols, such as Arabic numerals.  
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Since humans have the capacity to represent magnitude both symbolically and 

nonsymbolically, questions that arise from this dual ability include how these systems of 

symbolic and nonsymbolic processing interact throughout development. Does symbolic 

number knowledge progress independently of nonsymbolic comparison skills, or do the 

two systems work together in the development of  mathematical capabilities? 

 Previous and current research in this area present mixed findings regarding the 

relationship between nonsymbolic and symbolic magnitude processing, and two different 

theories have been used to explain their role in the development of mathematical skills.  

 One theory posits that children learn the numerical meaning of number symbols 

by mapping them onto pre-existing nonsymbolic magnitudes (Dehaene, 1992; Mundy & 

Gilmore, 2009).  That is, symbols acquire their meaning through their relationship with 

the nonsymbolic system (Halberda & Feigenson, 2008; Libertus, Feigenson & Halberda, 

2011; Mazzocco, Feigenson & Halberda, 2011).  In this way, the nonsymbolic system is 

thought to lay the foundation for symbolic magnitude processing.  Evidence for this 

theory comes from studies demonstrating that children with math learning disabilities 

perform poorly on tasks of nonsymbolic and symbolic magnitude processing (Landerl, 

Bevan & Butterworth, 2004; Mussolin, Meijas & Noël, 2010).  In this account, those 

struggling with math experience a core deficit in their nonsymbolic system which 

translates to difficulty processing number symbols since they are mapped to nonsymbolic 

magnitudes.  This hypothesis has been supported by research revealing a correlation 

between children’s nonsymbolic processing abilities and their math achievement 

(Libertus, Feigenson & Halberda, 2013), suggesting that individual difference in 
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nonsymbolic numerical magnitude processing may provide the foundation for symbolic 

math development. 

 On the other hand, a second theory proposes that the symbolic system exists 

separately from the nonsymbolic system (i.e., Holloway & Ansari 2009; Rousselle & 

Noël, 2007). Here, it is suggested that learning the meaning of number words leads to the 

materialization of another system for representing magnitude more precisely via 

numerical symbols.  Support for this theory comes from studies demonstrating that as 

early as kindergarten, children’s performance on tasks of nonsymbolic processing are not 

predictive of their symbolic processing skills (Sasanguie, Defever, Maertens & Reynvoet, 

2013).  Additionally, research has shown that symbolic processing accounts for unique 

variance in children’s arithmetic performance, while nonsymbolic processing does not 

(Holloway & Ansari, 2009). 

 Clearly, the evidence regarding the role of these processing skills in children’s 

math development remains inconclusive. Gaining a clearer understanding of how these 

two systems relate to each other and to the development of competencies in mathematics 

has many important educational implications as it may shed light on ways to improve 

current teaching methods in the instruction of mathematics. Therefore, one of the goals of 

this thesis was to examine this issue more closely. 

1.6 The Development of Numerical Magnitude Processing 

1.6.1 Typical Developmental Changes in the Representation of 
Numerical Magnitude as Evidenced in Comparison Tasks. 
 
  

As presented earlier in this review, even infants display an elementary 

understanding of numerical magnitude.  This is suggested by their ability to differentiate 
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between nonsymbolic numerical quantities.  Furthermore, when discriminating between 

magnitudes, infants exhibit both distance and ratio effects.   For instance, recall that in Xu 

and Spelke’s (2002) study of 6-month olds, infants demonstrated a capability of 

discriminating between 8 and 16 dots; however, they were unable to correctly compare 8 

and 12 dots (a more difficult ratio). Subsequent studies have shown, however, that by 9 

months of age, infants are capable of this more difficult discrimination (Lipton & Spelke, 

2003).  Considering that this improvement in magnitude comparison occurs in such 

young infants in a relatively short period of time raises more questions about the  changes 

that occur in the processing and representation of magnitude across developmental time. 

 There is evidence to suggest that over the course of development, significant 

changes occur in basic numerical magnitude processing; for example, Halberda and 

Feigenson (2008) examined the change in the acuity of nonsymbolic magnitude 

comparison in 3-6 year-old children and adults.  Results demonstrated that the acuity of 

nonsymbolic processing is still developing in children’s early years and does not appear 

to reach its peak until early adolescence.  

In a study along similar lines, Sekuler and Mierkiewicz (1977) examined the 

development of symbolic processing across developmental time. Participants included 

kindergarten children, first-, fourth- and seventh-grade students, and adults.  Each 

participant was presented with a pair of digits from 1-9 and was required to indicate 

which of the two digits was numerically larger.  Results revealed that response times and 

errors decreased with age.  In other words, as individuals aged they demonstrated an 

increasingly smaller NDE (as illustrated by progressively smaller slopes in Figure 1.4), 

indicating that symbolic magnitude processing becomes more refined across the lifespan.  
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Comparable findings were also reported by Duncan and McFarland (1980).  

These researchers investigated the developmental aspects of the symbolic magnitude 

processing in a cross-sectional sample of kindergartners, first, third and fifth graders, and 

college students. Similar to the findings of Sekuler and Mierkiewicz (1977), the NDE was 

detected in all age groups, but decreased in size as age of participants increased.  From 

these results, the authors suggest that the underlying mechanisms responsible for the 

NDE are established at an early age and that the encoding and comparison of number 

improve with time. 

From the works described above, it can be seen that even young children 

demonstrate sensitivity to numerical distance and ratio during magnitude comparisons.  

In addition, younger children’s reaction time and accuracy in comparison tasks are more 

greatly affected by distance and ratio than older children and adults. In other words, 

discriminating between quantities that are separated by a large distance (small ratio) and  

those separated by a smaller distance (large ratio) has a greater effect on the response 

time and accuracy of younger children on the comparison task than on the accuracy and 

response time of older children and adults (see Fig. 1.4) . 

 This change in the accuracy of symbolic and nonsymbolic magnitude comparison 

has been attributed to transformations in the representation and processing of numerical 

magnitude across developmental time.	
  	
  More specifically, researchers suggest that across 

development, representations of numerical magnitude become more precise and the 

 



 

   

17	
  

                      

 

 

Figure 1.4.  Size of NDE across development.  This graph illustrates the mean response 

time of identifying the numerically larger of two digits as a function of their numerical 

difference (Reprinted version with permission from Ansari & Karmiloff-Smith, 2002). 
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overlap between quantities on the mental number line decreases. This fine-tuning allows 

individuals to discriminate between numerical magnitudes more quickly and accurately 

as they become older.  The precise mechanisms responsible for the developmental 

changes in numerical magnitude processing are currently not well understood; however, 

some research have shown that education may play a significant role in these changes 

across the lifespan (Zebian & Ansari, 2012; Piazza et al., 2013). 

 What can be clearly seen from the studies reviewed here is that the acuity of 

magnitude comparison for both symbolic and nonsymbolic stimuli sharpens as 

individuals age.  This observation has potential educational implications since basic 

magnitude processing may provide a foundation for higher-level mathematics.  

1.6.2 Typical Developmental Changes in the Representation of 
Numerical Magnitude as Evidenced in Number Line Estimation 
Tasks. 
 

The section above described developmental changes in basic magnitude 

processing as demonstrated through performance on magnitude comparison tasks.  

However, in addition to magnitude comparison tasks, other measures are available to 

assess children’s magnitude processing abilities.  This includes tasks that require an 

individual to estimate numerical magnitudes. Estimation can take a variety of forms.  For 

example, estimating the number of people in a large auditorium, the product of 345 x 567 

and the speed of a passing train have little in common except that an individual will 

produce an approximate answer to each problem.  However, for the purposes of this 

review, the focus is on pure numerical estimation which can be defined as: “a process 

that has a goal of approximating some quantitative value; that uses numbers as inputs, 

outputs, or both; and that does not require real-world knowledge of the entities which 
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properties are being estimated or of conventional measurement units” (Booth & Siegler, 

2006, p. 189).  One method of evaluating pure numerical estimation which has gained 

popularity in recent years is the number line estimation task (Siegler & Opfer, 2003).  In 

this task, individuals are presented with a number line with 0 at one end and 10, 100 or 

1000 at the other. Participants are required to estimate the position of a given number on 

the line (see Fig. 1.5).   A task such as this is an index of the variability, or noise, present 

in the representation and processing of numerical magnitude and is therefore also 

considered an assessment of an individual’s magnitude processing abilities.  

 

 

Figure 1.5.  Number line estimation task.  Participants are shown a number and have to 

place a mark on the number line to estimate its location. 

 

 

 



 

   

20	
  

By administering this task to individuals of many ages, researchers have 

discovered noticeable changes in how individuals represent magnitude in space across 

developmental time.  As described in the section presented earlier entitled Models of the 

Numerical Distance Effect and Numerical Ratio Effect, two hypotheses of how 

magnitude may be represented in the brain were discussed.  The first was the logarithmic 

number line hypothesis which posits that numerical quantities are represented on a mental 

number line whereby the larger the numerical magnitude, the smaller the spacing between 

each quantity.  On the other hand, the linear number line hypothesis contends that 

magnitudes are equally spaced on the mental number line.   

Several studies have demonstrated that the number line estimation task is an 

effective method for differentiating between these models, and the relative fit of these 

models changes over developmental time.  For instance, Siegler and Booth (2004) had 

participants in kindergarten, first grade and second grade to complete the number line 

estimation task (0 – 100) and observed significant age differences in the performance of 

participants.  The responses of children in kindergarten and Grade 1 closely resembled a 

logarithmic pattern. For example, for these children, the psychological distance between 

0 and 25 would be greater than for the distance between 25 and 100.  By Grade 2, 

children’s responses followed a more linear pattern where the spacing between 

magnitudes were more equidistant (see Fig. 1.6).  This shift in representation has been 

observed for number lines of varying sizes such as 0-10 (Petitto, 1990), 0-100 (Petitto, 

1990; Siegler & Booth, 2004), and 0-1000 (Siegler & Opfer, 2003). 
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Figure 1.6.  Illustration of the progression from logarithmic pattern responses to a more 

linear pattern in the first 3 years of school (Reprinted with permission from Siegler & 

Booth, 2004). 
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Research has suggested that this transformation over time in children’s underlying 

representation of magnitude may be the product of increasing experience with numerical 

magnitude over the course of learning and formal education (Dehaene, Izard, Spelke & 

Pica, 2008; Siegler & Mu, 2008). 

1.6.3 Atypical Developmental Changes of Numerical Magnitude 
Comparison 

There is evidence to suggest that individuals who have poor mathematical skills 

demonstrate difficulty with numerical magnitude processing as measured by magnitude 

comparison.  For instance, Landerl, Bevan and Butterworth (2004) compared children 

with developmental dyscalculia (DD), reading difficulties or both with controls (children 

without either dyscalculia or dyslexia) on a variety of basic number processing tasks.  

Individuals with DD demonstrate substantial difficulties in acquiring school-level math 

skills, even with normal or above normal academic achievement. Results showed that 

participants with dyscalculia only showed deficits in each of these tasks which included 

magnitude comparison, despite normal or above average performance on tests of 

intelligence, vocabulary and working memory.  Participants with both dyscalculia and 

reading difficulties demonstrated a similar pattern of disabilities in numerical tasks as 

those with dyscalculia.  However, children with a reading disability only did not appear 

to have any difficulties with number processing tasks, including number comparison.     

Poor performance on number comparison tasks has also been seen in individuals 

with genetic disorders.  Paterson, Girelli, Butterworth and Karmiloff-Smith (2006) 

studied a sample of individuals with Williams Syndrome (WS).  This 

neurodevelopmental disorder is caused by an absence of 26 genes from chromosome 7 
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and is characterized by developmental delay.  Compared to the control group, those with 

WS failed to exhibit a typical distance effect.  A similar finding was also obtained in a 

study of children with the chromosome 22q11.2 deletion syndrome (Simon, Bearden, 

Mc-Ginn & Zackai, 2005). This condition results from a small deletion in chromosome 

22 and presents itself by numerous birth defects and cognitive impairments. Participants 

were presented with a magnitude comparison task using both nonsymbolic (dots) and 

symbolic (digits) notation and did not show a consistent distance effect in either 

condition. 

1.7 Educational Implications  
1.7.1 The Use of Basic Magnitude Processing in Educational 
Assessments 

The review above demonstrates that there are significant developmental changes 

in the processing and representation of both symbolic and nonsymbolic numerical 

magnitudes.  The individual differences demonstrated in these studies may lead one to 

wonder if performance on these comparison tasks is related to individual differences in 

more complex mathematical operations. 

Indeed, several studies have shown a link between magnitude comparison skills 

and individual differences in mathematical competency in typically developing children, 

using both symbolic and nonsymbolic representations (De Smedt, Verschaffel & 

Ghesquière, 2009; Durand et al., 2005; Halberda, Mazzocco & Feigenson, 2008; 

Holloway & Ansari, 2009; Mazzocco, Feigenson & Halberda, 2011). The specifics of 

these studies will be discussed in more detail in Chapter 2.  Furthermore, studies have 

also shown that individual differences in children’s performance on the number line 

estimation task significantly correlates with their math achievement (Booth & Siegler, 
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2006; Laski & Siegler, 2007; Schneider, Grabner & Paetsch, 2009; Siegler & Booth, 

2004) which will be introduced in more detail in Chapter 4 of this thesis.  In other words, 

children with more precise internal representations of magnitude as measured by tasks of 

magnitude comparison and number line estimation have higher math achievement 

compared to children who perform more poorly on these tasks.  This indicates that the 

more accurate an individual’s representation of internal magnitude, the more quickly and 

accurately he or she can access these magnitudes to perform higher order operations such 

as addition and subtraction. 

The evidence demonstrated here presents the possibility of using measures of 

magnitude processing in an educational setting.  For instance, magnitude comparison 

tasks could be used as a formal assessment to measure the foundational competency of 

basic magnitude processing in children. One of the greatest advantages of using tasks 

such as magnitude comparison in formal assessment is that nonsymbolic stimuli can be 

used with very young preschool and kindergarten age children who may not yet be 

familiar with symbolic representations of magnitude.  In turn, assessments of this kind 

can be used in early grade classrooms to assess children’s magnitude processing abilities 

even before they receive formal math instruction, and teachers may assess the knowledge 

students bring to school and may know whether students are prepared for the demands of 

the formal classroom. Furthermore, research suggests that school-entry math skills are a 

strong predictor of student’s future academic achievement and success in the workplace 

(Duncan et al., 2007; Geary et al., 2013; Romano et al., 2010); therefore, assessments of 

math learning are needed even at the earliest stages of formal education.  
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A second benefit of using tasks of magnitude comparison as an assessment tool is 

its applicability on a global scale. Recall that even members of an Indigenous tribe with 

no formal education or symbolic number system were able to successfully compare 

nonsymbolic magnitudes.  This suggests that basic magnitude processing (especially 

nonsymbolic) is a skill that is not dependent on culture and is therefore a promising 

means of evaluating children’s magnitude processing abilities across cultures and systems 

of education.  

Currently, many educational assessments of mathematics mainly focus on higher 

order math skills in the evaluation of children’s number-related knowledge and ignore 

more foundational competencies of math abilities such as magnitude processing. Most of 

these tests instead focus on more complex skills such as arithmetic and problem solving.  

In other words, children are assessed on the kinds of competencies they are required to 

learn in school and not on the foundations that allow for such learning to proceed. 

While higher order math skills are certainly contributing components to the 

development of children’s numeracy capabilities, knowing how a child is performing on 

foundational skills is equally important because it allows teachers to better comprehend 

what their students truly understand about basic number processing.  Therefore, what is 

missing from current assessment tools are processing measures, measures that 

characterize the very basic representations needed for children to successfully complete 

higher-order mathematical operations. Many current reading assessments include both 

tasks measuring complex reading skills, such as comprehension, and more foundational 

competencies such as phonemic awareness.  In a similar fashion, math assessments 
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should also combine both foundational competencies such as magnitude comparison and 

more advanced skills such as calculation when testing children. 

1.7.2 Test Design  

In contemplating a test of magnitude processing for use in multiple settings, it is 

important to consider the test’s design.   The majority of the studies mentioned above that 

used magnitude comparison paradigms had their participants complete tasks on a 

computer.  One main advantage computer testing is the ability to measure reaction times 

for each item. While this may be a significant plus for use of technology, it is not 

necessarily practical for all educational settings.  For example, in many areas of the 

world, student access to computers is not feasible and the use of specialized software 

along with computers is resource intensive.  One solution is to use a paper-and-pencil 

measure which can be just as efficient and has the major advantage of being much more 

cost effective than computers.  While paper-and-pencil tests may not allow for the 

measurement of item-by-item response times, they can still be used to assess the number 

of items completed within a certain period of time.  Furthermore, this method has been 

successfully used to capture meaningful individual differences in children’s mathematical 

achievement (Chard et al., 2005; Durand, Hulme, Larkin & Snowling, 2005). Against this 

background, I employed this simple method of design in assessing the basic magnitude 

processing skills of primary school children. 

1.8 Summary and Motivation of Current Study 

Motivated by the studies described above, the aim of this thesis was to create a 

paper-and-pencil test designed to measure basic symbolic and nonsymbolic magnitude 

processing skills in children 5-9 years old.  The following chapters are a collection of 
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three studies in which I describe the design of this measure, elementary school children’s 

performance on this assessment, its relationship to individual differences in arithmetic, 

and finally, its ability to predict children’s math performance over the long term.  I also 

aimed to characterize the nature of the relationship between symbolic and nonsymbolic 

magnitude processing and each system’s unique contribution to children’s arithmetic 

achievement.  I now describe the contents of each chapter in more detail. 

In Chapter 2 of this thesis, I present an experiment in which I administered the 

paper-and-pencil test to children in Grades 1 to 3 and pursued several lines of 

investigation.  My first goal was to see if children’s performance on my test would 

correlate with their math achievement scores as demonstrated in previous research using 

computerized as well as paper-and-pencil measures (De Smedt, Verschaffel & 

Ghesquière, 2009; Durand et al., 2005; Halberda, Mazzocco & Feigenson, 2008; 

Holloway & Ansari, 2009; Mazzocco, Feigenson & Halberda, 2011).  Secondly, I was 

interested to see if my test could identify any age-related differences in numerical 

magnitude processing as demonstrated in the work of Halberda and Feigenson (2008) and 

Sekuler and Mierkiewicz (1977).    

Along with studies showing a positive correlation between math achievement and 

magnitude processing, studies have also shown that math achievement is related to 

variables such as age, IQ, reading skills and working memory (DeSmedt, Taylor, 

Archibald & Ansari, 2010; DeStefano & LeFevre, 2004; Kalaman & LeFevre, 2007). 

Therefore, the third goal of Chapter 2 was to explore whether the relationship between 

participants’ scores on my paper-and-pencil test would remain significant even when 

controlling for these other potentially confounding variables.   
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Chapter 3 of this thesis describes a second study that focused on assessing the 

psychometric soundness of the paper-and-pencil test.  To do this, I investigated the 

criterion-related validity, convergent validity and test-retest reliability of the paper-and-

pencil measure with a sample of Grade 1 children. I also investigated whether or not I 

could replicate my previous findings demonstrating that children’s scores on the symbolic 

items of the paper-and-pencil test could account for unique variance in arithmetic skills 

over and above working memory.   

 Finally, in Chapter 4, I describe a study of kindergarten children’s performance on 

my paper-and-pencil test.  I was specifically interested to see if symbolic processing 

would again account for unique variance in arithmetic skills and if nonsymbolic 

processing would not.  I also wanted to examine the convergent validity of the paper-and-

pencil test even more thoroughly by investigating whether or not children’s magnitude 

comparison abilities correlated with their performance on the number line estimation 

task.  Finally, I examined whether performance on the paper-and-pencil test could predict 

children’s math grades on their first term report card in Grade 1.  

In summary, these three studies provide a detailed investigation into the 

effectiveness of a simple paper-and-pencil test of basic magnitude processing.  The data 

presented will demonstrate its value as an assessment tool in children 5- 9 years old and 

its potential use in the classroom.       
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Chapter 2	
  

2. The Relationship Between Arithmetic Achievement and Symbolic 
and Nonsymbolic Numerical Magnitude Processing in Primary 
School: Evidence from a Paper-and-pencil Test 

2.1 Introduction  

There is growing evidence to suggest math skills are just as important as reading 

skills when predicting a child’s academic success, and competence in mathematics is 

crucial to one’s success in school and the workplace (Duncan et al., 2007; Romano, 

Babchishin, Pagani & Kohen, 2010).   Moreover, low numeracy skills are associated with 

worse health care, greater likelihood of criminal behaviour, as well as higher risk for 

depression and other illnesses (Parsons & Bynner, 2005).   

Against this background, early identification of students at risk for developing 

poor math achievement should be a key priority of education systems and their teachers 

in the classroom. In the domain of reading, much progress in early diagnosis of at-risk 

children has been made by focusing on processing competencies that are foundational to 

reading, such as phonological awareness (Stanovich, Cunningham & Cramer, 1984; 

Williams, 1984; Vellutino & Scanlon, 1987). Currently, math skills are most frequently 

measured by using tests of skills that children are taught in school, such as basic 

calculation abilities. Such tests, however, do not necessarily tap into the foundational 

processes that allow children to acquire educationally-relevant skills, such as arithmetic 

fluency.  

2.1.1  Foundational Competencies of Mathematical Learning 

So what might be the foundational competencies that serve as a scaffold for 

children’s early mathematical learning? In order to process numbers it is necessary to 
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have an understanding of the magnitudes they represent (e.g., knowing that the Arabic 

digit 3 stands for three items). Without an understanding of numerical magnitude and its 

association with numerical symbols, the learning of mental arithmetic cannot get off the 

ground.  Therefore, tests aiming to characterize the foundational skills of children’s 

numerical abilities should include measures of numerical magnitude processing. Research 

has shed light onto how numerical magnitudes are represented by adult humans 

(Dehaene, 1992; Moyer & Landauer, 1967), and over the last two decades, a large body 

of research has been amassed which demonstrates that even infants (Starkey & Cooper, 

1980; Wynn, 1992; Xu & Spelke; 2000) and non-human species (Brannon, 2006; 

Dehaene, Dehaene-Lambertz & Cohen, 1998; Meck & Church, 1983) are capable of 

numerical magnitude processing, when these magnitudes are represented 

nonsymbolically (e.g., arrays of dots).  Evidence of numerical magnitude processing 

ability in infants and non-human animals and adults suggests that it is a basic, yet 

important skill in number processing and may provide the basis for learning the 

numerical meaning of numerical symbols.   

To measure numerical magnitude processing in older children and adults, researchers 

have frequently employed number comparison paradigms in which participants are asked 

to choose which of two numbers is larger in numerical magnitude.  As described in 

Chapter 1, when individuals compare numerical magnitudes, an inverse relationship 

between the numerical distance of two magnitudes and the reaction time required to make 

a correct comparison is obtained (Moyer & Landauer, 1967).  In other words, individuals 

are faster and more accurate at judging which of two numbers is numerically larger when 

the numbers are numerically more distant (e.g., 5 vs. 9) than when they are relatively 
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close (e.g., 5 vs. 6).  This relationship between numerical distance and response times and 

accuracy is known as the numerical distance effect (NDE).  

A second effect that is observed in numerical magnitude comparison studies is the 

numerical ratio effect (NRE; Moyer & Landauer, 1967).  The NRE posits that individuals 

are faster and more accurate at comparing two numbers of a smaller magnitude versus 

two numbers of a larger magnitude, even when the distance between the numbers remains 

constant (i.e., 3, 4 vs. 8, 9, where it takes participants longer to judge that 9 is larger than 

8 then it does them to decide that 4 is larger than 3).  Both the NDE and the NRE can be 

observed with symbolic stimuli such as Arabic digits and nonsymbolic stimuli such as 

arrays of dots (Buckley & Gillman, 1974).   

2.1.2 The Relationship Between Magnitude Processing and Math 
Achievement 
 

The finding that the numerical ratio between two numbers influences the speed with 

which they can be accurately compared is consistent with Weber’s Law which states that 

the just noticeable difference between two stimuli is directly proportional to the 

magnitude of the stimulus with which the comparison is being made.  This is reflected in 

the NRE where a specific difference between two magnitudes results in a faster response 

time the smaller the absolute values of the magnitudes being compared.  

