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Abstract 

Parkin is an E3 ubiquitin ligase which degrades misfolded proteins and prevents the 

formation of abnormal protein aggregates often formed in Parkinson’s disease. The main 

goal of this thesis was to perform structural analysis on the IBR(In-Between-RING)-RING2 

(Really Interesting New Gene)  domain of parkin. After determining the three-dimensional 

solution structure of the protein by NMR spectroscopy, the RING2 domain was identified to 

be similar to the IBR domain, showing that it is not a canonical RING domain. The catalytic 

cysteine on RING2 was also shown to be solvent exposed, supporting the recently proposed 

RING/HECT hybrid mechanism of parkin as an RBR E3 ligase. The structure also revealed 

that IBR and RING2 domains do not interact. This was confirmed with two dimensional 

NMR experiments and split GFP system. The 14 disease-state IBR-RING2 proteins were 

analyzed using NMR spectroscopy to monitor the structural impact of autosomal recessive 

juvenile parkinsonism (ARJP) related mutations. 

Keywords: 

Parkinson’s Disease, parkin, ARJP, solution structure, nuclear magnetic resonance, zinc-
binding, ubiquitination  
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Chapter 1  

Introduction 

1.1 Parkinson’s Disease 

Parkinson’s disease (PD) is the most prevalent movement disorder and second 

most common neurodegenerative disease, affecting more than 100,000 Canadians. Over 

the span of next years, the number of PD patients is expected to double aged 65 and over. 

PD is caused by the death of neurons responsible for dopamine production in the 

substantia nigra (Fearnley and Lees, 1990) and common clinical diagnosis of PD patients 

includes bradykinesia, rigidity, resting tremors and postural instability. Interestingly, the 

loss of smell is also a commonly noted symptom by PD patients in retrospect (Doty et al., 

1995). PD patients start experiencing symptoms at approximately 55 years old, with these 

become increasingly prevalent. The molecular mechanisms involved in the pathogenesis 

of the disorder are not clearly understood, except for their proposed relation to aging, 

environment, and genetic predisposition (Mattson et al., 2002).   

There are several categories of Parkinson’s disease: sporadic, familial, and 

symptomatic PDs. The majority of PD patients fall into the sporadic form of 

Parkinsonism (80%). Familial or genetic forms of Parkinson’s disease affect 10% of PD 

patients and can be autosomal dominant (mutations on PARK1/4, PARK8 genes) or 

autosomal recessive (mutations on PARK2, PARK6, PARK7, and PARK9 genes) (Bonifati 

et al., 2003; Funayama et al., 2002; Kitada et al., 1998; Matsumine et al., 1998; Valente 

et al., 2004; van Duijn et al., 2001; Zimprich et al., 2004). The current body of 

knowledge on PD cannot identify the direct molecular causes of the disease. Many of the 
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symptoms of sporadic PD are similar to those of the familial early-onset form of PD, 

including autosomal recessive juvenile Parkinsonism (ARJP), where early-onset occurs 

before the age of 40. A hallmark of idiopathic PD is the observation of cytoplasmic 

insoluble protein aggregates (Lewy bodies) containing α-synuclein encoded by PARK1/4, 

which also occurs in autosomal dominant forms of PD (Marin et al., 2004). Interestingly, 

for the ARJP, Lewy bodies are rarely present (Mori et al., 1998; Takahashi et al., 1994). 

The most common form of ARJP (50%) is linked to mutations on the PARK2 

gene on chromosome 6 (Kitada et al., 1998; Matsumine et al., 1998). This gene codes for 

a 465-residue-protein known as parkin. Other less frequent ARJP related proteins 

include; PTEN-induced kinase I (PINK), encoded by the PARK6 gene, and DJ-1 encoded 

by the PARK7 gene (Bonifati et al., 2003; Valente et al., 2004). Also, neural loss in ARJP 

patients is identified to be associated with dysfunction of parkin (Takahashi et al., 1994). 

The loss of function in parkin due to mutation has been suggested to cause problems for 

PD patients, leading to the potential neurotoxic accumulation (Sang et al., 2007).  

Parkin belongs to the family of E3 ubiquitin-protein ligases in the ubiquitin 

protease system (UPS), and is responsible for the degradation of misfolded proteins by 

the proteasome, which prevents the formation of abnormal protein aggregates such as 

those formed in PD (Shimura et al., 2000).  

1.2 Ubiquitin Protease System 

For proper survival of cells, it is important to maintain high quality control over 

proteins by removing short-lived, misfolded, or damaged proteins from the system 

(Kubota, 2009). Proteasomal degradation is essential for this purpose, and one of the 
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most well-known mechanisms for this is the ubiquitination proteasome system (UPS) 

(Lehman, 2009). The UPS is characterized by the transfer of ubiquitin, a 76-residue 

protein, through a chain of several enzymes until it is covalently attached to a substrate. 

Ubiquitin, one of the most highly conserved proteins present in eukaryotic cells, is 

involved in various cellular processes including: transcription (Pickart, 1997), cell-cycle 

(Imai et al., 2000), endocytosis (Hicke and Dunn, 2003), DNA repair (Barbour et al., 

2006; Hershko and Ciechanover, 1998), and proteolysis (Glickman and Ciechanover, 

2002). Therefore, it is not a surprise that when the ubiquitin system encounters 

abnormalities, many diseases can arise, including but not limited to: Angelman Syndrome, 

Cystic Fibrosis, and neurodegenerative diseases such as Alzheimer’s or Parkinson’s 

Disease (Glickman and Ciechanover, 2002).  

Ubiquitination is responsible for joining the C-terminal glycine of ubiquitin to the 

side chain amine of a lysine within the protein substrate, thereby forming an isopeptide 

bond. There are seven lysine residues in ubiquitin (K6, K11, K27, K29, K33, K48, and 

K63) that can form ubiquitin chains (Haglund and Stenmark, 2006).  Lys48 and Lys63 

are the most common ubiquitination sites, with Lys48 in particular being responsible for 

proteolytic recognition by the 26S proteasome. And since many enzymes and substrates 

involved in the ubiquitination pathway have been implicated in cancer, neurological, 

metabolic and inflammatory disorders, they are attractive targets for therapeutic 

intervention. Labeling substrates with a single ubiquitin molecule can signal for cellular 

regulation (Di Fiore et al., 2003; Hicke, 2001)). In contrast, building of ubiquitin chains, 

with at least four ubiquitin molecules linked through Lys48, signals for protein 

degradation. 
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The UPS conjugates ubiquitin through a highly conserved mechanism involving a 

cascade of enzymes, E1: ubiquitin activating, E2: ubiquitin conjugating, and E3: 

ubiquitin ligating enzymes, as shown in Figure 1.1. The transfer of ubiquitin is initiated 

by the ubiquitin activating enzyme (in an ATP-dependent manner) forming a thiolester 

bond between E1 and ubiquitin. Then, the ubiquitin is transferred to an E2 enzyme 

through a transthioesterification reaction, which releases E1. The process is complete 

when the E2-ubiquitin complex associates with the E3 enzyme in order to transfer the 

ubiquitin to the target protein (Huang et al., 2007).  

In the ubiquitination process, E3 enzymes are far more specific and abundant than 

the other proteins involved (Schwartz and Ciechanover, 2009). Ubiquitination of a 

particular substrate is thought to recognize a particular E2:E3 combination. In the human 

genome of substrates, there are two E1s, over 38 E2s, and about 600 to 1000 E3s, known 

to date that allow ubiquitination. 

 

1.3 E3 Ubiquitin Ligases 

Proper ubiquitination of a specific substrate is achieved by having a diverse group 

of E3 enzymes. There are two major categories of E3 ubiquitin ligases in eukaryotes: the 

Homologous to E6AP C-Terminus (HECT) type and Really Interesting New Gene 

(RING) type ligases. The primary difference between the two E3 ubiquitin ligases lies in 

the process of transferring of ubiquitin onto the substrate. HECT E3 enzymes form a 

thiolester bond between the ubiquitin and itself first, while the RING E3 ligases allow for 
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Figure  1.1: Ubiquitination pathway showing ubiquitin conjugation. 
 

Ubiquitin is activated by the E1 ubiquitin-activating enzyme in an ATP-dependent 
manner. Ubiquitin attaches to E1forming a thiolester bond. Subsequently, it is transferred 
to the E2 ubiquitin-conjugating enzyme through a transthiolester reaction. Ubiquitin 
conjugated E2 interacts with an E3 ligase, bringing the substrate closer to the E2, in order 
for the ubiquitin to attach to the lysine of the substrate. Several repetitions of the 
ubiquitin conjugation result in ubiquitin chain buildup on the substrate, which signals 
protein degradation in the UPS. 
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the direct transfer of ubiquitin from the E2 enzyme to the substrate (Passmore and 

Barford, 2004). Figure 1.2 illustrates the ubiquitin transfer models for the HECT and 

RING E3 ligases. Catalytic residues have not been identified for RING type ligases, and 

are suspected not to exist.  

 

1.3.1 HECT E3 ligases 

The HECT domain (about 350 residues long) is usually located at the C-terminus 

of these E3 ligases, identified based on its similarity to the E6 associated protein (E6AP). 

A conserved catalytic cysteine (reactive C-terminus) is contained in the protein database 

in the HECT E3 family, which can form a thiolester bond with ubiquitin. The N-terminus 

of the HECT domain serves as the E2 binding domain. There are about 30 HECT type E3 

ligases, including E6AP, and Nedd4, all of which are known to play roles in protein 

trafficking, immune response, and regulation of cell growth through involvement in 

signaling (Rotin and Kumar, 2009).  

 

1.3.2 RING E3 ligases 

The RING type E3 ligases represent the majority of the E3 enzyme family. The 

mechanism of substrate ubiquitination for RING E3 ligases differs from that observed in 

the HECT type, as it directly transfers ubiquitin from an E2 to the lysine of a substrate, 

forming an isopeptide bond without thiolester bond formation (Figure 1.2). RING 

domains were first discovered as an integral part of several multi-domain protein  
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A B C  

 
Figure  1.2:HECT, RING and RBR type E3 ligases, illustrating the ubiquitin 
transfer step from E2 to E3. 
A. HECT type ubiquitin transfer to substrate, involving the catalytic cysteine of E3 ligase 
(blue & red arrows), B. RING type ubiquitin transfer to substrate; E3 does not get 
directly involved in ubiquitination (red arrow only), C. RBR E3 ligase showing hybrid of 
HECT and RING mechanism. (Adapted from Wenzel and Klevit., 2012) 
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complexes, including Skp1-cullin-F-box (SCF), and Cullin-elongin B and C (CBC) 

complexes. Rbx1, the RING E3 ligase was later found to be part of the SCF complexes. 

RING domains can be located anywhere throughout the E3 ligase sequence and are 

characterized by the consensus sequence C-X2-C-X(9-39)-C-X(1-3)-H-X(2-3)-C/H-X2-C-X(4-

48)-C-X2-C, where X represents any given amino acid. The regular pattern of cysteines 

and histidines allows for the binding of two zinc ions, which stabilizes the protein 

structure. This coordination is referred to as a cross brace-like motif and the first and 

third pairs of Cys and second and fourth pairs of Cys/His allow for the proper 

coordination of zinc within the structure (Figure 1.3).  

Some examples of simple RING type ligases linked to diseases are breast cancer 

1(BRCA1), and parkin. Additionally, RING E3 ligases have been found to form dimers, 

such as BRCA1/BARD1 (Brzovic et al., 2001) and Ring1b/Bmil (Buchwald et al., 2006). 

The formation of the dimer was suspected to bring the E2 close to the substrate lysine and 

aid in isopeptide bond formation between ubiquitin and the substrate. Another interesting 

type of RING E3 ligases are RING-between-RING (RBR) type E3 ligases. The name was 

assigned to these enzymes due to the presence of an additional RING domain (RING2) at 

the C-terminus, as well as an in-between-RING domain (IBR) on top of the canonical N-

terminal RING domain (RING1). The RING1, IBR and RING2 domains in the RBR E3 

ligases contain a repeating pattern of cysteine and histidine residues similar to that 

modeled in the consensus RING sequence and so were thought to function in typical 

RING E3 ligase manner. 
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Figure  1.3:Main features of Canonical RING E3 ligases. 
A. Cross-brace zinc coordination of RING E3 ligase, B. Canonical structure of RING, 
represented by TRAF6 (PDB 3HCS) (Adapted from Spratt et al., 2013). 

