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c-Kit and stem cell factor regulate PANC-1 cell
differentiation into insulin- and glucagon-producing cells

Yuexiu Wu'?, Jinming Li'%, Saira Saleem'?, Siu-Pok Yee®*, Anandwardhan A Hardikar* and Rennian Wang'*~

Recent evidence has shown that stem cell factor (SCF) and its receptor, c-Kit, have an important role in pancreatic islet
development by promoting islet cell differentiation and proliferation. In this study, we examined the role of c-Kit and SCF
in the differentiation and proliferation of insulin- and glucagon-producing cells using a human pancreatic duct cell line
(PANC-1). Our study showed that increased expression of endocrine cell markers (such as insulin and glucagon) and
transcription factors (such as PDX-1 and PAX-6) coincided with a decrease in CK19" and c-Kit ™ cells (P<0.001) during
PANC-1 cell differentiation, determined by immunofluorescence and gRT-PCR. Cells cultured with exogenous SCF showed
an increase in insulin* (26%) and glucagon* (35%) cell differentiation (P<0.01), an increase in cell proliferation (P <0.05)
and a decrease in cell apoptosis (P<0.01). siRNA knockdown of c-Kit resulted in a decrease in endocrine cell differ-
entiation with a reduction in PDX-1 and insulin mRNA, as well as the number of cells immunostaining for PDX-1 and
insulin. Taken together, these results show that c-Kit/SCF interactions are involved in mediating islet-like cluster formation

and islet-like cell differentiation in a human pancreatic duct cell line.
Laboratory Investigation (2010) 90, 1373-1384; doi:10.1038/labinvest.2010.106; published online 7 June 2010
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Islet transplantation is a promising method for the cure of
diabetes.! However, the limited availability of cadaveric
donors greatly hampers the application of this method.*?
Therefore, multiple alternative methods are being explored to
generate insulin-producing cells in vitro.*> A better under-
standing of the factors responsible for islet cell growth and
differentiation is important to develop an unlimited supply
of islets.

c-Kit is a receptor tyrosine kinase that binds stem cell
factor (SCF). It has been well established that c¢-Kit/SCF
interaction is critical for the survival and development of
stem cells involved in hematopoiesis, pigmentation and
reproduction.® Recently, studies in the human and rat fetal
pancreas have shown that c-Kit is expressed in islets and its
ligand SCF is present in the pancreatic mesenchyme.””
Oberg-Welsh and Welsh” reported that c-Kit/SCF interaction
promoted an increase in insulin content, indicating its role in
the maturation of pancreatic f-cells. We recently examined
the c-Kit expression pattern in the developing rat'’ and
human fetal pancreas,”" as well as in epithelial monolayers

derived from postnatal rat islets.'> Our studies showed
pronounced changes in the distribution and population dy-
namics of c-Kit-expressing cells during islet development and
differentiation, suggesting that c-Kit may have an important
role.”'? c-Kit ™ epithelial monolayers derived from postnatal
rat islets can give rise to new f-cells that secrete insulin in
a glucose-responsive manner.'> Furthermore, a study of
c-Kit"™" mutant mice indicated that a lack of functional
c-Kit receptors affected f-cell mass and disrupted pf-cell
maturation and function.” Taken together, these reports
suggest that c-Kit and its ligand, SCF, are important partners
in mediating islet cell differentiation and function.

PANC-1 is a cell line that was clonally reported to be
derived from human pancreatic duct carcinoma and
expresses a high level of c-Kit."*'> It can be induced to
differentiate into hormone-producing islet-like clusters'®
following stimulation by the FGF2 growth factor.'® To further
understand the role of ¢-Kit/SCF in islet cell differentiation,
we used exogenous SCF treatment and siRNA knockdown
of ¢-Kit in PANC-1 cells to analyze the functional roles of
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c-Kit/SCF in islet cell differentiation. Our results showed
that c-Kit/SCF interaction significantly promotes PANC-1
cell differentiation into hormone-expressing endocrine cells
with increased cell proliferation and decreased apoptosis,
providing further evidence of the importance of ¢c-Kit/SCF in
islet development.

MATERIALS AND METHODS

PANC-1 Cells and Cell Culture

PANC-1 cells (American Type Culture Collection, Manassas,
VA, USA) were cultured in Dulbecco’s modified Eagle’s
medium (Invitrogen, Burlington, ON, Canada) containing
10% fetal bovine serum (FBS) with a medium change every
other day. Cells were subcultured when they reached near
confluence.

