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ABSTRACT 

 

Common, complex diseases such as cardiovascular disease (CVD) represent an intricate 

interaction between environmental and genetic factors and now account for the leading 

causes of mortality in western society. By investigating the genetic component of 

complex disease etiology, we have gained a better understanding of the biological 

pathways underlying complex disease and the heterogeneity of complex disease risk. 

However, the development of high throughput genomic technologies and large well-

phenotyped multi-ethnic cohorts has opened the door towards more in-depth and trans-

disciplinary approaches to studying the genetics of complex disease pathogenesis. 

Accordingly, we sought to investigate select complex traits and diseases using both 

established and novel genomic technologies, including candidate gene resequencing, 

high-throughput targeted microarray genotyping and candidate variant genotyping. We 

demonstrate that a private and common variant, p.G116S, within the low-density 

lipoprotein receptor (LDLR) gene among Inuit descendants has a large effect on plasma 

cholesterol; that variation in cardio-metabolic and Alzheimer disease (AD) loci is not 

associated with susceptibility to the pre-dementia phenotype known as “cognitive 

impairment, no dementia”; and that established type 2 diabetes (T2D) variants are not 

associated with T2D susceptibility among select aboriginal Canadian and Greenland 

cohorts. Together, these studies represent a selection of established and novel genomic 

strategies for the investigation of complex disease genetics which are likely to remain 

fundamental in the continued investigation of complex disease pathogenesis. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter is based on material from the following publications: (1) Dube, J.B., and 

Hegele, R.A. (2012). Genetics 100 for cardiologists: basics of genome-wide association 

studies. Can J Cardiol 29, 10-17; and (2) Dube, J.B., Johansen, C.T., and Hegele, R.A. 

(2011). Sortilin: an unusual suspect in cholesterol metabolism: from GWAS 

identification to in vivo biochemical analyses, sortilin has been identified as a novel 

mediator of human lipoprotein metabolism. Bioessays 33, 430-437. 

 

1.1 Human disease 

 

The concept of human disease can be briefly defined as dysfunction or abnormality in 

biological function which enhances mortality and morbidity risk. As medical science has 

advanced, preventive strategies have largely mitigated many of the risk factors 

underlying the once common infectious diseases in developed nations. Although 

historically notorious diseases such as the bubonic plague are no longer a leading cause 

of death, a new class of diseases has risen to represent the top causes of mortality in the 

developed world. Chronic non-infectious diseases that become clinically recognizable in 

adulthood have reached prevalence worldwide as in correlation with longer average 

lifespan. Diseases such as cancers, heart disease and stroke now account for a major 

1



percentage of deaths worldwide and thus pose the greatest threat to modern global public 

health (Lozano et al., 2013). 

 

1.1.1 History of human disease 

In recent history, the most prominent diseases were infectious in nature and were often 

linked to hygienic deficiencies. The plague of the 14
th

 century, one of the world’s greatest 

epidemics, was caused by the insidious spread of Yersinia pestis by fleas and rats (Ligon, 

2006). Tuberculosis, another bacterial disease which reached epidemic proportions in 

Europe during the Industrial Revolution, is believed to have been largely transmitted 

through unpasteurized milk and milk products (Donoghue, 2009). Discoveries in 

antibiotics, improved hygienic and sanitary practices as well as technological 

advancements have since helped to limit epidemics of infectious disease. As these 

advances have dramatically decreased early life mortality and have supported a longer 

average lifespan among Western countries, the leading causes of mortality are now 

represented by chronic age-related diseases (Figure 1.1). In North America, cancer, heart 

disease and stroke cumulatively account for almost half of all reported deaths (Heron, 

2012). Dementia and cognitive impairment, both of which are highly correlated with age, 

are anticipated as the next epidemics to emerge over the coming decades. As these age-

related diseases represent major public health concerns, understanding the etiologies and 

risk factors underlying common diseases has become a global imperative. 

2



Figure 1.1 Historic rates of leading causes of death in the United States from 1900-

1998. Data presented here were taken from the U.S. National Center for Health Statistics 

(Centers for Disease Control and Prevention, 2009). 

3
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1.1.2 Heritability of disease 

Diseases may be distinguished based on the mode of disease transmission. Fundamental 

classifications have characterized diseases as communicable and non-communicable 

based on the respective presence or absence of a pathogenic microorganism necessary for 

disease transmission. However, a crucial distinction in disease classification was the 

observed inheritance of diseases or traits in offspring following mathematical ratios as 

per Mendel’s early studies in peas. Pedigrees charting the inheritance of traits within a 

family tree helped conceptualize a novel means for the transmission of disease 

susceptibility via heritable or genetic factors. The heritability of a wide range of traits and 

diseases has been explored through family-based studies that looked at phenotypic 

heritability between related individuals who consequently were less genetically 

heterogeneous compared to the general population. Studies comparing large sets of twin 

pairs were also important as concordance rates between monozygotic twins who are 

genetically identical could also be used in estimating the heritability of diseases. More 

recently, genetic studies have expanded to large cohorts representative of the general 

population where genetic heterogeneity is greatest. Intriguingly, family and twin studies 

have ascribed strong heritability estimates to the cardio-metabolic traits relating to heart 

disease as well as cognitive disorders such as Alzheimer disease (AD) (Mangino and 

Spector, 2012). 

 

1.1.2.1 Monogenic disease 

In rare cases, diseases have been observed to segregate predictably and according to 

Mendelian ratios among offspring. Through early genetic mapping approaches, which are 

5



discussed later, it was shown that a single genetic variant of deleterious effect was 

sufficient to cause remarkably penetrant and pathogenic phenotypes. Furthermore, the 

variants underlying Mendelian diseases tended to disrupt the function of a single locus or 

gene which led to the concept of monogenic diseases. Regarding specific modes of 

inheritance, monogenic diseases can be inherited in an autosomal recessive manner in 

which two dysfunctional alleles must be inherited for the disease phenotype to manifest. 

Alternatively, monogenic diseases can be inherited in an autosomal dominant or co-

dominant manner whereby a single dysfunctional allele can cause the disease phenotype 

or two dysfunctional alleles can create an even more severe phenotype. Additional modes 

of inheritance include sex-linked patterns of heritability. As monogenic diseases 

exemplify the biological effects as a result of disrupting individual genes, this class of 

genetic disease has been invaluable in helping improve our understanding of the genetic 

architecture underlying many diseases and clinically-important traits currently 

documented in the Online Mendelian Inheritance in Man database (OMIM) (Hamosh et 

al., 2005).  

 

1.1.2.2 Complex disease 

In contrast to monogenic diseases, where a single variant is sufficient to cause a disease 

phenotype, complex diseases represent a greater interaction between environmental and 

genetic factors. No single genetic variant is sufficient to cause a complex disease 

phenotype but rather multiple variants of low penetrance at multiple loci contribute 

synergistically to modulate disease susceptibility. The leading model for complex 

diseases is described as the common disease-common variant (CDCV) hypothesis which 

6



predicts that multiple commonly occurring variants from multiple genes individually 

contribute a small effect on disease susceptibility but additively exert a considerable 

effect in the manifestation of complex disease (Reich and Lander, 2001). An emerging 

hypothesis has incorporated the potential contribution of rare variants of proportionately 

larger effect on complex disease susceptibility; however, this concept is currently being 

assessed for validity in the most common complex diseases (Pritchard, 2001). In support 

of the heterogeneous nature of complex disease susceptibility, complex diseases are not 

inherited according to the models which apply to monogenic diseases. Instead, common 

variants are believed to contribute to the overall picture of disease susceptibility.  

 

1.1.2.3 Disease penetrance 

The phenotypic spectrum that exists within complex polygenic diseases, in terms of 

characteristics such as disease severity and age of onset, is mediated by the complex 

interaction between environmental and genetic risk factors. For certain complex diseases,  

disease susceptibility is greatly modulated by variants with highly penetrant effects such 

as hereditary forms of breast and ovarian cancer linked with mutations in the genes 

encoding breast cancer 1 (BRCA1) and 2 (BRCA2) (Apostolou and Fostira, 2013). While 

these large-effect variants are not deterministic of disease, it is important to note that 

single variants can mediate patterns of inheritance similar to monogenic diseases.  
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1.2 Genetic variation 

 

The human and chimpanzee genomes differ by only ~4% which is remarkable 

considering apparent physical distinctions (Varki and Altheide, 2005). In a more focused 

comparison, any two humans share ~99.5% genomic similarity and yet people vary 

considerably in terms of characteristics such as anthropometric measurements, eye or hair 

colour (Tishkoff and Kidd, 2004). Genetic variation represents the small percentage of 

genomic divergence and substantially contributes to the range of anthropometric traits we 

observe in human populations. The approaches currently used to study genetic variation 

are the result of the Human Genome Project which provided the first draft sequence of 

the human genome as well as the efforts of international consortia such as the 

International HapMap Project and the 1000 Genomes Project that developed a detailed 

map of genetic variation throughout the human genome  (2003). As one of the most 

crucial tools to emerge from the genomic era, the comprehensive catalogue of genetic 

variation in humans has facilitated unprecedented analyses of the role of genetic variation 

in modulating various phenotypes and disease susceptibilities with novel applications 

continuously emerging. 

 

1.2.1 Classes of genetic variation 

Several types of genetic variants comprise the ~0.5% of inter-individual genetic 

divergence and are classed in terms of size and frequency. The various classes of 

observed genetic variation are well documented and may vary considerably from large-

scale variation in the number of copies of entire chromosomes such as trisomy of 

8



chromosome 21 in Down syndrome to smaller-scale variation in the case of single base 

substitutions or single nucleotide variants (SNVs). SNVs represent the most abundant 

form of genetic variation and may potentially affect gene expression or protein structure 

based on localization. SNVs are distinguished based on the frequency with which they 

are observed in a population. Rare SNVs are observed with <1% frequency, uncommon 

SNVs occur with 1%-5% frequency and common SNVs are observed with frequencies 

>5%. Common SNVs, or single nucleotide polymorphisms (SNPs), have become 

established as important markers in genomic mapping strategies based on the global 

prevalence of these variants as well as the genome-wide coverage that the >38 million 

validated SNPs offers. 

 

1.2.2 Effect-frequency relationship 

Based on the genetic models of monogenic and complex diseases, a distinct trend has 

been observed between variant frequency and the variant-associated effect on disease risk 

(Figure 1.2). The frequency of causative variants underlying monogenic diseases tends to 

be extremely rare as these variants are subjected to heavy selective pressure and are thus 

not likely to be propagated in subsequent generations. At the opposite end of the 

frequency spectrum, SNPs have been subjected to low selective pressure due presumably 

to small phenotypic effects and have thus reached relatively high frequencies in global 

populations. The implications of this frequency-effect trend strongly influenced our 

concept of rare and common disease, which led to the development of the CDCV 

hypothesis. As common variation has been widely hypothesized to account considerably 
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Figure 1.2 Inverse relationship between variant frequency and variant effect size. 

Studies on rare monogenic disorders and common, complex diseases have supported the 

correlation between variant frequency and effect size whereby rare variants tend to 

associate with large and often deleterious effects while common variants are more likely 

to have subtle effects on disease susceptibility. Modified from Manolio et al. (2009).
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for the prevalence of common and complex disease, SNPs have been established as the 

genomic marker of choice for the majority of studies emerging from the genomics era. 

 

1.2.3 Linkage disequilibrium 

The concept of independent assortment was a fundamental assumption in Mendel’s 

studies of peas in which the heritable factors underlying traits were passed on to offspring 

independently of each other. This concept is applicable for variants separated by 

considerable distance or located on different chromosomes; however, in the case of SNPs 

that are present every ~300 bases, SNP alleles spanning a limited physical range tend to 

be inherited together as clusters known as haplotype blocks through a phenomenon called 

linkage disequilibrium (LD) (Gabriel et al., 2002). Through the genotyping of millions of 

SNPs in multi-ethnic populations, the International HapMap Project created a 

comprehensive map of haplotype block structures across the human genome as well 

asestimates of LD between variants, which have permitted the reliable prediction or 

imputation of variant genotypes. By imputing SNP genotypes, it is possible to vastly 

expand genomic coverage while sparing the costs of directly genotyping potentially 

millions of supplemental markers.  

 

1.2.4 Hardy-Weinberg equilibrium 

Another important characteristic of variant frequencies involves the allelic distribution 

for a given variant. SNPs are most often bi-allelic which means for any SNP there exists 

a major allele that represents >50% of all alleles specific to that SNP in a given 

population while the minor allele represents the remaining percentage. As part of the 
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CDCV hypothesis, SNPs are believed to individually contribute small effects towards 

disease susceptibility. Accordingly, the relative frequencies of homozygotes and 

heterozygotes for a given SNP genotype should remain stable from generation to 

generation. The Hardy-Weinberg equilibrium (HWE) principle is represented in a 

mathematical equation for calculating expected genotype frequencies for a biallelic 

variant, assuming the absence of such influences on allele frequency including genetic 

drift, natural selection or non-random mating (Mayo, 2008). Thus comparability between 

observed and expected genotype frequencies using HWE tests a fundamental assumption 

of the CDCV hypothesis. More recently, large-scale genotyping studies have used HWE 

as a means of statistical quality control in detecting potential genotyping errors by the 

variants that deviate substantially from HWE genotype proportions (Pearson and 

Manolio, 2008).  