 

 

 

 

 

 

 

A
B 



10 

 

1.3.3 RBR E3 ligases 

 Some members of the RBR ligases include: human homolog of Drosophila 

Ariadne (HHARI), heme-oxidized-IRP2 ubiquitin ligase 1(HOIL-1), HOIL-1-interacting 

protein (HOIP), and parkin (Lucas et al., 2006; Marin et al., 2004). These RBR domains 

have been demonstrated to be involved in translation and immune signaling. Recently, it 

has been proposed that RBR E3 ligases might act as a hybrid of RING and HECT-type 

E3s (as shown in Figure 1.2). 

The RBR E3 ligase, HHARI has recently been shown to function as a hybrid of 

RING/HECT E3 ligases with the E2 conjugating enzyme UbcH7 using GST-pulldown 

and autoubiquitination assays (Wenzel et al., 2011). In this mechanism the RING2 

recruits a ubiquitinated E2 but transfers the ubiquitin to the catalytic cysteine of the 

RING2 domain. Within the RBR family, there is a conserved cysteine in the RING2 

domain, which is not present in RING1/IBR domains or RING E3 ligases. In HHARI, 

substituting the catalytic cysteine (C357) to alanine or serine eliminated the transfer of 

ubiquitin to the RING2 domain of E3 and subsequent ubiquitination, showing the 

importance of this residue for RBR E3 ligase activity. Because of these unique features of 

the RBR E3 ligase, structural studies of RBR E3 ligases would provide insight to 

understanding the overall mechanism.  
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1.4 Parkin 

 Parkin is the most studied RBR E3 ligase, due to its relation to Parkinson’s 

disease (PD). Parkin is an RBR-E3 ligase that has multiple domains containing numerous 

point mutations that are responsible for 50% or more of ARJP cases (Figure 1.4). The N-

terminus of parkin contains an ubiquitin-like (UbL) domain and it spans from 1-76 

residues. This domain has been proposed to be important in the recruitment of 

proteasome (Sakata et al., 2003; Tashiro et al., 2003). The UbL domain is followed by the 

unique parkin domain (UPD) that is only present in parkin, and is approximately 70 

residues long. The C-terminus of parkin comprised the RBR domains with a RING0 

domain preceding it (Beasley et al., 2007; Hristova et al., 2009; Morett and Bork, 1999). 

Of these domains, only the UbL and IBR domains have been successfully purified and 

had their three dimensional structures solved (Beasley et al., 2007; Hristova et al., 2009; 

Morett and Bork, 1999). 

 

1.4.1 Interactions of parkin 

 As an E3 ligase, parkin is expected to interact with E2 enzymes. Another member 

of the RBR E3 ligase, Human Homologue of Ariadne (HHARI), was first recognized to 

have association with E2 enzymes, UbcH7 and UbcH8, and RING1 of HHARI was 

identified to be their interacting partner (Ardley et al., 2001; Moynihan et al., 1999). 

However, when tested with parkin, conflicting data were presented. Zhang et al. (2000) 

reported that parkin interacts with UbcH8, but not with UbcH7 from immunoprecipitation 

experiments, while Imai et al. (2000) observed the exact opposite. With co-

immunoprecipitation experiments, Shimura and colleagues (2000) identified UbcH7 as a  
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Figure  1.4: Schematic diagram illustrating the domains of parkin, with three 
dimensional structures of domains in parkin that are present in the protein 
databank. 
Parkin has UbL domain at the N-terminus, unique parkin domain (UPD) and RING0 
domains in the middle, and RING1, IBR, and RING2 (RBR) at the C-terminus. Some of 
the amino acid substitutions related to ARJP are indicated with black arrows. Orange 
ribbon diagram shows UbL domain (PDB: 1IYF) and blue ribbon diagram shows IBR 
(PDB: 2JMO)  (Adapted from von Coelln et al., 2004) 

 

 

 

UPD 
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binding partner of RING1. More recently, a heterodimeric form of the E2 enzyme 

Ubc13/Uev2a was suggested as an interaction partner of parkin (Doss-Pepe et al., 2005; 

Matsuda et al., 2006). Based on the inconsistency of previous work, it still remains to be 

seen which RING domains in parkin are important for recruitment of E2 enzymes and 

control of ubiquitination.  

 

1.4.2 Structures of parkin 

The three-dimensional structure of the UbL domain present at the N-terminus of 

parkin has been solved by nuclear magnetic resonance (NMR) spectroscopy. The 

structure shows similarity to ubiquitin, possessing the β-grasp fold comprised of five β-

sheets and two α-helices, as shown in Figure 1.4 (Sakata et al., 2003). A distinct feature 

of this domain of parkin is that it lacks a C-terminal glycine, so that unlike ubiquitin, it 

cannot conjugate to the lysine of a substrate. Instead, the UbL domain is followed by the 

UPD, a region postulated to be a disordered linker between the UbL domain and RING0-

RBR domains with no obvious other function. 

There is not much known about the structures of the RING domains of parkin. 

However, the proposed linker, the IBR domain, which is situated between the RING1 and 

RING2 domains has been solved by NMR spectroscopy, as shown in Figure 1.4 (Beasley 

et al., 2007). There is no distinct secondary structure in the IBR. It contains two zinc ions 

with a bilobal fold around the zinc coordinating sites. Compared to the canonical cross-

brace zinc coordination, the IBR domain is known to coordinate zinc ions “sequentially”, 

as described by Beasley and colleagues (2007). The sequential zinc coordination is 
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shown in Figure 1.5, and illustrates that the first and second pairs of cysteines and the 

third and fourth pairs of cysteines/histidines coordinate zinc. The IBR was proposed to 

act like a bridge that brings RING2 and RING2 domains together in the full-length parkin 

assembly, with an expectation that those two are interacting domains. Though the three-

dimensional structure of the IBR domain of human parkin has been solved, structures of 

the RING domains and more importantly, the assembly of the entire C-terminal RBR      

motif, still remain unknown. It is expected that structural analysis of these domains can 

answer some questions regarding the catalytic mechanism of parkin in ubiquitination. 

 

1.4.3 ARJP mutations in parkin  

Today, more than 150 mutations on parkin have been identified in PD patients 

and some of the missense mutations are illustrated in Figure 1.4. It is unfortunate, 

however, that a full understanding of how these impact parkin function as an E3 ligase is 

not known, even with the common observation of its impact on the ubiquitination process. 

Amino acid substitutions, involving for instance R42P, K161N, Q328E, C341F, G430D, 

C441R, and W453X reduce protein solubility suggesting the folding of parkin is 

impacted (Sriram et al., 2005; Wang et al., 2005). Further, R42P, C212Y, Q311X, C341F, 

and W453X are found in the cytoplasmic inclusions, suggesting that they are unfolded in 

cells (Sriram et al., 2005; Wang et al., 2005). Auto-ubiquitination assays showed that 

several substitutions such as C418R and C441R impact parkin’s function suggesting zinc 

binding in the RING2 domain is disrupted (Sriram et al., 2005).  
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Figure  1.5: Zinc coordination of IBR, showing sequential zinc coordination. 
First zinc site involves first and second pairs of Cys, and the second zinc site is 
surrounded by third and fourth pairs of Cys/His.  
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However, other point mutations do not show whether ARJP is caused by a loss of 

its E3 activity. It is not known how parkin becomes dysfunctional with substitution, or 

how these alterations affect the protein’s structure or stability. To have a better 

understanding of the impact of these mutations, structure and interaction studies with 

parkin would be necessary. 

  

1.5 Thesis Overview 

Mutations in the PARK2 gene that codes for parkin are strongly linked to ARJP 

and have many different effects on RBR E3 ligase activity. However, given the structure 

determination of the parkin IBR domain (Beasley et al., 2007), the roles of the RING1 

and RING2 domains in either a RING or RING/HECT E3 ligase mechanism have neither 

been supported nor opposed by structural analysis. The goal of this project was to 

determine the three-dimensional structure of IBR-RING2 in order to have a better 

understanding of parkin’s assembly and function. The proposed hypothesis is that the 

IBR and RING2 of parkin are likely to be interacting, even with the missing RING1 

domain, to facilitate ubiquitin transfer to a substrate.  

Specific experiments designed to address this hypothesis are:  

1) Determine the three-dimensional solution structure of parkin IBR-RING2 using 

NMR spectroscopy.   

2) Identify whether the IBR and RING2 domains are interacting using binding 

experiments between IBR-RING2 and individual IBR or RING2 domains 
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utilizing NMR spectroscopy, NMR relaxation experiments, and a split-GFP 

system. 

3)  Analyze the impact on the solubility and structure of IBR-RING2 domains 

caused by mutations (ARJP substitutions) using NMR spectroscopy. 

The research outlined in this thesis will provide a better understanding of the function of 

parkin, by providing the three dimensional structure of the IBR-RING2 domains. The 

properties relating to their structure and interactions will be useful to propose mechanistic 

steps for ubiquitination and the pathogenesis in ARJP. Hopefully, this will contribute to 

therapeutic drug development for patients. 
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Chapter 2   

Materials and Methods 

2.1 Drosophila melanogaster Parkin C-terminus, IBR-RING2 

The DNA encoding Drosophila melanogaster (Dm) parkin (PARK2) in pGEX 

vector was a gift from Dr. Brian Staveley (Memorial University of Newfoundland, 

Newfoundland and Labrador). This gene was previously cloned into a modified pGEX-

6P-2 vector with a Tobacco Etch Virus (TEV)-cleavage site (ENLYFQ(G/S)) by Noah 

Manczyk (summer student, 2011). Site-directed mutagenesis was performed using 

primers that are complementary to each other which would bind to the end of TEV-

cleavage site as well as the beginning of the IBR (starting from E342) sequence. This 

generated an N-terminal deletion construct, leaving only the IBR-RING2 domain from 

Dm parkin (residues 342-482). The parkin IBR-RING2 construct was verified by DNA 

sequencing (Robarts Research Institute). 

 

2.1.1 Design of C-terminal domain constructs of Dm Parkin 

 Based on the domain structure of rat parkin identified by limited proteolysis 

(Hristova et al., 2009), the coding regions for RING1, RING1-IBR and IBR of Dm parkin 

were inserted into a modified pGEX-6P-2 vector with a 5’ TEV cleavage site. PCR 

reactions were performed under standard conditions using Hot Start DNA polymerase 

(MBI Fermentas) and a touch-down PCR protocol. A total of 50 µL reaction mixture was 

used for all PCR reactions, consisting of PCR buffer with ammonium sulphate (MBI 

Fermentas), 2.5 mM MgCl2, 0.2 mM dNTPs, 100 pmol primers, and 1 U of DNA 

polymerase. All primers used in the PCR reactions are shown in Table 1. The PCR 
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products were digested with BamHI and EcoRI and ligated into the equivalent sites of the 

modified pGEX-6P-2. DNA sequencing verified the correct sequences of the constructs 

(Robarts Research Institute). The plasmids were then transformed into E.coli JM109 and 

BL21(DE3) Codon PlusRIL cell lines.  

 

2.1.2 C-terminal Parkin into Split-GFP vector 

RING1-IBR-RING2 and IBR-RING2 constructs of Dm parkin were inserted into 

a pETDuet dual expression plasmid containing the N- and C-terminal halves of GFP 

under identical T7-promoters (Ghosh et al., 2000).  The cloning resulted in the creation of 

two constructs; (1) N-terminal GFP-parkin RING1-IBR-RING2-C-terminal GFP, and (2) 

N-terminal GFP-parkin IBR-RING2-C-terminal GFP.  PCR reactions were performed as 

described previously (2.1.1) and the primers used for the insertion are listed in Table 1. 

The PCR products were then digested with BamHI and KpnI and ligated into the 

equivalent sites of the split-GFP vector. After sequencing, the vectors were transformed 

into E. coli BL21 BL21 (DE3) Codon PlusRIL expression cell line. 