Differentiation culture of PANC-1 cells

To induce PANC-1 cell differentiation,'® cells were harvested
by 0.05% trypsin (Invitrogen) to prepare single cell suspen-
sion, seeded in 12-well plates and cultured in a modified
differentiation medium (DME/F12 medium (Sigma, St Louis,
MI, USA) containing 1% BSA, transferrin (Sigma, 5.5 ug/ml)
and insulin-like growth factor 1 (10 ng/ml, ID Labs, London,
ON, Canada) for a period of 7 days. The medium was
changed every other day, using gravity to allow sediment of
clusters, and single or dead cells and debris were removed in
the suspension. PANC-1 cells before differentiation stimula-
tion (day 0 (d0)) and islet-like clusters differentiated from
PANC-1 cells at d3 and d7 of the culture were collected and
processed for immunofluorescent staining, western blot
analyses and qRT-PCR assays.

Differentiation culture with SCF treatment

An initial dose-dependent (20, 50, 100 and 200 ng/ml) study
of recombinant human (rh)SCF (ID Labs) was conducted to
determine the effects of SCF on PANC-1 cell differentiation.
Cells cultured with vehicle (10 mM acetic acid) was used as a
control, 50 ng/ml rhSCF was shown to be the optimal dose.
Cells were cultured for 7 days and harvested for immuno-
fluorescent staining and qRT-PCR assays. To investigate whether
c-Kit/SCF interaction could affect the differentiation of other
c-Kit™ cell lines, we also tested the human embryonic kidney
293 cell line (HEK293 cells)'” and the rat pancreatic acinar-cell
line (AR42]J cells)'®**° (Supplementary Figures 1-5) using the
same culture conditions described above.

Differentiation culture with c-Kit(h) siRNA transfection

To determine the effect of c-Kit/SCF interaction on PANC-1
cell differentiation, PANC-1 cells were transfected in the
differentiation medium for 30h with c-Kit(h) siRNA (sc-
29225) or control siRNA (sc-36869, proprietary sequence)
using an siRNA transfection kit (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) with at least four different cultures per
experimental group.” Seventy-two hours after transfection,
exogenous rhSCF at a final concentration of 50 ng/ml was
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added to the islet-like cluster cultures until d7 of differ-
entiation when the clusters were harvested and assessed for
the expression of PDX-1 and insulin at both mRNA and
protein levels.

Immunofluorescence and TUNEL Assay

Cells harvested from each experimental group were fixed
in 4% paraformaldehyde and embedded in 2% agarose for
processing in paraffin blocks.”' Sections of 4-um thickness
were cut and stained with appropriate dilutions of the
primary antibodies as listed in Supplementary Table 1.
Fluorescent secondary antibodies were obtained from Jack-
son Immunoresearch Laboratories (West Grove, PA, USA)
and 4'-6-diamidino-2-phenylindole (DAPI, Sigma) was used
for nuclear counterstaining. Cell proliferation was examined
using Ki67 labeling (Supplementary Table 1). To identify the
coexpression of phenotypes, double immunofluorescent
staining for insulin, glucagon, CK19 or c¢-Kit was performed.
Endogenous alkaline phosphatase expression in PANC-1 cells
was examined by staining freshly harvested cells with Naphtol
AS-MX phosphate and Fast Blue (Sigma).'> The percentage
of positive cells from each experimental group and time point
was determined by counting a minimum of 500 cells per
sample from at least 3 different cultures. Data were expressed
as a percentage of positive cells relative to the total number of
cells counted.

The terminal deoxynucleotidyl transferase-mediated nick
end labeling (TUNEL) assay was performed on the experi-
mental groups. Briefly, cell sections were deparaffinized and
pretreated with 0.1% trypsin, then incubated with the
TUNEL reaction mixture conjugated with fluorescein-dUTP
(Roche, Montreal, QC, Canada).?® The nuclei were
counterstained by DAPI.

RNA Isolation and Real-Time RT-PCR

Total RNA was isolated from PANC-1 cells and PANC-1-
differentiated islet-like clusters using the RNAqueous-4PCR
kit (Ambion, Austin, TX, USA)."' cDNA was synthesized
using SuperScriptTM 1I reverse transcriptase (Invitrogen).
The primers used are listed in Supplementary Table 2. Real-
time PCR analyses were performed in a Chromo4 real-time
PCR unit (Bio-Rad Laboratories, Mississauga, ON, Canada).
Data were normalized to the 18S rRNA subunit, with four
independent repeats per experimental group and time
point.'" Relative gene expression was calculated based on
the 224¢r method as PCR signals from the d3- or d7-
differentiated PANC-1 islet-like clusters relative to PANC-1
cells (d0).