 

1.3 Approaches to studying genetic disease 

 

The various approaches to studying the genetics of complex diseases have evolved in 

parallel with the development of genomic technologies. In the pre-genomic era, 

correlations were investigated between patients and clinically important variables such as 

weight, lipid profile or blood type. While these clinical characteristics served in part as 

surrogates for genetic variants, the first studies to directly investigate genetic diseases 

were based on families affected by predictably segregating disease phenotypes. The 

progression to population genetics studies came with a host of novel technological and 

statistical approaches aimed at testing variant-disease association in large genetically 
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diverse cohorts. Interestingly, as new technologies have been integrated in the field of 

medical genetics, the strategies of family- and population-based studies have remained 

fundamental to the ongoing study of genetic susceptibility to complex disease.  

 

1.3.1 Family-based techniques 

As the traditional approach to studying disease genetics, family-based studies have been 

important in identifying the genetic architecture of highly penetrant and monogenic 

phenotypes. Linkage analysis represents the established approach for assessing the 

cosegregation of trait loci specifically within families (Dawn Teare and Barrett, 2005). 

Methodologically, linkage analyses are best suited to the study of monogenic diseases in 

which a highly penetrant mutation underlies disease susceptibility. Statistical power is 

also derived from the exclusive study of family members where genetic variation 

between individuals will be minimal thus lowering the false-positive discovery rate or 

type 1 error. As technology advanced, linkage analyses replaced genetic markers with 

SNPs to increase resolution for mapping disease loci. Complex diseases are not ideally 

suited for linkage analyses based on the greater genetic heterogeneity, smaller effect sizes 

and environmental interactions which confound the strength of potential linkage signals. 

Furthermore, linkage analyses assume specific modes of inheritance which are not 

applicable to complex diseases (Pollex and Hegele, 2005). 

 

1.3.2 Population-based techniques  

Genetic analyses of the common complex diseases require population-based cohorts 

where genetic and phenotypic heterogeneity is high. Thus, in the study of complex 
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disease the traditional approaches used in family-based studies have been replaced by 

new techniques for identifying disease-related loci. Candidate gene studies represented 

the first attempt to test for association between genetic variation and disease 

susceptibility by sequencing genes known a priori to be involved in complex disease 

etiology. Associations identified using this approach suffered from lack of replication in 

follow-up studies which suggested the need to address the presence of confounding 

factors.  

 

Genome-wide association studies (GWAS) have become established as an 

effective and unbiased approach for identifying associations between common genomic 

variants and complex traits or diseases (Attia et al., 2009; Dube and Hegele, 2012). In 

this approach, millions of SNPs scattered across the genome are genotyped in a large 

population using commercially available SNP genotyping arrays. Each individual SNP 

genotype is then tested for association with discrete case-control status or with a 

quantitative trait such as plasma cholesterol concentration (Figure 1.3). SNP associations 

are then used as proxies for large haplotype blocks, which implicate a locus with disease 

susceptibility. As GWAS-identified SNPs most commonly lie in non-coding or intergenic 

regions, biological relevance is hypothesized based on the genes within the locus with 

less emphasis on the role of the associated variant. More recently, targeted GWAS have 

emerged in which custom SNP genotyping arrays are populated with variants that have 

been previously associated with a disease or trait. The latest targeted GWAS platforms 

include the Cardio-Metabochip which genotypes common variants associated with 

various cardio-metabolic traits (Voight et al., 2012). Similarly, the Immunochip 
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Figure 1.3 Framework for a genome-wide association study.  A) The human genome 

is  >99% invariant, but at approximately every 300 nucleotide bases along the DNA 

string are well-characterized nucleotide sites that vary among people; these sites toggle 

between 1 of 2 naturally occurring options. For instance, in a pool of individuals, the 

more common DNA “letter” at a polymorphic site might be “A” for adenosine, and a 

minority of chromosomes contain the less common form, “C” for cytosine. Such 

variations are called “single nucleotide polymorphisms” (SNPs). B) At each defined SNP 

site, people have a genotype composed of 2 alleles—1 from each parent—a feature 

detected with a chemical genotyping method as shown. Each dot on the grid is the SNP 

genotype for 1 person. Three clusters of people are seen: 2 varieties of homozygotes, 

namely A/A and C/C, and heterozygotes, namely A/C. It is reasonable to ask whether the 

members of 1 genotype class differ from those of another. In a candidate gene study, the 

SNP is deliberately chosen to mark a gene hypothesized a priori to play a mechanistic 

role determining the trait, but in a genome-wide association study, SNPs from across the 

entire genome are studied agnostically, without premeditation regarding their possible 

function. C) For case-control studies, SNP genotyping as in B) is performed in cases 

(filled symbols [circles are female, squares are male]) and matched controls. D) Odds 

ratios (ORs) are calculated and displayed on a forest plot: the OR provides an estimate of 

the risk of conferred by an allele of a given SNP. An allele with an OR >1.0 is associated 

with increased probability of case status in carriers of the allele and is thus identified as 

the risk allele. The genotypic ORs for several cohorts can be combined to provide an 

overall OR for a meta-analysis. E) Alternatively, for a quantitative trait association study, 

SNP genotyping as in B) is performed in a sample of the general population. F) Linear 
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regression is used to model the relationship between SNP genotypes and the quantitative 

trait measurement that provides an estimation of effect size, or β-coefficient, and P-value. 

The β-coefficient indicates the change in the quantitative trait measurement per copy of 

the associated allele and is given in the same units as the trait. This figure was reproduced 

with permission (Dube and Hegele, 2012). 
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facilitates the genotyping of variants associated with immunologic pathways (Cortes and 

Brown, 2011). Since the first published GWAS in 2008, nearly 1500 GWAS have been 

published on a range of complex diseases, identifying both expected and novel loci in 

complex disease pathways. 

 

1.3.2.1 Statistics in GWAS  

GWAS implementation requires an understanding of several statistical concepts. Firstly, 

the concept of statistical power is crucial in GWAS design. Statistical power establishes 

the probability of rejecting the null hypothesis, or no genotype-phenotype association, 

when no true association exists. Power is calculated based on a given threshold for 

significance, sample size, the anticipated SNP effect size on disease risk as well as the 

frequency of the risk-associated variant. Power calculations can help determine the 

sample size required to detect an association or, conversely, power can be used to assess 

the effect sizes that can be identified as true association for a given sample size.  

 

Secondly, the tests for association used in GWAS depend upon the phenotype 

being studied. Discrete phenotypes such as disease status utilize multivariate logistic 

regression whereas quantitative phenotypes are studied using multivariate linear 

regression. In either approach, an additive model is calculated to fit the correlation 

between genotype and phenotype and a P-value is generated which reflects the accuracy 

of this model. For discrete phenotypes, an odds ratio (OR) is also calculated which 

provides the frequency ratio for the disease-associated allele in cases versus controls. For 
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quantitative traits, the calculated β coefficient represents the effect size per allele copy 

and is given in the units of the trait.  

 

Another important consideration involves the determination of the threshold of 

significance. Significance, as indicated by the P-value, derived from each test for 

association provides a measure of the strength of association. Because millions of SNPs 

are being simultaneously tested for association, the standard false-positive rate of 5% is 

considered inadequate as a GWAS of one million SNPs will expectedly yield 5x10
4
 false 

positive associations. Thus a Bonferroni-corrected threshold of significance is applied 

where the standard P-value of 0.05 is divided by the number of SNPs being tested for 

association. In the case of a GWAS utilizing one million SNPs, the Bonferroni-adjusted 

P-value would be 5x10
-8

; any P-values below this threshold are thus considered 

statistically significant. 

  

Quality control measures used in GWAS also require statistical context. 

Particularly in GWAS of discrete phenotypes, it is important to limit the presence of any 

population substructure or stratification that may create spurious associations. Unequal 

proportions of individuals from different populations, such as multi-ethnic cohorts, may 

create differences in allele frequency independent of disease status. In order to address 

potential population stratification, the case population should not differ significantly from 

the control population in terms of demographic composition which includes potentially 

confounding characteristics such as age or sex. It is also preferable to investigate 

participants of a single ethnicity in order to limit ethnicity-related genetic variation. 
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Statistically, principal component analysis and genomic control are two widely 

implemented approaches to address population stratification (Price et al., 2006). 

 

1.3.3 Resequencing studies 

In the wake of GWAS, there has been increasing interest in resequencing GWAS-

identified loci in order to identify low-frequency variants with potentially larger effect 

sizes on disease susceptibility. As this approach is focused on rare variants, it will be 

difficult to test for association in the manner applied with GWAS. Thus studies compare 

the accumulation of rare variants at targeted loci in case and control populations. 

Imputation of rare variant genotypes using publicly available GWAS data sets has been 

used to expand the effective sample size and facilitate association testing between rare 

variants and disease status (Johansen et al., 2010). 

 

1.3.4 Association studies across ethnicities 

Replication of disease-variant associations remains the gold standard for validating 

GWAS findings. As GWAS have been heavily weighted towards populations of northern 

European ancestry, replication of the top GWAS findings in multi-ethnic cohorts has 

become an important stage in GWAS validation (Cooper et al., 2008). The inclusion of 

well-defined multi-ethnic populations in GWAS incorporates a greater range of human 

genetic diversity defined by differences in both allele frequencies and LD patterns via 

varying haplotype block structures. Genotype-phenotype associations that are 

consistently observed in multi-ethnic studies provide increased confidence behind 

putative disease loci. Ethnicity-specific differences in allele frequencies, while potentially 
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confounding, may also help to identify novel disease loci that may not have reached 

genome-wide significance in other studies simply due to low allele frequencies and thus 

limited statistical power (Pulit et al., 2010).  

 

1.3.5 Genetic studies in population isolates 

Population isolates represent populations that grew from a small group of founders. Due 

to a combination of geographic or cultural isolation as well as additional forms of genetic 

drift such as population bottlenecks, genetic diversity within population isolates is 

significantly lower than the genetic diversity observed in the general population (Arcos-

Burgos and Muenke, 2002). Well-known population isolates such as the Old Order 

Amish and the Finnish have been studied extensively in genetic mapping studies of 

heritable phenotypes and have revealed several advantages to genetic mapping studies in 

population isolates (Peltonen et al., 2000). Firstly, the limited genetic heterogeneity 

within population isolates provides a statistical advantage to detecting association signals 

as discussed earlier. Given the limited genetic heterogeneity as a result of the founder 

effect, inbreeding within population isolates is virtually unavoidable and enhances the 

prevalence of recessive disorders through loss of heterozygosity. Secondly, population 

isolates are exposed to similar environmental and cultural factors; a crucial characteristic 

which limits the effect of potentially confounding environmental factors. Thirdly, well-

documented multi-generational pedigrees have been documented in many population 

isolates which facilitates linkage analysis. Population isolates are also well-suited for the 

study of complex phenotypes for the same reasons that have made them ideal for the 

study of Mendelian disorders (Kristiansson et al., 2008). The application of GWAS to 
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population isolates has presented an alternative and statistically favourable method for 

identifying novel disease loci. 

 

1.4 Genetic architecture of select human diseases 

 

Common complex diseases now account for the leading causes of mortality in Western 

society and cardiovascular disease (CVD) ranks among the top three. While CVD can be 

studied using downstream major events, such as myocardial infarction, it is also 

important to study the genetics of CVD risk factors in order to piece together the various 

mechanisms that modulate CVD risk. Thus, studies on clinically important variables, 

such as plasma lipid profile, which is largely determined by genetic factors (Hegele, 

2009), have contributed greatly to our understanding of predisposition to CVD. Another 

highly prevalent CVD co-morbidity in Western society is type 2 diabetes mellitus (T2D). 

Twin and family studies have similarly ascribed a significant genetic component in T2D 

susceptibility, which has made T2D the focus of large-scale multi-ethnic GWAS 

(Imamura and Maeda, 2011). Dementia-related diseases in the elderly are also anticipated 

to dramatically rise with the aging population, which has inspired intense investigation 

into the causes of common conditions such as AD which is believed to be considerably 

heritable. Together, these diseases represent major public health concerns where genetic 

analyses can contribute significantly to treatment and prevention strategies. 
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1.4.1 Familial hypercholesterolemia 

Familial hypercholesterolemia (FH, OMIM 143890) is an autosomal dominant disease in 

which dysregulation of low-density lipoprotein (LDL) homeostasis leads to drastically 

elevated plasma LDL concentrations, and results in premature atherosclerosis and 

coronary heart disease (CHD) (Liyanage et al., 2011). FH has played an important role in 

developing our understanding of CVD risk factors, as the markedly elevated LDL 

cholesterol (LDL-C) levels implicated plasma cholesterol in CVD susceptibility. 

Subsequent research has characterized the process of atherosclerosis as a complex system 

involving lipid accumulation in artery walls and chronic inflammation (Lusis, 2000). 