 Against the background of the review of the existing literature described above, it is 

clear that much has been uncovered about the characteristics of the representation and 

processing of both symbolic and nonsymbolic numerical magnitudes across development 

and species. A question resulting from this research, which has been a growing focus in 

recent years, is whether individual differences in basic number processing are related to 

between-subjects variability in mathematical achievement. In other words, are metrics of 
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numerical magnitude processing, such as the numerical distance and numerical ratio 

effects, meaningful predictors of individual differences in children’s level of 

mathematical competence?  And if so, can such measures be used to detect children at 

risk of developing mathematical learning difficulties, such as developmental dyscalculia? 

In recent years, a growing number of studies have begun to answer this question. In 

one of the pioneering studies in this area, Durand, Hulme, Larkin and Snowling (2005) 

studied typically developing children between the ages of 7 – 10 years. Participants’ 

ability to compare symbolic numerical magnitudes (Arabic digits) as rapidly and as 

accurately as possible was assessed using a numerical comparison task.    In this task, 

participants were required to judge which of two digits was numerically the larger.  The 

digits used ranged from 3-9 and the numerical distance between pairs was either one or 

two.  Participants had a 30 second time limit to complete 28 questions in which they 

responded by choosing the larger magnitude in each pair.  In addition, children’s 

arithmetic skills were measured using the Numerical Operations subtest of the Wechsler 

Objective Numerical Dimensions (WOND). In the WOND, children are required to write 

Arabic numerals and complete simple and multi-digit addition, subtraction, multiplication 

and division problems. Other items in the subtest involved fractions, decimals and 

negative numbers.  Participants were also given an arithmetic task in which they had one 

minute to answer as many addition and subtraction problems as possible. The results of 

the study indicated that individual differences in the accuracy of symbolic numerical 

magnitude comparison were associated with between-subject variability in arithmetic 

ability: students with higher accuracy on the digit comparison task were better at solving 

addition and subtraction problems and received higher scores on the WOND than 
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students who performed comparatively more poorly on the number comparison task.   

This finding demonstrates that a very basic skill such as magnitude comparison is related 

to children’s performance on higher-order math skills. 

  More recently, Holloway and Ansari (2009) conducted a study to test the 

relationship between individual differences in primary school children’s NDE and 

achievement in math. In their study, 6-8 year-old children were required to compare 

numerical magnitudes ranging from 1-9 presented in a symbolic (Arabic digits) or 

nonsymbolic format (collection of black squares against a white background). The 

numerical distance between both nonsymbolic and symbolic numerical magnitudes 

ranged from 1 to 6. A significant negative relationship was found between math 

achievement and the size of the symbolic NDE; however, this relationship did not hold 

for the nonsymbolic NDE. These findings suggest that children who had larger symbolic 

NDE’s had poorer math skills.  Given that developmental studies (Sekuler &  

Mierkiewicz, 1977; Holloway & Ansari, 2009) have shown that the NDE decreases over 

developmental time, the association between the magnitude of the NDE and arithmetic 

skills may suggest that children with relatively more immature (large) NDEs are also 

those that have comparatively poorer arithmetic abilities.  

The work of Durand et al. (2005) and Holloway and Ansari (2009) each 

demonstrate a relationship between symbolic numerical magnitude processing and 

individual differences in children’s arithmetic skills; however, both of these studies were 

correlational in nature and used cross-sectional samples. The question remains whether 

individual differences in magnitude comparisons can predict individual differences in 

higher order math skills.  To examine this matter, De Smedt, Verschaffel and Ghesquière 
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(2009) investigated whether numerical magnitude comparison has predictive value for 

individual differences in mathematical achievement.  At the beginning of Grade 1, 

children completed a computerized symbolic numerical comparison task.  Subsequently, 

at the beginning of Grade 2, children’s math achievement was assessed using a 

standardized achievement test for mathematics covering number knowledge, 

understanding operations, simple arithmetic, word problems and measurement.  Results 

of their longitudinal study demonstrated that individual differences in children’s symbolic 

NDE, measured at the beginning of Grade 1, were related to achievement in math, as 

measured at the beginning of second grade.  More specifically, children with small NDEs 

in Grade 1 tended to have higher scores on the standardized math assessment taken one 

year later.  Furthermore, this association remained significant even when variables such 

as age, intellectual ability and speed of processing were controlled.  

 Contrary to the findings by Holloway and Ansari (2009) the relationship between 

numerical magnitude processing and achievement in math has also been demonstrated 

with nonsymbolic numerical magnitudes.  In particular, Halberda, Mazzocco and 

Feigenson (2008) investigated the relationship between individual differences in 

performance on a nonsymbolic number comparison task and variability in math 

achievement in a group of sixty-four 14 year-old children.  These participants were 

followed longitudinally beginning from kindergarten to grade six and were annually 

given a large number of standardized measures of numerical and mathematical processing 

as well as standardized tests of IQ, vocabulary and working memory. In this study, the 

children, at age fourteen, were shown an array of blue and yellow dots on a computer 

screen.  These arrays were only presented for 200 ms making it too quick for participants 
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to count.  The accuracy of participants’ ability to compare numerical magnitudes was 

indexed using the Weber fraction, which provides a measure of the acuity with which an 

individual can discriminate between numerosities. As such, it is an indicator of the 

precision of one’s underlying mental representation of any numerical magnitude.  Results 

demonstrated that individual differences in the Weber fraction not only correlated with 

individual differences in math achievement from kindergarten to Grade 6, but also 

retrospectively predicted math achievement of individual participants from as early as 

kindergarten. Furthermore, this relationship remained significant even when controlling 

for other potentially confounding cognitive variables such as working memory and 

reading. Findings from this study are significant in that they suggest that one’s acuity in 

comparing nonsymbolic magnitudes serves as a foundation for higher order math skills.  

While Halberda, Mazzocco and Feigenson (2008) demonstrated a relationship 

between nonsymbolic number comparison and math achievement in upper grades, it 

raises the question whether this same relationship can be found in children before they 

receive formal instruction in math. More specifically, are individual differences in 

nonsymbolic magnitude comparison measured before formal schooling associated with 

later math performance? To follow this line of investigation, Mazzocco, Feigenson and 

Halberda (2011) had 4 year-old children complete a nonsymbolic number comparison 

task in preschool and later assessed them at age 6 using standardized math tests. In their 

study, children’s full scale IQ (FSIQ) and speed of processing were also assessed.  The 

results of this study showed that individual differences in nonsymbolic magnitude 

comparison in preschool, as measured by the Weber Fraction, predicted math 

performance at age six. In addition, these results also indicated that precision in this task 
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at an early age significantly predicted later mathematical performance over and above 

other cognitive skills, again demonstrating the important role of numerical magnitude 

comparison ability for achievement in school mathematics.  

In sum, while some studies suggest that symbolic but not nonsymbolic numerical 

magnitude comparison performance is related to children’s arithmetic skills, other studies 

have clearly shown that not only are nonsymbolic numerical magnitude processing skills 

correlated with children’s math performance, but that such skills also predict arithmetic 

achievement over the course of developmental time.  Few studies have included both 

symbolic and nonsymbolic numerical magnitude processing, and thus, it is unclear which 

of these might be a stronger, unique predictor of children’s arithmetic achievement 

scores.  

2.1.3  Using Magnitude Processing in Formal Assessment  

Empirical findings such as those discussed above, raise the question of whether or 

not a quick, efficient and classroom friendly assessment tool could be designed to 

formally measure basic magnitude processing in children. To partially address this 

question, Chard and colleagues (2005) conducted a longitudinal study with kindergarten 

and Grade 1 students using a symbolic numerical comparison task.  At the beginning of 

the school year (September), in the winter (January) and in the spring (May), participants 

were required to complete the task in which they were to verbally select the larger of two 

magnitudes ranging from 1-20.  In the fall and spring of that same school year, they were 

also given the Number Knowledge Test (Okamoto & Case, 1996) as a standardized 

assessment of math achievement. The Number Knowledge Test comprises a math 

assessment requiring participants to perform a variety of math skills such as counting, 
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comparing magnitudes and completing simple arithmetic problems.  Findings indicated 

that individual scores on the numerical comparison task correlated with children’s 

performance on the Number Knowledge Test at both test periods.  

It is important to note that, similar to the aforementioned Durand et al. (2005) 

study, Chard et al. (2005) only examined symbolic magnitudes.  Yet, as previously 

discussed, there is substantial evidence for an association between nonsymbolic 

magnitude processing and math abilities.  Further, the Number Knowledge Test, like the 

number comparison task, requires individuals to compare numerical magnitudes.  This 

weakens the correlational analysis conducted because the positive relationship revealed 

could, at least in part, reflect an association between two forms of number comparison. 

Finally, no other measures of cognitive performance were administered to participants.  

Without controlling for these cognitive processes it is impossible to know whether or not 

the relationship between magnitude comparison and math skills exists independently of 

other cognitive factors such as IQ, working memory and reading ability, all of which 

have been shown to correlate with children’s math achievement (Berg, 2008; DeStefano 

& LeFevre, 2004; Kalaman & LeFevre, 2007; Koponen, Aunola, Ahonen & Nurmi, 

2007).   

Taken together, previous research strongly suggests a relationship between, on the 

one hand, both symbolic and nonsymbolic number comparison and, on the other hand, 

individual differences in math achievement.  Preliminary research has also demonstrated 

that an assessment of children’s symbolic magnitude processing is related to math 

performance, particularly arithmetic achievement (Chard et al., 2005).  What remains to 

be elucidated is whether a basic paper-and-pencil assessment, suitable for use in 
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classrooms everywhere, measuring the accuracy of both children’s symbolic and 

nonsymbolic magnitude comparison abilities can reveal relationships between individual 

differences in numerical magnitude processing, both symbolic and nonsymbolic, and 

variability in arithmetic skills. Furthermore, whether a test of this kind can capture 

developmental changes in numerical magnitude processing also requires investigation. 

This is important because in order for results from such a test to be interpreted 

meaningfully, performance on the test should change as a function of chronological age 

(i.e., older children should perform better than younger children). 

A basic paper-and-pencil assessment would be a valuable tool for several reasons.  

To begin, it would be very economical due to its low cost in comparison to computerized 

versions of the test that require specialized equipment and software.  A test of this kind 

could also be quickly and easily administered and scored by the teacher in a large group 

setting.  This would allow teachers to assess the individual differences in basic numerical 

magnitude processing competence among their students.  As this test would not require 

specialized software, it could be used by educators in any setting, such as schools with 

few resources, or classrooms in developing countries, and could be easily integrated into 

large scale studies that may be run by school boards, agencies or local governments. 

2.1.4 Other Predictors of Math Achievement 

 The studies discussed above demonstrate that individual differences in basic 

magnitude processing are related to children’s math scores. In this context it is important 

to acknowledge that magnitude processing is not the only (or strongest) predictor of 

individual differences in math achievement.  There is a large body of evidence 

demonstrating that math performance is related to cognitive abilities such as working 
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memory.  For example, working memory has been shown to play an important role in 

math skills such as solving both simple and complex arithmetic problems  (DeStefano & 

LeFevre, 2004; Kalaman & LeFevre, 2007).  Furthermore, poor working memory has 

been related to developmental disabilities in math (Geary, 1993).  Meanwhile, math 

performance has also been found to be related to literacy skills.  For instance, Berg 

(2008) and Koponen et al. (2007) demonstrated a significant relationship between math 

achievement and reading.  Similarly, De Smedt, Taylor, Archibald and Ansari (2010) 

found a significant relationship between math performance such as arithmetic calculation 

and phonological processing. Thus, when studying the role played by basic numerical 

magnitude processing in math achievement, it is important to consider these other 

predictors and to estimate the unique variance explained by numerical magnitude 

processing measures.  

In light of these findings, the objectives of the current chapter were threefold.  

First, I wanted to investigate whether a basic paper-and-pencil measure of symbolic and 

nonsymbolic number processing could characterize developmental changes in basic 

numerical magnitude processing, such as age-related improvement in accuracy of 

numerical comparisons. My second goal was to explore whether performance on such a 

basic assessment tool of magnitude processing is capable of explaining variability in 

children’s math achievement scores.  Third, I wanted to determine whether the test 

explained significant variance over other factors such as working memory and reading 

skills. 
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2.2 Methods 

2.2.1 Participants 

A total of 197 students in Grades 1-3 participated in the current chapter.  Eleven 

students were removed due to incorrect completion of the digit comparison task such as 

skipping pages of items or marking their responses in an unclear manner. Another four 

were removed from analysis due to performing at ceiling on the task (that is, they 

completed all trials correctly within the time-limit allotted).  Twelve more children were 

removed due to their inability to reach a basal score on the Math Fluency and Calculation 

subtests of the Woodcock-Johnson III Subtests of Achievement (WJ III; see below). For 

the Math Fluency test, any participant who had three or fewer items correct after one 

minute did not reach basal.  For the Calculation test, if a child did not respond correctly to 

at least one of two practice items, the child did not reach basal and testing was 

discontinued.   Five children were not able to reach basal on the Reading Fluency test of 

the WJ III; that is, they had fewer than three items correct on the four practice exercises. 

Three children did not reach basal on the Vocabulary subtest of the Wechsler 

Abbreviated Scale of Intelligence (WASI; see below). In the Vocabulary subtest of the 

WASI, testing began on the fourth item.  If the participant did not receive a perfect score 

on the fourth and fifth items, then the examiner administered the first three items in 

reverse order.  Testing was discontinued after three consecutive scores of zero.   In the 

Automated Working Memory Assessment (AWMA; see below), one child did not reach 

basal on the Spatial Recall subtest and one child did not reach basal on the Listening 

Recall subtest meaning the participant failed to correctly answer the first three items on 

each subtest.  For each subtest of the AWMA, testing was discontinued if the participant 
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failed to correctly answer the first three items.  Therefore, my final sample included 160 

children (83 females) between the ages of 6 years, 4 months and 9 years, 7 months (Mage 

= 8 years, 1 month, SD = 9.38 months). Twenty-six children were in Grade 1 (Mage = 6 

years; 8 months, SD = 3.71 months), 56 children were in Grade 2 (Mage = 7 years; 8 

months, SD  = 3.43 months) and 78 children were in Grade 3 (Mage = 8 years; 8 months, 

SD = 3.43 months).  All participants spoke English fluently and had normal or corrected 

to normal vision. 

Permission was granted from a local school board and school principals to recruit 

students from elementary schools in a region of Southwestern Ontario.  Letters of 

information and consent forms approved by the University of Western Ontario’s 

Research Ethics Board were received and completed by parents of the participants before 

the study began.   Interested parents representing 36 schools in both urban and rural areas 

consented to having their child(ren) participate in the current study.   Participants were 

from various socioeconomic and ethnic groups. 

2.2.2 Materials and Design 

2.2.2.1 Magnitude Comparison  

During the magnitude comparison task, participants were required to compare pairs of 

magnitudes ranging from 1-9.  Stimuli were given in both symbolic (56 digit pairs) and 

nonsymbolic (56 pairs of dot arrays) formats. In both formats of presentation, each 

numerical magnitude was counterbalanced for the side of presentation (i.e., 2|7, 7|2).  

Furthermore, in the nonsymbolic form, dot stimuli were controlled for area and density.   

To control for area and density, half of the dot arrays used were matched for total area 

and half of the dot arrays were matched for total perimeter.  In other words, half of the 
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trials had equal area while the other half had equal perimeter. The array with the most 

dots had a greater perimeter when cumulative surface area was matched. The array with 

the most dots had more cumulative surface area when perimeter was matched.  To avoid 

having the participant rely on the relative size of the dot arrays, both perimeter-matched 

and area-matched trials were presented randomly. To ensure that the test items became 

increasingly difficult, the numerical ratio between the numerical magnitudes presented 

was manipulated. Easier items (with smaller ratios) were presented first and more 

difficult items were presented next (increasingly larger ratios).  By starting with the easier 

items, this ensured that children remained motivated to complete the task.  The order of 

trials in our assessment was similar to the order of ratios presented in Table 1.  Order was 

slightly varied between symbolic and nonsymbolic conditions to ensure that the order of 

presentation of items was not identical between conditions, but both followed a similar 

pattern where pairs of symbolic and nonsymbolic stimuli with relatively smaller ratios 

were presented before larger ratios.  The ratio (small/large) between numerical pairs 

ranged from .11 to .89, for example the ratio between 3 and 5 is .60 (see Table 2.1 for 

pairs and ratios used).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

   

50	
  

 
 
Table 2.1  
 
Numerical pairs and ratios for the numerical comparison task. 
 
        Number pair      Ratio 

1-9       0.11 
1-8       0.13 
1-7       0.14 
1-6       0.17 
1-5       0.2 
2-9       0.22 
2-8       0.25 
2-7       0.29 
3-9       0.33 
3-8       0.38 
2-5       0.4 
3-7       0.43 
4-9       0.44 
3-6       0.5 
4-8       0.5 
5-9       0.56 
4-7       0.57 
3-5       0.6 
5-8       0.63  
2-3       0.67 
5-7       0.71 
6-8       0.75  
7-9       0.78 
4-5       0.8 
5-6       0.83  
6-7       0.86 
7-8       0.88 

     8-9       0.89  
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During the test, participants were told to cross out the larger of the two 

magnitudes and were given one minute to complete the symbolic condition and one 

minute to complete the nonsymbolic condition. To ensure that participants understood the 

task, each child completed three sample items with the examiner and then nine practice 

items on their own before beginning the assessment (see Figs. 2.1a & 2.1d). This was 

done for both symbolic and nonsymbolic conditions.  During the instructions given for 

the nonsymbolic condition, participants were told not to count the dots.  Examiners were 

again able to emphasize this instruction during the participants’ completion of the 

practice items.  The order of format presentation was varied in such a way that half of the 

students in each grade received the symbolic items first and the other half received the 

symbolic items second (see Fig. 1 for sample of test pages). 

2.2.2.2 Arithmetic Skills 

In order to determine the subjects’ competence in mathematics, the Woodcock-

Johnson III Subtests of Achievement (WJ III; Woodcock, McGrew & Mather, 2001) was 

used. Each child was required to complete the Math Fluency and Calculation subtests.  

The Calculation subtest measures skills in mathematical computations.  The individual is 

required to perform addition, subtraction, multiplication and division and combinations of 

these operations.  There is no time constraint.  The Math Fluency test assesses the ability 

to quickly solve simple arithmetic problems.  The participant is given three minutes to 

complete as many addition, subtraction and multiplication problems as possible.  It 

should be noted that neither of the subtests contained any item that required numerical 

comparison. 
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  a               b              c 

                          

    practice items 

 

   d                 e             f 

                          

    practice items 

 

Figure 2.1 Paper-and-pencil measure.  Figures a, b and c are examples of symbolic items.  

Figures d, e and f are examples of nonsymbolic items. 
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2.2.2.3 Reading Skills 

In order to assess the reading ability of each participant, children were given the 

Reading Fluency subtest of the WJ III (Woodcock, McGrew & Mather, 2001).  This test 

requires the individual to quickly read simple sentences and to decide if the sentences are 

true or false by circling “yes” or “no” in the response booklet.  

2.2.2.4 Intelligence 

 Cognitive ability was measured using two subtests of the Wechsler Abbreviated 

Scale of Intelligence (WASI; Wechsler, 1999). 

Vocabulary. Items of the Vocabulary subtest assess the individual’s ability to define 

words. Initial items require subjects to name pictures of objects.  Later items require 

subjects to verbally define words that are read by the examiner. 

Block Design. During this subtest the child is given a specific time frame to manipulate 

blocks with the goal of replicating a stimulus design that has been visually presented. 

2.2.2.5 Working Memory 

The Automated Working Memory Assessment (AWMA; Alloway, 2007) is a 

standardized computer-based tool used to assess both verbal and visual-spatial working 

memory skills.  Verbal working memory was measured using the Counting Recall and 

Listening Recall sub-tests while visual-spatial working memory was measured using the 

Odd-One-Out and Spatial Recall sub-tests. All tasks follow a span procedure such that 

items in the list increase when the child completes at least 4 of 6 lists correctly and the 

task is discontinued when the child fails three items at any list length.  
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Counting Recall. During this task, students count the circles in a series of shape arrays 

and are required to recall the serial totals verbally.  At each level, the task becomes 

increasingly difficult as the number of arrays shown increases. 

Listening Recall.  This task requires the individual to listen to a sentence, to decide if the 

statement is true or false, and then to repeat the last word of the phrase heard. As the test 

continues, participants are presented with two to a maximum of six sentences at a time. 

Odd-One-Out.  During this subtest, the child is quickly presented with three stimuli of 

which one is slightly different from the others.   The child is required to point to the “odd-

one-out” and is then presented with another screen on which the stimuli are replaced by 

three blank squares.  The child is then asked to point to where the stimulus that was the 

odd-one-out was originally located.  In subsequent trials, the subject is presented with up 

to seven different sets of stimuli in a row after which he or she is presented with the 

screen with the blank squares and is asked to point to where each odd stimulus was 

located in the same order in which they were originally presented. 

Spatial Recall. During this task, individuals are shown two stimuli on a computer screen 

that are either oriented in a similar direction or in an opposite fashion.  The stimulus on 

the right also has a red dot located at one of three positions.  The participant is first 

required to determine whether the stimuli are oriented in a similar or opposite fashion by 

saying “same” or “opposite.”  Following this, another screen is presented that displays 

three black dots corresponding to the three possible positions for the red dots presented 

with stimuli on the right from the previous screen. In this case the child is asked to point 

to one of the black dots to indicate where the red dot had been located on the original 

stimuli. 
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2.2.3 Procedure 

The current chapter was part of a large-scale study wherein children’s reading, 

math and language skills were tested. All participants were assessed at their respective 

elementary school in three one-hour sessions over a period of three weeks at the end of 

the school year. Each participant was tested individually by trained examiners in a quiet 

area outside of the classroom.    

2.3 Results 

2.3.1 Descriptive Statistics 

 Participants’ ages along with the means and standard deviations for each test 

administered are shown in Table 2.2.    

2.3.2 Age Differences in Basic Magnitude Processing Skills 

In order to investigate whether this assessment could identify age differences in 

magnitude processing, a repeated measures ANOVA using format (symbolic and 

nonsymbolic) as a within subjects variable and grade (1st, 2nd and 3rd grades) as a between 

subjects variable was conducted. Analyses revealed no main effect of format (F(1, 157) = 

.311, ns).  A main effect of grade (F(2, 157) = 14.18, p < .001, η2 = .15 ) was found 

whereby Grade 2 children performed significantly higher  on symbolic comparison 

compared to Grade 1 children (t(71) = -3.62, p < .001); however, there was no significant 

difference between Grade 1 and 2 participants on their nonsymbolic comparison scores 

(t(71) = -.969, ns).  Grade 3 participants performed significantly higher than Grade 1 

students on both symbolic (t(111) = -5.55, p <.001) and nonsymbolic comparison  
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(t(111) = -3.36, p <.001).  Grade 3 children also performed significantly higher than 

Grade 2 students on symbolic (t(132) = -2.27, p < .05) and nonsymbolic (t(132) = -2.95,  

p < .05) comparison.  A format x grade interaction was also found, (F(2, 157) = 6.61, p < 

.001, η2 = .08; see Fig. 2), whereby Grade 1 children were more accurate on the 

nonsymbolic items (t(25)= -3.21, p < .05) compared to symbolic items.  In contrast, there 

was no significant difference between formats in the Grade 2 (t(55) = 1.38, p = .17) or 

Grade 3 (t(77) = 1.40, p = .165) participants.  