 

2.1.3 Site-directed Mutagenesis of Parkin IBR-RING2 domain 

In order to introduce ARJP related mutations, IBR-RING2 was subjected to site-

directed mutagenesis using the MBI Fermentas Hot Start kit. After amplification, the 

parental DNA templates (which are methylated) were digested by Fast Digest DpnI 

enzyme (Thermo Scientific). The mutated plasmids were then transformed into E. coli 

JM109 competent cells. After verification by the sequencing, the mutated DNA was 
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transformed into E. coli BL21(DE3) Codon PlusRIL. In total, 18 disease-related mutants 

were designed, and out of those, 16 mutants were successfully made. The mutants were 

designed for parkin IBR (G349E, Q355C, T372P, G376D, R383Q), linker (D412N, 

R415Q, A417T, R420C, R420P) and parkin RING2 (T433N, C436R, G447E, G448D, 

C449F, C459R, and M476L). Table 1 displays all the primers used in generating the 

mutants. Also, a RING1-IBR-RING2 construct  (residues 252-482) was looped out from 

the PARK2 gene in the pGEX vector using restriction-free (RF) cloning (van den Ent and 

Lowe, 2006), using a similar protocol as outline in section 2.1.1.  

 

2.2 Expression of IBR-RING2 

The Dm parkin IBR-RING2 was overexpressed in E. coli BL21(DE3) Codon Plus 

RIL Escherichia coli strain, with an N-terminal GST fusion tag. The cells were streaked 

on Luria-Bertani (LB)–agar plates containing 100 µg/mL ampicillin (Amp) and incubated 

for approximately 20 hours at 37°C. Single colonies were picked for overnight cultures. 

The starter cultures were prepared using sterile LB broth containing 100 µg/mL 

ampicillin and 34 µg/mL chloramphenicol and inoculated with a single colony from the 

LB-agar plate. These were agitated at 215 rpm for approximately 20 hours at 37°C. 

Expression was performed by diluting the starter culture 1:100 into 1L of LB media, and 

grown at 37°C until an A600 of 0.7-0.8 was reached. The cells were then induced with 1 

mM IPTG and continued shaking at 215 rpm at 16°C for 16-17 hours. 
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Table 1. Forward and reverse primer sequences used in the amplification of different 
domains of parkin’s C-terminus and mutants of IBR-RING2 and constructs of split GFP 
 

Cloning_pGEX 
Construct Direction Primer Sequences 

RING1 Forward 
Reverse 

5’ ATTCATATGGGATCCAATAACATCAAGAATGTTCC 3’ 
5’ATACTCGAGAAGCTTGAATTCCTATTACTCCTCGGTGGCGAATCTC3’ 

RING1 
-IBR 

Forward 
Reverse 

5’ ATTCATATGGGATCCAATAACATCAAGAATGTTCC 3’ 
5’ATTCTCGAGGAATTCAAGCTTCTATTAACTAGCGCCCGTCCCCTCGG3’ 

IBR 
 

Forward 
Reverse 

5’ATTCATATGGGATCCACACGCGAGGAGTACGATC3’ 
5’ATTCTCGAGGAATTCAAGCTTCTATTAACTAGCGCCCGTCCCCTCGG3’ 

Cloning_splitGFP 
RBR 
RBR 

Forward 
Reverse 

5’ ATTGGATCCTCCGGCGGGGAGAAGG 3’ 
5’ ATTGGATCCGAGTATGTCCTACAGGCAGG 3’ 

IBR 
IBR 

Forward 
Reverse 

5’ ATTGGATCCGAGTATGTCCTACAGGCAGG 3’ 
5’ ATTGGATCCGAGTATGTCCTACAGGCAGG 3’ 

   
Site-directed Mutagenesis & RF Cloning _pGEX 
Construct Direction Primer Sequences 

G349E Forward 
Reverse 

5’ GAGTATGTCCTACAGGCAGAAGGCGTACTCTGCCCC  3’ 
5’ GGGGCAGAGTACGCCTTCTGCCTGTAGGACATACTC 3’ 

Q355C Forward 
Reverse 

5’ GCAGGTGGAGTATTGTGCCCCTGTCCAGGATGCGGCATG 3’  
5’ CATGCCGCATCCTGGACAGGGGCACAATACTCCACCTGC 3’ 

G376D Forward 
Reverse 

5’ GTGACATGCCAGAACGATTGTGGATACGTGTTCTGC 3’ 
5’ GTGACATGCCAGAACGATTGTGGATACGTGTTCTGC 3’ 

R383Q Forward 
Reverse 

5’ GGATACGTGTTCTGCCAGAATTGTTTGCAGGGCTACC 3’ 
5’ GGTAGCCCTGCAAACAATTCTGGCAGAACACGTATCC 3’ 

D412N Forward 
Reverse 

5’ GCGAGTACACCGTGAACCCAAATCGAGCTGCC 3’ 
5’ GGCAGCTCGATTTGGGTTCACGGTGTACTCGC 3’ 

R415Q Forward 
Reverse 

5’ CCGTGGACCCAAATGGCGCTGCCGAGGCGCG 3’ 
5’ CGCGCCTCGGCAGCGCCATTTGGGTCCACGG 3’ 

A417T Forward 
Reverse 

5’ GACCCAAATCGAGCTACCGAGGCGCGATGGGATGAG 3’ 
5’ CTCATCCCATCGCGCCTCGGTAGCTCGATTTGGGTC 3’ 

R420C Forward 
Reverse 

5’ CGAGCTGCCGAGGCGTGCTGGGATGAGGCCAGC 3’ 
5’ GCTGGCCTCATCCCAGCACGCCTCGGCAGCTCG 3’ 

R420P Forward 
Reverse 

5’ CGAGCTGCCGAGGCACCGTGGGATGAGGCCAGC 3’ 
5’ GCTGGCCTCATCCCACGGTGCCTCGGCAGCTCG 3’ 

RBR Forward 
Reverse 

5’ CTGTATTTCCAGGGGGGCGGCAATAACATCAAGAATGTTCC 3’ 
5’ GGAACATTCTTGATGTTATTGCCGCCCCCCTGGAAATACAG 3’ 

*ARJP mutations in RING2 region were designed by Noah Manczyk (Summer Student, 
2011), and are not listed in the table. 
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To prepare 15N or 15N-13C labeled protein, M9 minimal media was used 

supplemented with 1 g/L 15N-ammonium chloride and 2% glucose (for 13C sample, 2 g/L 

of 13C6-D-glucose). The media also contained 2 mM MgSO4, 2 µM FeSO4, 

micronutrients, 100 µg/mL ampicillin and 34 µg/mL chloramphenicol. After a 20-hour 

expression, cells were harvested by centrifugation (6000 g, 4°C, 15min). Cell pellets 

were then transferred into 50-mL tubes, flash frozen with liquid nitrogen and stored at -

80°C until needed. 

2.3 Purification of IBR-RING2 

Cells were resuspended in lysis buffer (50 mM Tris, 300 mM NaCl, 1 mM DTT, 

pH 7.5), lysed using an EmulsiFlex-05 homogenizer (Avestin), and centrifuged at 132380 

x g for 1 hour. The clarified supernatent was filtered through a MILLEX HV 0.45 µm 

filter unit (Millipore) and loaded onto a GSTrapFF 5 mL column using an AKTA FPLC 

system (GE Healthcare) at a flow rate of 0.5 mL/min. After washing the column with 20 

column volumes of binding/loading buffer (25 mM Tris, 150 mM NaCl, 1 mM DTT, pH 

7.5), the protein was eluted with elution buffer (20 mM Tris, 10 mM reduced glutathione, 

pH 8.0). Fractions containing the eluted GST-parkin IBR-RING2 protein were pooled 

and subsequently cleaved by TEV protease to remove the GST tag.  The protein was then 

dialysed against 2L of binding/loading buffer. The protein sample was then loaded onto a 

5 mL GSTrapHP column (in the same manner as described above) with the pure parkin 

IBR-RING2 protein being isolated in the flow-through. The concentration of the protein 

was determined by using a Bradford assay, and the protein was stored at 4 °C until use. 

All other GST-tagged constructs were expressed and purified in the same manner. 
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2.4 NMR Spectroscopy 

All NMR spectra were obtained using Varian Unity INOVA 600 (UWO 

Biomolecular NMR facility) or 800 MHz NMR (NANUC) spectrometers equipped with 

cold probe technology. The NMR tubes used were standard 5 mm NMR tubes for 600 µL 

samples and Shigemi microcell NMR tubes for 300 µL samples. All of the NMR samples 

were prepared with 9:1 H2O/D2O in 25 mM Tris, 150 mM NaCl 5mM DTT at pH 7.5.  

Also, 1 µL of complete MINI EDTA free protease inhibitor (ROCHE) and 1 µM of 

EDTA was added to NMR sample to minimize proteolysis during data acquisition, and to 

prevent possible oxidation, argon gas was gently blown into the sample before closing the 

cap. NMR samples contained 30 µM DSS as an internal standard. The concentration of 

IBR-RING2 samples ranged from 300-400 µM, and all NMR spectra were collected at 

25°C.  

2.4.1 Chemical Shift Assignment of IBR-RING2 

For the sequential backbone assignment of IBR-RING2, five different 3D 

experiments were used: CBCA(CO)NH (Grzesiek and Bax, 1992), HNCACB 

(Wittenkind and Mueller, 1993), HNCA (Kay et al., 1990), HNCO (Kay et al., 1994), and  

HN(CA)CO (Clubb et al., 1992). All of these experiments were collected on a 600 MHz 

spectrometer. The number of data points and spectral widths for the 1H(F3) and 15N(F2) 

dimensions were set to 1024 and 7500 Hz and 32 and1880 Hz, respectively. For 

CBCA(CO)NH and HNCACB, 46 increments and spectral width of 8000  Hz in were 

used in the 13C(F1) dimension. And for HNCO and HN(CA)CO experiments, 28 

increments and 3000 Hz were used. For HNCA, 32 increments and 4521.5 Hz were used. 

  Non-aromatic side chains were assigned using C(CO)NH (Grzesiek et al. 1993), 
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HC(CO)NH (Grzesiek and Bax, 1993), HCCH-TOCSY(Bax et al., 1990), 13C-NOESY 

(Marion et al., 1989), and 1H-13C HSQC (Kay et al., 1992) experiments. The 1H-13C 

HSQC experiment was collected with 1280 data points and spectral width of 7500 Hz in 

the 1H(F2) and 128 increments and 12000 Hz in the 13C(F1) dimension. For C(CO)NH 

experiment, 1280 complex data points and a spectral width of 7500Hz, 32 increments and 

1880 Hz,  and 52 increments and 11000 Hz in 1H(F3), 15N(F2) and 13C(F1) dimensions 

respectively. For the HC(CO)NH, conditions were similar to CCONH, except for F1 

dimension, which was adjusted to 56 data points with 7500 Hz. For the HCCH-TOCSY 

experiment, the data points and spectral widths used were 1280 and 7500 Hz, 32 and 

12000Hz, and 128 and 7500 for the 1H(F3), 13C(F2), 1H(F1) dimensions respectively. 

Aromatic side chains were assigned using (HB)CB(CGCD)HD , (HB)CB(CGCDCE)HE 

(Yamazaki et al., 1993), aromatic TOCSY, and aromatic 13C-HSQC(Kay et al., 1992). 

All spectra were processed using the program NMRPipe (Delaglio et al., 1995) 

with cosine-squared function in order to minimize the artifacts in the spectra. Linear 

prediction was used for data processing by doubling the number of points in the F1 and 

F2 dimensions for the three-dimensional experiments. Manual chemical shift assignment 

was accomplished using the program NMRView (Johnson and Belvins, 1994) in order to 

analyze the three dimensional experiments.  

 

2.4.2 Secondary Structure Prediction 

The chemical shift values for 1Hα, 13Cα, 13C’ resonances were used to predict the 

secondary structure of the parkin IBR-RING2 protein. The method of chemical shift 

indexing, developed by Wishart and Sykes (1994), uses the values of these assigned 
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chemical shifts to accurately predict secondary structures by comparing the values to 

those typically found in a random coil. The analysis was performed using the CSI option 

in the NMRViewJ program. 