Through FH studies, it was established that severely elevated plasma cholesterol was 

sufficient to enhance atherosclerosis, thus establishing plasma cholesterol and LDL-C as 

robust CVD risk factors in the general population. 

 

1.4.1.1 Pathophysiology and genetic architecture 

Clinical diagnosis of FH varies but typically includes childhood presentation of 

xanthomas and LDL cholesterol (LDL-C) >95
th

 percentile (Raal and Santos, 2012). As 

described by Brown and Goldstein in their Nobel Prize-winning research (Goldstein and 

Brown, 2009), the elevated plasma LDL-C observed in FH is due to variation in the gene 

encoding the low-density lipoprotein receptor (LDLR); a cell surface receptor that binds 

and internalizes circulating LDL particles. Rare loss-of-function LDLR mutations impair 

plasma LDL homeostasis leading to hypercholesterolemia and the accelerated formation 

of atherosclerotic plaques. While mutations in LDLR account for the majority of FH 

cases, mutations in the APOB and PCSK9 genes also produce similar 
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hypercholesterolemia phenotypes (Raal and Santos, 2012). Interestingly, heterozygous 

FH (HeFH) is quite common for a monogenic disease. HeFH is generally observed at a 

frequency of 1:500 but has been reported at much higher frequencies in specific founder 

populations such as Dutch South Africans where HeFH frequency is reportedly 1:70; the 

frequency of homozygous FH (HoFH) in the general population is considerably lower at 

1:10
6
 (Liyanage et al., 2011). 

 

1.4.1.2 Plasma cholesterol as a complex trait 

The genetic basis for most Mendelian dyslipidemias such as FH has been solved while 

our understanding of the genetic variation underlying common lipid trait variance in the 

general population remains incomplete. Through the application of GWAS to lipoprotein 

concentration in population-based samples, genes associated with Mendelian 

dyslipidemias have also been associated with the variance in lipid concentration observed 

in the general population. For example, common variants in LDLR, APOB and PCSK9 

have all been highly associated with plasma LDL concentration in the largest GWAS 

meta-analysis on plasma lipid traits (Teslovich et al., 2010). Perhaps more interestingly, 

novel and unexpected LDL-C-associated loci have emerged such as the SORT1 locus 

which has subsequently been validated as a mediator of plasma LDL concentration by 

binding and internalizing circulating apoB-containing lipoproteins (Dube et al., 2011). A 

major caveat, however, relates to the fact that only a modest portion of variance in LDL 

concentration has been attributed to common variation (Willer and Mohlke, 2012). While 

a portion of the body’s cholesterol is derived from the environment, the overwhelming 

portion of the cholesterol pool is synthesized endogenously and is thus anticipated to be 
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largely genetically determined  (Hegele, 2009). One estimate ascribed 50% heritability to 

plasma LDL concentration which can be contrasted against the ~25-30% variance 

explained by genetic variation at 95 loci (Perusse et al., 1997; Teslovich et al., 2010). 

Resequencing of GWAS-identified genes for the detection of additional common and rare 

variants has been shown to increase the portion of explained heritability in LDL 

concentration and supports the execution of large-scale whole genome sequencing efforts 

in the future (Sanna et al., 2011). 

 

1.4.2 Late-onset cognitive decline and dementia 

More than 300 psychiatric disorders have been described where an established 

mechanism of pathogenesis is often absent (Sullivan et al., 2012). With the growing 

elderly population, there has been concern regarding the anticipated rise in geriatric 

psychiatric disorders, our ability to treat these disorders as well as the greater burden that 

will be placed on already exhausted healthcare expenditure. By studying the genetics of 

heritable late-onset psychiatric disorders, it may be possible to dissect the biological 

pathways that modulate a phenotype as complex as cognitive health and to develop early 

diagnostic and intervention strategies. 

 

1.4.2.1 Spectrum of disease severity 

Dementia represents a common end-point for many psychiatric disorders and affects ~5% 

of the elderly (Eaton et al., 2008). Accordingly, the clinical definition broadly includes 

impairment in memory as well as at least one other cognitive domain which includes 

language, calculations, orientation and judgment. Importantly, the cognitive loss must be 
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of sufficient severity as to significantly disable social or occupational autonomy. 

Cognitive testing scores are also used to measure and track the state of the patient’s 

cognitive health (Kawas, 2003). Although cognitive decline is associated with normal 

aging, the observed cognitive deficits are not severe enough to interfere with the patient’s 

autonomy. As cognitive impairment in the elderly is considered to be a degenerative 

process, it is widely believed that a period of intermediate yet measurable cognitive 

impairment precedes dementia and has been described as “cognitive impairment, no 

dementia” (CIND) or mild cognitive impairment (MCI) (Graham et al., 1997). The major 

distinction between CIND and MCI involves the more inclusive definition of CIND 

which is based on the exclusion of dementia and clinical evidence of any form of 

cognitive impairment (Graham et al., 1997); MCI is specific to pre-dementia where AD is 

suspected (Voisin et al., 2003). Both CIND and MCI have frequencies of ~20% among 

the elderly with CIND patients 5 times more likely to develop dementia while 10% - 15% 

of MCI patients progress to AD (Tarawneh and Holtzman, 2012; Tuokko et al., 2003). 

Logistically, pre-dementia studies have been fraught by phenotypic heterogeneity as 

patients can progress to dementia, remain stable or improve cognitively.  

 

1.4.2.2 Alzheimer disease  

AD is by far the most prevalent cognitive disease affecting elderly people >65 years old. 

Among the elderly, AD underlies >70% of dementia cases and represents the sixth 

highest cause of death across all ages in the United States (Tarawneh and Holtzman, 

2012). Twin studies have also ascribed considerable heritability in AD with estimates 

ranging from 58% - 79% (Gatz et al., 2006). Genetic studies in AD hit a major 
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breakthrough when autosomal dominant mutations in amyloid beta precursor protein 

(APP), presenilin 1 (PSEN1) and 2 (PSEN2) were shown to cause the rare early-onset 

form of AD (Tanzi, 2012). GWAS on the more prevalent late-onset form of AD 

identified apolipoprotein E (APOE) as a candidate gene. Additional susceptibility loci 

implicated immune and inflammatory pathways as well as lipid trafficking pathways. 

Cumulatively, common variation is estimated to explain ~33% of the genetic risk. Based 

on GWAS findings, the potential roles of immunity, inflammation and lipid metabolism 

in AD pathogenesis provide new perspectives to approach AD risk which may help 

inform future genetic strategies for studying AD. 

 

1.4.2.3 Vascular dementia 

Vascular dementia (VaD) refers to dementia resulting from cerebrovascular dysfunction 

and accounts for ~16% of dementia cases in the elderly (Ott et al., 1995). 

Cerebrovascular dysfunction can manifest as subclinical brain injury, silent brain 

infarction or stroke; all of which contribute toward a damaging environment of chronic 

ischemia in the brain. Twin studies have shown little support for a significant heritable 

component in VaD and, perhaps not surprisingly, GWAS on VaD have failed to return 

genome-wide significant results. Although genetic approaches to studying VaD have not 

been encouraging, they have also been hampered by the phenotypic heterogeneity 

underlying VaD. Additionally, alternative approaches may be useful in studying VaD 

susceptibility which includes investigating the genetics of known VaD risk factors. It is 

also well-known that the cardio-metabolic dysfunction that enhances atherosclerosis and 

CVD in the periphery correlates with cognitive health in that CVD risk factors such as 
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lipid profile, obesity and T2D have each been linked with enhanced risk of cognitive 

decline (Gorelick et al., 2011). Thus an approach focused on genetic variation at cardio-

metabolic loci in VaD may shed new light on predisposition to cognitive decline. 

 

1.4.3 Type 2 diabetes 

Diabetes broadly refers to a group of metabolic diseases defined by abnormal plasma 

glucose homeostasis. T2D is the most prevalent form of diabetes and is clinically 

characterized by hyperglycemia, insulin resistance and impaired insulin secretion (Patel 

and Macerollo, 2010). According to a World Health Organization study, T2D had a 

worldwide prevalence of 2.8% across all age groups in 2000, which accounted for 171 

million people (Wild et al., 2004). T2D has devastating long-term effects on the body 

such as macrovascular and microvascular complications as well as effects on lipid 

homeostasis. Accordingly, T2D has been strongly implicated as an independent risk 

factor for CVD (Wilson, 1998; Wilson et al., 1998). As a complex disease, T2D risk is in 

part mediated by lifestyle and environmental factors which can be managed. The genetic 

aspect of T2D susceptibility, however, has helped reveal some of the biological pathways 

underlying T2D pathogenesis which may be targeted for therapeutic intervention. 

Considering that ~65% of diabetics die from CVD-related causes, improved 

understanding and treatment of T2D may have a significant impact on improving patient 

quality of life (Grundy et al., 1999). 
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1.4.3.1 Pathophysiology 

T2D pathogenesis is driven largely by 1) dysfunctional pancreatic β cells which produce 

and secrete insulin; 2) excess hepatic glucose production; and 3) insulin resistance where 

insulin-mediated glucose clearance is disrupted (Leahy, 2005). Insulin represents the key 

hormone responsible for maintaining glycemic control where insulin secretion supports 

normoglycemia (Stumvoll et al., 2005). Prior to T2D, patients develop progressive 

insulin resistance where the glucose-lowering effects of insulin are gradually impaired 

and normal glycemic homeostasis is disrupted leading to hyperglycemia. β cell function 

ramps up in order to compensate for the insulin insensitivity which leads to observed 

hyperinsulinemia. With chronic and worsening hyperglycemia, the β cell cannot maintain 

the high rate of insulin secretion. Thus β cell function and mass both deteriorate as the 

disease progresses which further contributes to the dysregulation of glycemic 

homeostasis (Leahy, 2005). Together, the chronic dysregulation of glycemic homeostasis 

is manifested as major complications such as diabetic retinopathy, nephropathy and 

neuropathy. 

 

1.4.3.2 Common genetic risk factors 

As with many common complex diseases, family and twin studies suggested a strong 

heritable component in T2D susceptibility (Ahlqvist et al., 2011). Furthermore, T2D rates 

were observed to vary significantly between ethnic groups living within the same 

environment where African Americans, Hispanic Americans and aboriginal North 

Americans are at greater risk of T2D than American Caucasians (Carter et al., 1996; 

Harris et al., 1998). Although linkage mapping studies first proposed chromosomal 
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regions potentially housing T2D susceptibility genes, it was not until the high-resolution 

GWAS approach was applied that T2D loci were discretely identified. The largest meta-

analyses of T2D GWAS data have revealed as many as 58 T2D susceptibility loci which 

strongly implicate the influence of β cell function at the centre of T2D susceptibility 

(Voight et al., 2010; Zeggini et al., 2008). Despite these successes in expanding our 

understanding of T2D-related pathways, common variation accounts for only ~10% of 

T2D heritability. Clearly, further investigation is required in order to better understand 

the nature of T2D risk and to account for the missing heritability.  

 

1.4.3.3 Prevalence within First Nations communities 

North American aboriginal populations are at increased T2D risk compared to the non-

native population. For example, T2D affects ~9% of the general Canadian population 

versus 26% of Oji-Cree in Ontario, Canada (Lipscombe and Hux, 2007; Yu and Zinman, 

2007). This increased T2D risk among the First Nations also extends to aboriginal 

children as the incidence of childhood T2D in Manitoba first nations was nearly 8 times 

higher compared to children across Canada in 2004-2006 (Amed et al., 2010). 

Interestingly, Inuit populations in Canada and Alaska have shown low T2D prevalence, 

however, high impaired glucose tolerance (IGT) prevalence has suggested that T2D may 

eventually become problematic among Inuit populations (Pedersen, 2012). The enhanced 

T2D risk among certain aboriginal Canadians identified epidemiologically is likely to be 

explained by environmental or genetic components unique to these populations. Genetic 

studies in aboriginal groups have been limited, however, a candidate gene study of 

HNF1A in an Oji-Cree population identified the private p.G319S variant which was 
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present in 40% of the population and increased T2D risk by 4-fold (Hegele et al., 1999). 

The discovery of a common large-effect T2D variant was crucial in understanding the 

propagation of T2D among the Oji-Cree and also underscored the importance of 

investigating population-specific risk factors in understanding disease pathogenesis. As 

genetic studies of aboriginal populations are relatively few, the investigation of putative 

T2D-associated variation in isolated populations such as the Oji-Cree may help in 

establishing T2D risk factors across ethnicities.   