 
2.3.3 Investigating the Relationship Between Basic Magnitude 
Processing and Arithmetic Performance  

 

Correlations were calculated for the following variables across all three grades 

(see Table 2.3): Math Fluency raw scores, Calculation raw scores, verbal working 

memory raw scores, visual-spatial working memory raw scores, symbolic score (total 

number of correctly solved symbolic comparison trials),	
  nonsymbolic score (total number 

of correctly solved nonsymbolic comparison trials),	
  total score (total number of correctly 

solved comparison trials across both symbolic and nonsymbolic),	
  IQ raw scores and 

Reading Fluency raw scores.1 To perform this analysis, a partial correlation was 

performed controlling for age. In other words, the effect of chronological age on 

participants’ raw scores on all standardized tests was removed. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 I chose to use raw scores in my analysis because in a preliminary analysis it was found that age negatively 
correlated with Math Fluency, Calculation, IQ and Reading Fluency standard scores.  Such a negative 
correlation is not expected because standard scores are adjusted for chronological age and thus there should 
be no relationship between chronological age and standard scores.  By using the raw scores I avoid using a 
measurement that is related to a reference group that may not be fully representative of the one tested in the 
present study. 
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As seen from Table 2.3, the total score (symbolic and nonsymbolic combined) on 

the magnitude comparison task significantly correlated with Math Fluency and 

Calculation scores (see Figs. 2.3 & 2.4). The total score also correlated with each IQ 

subtest and each working memory subtest except Counting Recall.  Symbolic and 

nonsymbolic scores each significantly correlated with Math Fluency, Calculation, and 

Reading Fluency. Symbolic mean scores were found to significantly correlate with each 

standardized test with the exception of Counting Recall.  Nonsymbolic test scores 

correlated with the Block Design subtest, but did not significantly correlate with the  

Vocabulary subtest, nor any of the working memory subtests. Both Math Fluency and 

Calculation correlated significantly with each of the standard tests that were 

administered. Reading Fluency correlated with all measures except Spatial Recall and 

Block Design.  Turning to memory skills, Odd-One-Out scores correlated with each 

standardized measure.  Spatial Recall correlated with each standardized assessment with 

the exception of Vocabulary.  Listening Recall correlated with each standardized 

assessment except Vocabulary and Counting Recall scores correlated with all measures 

except Block Design.  
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Table 2.2  Means and Standard Deviations (S.D.)  

Test                                 N         Mean Raw Scores (S.D.)       Range (min.-max.)    Mean Standard Scores (S.D.)    Range (min.-max.)        

Age (months)                160               97.54 (9.38)                     77 - 115                                  N/A              N/A 
Symbolic                160            36.65 (7.82)                         16 - 55                                    N/A   N/A 
Nonsymbolic                 160               36.40 (6.01)                     21 - 54                                    N/A   N/A  
Math Fluency                160             31.23 (13.05)                       4 - 75                               92.60  (13.60)                      65 - 136                           
Calculation                    160            10.26 (3.09)            1 - 17                               95.05  (15.36)            29 - 135    
Listening Recall            160            10.00 (3.04)                           4 - 20                               103.29 (11.45)                     78 - 135 
Counting Recall            160              15.56 (4.35)           5 - 31                                103.31 (13.74)                     71 - 133 
Odd-One-Out               160            17.50 (4.14)                      3 - 29                                110.76 (13.24)           71 - 133 
Spatial Recall    160            14.35 (4.68)                      1 - 26                                104.84 (13.61)                     69 - 137 
Vocabulary1    160            28.04 (5.86)         13 - 43                                  49.73   (8.49)                     29 - 69 
Block Design1    160            16.51 (10.11)           3 - 48                                  53.65 (10.14)                     34 - 80 
Reading Fluency   160            28.66 (11.37)           2 - 57                                 101.90 (10.51)                    75 - 142 
Note. Symbolic - total correct scores on symbolic items; Nonsymbolic - total correct scores on nonsymbolic items; Math Fluency –scores received 
on WJ-III; Calculation – scores received on WJ-III; Listening Recall – scores received on AWMA; Counting Recall – scores received on AWMA; 
Odd-One-Out – scores received on AWMA; Spatial Recall – scores received on AWMA; Vocabulary – scores received on WASI; Block Design – 
scores received on WASI; Reading Fluency – scores received on WJ-III.  
 
1 The WASI uses a population mean of 50 and standard deviation of 10.
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Figure 2.2.  Grade by format interaction.  Bar graph representing overall performance of 

participants in each grade for symbolic and nonsymbolic items.  Grade 1 participants 

were significantly better at nonsymbolic items compared to symbolic items.  Participants 

in grades 2 and 3 did not demonstrate any differences between conditions.   Standard 

errors are represented by the error bars attached to each column. 
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Table 2.3 Partial correlations controlling for age in months (Gr. 1-3) 

Variable               1              2                 3             4              5            6               7              8              9              10            11           12 

      1.   MF            -           .64**         .40**     .45**        .38**      .28**      .34**        .30**      .17*         .43**       .33**          .43**      
2. MC               -               .31**     .35**        .28**      .29**      .43**        .41**      .35**       .35**       .26*           .34** 
3. RF               -             .32**        .13          .39**      .19*          .33**      .05           .31**       .27*           .33** 
4. OOO                                -             .51**      .31**      .40**        .22*        .27*         .31**       .15             .26* 
5. SR                         -            .22*         .26*          .15          .30**       .21*         .12             .19* 
6. LR                                         -             .44**        .32**      .05           .18*          .12             .18* 
7. CR                             -                  .33**      .23*          .15            .03             .11 
8. Vocab                                    -               .25*          .16*          .11             .16* 
9. BD                                         -                .20*          .34**         .30** 
10. sym                                              -                .59**          .92** 
11. non-sym                                                                                                                                                       -                 .87** 
12. overall                                - 
 
Note. MC - Calculation; MF - Math Fluency; RF - Reading Fluency; OOO – Odd-One-Out; SR – Rpatial Recall; LR– Listening Recall;  CR – 
Counting Recall; Vocab – Vocabulary; BD – Block Design; Sym – symbolic mean score; Non-sym – nonsymbolic mean score; Overall – 
overall mean score 

       
  * p < .05.   
** p < .01. 
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Further analyses were conducted on the significant association between magnitude 

comparison and arithmetic achievement to examine the relationship between performance 

on the paper-and-pencil assessment and test scores for each grade level.  As can be seen 

in Table 2.4, for Grade 1, I found no significant relationship between Math Fluency 

scores and performance on the symbolic items (r = .34, ns) or nonsymbolic items (r = 

.25, ns). There was, a significant relationship between Calculation scores and 

symbolic performance (r = .52, p < .01); however, there was no correlation between 

Calculation scores and performance on nonsymbolic items (r = .25, ns).   Table 2.5 

demonstrates that in Grade 2 a significant relationship between students’ Math Fluency 

scores and symbolic performance (r = .42, p < .01) and also between Math Fluency 

scores and nonsymbolic performance (r = .33, p < .05) was obtained. In addition, there 

was also a significant relationship between Calculation performance and symbolic scores 

(r = .31, p < .01), but there was no significant correlation between Calculation and 

nonsymbolic performance (r = .15, ns).  Participants in the third grade (see Table 2.6) 

demonstrated a significant relationship between Math Fluency scores and symbolic items 

(r = .45, p < .01) as well as a significant correlation between Math Fluency and 

nonsymbolic items (r = .33, p < .01).  Significant associations were also found between 

Calculation scores and symbolic scores (r = .30, p < .01) along with a significant 

correlation between Calculation scores and nonsymbolic performance (r =.35, p < .01). 
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Figure. 2.3.  Scatterplot showing significant correlation between standard scores on the Math Fluency subtest of the Woodcock-

Johnson III battery and overall mean score of the magnitude comparison task (symbolic and nonsymbolic combined) for all 

participants.  The solid line represents the linear regression line for this relationship. 
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Figure 2.4.  Scatterplot showing significant correlation between standard scores on the Math Calculation subtest of the Woodcock-

Johnson III battery and overall mean score of the magnitude comparison task (symbolic and nonsymbolic combined) for all 

participants.   The solid line represents the linear regression line for this relationship. 
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Table 2.4  
 
Grade 1 correlations between arithmetic achievement and magnitude comparison  
 
Variable                                    1                   2         3                   4              5 
1. MF                                        -                  .73**            .34                 .25            .34 
2. MC                                                             -                 .52**             .25              .44* 
3. Sym.                                                                                -                  .56**          .88** 
4. Nonsym.                                    -               .87** 
5. Overall                                           - 
 Note. MC – Calculation raw scores; MF - Math Fluency raw scores; Sym. – symbolic mean  
 score; Non-sym. – nonsymbolic mean score; Overall – overall mean score 

       
     * p < .05.      
  ** p < .01. 
 

 

Table 2.5  

Grade 2 correlations between arithmetic achievement and magnitude comparison  

Variable                                    1                   2          3                 4               5 
1. MF                                        -                  .59**             .42**           .33*             .41** 
2. MC                                                               -                .31*             .15                .27* 
3. Sym.                                                                                  -               .68**            .94** 
4. Nonsym.                                  -                  .88** 
5. Overall                                             - 
Note. MC – Calculation raw scores; MF - Math Fluency raw scores; Sym. – symbolic mean score; 
Non-sym. – nonsymbolic mean score; Overall – overall mean score 

       
      * p < .05.  
   ** p < .01. 
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Table 2.6  

Grade 3 correlations between arithmetic achievement and magnitude comparison  

Variable                                    1                   2          3                   4                5 
1. MF                                         -                  .62**           .45**           .33**               .45** 
2. MC                                                             -                 .30**            .35**              .37* 
3. Sym.                                                                      -                .56**              .90** 
4. Nonsym.                                   -                   .86** 
5. Overall                                              - 
Note. MC – Calculation raw scores; MF - Math Fluency raw scores; Sym. – symbolic mean score; 
Non-sym. – nonsymbolic mean score; Overall – overall mean score 

       
     * p < .05.   
   ** p < .01. 
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I then examined whether this grade-related difference in the strength of the 

correlations between, on the one hand, the symbolic and nonsymbolic performance and, 

on the other hand, Math Fluency and Calculation scores were statistically significant.  In 

other words, whether the nonsignificant correlations in Grade 1 differed significantly 

from the significant correlations in the other grades.  To do this I transformed correlation 

coefficients into Fisher’s z statistics and then made comparisons using a z test.  For the 

association between the symbolic items and Math Fluency scores, the correlation for the 

Grade 1 students was not significantly different from that of the Grade 2 students  

(z = -0.37, ns) or the Grade 3 students (z = -0.55, ns).  The difference between the Grade 

2 and Grade 3 correlations was also not significant (z = -0.21, ns). Similarly, for the 

association between the nonsymbolic items and Math Fluency scores, the correlation 

between the students in Grade 1 compared to the correlation for Grade 2 students was not 

significantly different (z = -0.35, ns) or for the students in the third grade (z = -0.37, ns).  

The difference between the correlations for Grade 2 and Grade 3 were also nonsignificant 

(z = -0.03, ns).   Likewise, for the relationship between performance on symbolic items 

and Calculation scores, the correlation coefficient for Grade 1 was once more not 

significantly different from the correlation for either Grade 2 (z = 1.02, ns) or for Grade 3 

(z = 1.12, ns).  Additionally, the correlation for the Grade 2 students did not differ 

significantly from the correlation for students in Grade 3 (z = .006, ns).  Finally, the 

differences found between the correlations of nonsymbolic items and Calculation scores 

were nonsignificant between the Grade 1 and Grade 2 students (z = 0.42, ns) as well as 

the Grade 1 and Grade 3 students (z = -.046, ns).  Similarly, no significant difference was 

found between the correlations of the Grade 2 and Grade 3 students (z = -1.19, ns).   
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Thus while the correlations in Grade 1 between math scores and symbolic and 

nonsymbolic performance on the paper-and-pencil test do not pass the threshold for 

statistical significance (likely due to the comparatively small sample size), these 

correlations do not significantly differ from the ones in grades two and three.  Therefore, 

a true developmental change in the relationships between arithmetic performance and the 

present measure of symbolic and nonsymbolic numerical magnitude processing cannot be 

supported by the present data.  Instead the difference in the correlational strengths is 

likely due to differential sample sizes and, importantly, the correlations are significant 

when all three samples are collapsed into one group. 

2.3.4 Investigating the Variance Accounted for in Arithmetic 
Achievement Using Reading, Working Memory, IQ, Symbolic and 
Nonsymbolic Performance on the Paper-and-pencil Test as 
Predictors. 

  
Since Reading Fluency, verbal working memory, visual spatial working memory 

and IQ each correlated with children’s scores on Math Fluency and Calculation, the 

specificity of the key relationship between number comparison and arithmetic skills 

needed to be further investigated.  To do so, two linear regressions were performed:  one 

to examine the relationship between Math Fluency (dependent variable), symbolic and 

nonsymbolic total score while controlling for age, verbal working memory, visual-spatial 

working memory, IQ and Reading Fluency; and the other, to examine the relationship 

between Calculation (dependent variable), symbolic and nonsymbolic total score while 

controlling for age, verbal working memory, visual-spatial working memory, IQ and 

Reading Fluency. Since no hypotheses were made about the order of predictors, and in an 

effort to investigate which variables accounted for significant unique variance, all 

predictor variables were entered as one step (see Tables 2.7 & 2.8).   
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Results demonstrated that my first linear regression using Math Fluency as a 

dependent variable was significant (F(10, 159) = 14.41, p < .001, R2 = .492).  In this 

model I found that only performance on Reading Fluency, Spatial Recall, Counting 

Recall and symbolic items account for significant unique variance in Math Fluency. 

Performance on nonsymbolic items did not account for significant unique variance in 

Math Fluency.   

The second regression analysis using Calculation as a dependent variable was also 

significant (F(10, 159) = 15.67, p < .001, R2 = .513) and demonstrated that performance 

on Counting Recall, Vocabulary, Block Design and symbolic items account for 

significant unique variance in Calculation.   Again, as in Math Fluency, performance on 

nonsymbolic items did not account for significant unique variance.  

 
Table 2.7  
 
Linear regression analyses predicting Math Fluency raw scores with chronological age, 
Reading Fluency, visual spatial working memory, verbal working memory, IQ, symbolic 
scores and nonsymbolic scores as predictors. 
 
 
Math Fluency 

Predictor                 β                             t                   ΔR2 

Age                          .014                                .187     .00012                                  
Reading                         .208*                              2.49                  .02110 
Odd-One-Out              .148                                1.91     .01240  
Spatial Recall                                    .183*                              2.51     .02142 
Listening Recall                                -.029                             -.375     .00048  
Counting Recall             .159*                              2.14     .01566 
Vocabulary              .088                                1.24     .00523  
Block Design                                   -.066                              -.912                   .00284              
Symbolic                                    .197*                              2.35     .01878 
Nonsymbolic                                    .128                                1.56                  .00831      
 * p  <   .05. 
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Table 2.8 	
  

 
Linear regression analyses predicting Calculation raw scores with chronological age, 
Reading Fluency, visual spatial working memory, verbal working memory, IQ, symbolic 
scores and nonsymbolic scores as predictors. 
 
Calculation 

Predictor               β                            t                ΔR2                   

Age              .126                               1.72      .00973             
Reading                        .126                               1.53                 .00770 
Odd-One-Out              .027                               .355             .00042            
Spatial Recall             .049                         .693             .00158        
Listening Recall                                .020                               .268             .00024      
Counting Recall            .226*                             3.11                 .03171 
Vocabulary             .157*                             2.26                 .01672 
Block Design             .186*                             2.61                 .02228                 
Symbolic                                   .170*                             2.07                 .01411 
Nonsymbolic                                     .013                              .164                  .00009 
 * p  <   .05. 
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2.4 Discussion  

 The purpose of this chapter was to extend previous research in three principal 

ways: 1) to investigate whether a basic paper-and-pencil measure of symbolic and 

nonsymbolic numerical magnitude processing could be used to measure age differences 

in basic numerical magnitude processing skills, 2) to explore whether performance on this 

basic assessment tool is related to individual differences in children’s performance on 

measures of arithmetic achievement, and 3) to determine whether it explains significant 

variance over other factors such as age, working memory, reading skills and IQ.   

With regards to the first aim of this chapter, I found age differences in the 

performance of children on the paper-and-pencil measure.  Specifically, analyses 

demonstrated a main effect of grade, which indicates that children improved in the 

magnitude comparison task as they became older, replicating previous findings and 

suggesting that this test, like computerized measures, can be used to characterize 

developmental changes in numerical magnitude processing.  Furthermore, a format by 

grade interaction was also found whereby Grade 1 students were the only age group that 

performed significantly better on the nonsymbolic than symbolic items.  This finding 

demonstrates that younger children were more accurate at nonsymbolic number 

processing than symbolic processing, whereas older children did not show this difference. 

These results indicate that over the course of developmental time, typically developing 

children become more proficient with symbolic number processing as they progress in 

school and acquire more familiarity and automaticity with numerical symbols. Moreover, 

these results also suggest that perhaps young children have strong pre-existing 

representations of nonsymbolic numerical	
  magnitude (that can even be found in infancy) 
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and only gradually map these onto symbolic representations.  

The results from the current chapter also demonstrated that participants’ scores on 

this basic assessment tool significantly correlated with their scores on standardized tests 

of arithmetic achievement.  More specifically, a significant positive relationship was 

found between Math Fluency, Calculation and the accuracy with which participants 

completed the symbolic items, nonsymbolic items and overall total scores on the 

magnitude comparison task.  This finding indicates that children who scored highly on 

Calculation and Math Fluency also tended to receive high scores on my test.   Also, this 

association of numerical magnitude comparison skills and individual differences in 

arithmetic skills replicates findings in earlier work. For instance, the positive correlation 

found in the current study between performance on a timed numerical comparison task 

and individual differences in arithmetic performance replicates the work of Durand, 

Hulme, Larkin and Snowling (2005), but provides further constraints not afforded by 

prior research. For example, Durand, Hulme, Larkin and Snowling (2005) only used 

digits from 3-9 with digit pairs differing only by a magnitude of one or two. By including 

a larger range of digits, greater magnitudes separating each digit pair, as well as 

nonsymbolic stimuli in the current study, my results significantly expand upon the 

Durand et al. (2005) findings. For example, including nonsymbolic items could allow for 

this test to be used with children who do not yet have an understanding of number 

symbols. 

Finally, a key finding from this chapter indicated that performance on the 

symbolic items accounts for unique variance in arithmetic skills. Interestingly, this same 

result was not found for performance on the nonsymbolic items as demonstrated in 
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previous research (Halberda, Mazzocco & Feigenson, 2008; Mazzocco, Feigenson & 

Halberda, 2011).  Specifically, I found that while simple correlations show that both 

symbolic and nonsymbolic magnitude comparison are related to arithmetic achievement, 

only symbolic comparison accounted for unique, significant variance in children’s 

performance on the standardized tests of arithmetic achievement.  Since the simple 

correlations revealed that accuracy on both the symbolic and nonsymbolic tasks 

independently correlated with math achievement, it is possible that they share variance 

related to core magnitude processing, but that nonsymbolic does not contribute any 

additional, unique variance to math performance while symbolic does. I speculate that the 

unique variance accounted for by symbolic processing is related to recognizing numerals 

and mapping numerals to magnitudes – a skill that is important in the mental 

manipulation of digits during calculation.  While it is possible that symbolic and 

nonsymbolic magnitude comparison share variance related to numerical magnitude 

processing, it is equally plausible that their shared variance (and the absence of unique 

variance accounted for by the nonsymbolic task) is explained by non-numerical factors 

that are tapped by both tasks, such as speed of processing, attention, working memory or 

a complex combination of these factors and numerical magnitude processing. It is 

impossible to arbitrate between these different explanations given the current data. 

However, what the current data show are that symbolic number comparison explains 

unique variance while nonsymbolic does not, strengthening the notion that the mapping 

of symbols to numerical magnitudes is a critical correlate of individual differences in 

children’s arithmetic achievement (DeSmedt & Gilmore, 2011;	
  Holloway & Ansari, 

2009; Rousselle & Noël, 2007).   
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While children’s performance on the symbolic items of my test accounted for 

unique variance in arithmetic performance, it was not the best predictor of arithmetic 

achievement.  For example, the counting recall task of the AWMA accounted for 

variance in Calculation performance over and above symbolic number comparison 

scores.  This demonstrates that while my test does account for some unique variability in 

children’s arithmetic skills, other number related abilities, as well as measures of working 

memory, such as the counting recall task, also play an important role in children’s 

arithmetic skills.  This should be considered and investigated further in future research of 

this kind. 

Finally, the results from the multiple regression analyses reveal, as previous 

studies have demonstrated (DeStefano & LeFevre, 2004; Kalaman & LeFevre, 2007), 

that measures of both verbal and non-verbal working memory account for unique 

variance in children’s arithmetic scores. What is novel about the present finding is that 

both working memory and symbolic number processing skills account for unique 

variance, suggesting that these competencies are not confounded with one another in 

predicting individual differences in children’s arithmetic skills.   

The age range of my sample and measures of math achievement used in the 

current chapter are very similar to the work done by Holloway and Ansari (2009).  Using 

a computerized paradigm of symbolic and nonsymbolic magnitude comparison, 

Holloway and Ansari (2009) investigated the relationship between basic magnitude 

processing skills in 6-8 year-old children and arithmetic abilities using the same 

standardized tests of math achievement as the current chapter.  They found that 

participants’ performance on symbolic, but not nonsymbolic magnitude comparison 
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significantly correlated with math achievement scores. Interestingly, these correlations 

were strongest for the 6-year old children and weaker and nonsignificant, in older age 

groups (7 and 8 years) tested, which suggested a developmental trend.  However, as 

detailed in the paper by Holloway and Ansari (2009) further analyses revealed that there 

was no significant difference between the correlations for symbolic performance and test 

scores between the different age groups. Therefore, in the absence of significant 

differences between correlation coefficients they were unable to make any developmental 

claims. 

 My findings also suggested a developmental trend whereby the relationship 

between symbolic performance and math achievement became stronger and more 

significant the older the participants, which may be construed to be contrary to the 

findings reported by Holloway and Ansari (2009).  However, like Holloway and Ansari 

(2009), I also did not find any significant differences in the correlations for symbolic 

performance and math achievement at each grade level. Again, since there is no evidence 

of significant differences between correlation coefficients, I cannot make any claims 

regarding developmental trends.  Therefore, direct conclusions about the differences 

between developmental trajectories in both papers cannot be made, since in neither paper 

differences in the strength of correlations between age groups/grades were found to be 

significant.  Importantly, both my results and those reported by Holloway and Ansari 

(2009) demonstrate that when controlling for chronological age, the performance of 

children between the ages 6-9 years on measures of symbolic numerical magnitude 

comparison significantly correlate with between-subjects variability on standardized 
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measures of arithmetic achievement.  In this way there is convergence between the results 

reported by Holloway and Ansari (2009) and those detailed in this chapter.  

As seen in Table 2.1, there is a large difference between, on the one hand, Math 

Fluency and Calculation scores and, on the other hand, Reading Fluency scores in my 

sample.  However, though the Math Fluency and Calculation scores are below average 

they are still within the normal range (85-115).  Moreover, in other studies I have 

conducted with children in the local school district I have found similar average results. 

Thus, the scores from my present sample are convergent with what I am finding in my 

local area more generally.  This may therefore be a consequence of the current 

educational policy in the province of Ontario, which places a stronger emphasis on 

problem solving over fluency in math.  Consequently, my sample is somewhat discrepant 

from the standardization sample. However, in my current analysis, I used raw scores and 

thus did not rely on standardized results. Furthermore, while the average for math scores 

is lower than 100, there is large variability in the scores with children performing both 

above and below the normal range. Thus, I believe that while I have a sample with an 

average below 100 (though still in the normal range), this large variability in math scores 

found in my sample allows me to meaningfully capture individual differences.  

Unfortunately, there were a greater number of parents of children in grades two 

and three who agreed to have their children participate in the study than parents of 

children in Grade 1.  These practical constraints of the study led to considerable 

differences in sample size between grade levels.  Future investigations of this kind should 

therefore be conducted using equal sample sizes. 
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In sum, the current results demonstrate that a relationship exists between 

performance on a basic magnitude comparison task and individual differences in math 

achievement (as measured by arithmetic skills).  Furthermore, I found that symbolic 

processing accounts for unique variance in arithmetic skills whereas nonsymbolic 

processing does not. Finally, results indicate that a measure of this kind can characterize 

developmental changes in basic numerical magnitude processing. 