Western Blot Analysis

PANC-1 cells were collected and lysed in a Nonidet-P40 lysis
buffer. In all, 20 g of cell lysate proteins were separated by
SDS-PAGE (7.5% for c-Kit and 12% for SCF) and transferred
to a nitrocellulose membrane (Bio-Rad Laboratories) as
described previously.” Membranes were incubated with
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polyclonal rabbit anti-c-Kit and goat polyclonal anti-SCF
(Santa Cruz Biotechnology) antibodies, followed by probing
with appropriate horseradish peroxidase-conjugated sec-
ondary antibodies. Proteins were detected using ECL-Plus
western blot detection reagents (Perkin-Elmer, Wellesley,
MA, USA) and exposed to BioMax MR Film.

SCF ELISA

To examine the amount of soluble SCF present in the med-
ium during cell differentiation, culture media were collected
before differentiation (d0) and at d3 and d7 after differ-
entiation. Soluble SCF was measured using a human SCF
enzyme-linked immunosorbent assay (ELISA) kit (ALPCO,
Salem, New Hampshire, USA) with a sensitivity of 10.8 pg/ml,
according to the manufacturer’s instructions. The amount of
soluble SCF in each sample medium was calculated according
to an SCF standard curve; data are expressed in ng/ml.

c-Kit and SCF in islet-like cell differentiation
Y Wu et al

Statistical Analysis

Data are represented as mean +s.e.m. Student’s f-test was
used to assess statistical difference between two groups or
one-way ANOVA (analysis of variance), followed by the least
significant difference group comparison test, was used for
multiple experimental groups. Differences were considered to
be statistically significant at P<0.05.

RESULTS

Characteristics of Undifferentiated PANC-1 Cells

In a serum-containing medium, PANC-1 cells proliferate as
epithelial-like angular cells in an adherent monolayer (Figure
2a). A high number of these cells express c-Kit (97 £ 1.3%,
n=23; Figure la and d). However, only a few cells showing
SCF expression were detected (3 £ 0.4%, n = 3; Figure 1b and d).
To better understand the phenotype of PANC-1 cells before
differentiation, duct, endocrine and undifferentiated cell

c-Kit, 145kDa

SCF, 30kDa

W S Ccalnexin, 90kDa

Figure 1 Expression of c-Kit and SCF in PANC-1 cells. (a-c) Representative immunostaining image of c-Kit (panel a), SCF (panel b) and c-Kit negative control
(panel c) in PANC-1 cells. Positive cells were labeled by FITC (green), and the nuclei were counterstained by DAPI (blue). Arrows indicate positive cells. Scale
bar: 25 um. (d) Western blot analysis of c-Kit and SCF expression in two passages of PANC-1 cells.
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markers, as well as transcription factors were assessed by  cell phenotype. The endocrine cell-specific markers (insulin,
immunofluorescent staining. Numerous CK19 " /Ki67 " cells  Figure 2c; C peptide, Figure 2d; and glucagon, Figure 2e) and
were observed (Figure 2b and j), indicating a proliferative duct  the transcription factors (PDX-1, Figure 2f; PAX-6, Figure 2g)

Ki67/CK19/DAPI Ki67/insulin/DAPI Ki67/glucagon/DAPI

Figure 2 Characteristics of PANC-1 cell phenotypes. (a) Phase-contrast micrograph of PANC-1 cells. (b—h) Representative immunostaining images of PANC-1
cells: CK19 " (panel b), insulin™ (panel c), C peptide™ (panel d), glucagon™ (panel e), PDX-1" (panel f), PAX-6 " (panel g) and aFP " (panel h) cells were
labeled with FITC (green), and the nuclei were counterstained with DAPI (blue). (i) Histochemical staining for alkaline phosphatase (blue). (j) Double
immunofluorescent staining for Ki67 (green) with CK19, insulin or glucagon (red). Arrows indicate positive or double-positive cells, arrowheads indicate
insulin™ or glucagon* cells that lack Ki67 labeling. For panels a and i, scale bar =50 um. For panels b-h, scale bar =25 um.
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were rarely detected (<1-2%). These insulin® and
glucagon™ cells that were present did not colabel with
Ki67, suggesting little to mno proliferative capacity
(Figure 2j). In addition, the undifferentiated cell markers,
(fetoprotein («FP, Figure 2h) and alkaline phosphatases (AKP,
Figure 2i)), were also observed, but not nestin (neural pre-
cursor cell marker’?) or OCT4 (undifferentiated embryonic
stem cell marker?®) (data not shown). These results show that
PANC-1 cells cultured in the serum-containing growth med-
ium rarely exhibit endocrine cell characteristics.