 

1.5 Summary 

 

The concept of common and complex human disease has changed due to technological 

and practical innovations in science and medicine. Although infectious diseases no longer 

devastate Western society, the overall increase in life expectancy has led to the 

emergence of complex diseases as the current leading causes of mortality. Common 

complex disease etiology has been difficult to characterize since an intricate synergy 

between environmental, epigenetic and genetic risk factors is suspected. Thus 

considerable heterogeneity exists between any two patients diagnosed with CVD due to 

the fact that, while their disease endpoints may be similar, the respective collection of 

risk factors may be disparate. But while environmental factors may be modified, our 

genetic make-up for the most part remains stable and so the hunt for robust genetic 

determinants of complex disease susceptibility has been a major focus emerging from the 

genomics era.  
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The overall hypothesis of experiments performed in this thesis is that common 

genetic variation contributes to the variance observed in common complex diseases and 

traits and can be used to study complex disease susceptibility in multi-ethnic cohorts. We 

sought to test this hypothesis through genetic analyses of three distinct complex disease-

related phenotypes with the following objectives: 1) conduct a resequencing  study of 

LDLR in genetically isolated Inuit populations to identify novel variants associated with 

LDL cholesterol and CVD risk; 2) conduct a targeted GWAS of common variation 

previously linked with cardio-metabolic traits and AD in CIND patients in order to 

evaluate the role of these pathways in CIND susceptibility; and 3) conduct a candidate 

genotyping study of GWAS-identified T2D variants in Canadian aboriginal populations 

in order to evaluate the applicability of established T2D loci in multi-ethnic populations. 

Together, these studies exemplify different approaches to study the genetic basis of 

complex disease and provide analytical workflows which may help in the design of future 

studies on complex disease. As the genomics era is rapidly evolving with the introduction 

of feasible whole genome sequencing, the concepts and analyses discussed in this thesis 

are likely to remain fundamental to the future study of complex disease genetics. 
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CHAPTER 2 

 

THE PRIVATE, COMMON LDLR p.G116S VARIANT HAS A LARGE EFFECT 

ON PLASMA LDL CHOLESTEROL IN CIRCUMPOLAR POPULATIONS 

 

2.1 INTRODUCTION 

Cardiovascular disease (CVD) represents a complex condition marked by progressive 

atherosclerosis and inflammation leading to arterial occlusion and myocardial infarction 

(Roy et al., 2009). Plasma low-density lipoprotein (LDL) concentration and, more 

specifically, LDL cholesterol (LDL-C) represent major risk factors in determining CVD 

risk. The lowering of LDL-C remains a primary goal in clinical CVD management 

(Genest et al., 2009; Gotto and Moon, 2012). Over the past few decades, overall mortality 

rates due to CVD have been on the decline particularly in North America, which is 

believed to be due in large part to improved management of risk factors and improved 

therapeutic interventions (Carroll et al., 2012; Gregg et al., 2005). Despite the overall 

lower CVD risk, a countercurrent trend has emerged within global aboriginal and 

indigenous communities where the increasing Westernization of diet and lifestyle has 

correlated with increased prevalence of type 2 diabetes, obesity and ultimately CVD risk 

(Stoner et al., 2012; Yu and Zinman, 2007).  

 

Among the northerly aboriginal populations, Inuit descendants have presented a 

unique case with respect to CVD risk as, historically, it was believed that Inuit 

descendants were at lower CVD risk than non-native populations (Bjerregaard and 
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Dyerberg, 1988; Middaugh, 1990; Young et al., 1993). It was a commonly held belief 

that CVD was virtually non-existent within Inuit communities based on cardio-protective 

effects of the traditional lifestyle and marine diet (Dewailly et al., 2001). Genetic factors 

were also considered to account for the apparent cardiovascular protection observed 

among the Inuit, however, a study on candidate CVD-associated variants among Inuit of 

the Keewatin region of modern Nunavut showed that the Inuit carried a higher frequency 

of certain CVD-associated variants compared to the non-native population (Hegele et al., 

1997). A closer analysis of CVD studies in Inuit populations suggested that the data used 

to establish the concept of cardiovascular protection among the Inuit relative to non-

native populations was likely unfounded and that unreliable mortality statistics may have 

helped perpetuate this concept when, in fact, rates of ischemic heart disease were similar 

to non-native populations (Bjerregaard et al., 2003b). Preventive action against CVD 

within Inuit communities has thus become increasingly paramount particularly as 

progressive Westernization has gradually ushered in CVD risk factors such as smoking, 

higher caloric intake and sedentary lifestyle that, while not immediately detrimental, may 

potentially affect CVD prevalence for future generations (Bjerregaard et al., 1997; 

Bjerregaard et al., 2003b; Chateau-Degat et al., 2010; Ebbesson et al., 2005; Howard et 

al., 2010; Jernigan et al., 2010; Kellett et al., 2012).  

 

As re-evaluation of Inuit health statistics show that the Inuit are not uniquely 

protected from CVD risk (Schumacher et al., 2003), it is important to consider the unique 

risk factors to which Inuit populations may be exposed. Recent Inuit health studies have 

shown that a large percentage of adults live with high LDL-C (Jorgensen et al., 2008; 
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Redwood et al., 2010). The prevalence of LDL-related diseases among the Inuit, 

particularly familial hypercholesterolemia (FH, Online Mendelian Inheritance in Man 

[OMIM] 143890) remains unreported and unexplored despite heterozygous FH (HeFH) 

having one of the highest frequencies for a monogenic disease in North American and 

European populations at a rate of 1:500 (Haase and Goldberg, 2012).  

 

While LDL-C can be managed through diet and lifestyle, almost 80% of the 

body’s cholesterol is derived endogenously which has placed greater emphasis on 

understanding the biological mechanisms that modulate cholesterol homeostasis (Hegele, 

2009). Genetic studies on FH identified deleterious mutations in the low-density 

lipoprotein receptor (LDLR) gene as the cause of the observed hypercholesterolemia and 

thus implicated LDLR as a major regulator of plasma LDL homeostasis (Goldstein and 

Brown, 2009). To date, >1,700 hypercholesterolemia-associated variants in LDLR have 

been reported suggesting that the LDLR locus is a hotspot for genetic variation. The role 

of variation in LDLR in modulating LDL-C within Inuit populations has not been 

investigated but given the prevalence of elevated LDL-C among select Inuit cohorts 

(Bjerregaard et al., 2004; Ebbesson et al., 1996; Redwood et al., 2010), genetic variation 

may be contributing to the variance in LDL-C observed in Inuit populations and may help 

identify individuals at elevated CVD risk. 

 

We therefore sought to investigate genetic variation at the LDLR locus within 

Inuit descendants and test for association with lipid traits. Through Sanger sequencing of 

LDLR and targeted genotyping, we report the discovery of two private, common LDLR 
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variants in five Inuit populations from North America and Greenland. The first variant 

encodes a glycine-to-serine substitution at the 116
th

 amino acid (p.G116S), which was 

previously reported in a Danish population (Damgaard et al., 2005), and the second 

variant encodes a novel arginine-to-tryptophan substitution at the 730
th

 amino acid 

(p.R730W). Subsequent tests for association between these variants and lipid traits 

strongly associate p.G116S with a large effect on LDL-C while p.R730W had a non-

significant effect on LDL-C.  

 

2.2 MATERIALS AND METHODS 

 

2.2.1 Study populations 

Participants of Inuit descent and aged >18 years were obtained from various arctic 

regions within North America and Greenland (Figure 2.1, Table 2.1). Within Canada, 

population-based samples were obtained from the “Qanuippitaa” health survey which 

included 14 coastal communities in Nunavik, Quebec (n=450);  the Keewatin Health 

Assessment Study which surveyed residents of the Keewatin region in Nunavut (n=214) 

(Moffatt et al., 1993); and the Inuvik region in the North West Territories (n=281). 

Lastly, we included in our study a sample of Inuit living in Denmark and West Greenland 

(n=1191) derived from a regional health survey (Bjerregaard et al., 1997) as well as 

Yup’ik and Cup’ik Inuit from southwestern Alaska (n=1223) as part of the Center for 

Alaska Native Health Research iniative (Boyer et al., 2007). Population-based samples of 

the Oji-Cree (n=137) from Manitoulin Island, Ontario were also genotyped for G116S 

and R730W.  
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Figure 2.1 A map of select Inuit settlements across North America and Greenland. 

A) Southwest Alaska is home to >20,000 Alaska Natives living in ~50 rural villages of 

~500 inhabitants per village where Yup’ik and Cup’ik comprise the major Inuit 

subpopulations. B) The Inuvik region of the Northwest Territories is home to ~3,200 

Inuit descendants who represent ~35% of the population (Statistics Canada, 2006). C) 

The former Keewatin region – now known as Kivalliq – in Nunavut is home to ~7,445 

Inuit descendants who represent ~89% of the population (Moffatt et al., 1993). D) The 

Nunavik territory of northern Québec lies north of the 55
th

 parallel where the population 

of ~11,000 is represented by ~91% Inuit. The entire population is spread across fourteen 

coastal settlements (Counil et al., 2009). E) Greenland’s population of ~56,000 is 

represented by ~90% Inuit where the majority of the population lives on the southwestern 

coast (Bjerregaard et al., 2003a). 
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Generally, participants were asked to fast either for 12 hours or overnight prior to 

blood sample collection. Plasma lipid concentrations were determined using varying 

methods across the different Inuit population studies. Carotid intima-media thickness 

(IMT) measurements were obtained using established ultrasound protocols. 

Measurements were calculated for 12 1-cm segments which included the near and far 

walls of the common carotid artery and bifurcation of the common carotid artery. For 

analysis with LDLR variant genotypes, mean IMT included an average of all 12 

segments; mean common carotid IMT (C-IMT) included the average of 4 segments 

exclusively covering the common carotid artery. 

 

2.2.2 Study design 

The LDLR promoter region and exons were Sanger sequenced within a subset of 

Greenland Inuit participants (n=10) with LDL-C concentrations >95
th

 percentile (~6.00 

mmol/L). The p.G116S and p.R730W variants were identified in exons 4 and 15 of LDLR 

respectively (Figure 2.2). Study participants from four independent Inuit populations 

were subsequently genotyped for the two variants (Table 2.2). Genotypes were first used 

to test for association with quantitative lipid traits including plasma total cholesterol 

(TC), LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), non-HDL-C and triglyceride 

concentration (TG) within each Inuit population as well as apolipoprotein B (APOB) 

concentration where available. The four Inuit populations were then combined and re-

assessed for association with lipid traits. The LDLR variants were genotyped using either 

TaqMan SNP genotyping assays (Applied Biosystems; Foster City CA) or direct Sanger 

sequencing. Apolipoprotein E (APOE) isoforms were inferred based on haplotypes using 
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Figure 2.2 Structural organization of the human LDL receptor protein and the 

relative positions of the p.G116S and p.R730W variants. The 839-amino acid mature 

protein is shown here with corresponding exon and domain annotations. Modified from 

Hobbs et al (1990). 
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rs429358 and rs7412 which encode amino acid substitutions p.C112R and p.C158R 

respectively (Fullerton et al., 2000). APOE genotypes for SNPs rs429358 and rs7412 

were also determined using pre-designed TaqMan assays. 

 

2.2.3 Statistical analysis 

Study cohort demographics were evaluated within each Inuit subpopulation using t-tests 

or ANOVA for continuous variables using SAS v9.2 (Cary, NC); statistical significance 

was defined as P<0.05. We tested for association between LDLR variant genotypes and 

lipid-related traits using multivariate linear regression within each Inuit subpopulation 

using an additive genetic model adjusted for age, sex and BMI as previously reported 

(Lanktree et al., 2009). Multi-variate regression in the combined Inuit cohort, comprising 

all 5 Inuit population samples, was additionally adjusted for geographic location. 

Regression analyses between LDLR genotypes and plasma lipid traits, pairwise linkage 

disequilibrium and haplotype phase were investigated using the PLINK bioinformatics 

toolkit    (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007).  

 

2.2.4 Bioinformatic analysis 

Variant effects on LDLR function were  predicted using PMUT (Ferrer-Costa et al., 

2005), Polyphen (Adzhubei et al., 2010), MutPred (Li et al., 2009) and SIFT (Ng and 

Henikoff, 2001) variant modeling algorithms. Algorithm scores for p.G116S and 

p.R730W were included where available. Evolutionary conservation was investigated 

across species at amino acid positions in the vicinity of p.G116S and p.R730W using the 

BLAST alignment tool which aligns homologous regions from a range of available 

species (Kent, 2002). Reported FH mutations in LDLR were referenced from the Human 
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Gene Mutation Database (Stenson et al., 2009). The 1000 Genomes Project and the 

Exome Variant Server (http://evs.gs.washington.edu/EVS/) variant databases were also 

referenced for previous reports of p.G116 or p.R730W (Abecasis et al., 2012). The 1000 

Genomes Project reports variants with frequencies >1% from 1,092 sequenced genomes 

from multiple ethnicities. The Exome Variant Server reports variants from the National 

Heart, Lung, and Blood Institute (NHLBI) GO Exome Sequencing project which 

maintains exome sequencing data on more than 200,000 individuals. 

 

2.3 RESULTS 

 

2.3.1 Study subjects 

Demographic data from five Inuit cohorts are shown in Table 2.1. Overall, demographic 

attributes between Inuit cohorts were comparable with each sample population 

represented by average ages >35 years and female participants representing the majority 

or >50% of the sample.  Average plasma lipid traits were also consistent between Inuit 

populations. 