As mentioned, previous research has shown that children who have strong skills 

in higher order mathematics, such as arithmetic, also demonstrate strong magnitude 

processing skills.  The measurement tool investigated in the current study will allow 

educators to quickly and easily assess these foundational competencies. A test of this 

kind will also help educators to focus on these essential skills during math instruction in 

the classroom. By focusing on these basic, yet foundational abilities, educators can 

directly foster the numerical magnitude processing abilities of their students.  

In addition, previous research has shown that not all measures of basic number 

processing correlate with individual differences in math achievement (Bugden & Ansari, 

2011).  Therefore, a differentiated understanding of basic number processing and its 

relationship to arithmetic achievement is needed. In this regard, future studies should 

investigate the relationship between the paper-and-pencil assessment and other measures 

of magnitude processing such as response time measures, Weber fractions and number 

line estimation tasks (see Chapters 3 and 4). 

In the current chapter, I was found that children’s performance on nonsymbolic 

items correlated with their arithmetic skills.  This may suggest that the nonsymbolic 

portion of my assessment may be used by itself with preschool children and children who 
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do not yet have a semantic representation of number symbols, further demonstrating the 

utility of this simple assessment. Future studies would be needed to investigate this line 

of research.  In addition, future research should seek to examine the reliability of the 

number comparison assessment by measuring the test-retest reliability of this assessment 

tool (see Chapter 3).  Using a longitudinal design, future research should also seek to 

investigate the usefulness of this assessment tool for identifying children who are at risk 

for developing difficulties in mathematics. Such research is critical, as the current 

findings are merely correlational and may indicate that basic magnitude processing 

facilitates math development, but performance on the test may equally well reflect the 

fact that greater practice with arithmetic leads to improved performance in numerical 

magnitude comparison. A test that has the potential to truly predict individual differences 

in arithmetic ability would be a significant contribution to scores of classrooms and could 

have a great impact on the future of many students. By identifying at-risk children earlier 

and more reliably, findings from this and future studies will put us one step closer to 

improving the numeracy skills of students with difficulties in math and possibly enhance 

the teaching strategies currently used to instruct this specific group of children.
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Chapter 3 

3. Examining the Reliability and Validity of Different Task Variants of 
Magnitude Comparison, Their Association with Arithmetic Skills and 
the Role of Working Memory and Magnitude Processing in the 
Arithmetic Achievement of 6-7 Year-old Children. 

3.1 Introduction 

In the previous chapter, I reported evidence that children’s performance on the 

paper-and-pencil test of numerical magnitude comparison correlated with their math 

performance on both timed and untimed tests of arithmetic performance. More 

specifically, correlations were found between scores on both symbolic and nonsymbolic 

items and arithmetic, replicating previous work using reaction time and accuracy 

measures (De Smedt, Verschaffel & Ghesquière, 2009; Durand et al., 2005; Halberda, 

Mazzocco & Feigenson, 2008; Holloway & Ansari, 2009; Mazzocco, Feigenson & 

Halberda, 2011). I also found that older children performed significantly better on the 

magnitude comparison task compared to younger children. In addition, students in Grade 

1 were significantly worse at discriminating between symbolic magnitudes compared to 

nonsymbolic magnitudes, whereas Grade 2 and 3 students did not show this difference, 

suggesting that over time, there may be a developmental shift in children’s magnitude 

processing whereby they become more competent with processing symbolic number as 

they advance in school and gain more familiarity and automaticity with numerical 

symbols.  This evidence also implies that pre-existing representations of nonsymbolic 

numerical magnitude are still very strong at an early age and may indicate that mapping 

from nonsymbolic to symbolic representations gradually takes place as children become 

older.  
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 In addition to the above, I also investigated whether performance on symbolic and 

nonsymbolic magnitude comparison relate to arithmetic achievement over and above 

other factors such as visual-spatial working memory, verbal working memory, IQ and 

reading – variables that have been shown to correlate with math achievement in previous 

work (Berg, 2008; DeStefano & LeFevre, 2004; Kalaman & LeFevre, 2007; Koponen, 

Aunola, Ahonen & Nurmi, 2007).  My data revealed that only children’s performance on 

symbolic comparison accounted for unique variance in arithmetic performance, after 

controlling for these variables, while nonsymbolic performance did not, as demonstrated 

in previous research (Holloway & Ansari, 2009).  This finding also indicates that 

symbolic processing remained a significant predictor after controlling for these other 

potentially confounding factors. 

  The main goal of this thesis was to create a sound measurement tool to assess 

basic magnitude processing skills in children. My first set of results demonstrated a 

correlation between the paper-and-pencil test and children’s arithmetic skills, which is a 

good indicator of this test’s validity since it is associated with higher order number skills 

and also replicates previous findings of this kind (Chard et al., 2005; Durand, Hulme, 

Larkin & Snowling, 2005).  However, when constructing an assessment, more rigorous 

methods are needed in order to establish that a test has both validity and reliability.  For 

this reason, the first purpose of this chapter was to examine the strength of my test’s 

validity and reliability in greater depth.  I tested for validity by correlating performance 

on the magnitude comparison task with a similar computerized version of numerical 

magnitude comparison.   
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Reliability was tested by administering the paper-and-pencil assessment to the 

same sample of children, at two different time points (known as test-retest reliability). 

The definitions of validity and reliability are later described in greater detail, as well as a 

description of the methodology I used to investigate these important issues. 

 In the present chapter, my second goal was to examine the relative variance in 

participant’s arithmetic skills explained by the paper-and-pencil test as well as the similar 

computerized measure of numerical magnitude comparison to determine if one measure 

was more sensitive than the other in capturing individual differences in arithmetic 

achievement. 

Based on the results of Chapter 2, my third goal was to investigate if the 

relationship between performance on my test and children’s arithmetic achievement 

could be replicated.  Moreover, I also wanted to examine whether I could again find that 

children’s symbolic performance on my paper-and-pencil measure accounted for variance 

in arithmetic scores over and above nonsymbolic performance and visual spatial working 

memory, especially with regards to Grade 1 since this group was represented by a smaller 

sample in Chapter 2.   

My fourth and final goal was to examine whether performance on the paper-and-

pencil magnitude comparison test would again account for unique variance in children’s 

arithmetic competence even when controlling for visual-spatial working memory. 

Finally, since the number of Grade 1 students in my first project was considerably 

smaller than the older grades, and the use of an assessment tool designed to measure 

basic magnitude processing would be most effective at the earlier stages of instruction, 

this third chapter focused on students in the first grade only. 
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3.1.1  Constructing a sound test 

Sound assessment methods are an essential requirement for best research and 

educational practices. From an educational perspective, assessments are critical, as they 

allow teachers to evaluate a child’s understanding of certain skills or concepts and also 

permit teachers to assess the progress of student learning in the classroom. In recent 

years, a number of educators have expressed concerns that testing is harmful to children 

and that more progress would be made in our schools if formal assessments of students 

were completely removed (Ebel & Frisbie, 1991).  However, the evaluation of student 

learning is an essential component of education, as currently, it is the only dependable 

way by which we have to measure student achievement.  Furthermore, it is also the only 

means of identifying students who may be at risk for developing difficulties in a certain 

subject area.  Finally, teachers use student evaluations to make important decisions about 

their own teaching.  For example, if a teacher is just beginning a new unit in math, he or 

she may administer a test before introducing novel subject matter to gauge which 

concepts his or her students have already mastered and which concepts may need to be 

revised.  

Since evaluation devices clearly play a large role in student success, it follows 

that any test given to learners should meet certain criteria in order to ensure that it will 

truly be a valuable tool for student learning and not a harmful one. The two most 

important elements to consider when designing a sound assessment tool of any kind are 

the tool’s level of validity and reliability.  In the next sections I will introduce both of 

these terms in detail and will describe how the validity and reliability of the magnitude 

comparison test was examined. 
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3.1.2  Validity 

In the document Standards for Educational and Psychological Testing written as 

a collaboration between the American Educational Research Association (AERA), the 

American Psychological Association (APA) and the National Council on Measurement in 

Education (NCME), validity is referred to as:  

“the degree to which evidence and theory support the interpretations of test scores 
entailed by proposed uses of tests…The process of validation involves 
accumulating evidence to provide a sound scientific basis for the proposed score 
interpretations.  It is the interpretations of test scores required by proposed uses 
that are evaluated, not the test itself” (AERA, APA, NCME, 1999, p. 9). 
 

In other words, validity is not a characteristic of the test itself but is a property of the test 

scores, how they are interpreted and how they are used.  

In Standards for Educational and Psychological Testing, several sources of 

evidence are outlined that may be used in evaluating and supporting the interpretation of 

test scores for a specific purpose. Although these sources of evidence highlight specific 

features of validity they should not be regarded as distinct types of validity.  This way of 

thinking about validity assumes that there are several kinds of validity and that tests can 

display some of one kind and not the other. This is a flawed assumption.  Instead, validity 

should be viewed as a single concept made up of different categories (AERA et al., 

1999).  A brief summary of two of these categories is provided below.  

Evidence of criterion-related validity. One way to measure the usefulness of the 

test scores derived from a particular measure is to use them to predict other variables of 

interest, also known as criterion-related validity (Kline, 2005).  For instance, it may be 

expected that individuals who perform highly on magnitude comparison skills would also 

perform highly on other measures of numerical cognitive processing.  These types of 
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relationships between variables are called criterion-related because one variable (i.e., 

magnitude comparison skills) is being used as a predictor of another variable of interest, 

the criterion (i.e., arithmetic achievement).  In Chapter 2 my test demonstrated criterion-

related validity as results demonstrated that children’s performance on symbolic items 

significantly predicted their arithmetic scores.  In the current chapter, the goal was to 

replicate these previous findings.  

Evidence of construct validity.  Construct validity refers to whether an 

assessment measures or correlates with the construct that it claims to measure. One 

subtype of construct validity is known as convergent validity, which is defined as 

“relationships between test scores and other measures intended to assess similar 

constructs” (AERA et. al, 1999, p.14).  For example, in several cases, two instruments 

may be designed to measure the same construct. When the test scores of one instrument 

correlate with the test scores of another instrument designed to measure the same 

construct, this provides evidence of convergent validity. Therefore, convergent validity 

refers to the extent to which each measure is assessing the same underlying cognitive 

process.   

While the paper-and-pencil task described in Chapter 2 is designed to measure 

magnitude comparison skills in children, previous work has also successfully used 

response time measures to assess magnitude comparison skills in children (i.e., Bugden & 

Ansari, 2011; Holloway & Ansari, 2009). The fact that response time measures have also 

been used to assess magnitude comparison abilities raises the question about the 

convergent validity of the magnitude comparison measure presented in this thesis, which 

utilizes a different method and presentation format compared to response time measures 
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of the same task.  In order to address this issue, I administered the paper-and-pencil test 

along with a computerized version of magnitude comparison to a sample of Grade 1 

students and investigated whether individual test scores on the computerized version of 

the task correlated with test scores on the paper-and-pencil version.  A regression analysis 

was also performed to investigate which of the magnitude comparison tasks accounted 

for unique variability in children’s arithmetic performance. If my task accounted for 

unique variability in participants’ scores, over and above the computer task, this would 

suggest that the paper-and-pencil test is a more sensitive measure of basic magnitude 

processing skills in children compared to the response time measure used here.  However, 

if the response time measure only were found to account for unique variability, then this 

would indicate that the computer task is a more sensitive measure of magnitude 

processing.  In a final scenario, if both tasks were significant predictors of arithmetic 

skills, this would demonstrate that both versions of the magnitude comparison task 

account for unique variance in arithmetic performance, and both are valid measures of 

basic magnitude processing abilities in children.    

3.1.3 Reliability 

 Along with considering the validity of a measure, one must also consider whether 

or not the measure is reliable.  Reliability refers to “the consistency of [a measure] when 

the testing procedure is repeated on a population of individuals or groups” (AERA et al., 

1999, p. 25).  In other words, the reliability of a test refers to the generalizability of the 

test’s scores under one set of circumstances, to another set of circumstances.  Reliability 

is a fundamental property of any psychological measure, and for researchers creating 

assessment tools of any kind, reliability is of extreme importance.  
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  One way of measuring the reliability of a test is to examine the test-retest 

reliability of an assessment.  This index of reliability assesses the stability across time of 

a set of test scores on a particular test for a given sample. To accomplish this, the same 

test is given to the same sample of participants at a particular point in time (T1) and again 

at a later time (T2) and the measurements at these two time points are then correlated 

with each other to obtain a stability coefficient. The time between testing is usually 

recommended to be a short length of time such as two weeks (Salvia, Ysseldyke & Bolt, 

2007). 

 The zero-order correlation between test scores at T1 and T2 is used as the test-

retest reliability index. The main advantage of this index of reliability is that the items are 

identical at both testing periods, making certain that the same construct is being measured 

in the exact same way at both times of administration (Kline, 2005).  However, scores 

will unavoidably vary from T1 to T2 due to random measurement error caused by 

dissimilarities in testing conditions such as the participant feeling poorly at T1 and 

feeling better at the second testing point, thus receiving a higher score at T2.  

In recent years, several studies have examined the validity and reliability of 

paradigms commonly used in the literature to assess both symbolic and nonsymbolic 

magnitude processing.  For example, Maloney, Risko, Preston, Ansari and Fugelsang 

(2010) examined the reliability and convergent validity of four task variants used to 

assess the numerical distance effect (NDE).  In the lower/higher than five (L/H5) task, 

adult participants were presented with the numbers ranging from 1 to 4 and 6 to 9 and 

were asked to indentify whether the presented number was higher than five or lower than 

five. In a second task, participants completed the L/H5 task using nonsymbolic stimuli.  
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Here participants were shown a display containing black squares ranging from 1 to 4 and 

6 to 9 and were required to indicate whether the number of boxes presented was lower 

than five or higher than five. In a third symbolic comparison task, participants were 

presented with two Arabic digits ranging from 1 to 4 and from 6 to 9 and were told to 

indicate which of the two numbers was numerically greater.  For the final nonsymbolic 

task participants were shown a display with two arrays of squares ranging from 1 to 4 and 

from 6 to 9.  Participants were required to indicate which of the two arrays presented 

contained the more dots.  Stimuli in each task variant were presented in two blocks for a 

total of 160 trials per task. An assessment of internal reliability was used whereby 

participants’ performance on the first block of trials was correlated with their 

performance on the second block of trials (also known as split-half reliability).  Results 

demonstrated that nonsymbolic stimuli in both tasks were more reliable measures of the 

NDE than the symbolic stimuli. Secondly, it was found that the NDE elicited by the 

symbolic stimuli was uncorrelated with the NDE that arose from the nonsymbolic 

stimuli.  These findings demonstrate that symbolic and nonsymbolic NDEs were not 

equally reliable and were also uncorrelated with one another, implying that NDEs elicited 

by these two tasks index different cognitive processes during basic magnitude processing 

that are dependent on stimulus format. 

In another similar study of validity and reliability, Sasanguie, Defever, Van den 

Bussche and Reynvoet (2011) investigated the reliability and convergent validity of three 

basic nonsymbolic magnitude tasks from which the numerical ratio effect (NRE) is 

known to be obtained: comparison task, same-different judgment and priming 

comparison task.   Using an adult sample it was revealed that the comparison and same-
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different tasks both demonstrated internal reliability, while the priming task did not show 

internal reliability.  Moreover, the comparison and same-different tasks correlated with 

each other but neither correlated with the priming comparison task. For these reasons, 

Sasanguie and colleagues suggest that the comparison and same-different tasks are 

reliable paradigms for assessing the NRE while the priming comparison task should be 

used cautiously. 

As seen in the studies reviewed above, not all distance effects found in 

comparison tasks are reliable, demonstrating that investigating the validity and reliability 

of assessments is crucial, and careful consideration needs to be made in choosing the type 

of magnitude comparison task used to measure basic magnitude processing skills.  

Furthermore, while examining the reliability of an assessment is accepted as an important 

practice, it is especially important for the current study because an unreliable test is 

limited in how strongly it can correlate with other measures.  Moreover, as stated by 

Maloney et al. (2009), because many measures in cognitive psychology are used as 

outcomes in studies of individual differences, it is imperative to know the reliability of 

these measures.  However, if an unreliable measure is used in an experiment, then the 

chance of finding differences between groups is low even if those differences are in fact 

present (Kopriva & Shaw, 1991).  Consequently, the interpretation of a null result 

becomes difficult since it is not known how reliable the measure truly is.  Therefore, 

assessing whether measures of cognitive processes, such as the ones used in the current 

thesis, are reliable is not only important on a methodological level but also on a 

theoretical one as well, given that important explanations and models are derived from 

the data obtained from these variables (Maloney et al., 2009).  If my task demonstrated 
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test-retest reliability, it would suggest that this simple measure represents a reliable 

assessment of basic magnitude processing in young children.  

3.1.4  The Relationship between Symbolic and Nonsymbolic 
Processing in Grade 1 Children Revisited. 
 

As established in the literature review presented in Chapter 2, the relationship 

between basic magnitude processing skills and arithmetic has been demonstrated at the 

preschool (Mazzocco, Feigenson & Halberda, 2011), kindergarten (Chard et al., 2005) 

and early primary grade levels (De Smedt, Verschaffel & Ghesquière, 2009; Durand, 

Hulme, Larkin & Snowling 2005; Holloway & Ansari, 2009).  Due to these multiple 

empirical findings, my finding in Chapter 2 of no relationship between Grade 1 children’s 

performance on the magnitude comparison task and arithmetic achievement was 

unexpected. However, recall that in that sample, the number of Grade 1 students was 

much smaller than the number of Grade 2 and Grade 3 students.  It was proposed that the 

comparatively small sample size may be the reason for the nonsignificant relationship 

that was found between Grade 1 children’s performance on the paper-and-pencil test and 

their arithmetic skills.  If a significant relationship between performance on my test and 

arithmetic skills was found here, using a larger sample of Grade 1 students, it would help 

to confirm that the reason for the null finding in Chapter 2 was an issue of sample size.  

Moreover, it would confirm that this important relationship could also be found in this 

younger age group using the paper-and-pencil assessment.   

While results in Chapter 2 demonstrated that children’s performance on both 

symbolic and nonsymbolic items correlated with arithmetic achievement, it was also 

demonstrated that symbolic magnitude comparison was found to account for unique, 

significant variance in arithmetic skills, while nonsymbolic magnitude comparison did 
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not.  This was a key result, as currently there exists conflicting findings in this body of 

research where some studies have found that nonsymbolic processing is a significant 

predictor of math achievement (Halberda, Mazzocco & Feigenson, 2008; Mazzocco, 

Feigenson & Halberda, 2011) while others have not (Holloway & Ansari, 2009).   It was 

speculated that this important finding suggested that symbolic processing is related to 

recognizing numerals and mapping numerals to magnitudes – an essential skill for 

manipulating digits during calculation.  Therefore, another goal of this chapter was to 

investigate whether the current data would yield similar results as those found in Chapter 

2, strengthening the notion that the mapping of symbols to numerical magnitudes is a 

critical correlate of individual differences in children’s arithmetic achievement.    

3.1.5  The Role of Working Memory in Numerical Cognition 

While basic magnitude processing skills play a large role in children’s higher-

order math skills, other predictors of individual differences in math achievement exist, 

such as working memory. Working memory is broadly defined as a system dedicated to 

the active storage and processing of information involved mainly in complex cognitive 

activities (Gavens & Barrouillet, 2004).  The function of working memory and the role it 

plays in children’s math abilities has been the focus of numeracy research in recent years 

and has been shown to have an important part in math skills such as solving both simple 

and complex arithmetic problems (for a review see DeStefano & LeFevre, 2004).  

Furthermore, poor working memory has been related to developmental disabilities in 

mathematics (Geary, 1993).  Given the role that working memory plays in arithmetic 

performance, when studying the relationship between magnitude comparison and math 

achievement, it is important to consider working memory and to investigate any unique 
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variance explained by working memory measures.     

In Chapter 2, it was found that both symbolic magnitude processing and working 

memory accounted for unique variance in Math Fluency scores.  Furthermore, symbolic 

processing predicted children’s arithmetic skills over and above both visual spatial 

working memory and verbal working memory. In light of these findings, I wanted to 

examine whether performance on visual-spatial working memory and the paper-and-

pencil measure would again account for unique variance in children’s arithmetic scores.  

Based on the findings in Chapter 2 it was hypothesized that children in first grade 

would receive higher scores on the non-symbolic items than the symbolic items on the 

paper-and-pencil task. A significant relationship was expected between children’s Math 

Fluency scores, their performance on the magnitude comparison task and working 

memory. Finally, it was hypothesized that the relationship between Math Fluency and 

participants’ magnitude comparison scores would account for unique variance in 

arithmetic scores over and above performance on the visual-spatial working memory 

tasks.    

In the current chapter, I chose to focus only on visual-spatial working memory 

since findings in Chapter 2 revealed that it was a stronger predictor of Math Fluency than 

verbal working memory. Secondly, research has demonstrated that visual-spatial working 

memory plays an important role in younger children’s math performance (Krajewski & 

Schneider, 2009).  Finally, administering all four of these subtests from the Automated 

Working Memory Assessment (AWMA) is time consuming and the testing time given for 

each child was limited.  Therefore, due to these practical constraints, only the visual-

spatial working memory subtests were administered to the participants.   
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In sum, the purpose of this chapter was to a) assess the validity and reliability of 

the paper-and-pencil magnitude comparison test, b) investigate the relative variance in 

children’s arithmetic performance explained by the paper-and-pencil test as well as a 

computerized measure of numerical magnitude comparison, c) identify whether the 

finding that symbolic comparison skills accounts for more variability in math 

achievement scores than nonsymbolic skills could be replicated from Chapter 2 and, d) 

examine whether performance on the paper-and-pencil magnitude comparison test 

accounted for unique variance in arithmetic skills even when controlling for visual-spatial 

working memory. 

3.2 Methods 

3.2.1 Participants 

A total of 50 students in Grade 1 from two public elementary schools participated 

in the current study.  One child was removed due to disabilities preventing the proper 

completion of the tasks, another child was removed due to unwillingness to complete the 

session, two other children were removed due to missing items on the number 

comparison task, one child was removed due to inability to reach a basal score on the 

Math Fluency and one more child was removed due to malfunction of the computerized 

version of the magnitude comparison task.  Therefore, my final sample included 44 

children (29 females) between the ages of 6 years 5 months and 7 years 4 months (Mage = 

6 years 9 months, SD = 3.54 months). All participants spoke English fluently and had 

normal or corrected to normal vision. Participants came from various socioeconomic 

groups.  
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3.2.2 Materials and Design 

All participants were given the paper-and-pencil magnitude comparison used in 

Chapter 2, the Odd-One-Out and Spatial Recall tests of the AWMA to measure visual 

spatial working memory, the Math Fluency subtest of the Woodcock Johnson III and a 

computerized version of the magnitude comparison task.  The computerized version of 

the magnitude comparison task is described below. The descriptions of the measures of 

working memory, Math Fluency and the paper-and-pencil magnitude comparison test can 

all be found in the method section of Chapter 2. 

  
3.2.2.1 Magnitude Comparison Task – Computerized Version 

In the symbolic condition of this task, participants were presented with two single 

digit numbers (ranging from 1 to 9) on a computer screen, and were asked to choose the 

numerically larger number as fast as they could without making any errors. Both numbers 

were a font size of 58 and appeared on a 13-inch computer screen on either side of a 

centrally located dot until the participant made a response. In the non-symbolic condition, 

participants were shown two arrays of white dots on a black background separated by a 

white line located in the middle of the screen.  Participants were instructed to choose the 

side that had the more dots as quickly as possible without making any errors. The 

magnitude pairs remained on the screen for 800 ms after which a response screen was 

presented for 3000 ms. Participants could respond during the task screen or the response 

screen. 