Differentiated PANC-1 Islet-Like Clusters Display the
Endocrine Phenotype

When cultured in a differentiation medium, PANC-1 cells
aggregated into islet-like clusters (Figure 3a), similar to what
has been described previously by others.'®** There was a
significant decrease in CK19 expression from d0 to d7 (Fig-
ure 3b; P<0.001). In parallel to this decrease in ductal-like
cells, there was an increase in the number of cells expressing
endocrine cell markers (Figure 3¢; P<0.001), accompanied
by increased expression of PDX-1 and PAX-6 (Figure 3c;
P<0.001). Results of C-peptide immunostaining (Figure 3c)
were consistent with those of insulin expression, indicating
that newly synthesized insulin granules were present in the
differentiated PANC-1 islet-like clusters. qRT-PCR analysis
confirmed significantly increased levels of PDX-1, PAX6, in-
sulin and glucagon mRNA on d3 and d7 after differentiation
(Figure 3d). Interestingly, the number of cells in the islet-like
clusters expressing the c-Kit receptor was reduced ~30%
during differentiation culture (Figure 4a; P<0.001), whereas
the number expressing SCF increased ~75% (Figure 4b;
P<0.001). The level of soluble SCF in the medium remained
unchanged as determined by ELISA (Figure 4c). To further
characterize the differentiation of PANC-1 cells, cell pro-
liferation and apoptosis were examined by immunostaining
for Ki67 and the TUNEL assay respectively. The number of
cells immunostained for Ki67 decreased significantly from d3
to d7 (Figure 4d; P<0.001). In contrast, the number of cells
in the islet-like clusters undergoing apoptosis increased
(Figure 4e; P<0.001). Thus, differentiated PANC-1 cells
display typical islet endocrine characteristics.

Effects of Exogenous rhSCF Treatment on PANC-1 Cell
Differentiation, Proliferation and Apoptosis

To evaluate exogenous rhSCF treatment on PANC-1 cell
differentiation, PANC-1 cells were cultured in the differ-
entiation medium for 3 or 7 days with 50 ng/ml of rhSCE,
and the expressions of PDX-1, PAX6 and endocrine cell
markers were examined. There were no significant changes
after 3 days of differentiation with or without rhSCF treat-
ment (data not shown). However, after 7 days of differ-
entiation with rhSCF treatment, immunostaining showed
a significant increase in the number of insulin® and
glucagon " cells, 5.5 and 6.4%, respectively, as compared with
controls (Figure 5a; P<0.01). The number of PDX-1-
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expressing cells also increased significantly (P<0.05),
whereas there was only a slight increase in PAX6™" cells
(Figure 5a). qRT-PCR analysis of cultured cells showed that
the mRNA levels of PDX-1, PAX6, insulin and glucagon were
not significantly changed after rhSCF treatment (Figure 5a
and b), which may be attributed to the large variation
between the sample groups. Coexpression of insulin with
CK19, c-Kit and glucagon were observed frequently after
rhSCF treatment (Figure 6). Interestingly, insulin ™ cells were
distributed in the core of many islet-like clusters, whereas
glucagon ™ cells were present in the peripheral perimeter
(Figure 6). Furthermore, analysis of cell proliferation and cell
death by Ki67 and TUNEL staining, respectively, showed that
the proliferative capacity of differentiated islet-like cluster
cells was increased in cells cultured with rhSCF (Figure 7a
and b; P<0.05), in parallel with a decrease in the number of
cells undergoing apoptosis (Figure 7a and ¢; P<0.05). These
results showed that exogenous rhSCF enhanced PANC-1 cell
differentiation into islet endocrine phenotypes, increased cell
proliferation and decreased apoptosis.