 

2.4.3 T1/T2 experiments 

The backbone 15N T1 and T2 relaxation rates of IBR-RING2 were measured with 

the conventional series of 1H-15N-HSQC experiments with varied relaxation delays 

(Farrow et al., 1994).  Longitudinal relaxation time (T1) and transverse relaxation time 

(T2) were determined from these experiments, based on the theory that relaxation times 

are sensitive to the intensity changes of backbone amides. The rotation correlation time 

(τc) was then calculated from experimental T1 and T2 experiments. Using the relationship 

between T1/T2 and τC, tumbling time of the IBR-RING2 was plotted on a graph by fitting 

them using the decay curves and determining T1 and T2.  

2.4.4 Heteronuclear NOE 

Residue-specific heteronuclear 15N{ 1H} NOE values for IBR-RING2 were 

measured from two dimensional (1H, 15N) correlated spectroscopy with, and without, 

proton saturation. The time delays used Heteronuclear NOE values were obtained by 

taking ratios of the peak intensities in the two aforementioned experiments (Kay et al., 

1989; Wang et al., 1999). To ensure accuracy, experiments were conducted in triplicate. 
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2.5 NMR Structure Determination 

After manual assignment of chemical shifts of IBR-RING2, distance restraints for 

the structure calculation were extracted from signal intensities of 13C and 15N-edited 3D 

NOESY-HSQC spectra. Dihedral angle constraints were obtained using the TALOS+ 

program, based on the chemical shifts of 1Hα, 13Cα, 13C’ (Shen et al., 2009). Structures 

were calculated using a combination of manual and automatic NOE assignment with 

CYANA software (Herrmann et al., 2002).  Seven cycles of combined automated 

NOESY assignment and structure calculation were performed followed by a final 

structure calculation. In this step, the knowledge of short atom-atom distances and the 

amino acid sequence of the protein as well as the arrangement of all atoms in space were 

calculated by CYANA. In the final structure calculation 100 conformers were calculated 

and the 20 conformers with the lowest final target function values (based upon minimal 

NOE, dihedral and van der Waal contact violations) were selected. The final structures 

were refined in water using explicit restraints for zinc coordination by Dr. Pascal Mercier.  

The atomic coordinates for the structures of IBR-RING2 have been deposited in 

the Protein Data Bank under the accession code 2M48, and the BMRB accession code is 

18990. 

2.6 Solubility Test 

To test the solubility of the split GFP parkin proteins and the mutants of IBR-

RING2 that were constructed, small-scale expression and solubility tests were conducted. 

A 10 mL culture of BL21 (DE3) cells expressing split GFP with RING1-IBR-RING2 and 

split GFP with IBR-RING2 was harvested, resuspended in 1 mL lysis buffer (50 mM Tris, 

300 mM NaCl, 1 mM DTT at pH 7.5), and sonicated for 30 seconds. The cell lysate was 
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then centrifuged at 16000 x g for 10 minutes. The supernatant contained soluble protein, 

while the cell pellet contained insoluble protein. The pellet was resuspended in 2% SDS 

and both the supernatant and pellet were analyzed by SDS-PAGE. A similar approach 

was taken for IBR-RING2 mutants. 
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Chapter 3   

Results and Discussion 

Parkin is an RBR E3 ligase involved in the degradation of proteins that are 

misfolded through the UPS. The most important portion of parkin is in the C-terminus 

that comprises the RING0, RING1, IBR, and RING2 domains. The RING2 domain is 

thought to be the catalytic domain/segment responsible for acquiring a ubiquitin from an 

E2 enzyme and transferring it to a substrate (Spratt et al., 2013). The RING1 domain is 

thought to be involved in the interaction with an E2 enzyme. Understanding how this 

ubiquitin transfer occurs is difficult because three-dimensional structures of the 

functional RING domains, and more importantly the assembly of the entire C-terminal 

RBR motif, are not known. In this chapter the structure of the IBR-RING2 region of 

parkin was determined. 

3.1 GST-IBR-RING2 Expression 

Prior to the purification of GST-IBR-RING2, expression tests were performed to 

determine the optimal expression time and temperature for the protein. Figure 3.1 shows 

an SDS-PAGE gel of an expression test of GST-IBR-RING2 in E. coli strain BL21 DE3 

CodonPlus-RIL, at 37°C and 16°C. Protein expression was induced for 17 hours, after 

addition of 1 mM IPTG. As a negative control, comparison was made against an 

uninduced expression culture.  

GST-IBR-RING2 has a molecular weight of approximately 42 kDa and therefore, 

should display as a band on the SDS-PAGE gel between the 37 and 50 kDa molecular 

weight markers. Figure 3.1 illustrates the GST-IBR-RING2 band appearing after 3.5 
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hours of expression at both temperatures. This band shows an increase in intensity after 7 

and 17 hours at both temperatures, indicating proper over-expression of the GST-fusion 

protein. However, another band also shows an increase in intensity near 25kDa and is 

likely GST protein on its own. The appearance of free GST could result from fusion 

protein cleavage due to protease activities. This has been observed previously for 

bacterial expression of full-length parkin (Hristova et al., 2009). After 17 hours of 

expression, the sample expressed at 37°C shows increased levels of GST protein 

compared to the GST-fusion protein, while at 16°C, the GST-IBR-RING2 expression is 

more efficient (compared to all other molecular weight proteins, as well as GST on its 

own). Thus, the optimal expression conditions for IBR-RING2 were chosen to be 16°C 

for 17 hours.    
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Figure  3.1: SDS-PAGE gel of induced vs uninduced GST-IBR-RING2.  
MW refers to the molecular weight ladder.  U represents an uninduced sample, and I 
represents an induced sample; samples are observed at two different temperatures (37°C 
and 16°C) for expression, and at different time-points (3.5, 7, and 17 hours).  
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3.2 Purification of IBR-RING2 

After the cell lysate was centrifuged, GST affinity chromatography was used to 

purify GST-IBR-RING2. The GST fusion protein was then cleaved with TEV protease 

and dialyzed extensively to remove excess glutathione. Thorough dialysis was necessary 

to ensure all glutathione was removed so that the cleaved GST tag could be separated 

from the IBR-RING2. A second GST purification was subsequently performed and the 

IBR-RING2 protein eluted in the flow-through fractions while the GST tag remained 

bound to the column. Figure 3.2 shows typical chromatograms of IBR-RING2 protein 

purification prior to and following cleavage of the GST tag from the protein. The purity 

of the protein throughout the process was checked by SDS-PAGE. Figure 3.3 shows 

segments of SDS-PAGE gels of the complete purification scheme of IBR-RING2. As 

stated in Chapter 2, all proteins that are GST-tagged were expressed and purified in the 

same manner. At the end of the purification, the amount of protein in solution was 

approximately 4-5 mg (from 2L of growth).   

3.2 Determination of Optimal Conditions for NMR Data Collection 

 Prior to collecting numerous 3D NMR experiments for structure determination of 

IBR-RING2, it was important to determine the optimal conditions for these experiments 

such as temperature and pH.  A series of 1H-15N HSQC spectra of IBR-RING2 were 

collected under various conditions and it was concluded that 25°C and pH 7.5 were 

optimal conditions for IBR-RING2 data acquisition. It was also important to ensure that 

protein samples maintain their integrity during the data collection for NMR experiments. 

A major concern regarding IBR-RING2 was the oxidation of cysteine residues and 

degradation of the IBR-RING2 while acquiring NMR spectra. It would be impossible to  
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Figure  3.2: Chromatograms of GST purification  
A. Chromatogram of a typical GST affinity purification. The absorbance at 280 nm is 
shown in blue. GST-IBR-RING2 is eluted from the column by the addition of 100% 
elution buffer (shown in green, 20mM Tris, 10mM GSH, at pH 8.0). B. Chromatogram of 
a second GST purification after TEV cleavage. Sharp and intense elution peak is an 
indication that thorough dialysis of glutathione was achieved, allowing separation of GST 
and IBR-RING2.  
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Figure  3.3: SDS-PAGE gels showing two-step purification of IBR-RING2 
 A. First, GST purification and TEV cleavage reaction. B. TEV-cleaved protein through 
the GSTrap HP column. Abbreviations used for each lanes are, MW: molecular weight 
marker, soluble: soluble fraction, insoluble: insoluble fraction, F/T: flow-through, and 
+TEV: TEV cleaved GST-IBR-RING2. 
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collect accurate data with degraded or precipitated protein in NMR studies. Therefore, it 

was important to find out what conditions would ensure that the IBR-RING2 was 

homogeneous, intact, well folded, and soluble. 

 As mentioned above, a major concern was the possible oxidation of 17 cysteine 

residues found in IBR-RING2.  In order to avoid oxidation and/or disulphide bond 

formation, the sample was purged with Argon gas to displace oxygen in the NMR tube. 

In addition, Shigemi NMR tubes were used which limit the amount of oxygen exposure 

experienced by the sample due to the insertion of a plunger. Finally, addition of 5 mM 

DTT to the sample was used to prevent cysteine oxidation.  

 Despite optimization of sample conditions it became apparent that the IBR-

RING2 protein readily precipitated during long NMR data collection times (more than a 

week).  Many of the individual 3D experiments require several days and ideally the 

sample should be stable for a minimum of two weeks so that most of the required 2D/3D 

spectra can be collected on the same sample. Figure 3.4 shows a solution of IBR-RING2 

in an NMR tube after one week of data collection. The NMR tube became cloudy with 

precipitated IBR-RING2 within one week. This was a major concern and was thought to 

be caused by an unknown protease contaminant which resulted in protein unfolding. The 

contaminant was not inhibited by the protease inhibitor cocktail that was initially added 

to the NMR sample. These initial experiments used a protease inhibitor cocktail that did 

not contain EDTA (Ethylenediaminetetraacetic acid)  because there was a concern that 

EDTA might remove zinc ions from the IBR-RING2. It has been previously shown that  
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Figure  3.4: Comparison of 1H-15N HSQC Spectra and NMR tubes of 300-400µM 
IBR-RING2 after the data collection. 
 A. For non-optimized NMR sample after ten days  (Disappearing peaks: circled, Newly 
appearing peaks: boxed)  B. For optimized NMR sample (EDTA addition) after a month  
(Superimposable to the initial spectrum) 

B. 

A. 
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the IBR domain from human parkin unfolds upon the addition of EDTA (Beasley et al., 

2007). However, there was still a possibility of the presence of metalloproteases in the 

sample (which cannot be blocked by any of the inhibitors in the protease inhibitor 

cocktail) that affect the integrity of IBR-RING2 and were causing it to precipitate. To test 

this, a small amount of EDTA (1 µM) was added to the protein sample in an attempt to 

inhibit the potential metalloproteases, and the stability of the IBR-RING2 was re-assessed. 

As seen in Figure 3.4, a minor amount of protein precipitated at the bottom, but generally 

the IBR-RING2 remained soluble in the NMR tube even after a month of experiments. 

Further, 1H-15N HSQC experiments compared before and after this period were almost 

identical, suggesting that the sample’s integrity was maintained. Therefore, it was 

concluded that the addition of trace amounts of EDTA helped the IBR-RING2 to stay in 

solution for a longer period of time by inhibiting unknown metalloproteases that might 

have been present in the NMR sample. Based on this finding, all subsequent NMR 

samples contained 1 µM EDTA.  

 

 

3.3 Structural Determination of the Parkin IBR-RING2 Do main 

3.3.1 ESI-MS shows the IBR-RING2 coordinates 4 Zinc ions 

Mass spectrometry is a very powerful technique used in determining the 

molecular weight of proteins. When comparing two conditions of ESI-MS (non-

denaturing and denaturing), it has been demonstrated that full-length parkin binds eight 

zinc ions (Hristova et al., 2009). The same technique was employed for the IBR-RING2 

and showed there are in a total of four zinc ions bound to the protein. The observed 
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difference between the denaturing and non-denaturing mass of the IBR-RING2, as 

determined by Paula Pittock (Biological Mass Spectrometry Lab, UWO), was calculated. 