For both symbolic and nonsymbolic conditions there were a total of 64 trials in 

which the ratio between the two numbers were manipulated and fell between .11 and .89 

(see Table 3.1 for a list of pairs and ratios). There were 32 levels of ratios for the 
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magnitude comparison task. Each ratio was repeated twice in random order, and each 

magnitude was counterbalanced for the side of presentation. Participants completed four 

practice items at the beginning of each session followed by a block of 32 trials, a short 

break and then a final block of 32 trials making a total of 64 trials in all. Half of the 

participants received the symbolic condition first. 

Similar tasks have been used in previous behavioural studies with young children 

and findings demonstrate that individual differences in these response time tasks correlate 

with math achievement (Holloway & Ansari, 2009; Bugden & Ansari, 2011). 

 
 
Table 3.1 
 
Numerical pairs and ratios for the computerized numerical magnitude     
comparison task 
 
 
        Number pair      Ratio 

1-9       0.11 
1-7       0.14 
2-9       0.22 
2-8       0.25 
2-6       0.33 
3-8       0.38 
3-7       0.43 
4-8       0.50 
4-7       0.57 
3-5       0.60 
4-6       0.67 
5-7       0.71 
3-4       0.75  
4-5       0.80 
6-7       0.86 
8-9       0.89 
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3.2.3 Procedure 

All participants were assessed at their respective elementary school in one 45-

minute session at the end of the school year. Each participant was tested individually by 

trained examiners in a quiet area outside of their classroom.  Tests were given in the 

following order: computerized magnitude comparison, Odd-One-Out, Spatial Recall, 

Math Fluency and paper-and-pencil magnitude comparison. Permission was granted from 

the Thames Valley District School Board and school principals to recruit students from 

elementary schools across London, Ontario and surrounding areas.  Letters of 

information and consent forms approved by the University of Western Ontario’s 

Research Ethics Board were received and completed by parents of the participants before 

the study began.   Interested parents representing two schools in small communities 

outside of London consented to having their child(ren) participate in the current study. 

To get a measure of test-retest reliability, participants were retested on the paper-

and-pencil task two to three weeks following the first administration of the assessment. 

3.3. Results 

3.3.1 Descriptive statistics 

 Participants’ ages along with the means and standard deviations for each test 

administered are shown in Table 3.2.    
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Table 3.2. Means and Standard Deviations (S.D.)  

Test                               N            Mean Raw Scores (S.D.)      Range (min.-max.)    Mean Standard Score (S.D)    Range (min.-max.) 

Age (months)               44               81.89 (3.51)     77 - 88   N/A       N/A 

Math Fluency   44         18.45(10.82)                        2 - 40                             99.91 (10.82)  78 - 117 

Spatial Recall               44         13.86 (4.66)                         1 - 21                           112.20 (14.07)  77 - 132 

Odd-One-Out               44         13.88 (4.71)                         3 - 24                           107.27 (16.02)  79 - 133 

Symbolic1 (T1)  44         32.20 (5.63)                       20 - 43            N/A      N/A 

Nonsymbolic1 (T1)       44              33.25 (4.77)     18 - 41   N/A      N/A 

Symbolic1 (T2)             39         34.77 (6.39)     22 - 46   N/A      N/A 

Nonsymbolic1 (T2)       39         38.44 (5.89)     28 - 52   N/A      N/A 

Symbolic RT (ms)   44       924.63 (246.08)          600.07 -1766.68   N/A      N/A 

Nonsymbolic RT (ms)   44      851.44 (212.09)          572.47- 1400.77   N/A      N/A 

Symbolic ACC (%)   44        79.50 (13.57)  49.48 - 100   N/A      N/A 

Nonsymbolic ACC (%) 44       77.78 (11.96)  49.48 - 95.31   N/A      N/A 

Note. Symbolic - total correct scores on symbolic items of paper-and-pencil test; Nonsymbolic - total correct scores on nonsymbolic items of 
paper-and-pencil test; Math Fluency – scores received on WJ-III; Odd-One-Out – scores received on AWMA; Spatial Recall – scores received on 
AWMA; T1 – first administration; T2 – second administration; Symbolic RT- average reaction time in milliseconds for symbolic trials; 
Nonsymbolic RT- average reaction time in milliseconds for nonsymbolic trials; Symbolic ACC – percent correct on symbolic RT trials; 
Nonsymbolic ACC – percent correct on nonsymbolic RT trials  
 

1Maximum possible score was 56
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3.3.2 Convergent Validity 

The performance on the paper-and-pencil test was correlated with performance 

measures from the computerized task. Performance measures from the computerized task 

were determined using an efficiency measure, which was calculated by dividing mean 

accuracy rates (percent correct) with mean RT  (see Table 3.2 for mean accuracy and 

mean RT values). In other words, the measure captures the number of items correctly 

solved in the time it took participants to complete the task. The same is true for the paper-

and-pencil task where the outcome measure is the total number of items completed 

correctly within the two-minute time limit.  This value was calculated, for each 

participant, for symbolic and nonsymbolic trials separately.  As seen in Table 3.3, results 

demonstrated that performance on the computerized task correlated with Math Fluency 

raw scores.  This relationship with math achievement was seen for both symbolic items (r 

= .59, p < .01) and nonsymbolic items (r =  .48, p < .01).  Efficiency measures for 

symbolic items also correlated with symbolic items on the paper-and-pencil test  

(r = .61, p < .01), but not with nonsymbolic items on the magnitude comparison paper-

and-pencil task (r = .23, ns).  There was also a significant relationship between efficiency 

measures for nonsymbolic items and symbolic paper-and-pencil measures (r = .54, p < 

.01) and a marginally significant relationship between nonsymbolic efficiency measures 

and nonsymbolic paper-and-pencil performance (r = .30, p = .051). 
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Table 3.3. Correlation between response time measures, paper-and-pencil test and Math Fluency 
  
Variable        1        2                3                4     5                 6     7               8  9 
 1.   MF                        -              .59**            .48**               .55**                .25                   -.28               -.21       .48**       .37* 
 2.   Eff. sym                          -                 .79**               .61**                .23                   -.71**           -.61**         .46**       .28  
 3.   Eff. nonsym                                         -                    .54**                .30                   -.72** -.74**        .17          .36*           
 4.   Sym paper & pencil                                                   -                     .59**                -.27              -.21           .51**      .44** 
 5.   Nonsym paper & pencil                                                                   -           -.15            -.16            .11          .13     
 6.   Sym RT                 -                  .89**        .26          .17                
 7.   Nonsym RT                    -      .29           .32* 
 8.   Sym ACC                     -          .67** 
 9.   Nonsym ACC               - 
__________________________________________________________________________________________________________ 
Note. MF- Math Fluency; Eff. sym – efficiency measure of symbolic RT; Eff. nonsym – efficiency measure of nonsymbolic RT; Sym paper & 
pencil – symbolic mean score; Nonsym paper & pencil – nonsymbolic mean score; Sym RT – mean reaction time for symbolic trials on computer 
task; Nonsym RT – mean reaction time for nonsymbolic trials on computer task; Sym ACC – mean accuracy on symbolic trials on computer task; 
Nonsym ACC – mean accuracy for nonsymbolic trials on computer task. 
 

** p < .01
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 Mean response time for symbolic trials significantly correlated with symbolic 

efficiency measures (r = -.71, p < .01) and nonsymbolic efficiency measures (r = -.72,  

p < .01) and mean response time for nonsymbolic trials (r = .89, p < .01). Mean response 

time for nonsymbolic trials also significantly correlated with symbolic efficiency 

measures (r = -.61, p < .01) and nonsymbolic efficiency measures (r = -.74, p < .01).  

Accuracy on symbolic trials of the computer task significantly correlated with Math 

Fluency (r = .48, p < .01), efficiency measures of symbolic trials (r = .46, p < .01) and 

symbolic performance on the paper-and-pencil test (r = .51, p < .01).  Accuracy on 

nonsymbolic trials of the computer task significantly correlated with Math Fluency  

(r = .37, p < .05), efficiency measures of nonsymbolic trials (r = .36, p < .05), symbolic 

scores on the paper-and-pencil test (r = .44, p < .01), mean reaction time on nonsymbolic 

trials (r = .32, p < .05) and accuracy on symbolic trials of the computer task (r = .67,  

p < .01). 

3.3.3 Test-retest Reliability for the Paper-and-pencil Test  

In testing for reliability, an analysis was also completed in order to identify 

whether there were any differences between formats (i.e., symbolic, nonsymbolic) and 

testing point.  To do this, a 2 (symbolic, nonsymbolic) x 2 (T1, T2) within-subjects 

repeated measures ANOVA was conducted. Analyses revealed a main effect of format 

(F(1, 38) = 15.05, p < .001,  

η2 = .28) and a main effect of testing point (F(1, 38) = 34.08, p < .001, η2 = .47).  There 

was also an interaction of format and testing point (F(1, 38) = 7.69, p < .001, η2 = .17) 

whereby Grade 1 participants were more accurate on symbolic items at T2 compared to 

symbolic items at T1 (t(38) = 3.10, p < .001) and also more accurate on nonsymbolic 
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items at T2 compared to nonsymbolic items at T1 (t(38) = 6.43, p < .001).  Furthermore, 

children demonstrated significantly greater accuracy on nonsymbolic items at T2 

compared to symbolic items at T2 (t(38) = 4.51, p < .001). Although participant mean 

scores were higher on nonsymbolic scores at T1 compared to symbolic scores at T1 (as 

seen in Fig. 3.1), there was no significant difference between performance on 

nonsymbolic and symbolic formats (t(43) = 1.36, ns).   

 

 

Figure 3.1. Bar graph representing participant performance in each format of the test at 

both time periods.  Participants’ performance on symbolic items in T1 was not 

significantly different from performance on nonsymbolic items in T1.  However, their 

performance on symbolic items in T2 was significantly lower than their performance on 

nonsymbolic items in T2.  There was also a significant difference between participant 

scores on symbolic items in T1 and T2 as well as a significant difference between 

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

45	
  

Time	
  1	
   Time	
  2	
  

T
es
t	
  
sc
or
es
	
  

symbolic	
  

nonsymbolic	
  



 

 

104	
  

nonsymbolic items in T1 and T2. Standard errors are represented by the error bars 

attached to each column.  

To perform an assessment of test-retest reliability, performance on the first 

administration of the paper-and-pencil test was correlated with performance on the 

second administration. Only 39 students from the original sample of 44 were included in 

this analysis.  This is because on the day of the second administration one student was 

absent and four other students did not complete the magnitude comparison booklets 

correctly due to skipped items. In this analysis, correlations were calculated for the 

following variables: symbolic items time 1 and time 2 (total number of correctly solved 

symbolic comparison trials), nonsymbolic items time 1 and time 2 (total number of 

correctly solved nonsymbolic comparison trials), and overall score (total number of 

correctly solved comparison trials across symbolic and nonsymbolic).  Results 

demonstrated that overall test scores at time point one significantly correlated with 

overall test scores at time point two (r = .73, p < .01), indicating that 53% of the variance 

of the scores at T1 was shared with the variance at T2.   Furthermore, symbolic scores at 

T1 significantly correlated with symbolic scores at T2 (r = .67, p < .01) and nonsymbolic 

scores at T2 correlated with nonsymbolic scores at T2 (r = .62, p < .01).  Each of the 

other variables significantly correlated with one another in a range of .59 - .90 (see Table 

3.4).  
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Table 3.4  
 
Test-retest stability coefficients 
 
Variable       1     2               3             4                5                6 

 1.   Sym T1            -                  .59**             .91**            .67**        .57**           .68**                         
 2.   Nonsym T1           -                   .87**            .49**        .62**            .61**            
 3.   Overall T1                                       -                  .65**        .66**            .73**                
 4.   Sym T2                                                   -             .66**            .92**         
 5.   Nonsym T2                                                                    -                .90**                         
 6.   Overall T2                                                                             -                   
Note. Sym – symbolic mean score; Nonsym – nonsymbolic mean score; Overall – overall mean 
score; T1 – first administration; T2 – second administration 
   
** p < .01. 
 
3.3.4 Investigating the Relationship Between the Computerized Task, 
the Paper-and-pencil Task and Student’s Math Fluency Scores. 
 
 Recall from the correlational analysis above (Table 3.3) that efficiency measures 

of symbolic computer trials, efficiency measures of nonsymbolic computer trials and 

mean scores of symbolic items of the paper-and pencil test each significantly correlated 

with Math Fluency.  In order to investigate the variance of both the computer and paper-

and-pencil task in accounting for individual differences in arithmetic achievement, two 

linear regressions were conducted.  The first regression was conducted in order to 

identify if both the symbolic and nonsymbolic efficiency measures of the computer task 

were significant predictors of Math Fluency.  

To conduct the first linear regression, Math Fluency raw scores were used as the 

dependent variable and efficiency measures of symbolic trials and efficiency measures of 

nonsymbolic trials were used as predictors. Again, since no hypotheses were made about 

the order of predictors, and in an effort to investigate which variables accounted for 
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significant unique variance, predictor variables were entered in one step (see Table 3.5).  

Results demonstrated that the linear regression was significant (F(2, 43) = 10.79,  

p < .001, R2 = .35).  It was also found that symbolic efficiency measures accounted for 

significant unique variance in Math Fluency while nonsymbolic efficiency measures did 

not. 

Table 3.5  
 
Linear regression analyses predicting Math Fluency raw scores with symbolic efficiency 
measures and nonsymbolic efficiency measures as predictors.  
 
Math Fluency 

Predictor                        β                            t                     ΔR2                             

Eff. sym                     .564*               2.73          .11875             
Eff. nonsym             .029             .142              .00032                  
Note. Eff.sym – efficiency measure of symbolic RT; Eff.nonsym – efficiency measure of 
nonsymbolic RT 
   
* p < .05 
	
  

Due to the results of the first regression and the earlier finding that symbolic 

performance on the paper-and-pencil test significantly correlated with Math Fluency 

(Table 3.3), a second linear regression was performed to determine which of the symbolic 

measures, if any, accounted for greater variance in children’s arithmetic performance. In 

this analysis, Math Fluency was the dependent variable while performance on the 

symbolic items of the paper-and-pencil test and symbolic efficiency measures of the 

computer task were the predictors.  Again, each predictor variable was entered in one step 

(see Table 3.6).  Results demonstrated that the linear regression was significant  

(F(2, 43) = 13.91, p < .001, R2 = .40).  It was also found that both symbolic measures 

accounted for significant unique variance in Math Fluency; however, symbolic efficiency 
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measures accounted for unique variance in children’s arithmetic skills over and above 

performance on symbolic items of the paper-and-pencil measure. 

Table 3.6.  
 
Linear regression analyses predicting Math Fluency raw scores with symbolic efficiency 
measures and symbolic performance on paper-and-pencil test as predictors.  
 
Math Fluency 

Predictor                        β                              t                    ΔR2                   

Eff. sym                     .400*                 2.63             .10080           
Sym. paper & pencil           .308*                2.03             .05966                            
Note. Eff. sym – efficiency measure of symbolic RT; Sym. paper & pencil – symbolic mean score 
on paper-and-pencil test 
 
* p < .05 
	
  

3.3.5   Investigating the Variance Accounted for in Math Fluency 
Using Symbolic and Nonsymbolic Performance on the Paper-and-
Pencil Test as Predictors. 
 
 In Chapter 2, I demonstrated that while symbolic and nonsymbolic performance 

on the paper-and-pencil test both significantly correlated with arithmetic, only symbolic 

scores accounted for unique variance in children’s arithmetic abilities.  Therefore, the 

third goal of this chapter was to investigate whether this finding could be replicated with 

the current sample.  However, as demonstrated in the correlational analysis above (see 

Table 3.3), nonsymbolic performance on the paper-and-pencil test did not significantly 

correlate with Math Fluency, making a regression analysis with nonsymbolic 

performance as a predictor unnecessary. However, even though the Grade 1 sample size 

here of 44 participants is larger than the sample size of 26 Grade 1 children in Chapter 2, 

it is still much smaller than the sample size of 56 Grade 2 and 78 Grade 3 participants in 

the previous chapter.  Therefore, these current null findings may again be due to a lack of 
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power caused by a small sample. For this reason, an additional analysis was made to 

investigate the correlation between Math Fluency scores and symbolic and nonsymbolic 

performance by combining the Grade 1 participants from both data sets (the one reported 

in the present sample and the Grade 1 sample reported in Chapter 2) to create a larger 

sample of 70 first grade children.  It is important to note that both samples of Grade 1 

students were tested at the end of the school year. 

 From this additional correlational analysis with 70 participants, it was revealed 

that children’s Math Fluency raw scores correlated with performance on both symbolic  

(r = .45, p < .001) and nonsymbolic (r = .25, p < .05) items of the paper-and-pencil test 

and overall sores (r = .41, p < .001; see Fig. 3.2).  Symbolic scores significantly 

correlated with nonsymbolic scores (r = .55, p < .001; see Table 3.7).  

 

Table 3.7. Correlations between Math Fluency and magnitude comparison as measured 
by the paper-and-pencil test. 

Variable                                 1               2                  3      4   
      

 1.   MF                                           -                          .45**                    .25*               .41**                                                        
 2.   Sym. paper & pencil                                     -                           .55**             .90**                                      
 3.   Nonsym. paper & pencil                                             -                   .86** 
 4.   Overall                                                                 - 
Note. MF - Math Fluency; Sym. paper & pencil – symbolic mean score on paper & pencil test; 
Nonsym. paper & pencil – nonsymbolic mean score on paper & pencil test; Overall – overall 
mean score on paper-and-pencil test 
      
  * p < .05.   
** p < .01. 
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Figure. 3.2.  Scatterplot showing significant correlation between raw scores on the Math 

Fluency subtest of the Woodcock-Johnson III battery and overall mean score of the 

magnitude comparison task (symbolic and nonsymbolic combined) for 70 Grade 1 

participants.  The solid line represents the linear regression line for this relationship. 
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A linear regression was then completed to identify which of these two variables 

accounted for greater variance in children’s arithmetic skills.  Math Fluency raw scores 

was the dependent variable, while symbolic and nonsymbolic scores on the paper-and-

pencil test were the predictor variables.  The analysis revealed that the model was 

significant (F (2, 69) = 8.48, p < .01, R2 = .20).  Results also demonstrated that 

performance on symbolic items was a significant predictor of Math Fluency performance 

while children’s nonsymbolic scores were not (see Table 3.8). 

 
Table 3.8.  
 
Linear regression analyses predicting Math Fluency raw scores with symbolic and 
nonsymbolic performance on the paper-and-pencil test as predictors.  
 
Math Fluency 

Predictor                        β                              t                    ΔR2                        

Sym paper & pencil              .446*                3.41            .13829       
Nonsym paper & pencil                      .006               .046            .00003                              
Note. Sym paper & pencil – symbolic mean score; Nonsym paper & pencil – nonsymbolic mean 
score 
 
* p < .05. 
	
  

In the previous chapter it was also revealed that Grade 1 students performed 

significantly worse on the symbolic compared to the nonsymbolic items of the paper-and-

pencil test.  Yet, the current data in this chapter with 44 children do not demonstrate this 

finding as indicated in Figure 3.1.  Therefore, a t-test was conducted with the larger 

sample of 70 students to compare children’s performance on symbolic and nonsymbolic 

items (see Fig. 3.3).  Results demonstrated that children’s performance on nonsymbolic 
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items (M = 33.39) was significantly greater than performance on symbolic items (M = 

31.39; t (69) = 3.16, p < .05).  

 

 

 

 

Figure 3.3. Bar graph representing performance of combined Grade 1 sample in each 

format of the paper-and-pencil test.  Participants’ performance on nonsymbolic items was 

significantly greater than performance on symbolic items. Standard errors are represented 

by the error bars attached to each column.  

 

3.3.6  Correlations Between Math Fluency, Working Memory and 
Magnitude Comparison 

 
As demonstrated in the previous chapter, symbolic magnitude processing, as 

measured by the paper-and-pencil test, accounted for unique variance in children’s 

performance on Math Fluency over and above their scores on subtests of the AWMA. 
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Visual-spatial working memory also accounted for unique variance in children’s Math 

Fluency scores.  One of the goals of the current chapter, therefore, was to investigate 

whether performance on the paper-and-pencil measure would again account for unique 

variance in children’s Math Fluency scores even when controlling for visual spatial 

working memory.  To complete this investigation, correlations were first calculated for 

the following variables: Math Fluency raw scores, Odd-One-Out raw scores, Spatial 

Recall raw scores, symbolic scores (total number of correctly solved symbolic 

comparison trials), nonsymbolic scores (total number of correctly solved nonsymbolic 

comparison trials) and total scores (total number of correctly solved comparison trials 

across both symbolic and nonsymbolic).  All scores represent the performance of the 44 

grade one children from the current chapter. 

As seen from Table 3.9, Math Fluency raw scores significantly correlated with 

symbolic scores (r =.55, p < .01), overall scores (r = .46, p < .01), and Odd-One-Out raw 

scores (r = .46, p < .01). Spatial Recall scores only correlated with Odd-One-Out scores 

(r = .32, p < .05) and symbolic scores correlated with nonsymbolic scores (r = .55, p < 

.01) and Odd-One-Out raw scores (r = .42, p < .01). 
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Table 3.9 

Correlations between Math Fluency, working memory and magnitude comparison 

Variable 1  2          3        4     5               6 

 1.   MF             -                  .46**             .15                .55**              .25               .46**                         
 2.   OOO                  -                   .33*              .45**             .16                .33*             
 3.   SR                                    -                   -.02               .18                .08                
 4.   Sym                                               -                 .59**            .91**         
 5.   Nonsym                                                                               -                 .87**                         
 6.   Overall                                                                  -                   
Note. MF - Math Fluency; OOO – Odd-One-Out; SR – Spatial Recall; Sym – paper-and-pencil 
symbolic mean score; Nonsym – paper-and-pencil nonsymbolic mean score; Overall – overall 
mean score on paper-and-pencil test 
       
  * p < .05.   
** p < .01. 
 

Since student performance on the Odd-One-Out task and symbolic items of the 

paper-and-pencil test both correlated with Math Fluency, the specificity of the key 

relationship between number comparison and arithmetic skills needed to be examined 

further.  To do so, a linear regression was performed to examine the relationship between 

Math Fluency (dependent variable), symbolic scores and Odd-One-Out scores. Since no 

hypotheses were made about the order of predictors and, in an effort to investigate which 

variables accounted for significant unique variance, both predictor variables were entered 

as one step (see Table 3.10).  Results demonstrated that the linear regression was 

significant (F(2, 43) = 11.61, p < .001, R2 = .36).  In this model it was found that 

performance on both Odd-One-Out and symbolic items accounted for significant unique 

variance in Math Fluency; however, symbolic performance accounted for unique 

variance over and above performance on the visual-spatial working memory task.  
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Table 3.10 
 
Linear regression analyses predicting Math Fluency raw scores with Odd-One-Out scores 
and symbolic scores as predictors. 
 

Math Fluency 
Predictor                        β                                t                       ΔR2             
Odd-One-Out                     .269*                  1.93      .05810   
Symbolic                                           .431*                         3.10                 .14925             
Note. OOO – Odd-one-out; Sym – paper-and-pencil symbolic mean score 
  
 * p  <   .05. 
	
  

Because student performance on the Odd-One-Out task and the symbolic and 

nonsymbolic trials of the response time measures each correlated with Math Fluency (see 

Table 3.3), I also examined the specificity of the relationship between number 

comparison, as measured by the computer task, and arithmetic skills.  To do so, a linear 

regression was performed to examine the variance accounted for by symbolic efficiency 

measures, nonsymbolic efficiency measures and Odd-One-Out scores in Math Fluency 

scores. Again, each predictor was added as one step for the reasons described above (see 

Table 3.11). Results demonstrated that the linear regression was significant  

(F(2, 43) = 8.60, p < .001, R2 = .39).  In this model it was found that performance on 

symbolic items only, accounted for significant unique variance in Math Fluency. 
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Table 3.11 
 
Linear regression analyses predicting Math Fluency raw scores with Odd-One-Out scores 
and symbolic and nonsymbolic efficiency measures as predictors. 
 