 

2.3.2 LDLR variant discovery and frequencies 

First, p.G116S and p.R730W were detected following direct Sanger sequencing of LDLR 

exons within a subgroup of the Greenland cohort with LDL-C >6.00 mmol/L (n=10). The 

Greenland population sample was selected for Sanger sequencing as it was the only 

sample available at the initiation of this study. We then sought to establish p.G116S and 

p.R730W variant frequencies within the five additional Inuit cohorts and a combined 

cohort incorporating all five Inuit sample populations. Both variants were observed with 
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common frequencies >1% within each Inuit population (Table 2.1). The p.G116S variant 

ranged in frequency from 2% in the Keewatin cohort to 13% in the Greenland cohort 

with an overall frequency of 10% when all cohorts were combined. The p.R730W variant 

was consistently observed at a high frequency ranging from 11% in the Greenland cohort 

to 17% in the Keewatin cohort with a combined frequency of 14%. The p.G116S and 

p.R730W were both absent from an indigenous Canadian First Nations population 

sample. Furthermore, neither G116S nor R730W had been reported by the 1000 Genomes 

Project or the NHLBI GO Exome Sequencing Project. 

 

2.3.3 In silico analyses suggest p.G116S and p.R730W introduce deleterious effects 

on LDLR function 

As the functional domains of LDLR have been well-characterized (Figure 2.2), we 

determined that the p.G116S variant in exon 4 was localized within the ligand binding 

domain. Out of the 1,763 hypercholesterolemia mutations identified in LDLR to date, 183 

are found within exon 4 suggesting that this locus is a hot-spot for FH-related mutation 

(Stenson et al., 2009). Using BLAST sequence alignment, we observed that glycine at the 

116
th

 amino acid in LDLR was conserved across 10 additional orthologous LDLR 

homologs further suggesting that mutations at this amino acid are not well tolerated 

(Figure 2.3). A glycine-to-serine substitution introduces a polar residue of higher 

molecular weight and greater hydrophilicity which may impact upon local folding 

particularly as exon 4 encodes 3 of 7 cystein-rich repeats found within the ligand binding 

domain with each repeat modulating ligand binding (Hobbs et al., 1990). Accordingly, 
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Figure 2.3 Amino acid conservation in the vicinity of p.G116S and p.R730W. 

Multiple amino acid residue sequence alignments from divergent species show 

conservation at amino acids 116 and 730 in LDLR (highlighted in red). Amino acid 

residues conserved between homologs are highlighted in blue and indicate local 

conservation.  
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we investigated the predicted effects of p.G116S on LDLR function using four 

independent mutation prediction algorithms (Table 2.2). Three algorithms predicted 

damaging effects of G116S on LDLR function while the PMUT algorithm predicted a 

neutral effect. Another variant at p.G116, a glycine-to-cysteine substitution (p.G116C), 

was previously reported in Polish FH patient and was predicted to have a deleterious 

effect on LDLR function (Chmara et al., 2010). The report of p.G116C provides 

additional support that G116 is an important residue in LDLR function. 

 

Similar bioinformatic analyses were performed using p.R730W. p.R730W is 

located in exon 15 which encodes an attachment site for O-linked carbohydrate chains 

and has no clear functional role in LDLR activity (Hobbs et al., 1990). In comparison to 

exon 4, only 19 hypercholesterolemia mutations have been reported in exon 15 (Stenson 

et al., 2009). Sequence conservation in the vicinity of p.R730W is also comparatively less 

strict suggesting mutations within this exon may be more tolerable than in exon 4 (Figure 

2.3). An arginine-to-tryptophan substitution introduces a larger molecular weight residue 

with a shift from polar to neutral charge and decreased hydrophilicity; however it is not 

clear how this substitution may affect the binding of O-linked sugars at this domain or 

impact LDLR function. Mutation prediction algorithms all predicted deleterious effects 

on LDLR function for p.R730W. However, milder effects were predicted relative to 

p.G116S as MutPred predicted a lower probability of a deleterious effect compared to 

p.G116S and Polyphen reported p.R730W as “Possibly damaging” as opposed to 

“Probably damaging”. At the p.R730W residue, an arginine-to-glutamine (p.R730Q) 

mutation was reported in a Dutch FH cohort and was predicted as “Tolerated” and “Low 
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Risk” (Fouchier et al., 2005). Although p.R730Q was identified in a cohort of FH 

patients, the frequency of the mutation is not known nor is it clear whether carriers of 

p.R730Q may have carried additional FH-causing mutations. Thus the importance of 

residue arginine at amino acid 730 does not appear as robust as glycine at amino acid 116 

in maintaining LDLR function. 

 

2.3.4 Mean lipid traits differ based on p.G116S or p.R730W genotype 

As LDLR is a major regulator of plasma cholesterol homeostasis, we tested for 

association between both p.G116S or p.R730W carrier status and plasma lipid traits. 

Within each population sample, carriers of p.G116S had significantly higher average TC 

and LDL-C concentrations compared to non-carriers by ~0.7 mmol/L for p.G116S 

heterozygotes in the combined Inuit cohort (Table 2.3A); mean TC and LDL-C among 

p.G116S homozygotes for serine at amino acid 116 was nearly 1 mmol/L higher than 

homozygotes for glycine at amino acid 116. Mean apoB and non-HDL-C concentrations 

were also consistently higher among p.G116S carriers compared to homozygotes for 

glycine at amino acid 116 (Table 2.3A, 2.3B). Conversely, p.R730W carrier status was 

not robustly linked with any lipid trait within the individual Inuit cohorts. However, 

examination of the combined Inuit cohort revealed a significantly lower mean LDL-C 

and non-HDL-C concentrations as well as higher HDL-C in p.R730W carriers versus 

non-carriers (Table 2.3A, 2.3B).   
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2.3.5 p.G116S is associated with LDL-C concentration 

As LDL-C appeared to underlie the differences in cholesterol concentrations in S116 and 

W730 carriers, we next sought to investigate the effects of G116S and R730W on LDL-C 

using genetic models adjusted for age, sex and BMI. Frequency distributions based on 

p.G116S within the combined Inuit cohort suggested an additive effect on LDL-C 

concentration. Mean LDL-C concentrations were significantly different between 

homozygotes for glycine at amino acid 116 and p.G116S heterozygotes (P=2.0x10
-34

, 

Figure 2.4A). Furthermore, the difference in mean LDL-C concentrations between 

p.G116S heterozygotes and homozygotes approached significance (P=0.058, Figure 

2.4A). p.R730W genotype did not follow a distinct genetic model as the mean LDL-C for 

homozygotes for arginine at amino acid 730 differed significantly from the mean LDL-C 

concentration of p.R730W heterozygotes (P=0.031); however, mean LDL-C did not 

differ significantly between p.R730W heterozygotes and homozygotes for tryptophan at 

amino acid 730 (P=0.77, Figure 2.4B). Plotting LDL-C concentrations for all participants 

based on p.G116S or p.R730W genotype revealed linear trends between LDL-C and each 

additional copy of either the p.G116S or p.R730W variant (Figure 2.4C, 2.4D). We used 

multi-variate linear regression to test whether the observed variant-LDL-C trends also fit 

linear models. Within each Inuit cohort, p.G116S was associated with increased LDL-C. 

In a combined cohort of all Inuit population samples, each copy of the S116 variant was 

associated with a ~0.54 mmol/L increase in LDL-C (P=5.6x10
-49

, Table 2.4). W730 was 

non-significantly linked with lower LDL-C within each Inuit cohort and was linked with 

an overall lowering effect on LDL-C by ~0.05 mmol/L (P=0.13, Table 2.4). p.G116S and 

p.R730W variants were not in strong linkage disequilibrium (r
2
=0.017) and were not 
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Figure 2.4 LDLR variants and trends with LDL-C in a combined Inuit cohort. Inuit 

participants were separated based on p.G116S or p.R730W genotype and LDL-C 

concentration. A) Frequency distribution of Inuit participants based on p.G116S carrier 

status and LDL-C concentration. Mean LDL-C concentrations between non-carriers (GG, 

n=2585), heterozygotes (GA, n=559) and homozygotes (AA, n=53) were compared using 

t-tests with P-values indicated. B) Frequency distributions were similarly constructed for 

p.R730W non-carriers (CC, n=2408), heterozygotes (CT, n=717) and homozygotes (TT, 

n=72) and were also compared using t-tests. C) Distribution of LDL-C concentrations 

based on p.G116S genotype per study participant following an additive genetic model 

with a calculated line of best fit. D) Distribution of LDL-C concentrations per participant 

were similarly plotted for p.R730W genotype. 
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predicted to be in phase within the same haplotype. We therefore could not investigate 

the effect of a haplotype containing both p.G116S and p.R730W on any lipid traits.  

 

2.3.6 p.G116S effect on LDL-C is greater than APOE E4 and common LDL-C 

GWAS variants 

The p.G116S variant represents a unique combination of both high variant frequency 

(~10%, Table 2.1) and large effect size (~0.54 mmol/L per p.G116S allele, Table 2.4). 

APOE E4 isoform has similarly been established as a high-frequency variant robustly 

associated with LDL-C (Khan et al., 2013; Ward et al., 2009). We therefore tested for 

association between APOE E4 and LDL-C in the Inuit population samples in order to 

compare effect sizes between the novel p.G116S variant and the established APOE E4 

isoform. APOE E4 frequencies were comparable across the four Inuit populations in 

which APOE isoform status was available and ranged from 21% to 27% (Table 2.5). 

Using multi-variate linear regression to estimate the per-allele effect size on LDL-C, we 

identified a robust association between APOE E4 and LDL-C exclusively within the 

Greenland population sample (0.22 mmol/L, P=8.2x10
-6

; Table 2.5); in a combined 

cohort of all Inuit population samples the effect was diminished but remained significant 

(0.15 mmol/L, P=1.8x10
-5

; Table 2.5). In comparison, the p.G116S-associated effect on 

LDL-C was almost 4-fold greater than APOE E4 in combined Inuit cohorts. 

 

 GWAS have comprehensively identified robust associations between common 

variants and LDL-C (Teslovich et al., 2010). In order to further give context to the 

p.G116S-associated frequency and effect on LDL-C, we compared p.G116S to the most 
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Table 2.4 Associations between two LDLR variants and LDL-C. 

 

Variant Population β (mmol/L) SE P-value 

     

p.G116S Greenland 0.64 0.05 1.8x10
-30

 

 Keewatin 1.02 0.27 1.7x10
-4 

 Inuvik 0.52 0.16 0.0011 

 Nunavik 0.40 0.09 3.7x10
-5 

 Alaska 0.41 0.06 9.4x10
-12 

 Combined 0.54 0.04 5.6x10
-49 

     

p.R730W Greenland -0.11 0.06 0.077 

 Keewatin -0.003 0.09 0.97 

 Inuvik -0.13 0.11 0.24 

 Nunavik -0.05 0.08 0.52 

 Alaska -0.01 0.05 0.85 

 Combined -0.05 0.03 0.13 

      

Effect sizes and P-values are based on the minor alleles p.G116S or 

p.R730W. SE, standard error. Greenland (n=1162) Keewatin (n=204) 

Inuvik (n=253) Nunavik (n=389) Alaska (n=1113) Combined (n=3121). 
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Table 2.5 APOE E4 effect on LDL-C in select Inuit populations. 

 

Population 
E4 

frequency 

β 

(mmol/L) 
SE P-value 

Greenland 0.22 0.22 0.049 8.2x10
-6 

Keewatin 0.21 0.06 0.10 0.56 

Inuvik 0.23 0.006 0.10 0.95 

Nunavik 0.27 0.09 0.06 0.17 

Combined 0.23 0.15 0.03 1.8x10
-5 

ApoE E4 effect sizes were calculated in comparison to E3 carriers 

using linear regression adjusted for age, sex and BMI in Keewatin 

(n=200), Greenland (n=1096), Inuvik (n=212), Nunavik (n=383), 

and a combined cohort (n=1891). ApoE E4 frequencies were 

calculated from larger populations including ApoE E2, E3 and E4 

carriers. 
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significant LDL-C GWAS variants which we listed in Table 2.6. Together, the strongest 

association signal at SORT1 as well as associations at candidate LDL-C loci such as 

LDLR, APOB and PCSK9 corresponded to effect sizes ranging from 0.05 mmol/L to 0.18 

mmol/L which are overshadowed by the ~0.54 mmol/L per-allele effect size we ascribed 

to p.G116S.  

 

2.3.7 Mean IMT is not linked with p.G116S or p.R730W genotype 

Mean IMT is an established marker of atherosclerosis and is correlated with plasma 

LDL-C concentrations (Negi and Nambi, 2012; Sun et al., 2000). As we identified 

associations between p.G116S and p.R730W, and LDL-C, we sought to test whether 

either LDLR variant genotype was also linked with changes in IMT. Using available IMT 

measurements from the Inuvik and Nunavik population samples, we compared mean IMT 

measurements between the LDLR variant genotypes and observed no significant 

difference suggesting no clear effect on IMT based on LDLR variant genotype (Table 

2.7). 