The native IBR-RING2 had a mass of 15843 Da and the denatured IBR-RING2 was 

found to have a mass of 15588 Da (Figure 3.5). The difference in mass was 255 Da and 

division of this value by four resulted in 63.75 Da which is close to the mass of zinc (65 

Da), which led to the conclusion that there are four zinc ions coordinated in IBR-RING2. 

 

3.3.2 Backbone Chemical Shift Assignment of IBR-RING2 

For structural studies with NMR spectroscopy, each resonance needs to be associated 

with a specific nucleus in the protein of interest. The backbone chemical shift assignment 

of IBR-RING2 was accomplished manually using the sequential backbone resonance 

assignment method. A series of multidimensional NMR experiments (HNCACB, 

CBCA(CO)NH, HNCO, HN(CA)CO) were used in order to assign the HN, N, Cα and Cβ 

of IBR-RING2, as discussed in 2.4.1. A sample of the sequential backbone assignment is 

shown in Appendix A, Figure A-1. The assigned 1H-15N HSQC (Figure 3.6) is well 

dispersed confirming the protein was well folded. Approximately 92% of the backbone 

assignment was completed (103 out of 112 residues). Amide resonances such as N405, 

S406, and M476 could not be identified from the data because the signal was too weak or 

overlapping with other peaks.  
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Figure  3.5: Deconvoluted ESI-MS of proteins under denaturing and non-
denaturing conditions, which show the mass of both the native and denatured state 
of IBR-RING2. 
 A. Denaturing IBR-RING2  B. Non-denaturing IBR-RING2 result. 

B. 

A. 
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Figure  3.6: Two-dimensional 1H-15N HSQC spectrum of 15N-isotopically labeled 
IBR-RING2. 
 This data was collected at 25°C at 600 MHz. Backbone amide resonances are labeled, 
with their one letter amino acid code and sequence number. 
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3.3.3 Utilization of IBR-RING2 backbone assignment 

Assigning chemical shifts of the amide backbone is the first step in solving the 

structure of proteins. Additionally, the backbone assignment can serve several other 

purposes, including: conducting interaction studies by titration, the determination of 

residues involved in zinc coordination, and domain secondary structure. In this section, 

chemical shifts were used in the prediction of IBR-RING2 secondary structure, as well as 

zinc-coordinating cysteines.    

 

3.3.4 Prediction of Zinc Coordinating Cysteines 

 With the backbone assignment completed, identification of cysteines exhibiting 

zinc coordination became possible. Using the sensitivity of chemical shifts to changes in 

electronic environment, prediction of zinc ligating cysteines and non-ligating cysteine 

residues can be made. Kornhaber and colleagues (2006) compiled the differences in 

values of Cα and Cβ of cysteines when oxidized (Cα: 55.57 ± 2.46 ppm, Cβ:41.17 ± 3.93 

ppm), reduced (Cα:59.25 ± 3.06 ppm, Cβ:28.92 ± 2.11 ppm), and or zinc-coordinating 

(Cα:59.27 ± 2.12 ppm, Cβ: 30.89 ± 1,01 ppm) from the protein data bank (PDB) and 

BioMagResBank (BMRB). With this statistical data, the probability of the given 

cysteine’s zinc coordination could be calculated. Through the assignment of Cα and Cβ 

chemical shifts of all cysteines in IBR-RING2 (total of 17), the prediction of cysteines 

involved in zinc coordination was completed (Kornhaber et al., 2006). In Table 2, 

probabilities for the oxidized, reduced and zinc coordinating states of all cysteines in 

IBR-RING2 are shown. This method showed there was over 90% probability that 

residues C353, C377, C382, C385, C394, C439, C454, C459, C464, and C475 were  
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Table 2. Cysteines involved in Zn2+ coordination in IBR-RING2 domain, as determined 
by chemical shifts of Cα and Cβ. 

 
* determined using 3D CBCA(CO)NH and HNCACB experiments 
# based on the structure calculation: (I) - involved in 1st zinc coordination site, (II) - in 2nd zinc coordination 
site, (cat) – suspected catalytic cysteine, (-) - non zinc coordinating cysteine  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cys Chemical Shifts (ppm)* 
IBR 

 C353 C358 C368 C373 C377 C382 C385 C394 C407 
Actual# I I - I I II II II - 

Cα 57.731 60.268 58.581 58.504 59.988 57.691 58.112 59.835 58.713 
Cβ 31.865 29.375 28.45 28.311 32.365 32.475 32.359 30.761 28.102 

Probabilities 
Oxidized 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Reduced 7.3% 39.8% 98.3% 99.1% 1.2% 7.0% 5.0% 4.1% 99.5% 
Zn2+ 92.7% 60.2% 1.7% 0.9% 98.8% 93.0% 95.0% 95.9% 0.5% 

 
Cys Chemical Shifts (ppm)* 

RING2 
 C436 C439 C449 C454 C459 C464 C467 C475  

Actual# I I cat I I II II II  
Cα 57.016 59.348 59.291 61.571 60.499 57.776 56.999 64.533  
Cβ 31.698 31.196 28 32.045 30.174 32.93 31.87 29.092  

Probabilities  
Oxidized 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%  
Reduced 13.2% 3.5% 99.5% 0.3% 6.8% 7.8% 12.3% 4.9%  
Zn2+ 86.8% 96.5% 0.5% 99.7% 93.2% 92.2% 87.7% 95.1%  
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coordinated to zinc ions. In addition, there were those other residues (C358, C436, C467) 

that had over 60% chance of zinc coordination. The data also clearly showed that several 

cysteine residues (C368, C373, C407, C468) exist in their reduced states based on Cα and 

Cβ chemical shifts (Table 2). In total, this data showed that 13 cysteines in IBR-RING2 

are involved in zinc coordination. Zinc coordination in a protein structure typically 

requires four ligands, and it was predicted that there are more than three zinc ions that 

can bind to the IBR-RING2 structures. Since histidines can also act as zinc binding 

ligands, the data is in good agreement with the coordination of four zinc ions by IBR-

RING2 shown from the ESI-MS results. 

 

3.3.5 Determination of Secondary Structure for parkin IBR-RING2 

After completing the backbone and side chain chemical shift assignment of IBR-

RING2, the secondary structure determination was performed using the chemical shift 

index (Wishart and Sykes, 1994). This was performed using a macro in the program 

NMRViewJ that uses chemical shifts of Hα, Cα, and C for each residue of IBR-RING2 to 

predict the secondary structure of the protein, as described in 2.4.2. In general, large 

regions of α-helices or β-strands were not present in the structure especially in the linker 

region between IBR and RING2 (Figure 3.7). The predicted secondary structure shows 

two β-strands in the IBR domain, between G350-L352 and L362-E365,  a β-strands in the 

linker region Y409-D412, and three α-helices, P437-T441, C454-W471, and T473-A478, 

and two β-sheets, T433-P435 and F462-W464 in the RING2 region are present.  

According to the prediction, RING2 appeared to be more structured than the IBR 

domain. The data shows that there is no extensive secondary structure in either IBR or  
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Figure  3.7: Chemical shift index of IBR-RING2 for secondary structure prediction. 
 Chemical shift values for 1Hα, 13Cα, 13C’ for each of the residues were compared to 
those of random coil and given the values -1, 0, and +1. When the value is -1, it is 
indicative of an α-helix, and shown in color red, +1 for β-sheet (blue) and 0 for coils 
(grey). Below the color representation is a secondary structure schematic diagram for 
IBR-RING2. IBR region contains residues 342-402, and RING2 extends between 
residues 417-482. 
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RING2 domains. This is in agreement with the findings for the human parkin IBR 

structure, that showed little secondary structure (Beasley et al., 2007). 

3.3.6 Structure Calculation of IBR-RING2 

A total of 1156 distance restraints were derived from 15N-edited, 13C-edited 

aliphatic, and 13C-edited aromatic NOESY spectra. In addition, 49 dihedral restraints 

were determined from TALOS+ (Shen et al., 2009). These restraints were used for the 

structure calculation of the IBR-RING2. Figure 3.8 shows a superposition of an ensemble 

of 20 structures of IBR-RING2, when superimposed using only the IBR (red) or RING2 

(blue) domains. These structures represent the lowest energy functions with the least 

distance, angle, and van der Waal contact violations. This family of structures shows that 

a flexible linker connects the IBR and RING2 domains. The RMSD of the structured 

regions for the backbone are 0.80 ± 0.22 Å (IBR) and 0.91 ± 0.20 Å (RING2), and those 

for all heavy atoms are 1.29 ± 0.31 Å (IBR) and 1.52 ± 0.40 Å (RING2). A 26-residue 

flexible linker exists between IBR and RING2, and a ribbon diagram of IBR-RING2 in 

Figure 3.9 makes this evident. During structure calculations, it became apparent this 

connecting region contained little regular structure based on the lack of long range inter-

residue NOE contacts between either of the domains. Short and sequential short range 

NOEs also indicated that the linker is flexible. In addition, no long range NOEs between 

IBR and RING2 were observed, suggesting that they must be isolated from each other in 

the global structure. The structure of IBR-RING2 shows that the RING2 domain can have 

multiple orientations with respect to IBR in the 20 structure overlay. Four well-defined 

Zn2+-binding sites are present in IBR-RING2, two in each site. 
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a)  

b)  

Figure  3.8: Superposition of 20 structures overlay of IBR-RING2, on each of the 
IBR (blue) and RING2 (red) domains.  
Due to the flexible nature of the linker, both domains do not superposition well at the 
same time, as shown above. A. Superposition of IBR-RING2 to IBR using Cα atoms. B. 
Superposition of IBR-RING2 to RING2 using Cα atoms. 

B. 

A. 
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Figure  3.9: Representative ribbon structure of IBR-RING2 with the flexible linker 
between the two domains. 
 Spheres represent zinc ions bound to each of the domains. Magenta represents the β-
sheets and cyan represents the α-helix in the RING2 structure. 
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Table 3: Structural Statistics for 20 lowest NOE energy structures of IBR-RING2 
 

1 For IBR residues 342-396 / RING2 residues 430-482 / Entire sequence E342-G482 

2 Psi/Psi dihedral restraints determined using TALOS+ 
3 Total of 4 NOE violations > 0.5 Å over all 20 models 
4 As reported by Xplor-NIH  
5 Using residues V351-I392 for IBR / residues K430-W480 for RING2 (all 20 models) 
6 As reported by Procheck using residues V351-I392 for IBR / residues K430-W480 for RING2 /  
the entire sequence E342-G482. 

 Protein 
Completeness of Resonance Assignments  
Backbone (N, CA) (103/112) – 92.0% 
Sidechain (C, H) (1073/1219) – 82.8% 
HN (122/133) – 91.7% 
HA (151/158) – 95.4% 
HB (202/202) – 100% 
  
NMR distance and dihedral constraints  
Distance constraints1  
    Total NOE 611 / 447 / 1156 
    Intra-residue 156 / 143 / 360 
    Inter-residue  
      Sequential (|i – j| = 1) 201 / 117 / 353 
      Medium-range (|i – j| < 4) 65 / 48 / 115 
      Long-range (|i – j| > 5) 189 / 139 / 328 
      Intermolecular - /    -   / 0 
    Hydrogen bonds 0 /   0    / 0 
    Zinc restraints 24 / 24 / 48 
Total dihedral angle restraints2  
    φ 22 / 25 / 49 
    ψ 22 / 25 / 49 
  
Structure statistics  
Violations (mean and s.d.)  
    Distance constraints (Å) 0.040 ± 0.002 
    Dihedral angle constraints (º) 0.467 ± 0.080 
    Max. dihedral angle violation (º)     7.5 
    Max. distance constraint violation (Å)3  0.7 
Deviations from idealized geometry4  
    Bond lengths (Å) 0.006 ± 0.000 
    Bond angles (º) 0.550 ± 0.022 
    Impropers (º) 0.758 ± 0.056 
Average pairwise r.m.s. deviation (Å)5      
    Heavy      1.288 ± 0.313 / 1.519 ± 0.399 
    Backbone   0.800 ± 0.220 / 0.914 ± 0.216 
  
Ramachandran statistics6  
Residues in most favored regions 
Residues in additional allowed regions 
Residues in generously allowed regions 
Residues in disallowed regions 

70.5% / 74.0% / 73.5% 
25.3% / 24.9% / 24.3% 
2.7% /  0.9% /    1.5% 
1.5% /  0.2% /    0.6% 
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Individual IBR and RING2 domains within the IBR-RING2 structure are shown 

in Figures 3.10 and 3.11. As shown previously in the human parkin IBR structure 

(Beasley et al., 2007), the IBR did not display any notable secondary structure. The N-

terminus at the beginning of the IBR is not as structured, and can be attributed to it being 

the end part of the linker region between RING1 and IBR. The IBR domain shows a 

bilobal fold with two zinc ions bound to the protein. It contains two zinc sites in “scissor-

like” and “Gag-knuckle-like” folds, as described by Beasley et al. (2007). The long ends 

of the loop for the first zinc site (utilizing C353, C358, C373, and C377) are the origin of 

the ‘scissor-like’ fold also referred to as zinc ribbon (Krishna et al., 2003). The IBR 

second zinc binding site (using C382, C385, H390, and C394) is referred to as the zinc 

knuckle-like fold,  based on the compact zinc binding site which occurs due to the sudden 

turn (zinc knuckle) required to wrap around the zinc ion. 