Math Fluency 
Predictor                        β                             t                       ΔR2                      
Eff. sym.                     .447*               2.10  .06731 
Eff. nonsym.                                           .036                       .180      .00049 
OOO                              .244   1.76  .04716 
Note. OOO – Odd-one-out; Eff. sym – efficiency measure of symbolic RT; Eff. nonsym – 
efficiency measure of nonsymbolic RT 
 
* p  <   .05. 
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3.4 Discussion 

 The goals of the current chapter were to a) assess the validity and reliability of the 

paper-and-pencil magnitude comparison test, b) investigate whether performance on the 

paper-and-pencil test accounted for greater variability in arithmetic scores compared to 

performance on response time measures, c) identify whether the finding that symbolic 

comparison skills account for more variability in math achievement scores than 

nonsymbolic skills in Chapter 2 could be replicated and d) examine whether performance 

on the paper-and-pencil magnitude comparison test accounted for unique variance in 

arithmetic skills even when controlling for visual spatial working memory, which was 

found to be significantly associated with Math Fluency in the previous chapter. 

In regards to the first goal of this chapter, which was to evaluate the validity of 

my task, I found that symbolic accuracy scores on the paper-and-pencil test significantly 

correlated with symbolic and nonsymbolic accuracy on the computer task and symbolic 

and nonsymbolic efficiency measures on the computer task. Nonsymbolic accuracy 

scores on the paper-and-pencil test did not significantly correlate with either symbolic or 

nonsymbolic accuracy of the computer task or with symbolic or nonsymbolic efficiency 

measures. These findings indicate that children who performed well on the symbolic 

items of the paper-and-pencil test also performed well on the symbolic and nonsymbolic 

trials of the computer task.  Moreover, these results suggest that only the symbolic items 

of my test demonstrate evidence of convergent validity.  Another way to measure the 

validity of the test scores belonging to a particular measure is to use them to predict other 

variables of interest, also known as criterion-related validity. Recall that in Chapter 2, 

performance on symbolic items was a significant predictor of Math Fluency and 
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Calculation scores.  In the current chapter it was also found that symbolic scores were a 

predictor of Math Fluency scores.  Both of these results provide evidence that the 

symbolic items of my test demonstrate criterion-related validity in addition to convergent 

validity.   

The Math Fluency assessment was administered at the same time as my test of 

magnitude comparison, therefore my paper-and-pencil test has demonstrated concurrent 

validity.  Using a longitudinal design, future work should examine the predictive validity 

of the magnitude comparison tool as a predictor of math skills across developmental time 

(see Chapter 4).     

Findings from this chapter also demonstrated that participant scores on the paper-

and-pencil task at time one of test administration significantly correlated with participant 

scores at time two of administration, providing evidence that my magnitude comparison 

task demonstrates test-retest reliability.  Moreover, my test’s reliability allows for greater 

confidence when correlating test scores of the paper-and-pencil task with other variables 

of interest such as math achievement. As discussed above, the use of unreliable measures 

in any experiment leads to the risk of finding no group differences even if those 

differences do in fact exist. This scenario would be especially harmful for identifying 

individual differences in children’s basic magnitude processing skills. Therefore, it is 

imperative that the paper-and-pencil test in this thesis demonstrates evidence of 

reliability.  Consequently, the finding here of the test-retest reliability of the paper-and-

pencil measure provides verification that this simple assessment may be administered for 

its intended use.  
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As mentioned, previous research has shown that children who have strong skills 

in arithmetic, also demonstrate strong magnitude processing skills.  It follows, therefore, 

that a sound assessment of this basic competency is crucial. The validity and reliability 

demonstrated by the measurement tool investigated in the current chapter provides 

evidence of the test’s soundness.  It also indicates that this paper-and-pencil task may be 

a good alternative to response time measures where computers and the necessary 

software may not be easily accessible to teachers. 

The second goal of this chapter was to examine the unique variability accounted 

for by the response time measure and paper-and-pencil measure in children’s arithmetic 

skills.  Results demonstrated that the symbolic efficiency measure of the computerized 

task accounted for unique variability in children’s arithmetic abilities over and above 

symbolic performance on the paper-and-pencil task.  However, while these results 

demonstrate a qualitative difference in the variance accounted for by both variables, it is 

not known whether this difference in variance is statistically different.  For this reason, it 

cannot be fully determined that the response time measure used in the current chapter is a 

more sensitive measure of magnitude processing skills than the paper-and-pencil test. 

Thus, the specific nature of the unique variance accounted for by both variables should be 

further considered in future research. 

 In the present chapter, I found a significant correlation between performance on 

the symbolic items of the paper-and-pencil task and individual differences on Math 

Fluency scores.  This finding suggests that Grade 1 students who scored highly on 

arithmetic as measured by Math Fluency also tended to receive high scores on symbolic 

magnitude comparison. However, no significant relationship between accuracy of 
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nonsymbolic items and arithmetic performance scores was found. Since results in 

Chapter 2 demonstrated a significant relationship between symbolic and nonsymbolic 

scores of the paper-and-pencil test and Math Fluency, and the current sample of Grade 1 

participants was smaller than the sample of Grade 2 and Grade 3 children in Chapter 2, 

an additional correlational analysis was conducted by combining the Grade 1 participants 

from Chapter 2 and the current chapter.  Results revealed that with this larger sample, 

both symbolic and nonsymbolic performance on the paper-and-pencil test correlated with 

Math Fluency.  These findings replicate the results in Chapter 2 and also correspond with 

results in the literature (De Smedt, Verschaffel & Ghesquière, 2009; Durand et al., 2005; 

Halberda, Mazzocco & Feigenson, 2008; Holloway & Ansari, 2009; Mazzocco, 

Feigenson & Halberda, 2011). 

Secondly, a regression analysis performed with the larger sample to examine 

which format accounted for greater variance in arithmetic skills revealed that 

participant’s scores on symbolic items was a significant predictor of arithmetic abilities 

while nonsymbolic scores were not, replicating findings from Chapter 2.   

These results also replicate what has been found in earlier studies (i.e., De Smedt, 

Verschaffel & Ghesquière, 2009; Durand et al., 2005; Holloway & Ansari, 2009) where 

symbolic magnitude processing has been shown to significantly predict math 

achievement.   These findings diverge from the work of Halberda, Mazzocco and 

Feigenson (2008) and Mazzocco, Feigenson and Halberda (2011) who found that 

nonsymbolic processing accounts for variance in children’s arithmetic performance.  

However, it is important to note that the two studies conducted by this research group did 
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not include a symbolic comparison task; therefore, no claims about unique variance over 

and above symbolic processing can be made. 

The results from this current chapter also demonstrated that efficiency measures 

of symbolic performance on the computerized task accounted for unique variance in 

children’s arithmetic performance while nonsymbolic performance did not. These data 

again correspond with the findings of Chapter 2, which demonstrated that symbolic 

processing only in the paper-and-pencil test accounted for unique variance in arithmetic 

skills.   Results from the paper-and-pencil test and computer task once more provide 

additional support for the premise that the mapping of symbols to numerical magnitudes 

is an important correlate of individual differences in children’s arithmetic abilities 

(DeSmedt & Gilmore, 2011; Holloway & Ansari, 2009; Rousselle & Noël, 2007).  

Similar to Chapter 2, results from this present chapter revealed a correlation 

between Math Fluency and magnitude comparison test scores and visual-spatial working 

memory.  Results from the multiple regression analysis demonstrated that scores on the 

Odd-One-Out subtest of the AWMA accounted for unique variance in children’s 

arithmetic scores while in Chapter 2, Spatial Recall scores accounted for unique variance 

in children’s arithmetic scores.  This difference in subtests may be due to the differences 

in the samples between chapters such as age range and sample size.  Nevertheless, in both 

chapters it is revealed that visual-spatial working memory and symbolic processing as 

measured by the paper-and-pencil test each account for unique variance in arithmetic.  

Since both working memory and symbolic number processing skills account for 

unique variance in arithmetic achievement, this finding provides more evidence to 

suggest that these competencies are not confounded with one another in predicting 
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individual differences in children’s arithmetic skills (DeStefano & Lefevre, 2004; 

Kalaman & LeFevre, 2007), demonstrating that this simple test can identify individual 

differences in arithmetic ability that are not explained by visual-spatial working memory. 

Instead of being confounded, basic symbolic magnitude processing and visual-spatial 

working memory each account for unique variance in young children’s mathematical 

fluency. 

Results from the sample in the current chapter did not demonstrate a significant 

difference between performances on symbolic items compared to nonsymbolic items in 

Grade 1 children at the first testing point.  However, using the larger sample of 70 

children, a significant difference was found whereby participant scores on the 

nonsymbolic items were significantly greater than scores on the symbolic items. These 

data suggest that children in the first stages of formal math instruction may have a 

stronger representation of nonsymbolic magnitudes in place and are still in the process of 

developing representation of symbolic magnitudes.    

In the current chapter, the test-retest reliability of the paper-and-pencil test was 

examined; however, the reliability of the computer task was not.  Future studies of this 

kind should therefore also examine the test-retest reliability of the response time measure 

used. It should also be recognized that in the current chapter only Grade 1 participants 

were included in the sample.  Consequently, future research would also have to 

investigate the validity and reliability of the paper-and-paper test using a larger sample 

with more age ranges represented.  In addition, to investigate numerical mapping between 

symbolic and nonsymbolic processing in more depth, future studies should consider 

testing a younger age group such as kindergarten students.  This age group is in a 
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sensitive period in their learning where real number sense foundations are being laid and 

where the relationship between nonsymbolic and symbolic is beginning to be established 

(Griffin & Case, 1997).   Forthcoming research should also consider the ability of this 

paper-and-pencil test to predict individual differences in math achievement scores in 

older grades based on the basic magnitude processing skills of a kindergarten sample. 

In sum, the current results indicate that a paper-and-pencil test of magnitude 

processing skills demonstrates levels of convergent validity, criterion-related validity and 

test-retest reliability.  Using a larger sample of Grade 1 students, it was also revealed that 

symbolic magnitude processing on the paper-and-pencil test accounted for greater 

variance in children’s arithmetic scores, while nonsymbolic magnitude processing did 

not. A similar finding was also observed for the computer task where efficiency measures 

of symbolic comparison were a significant predictor of arithmetic achievement while 

efficiency measures of nonsymbolic performance were not.  Results also demonstrated 

that performance on the symbolic trials of the computer task and symbolic items of the 

paper-and-pencil test accounted for unique variance in arithmetic skills, while 

nonsymbolic processing on both tasks did not.  Finally, it was found that symbolic 

processing skills accounted for unique variance in arithmetic ability over and above 

visual-spatial working memory for both the paper-and-pencil task and RT measures.   

Findings from this chapter indicate that this simple two-minute paper-and-pencil 

test is a valid and reliable measure of basic magnitude processing in young students.  This 

suggests that a test of this kind would, therefore, be a vital addition to many classrooms 

as it would permit teachers to accurately and efficiently assess an important competency 

that plays a crucial role in the success of children’s math development. 
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Chapter 4 

4.  Investigating the Predictive Validity of the Paper-and-pencil Task 
and its Association with Arithmetic Skills in Kindergarten Children. 

4.1 Introduction 

 The first goal of the previous chapter was to investigate the soundness of the 

paper-and-pencil test of basic magnitude processing by assessing its convergent validity, 

criterion-related validity and test-retest reliability.  In order to assess the convergent 

validity of the paper-and-pencil test, participants’ scores on the processing measure were 

correlated with their performance on a similar computerized version of magnitude 

comparison.  I found that children’s scores on the symbolic items of the paper-and-pencil 

test significantly correlated with performance on the symbolic and non-symbolic trials on 

the computer task.  However, this same relationship was not significant between 

nonsymbolic performance on the paper-and-pencil task and both symbolic and 

nonsymbolic performance on the computer task, suggesting that the symbolic items of the 

paper-and-pencil test demonstrate higher convergent validity than the nonsymbolic items.  

Finally, in order to assess reliability, performance on the paper-and-pencil test at 

one time point was correlated with children’s performance at a second time point. I found 

that performance on the assessment at both time points significantly correlated with each 

other, indicating that this basic measure demonstrates test-retest reliability, yielding 

evidence to suggest that it is a reliable measure of children’s basic magnitude processing 

skills. 

Using a combined sample of Grade 1 participants from Chapter 2 with the Grade 

1 sample in Chapter 3, a correlation with arithmetic performance was demonstrated for 

both symbolic and nonsymbolic processing, corresponding with previous studies (De 
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Smedt, Verschaffel & Ghesquière, 2009; Durand et al., 2005; Halberda, Mazzocco & 

Feigenson, 2008; Holloway & Ansari, 2009; Mazzocco, Feigenson & Halberda, 2011). 

Results in Chapter 3, convergent with those reported in Chapter 2, revealed that symbolic 

and nonsymbolic performance on the paper-and-pencil task were significant correlates of 

children’s arithmetic skills; however, symbolic processing accounted for unique variance 

in children’s arithmetic scores while nonsymbolic processing did not, demonstrating the 

criterion-related validity of the symbolic items of the paper-and-pencil test.  With this 

larger sample, it was also shown that Grade 1 performance on the nonsymbolic items of 

the paper-and-pencil test was significantly higher than performance on symbolic items, 

replicating results found in Chapter 2.    

  Based on the findings described above, the goals of the current chapter were 

fourfold.  First, based on the results of Chapter 2 and 3, I wanted to investigate if I could 

again find that symbolic processing on the paper-and-pencil test was a significant 

predictor of arithmetic skills in a younger sample, specifically kindergarten children. The 

previous chapters have only assessed older school age children; however, it is equally 

important to look at the value of such measurements before children enter the formal 

classroom. Second, I also wanted to examine whether or not kindergartners would 

perform better on nonsymbolic items compared to symbolic items as was found to be the 

case in Grade 1 children in the previous two chapters. This finding would provide more 

support for the theory that across developmental time, children’s magnitude processing 

skills shift from strong nonsymbolic processing abilities to more efficient processing of 

symbolic magnitudes, potentially due to formal math instruction in school.   
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 Third, to extend the investigation of the paper-and-pencil test’s validity from 

Chapter 3, in the current chapter I also investigated whether kindergarten children’s 

performance on a number line estimation task correlated with their scores on the paper-

and-pencil test.  In this task, children have to estimate the location of a symbolic 

magnitude on a number line. The number line estimation task has been used in previous 

work as a measure of basic magnitude processing (Siegler & Opfer, 2003). Since both the 

paper-and-pencil task and the number line estimation task assess basic magnitude 

processing, by correlating children’s performance on both measures, the convergent 

validity of the paper-and-pencil test was examined further.    

In Chapter 3, the paper-and-pencil task and Math Fluency tests were administered 

at the same time, providing an estimate of concurrent validity, but not predictive validity.  

Therefore, a fourth goal of the present chapter was to expand on findings of the previous 

two chapters in order to investigate the predictive validity of the paper-and-pencil 

measure.  To accomplish this in the current chapter, I investigated whether kindergarten 

children’s performance on the paper-and-pencil measure was a significant predictor of 

their math performance in Grade 1. To begin my literature review, I describe early 

indicators of children’s scholastic achievement and how they relate to future learning 

outcomes, motivating the use of assessments in the first years of school. 

4.1.1 Early Predictors of Academic Achievement and Success in the 
Workplace. 
 

Every September across Canada, thousands of children begin their first day of 

kindergarten. Since its inception in the 1800s (Prochner, 2000), the kindergarten 

classroom in this country has experienced many changes in an effort to provide students 

with the most favorable learning environment possible.  For example, most recent 
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changes include the introduction of full-day programs versus the traditional half-day 

model, and a growing number of school boards are also moving towards play-based 

classrooms versus an academic style of instruction.  Each change is made with the goal of 

better equipping students with the skills and knowledge needed to become successful 

learners.  A growing body of research is demonstrating that this first year of schooling is 

very crucial, as the skills children develop in the classroom at this young age are very 

strong predictors of not only their academic achievement in later grades, but their overall 

well-being in adulthood as well. 

For example, Duncan et al. (2007) completed a meta-analysis of six longitudinal 

studies to determine the relationship between school-entry math and reading, attention, 

and socioemotional skills - three main elements of school readiness – and later math and 

reading achievement.  The samples represented in the studies included children from the 

United States, Canada and the United Kingdom.  Across all six studies, it was found that 

the strongest predictors of later school achievement were kindergarten level math, 

reading and attention skills.  Further analyses revealed that early math skills were the 

strongest predictor of later reading and math achievement in children ages 8 – 14 years, 

followed by reading skills and attention.  The most noteworthy result was that school 

entry math skills were a greater predictor of later reading achievement than school entry 

reading abilities. Other findings demonstrated that socioemotional behaviours, such as 

social skills, were not found to be significant predictors of later academic performance. 

In an effort to replicate and extend the findings of Duncan et al. (2007), Romano, 

Babchishin, Pagani and Kohen (2010), conducted a study with a nationwide Canadian 

data set not included in the Duncan et al. (2007) work. They investigated the influence of 
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kindergarten language/verbal ability, numeracy skills, attention and socioemotional 

behaviours on later math and reading performance in the third grade.   Results again 

demonstrated that kindergarten math skills were the strongest predictor of Grade 3 math 

and reading outcomes. Reading and attention skills predicted later achievement while 

socioemotional behaviours did not predict later performance.  Furthermore, with 

extended analyses they found that kindergarten math even predicted socioemotional 

behaviours.  Specifically, higher kindergarten math performance predicted less physical 

aggression and better attention skills in Grade 3.  These same findings were not found for 

language/verbal ability. 

In a third study examining the role of early numeracy skills in later academic 

success, Geary, Hoard, Nugent and Bailey (2013) conducted a longitudinal study with a 

large sample of students beginning in kindergarten and ending in the seventh grade.  

Beginning in Grade 1, the participants received tasks in basic number knowledge such as 

basic addition, number matching and number line estimation. In Grade 7 they were tested 

using functional numeracy measures, which are employed in studies of labor economics, 

employability and other similar outcomes in adulthood.  Results revealed that children’s 

performance on basic number skills in Grade 1 was a significant predictor of their 

functional numeracy in Grade 7 controlling for intelligence, working memory, in-class 

attentive behaviour and other demographic factors.  

Based on the findings of Duncan et al. (2007), Romano et al. (2010) and Geary et 

al. (2013), which demonstrate the predictive ability of school-entry numeracy skills for 

later outcomes in academic achievement, socioemotional behaviours and work-related 

numeracy skills, it is clear that early childhood educators need to focus as much attention 
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on developing strong numeracy skills in their young students as they do their literacy 

skills. Moreover, because the skills children develop in the early grades are so important 

to their success in later life, it follows that the use of reliable and valid assessments of 

math learning is necessary even at the earliest stages of formal education.  

Kindergarten is the period where a child’s number sense foundations are being 

laid and it is the age at which the relationship between numerical symbols and the 

nonsymbolic magnitudes they represent, is beginning to be established (Griffin & Case, 

1997).  Assessment at this phase, therefore, has the advantage of allowing teachers to 

identify children who may be struggling with understanding the relationship between 

symbolic and nonsymbolic magnitudes, which otherwise may place students at risk for 

later problems with other number related learning.  Therefore, early identification of any 

difficulties children may be experiencing in their math learning is highly beneficial to 

both students and teachers.  Detecting difficulties at an early age allows for intervention 

and strengthening of skills, which may be weak, before children continue to higher grade 

levels.  In addition, correcting concepts that children are struggling with in the first stages 

of schooling may also help to avoid the development of negative attitudes and math 

anxiety (Wright, Martland & Stafford, 2006). 

  In the area of reading, assessments administered in the early grades to measure 

the foundational competency of phonemic awareness are shown to be valuable in the 

early diagnosis of at-risk children (Stanovich, Cunningham & Cramer, 1984; Vellutino & 

Scanlon, 1987; Williams, 1984).  Furthermore, early phonemic awareness is a strong 

predictor of children’s later reading abilities (Stanovich, 1986).   
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The question then remains if a similar approach can be taken in mathematics by 

assessing the foundational competency of magnitude comparison in young students.  As 

reviewed in Chapter 2, De Smedt, Verschaffel and Ghesquière (2009) investigated 

whether numerical magnitude comparison has predictive value for individual differences 

in mathematical achievement.  They found that children’s symbolic magnitude 

comparison skills measured in Grade 1 was a significant predictor of their math 

achievement in Grade 2. 

Similarly, nonsymbolic magnitude comparison skills measured in very young 

children have also been found to be a predictor of later math achievement.  For example, 

using response time measures, Mazzocco, Feigenson and Halberda (2011) found that 

individual differences in preschoolers’ performance on nonsymbolic magnitude 

comparison was a strong predictor of their later school mathematics performance at age 

six.   

The evidence presented in the two studies above demonstrates the effectiveness of 

testing the magnitude processing skills of young children. However, the relative 

predictive validity of symbolic and nonsymbolic comparison is unknown, since both 

studies mentioned above only had either a symbolic or nonsymbolic magnitude 

comparison measure. Against this background, one aim of the present chapter was to 

investigate whether kindergarten children’s scores on both symbolic and nonsymbolic 

magnitude processing, measured at the same time by the paper-and-pencil test, could 

predict individual differences in arithmetic achievement in Grade 1.  

In the previous chapter, it was shown that my test demonstrated concurrent 

validity in that individual differences in symbolic magnitude comparison skills predicted 
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individual differences in math achievement scores.  However, it is unknown whether or 

not scores on my test can predict math performance in later grades, therefore 

demonstrating predictive validity.  To examine this question, I investigated whether my 

paper-and-pencil test could accurately differentiate between children in my kindergarten 

sample who were rated as below average, average or above average in Grade 1 math by 

their teacher.  In addition, this specific investigation allowed me to also identify whether 

the paper-and-pencil test could be linked to educational assessments (such as report card 

grades). 

4.1.2 Number Line Estimation 

As previously mentioned, the number line estimation task has been used as 

another means of evaluating basic magnitude processing in both adults and children 

(Siegler & Opfer, 2003).  Previous work using this assessment has shown that the 

performance of children in kindergarten to Grade 3 on the number line estimation task 

correlates with their proficiency in arithmetic tasks, standardized mathematical 

achievement scores and mathematical school grades (Booth & Siegler, 2004; Schneider, 

Grabner & Paetsch, 2009). Furthermore, studies have also demonstrated that children’s 

number line estimation abilities correlate with their magnitude comparison skills (Laski 

& Siegler, 2007). Against this background, a second goal of the current study was to 

examine whether kindergarten students’ performance on my paper-and-pencil task 

correlated with their performance on number line estimation. If a significant relationship 

was revealed between students’ performance on the number line estimation task and their 

scores on the magnitude comparison task, it would suggest that young children’s ability 

to compare magnitudes is related to their underlying mental representation of number 
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even at this early stage of development, and furthermore, that number line estimation and 

magnitude comparison measure similar competencies, thus providing evidence for 

convergent validity. 

4.1.3 The Relationship Between Symbolic and Nonsymbolic 
Processing in Kindergarten Children. 
 

Based on the performance of Grade 1 students in Chapters 2 and 3, I expected that 

kindergartners would be less accurate on symbolic items than nonsymbolic items.  This 

finding would suggest that younger children are worse at processing symbolic 

magnitudes than nonsymbolic magnitudes and would further demonstrate that this 

magnitude comparison task can capture age differences in numerical magnitude 

processing.  More specifically, these results would indicate that over the course of 

developmental time, typically developing children become more proficient with symbolic 

number processing as they progress in school and acquire more familiarity and 

automaticity with numerical symbols. Moreover, it would also suggest that perhaps 

young children have strong pre-existing representations of nonsymbolic numerical 

magnitude (that can even be found in infancy i.e., Xu & Spelke, 2000) and only gradually 

map these onto symbolic representations. 