 

2.4 DISCUSSION 

 

The major finding of our study is the discovery of two common LDLR variants, p.G116S 

and p.R730W, which are private among Inuit populations. Furthermore, we showed that 

the p.G116S variant was robustly associated with a large increase in plasma LDL-C while 

p.R730W showed a modest non-significant LDL-C-lowering effect. The p.G116S variant 

was also unique due to the high frequency of the variant coupled with a large effect size 
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Table 2.6 The most significant LDL-C-associated common 

variants. 

 

CHR Locus SNP β 

(mmol/L) 

P-value 

1 SORT1 rs629301 0.15 1x10
-170 

19 APOE rs4420638 0.18 9x10
-147 

19 LDLR rs6511720 0.18 4x10
-117 

2 APOB rs1367117 0.10 4x10
-114 

2 ABCG5/8 rs4299376 0.07 2x10
-47 

1 PCSK9 rs2479409 0.05 2x10
-28 

Effect sizes and P-values were reported by Teslovich et al. 

(Teslovich et al., 2010) 
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Table 2.7 IMT measurements based on p.G116S and p.R730W genotypes. 

 

 C-IMT Average IMT 

p.G116S 

genotype 
GG GA AA GG GA AA 

Inuvik 0.73±0.17 

(n=54) 

0.73±0.20 

(n=7) 

n.d. 0.56±0.16 

(n=41) 

0.50±0.21 

(n=6) 

n.d. 

Nunavik 0.78±0.16 

(n=83) 

0.74±0.13 

(n=20) 

n.d. 0.83±0.19 

(n=5) 

0.77±0.20 

(n=4) 

n.d. 

       

p.R730W 

genotype 
CC CT TT CC CT TT 

Inuvik 0.73±0.15 

(n=44) 

0.74±0.19 

(n=15) 

0.59±0.03 

(n=2) 

0.54±0.17 

(n=34) 

0.59±0.15 

(n=12) 

0.57±0.00 

(n=1) 

Nunavik 0.77±0.16 

(n=74) 

0.75±0.16 

(n=24) 

0.86±0.14 

(n=5) 

0.84±0.19 

(n=7) 

0.68±0.01 

(n=2) 

n.d. 

       

Statistical significance was tested using ANOVA. Inuvik participants with C-IMT (n=61) 

and average IMT (n=47), and Nunavik participants with C-IMT (n=103) and average IMT 

(n=9) were included for analysis.  Abbreviations as in Table 2.1; C-IMT, common carotid 

intima-media thickness. All units are expressed in mm. 
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on LDL-C. Our study has thus proposed a genetic CVD risk factor exclusive to Inuit 

descendants with potential clinical utility.  

 

 Our discovery of the association between the p.G116S variant and LDL-C 

concentration is of particular interest from a public health perspective as circumpolar 

Inuit communities are currently facing increased risk of CVD compared to non-Inuit 

populations. Early Inuit population studies propagated the concept of low CVD mortality 

among Inuit communities based on marine diet and a possible genetic component, 

however, subsequent analysis have largely dispelled this myth (Bjerregaard et al., 2003b). 

As introduced earlier, subsequent studies on CVD in Inuit communities have suggested 

greater CVD risk within Inuit communities compared to non-Inuit populations as 

Westernization influences the lifestyles of the younger generation. Given that every 1 

mmol/L increase in LDL-C corresponds to a ~21% increase in CVD and ~16% increase 

in all-cause mortality,  the 0.54 mmol/L increase in LDL-C per p.G116S allele could 

potentially lead to ~10% increases in CVD and all-cause mortality respectively (Gould et 

al., 2007).  

 

 In addition to the implications on LDL metabolism, the p.G116S and p.R730W 

variants are distinct based on the high frequencies observed within our study cohorts. 

Within the context of the common disease-common variant hypothesis (CDCV), which 

proposed that a limited number of common variants underlies common complex disease 

etiology (Lander, 1996), the large effect size associated with p.G116S was unexpected 

given the high minor allele frequency (Figure 2.5). The APOE E4 isoform represents an 
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Figure 2.5 The common disease-common variant hypothesis in relation to the G116S 

variant. LDL-associated variants have adhered to the CDCV hypothesis-predicted trend 

where A) low-frequency mutations, as observed in FH, contribute large effects on LDL 

concentrations whereas B) common variants, as identified through GWAS on LDL, are 

typically associated with small effects on plasma LDL. The novel C) G116S variant is 

unique as it represents a common variant with a considerable effect on plasma LDL. 

Modified from Manolio et al. (2009). 
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established high-frequency variant with a robust association with higher LDL-C. 

Compared to E3 homozygotes, each copy of E4 was associated with a 0.16 mmol/L 

increase in LDL-C (Khan et al., 2013). We replicated a similar effect size in a combined 

Inuit cohort (0.15 mmol/L per copy of E4; Table 2.5); however, it was clear that S116 

had a considerably greater impact on LDL-C. As the top LDL-C SNPs from across the 

genome reflected similar effect sizes as APOE E4, which ranged from 0.05 mmol/L to 

0.18 mmol/L (Table 2.6), it is clear that the combination of the G116S frequency and 

effect size is anomalous. Despite the large effect size of p.G116S, it is interesting that 

p.G116S homozygotes do not appear to express the dramatic phenotypes that are 

observed with patients homozygous for FH-causing mutations. 

 

 The LDLR amino acid positions of 116 and 730 provide insight on potential 

effects on LDLR function (Figure 2.2). Amino acid 116 lies within exon 4 of LDLR 

which encodes the ligand binding domain. As this domain is important for the binding 

and internalization of apoB-containing lipoprotein particles, p.G116S can potentially 

perturb binding affinity and thus LDLR activity; this hypothesis was supported by 

predictions of potentially damaging effect by two in silico algorithms.  Exon 15, which 

contains amino acid 730, is enriched for serine and threonine residues which facilitate 

attachment of O-linked carbohydrate chains; however, the absence of exon 15 has not 

been associated with any significant functional consequence in vitro (Hobbs et al., 1990). 

This observation runs contrary to both our in silico analysis which anticipated potentially 

damaging effects on LDLR function as well as the potential gain-of-function effect that 

we observed with p.R730W in modest lowering  of LDL-C. In order to better understand 
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the effects of either variant on LDLR function, direct biochemical analyses measuring 

LDLR expression and activity must be implemented.  

 

Our findings also provide further support for the concept of a unique genomic 

architecture within the Inuit. It remains a question as to how p.G116S and p.R730W 

reached high frequency across the circumpolar Inuit populations; however, this 

phenomenon is likely explained by the founder effect. Various sources of evidence have 

supported the original founding human populations in the Americas by Asians (Hey, 

2005). It is possible that carriers of p.G116S and p.R730W were among the small founder 

populations that migrated eastward from Alaska towards Greenland. As founder 

populations in geographic isolation are able to expand in numbers, limited genetic 

heterogeneity facilitates the inflation of allele frequencies that may have been rare in a 

larger non-related population. Similar founder effects have historically been observed, 

particularly in the case of FH frequency where founder populations such as the 

Quebecois in Canada and Dutch immigrants to South Africa report remarkably high FH 

frequencies due to the propagation of founder mutations (Liyanage et al., 2011). Through 

mechanisms such as the founder effect, it is therefore possible for variants to gain high 

frequency despite potentially negative effects on health and mortality particularly as 

HeFH mutations are less penetrant and do not increase selective pressure before 

reproductive age. 

 

In addition to the p.G116S and p.R730W variants described here, the p.P479L 

substitution in the carnitine palmitoyltransferase IA gene (CPT1A) has been identified as 
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a private variant among Inuit and Canadian First Nations populations where the p.P479L 

variant was associated with hypoketosis and hypoglycemia (Brown et al., 2001; Lemas et 

al., 2012; Rajakumar et al., 2009). Together, the identification of these high-frequency 

variants with large effect sizes suggests that Inuit descendants may possess a unique 

genetic architecture with effects on cardio-metabolic traits that are not fully identified nor 

understood. With the increasing viability of whole genome and exome sequencing, it will 

be possible to perform a comprehensive scan for genetic variation within the Inuit. 

Additional evidence of unique variation relating to cardiovascular health will further 

support the concept that Inuit communities may be exposed to unique CVD risk which 

may require unique guidelines for more efficient and targeted CVD prevention and 

management. 

 

 A potential limitation within this study pertains to our limited information on 

participant relatedness. As Inuit communities are generally isolated with low net 

population migration, it is expected that genetic heterogeneity is lower compared to the 

level that may be observed in the general population. For the purpose of genetic 

association, limited genetic heterogeneity is considered advantageous as this limits the 

pool of variants present within the population and thus limits the probability of false 

positive association. Conversely, closely related individuals may have a similar lipid 

profile due to shared environmental or additional genetic factors which may contribute to 

spurious associations. Future studies will require detailed family structure and relatedness 

data in order to adjust for the effects of relatedness on observed associations. 
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 Furthermore, our claim that p.G116S is private to Inuit descendants was 

questioned by the previous report of p.G116S in a Danish FH cohort (Damgaard et al., 

2005). As Greenland continues to share a history of migration and sociocultural 

interaction with Denmark, it is possible that a patient or patients with 

hypercholesterolemia as well as Inuit ancestry were included in the Danish FH cohort. 

However, this remains speculative as records on patient ethnicity were not published.  

 

 Our study was also limited to reporting on the discovery of p.G116S and 

p.R730W, the associations with plasma LDL-C concentration and in silico prediction 

analysis. We sought to test for association with IMT; an established marker of CVD. 

However, no robust association was detected between IMT and LDLR variant genotype. 

While this experiment suggested that the 0.54 mmol/L increase in LDL-C associated with 

p.G116S does not correlate with thickening of the carotid artery walls, a major caveat to 

this interpretation was the limited sample size as well as variability in the application of 

IMT measurement methodology. Functional studies of the potential effects of these 

variants on LDLR bioavailability remain to be performed but are crucial in elucidating 

the mechanism underlying the robust association between p.G116S and LDL-C 

concentration and establishing a causal effect between p.G116S and elevated LDL-C. 

Going forward, we propose to first assess LDLR expression based on G116S and R730W 

genotype within in vitro Chinese hamster ovary cell-based models and immunoblotting 

followed by assessment of LDLR activity via fluorescently-labelled LDL uptake assays. 
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 In summary, we have discovered the presence of two common LDLR variants that 

are exclusive among Inuit descendants from five distinct communities within Alaska, 

Canada and Greenland. We have further identified a strong association between p.G116S 

and plasma LDL-C concentration which has implicated p.G116S in CVD risk. The 

clinical utility of these findings in assessing CVD risk prediction is not presently clear as 

robust statistics on Inuit CVD mortality are not currently available and that Inuit 

communities continue to undergo progressive westernization which may affect CVD risk 

and prevalence over the coming decades. Additional studies involving biological 

assessment of p.G116S and p.R730W on LDLR function as well as broader investigation 

in outstanding circumpolar Inuit populations will provide a greater understanding of the 

role played by these variants in LDL metabolism and overall CVD susceptibility.   
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CHAPTER 3 

 

GENETIC DETERMINANTS OF “COGNITIVE IMPAIRMENT, NO 

DEMENTIA” 

 

The work in this chapter originates from material in the following publication: Dubé, 

J.B., Johansen, C.T., Robinson, J.F., Lindsay, J., Hachinski, V., and Hegele, R.A. (2013). 

Genetic determinants of "cognitive impairment, no dementia". J Alzheimers Dis 33, 831-

840.   

 

3.1 INTRODUCTION 

Dementia is primarily a disease of the elderly defined by insidious cognitive decline that 

impairs social and occupational functioning (American Psychiatric Association. Task 

Force on DSM-IV., 1994; Burns and Iliffe, 2009; Feldman et al., 2008; Geldmacher and 

Whitehouse, 1996). An early phenotype of cognitive decline that affects ~10-20% of 

elderly populations (Di Carlo et al., 2007; Graham et al., 1997) is called “cognitive 

impairment, no dementia” (CIND). CIND is defined broadly by subtle deficiencies in 

memory or executive functioning that do not fit the definition of dementia but are also 

abnormal (Chertkow et al., 2008; Tuokko et al., 2001). These findings are commonly 

associated with increased susceptibility to more severe, later stages of dementia (Tuokko 

et al., 2003) thus a thorough understanding of the pathogenesis of CIND could lead to 

improved methods for identifying at-risk patients.  
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The late stages of dementia are most commonly associated with AD- and vascular 

dementia (VaD)-related mechanisms of pathogenesis. The prevailing models of AD 

pathogenesis have implicated perturbations in lipid metabolism, intracellular trafficking 

and inflammatory pathways that are associated with hallmarks such as β-amyloid (Aβ) 

plaque deposition and neurofibrillary tangles (NFTs) (Holtzman et al., 2012; Huang and 

Mucke, 2012). The mechanisms underlying VaD are defined by progressive degeneration 

or occlusion of the cerebrovasculature that is believed to contribute to a 

microenvironment of hypoxia and inflammation in the brain (Ballard et al., 2004; 

Cechetto et al., 2008; Gorelick et al., 2011; Kalaria, 2000; Wolf, 2012). Positive 

association between AD or cardio-metabolic traits with CIND susceptibility may 

implicate the effects of established late-stage degenerative mechanisms at an earlier stage 

of cognitive decline. 