The structure of fly RING2 in IBR-RING2 is reminiscent of the human IBR 

structure. The RING2 of IBR-RING2 coordinates zinc just like IBR, which coordinates 

zinc ions sequentially; 1st , 2nd, 3rd, and 4th zinc coordinating residues comprise the first 

zinc site (C436, C439, C454, C459), while the second zinc coordinating site is composed 

of 5th, 6th, 7th and 8th zinc coordinating residues (C464, C467, C475, H479). In 

comparison, the canonical RING structure (like TRAF6 or BRCA1) coordinates zinc 

through the cross-brace coordination motif that facilitates 1st, 2nd, 5th and 6th zinc 

coordinating residues for the first zinc site, while the second zinc coordinating site is 

composed of 3rd, 4th, 7th and 8th zinc coordinating residues. This results in a more 

compact structure, since it allows more contacts to be established within the structure.  
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   a   b)  c  

Figure  3.10: Ribbon structure of parkin IBR domain with template of zinc binding 
sites.  
A. IBR domain with zinc coordinating cysteines are highlighted in yellow, showing  
limited secondary structure. B. Zinc ribbon structure representative figure. C. 
Representation of gag-knuckle-like fold. 

 

 

Figure  3.11: Ribbon structure of parkin RING2 domain. 
 RING2 domain is illustrated with α helix and β sheets, with catalytic cysteine and zinc 
coordinating cysteines highlighted in yellow. 
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The RING2 in IBR-RING2 structure adopts the sequential zinc coordination, 

resulting in more elongated and less compact structures compared to the canonical RING. 

This structural difference between the canonical RING and RING2 of parkin leads to the 

conclusion that RING2 is not a canonical RING, and would have a special function in 

RBR E3 ligase. 

Based on the prediction of zinc coordination (Table 2), C449 was suspected to be 

in a reduced state, and not coordinating a zinc ion. As discussed in section 1.3.3, RBR E3 

ligases are suspected to have RING2 with catalytic cysteines, allowing the RING/HECT 

hybrid function of the enzyme. The HHARI C357 residue that was identified to have 

catalytic activity (Wenzel and Klevit, 2012), and the sequence alignment of HHARI with 

parkin showed that C449 of parkin is the conserved catalytic cysteine among all the 

human RBR ligases. With this in mind, the structure of RING2 was analyzed. As 

predicted, C449 was not one of the zinc coordinating residues, and it was not part of a 

region with secondary structure (Figure 3.11). It was rather located on the surface loop of 

RING2, well exposed for any potential catalytic activities. The existence of a solvent 

exposed catalytic cysteine on RING2 supports that it is not a canonical RING, and it 

would play the role of a catalytic domain suggested by the RING/HECT hybrid 

mechanism of RBR type E3 ligases. 

There was no notable direct interaction between the IBR and RING2 domains 

from the structure analysis. To further support the finding that the linker between the IBR 

and RING2 domains is unstructured and dynamic, additional experiments were 

conducted.  
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3.4 Interaction Studies of IBR and RING2 domains 

3.4.1 The flexible linker of IBR-RING2 is confirmed with protein dynamics 
studies 

To further characterize the two domains in IBR-RING2, a 15N { [

1H]} heteronuclear 

NOE experiment was performed. It was expected that this experiment would allow 

investigation into whether the two domains are interacting (displaying a globular 

structure), or acting as two separate domains (showing elongated structure) (Merkley and 

Shaw, 2004). Since each of the domains are approximately 40 amino-acid-long, it was 

expected that the value of the average NOE would be smaller if each two domain acted 

separately compared to the NOE if the domains were interacting and behave as a more 

globular species. 

Figure 3.12 displays the graph of heteronuclear NOE values for each residue in 

IBR-RING2. By determining the ratio of the intensities with saturation and no saturation, 

heteronuclear NOE values were calculated. Flexibility of the linker region was confirmed 

from the experiment, since it showed near-zero/negative NOE values, a common 

observation when there is a flexible hinge between the domains. Additionally, this 

observation was comparable to the values obtained for calmodulin (Barbato et al., 1992), 

cytokinesis protein Cdc4p (Slupsky et al., 2001), and Ubc1 (Merkley and Shaw, 2004) 

which all possesses a flexible linker region. This indicates that the linker between the 

IBR and RING2 domains has high mobility on the nanosecond time scale. The average 

NOE for the IBR and RING2 regions were 0.80 and 0.65, respectively. These NOE 

values were similar to that of the 15 kDa domain, such as ubiquitin-like conjugating 

enzyme Ubc9 (which had the NOE of 0.72) (Liu et al., 1999). It was expected that a  
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Figure  3.12: Steady-state heteronuclear NOE values for backbone amides of 15N-
labeled IBR-RING2, obtained at 600 MHz.  
Negative NOE values in the IBR-RING2 domain reflect increased flexibility with respect 
to the two other domains (Positive NOE: structured region, Negative NOE: unstructured 
and flexible). NOE values were determined as the ratios of the peak intensities, measured 
from spectra recorded with and without proton spin saturation.    
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heteronuclear NOE closer to 0.7 (close to 5 kDa proteins) would be obtained based on 

calculated molecular weight of each IBR or RING2 domains. Therefore, it was not clear 

from the heteronuclear NOE experiment that differences between a compact or extended 

forms of the IBR-RING2 could be determined.  

Another approach taken to examine the flexibility of the linker between IBR-

RING2 further was involving T1/T2 relaxation experiments. The objective of this set of 

experiments was to gain more information about the particle size of IBR-RING2. A 

particle in a solution is rotated by one radian at different rates, depending on the size of 

the particle. The time it takes for the particle to rotate is referred to as rotational 

correlation time (τc), a value which can be useful in biochemistry when approximating 

the size of a molecular weight. It has been shown that for a rigid protein molecule that is 

smaller than 25 kDa, τc can be described as a function of the ratio between the 

longitudinal and transverse 15N relaxation times (Kay et al., 1989). 

τc ≈ (4πνN)-1*[(6T1/T2)-7]1/2, where νN is the 15N resonance frequency. 

Backbone 15N spin relaxation experiments are used to obtain information about the 

residue-specific dynamics of proteins. In this project, longitudinal and transverse 

measurements were conducted by fitting the T1 and T2 graph to the exponential decay 

curve.   

Figure 3.13 shows a graph for τc that is calculated by dividing T1 by T2, for each 

residue of IBR-RING2. Average τc values for the IBR and RING2 regions (shown by 

dark lines) were 5.9 ns, and 5.5 ns, respectively. The linker region’s τc value was much 

lower (below four), and also less scattered.  
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Figure  3.13: Backbone 15N spin relaxation measurement of IBR-RING2 
 (25 mM Tris, 150 mM NaCl, 5 mM DTT at pH 7.5, 25°C for 300 µM IBR-RING2). T1 
and T2 relaxation time values were obtained from the peak intensities measured from 
spectra recorded with the shortest delay time to that of spectra with longer delay times. 
Then T1/T2 (τc) was calculated and plotted on a graph as shown. 
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The τc value of  small molecules moving randomly in solution would be shorter 

than that of  large molecules that form a protein complex. This indicates that the linker 

region is moving more freely in solution than the two domains in IBR and RING2. 

Moreover, the prediction of τc can be approximated to be half the value of its molecular 

weight (Anglister et al., 1993).  

τc [ns] ≈1/5T2 [s] ≈ 1/2 MW [kDa], where MW is molecular weight and [] shows units 

Based on this equation, a globular protein that has molecular weight close to IBR-RING2 

(~16 kDa) should have a τc value of about 8 ns. Also, the rotational correlation time 

values compiled by Aramini and colleagues (2010) showed that the 7.2 kDa protein 

PsR76A has a τc of 5.1 ns, and that of 15.8 kDa protein ER541-37-162 is 10.0 ns. These 

predicted values of τc compared to the acquired value of IBR-RING indicates that the 

protein is not globular. Therefore, these findings show that IBR and RING2 are two 

separate domains with an approximate size of 7-8 kDa. 

In these experiments, it was important to monitor the change in the intensities of 

the peaks during data collection. Thus, stability of the sample was crucial. However, the 

unstable nature of the IBR-RING2 made it difficult to maintain the sample for the 

duration of data collection and could have produced inconclusive results. This explains 

some of the unexpected results, such as values greater than 1 for heteronuclear NOE or 

residues that show non-exponential decay in T1/T2 experiments that were not included in 

the graphs. However, the original data of heteronuclear NOE graph with outliers is 

presented in Appendix B, Figure B-1. The T1 and T2 decay curves of well fitted residues 
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and poorly fitted residues are also presented to show the quality of collected data in 

Appendix B, Figure B-2. 

 

3.4.2 Confirmation of non-interacting IBR and RING2 domains  
with 1H-15N HSQC spectra  

To further probe the interaction between IBR and RING2, two additional 

experiments using NMR spectroscopy were performed with the individual domains of 

IBR and RING2. These were conducted in an attempt to demonstrate that in the absence 

of the linker, the spectrum of IBR-RING2 would display residues at the same/similar 

position to the individual domains of IBR or RING2. This observation would indicate 

that the environment of the residues of each domain are not impacted by other domains, 

confirming the that the IBR and RING2 domains do not interact with each other in 

solution.  

The first supplementary experiment conducted involved superimposing the HSQC 

of individual domains, IBR(342-402) and RING2(417-482), to the full length IBR-

RING2 protein for comparison. The second involved conducting a titration experiment, 

using labeled IBR with non-labeled RING2. A change in any peak position in either the 

IBR or RING2 domains was expected, as a sign of possible interaction. The absence of 

this observation would confirm that the IBR and RING2 domains do not interact with 

each other in solution, whether or not they are connected by a linker. 
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Figure  3.14: Superposition of the IBR-RING2 1H-15N HSQC spectrum with each 
individual domain. 
 Black contours: IBR-RING2, Pink contours: IBR, and Blue contours: RING2. A. 
Superposition of IBR-RING2 with IBR, B. Superposition of IBR-RING2 with RING2 
 

B. 

A. 
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3.4.2.1 Individual domains of IBR and RING2 

1H-15N HSQC of IBR (residues 342-402) and RING2 (residues 417-482) were 

collected using the same condition as for IBR-RING2. Superposition of 1H-15N HSQC 

spectra for IBR and RING2 against the spectrum of IBR-RING2 showed that most of the 

peaks overlapped (Figure 3.14) suggesting that there is no interaction between the two  

domains.  Also, when both spectra are superimposed on IBR-RING2 (Figure 3.15), some 

of the peaks that are not superimposable by both domains are found in the linker (403-

416), therefore they would not be expected to superimpose as the linker is not intact in 

the separate domains. The postulate that IBR and RING2 are two non-interacting domain 

connected by a flexible linker is strongly supported by this experiment. 