In this current study, I also anticipated finding a relationship between 

kindergarten students’ performance on an arithmetic assessment and their performance on 

both symbolic and nonsymbolic magnitude comparison as demonstrated by participants 

in the previous two chapters. This would confirm that even at this early age, an 

association can be found between basic magnitude processing, as measured by the paper-

and-pencil task, and higher order math skills.  
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In sum, the aim of the current chapter, in order of the analyses described below, 

was to a) investigate whether kindergarten children would show a significant difference 

in their symbolic and nonsymbolic scores on the paper-and-pencil test as demonstrated by 

Grade 1 students in Chapters 2 and 3, b) identify whether the finding that symbolic 

comparison skills account for unique variance in concurrently measured arithmetic scores 

over and above nonsymbolic skills would be replicated in younger children, c) investigate 

whether performance on the paper-and-pencil test correlated with children’s number line 

estimation abilities and d) explore whether children’s performance on the paper-and-

pencil assessment in kindergarten could predict their math grades in Grade 1. 

4.2 Materials and Method 

4.2.1 Participants 

This project was a unique collaboration between the Numerical Cognition Lab at 

the University of Western Ontario and the Toronto District School Board (TDSB), the 

largest school board in Canada.  Participants included 349 students in senior kindergarten 

representing seven elementary schools in the TDSB. Five students were completely 

removed due to missing demographic information such as age and gender, and another 

thirteen participants were completely removed due to low scores on the Number Naming 

test (see below) for a total sample of 331 (167 females) participants.  

This sample is rare in that participants included individuals from several ethnic 

and socioeconomic backgrounds making it a highly representative sample of Canadian 

kindergarten students. In addition, the TDSB also agreed to provide demographic 

information for each student.  Permission was granted by the TDSB and seven school 

principals gave permission to conduct the following study at their institution.  
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4.2.2 Tests and Materials 

4.2.2.1 Number Naming  

In this task, children were presented with Arabic numbers 1-9 in random order 

and were asked to name each number.  They received one point for each number that was 

correctly named for a maximum score of nine.  This task was administered to measure 

children’s knowledge of the symbolic numbers used in the other tasks. This task was 

essential as the other tasks using symbolic numbers can only be reliably interpreted if 

children know the meaning of the symbols they are shown, therefore any child who 

received a score below seven (thus knowing equal to or fewer than 2/3 of the single digit 

numerals) was removed from the sample. 

4.2.2.2 Magnitude Comparison Task  

This is the same paper-and-pencil task described in Chapters 2 and 3. The only 

exception is that students were given a two-minute time limit for the symbolic items and 

a two-minute time limit for the nonsymbolic items.  This extension in testing time was 

allowed to take into consideration the young age of the current sample compared to the 

older ages tested in the previous chapters. 

4.2.2.3 Number Line Estimation   

For this task, children were asked to estimate the spatial position of an Arabic 

digit on a physical number line. Participants were presented with a number line 25 cm in 

length with the Arabic digit 0 at one end the Arabic digit 10 at the other end and a target 

number in a large font printed above the line (see Fig. 4.1). The children were presented 

with target numbers 1-9, one at a time, in random order and were asked to indicate where 

the number would go on the line. Each item was presented on its own sheet of paper.  
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Instructions were given as follows, “This number line goes from 0 at this end to 10 at this 

end.  If this is 0 and this is 10, where you put N?” (with N being the number specified on 

the particular trial). To ensure that participants understood the instructions given, each 

child completed one sample item as practice with the experimenter before beginning the 

test. To assess number line performance, the individual mean error on the task was 

calculated as a percentage.  Therefore, students who performed well on this task received 

low mean error scores. 

                    

Figure 4.1 Example of a test item on the number line estimation task.  Here, the hatch 

mark represents where an individual may place his or her response to the question “If this 

is 0 and this is 10, where would you put 3?” 

 

4.2.2.4 Arithmetic Task   

Since I was testing kindergarten students, the math subtests of the Woodcock 

Johnson III would not be appropriate because the arithmetic problems are mostly 

presented in a vertical fashion and children are generally not taught how to add numbers 

in this orientation until Grade 1.  Therefore, for the purposes of this chapter, a simple 

non-standardized, paper-and-pencil arithmetic measure was administered.  Participants 
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were given 5 single-digit addition (1+2, 1+3, 4+1, 3+2, 5+1) and 5 single-digit 

subtraction problems (3-1, 2-1, 4-3, 3-2, 4-2). Children received one point for each 

correctly answered problem for a maximum score of ten.  No time constraints were given 

to complete this task.  

4.2.2.5 Report Card Grades   

 In May 2010, as stated in the document Growing Success (2010), the Ontario 

Ministry of Education created a new policy for assessing, evaluating and reporting school 

grades for students in Grades 1-12.  As part of this policy, all elementary school students 

(Grades 1-8) now receive a Progress Report Card after the fall term and two Provincial 

Report Cards; one in the spring and the other in the summer.  The Progress Report Card 

does not give a letter grade or percentage mark for subject areas.  Instead it provides an 

initial indication of a student’s general progress. For subjects like math, the Progress 

Report Card indicates whether a student is progressing very well, progressing well or 

progressing with difficulty. These terms will be changed to above average, average or 

below average respectively for the remainder of the chapter.  

4.2.3 Procedure 

Students were tested by their classroom teacher in their own classroom or in 

another quiet area of their school.  Each testing session was approximately 20 minutes.  

Teachers were trained by the experimenter on the administration guidelines of each 

assessment and were also given detailed manuals with all assessment procedures.  

Although teachers administered the assessments, each of the tests were scored by myself 

and a trained research assistant.  The TDSB provided each student’s Progress Report 
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Card grades in Math after their first three months of Grade 1, which was six months after 

they completed the magnitude comparison task in kindergarten.    

4.3 Results 

4.3.1 Descriptive Statistics 

 Participants’ ages along with the means and standard deviations for each test 

administered are shown in Table 4.1.  

Table 4.1.  

Means and Standard Deviations (S.D.)  

Test                                       N            Mean Scores (S.D.)         Range (min.-max.)    

Age (months)                       331               71.52 (3.31)    77-88 

Number Knowledge          331              8.94 (.280)      7-9    

Arithmetic           291         6.00 (2.93)      1-10 

Symbolic1           302       35.40 (12.75)      1-56 

Nonsymbolic1           296       37.28 (9.81)      2-55 

Overall            282       72.66 (20.23)      8-111 

Number line2           255       13.82 (7.82)      1- 44 

Note. Arithmetic – total correct scores on arithmetic test; symbolic – total correct scores on 
symbolic items of paper-and-pencil test; nonsymbolic – total scores on nonsymbolic items of 
paper-and-pencil test; Overall  - total correct scores on symbolic and nonsymbolic items 
combined; Numberline estimation – mean error given as percentage 
 
1Maximum score on both symbolic and nonsymbolic was 56 
2To assess number line performance the mean error on the task was calculated as a percentage.  

  

As seen in Table 4.1, although the final sample included 331 participants, not all 

participants completed each test. A description of the missing data is provided below. 

In the case of the arithmetic test, 22 students received a score of zero and 18 did 

not complete the arithmetic task.   In the case of the magnitude comparison task, 5 
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students did not complete the symbolic task correctly (i.e., skipped items or pages) and 

30 students did not complete the symbolic task (i.e., the symbolic section of their booklet 

was incomplete).  For the nonsymbolic task, 10 students did not complete the task 

correctly (i.e., skipped items or pages) and 25 participants did not complete the 

nonsymbolic items.  As seen in Table 4.1, 282 students completed both the symbolic and 

nonsymbolic items of the paper-and-pencil test. For the number line task, 7 students’ 

booklets were incomplete or missing, 41 students placed each of their responses in the 

middle of the number line and 28 children did not receive correct test administration by 

their teacher (i.e., students received the test items in numerical order rather than a random 

sequence).   

   

4.3.2 Investigating Symbolic Compared to Nonsymbolic Performance 
on the Paper-and-Pencil Test  

To investigate whether there was a significant difference between children’s  
 
performance on symbolic and nonsymbolic items of the paper-and-pencil assessment, a 

paired samples t-test was completed to compare children’s performance on both formats.  

As seen in Figure 4.2, results revealed that children performed significantly higher on 

nonsymbolic items than symbolic items (t(281) = 2.62, p < .05). 
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Figure 4.2. Bar graph representing participant performance in each format of the paper- 

and-pencil test.  Participants’ performance on nonsymbolic items was significantly higher 

than their performance on symbolic items. Standard errors are represented by the error 

bars attached to each column. 

 
4.3.3 Investigating the Relationship Between the Paper-and-Pencil 
Test, Arithmetic Performance and Number Line Estimation Abilities. 

 

Children’s number line estimation performance was calculated as their percent of 

absolute error (PE).  This was calculated using the following equation (Siegler & Booth, 

2004): 
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For example, if a child was asked to estimate the location of 3 on the number line and 

placed his/her response at the location that corresponded to 5, percent absolute error 

would be 20%: [(5 – 3)/10] x 100.   

 The next analysis examined the relationship between children’s performance on 

the paper-and-pencil test, arithmetic scores and performance on number line estimation 

(see Table 4.2).  Results demonstrated that arithmetic scores significantly correlated with 

symbolic performance (r(291) = .29, p < .01), nonsymbolic performance (r(266) = .22,  

p < .01) and number line scores (r(242) = -.21, p < .01).  Symbolic performance 

significantly correlated with nonsymbolic scores (r(282) = .58, p < .01) and number line 

estimation scores (r(239) = -.26, p < .01).  Nonsymbolic scores significantly correlated 

with number line estimation (r(235) = -.22, p < .01). 

Table 4.2.  
 
Correlation between children’s number line estimation, paper-and-pencil test and 
arithmetic scores 
 
Variable                              1        2                    3                         4                
 1.   Arithmetic                             -                     .29**                 .22**                  - .21**                                           
 2.   Symbolic                                                 -                      .58**                  - .26**          
 3.   Nonsymbolic                                                          -                       - .22**                                    
 4.   Number line                                    -                     
                                                                                             
Note. Arithmetic – mean score on arithmetic test; Symbolic – symbolic mean score;  
Nonsymbolic – nonsymbolic mean score; Number line – mean of percent of absolute error on 
number line estimation task 
 
** p < .01. 
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4.3.4  Investigating the Unique Variance Accounted for in Children’s 
Arithmetic Skills Using Age, Number Line Estimation Scores, 
Symbolic Processing and Nonsymbolic Processing as Predictors. 

In Chapters 2 and 3, the unique variance accounted for in children’s arithmetic 

scores by the symbolic and nonsymbolic items of the paper-and-pencil test was 

examined.  I found that in first to third grade children, symbolic items were a significant, 

unique predictor of participants’ arithmetic scores while nonsymbolic performance was 

not. To extend this finding with the current data, I examined the unique variance 

accounted for in kindergarten children’s arithmetic scores using age, and symbolic and 

nonsymbolic scores on the paper-and-pencil test as predictors. A linear regression was 

completed to identify which of these three variables accounted for greater variance in 

children’s arithmetic skills.  Arithmetic scores were the dependent variable, while age, 

symbolic and nonsymbolic scores on the paper-and-pencil test were the predictor 

variables. Since no hypotheses were made about the order of predictors, and in an effort 

to investigate which variables accounted for significant unique variance, all predictor 

variables were entered as one step. The analysis revealed that the model was significant 

(F(3, 259) = 8.52, p < .01, R2 = .091).  Results also demonstrated that performance on 

symbolic items was a significant predictor of arithmetic performance while children’s 

nonsymbolic scores were not (see Table 4.3). 
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Table 4.3.  
 
Linear regression analyses predicting arithmetic scores with age, symbolic and 
nonsymbolic performance on the paper-and-pencil test as predictors.  
 
Arithmetic 

Predictor                      β                             t                          ΔR2                             

Age          .077   1.27                     .00573           
Symbolic                   .223*               3.02              .03145                            
Nonsymbolic            .081              1.11                     .00103                     
Note. Age – mean age in months; Symbolic – symbolic mean score; Nonsymbolic – nonsymbolic 
mean score 
 
* p < .05. 

 

Since participants’ number line estimation scores and their performance on the 

paper-and-pencil test both significantly correlated with their arithmetic achievement, the 

specificity of the relationship between arithmetic and magnitude processing had to be 

further examined.  To do this, I performed a second regression analysis. Since the results 

of the first regression demonstrated that symbolic processing was the only significant 

predictor of children’s arithmetic skills, for the second regression I only included 

children’s symbolic scores and number line estimation scores as predictors of their 

arithmetic performance. The analysis indicated that the model was significant (F(2, 226) 

= 12.86, p < .01, R2 = .103).  Results also demonstrated that performance on symbolic 

items and number line estimation accounted for unique variance in children’s arithmetic 

skills (see Table 4.4). 
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Table 4.4.  
 
Linear regression analyses predicting arithmetic scores with symbolic performance on the 
paper-and-pencil test and number line estimation as predictors  
 
Math Fluency 

Predictor              β                      t                  ΔR2 

Symbolic               .248**                    3.82           .05788                                
Number line        -.158*                 - 2.43           .01797                                      
Note. Symbolic – symbolic mean score; Number line – mean percentage error on number line 
estimation task  
 
   * p < .05.   
** p  < .01. 
 

4.3.5  Examining the Predictive Validity of the Paper-and-Pencil Test 

 In order to investigate whether children’s performance on the paper-and-pencil 

test in kindergarten could predict their math ability in Grade 1, a repeated measures 

ANOVA using format (symbolic, nonsymbolic) as a within-subjects variable and math 

grade (below average, average, above average) as a between-subjects variable was 

conducted.  It should be noted that I was only provided with Grade 1 math grades for 268 

children from the original sample due to many children having changed schools and 

teacher labour disruptions.  Out of the 268 children in the analysis, 27 students were 

below average, 176 were average and 65 were above average.  Analysis revealed a main 

effect of format (F(1, 265) = 9.36, p < .001, η2 = .034) demonstrating, consistent with the 

data reported above, a significant difference between children’s performance on the 

symbolic and nonsymbolic items. Results also revealed a main effect of math grade (F(2, 

265) = 14.43, p < .001, η2 = .098) which implies that children’s performance on the 

magnitude comparison task significantly differed between their level of math 
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performance as reported on their Grade 1 report card. That is, the better participants 

performed on the magnitude comparison task in kindergarten, the higher their 

achievement in Grade 1 math (see Fig 4.3). I also found an interaction of format and math 

grade (F(2, 265) = 3.89, p < .001, η2 = .029), whereby below-average participants 

performed significantly better on the nonsymbolic task compared to the symbolic task 

(t(26) = 3.07, p <.05). In contrast, there was no significant difference between formats in 

average (t(175) = 1.84, ns) or above average (t(64) = .194, ns) participants (see Fig. 4.3).2 

 

 

 

 

 

 

 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 I also conducted a multinomial logistic regression whereby results demonstrated that the higher a 
participant’s score on the magnitude comparison task, the less likely he/she would be rated as below 
average or average by his/her teacher. 



 

 

148	
  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Bar graph illustrating overall performance of participants in each math grade 

level for symbolic and nonsymbolic items.  Below average participants were significantly 

better at nonsymbolic items compared to symbolic items.  Participants rated as average 

and above average in math did not demonstrate any difference between formats.  The bar 

graph also illustrates that the higher students’ achievement level in Grade 1 math, the 

better their overall scores on the paper-and-pencil test in kindergarten. Standard errors are 

represented by the error bars attached to each column. 
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4.4 Discussion 

The goal of the current chapter was to a) investigate whether kindergarten 

children would show a significant difference in their symbolic and nonsymbolic scores on 

the paper-and-pencil test as demonstrated by Grade 1 students in Chapters 2 and 3,  

b) identify whether the finding that symbolic comparison skills account for unique 

variance in arithmetic scores over and above nonsymbolic skills could be replicated from 

Chapter 2 and 3, c) investigate whether performance on the paper-and-pencil test 

correlated with children’s number line estimation abilities and d) explore whether 

children’s performance on the paper-and-pencil assessment in kindergarten could predict 

their math grades in Grade 1.  

In both Chapter 2 and Chapter 3, it was revealed that Grade 1 students earned 

significantly lower scores on symbolic items of the paper-and-pencil test compared to the 

nonsymbolic items.  The first goal of the current chapter was to extend these findings by 

exploring whether the results of the previous two chapters could be replicated using data 

from a younger sample.  Results from the current data set revealed that kindergarten 

children received significantly higher scores on nonsymbolic items compared to symbolic 

items of the paper-and-pencil processing measure.  These findings correspond with the 

results of Chapters 2 and 3, giving more evidence to suggest that young students who are 

just being introduced to number symbols through formal math instruction may have a 

more solid representation of nonsymbolic magnitudes while their representation of 

symbolic magnitudes is still in the process of developing. 

The second purpose of the current chapter was to identify if symbolic processing, 

as measured by the paper-and-pencil test, accounted for greater variance in kindergarten 

children’s arithmetic performance compared to their nonsymbolic processing as found in 
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Chapter 2 and 3 with first, second and third grade children.  I first performed a correlation 

analysis, which revealed that both children’s symbolic and nonsymbolic scores were 

significantly related to their scores on the arithmetic test.  In other words, children who 

performed well on the paper-and-pencil task also received high scores on the non-

standardized arithmetic measure.  A linear regression analysis revealed that kindergarten 

children’s performance on symbolic items was a significant unique predictor of 

arithmetic skills while nonsymbolic scores were not, replicating results from the previous 

two chapters. 

Again, these findings replicate what has been demonstrated in earlier studies  

(i.e., DeSmedt, Verschaffel & Ghesquière, 2009; Durand et al., 2005; Holloway & 

Ansari, 2009) which established that symbolic magnitude processing is significantly 

correlated with math achievement as well as findings by Halberda, Mazzocco and 

Feigenson (2008) and Mazzocco, Feigenson and Halberda (2011) who found that 

nonsymbolic processing also correlates with children’s arithmetic performance. Findings 

in the current chapter also provide more data to support the criterion-related validity of 

the paper-and-pencil measure given that symbolic processing was a significant correlate 

of arithmetic achievement.   

 The third goal of Chapter 4 was to further assess the convergent validity of the 

paper-and-pencil test by investigating the relationship between children’s performance on 

the number line estimation task and their performance on the paper-and-pencil measure.  

Results demonstrated that kindergartners’ performance on both symbolic and 

nonsymbolic items correlated with their number line estimates.  This data provides 

further evidence for the convergent validity of the paper-and-pencil assessment.  
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Secondly, results also indicated that children’s performance on the number line 

estimation task was related to their arithmetic achievement replicating what has been 

found in previous work (Booth & Siegler, 2006; Laski & Siegler, 2007; Schneider, 

Grabner & Paetsch, 2009; Siegler & Booth, 2004).  Taken together, these data suggest 

that children with more precise representations of numerical magnitude as measured by 

the number line task and paper-and-pencil test, are those who have relatively higher 

arithmetic scores. 

Finally, a linear regression analysis was conducted to investigate the unique 

variance accounted for in children’s arithmetic skills using children’s number line 

estimation abilities and symbolic processing skills as predictors. I found that children’s 

performance on the symbolic items of the paper-and-pencil test and the number line task 

accounted for unique variance in arithmetic achievement.  

 The final aim of the current chapter was to examine whether kindergarten scores 

on the paper-and-pencil assessment could predict children’s math performance as 

assessed by their teachers in Grade 1, six months after they completed the magnitude 

comparison task in kindergarten.  Results revealed an effect of math grade whereby 

children who performed poorly on the magnitude comparison task in kindergarten also 

received poor math grades in Grade 1.  Furthermore, results showed that children who 

were rated as below average by their teacher in Grade 1 math demonstrated significantly 

higher scores in nonsymbolic items as compared to symbolic items (with the performance 

on both symbolic and nonsymbolic in this group being lower than that of their peers who 

were rated as average or above average).  No significant difference was found between 

formats in children rated as average and children rated as below average.  This finding 
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provides evidence to suggest that weak performance on symbolic comparison in 

kindergarten indicates that a child is a risk for receiving a low math grade in Grade 1.  

However, the same conclusion cannot be equally drawn from children’s nonsymbolic 

performance in kindergarten. 

In conclusion, results of the current chapter demonstrate that kindergarten 

children received significantly higher scores on the nonsymbolic items compared to the 

symbolic items of the paper-and-pencil test.  Secondly, results of the current chapter 

indicate that a relationship exists between kindergartners’ performance on the paper-and-

pencil test and their arithmetic skills.  Moreover, using the paper-and-pencil assessment, 

it was found that children’s symbolic processing was a significant concurrent correlate of 

their arithmetic skills, while their nonsymbolic comparison skills were not. The current 

data also revealed that the paper-and-pencil test significantly correlated with children’s 

number line performance, and children’s symbolic processing accounted for unique 

variance in arithmetic over and above their estimation skills as measured by the number 

line task.  Finally, it was found that children’s performance on the paper-and-pencil test 

in kindergarten was a predictor of their math performance in Grade 1 as measured by 

their first term report card. 

There are some limitations that are worth noting. First, in order to test the large 

number of children in the current sample, teacher assistance in data collection was 

necessary.  Although teachers received training on all the tasks, not all tasks were 

administered correctly and therefore had to be removed from the final analyses.  There 

were also many incomplete packages with no information provided by the teacher to 

explain the missing data, although they were asked to do so.  Additionally, in scoring the 
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data, it was revealed that the number line estimation task was difficult for some children 

to understand as many children placed their responses in the middle of the line.  

Secondly, only children’s first term grades were included in the analysis. Future research 

should also include children’s math grades from their second and third term report cards.  

This will permit a clearer picture of each student’s performance over the long term.    

As mentioned above, the set of participants in the current study is a very diverse 

sample representing a variety of socioeconomic backgrounds. Previous research has 

shown that there is an association between a child’s socioeconomic status and their math 

achievement.  Specifically, children from low-income homes are most at risk for 

experiencing difficulties in math (Campbell & Silver, 1999).  Moreover, even as early as 

kindergarten, children from low-income families demonstrate significantly poorer 

numeracy skills compared to their peers from more advantaged homes (Jordan, 

Huttenlocher & Levine, 1992). As such, I would expect to find a relationship between 

socioeconomic status and performance on my paper-and-pencil task such that children 

from low-income families would receive lower scores in comparison to their high-income 

peers. If this result were found, it would suggest that my task is capable of distinguishing 

between the basic magnitude processing skills of children from different socioeconomic 

statuses. The research department of the TDSB is interested in exploring this line of 

investigation and will be providing this information allowing this analysis to be 

performed. 

The research department of the TDSB is also interested in conducting a 

longitudinal study and following the same cohort of students in this study for the next 

several years.  Their research department will examine whether performance on my task 
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at kindergarten correlates with students’ math achievement in upper grades, which 

includes their report card grades and scores on the Education Quality and Accountability 

Office (EQAO) test.  The EQAO is a province-wide test administered to students in 

Grade 3 to assess their literacy and math skills at the end of the primary division 

(Education Quality and Accountability Office, 2012).  If this relationship were found, it 

would suggest that my test is capable of predicting student math achievement as 

measured by teacher evaluation and standardized tests, suggesting that this tool can 

possibly be used as a means of identifying students at risk for developing later difficulties 

in math. 

In Chapters 2 and 3, participants included children who had already received at 

least one year of formal math lessons.  In the present chapter, kindergarten children were 

assessed, an age group who receive comparatively less formal instruction in math 

compared to first, second and third graders.  The data set from this chapter demonstrated 

that the paper-and-pencil measure could identify individual differences in the symbolic 

and nonsymbolic magnitude processing abilities of kindergarten children. This evidence 

indicates that a test of this kind is appropriate for assessing school entry knowledge of 

magnitude comparison. Furthermore, it reveals the importance of the competencies 

measured by the magnitude comparison task, demonstrating that magnitude processing is 

as foundational to numeracy as phonemic awareness is to reading.  

Recall from the literature review presented earlier, that studies by Duncan et al. 