Interestingly, both HEK293 and AR42] c-Kit™ cells also
aggregated into islet-like clusters when cultured in the
differentiation medium (Supplementary Figure 2). However,
only AR42] cells showed a differentiation profile similar to
PANC-1 cells after SCF treatment, with an increase in the
number of cells immunostaining for PDX-1 and insulin and
a parallel increase in PDX-1 and insulin mRNA levels
(Supplementary Figure 3). HEK293 cells showed almost no
endocrine cell differentiation in the clusters, with very low
levels of PDX-1 and insulin mRNA and protein expression
after treatment with SCF (Supplementary Figure 4), in-
dicating that c-Kit/SCF differentiation effects differ according
to cell types. However, SCF did induce cell proliferation in
both AR42J and HEK293 cell lines (Supplementary Figure 5).
Although no direct differentiation to pancreatic endocrine
cells has been reported for HEK293 cells, AR42] cells have
been shown to have the ability to differentiate into endocrine
cell lineages.'®2°

c-Kit is Involved in PANC-1 Cell Differentiation

To examine the effect of knockdown of c¢-Kit expression on
PANC-1 cell differentiation, we used specific human c-Kit
siRNA.” A significant downregulation of c-Kit protein
expression was observed 72h after transfection as shown by
western blot analyses (0.58 £0.04 of c-Kit siRNA s
0.95 £ 0.02 of control siRNA; P<0.05). This decrease in c-Kit
expression resulted in a reduction in PDX-1 (P<0.05) and
insulin (P<0.01) mRNA levels in rhSCF-treated PANC-1
differentiation islet-like cell clusters at d7 (Figure 8a). There
was a parallel decrease in the number of PDX-1" (P<0.01)
and insulin © (P<0.05) cells relative to controls (Figure 8b).
These data provide additional evidence that c-Kit has
an important role in endocrine cell differentiation of
PANC-1 cells.

1377


http://www.laboratoryinvestigation.org

c-Kit and SCF in islet-like cell differentiation
Y Wu et al

b 8 T
g Aok
w 60 T
5 *okk
s -
£ 40+
v
[=]
=%
@
T 20+
o
0 t t i
do d3 d7
¢ =4 ™ 0
= ods
> adv
2
]
[}
2
=
I
=}
o
=]
c
S
£
E
" —
insulin glucagon c-peptide PDX-1 Pax-6
d 300
*%
W d0
.5 250 = 43
N o~
7
$8 200 O d7
o
8
=
38 150
€S
s E
2 2 100 - -
8~ * &
&
. i i * k%
. ! | I .
insulin glucagon PDX-1 Pax-6

1378 Laboratory Investigation | Volume 90 September 2010 | www.laboratoryinvestigation.org


http://www.laboratoryinvestigation.org

DISCUSSION

This study examines the role of c-Kit/SCF on islet cell dif-
ferentiation from the PANC-1 cell line, using exogenous
rhSCF treatment and siRNA knockdown of ¢-Kit. Exogenous
SCF treatment enhanced differentiation of PANC-1 cells into
islet-like cell clusters characterized by an increase in cells
expressing insulin, glucagon, PDX-1 and PAX-6. Knockdown
of ¢-Kit mRNA resulted in a reduction in islet cell differ-
entiation. These results indicate that c-Kit/SCF interactions
are involved in mediating PANC-1 cell differentiation into
islet-like clusters.

PANC-1 is a human pancreatic cancer cell line with ductal
cell characteristics when cultured in the expansion med-
ium.'*!> However, only 70% of these cells expressed the duct
cell marker CKI19, suggesting a phenotypic variability.
Indeed, immunofluorescent staining showed that 97% of
PANC-1 cells were c-Kit™, with <1-2% of the cells ex-
pressing endocrine transcription factors (PDX-1 and PAX6)

c-Kit and SCF in islet-like cell differentiation
Y Wu et al

and cell markers (insulin and glucagon), whereas a small
population of PANC-1 cells were a-fetoprotein * and alkaline
phosphatase *, representing an undifferentiated cell popula-
tion.'®!? Thus, the PANC-1 cell line consists of a hetero-
geneous cell population, with the major cell type relatively
undifferentiated.