3.4.2.2 Titration experiment with labeled IBR and non-labeled RING2 

To confirm that there is no interaction between the IBR and RING2 domains, 

unlabeled RING2 was titrated into 15N-labeled IBR.  The peaks corresponding to the IBR 

domain did not show any significant change in chemical shift even in the presence of two 

equivalents of RING2 (Figure 3.16). When there is an interaction, peaks that are involved 

in the site of interaction would be expected to change in chemical shift or peak intensity. 

Since the spectra are overlapping almost perfectly, this further supports that no 

interaction occurs between the isolated IBR and RING2 domains of parkin.  

In summary, the 1H-15N HSQC spectra for the individual IBR and RING2 

domains were superimposable with IBR-RING2 spectrum.  Also, the chemical shift 

changes were absent when parkin RING2 was titrated into 15N-labeled IBR. These  
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Figure  3.15: Superposition of the IBR-RING2 1H-15N HSQC spectrum with each 
individual domain, both IBR and RING2 displayed. 
 Black contours: IBR-RING2, Pink contours: IBR, and Blue contours: RING2. Most 
peaks of IBR-RING2 are overlapping with each other or at a close proximity.  
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Figure  3.16: Titration of RING2 into 15N labeled IBR.  
Black spectrum is the original spectrum of IBR, and blue is IBR with the addition of 
RING2. Since most of the peaks are perfectly overlapping, it appears as if there are not 
many black peaks in the spectrum. 
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cumulative results indicate that, in the context of native parkin, the IBR and RING2 

domains do not associate with each other. 

3.4.3 Split GFP 

Numerous attempts were made in order to obtain soluble parkin RING1 domain 

or RING1-IBR-RING2 domain to possibly examine chemical shift changes in 1H-15N-

labeled IBR-RING2 spectrum in the presence of unlabeled RING1. This was to identify 

the region of interaction in IBR-RING2 with RING1 when all the components of the 

RBR domain of parkin are present. This would help identify the relationship between the 

RING1 and RING2 domains. Since the RING1 is expected to recruit the complex of E2 

enzyme bound to ubiquitin and pass the ubiquitin onto the RING2, identification of the 

spatial arrangement of RING1 and RING2 might allow some details of this mechanism to 

be revealed. In the absence of the RING0 domain, purification of the RING1 or RBR of 

parkin was proven to be very difficult, with the notable exception of RING2 or IBR-

RING2. Therefore, an alternative method was explored to monitor the interactions 

between the RING1 and IBR-RING2 proteins.  This method involved cloning the parkin 

RING1-IBR-RING2 into a split GFP vector and observing the reformation of GFP should 

an interaction between the RING1 and RING2 domains occur. The advantage of this 

approach is that only a small fraction of the protein needs to remain soluble to observe 

the green fluorescence for detecting interaction. 

Split green fluorescent protein was shown not to reassemble when split in a loop 

between residues 157 and 158 and produced in trans in an expression system (Ghosh et 

al., 2000). Upon insertion of two interacting domains that facilitate the assembly of the 

split GFP, the fluorescence of the split GFP can be obtained. With this property, the  



69 

 

 

 

 

   b)          

Figure  3.17: Illustration of split GFP system. 
 A. Insertion of two interaction partners to be expressed with split GFP B. Upon 
interaction of the two proteins, split GFP reassembles itself and will fluoresce.  
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detection of direct protein-protein interactions can be monitored. Figure 3.17 illustrates 

how the N and C termini of GFP assemble based on the interaction of two proteins being 

tested. Also, it has been reported that the interaction strength (KD) required to be tested 

with split GFP is about 1 mM (Magliery et al., 2005), which makes it possible to detect  

weak interactions  by split GFP analysis. This is the primary reason why split GFP was 

used to screen for any IBR-RING2 interaction. For the purpose of my research, the 

insertion of RBR and IBR-RING2 into this split GFP system was conducted in the hope 

of detecting any possible interaction between RING1 and RING2, or any other 

combination possible.  

The split GFP-parkin RING1-IBR-RING2 construct was designed with the hope 

of monitoring a possible interaction between the RING1 and IBR-RING2 domains. It was 

suggested that the RING1 and RING2 domains might be in close proximity  in full-length 

parkin (Beasley et al., 2007). To test this, IBR-RING2 and RING1-IBR-RING2 were 

incorporated into the split GFP Duet vector and tested for expression. The calcium 

binding proteins (S100A8 and S100A9) known to form a tight (KD<1 µM) functional 

heterodimer, were used as a positive control. 

All soluble fractions of the cell lysates were confirmed to have the expression of 

the desired protein by SDS-PAGE (Figure 3.18). Observation under ultraviolet (UV) light 

was used to determine whether any of them fluoresced as an indication of an interaction 

between RING1 and IBR-RING2 or IBR with RING2 interaction. The positive control 

S100A8:S100A9 showed bright green fluorescence under the UV light, indicating an 

interaction between the two proteins (Figure 3.19). The split GFP-parkin IBR-RING2 and 

split GFP-parkin RING1-IBR-RING2 proteins did not fluoresce, indicating that despite  
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Figure  3.18:  Solubility test of split GFP constructs shown as labelled at the top.  
First three lanes are for RBR, next three are for IBR-RING2 and last three lanes are for 
S100A8/A9 complex in split GFP. At the bottom, lanes are identified by samples from 
the solubility test, labeled with soluble fraction (S), insoluble fraction (I), and crude cell 
lysate (L), respectively.   
 

                GFP-RBR         GFP-IBR-RING2  GFP-S100A8/A9 

 

Figure  3.19: Soluble fraction of cell lysate split GFP fusions with RBR, IBR-RING2, 
and S100A8/A9.  
The UV lamp was shone to maximize the fluorescence from split GFP to observe any 
fluorescence indicating an interaction between the inserted domains. It is clear only the 
positive control, S100A8/A9 complex, fluoresced in green, whereas the other samples did 
not. 
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the long linker between the IBR and RING2 domains, they do not form a complex for 

interaction. An interaction between RING1 and IBR-RING2 was not detected using the 

split GFP vector; this can be interpreted that no direct interaction occurs between RING1 

and RING2. 

3.5 Mutation analysis 

Determining the clinical significance of missense mutations of parkin was  

difficult, primarily due to the large number of different mutations possible on the  PARK2 

gene (Pankratz and Foroud, 2007).  The significant number of varying mutations can be 

attributed to the likeliness of less detrimental effects of missense mutations on enzyme 

function  as compared to exon deletion or duplication (Pankratz and Foroud., 2007), 

which were shown to have direct impact on parkin function. It still remains unclear 

whether homozygous or compound heterozygous parkin mutations are more likely to be 

the cause of diseased state parkin (Kay et al, 2007).    

Within the parkin IBR-RING2, there are over 20 missense mutations that have 

been identified in ARJP patients included in HGMD. These mutations include: G349E, 

Q355C, T372P, G376D, R383Q in the IBR domain, D412N, R415Q, A417T, R420C, 

R420P in the linker, and T433N, C436R, G447E, G448D, C449F, C459R, and M476L in 

RING2 domain, as shown in Figure 3.20. In this study, all of the soluble mutations were 

successfully designed, expressed, and purified for NMR studies. Determining the effects 

of each of these mutations on the structure was the main goal of the mutational analysis. 

All constructs were expressed and purified under conditions identical to the wild-type 

IBR-RING2. Figure 3.21 shows the solubility test of IBR-RING2 for the mutations in 

RING2 region. It was clear that the solubility of IBR-RING2 is only impacted when the  
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A.       B.     C. 

            

Figure  3.20: Disease state substitutions within the parkin IBR-RING2. Ribbon 
drawings of different domains of parkin. 
 A. IBR, B. linker C. RING2 showing positions of the ARJP causative mutation sites, 
with sticks to indicate the side chain positions in the protein (blue in IBR, orange in 
linker, and pink in RING2). Also, zinc coordinating cysteines and histidines are shown in 
yellow.  
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 M4476L           T433N     C436R     G477E     G448D     C449F    C459R 

    I      S              I      S      I      S      I      S      I       S      I      S      I     S 

 

Figure  3.21:Solubility test of mutants of IBR-RING2, (missense mutations on 
RING2 only).  
I: insoluble, S: soluble fraction, and the mutations tested are listed at the bottom of the gel. 
Clearly C436R and C459R are not soluble due to the mutations on the zinc coordinating 
cysteine. C449F, on the other hand, is still soluble. 
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zinc coordination is disrupted, as C436R and C459R were shown to be insoluble, while 

the rest were identified to be soluble.   

In total, 16 IBR-RING2 mutants were successfully created by mutagenesis, and 

expression tests were used to identify the insoluble mutants. As expected, the residues 

identified to be involved in zinc coordination resulted in poor solubility of the IBR-

RING2. This was likely a result of improper zinc coordination causing the IBR-RING2 to 

be unstable and insoluble (Figure 3.21). Multiple 1H-15N HSQC spectra of the soluble 

IBR-RING ARJP substituted proteins were collected to determine the effect of these 

substitutions on the structure of parkin IBR-RING2. It was speculated that changes in the 

structure would be localized in the region where the substitution is present, since there is 

not much interaction between IBR and RING2 (Mutations in the IBR region would only 

affect the peaks of IBR, leaving the peaks of RING2 unchanged). There were some 

unique mutants that did not change the HSQC greatly, only affecting a couple of peaks, 

and those mutants were located in the linker region between IBR and RING2 (D412N, 

R415Q, A417T, R420C, and R420P).   

Analysis of the disease-causing mutants’ effect on the IBR-RING2 structure was 

done by comparing the 1H-15N HSQC of 15N labeled samples with wild type (WT). For 

example, observing changes in amino acids distanced from regions of the substitution 

that are considered to be important residues would indicate that the substitution caused a 

change in the structure by globally affecting residues throughout the IBR or RING2 

domains. The 1H-15N HSQC spectra (Figures 3.22-24) for all IBR-RING2 mutants had 

well-dispersed peaks and patterns similar to the peak positioned for wild-type IBR-
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RING2. This indicated that these mutations did not affect the three-dimensional structure 

of IBR-RING2.  

One of the point mutations in the IBR region linked to ARJP, G349E (human 

G328E), is located on the surface of the IBR domain. It was inferred previously with the 

human IBR domain (Beasley et al., 2007) that this substitution would disrupt the 

interaction surface of the loop where G349 is located in, resulting in the ARJP disease 

state. In fruit fly neurons, the parkin mutants was found to be insoluble in the cell lysate, 

further suggesting that the high expression level of this disease state of parkin cannot be 

tolerated (Wang et al., 2007). This interesting observation correlates with the lower yield 

obtained, when expressed in E. coli, of this ARJP substitution of parkin IBR-RING2. It 

has also been reported that ubiquitination of PLCγ1, one of parkin’s substrates, was 

lowered when compared to the level of G349E with the wild type (Dehvari et al., 2008). 

The G349E ARJP substitution was also identified to be a pseudo-dominant parkin 

mutation, since it is often found on one allele in patients with ARJP (Periquet et al., 

2001). The residues affected by this point mutation are in close proximity, such as V345, 

G350, L352, and V380 (Figure 3.22). This indicates that this point mutation does not 

impact the domain’s fold but does cause localized chemical environment changes. 

Insolubility of this mutant in high expression levels could indicate its potential to act as a 

neurotoxin, but that conclusion could neither be supported nor opposed by this mutational 

analysis as the protein was soluble when expressed in different organisms. 

The missense mutation in the linker region D412N (human: D394N) was reported 

to be a benign polymorphism (Kay et al., 2007), despite being listed as an ARJP-related 

mutation in the HGMD. This is due to the presence of this mutation in patients  
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Figure  3.22: Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in IBR region (G349E).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and blue peaks belong to the spectrum 
of G349E mutant of IBR-RING2. 
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distinguished with a sporadic form of PD, thus making it difficult to conclude that there is 

a direct link between this substitution and the disease (Figure 3.23). No significant 

changes were observed in peak positions with the D412N substitution for either IBR or 

RING2. While this may support the previous finding that D412N is not directly linked to 

ARJP, it does not exclude the possibility that other domains of full-length parkin may be 

impacted by this substitution. For example, the D412N substitution could disrupt 

interactions between other domains and the linker which in turn would inhibit function of 

parkin. Alternatively, this substitution might also be completely benign and not affect 

parkin function. 