(2007), Romano et al. (2010) and Geary et al. (2013), each demonstrated the importance 

of early math skills for later outcomes in students’ academic success. The results of the 

current chapter extend these findings by demonstrating, more specifically, that an early 
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understanding of magnitude processing, especially symbolic comparison, is a strong 

predictor of future math competencies. Finally, the findings in the current chapter are the 

first to show the predictive validity of a joint assessment measuring both symbolic and 

nonsymbolic processing.  This is a key finding as it also suggests that an assessment of 

this kind may be very beneficial in helping to identify children at risk for later learning 

difficulties in mathematics at the very beginning of their formal math education, thus 

reducing the chance of student failure.   

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

 

 

 

 

 

 

 



 

 

156	
  

4.5 References	
  

Booth J., & Siegler, R.S. (2006).  Developmental and Individual Differences in Pure  

Numerical Estimation, Developmental Psychology, 41(6), 189-201.	
  

Campbell, P.F., & Silver, E. A. (1999).  Teaching and learning mathematics in poor  

communities.  Reston, VA: National Council of Teachers in Mathematics. 

De Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009).  The predictive value of  

numerical magnitude comparison for individual differences in mathematics  

achievement.  Journal of Experimental Child Psychology, 103, 469-479. 

Duncan, G.J., Dowsett, C.J., Classens, A., Magnuson, K., Huston, A.C., Klebanov,  

P.,……Japel, C. (2007). School readiness and later achievement. Developmental 

Psychology, 43, 1428-1446. 

Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005).  The cognitive foundations  

of reading and arithmetic skills in 7 to 10-year-olds.  Journal of Experimental  

Child Psychology, 91, 113-136. 

Education Quality and Accountability Office. (2012). Retrieved from 	
  

http://www.eqao.com/categories/home.aspx?Lang=E. 

Ebel, R., & Frisbie, D. (1991).  Essentials of Educational Measurement.  Englewood  

cliffs, NJ: Prentice Hall.  

Geary, D.C, Hoard, M.K., Nugent, L., & Bailey, D.H. (2013).  Adolescents’ functional  

numeracy in predicted by their school entry number system knowledge. PLoS 

ONE, 8(1): e5461. 

Griffin, S. & Case, R. (1997).  Rethinking the primary school math curriculum: An  

approach based on cognitive science.  Issues in Education, 3(1), 1-49. 



 

 

157	
  

Halberda, J.,  Mazzocco, M., & Feigenson, L. (2008).  Individual differences in non-  

verbal number acuity correlate with maths achievement. Nature, 455, 665-668.  

Holloway, I., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The  

distance effect and children’s mathematical competence. Journal of Experimental 

Child Psychology, 103(1), 17-29. 

Jordan, N.C., Huttenlocher, J., & Levine, S.C. (1992).  Differential calculation abilities in  

young children from middle- and low-income families.  Developmental  

Psychology, 28, 644-653. 

Laski, E.V., & Siegler, R.S. (2007).  Is 27 a big number?  Correlational and ausal  

connections among numerical categorization, number line estimation, and 

numerical magnitude comparison, Child Development, 78(6), 1723-1743. 

 Mazzocco, M., Feigenson, L., & Halberda, J. (2011).  Preschoolers’ precision of the       

approximate number system predicts later school mathematics performance. 

 PloS ONE, 6(9): e23749. 

Ontario Ministry of Education. (2010). Growing Success : Assessment, evaluation,  

and reporting in Ontario Schools. www.edu.gov.on.ca. 

Prochner, L. (2000). A history of early education and child care in Canada, 1820-	
  

1966" in Early Childhood Care and Education in Canada (eds. L. Prochner     	
  

& N. Howe), Vancouver: UBC Press.	
  

Romano,G., Babchishin,L., Pagani, L.S., & Kohen, D. (2010).  School readiness and  

later achievement: Replication and extension using a nationwide Canadian survey, 

Developmental Psychology, 46(5), 995-1007.	
  

 



 

 

158	
  

 

Schneider, M., Grabner, R.H., & Paetsch, J. (2009). Mental number line, number line  

estimation, and mathematical school achievement: Their interrelations in Grades 5  

and 6. Journal of Educational Psychology, 101, 359–372. 

Siegler, R.S., & Opfer, J.E. (2003).  The development of numerical estimation: Evidence  

for multiple representations of numerical quantity.  Psychological Science, 14(3), 

237-243. 

Stanovich, K. E. (1986). Matthew Effects in reading: some consequences of individual 

differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360-

407.	
  

Stanovich, K.E., Cunningham, A.E., & Cramer, B.B. (1984). Assessing phonological  

awareness in kindergarten children: Issues of task comparability. Journal of  

Experimental Child Psychology, 38(2), 175-190. 

Vellutino, F.R., & Scanlon, D.M. (1987). Phonological coding, phonological  

awareness and reading ability: Evidence from a longitudinal and experimental 

study. Merrill-Palmer Quarterly, 33, 321-363. 

Williams, J. (1984). Phonemic analysis and how it relates to reading. Journal of  

Learning Disabilities, 17, 240-5. 

Wright, R.J., Martland, J., & Stafford, A.K. (2006). Early Numeracy: Assessment for  

Teaching & Intervention. Thousand Oaks, CA: SAGE Publications. 

 

 

 



 

 

159	
  

 

Chapter 5 

5. Conclusion 

5.1 Summary of Results 

 Research has repeatedly demonstrated that the basic magnitude processing skills 

of children are related to their higher-order math skills, especially arithmetic (De Smedt, 

Verschaffel & Ghesquière, 2009; Durand et al., 2005; Halberda, Mazzocco & Feigenson, 

2008; Holloway & Ansari, 2009; Mazzocco, Feigenson & Halberda, 2011).  However, 

the formal assessment of this foundational competency in primary school-aged children 

has largely been overlooked in the domain of numeracy.  The intention of this thesis, 

therefore, was to design a simple paper-and-pencil measure of numerical magnitude 

comparison with the purpose of assessing both symbolic (i.e., Arabic numerals) and 

nonsymbolic (i.e., arrays of dots) magnitude processing skills in children.   This thesis 

presented three studies designed to investigate children’s performance on the paper-and-

pencil measure, its concurrent relationship to arithmetic achievement, its reliability and 

validity and its ability to predict math performance over time.   

 The evidence presented in Chapter 2 demonstrated that children’s performance on 

both the symbolic and nonsymbolic items of the paper-and-pencil test correlated with 

individual differences in arithmetic achievement.  However, only symbolic processing 

accounted for unique variance in arithmetic scores while nonsymbolic processing did not.  

Results also demonstrated that children’s performance on the symbolic items of the 

paper-and-pencil test correlated with arithmetic skills even when controlling for other 

factors such as age, visual-spatial working memory, verbal working memory, IQ and 

reading.  Additionally, Grade 1 students received higher scores on nonsymbolic items 
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compared to symbolic items on the paper-and-pencil test while second and third grade 

children did not show this difference in performance across formats. 

 Results in Chapter 3 revealed that the paper-and-pencil test demonstrated 

significant convergent validity, criterion validity and test-retest reliability.  Using a 

sample of Grade 1 children, it was found that symbolic but not nonsymbolic processing, 

as measured by the paper-and-pencil test, correlated with symbolic and nonsymbolic 

trials of a computer task of magnitude comparison.  Findings also showed that children’s 

performance on both the symbolic and nonsymbolic items of the paper-and-pencil test 

and the computer task correlated with their arithmetic achievement.  Consistent with the 

results reported in Chapter 2, only symbolic processing accounted for unique variance in 

arithmetic performance while nonsymbolic processing did not. This was true for both the 

computerized and paper-and-pencil versions.  Additionally, children in Grade 1 again 

performed significantly better on nonsymbolic items than they did on symbolic items in 

the paper-and-pencil test. In addition, further replicating the data presented in Chapter 2, 

it was found that symbolic processing accounted for unique variance in arithmetic scores 

over and above visual-spatial working memory.  Finally, results demonstrated that 

children’s scores on the paper-and-pencil test at the first time point of testing correlated 

with their scores at the second time point of testing, thus, demonstrating test-retest 

reliability.  

 In Chapter 4, kindergarten children’s performance on the paper-and-pencil test 

was found to correlate with their arithmetic performance.  Again, symbolic processing 

accounted for unique variance in children’s arithmetic skills over and above nonsymbolic 

processing.  Like the Grade 1 participants in Chapters 2 and 3, it was also found that 



 

 

161	
  

participants performed significantly better on nonsymbolic items compared to symbolic 

items.  Finally, results revealed that children’s performance on the paper-and-pencil test 

correlated moderately with individual differences on the number line estimation task.  

This finding provided further evidence of the convergent validity of the paper-and-pencil 

test.  The last finding of this chapter revealed that participants’ performance on the paper-

and-pencil test in kindergarten was a significant predictor of their math grade on their 

first term report card in Grade 1 (recorded around 6 months after the paper-and-pencil 

test results).       

 Together, these three studies give evidence to suggest that a simple two-minute 

paper-and-pencil test is a reliable and valid way to assess basic magnitude processing in 

children from kindergarten to the third grade.  The next section of this chapter will 

explore what the results of these studies can reveal about the role of symbolic and 

nonsymbolic processing in children’s higher-level math abilities, the importance of 

assessing this skill in young children and the educational implications of these findings.  

This chapter will conclude with an outline of the limitations of these studies and future 

possible directions for this line of research. 

5.2 The Role of Symbolic and Nonsymbolic Processing in the 
Development of Children’s Numerical Abilities 
   

Data from all three studies of this thesis converge to reveal a relationship between 

children’s symbolic and nonsymbolic processing skills, a correlation between children’s 

symbolic processing and arithmetic skills and, finally, an association between 

nonsymbolic processing and arithmetic achievement.  In other words, children with high 

accuracy on both formats of the paper-and-pencil test also tended to receive high scores 

on tests of arithmetic achievement, and this was observed for participants in kindergarten 
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through Grade 3.  In addition, results from the first two studies conducted in this thesis 

demonstrated that in Grades 1-3 symbolic processing accounted for unique variance in 

children’s arithmetic skills even when controlling for working memory, reading ability, 

age and IQ, whereas children’s performance on nonsymbolic items of the paper-and-

pencil measure was not a unique predictor of arithmetic skills.  

 Previous and current studies in this area of research have produced mixed findings 

regarding the relationship between nonsymbolic and symbolic magnitude processing in 

general and also the association between magnitude processing and children’s math 

achievement (Bonny & Lourenco, 2013; Halberda, Feigenson & Mazzocco, 2008; 

Holloway & Ansari, 2009; Libertus, Feigenson & Halberda, 2013; Mazzocco, Feigenson 

& Halberda, 2011; Mundy & Gilmore, 2009; Sasanguie, Defever, Maertens & Reynvoet, 

2013). Thus, the evidence regarding the importance of these processing skills in 

children’s math development remains inconclusive.  The contribution of this thesis to this 

debate will be discussed here in more detail. 

5.2.1 The Relationship Between Symbolic and Nonsymbolic 
Magnitude Processing 
 
 As presented several times in this thesis, evidence suggests that as infants we 

demonstrate the ability to represent approximate magnitudes, and then with explicit 

instruction we learn to represent these quantities more precisely with number words and 

other numerical symbols, such as Arabic numerals. Questions that arise from this 

observation include, how do these systems of symbolic and nonsymbolic processing 

interact throughout development? Does symbolic number knowledge progress 

independently of nonsymbolic comparison skills, or do the two systems work together in 

the development of one’s mathematical capabilities? 
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In answering these questions, the results of the current thesis demonstrated a 

relationship between children’s symbolic and nonsymbolic processing skills in each of 

the grade levels examined. Thus, these findings suggest that both symbolic and 

nonsymbolic magnitude processes share variance associated with core magnitude 

processing, giving evidence to suggest that exact and approximate representations of 

magnitude may not develop independently of each other, but are perhaps linked in 

childhood.   

  These findings diverge from the results of Holloway and Ansari (2009) who 

found no significant relationship between children’s symbolic and nonsymbolic 

processing abilities.  They interpreted their results to suggest that symbolic skills develop 

independently of nonsymbolic skills which present the possibility of different underlying 

representations for symbolic and nonsymbolic numerical magnitude. 

Further evidence of which comes from recent research by Sasanguie, Defever, 

Maertens and Reynvoet (2013).  In their study, 43 kindergarten children completed a 

response time measure of nonsymbolic magnitude comparison and 6 months later they 

completed a different version of the nonsymbolic task along with a symbolic comparison 

task.  Results demonstrated that children’s accuracy on the nonsymbolic magnitude 

comparison at the first time point did not correlate with their performance on the 

symbolic task half a year later.  Moreover, children’s performance on the nonsymbolic 

task at the second time point also did not correlate with their symbolic processing skills 

measured at that same time.  Due to the absence of the association between performances 

on the nonsymbolic and symbolic tasks, the authors suggest, like Holloway and Ansari 

(2009), that this finding provides evidence for two separate representational systems, 
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again indicating that symbolic number knowledge may develop independently of 

nonsymbolic processing skills.  As such, the nonsymbolic system is believed to play a 

subordinate role in children’s development of higher-level math abilities.  

There are noticeable differences between my findings and those from the studies 

presented above which may have led to a conflict in the results obtained. First, Holloway 

and Ansari (2009) correlated children’s symbolic NDE with their nonsymbolic NDE, 

whereas, in my work I correlated children’s symbolic accuracy with their nonsymbolic 

accuracy on the paper-and-pencil test.  Therefore, the differences between findings might 

stem from the different measures used. Although Sasanguie, Defever, Maertens and 

Reynvoet (2013) correlated the accuracy of children’s symbolic processing skills with 

their nonsymbolic skills, their sample size of 43 kindergarten students was substantially 

smaller than my sample of 282 kindergarten children.  This difference may account for 

the discrepancy in both our findings as my work may have benefitted from greater power 

due to my larger sample.  Furthermore, in their study, Sasanguie and colleagues 

mentioned that they did not test children’s knowledge of the number symbols before 

testing began; therefore, it may be possible that the lack of a relationship between 

children’s symbolic and nonsymbolic processing skills could be due to the fact that some 

children may not have recognized all of their symbolic numbers.   

5.2.2 The Relationship Between Magnitude Processing and 
Children’s Math Achievement 
 

In the literature, there is a group of studies showing that nonsymbolic magnitude 

processing in child participants is found to correlate with individual differences in math 

achievement even when controlling for variables such as general intelligence, working 

memory and speed of processing (e.g., Bonny & Lourenco, 2013; Halberda, Feigenson & 
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Mazzocco, 2008; Libertus, Feigenson & Halberda, 2013; Mazzocco, Feigenson & 

Halberda, 2011). In contrast, however, the works of other research groups demonstrate 

that children’s symbolic processing correlates with math achievement and is a significant 

predictor of math performance (e.g., Chard et al., 2005; De Smedt, Verschaffel & 

Ghesquière, 2009; Durand et al., 2005). The results of this dissertation are in line with 

these two groups of findings, in that, both nonsymbolic and symbolic processing was 

found to correlate with math achievement. One important observation to note here, 

however, is that in both groups of studies mentioned above, only one form of processing 

at a time was investigated in children.  In other words, participants were not given tasks 

of nonsymbolic and symbolic processing in each study; therefore, the unique contribution 

of both kinds of processing in children’s math achievement cannot be properly 

determined. 

   Work by Holloway and Ansari (2009) and Rousselle and Noël (2007) in which 

children received both symbolic and nonsymbolic tests of magnitude comparison 

demonstrated that only symbolic processing correlated with individual differences in 

children’s math achievement.  I found a significant correlation between both symbolic 

processing and arithmetic achievement and nonsymbolic processing and arithmetic 

achievement. My results may have diverged from those of Holloway and Ansari (2009) 

due to differences in sample size.  Holloway and Ansari (2009) had a sample size of 87 

children ages 6-8, whereas, my work had a sample of 535 children from 5-9 years old.  

This larger sample size and age range may have afforded more power and a better chance 

of capturing greater individual differences in student performance.  Second, as previously 

mentioned, Holloway and Ansari (2009) used the NDE to measure children’s magnitude 



 

 

166	
  

processing skills, whereas, in the current study children’s processing abilities were 

measured using accuracy. Again, the differences between findings may be due to the 

different measures used. 

However, like Holloway and Ansari (2009), all three studies in this thesis 

converge to reveal that symbolic processing accounts for unique variance in children’s 

arithmetic skills while nonsymbolic processing does not.  This result gives further 

evidence to suggest that the mapping of symbols to numerical magnitudes is an important 

correlate of individual differences in children’s arithmetic achievement as it allows for 

precise representation of quantities which is necessary for accurate responses in 

arithmetic.  

The finding that nonsymbolic processing does not account for unique variance in 

children’s arithmetic performance may be interpreted to mean that its variance is entirely 

shared with symbolic processing, or that its variance is shared with symbolic non-

numerical variance (i.e., attention, response selection, etc.).  Future research is needed to 

further examine this line of investigation. 

One important finding from the current thesis was that my data demonstrated that 

the youngest children in the sample, those in kindergarten and Grade 1, performed more 

strongly (i.e., higher levels of performance accuracy) on nonsymbolic processing as 

compared to symbolic processing.  These data provide evidence to support the notion that 

perhaps symbolic representations are only gradually mapped on to nonsymbolic 

representations and demonstrate that mapping is a process that becomes more refined 

over the course of development and learning. The results demonstrated here suggest that 

young children are still reliant on their nonsymbolic system when processing magnitude; 
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however, with more formal math instruction the symbolic system becomes stronger, 

indicating that children’s mapping skills become more efficient with time.  Moreover, 

results in Chapter 4 revealed that children rated as below average in Grade 1 math 

performed significantly worse on symbolic magnitude comparison versus nonsymbolic 

magnitude comparison, as measured by the paper-and-pencil test in kindergarten.  Thus, 

being poor at symbolic magnitude processing in kindergarten appears to be a good 

indicator of future difficulties in higher-level mathematics.    

Clearly, more research is needed to determine exactly how symbolic and 

nonsymbolic systems interact and further examination is required to answer the question 

of the nature and origin of their relationship.  Investigations of this kind may shed more 

light on the exact role that nonsymbolic processing plays in the development of 

children’s symbolic representation and magnitude processing abilities.  Moreover, future 

studies should also continue to examine what seems to be the specialized role of symbolic 

magnitude processing in the development of children’s math learning and how this can be 

fostered in a classroom setting.   

5.3 Educational Implications 

As stated in the introduction of this thesis, there is currently a lack of formal 

assessment tools available to measure both symbolic and nonsymbolic basic magnitude 

processing skills in children, despite a considerable number of studies that demonstrate a 

significant relationship between children’s magnitude processing abilities and their math 

achievement.  The findings of this thesis converge with the results of Chard et al. (2005) 

who also found that a paper-and-pencil test of symbolic magnitude processing correlated 

with children’s math achievement.  By including nonsymbolic items, the findings in this 
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study extend work by Chard et al. (2005) by demonstrating that both nonsymbolic and 

symbolic magnitude processing correlate with children’s arithmetic performance.  

As discussed in Chapter 4, school entry skill in mathematics is a strong predictor 

of a child’s later academic achievement and success in the workplace; therefore, sound 

measures of basic numeracy are necessary in the modern-day classroom.  In Chapter 3 

and Chapter 4, the validity and reliability of the paper-and-pencil test designed for this 

thesis project were assessed and results indicated that this simple two-minute evaluation 

demonstrates levels of validity and reliability in the measurement of basic magnitude 

processing skills in primary school children. Furthermore, results in Chapter 4 also 

demonstrated that performance in kindergarten is a significant indicator of how well a 

child will perform in Grade 1 math.  This suggests that my paper-and-pencil test is related 

to educational assessment and can predict school grades in math after the first few 

months of formal math instruction.  

There are several educational implications that can be drawn from the findings 

discussed above.  First, there is obvious merit in evaluating children’s basic magnitude 

skills, even as early as kindergarten.  Seeing that performance on the paper-and-pencil 

test in kindergarten can predict children’s math performance in Grade 1, a test of this 

kind has the potential to be used as a screener by teachers in kindergarten classrooms to 

identify students who may be at risk for developing more serious difficulties in number 

related learning.  

Second, since children’s symbolic magnitude processing accounted for unique 

variance in their arithmetic achievement, this suggests that teachers, especially in 

preschool and kindergarten, should place great emphasis on helping their students to 
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understand the meaning of numerical symbols, thereby enhancing children’s ability to 

map number symbols unto nonsymbolic quantities. Learning to accurately map symbolic 

magnitudes onto nonsymbolic magnitudes is a crucial step toward performing more 

complex mathematics such as arithmetic operations (Booth & Siegler, 2008; Geary, 

Hoard, Nugent & Byrd-Craven, 2008; Siegler & Booth, 2004). 

5.4 Limitations  

There were a few limitations in the current thesis which will be mentioned here. 

The first limitation was that participants did not receive a non-numerical control task 

having the same task demands as the paper-and-pencil test. By including a control task 

such as a speed of processing measure, for example, more information could have been 

obtained about the number specificity of the relationships observed. However, in Chapter 

2, general intelligence and working memory were controlled, making it unlikely that the 

variance explained by the paper-and-pencil test was not related to children’s magnitude 

processing abilities.   

The second limitation was the layout of the items within the booklet itself which 

may have added a component of visual complexity to the task.  There were many items 

per page in the booklet and the items themselves were not large which may have been 

difficult for participants to complete, especially the youngest children.  In addition, due to 

the motor component of the task in crossing out responses, individual differences in fine 

motor skills may have played a role in student outcomes. However, if this were a factor, 

since my test included both symbolic and nonsymbolic items, I would not have expected 

differences between these conditions. Yet, differences were found in the youngest 

participants where these children performed significantly better on the nonsymbolic items 
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compared to the symbolic items, and overall only symbolic performance predicted unique 

variance in children’s arithmetic scores. Again, this suggests that the variability in scores 

explained by the paper-and-pencil test was related to magnitude processing and was not 

confounded by other factors.  

5.5 Future Directions 

The paper-and-pencil test used in the current thesis was designed for use on a 

global scale and to accommodate classroom settings where access to technology may not 

be feasible. One line of future research, therefore, could involve the investigation of 

individual differences on the performance of the paper-and-pencil test across cultures and 

systems of education.  For instance, results from this thesis demonstrated that Canadian 

children’s performance on the magnitude comparison task was related to individual 

differences in arithmetic.  Thus, one future question would be to investigate if these 

findings are generalizable to other cultural settings.  In the same vein, class sizes in many 

developing countries are large, with 50 students or more. Meanwhile in Canada, some 

classrooms can have up to 25 students.  Assessing students on a one-on-one basis is a 

time-consuming procedure for teachers having many students and can take away time 

which would be better used in classroom instruction. Therefore, it would be important for 

forthcoming research to assess the efficiency of the paper-and-pencil test administered in 

a group setting.    

Based on the findings of the current thesis, an assessment such as the paper-and-

pencil test would be ideally used as a screener, preferably in the earliest years of 

schooling.  However, before this can be accomplished, norms of this test would first have 

to be established to gain a true picture of the developmental changes captured by this 
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simple measure.  Along these same lines, further assessments of this test’s validity and 

reliability across different age groups are also needed. 

Future investigations can also be used to examine how reliable magnitude 

processing skills, as measured by the paper-and-pencil test, are in predicting increasingly 

advanced mathematical processing such as high school math (i.e., algebra and geometry).  

This will allow for a greater understanding of how far-reaching the foundational basis of 

these critical skills truly is.  

Finally, forthcoming research on number processing assessments should continue 

to be examined using rigorous, empirical methods of investigation. In this way, coming 

assessments of the foundational competencies of mathematics can be as effective as those 

used in the domain of literacy, and children around the globe can be assured of a brighter 

future.  

5.6 General Conclusion 

 In conclusion, the studies outlined in this thesis have presented evidence that a 

simple two-minute assessment of children’s symbolic and nonsymbolic magnitude 

processing skills holds promise as a reliable and valid method of assessing magnitude 

processing in the first years of school.  While much is still left to be learned about how 

these two systems of representation interact and develop, future studies can begin to 

apply what is already known and can build on this knowledge.  In so doing, 

improvements can be made in the way students are assessed in school, which will also 

lead to improvements in curriculum design and classroom instruction.  
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