It has been shown that PANC-1 cells can be induced to
differentiate into hormone-expressing islet-like clusters
when cultured in serum-free differentiation medium.'®***>
Therefore, the PANC-1 cell line has been used as a model of
islet cell differentiation in several studies.'®***> Using our
differentiation medium, we also observed that PANC-1 cells
aggregated into islet-like clusters within 72 h, and showed a
significant increase in the number of cells expressing PDX-1,
PAX-6 insulin and glucagon, in parallel to a significant
reduction in CK19 ™" cells. PDX-1 is a master regulator for
pancreatic development and for the maintenance of f-cell
phenotypes in both humans and rodents.”>*” PAX-6 is a
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Figure 4 Expression of c-Kit, SCF, Ki67 and TUNEL during islet-like cell cluster differentiation from PANC-1 cell differentiation culture. (a, b) Quantitative
analysis of c-Kit ™ cells (panel a) and SCF* cells (panel b) before differentiation (d0) and after 3 (d3) and 7 (d7) days of differentiation. Data are expressed as
mean +s.e.m. (n =5 experiments per group per time point; ***P<0.001 vs d0. P <0.001 vs d3) (c): ELISA assay for soluble SCF in the medium. Data are
expressed as mean * s.e.m. (n =3 experiments per group per time point). (d, e): Quantitative analysis of Ki67 © (panel d) and TUNEL " (panel e) cells before
differentiation (d0) and after 3 (d3) and 7 (d7) days of differentiation. Data are expressed as mean * s.e.m. (n =4 experiments per group per time point;
*P.<0.01, ¥*P<0.001 vs dO; *P<0.001 vs d3).

<

Figure 3 Characteristics of islet-like cell clusters differentiated from PANC-1 cells. (a) Phase-contrast images of PANC-1 cell aggregates during
differentiation. Scale bar: 100 um. (b, ¢) Quantitative analysis of CK19 " cells (panel b), cells expressing endocrine cell markers and transcription factors (panel
¢), before differentiation (d0) and after 3 (d3) and 7 (d7) days of differentiation. Data are expressed as mean + s.e.m. (n =5 experiments per group per time
point). One-way ANOVA analysis showed significant differences between d0 and d3 or d7, as well as between d3 and d7 for all experimental groups;
***P<0.001. (d) Real-time RT-PCR analysis of insulin, glucagon, PDX-1 and PAX-6 mRNA expression. Data are normalized to the 18S rRNA subunit and
expressed as a fold change from dO (means + s.e.m., n=4-6 experiments per group per time point; *P<0.05, **P<0.01 vs d0).
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Figure 5 Exogenous rhSCF treatment enhanced differentiation of endocrine cells from PANC-1 cells. (a) The percentage of PDX-1 . PAX-6", insulin™ and
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specific transcription factor of the a-cell lineage.”*** In-

creased PDX-1 and PAX-6 expression indicates that islet cell
differentiation from PANC-1 cells involved the upregulation
of important transcription factors in pancreatic development.
The mRNA expression levels of PDX-1 and PAX6 were lower
than those of insulin and glucagon. This may be due to the
fact that: (1) the peak time for expression of these tran-
scription factors is earlier than for the endocrine cell markers,
(2) there is a negative feedback effect of the increase in the
number of endocrine cells or (3) other transcription factors
are involved. However, only ~25% of PANC-1 cells differ-
entiated into endocrine/transcription factor + cells, which is
likely due to the suboptimal conditions of stimulation. This
suggests that it is necessary to develop better microenviron-
ments in vitro to optimize islet cell differentiation from
PANC-1 cells.

During differentiation, we found a significant increase in
the number of cells expressing SCF and a significant decrease
in the number of cKit ™" cells, whereas the level of soluble SCF
in the medium remained consistent. This has also been re-
ported to occur during hematopoietic stem cell differentia-
tion into terminal erythroid or myeloid cells, as well as
human erythroleukemia cell line differentiation.*® In addition,
in endothelial cells, IL-1 downregulated c-Kit expression while
upregulating SCF expression, suggesting that the balance of
c-Kit and SCF in the vessel wall is important in inflammation.”"
Decreased c-Kit expression may be due to an increase in c-Kit
receptor degradation, which is triggered by increased binding
of SCE>? and may indicate a mechanism to limit SCF effects
during the inflammation process. These data suggest that
the balance of c-Kit and SCF may also be important during
PANC-1 cell differentiation into islet-like cell clusters.
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Figure 6 Double immunofluorescent staining for insulin/CK19, insulin/c-Kit and insulin/glucagon in an islet-like cell cluster 7 days after differentiation
culture with SCF treatment. Representative images are shown. Insulin* cells were labeled by TRITC (red); CK19 ", c-Kit ™ and glucagon ™ cells were labeled
by FITC (green); and the nuclei were counterstained by DAPI (blue). Arrows indicate the costaining cells. Scale bar: 25 um.