In the RING2 region, the missense substitution C449F (human C431F) was 

shown to impair parkin E3 ubiquitin-protein ligase activity toward the interacting 

substrates, such as ZNF746 (Shin et al., 2011) and Bcl-2 (Chen et al., 2010). This 

cysteine residue of RING2 is suspected to be a catalytic site for RBR type E3 ligase 

function. According to the structure, C449F is exposed to the solvent, since it does not 

coordinate a zinc ion (Figure 3.11). It is well conserved throughout orthologous and 

paralogous organisms, providing compelling evidence that this cysteine is catalytic. For 

this reason, substitution of this residue would be expected to have a detrimental impact 

on the function of parkin. As expected, there are many chemical shift changes that occur 

in HSQC when this residue (C449) is mutated (Figure 3.24), compared to other mutations 

in the RING2 region as shown in Appendix C. 

Of all the HSQCs of IBR-RING2 mutants, Q355C (Appendix C, Figure C-1) 

resulted in major shifts in all peak positions, as compared to the wild-type protein. This 

can be rationalized by the location of the residue in structure. As shown in Figure 3.20,  
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Figure  3.23: Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the linker region (D412N).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and orange peaks belong to the 
spectrum of D412N mutant of IBR-RING2 
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Figure  3.24: Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the RING2 region (C449F).  
The point mutation is labeled in red,  and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and pink peaks belong to the spectrum 
of C449F mutant of IBR-RING2. 
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Q355 is very close to the first zinc coordination site of the IBR domain (near the N-

terminus), and the introduction of an additional cysteine in this position may have 

disrupted proper zinc coordination. As shown by removal of cysteines with C436R and 

C459R (Figure 3.21), disruption of proper zinc coordination in IBR-RING2 had a 

detrimental impact on the protein folding and solubility. The introduction of an additional 

cysteine residue near the zinc coordination site I of IBR may have modified the proper 

folding of the protein, although it did not result in the protein becoming insoluble. 

Interestingly, introduction of an additional cysteine residue (R420C) much further away 

from the zinc coordination site, however, did not result in major shifts in peak position. 

The R420 mutation is in the linker region (Figure 3.20), where neither IBR nor RING2 

domains are in close proximity, so additional cysteines only impacted residues in its 

vicinity.  

It can be shown through the mutational analysis of 1H-15N HSQC spectra that 

ARJP substitutions caused minor changes in the IBR-RING2 structures. Most of the 

peaks that display changes are local as evident from the spectra (Figures 3.22-24). 

Substitutions in the IBR region only impact the resonance peaks in the IBR domain, 

while substitutions in RING2 domain changed the resonance peaks in RING2 only. This 

is consistent with the result that IBR-RING2 are two separate domains, since if there was 

an interaction between these two regions, they would display some changes in other 

regions. 

An interesting trend observed in the 1H-15N HSQC spectra collected for ARJP 

substitutions in the linker region between the IBR and RING2 domains is the presence of 

significantly fewer peaks affected by any of the substitutions. This would indicate that 
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substitutions in the linker do not affect the chemical environment of residues found in 

either the IBR or RING2 domains of parkin, further supporting the flexibility of the 

linker.  

Both of these findings support what was expected based upon the structure calculation 

along with NMR titration data analysis. The T1/T2 experiment results are also in 

agreement with discovery of the flexibility of the linker in IBR-RING2.  

According to the solubility test of IBR-RING2 mutants in the RING2 domain, 

when the zinc-coordinating cysteine is affected, the protein becomes insoluble due to its 

inability to bind to the required structural zinc ion. The insolubility of these substitutions 

(C436R and C459R) did not allow for 1H-15N HSQC spectra to be collected. However, 

these findings further demonstrate the importance of zinc ions in the proper folding of 

IBR-RING2. Without the zinc, parkin IBR-RING2 cannot fold properly and can fall out 

of solution. Interference of zinc coordination, such as addition of EDTA into the protein 

(causing the precipitation of human IBR), also agrees with this finding.   

Clearly, it is evident that a structural rearrangement does not occur due to the 

soluble ARJP substitutions. Also, it is not presently clear from the data the cause of PD 

by these ARJP substitutions, as they did not adversely affect the protein’s fold. Despite 

this, the mutational analysis does provide new information that IBR-RING2 has a flexible 

linker and that there is no interaction between the two domains. 
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3.6 Summary 

GST fusion tagged IBR-RING2 has been successfully expressed and purified. The 

protein fold of IBR-RING2 was confirmed with an 1H-15N HSQC experiment. MS 

analysis showed that there are a total of four zinc ions bound to the IBR-RING2. A zinc 

coordinating cysteine prediction of IBR-RING2 also confirmed the number of zinc ions 

in the structure to be four.  

Multiple NMR experiments were performed to determine the structure of the 

IBR-RING2, by making the appropriate chemical shift assignments. After assigning the 

backbone and side-chains, the chemical shift index was used to predict the secondary 

structure of IBR-RING2. Also, the structure calculation with CYANA confirmed that 

there was not much secondary structure in either IBR-RING2. The structures of IBR and 

RING2 were very similar and the linker between them did not have much structure. The 

structure of IBR-RING2 supported that RING2 is most likely not involved in the 

recruitment of an E2 enzyme, and it also confirmed the existence of solvent exposed 

catalytic cysteine for RING2.  

Flexibility of the linker region between IBR and RING2 were confirmed with 

multiple experiments: NMR rate analysis (heteronuclear NOE and T1/T2 experiments), 

titration experiment, overlay of single domain 1H-15N HSQC, and split-GFP system. This 

lead to the conclusion that IBR and RING2 are two non-interacting domain connected by 

a linker.  

The ARJP substitution study of IBR-RING2 by 1H-15N HSQC monitored the 

possibility in protein cold changes. The IBR and RING2 showed mostly local changes 
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around the point mutations, while the mutations in the linker region did not show much 

change. Moreover, the importance of zinc-coordination for these proteins was again 

confirmed by drastic changes in zinc coordinating cysteine impacting the structure 

greatly. 

3.7 Closing Thoughts & Future direction 

The finding that last two C-terminal domains of parkin (IBR-RING2) are not 

interacting implies that there are other domains that must come into contact in full length 

parkin. Furthermore, this result suggests that the original view on the IBR’s function of 

bringing RING1 and RING2 together for proper RBR domain function may not hold true. 

The recently published structures using X-ray crystallography of the majority of parkin 

(RING0-RING1-IBR-RING2) showed the assembly of RING0 and RING1 in the linker 

region between IBR and RING2 (Trempe et al., 2013; Wauer and Komander, 2013; Riley 

et al., 2013). As the structures of IBR and RING2 from the crystal structure were very 

similar to the structure in this thesis determined using NMR spectroscopy, it supports the 

completeness of the NMR spectroscopy method of structure calculation.  

The flexible nature of the linker suggests the importance of this linker in the role 

of parkin as an E3 ligase, since it makes contact with both RING0 and RING1. The linker 

may serve to stabilize or solubilize these two domains, as they were found to be insoluble 

without IBR and RING2 domains attached.  

Originally, the future direction of this project was to determine structures for 

other parts of the domain of parkin, including RING1, then RING0, and even the N-

terminus, UbL. However, with the recent finding of the structure of parkin (RING0-
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RING1-IBR-RING2) with X-ray crystallography, it became redundant to repeat the 

structure calculation with NMR spectroscopy. Still, with the completion of the chemical 

shifts assignment of residues in IBR-RING2, direct interacting partners of IBR-RING2 

can be analyzed, or even titration experiments with other proteins are possible. It would 

be interesting to develop a method to see how N-terminus of parkin, UbL, regulates the 

protein to function as an E3 ligase through contacting the rest of the protein. 

 It has already been shown that the E2 enzymes, UbcH7 and UbcH8, do not 

interact with the RING2 domain (Spratt et al., 2013), suggesting that it would be another 

RING domain that is the binding partner of E2. In this work, it was found that expression 

and purification of RING0 or RING1 domain without IBR-RING2 is difficult. In the 

future, it would also be interesting to monitor the behavior of RING0 linked directly to 

RING2. If these constructs behave well, monitoring the residue-specific interaction 

between RING0-RING2 would contribute to the better understanding in the inter-

molecular behavior of the C-terminus of parkin.  
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Appendices 

Appendix A: Data from Structure Calculation of IBR-RING2 

CCONH  CbCaCONH HNCaCb   HNCO      HNCaCO  CCONH CbCaCONH HNCaCb   HNCO     HNCaCO 
                    G17            C18                                                                C18          G19 

 

Figure A-1. Backbone assignment of IBR-RING2.  
The strip plot of spectra shows 15N planes for the residues near the start of IBR domain 
of IBR-RING2. For each of planes, the five panels are shown, first CCONH, then 
CBCA(CO)NH, HNCACB, HNCO, and HNCACO. The connection of i-1residue 
chemical shifts with i residue chemical shifts are indicated with blue, purple, and dotted 
lines. CCONH was used as a guide to distinguish amino acids that have very close 
chemical shifts, with the additional information on Cγ, Cδ, and Cε. 
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Appendix B: Data from Dynamics Studies of IBR-RING2 

 

Figure B-1. Original steady-state heteronuclear NOE values for backbone amides of 
15N-labeled IBR-RING2. Negative NOE values in the IBR-RING2 domain reflect 
increased flexibility with respect to the two other domains. Values above 1 were not 
deleted in this graph, as shown in Figure 3.12. 
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Figure B-2. T1 and T2 graphs for two different residues on IBR-RING2. A. T1 and 
T2 decay curves for V351, and data fits well to the decay curves. B. T1 and T2 decay 
curves for A403, and data does not fit well to the decay curves. 
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Appendix C: Data from Mutational Analysis of IBR-RI NG2 

 

Figure C-1. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in IBR region (Q355C).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and blue peaks belong to the spectrum 
of Q355C mutant of IBR-RING2. 
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Figure C-2. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in IBR region (G376D).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and blue peaks belong to the spectrum 
of G376D mutant of IBR-RING2. 
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Figure C-3. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in IBR region (R383Q).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and blue peaks belong to the spectrum 
of R383Q mutant of IBR-RING2. 
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Figure C-4. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the linker region (R415Q).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and orange peaks belong to the 
spectrum of R415Q mutant of IBR-RING2 
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Figure C-5. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the linker region (A417T).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and orange peaks belong to the 
spectrum of A417T mutant of IBR-RING2 
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Figure C-6. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the linker region (R420C).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and orange peaks belong to the 
spectrum of R420C mutant of IBR-RING2 
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Figure C-7. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the linker region (R420P).  
The point mutation is labeled in red, and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and orange peaks belong to the 
spectrum of R420P mutant of IBR-RING2 
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Figure C-8. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the RING2 region (T433N).  
The point mutation is labeled in red,  and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and pink peaks belong to the spectrum 
of T433N mutant of IBR-RING2. 
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Figure C-9. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the RING2 region (G477E).  
The point mutation is labeled in red,  and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and pink peaks belong to the spectrum 
of G477E mutant of IBR-RING2. 
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Figure C-10. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the RING2 region (G448D).  
The point mutation is labeled in red,  and residues that are impacted (shifted) are labeled. 
Black peaks belong to the wild type IBR-RING2 and pink peaks belong to the spectrum 
of G448D mutant of IBR-RING2. 
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Figure C-11. Superposition of 1H-15N HSQC spectra of wild type IBR-RING2 with 
mutated IBR-RING2 in the RING2 region (M476L).  
The point mutation is indicated in red on the side (peak not found),  and residues that are 
impacted (shifted) are labeled. Black peaks belong to the wild type IBR-RING2 and pink 
peaks belong to the spectrum of M476L mutant of IBR-RING2. 
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Appendix D. Multiple Sequence Alignment of IBR-RING2 

A. IBR 

 

B. Linker 

 

C. RING2 

 

Figure D-1. Multiple Sequence Alignment of IBR-RING2 
Multiple sequence alignment (MSA) of A. IBR, B. Linker, and C. RING2 region using 
Jalview program. Original MSA of parkin performed by Steve Beasley (Dr. Shaw lab) 
was modified. All the conserved zinc coordinating amino acids are highlighted in yellow. 
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