 

Genetic variation has been associated with both AD (Hollingworth et al., 2011; 

Naj et al., 2011) and the cardiovascular traits associated with vascular disease (Hegele, 

2009; Teslovich et al., 2010), however no studies have tested for association between 

these variants and CIND susceptibility. Genome-wide association studies (GWAS) 

(Hirschhorn and Daly, 2005) are a method of testing for association between genetic 

variation and a heritable trait that has successfully identified novel genes involved in 

vascular health such as blood lipid traits (Hegele, 2009; Teslovich et al., 2010) or disease 

phenotypes such as Alzheimer-related dementia (Hollingworth et al., 2011; Naj et al., 

2011). A GWAS-based approach applied to CIND could reveal whether genes implicated 

in VaD and AD susceptibility are also associated with CIND. Here, we conduct a GWAS 

82



to determine whether genetic variation previously associated with cardio-metabolic traits 

or AD was associated with CIND susceptibility. We genotyped ~200,000 genetic variants 

associated with multiple metabolic traits using the Cardio-MetaboChip (MetaboChip), 

and 12 genetic variants strongly associated with AD susceptibility (including the APOE 

isoform). We provide the first comprehensive genetic evaluation of CIND and 

demonstrate a novel locus potentially increasing CIND susceptibility.  

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Study cohort 

This study was approved by University of Western Ontario Institutional Review Board 

(Review number 07920E). The Canadian Study of Health and Aging (CSHA) was a 

longitudinal population-based cohort study designed to document the prevalence of 

dementia and related variables in elderly Canadian communities from 1991 to 2001 

(n=10,263) (1994). CSHA participants were aged ≥65 years at the start of the study. 

CIND patients (n=528) were selected based on clinical diagnoses of CIND based on 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria (American 

Psychiatric Association. Task Force on DSM-IV., 1994) excluding patients with 

presumed alcohol or drug use, mental retardation or other psychiatric illness. CIND 

diagnoses were adjudicated by a panel of neuropsychologists and physicians during the 

course of the CSHA, whereas control subjects (n=494) were selected from cognitively 

normal CSHA participants. Modified Mini-Mental State Exam (3MS) (Teng and Chui, 
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1987) scores obtained during the CSHA confirmed CIND and control status in patients 

selected for this study.  

 

3.2.2 Study design 

We used a two-stage GWAS design comprising discovery and replication phases. The 

discovery phase involved genotyping a cohort of CIND patients (n=274) and controls 

(n=301) on the MetaboChip – a custom Illumina genotyping array (Illumina Inc.; San 

Diego, CA) populated with ~200,000 single nucleotide polymorphisms (SNPs) identified 

from GWAS of metabolic traits and cardiovascular phenotypes 

(http://www.sph.umich.edu/csg/kang/MetaboChip/). MetaboChip genotyping was 

performed at the Broad Institute (http://www.broadinstitute.org/). Variants included in 

our analysis had call-rates >90%, minor allele frequency (MAF) >1% and Hardy 

Weinberg P>10-4. The replication phase involved genotyping an independent cohort of 

CIND patients (n=210) and controls (n=158) for the 13 most significant loci identified by 

the MetaboChip. These variants were genotyped using either TaqMan SNP genotyping 

assays (Applied Biosystems; Foster City, CA) or direct Sanger sequencing (Table 3.1). A 

cohort of our study (339 cases, 304 controls) was also genotyped for the top 11 AD-

associated variants using TaqMan genotyping assays (Table 3.1). The same quality 

control filters applied in the discovery phase were applied to all genotyped variants. 

 

3.2.3 Statistical analyses 

Study cohort demographics were evaluated using chi-square (χ2) tests for dichotomous 

variables and t-tests for continuous variables using SAS v9.2 (Cary, NC); statistical 
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significance was defined as P<0.05. Logistic regression was used to test for association 

between genetic variants and CIND status using PLINK 

(http://pngu.mgh.harvard.edu/purcell/plink/)  (Purcell et al., 2007). Statistical significance 

in the discovery phase was defined as a Bonferroni-corrected P<4.0x10
-7

. Our logistic 

regression model was adjusted for potentially confounding variables including age, sex, 

years of education, APOE ε4 carrier status, history of stroke or possible stroke and two 

principal components of ancestry. The significance threshold for the replication phase 

was set at P<3.8x10
-3

. Significance values reported for the combined cohort were used 

only to show the change in significance with increasing sample size. It was not possible 

to adjust for ancestry in the replication cohort; however it was unlikely to play a role. We 

compared CSHA participant ancestry with HapMap populations of known ancestry 

(2003) using identity-by-state and multidimensional scaling based on >50,000 variants to 

confirm ancestry reported during the CSHA (Figure 3.1). Manhattan plots and quantile-

quantile (Q-Q) plots were used to visualize results using WGAViewer (Ge et al., 2008). 

AD genetic risk scores (AD-GRS) were constructed using 11 AD-associated variants 

identified from the largest AD GWAS meta-analyses (Hollingworth et al., 2011; Naj et 

al., 2011). For each variant, 1 allele has been associated with AD risk (Odds ratio, OR, 

>1.0) therefore in each participant, we counted the number of copies of risk alleles which 

comprised a composite risk score. Risk alleles for the 11 AD-associated non-APOE 

variants were identified based on data from the same meta-analyses (Bertram et al.). The 

difference between mean AD-GRSs in cases and controls was tested using an 

independent samples t-test defining statistical significance as P<0.05. 
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Figure 3.1 Principal components analysis with Canadian Study of Health and Aging 

(CSHA)- and HapMap-derived populations. The first two principal components were 

plotted with HapMap populations of known ancestry to confirm the reported ancestry of 

CSHA participants. CEU (blue, n = 165), Caucasians; CSHA (black, n = 575), CSHA 

discovery phase cohort; CHB/JPT (orange, n = 250), Chinese/Japanese; YRI (green, n = 

203), African. 
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3.2.4 Power calculations 

For the discovery phase of our GWAS, we calculated a >80% probability of rejecting the 

null hypothesis of no association for a common variant with strong biological effect 

(OR=2.50, MAF=0.20) using a genome-wide level of Type I error probability. Based on 

sample size in the replication phase and results from the GWAS discovery phase, we 

estimated a <5% probability of rejecting the null hypothesis of no association for variants 

of expected effect size and frequency (OR=1.50, MAF=0.30) using the Bonferroni-

corrected P-value of 3.8x10
-3

. When testing for association between AD-associated 

variants and CIND, we calculated ~20% probability of rejecting the null hypothesis of no 

association for a common variant with modest biological effect (OR=1.20, MAF=0.40) 

using the standard level of Type I error probability. Power calculations were performed 

using Power and Sample Size Calculation software (Dupont and Plummer, 1998).  

 

3.3 RESULTS 

 

3.3.1 Study subjects 

Demographic data for CSHA participants selected for this study are shown in Table 3.2. 

Cases and controls differed most significantly in 3MS score (P=6.8x10
-38

) and incident 

stroke (P=6.9x10
-4

). Cases also had non-significantly higher frequencies of the remaining 

indices of cardiovascular disease (CVD) compared to controls. 
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3.3.2 GWAS of CIND 

First, we tested for association between genetic variation in cardio-metabolic genes and 

CIND status using the MetaboChip (Figure 3.2). The most significant CIND-associated 

variant from the discovery phase was rs16901621 in FLJ22536 (OR=2.67; P=3.2x10
-7

) 

which modestly surpassed the Bonferroni-corrected threshold of significance (P<4.0x10
-

7
). Given that no variants achieved stringent Bonferroni-corrected significance thresholds, 

with exception to the FLJ22536 variant, we selected the 13 most significant variants 

(P<1.0x10
-3

) for replication in an independent cohort (Table 3.3). We identified a locus 

near ZNF608/GRAMD3 (rs1439568) approaching statistical significance for replication 

(OR=0.66; P=6.0x10
-3

), however we were unable to replicate the initial finding in 

FLJ22536 (OR=0.82; P=0.27) (Table 3.3). Although we observed similar effect sizes 

between discovery and replication phase variants, no variants absolutely surpassed a 

Bonferroni-adjusted threshold of significance (P<4.0x10
-7

). The rs1439568 

polymorphism lies within a ~4kb haplotype block void of well-annotated genes, located 

~500kb downstream of ZNF608 and ~115kb upstream of GRAMD3 (Figure 3.3). This 

locus may represent a putative genetic determinant of CIND susceptibility. 

 

3.3.3 AD-associated variation in CIND 

Next, we sought to assess whether AD-related genetic variation was associated with 

CIND. We genotyped 11 AD-associated variants reported in recent GWAS meta-analyses 

of AD-related dementia (Hollingworth et al., 2011; Naj et al., 2011). No significant 

associations were identified between any of the previously defined risk alleles, although 
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Figure 3.2 Manhattan plot showing results from the MetaboChip genome-wide 

association study in the discovery phase. Manhattan plots help visualize the loci 

strongly associated with disease susceptibility by plotting all SNPs together based on 

association P-value and physical position. Each point represents a P-value of a test for 

association between a SNP and CIND status. The significance of association is plotted on 

the y-axis with increasing significance ranking higher on the y-axis. The genomic 

position of the SNP corresponding to each test for association is plotted on the x-axis. 

Polymorphisms with P-values <10
-3

 are shown in red. 
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Figure 3.3 Regional genetic variation in the vicinity of rs1439568. A) Haplotype block 

surrounding rs1439568 based on data from the HapMap CEU population. Red boxes 

represent a high degree of linkage disequilibrium (LD) between two markers whereas 

grey boxes suggest weak linkage disequilibrium. The relative position of rs1439568 is 

outlined in red. By investigating LD between a variant of interest and additional nearby 

variants, it is possible to better define the boundaries of a potential disease susceptibility 

locus and whether regulatory elements fall within this locus such as a promoter region or 

transcription factor binding sites. B) LD between MetaboChip genotyped SNPs and 

rs1439568. Discovery phase-calculated p-values (left y-axis) for SNP association with 

CIND determine the height of each point. The degree of LD between a SNP and 

rs1439568 is proportional to the intensity of red colouration. Blue peaks identify sites of 

recombination (right y-axis). When visualized together, this plot helps identify whether 

the disease-associated SNP is in LD with other local SNPs and whether the local SNPs 

were also associated with disease status. C) Regional LD between rs1439568 and 

neighboring SNPs within 500 kilobases of rs1439568 based on the HapMap CEU dataset. 

Each point represents a SNP and its height on the left y-axis indicates the strength of 

linkage disequilibrium between a particular SNP and rs1439568. Blue peaks correspond 

to sites of recombination (right y-axis). This plot provides an enhanced visualization of 

local SNPs in LD with rs1439568 as this locus was more densely genotyped by the 

HapMap consortium. Data from panels A) and C) were generated using the hg18 build. 
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the effect sizes for some variants, including CR1, ABCA7, and PICALM, were consistent 

with previously published studies (Table 3.4). We also constructed a composite AD-GRS 

using risk-increasing alleles from the AD-associated variants to assess an overall 

difference in the accumulation of multiple AD-associated genetic variants between CIND 

patients and controls (Figure 3.4). The frequencies of AD-GRSs between CIND patients 

and controls were not significantly different when we compared mean scores, which 

totaled ~9 risk alleles in CIND patients and controls (P=0.71). This suggests that putative 

AD-associated variants are not involved in CIND predisposition. 

 

3.3.4 APOE status in CIND 

Finally, we evaluated the frequency of the APOE E4 allele in CIND patients versus 

cognitively healthy controls. The frequency of the APOE E4 allele was elevated in CIND 

patients versus controls. Each copy of the APOE E4 allele increased CIND susceptibility 

compared to the APOE E3 allele (OR=1.35; P=0.044) (Table 3.5). The APOE E2 allele 

frequency was non-significantly higher in cases versus controls (OR=1.14; P=0.44).  

 

3.4 DISCUSSION 

 

The principal finding of our study is that non-APOE genetic variation associated with 

cardio-metabolic traits or AD is not associated with CIND susceptibility. We were not 

able to identify any loci associated with CIND through a GWAS of >200,000 cardio-

metabolic-associated variants, nor were we able to replicate the top 11 non-APOE 

variants associated with AD susceptibility either individually or as part of an AD-GRS. 
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Figure 3.4 Frequency distribution of Alzheimer disease (AD) genetic risk scores in 

cognitive impairment no dementia (CIND) patients and controls. Risk alleles from 11 

non-APOE AD-associated variants were added in each study participant. For each 

variant, a participant can have 0, 1, or 2 copies of the risk allele thus scores could range 

from 0–22. Risk scores were calculated in CIND patients and controls. The difference 

between the mean risk scores for CIND patients and controls was not different (P=0.71). 
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Despite these negative findings, we confirmed that the APOE E4 allele increases CIND 

susceptibility. These contributions provide the most comprehensive genetic analysis of 

CIND susceptibility conducted to date.  