To determine whether c¢-Kit and SCF have a role in
PANC-1 cell differentiation, we first performed an upregu-
lation of SCF by treating cells with exogenous rhSCEF. Dif-
ferentiation of cultured cells was improved, as shown by an
additional 5.5% increase in insulin* cells and an additional
6.4% increase in glucagon * cells. However, these increases in
endocrine cell differentiation were less than we anticipated.
In the normal circulation, the level of soluble SCF level is
1-3ng/ml.”> As the dosage we used for SCF treatment is
50 ng/ml, which is much higher than the normal circulating
level, this suggests that exogenous rhSCF is not as effective as
endogenous SCFE. Endogenous SCF exists in both a trans-
membrane and a soluble form. It has been reported that these
two forms of SCF have different functions:** the soluble
form of SCF shows a relatively limited ability to promote
primordial germcell survival compared with the transmem-
brane form of SCE>>3¢ During PANC-1 cell differentiation,
we observed a significant increase in the number of cells

expressing transmembrane SCF, whereas the level of soluble
SCF remained unchanged, suggesting that c-Kit positive
PANC-1 cells are also more responsive to transmembrane
SCE. Thus, the different functions of the two forms of SCF
may explain the relatively modest effect of exogenous SCF on
PANC-1 cell differentiation.

Besides the effect of exogenous SCF on cell differentiation,
we found that cell proliferation and survival rates were im-
proved significantly in the SCF-treated group. Similar effects
were observed previously in studies of hematopoietic
cells’ % and hepatocytes.*” Furthermore, SCF prevents
hematopoietic progenitor cells from apoptosis.’*! Decreased
apoptosis may contribute to the increased number of cells
expressing insulin and glucagon during the differentiation of
PANC-1 cells.

To identify a specific role for c-Kit in PANC-1 cell differ-
entiation, we examined the effects of siRNA-mediated c-Kit
knockdown. A 40% reduction in c-Kit protein levels in
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Figure 7 Effect of rhSCF on cell proliferation and apoptosis during differentiation culture. (a) Representative immunofluorescent images of Ki67 and TUNEL
at day 7 of differentiation culture with or without SCF. Ki67 * and TUNEL™ cells were labeled by FITC (green), and the nuclei were counterstained by DAPI
(blue). Arrows indicate positive cells. Scale bar: 25 um. (b, ¢) The percentage of Ki67 ™ and TUNEL™ cells in the islet-like cell clusters. Data are expressed as
mean ts.e.m. (n =5 experiments per group; *P<0.05, **P<0.01 vs controls).

PANC-1 cells resulted in a significant reduction in PDX-1  cell clusters. These results indicate that c-Kit is involved in
and insulin mRNA levels, as well as in the number of insulin-producing cell differentiation of PANC-1 cells and are
PDX-1" and insulin® cells in differentiated islet-like in accord with our recent reports that activation of the c-Kit
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Figure 8 Effect of knockdown of c-Kit on PANC-1 cell differentiation. (@) qRT-PCR analysis of PDX-1 and insulin mRNA expression in the differentiated islet-
like cell clusters from PANC-1 cells after transfection with either control or c-Kit siRNA. Data are normalized to the 185 rRNA and expressed as means + s.e.m.
(n =4 experiments per treatment group; *P<0.05, **P<0.01 vs control siRNA group). (b) The percentage of PDX-1 * and insulin™ cells in differentiated
islet-like cell clusters treated with either control or c-Kit siRNA. Data are expressed as means * s.e.m. (n =5 experiments per treatment group; *P<0.05,

**P<0.01 vs control siRNA group).

receptor in human fetal pancreatic cells is a crucial regulatory
step during pancreatic endocrine neogenesis and for islet cell
survival.>!!

In summary, our study showed that activation of the c-Kit
receptor by SCF promotes PANC-1 cell differentiation into
hormone-expressing endocrine cells, accompanied by in-
creased proliferation and decreased apoptosis. These data
suggest that manipulation of factors in the c¢-Kit/SCF sig-
naling pathway represents a useful tool for the development
of more effective cell-based therapies for diabetes treatment.

Supplementary Information accompanies the paper on the Laboratory
Investigation website (http://www.laboratoryinvestigation.org)
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