 

Our results provide some insight into the genetic basis of CIND. Our study 

explicitly shows that the APOE E4 allele is associated with CIND susceptibility. Previous 

studies have primarily evaluated CIND in the context of progression to late-stage 

dementia phenotypes such as AD. For instance, one study of 68 CIND patients conducted 

independently by the CSHA showed that APOE E4 carriers were 2.7-times more likely to 

progress to AD (Hsiung et al., 2004). Other studies evaluating the APOE E4 allele in the 

context of pre-dementia have used a phenotype called mild cognitive impairment (MCI) 

that is known to progress to AD (Albert et al., 2011; Feldman and Jacova, 2005). Meta-

analysis of 35 studies including 6095 MCI patients and 1236 AD patients reported an 

association between the E4 allele in MCI to AD progression (P<0.001, OR=2.29, 95% 

CI=1.88-2.80) (Elias-Sonnenschein et al., 2011). Our study is distinct in that we have 

identified a similar but relatively modest association between the E4 allele and CIND 

susceptibility in 527 CIND patients and 492 cognitively healthy controls (P=0.044, 

OR=1.35, 95% CI = 1.00-1.81). Our data suggest that APOE E4 increases susceptibility 

to CIND regardless of progression to late stage dementia, although with an effect size 

approximately half of what is normally reported with disease progression. Such 

differences in effect size may represent differences in sample size between studies, or 

rather it may represent the underlying phenotypic heterogeneity within the clinical 

definition of CIND, as discussed below. More careful evaluation of APOE is clearly 

102



needed to determine how the APOE E4 allele influences susceptibility to different forms 

of cognitive decline. 

 

We also show that VaD-related genetic variation is not associated with CIND. 

Since VaD represents the second most common form of late-onset dementia, we used a 

custom SNP array called the MetaboChip to investigate whether genetic loci associated 

with vascular health including coronary artery disease, type 2 diabetes, and plasma lipid 

concentrations were also  associated with CIND. We were surprised to find no significant 

association between genetic variation at cardio-metabolic loci and CIND since vascular 

disease has an established correlation with cognitive decline (Gorelick et al., 2011). 

Based on previous genetic studies in VaD, however, our findings may not be entirely 

unexpected. A twin study assessing VaD showed little pair-wise concordance for VaD 

suggesting a diminished role for genetics and a greater contribution of environmental 

factors in VaD risk (Bergem et al., 1997). Furthermore, the only VaD GWAS has failed 

to identify any loci surpassing a genome-wide threshold of significance (P<10
-8

) thus it is 

possible that the variants associated with cardio-metabolic traits do not significantly 

affect cognitive health or CIND susceptibility (Schrijvers et al., 2011).  

 

Interestingly, we identified one variant near the ZNF608/GRAMD3 locus that was 

nominally associated with CIND (P=0.0060, OR=0.66, 95% CI=0.49-0.89), although it 

did not surpass stringent thresholds for association. ZNF608 was previously associated 

with LDL cholesterol, which facilitated mapping of this locus on the MetaboChip. 

GWAS have reported associations of common variants at ZNF608 with neuroblastoma 
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and obesity (Speliotes et al., 2010). Differential ZNF608 expression has also been 

observed in the prefrontal cortex during fetal and infant development (Colantuoni et al., 

2011). ZNF608 encodes a modestly characterized zinc-finger motif protein where 

functional studies of the Drosophila melanogaster ZNF608 homologue, scribbler (sbb), 

suggest a role for ZNF608 in transcriptional repression and starvation resistance 

(Harbison et al., 2004). Additionally, ZNF608 contains ubiquitylation sites which suggest 

a regulation of ZNF608 stability via post-transcriptional modification (PTM) (Wagner et 

al., 2011). Conversely, our current understanding of the biological function of GRAMD3 

is limited, thus the role of common variation at ZNF608/GRAMD3 in CIND susceptibility 

is speculative at this point. Further association studies must be performed to confirm this 

potential CIND susceptibility locus while sequencing of the ZNF608/GRAMD3 locus for 

rare variant analysis may reveal insight into biological relevance by the identification of 

functional variants.   

 

Lastly, we were unable to extend associations previously reported between non-

APOE genetic variants associated with AD and the CIND phenotype. As a previous study 

from the CSHA showed that CIND patients were 5 times more likely to develop AD than 

cognitively normal participants (OR=5.0, 95% CI=3.4-7.3) (Tuokko et al., 2003), we 

sought to test whether the top non-APOE AD-associated variants were associated with 

CIND status. We found no significant association between established AD-associated 

variants and CIND which was also confirmed in our AD-GRS analysis suggesting that 

AD-related mechanisms of cognitive decline may not be a strong determinant of CIND. 

The association between the APOE E4 allele and CIND proposes one commonality 
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between CIND and AD, however, the effect size associated with the E4 allele in our 

CIND cohort (OR=1.35, 95% CI=1.00-1.81) pales in comparison to the effect size 

associated with the E4 allele in an AD meta-analysis of 37 studies (OR=3.68, 95% 

CI=3.30-4.11) (Bertram et al.). Although we did not find strong evidence supporting a 

similar genetic architecture between CIND and AD, an APOE-related pathway may be an 

important determinant of susceptibility to cognitive decline in CIND. 

 

A significant study limitation pertains to the phenotypic heterogeneity inherent in 

CIND and pre-dementia. A spectrum of psychiatric diseases is associated with dementia 

which extends to the onset of cognitive decline where a myriad of disease mechanisms 

may initiate cognitive decline (Tarawneh and Holtzman, 2012; Tuokko et al., 2001). 

Post-mortem studies of dementia patients commonly report mixed cerebrovascular and 

AD-associated pathologies in patient brains, which supports a synergistic role for 

multiple disease mechanisms in cognitive decline (Schneider et al., 2007). The spectrum 

of disease severity among CIND patients further complicates the process of selecting an 

ideally homogenous CIND cohort, since CIND patients have the potential to steadily 

decline, remain stable or even improve cognitively (Tuokko et al., 2001). Within our 

study cohort, we lacked the end-stage phenotyping required to diagnose a sub-type of 

dementia such as VaD or AD, however, our study focused on the genetics of CIND 

irrespective of dementia subtypes thus end-stage diagnosis was not a hindrance in our 

study. In contrast, other studies that seek to characterize the transition from pre-dementia 

to defined end-stage diseases will rely on the availability of prospective data and end-

stage phenotyping. The development of the MCI phenotype mirrors this logic as MCI 
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was conceptualized as a pre-dementia stage specific to AD patients. Thus AD diagnosis 

must be considered when studying MCI (Tarawneh and Holtzman, 2012).  

 

Our study also had limited statistical power to detect significant associations with 

small effect sizes. While our study of AD GWAS variants in CIND was negative, it is 

important to note that the established non-APOE variants typically have small ORs 

<1.20. Meta-analysis involving thousands of AD patients and controls was required to 

achieve adequate statistical power to identify small but significant effect sizes; our study 

was markedly underpowered to detect such effect sizes. In order to adapt our study to a 

limited sample size, we implemented a two-stage GWAS approach in which we only 

tested for association between cardio-metabolic loci within a population showing 

normality according to our Q-Q plot (Figure 3.5). These approaches improved our ability 

to detect a significant association by lowering the stringent statistical requirements 

typical of true GWAS, however, the issue of limited statistical power was not 

ameliorated. Based on the relatively larger effect size associated with the APOE E4 allele 

in AD, our study was adequately powered to detect a significant association assuming a 

similar effect size in CIND patients as observed in AD patients. Our AD GRS approach 

also lowered statistical stringency as a P<0.05 specifies significance rather than a 

Bonferroni-adjusted P-value cutoff applied to the individual tests for association (approx. 

P<0.0045). In order to address the issue of power, larger CIND cohorts must be 

organized, however ours is the largest genetic study of CIND patients conducted to date. 

A sample size of ~3000 CIND patients and 3000 healthy controls would be required to 

detect a significant association at the AD GWAS-identified BIN1 locus assuming a 
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Figure 3.5 Quantile-quantile plot showing expected and observed p-values from the 

MetaboChip discovery phase. QQ plots visualize the difference between the observed 

P-values for each SNP derived from the GWAS discovery phase compared with expected 

P-values derived from a theoretical χ
2
 distribution. The solid diagonal line represents the 

null hypothesis of no difference between observed and expected P-values. Deviation from 

the null hypothesis highlights the presence of inflation or deflation in observed P-values 

which can be caused by the presence of unadjusted population stratification.  The 

distribution of p-values suggests that there was no artificial inflation of test statistics 

(λGC = 0.99). 
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consistent effect size (OR=1.17). In comparison, a sample size of only 400 CIND patients 

and 400 cognitively normal controls is required to replicate the putative association at the 

ZNF608/GRAMD3 locus. Thus, it is clear that follow-up studies in CIND and pre-

dementia need to be on a similar scale as the scale of published AD GWAS in order to 

detect associations of small effect. Finally, some limitations can also be attributed to our 

use of the MetaboChip platform. Since only cardio-metabolic loci were included in our 

GWAS, it is possible that we overlooked other loci that may contain genetic variation 

associated with CIND. Imputation of additional variants or the application of a truly 

genome-wide genotyping platform in a CIND cohort may provide a more comprehensive 

investigation of genetic variation. 

 

In summary, we have shown that genetic variation in cardio-metabolic and AD-

associated loci are not associated with CIND. We identified a potential association 

between the ZNF608/GRAMD3 locus and CIND status, however, additional studies are 

required to validate this association as well as subsequent studies of possible functional 

effects.  Clinical implications arising from this study are hypothesis generating at this 

stage. However, this novel approach to characterizing cognitive decline may help to 

implicate a greater role for genetic determinants of cardiovascular traits when applied to 

larger cohorts. While the synergy between cardiovascular and cognitive health is strong, 

evidence in this study supporting a genetic link was weak. Identification of genes 

contributing to cognitive decline via similar approaches as shown here will help us 

understand the pathways and mechanisms affecting CIND susceptibility which will 

ultimately guide future therapeutic strategies.  
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CHAPTER 4 

 

INVESTIGATING TYPE 2 DIABETES-ASSOCIATED COMMON VARIATION 

IN ABORIGINAL POPULATIONS 

 

4.1 INTRODUCTION 

Globally, aboriginal and indigenous communities are facing an escalating type 2 diabetes 

(T2D) epidemic. T2D was virtually non-existent amongst aboriginal populations decades 

ago (Chase, 1937). However, aboriginal populations such as Ontario Oji-Cree now report 

T2D in adults at an age-adjusted prevalence of ~26%, which ranks among the highest in 

the world; aboriginal populations in Arizona, Oklahoma and the Dakotas reported notably 

higher T2D frequencies of 38%, 40% and 40%, respectively (Yu and Zinman, 2007). 

Adult Metis in Ontario have a reported diabetes frequency of 11%, which represents a 

~25% increase above the national rate (Shah et al., 2011). Even the Canadian Inuit, who 

historically were untouched by T2D, have now matched national standards for T2D 

frequency based on a recent study of 36 Canadian Inuit communities (Egeland et al., 

2011). This significant and recent expansion of T2D prevalence in virtually all Canadian 

aboriginal communities suggests that these populations may be at greater risk of T2D 

compared to the non-aboriginal population.  

 

Explanations for the recent rise in T2D cases among aboriginal people centre on 

the significant lifestyle changes that Canadian aboriginals have gradually adopted. In 

comparison to the traditional nomadic hunter-gatherer lifestyles of Canadian aboriginal 
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groups, the pervasion of Western culture into aboriginal communities has increasingly 

integrated non-traditional diets and lifestyles. Sedentary occupations and leisure 

lifestyles, together with diets that have become increasingly high in sugar and fat, have 

certainly contributed to the stark increase in T2D experienced by aboriginal Canadians 

and this is reflected in the rising incidence of T2D particularly amongst aboriginal youth 

(Millar and Dean, 2012; Sellers et al., 2009). Accordingly, nutritional and lifestyle 

management strategies have been the primary initiatives in combating T2D in aboriginal 

communities. Although an increase in T2D among aboriginal Canadians may not be 

unexpected, given the relatively recent introduction of Western diets in aboriginal 

communities, the rate at which T2D has exploded among Canadian aboriginals is 

remarkable and has suggested that environmental factors are not entirely responsible for 

the T2D epidemic. Thus prevailing hypotheses have implicated the role of genetic factors 

in additionally modulating T2D susceptibility among aboriginal Canadians. 

 

Indeed genetic variation has been associated with T2D susceptibility in aboriginal 

Canadians. Hegele et al. identified a private, common variant in the hepatocyte nuclear 

factor 1 homeobox A (HNF1A) gene in Ontario Oji-Cree descendants. Sequencing of 

HNF1A, which encodes a transcription factor that regulates expression of several liver-

specific genes, revealed a non-synonymous mutation of glycine to serine at amino acid 

319 (p.G319S) (Hegele et al., 1999a). Almost 40% of adult T2D Oji-Cree patients 

studied carried the p.G319S variant and these individuals were at increased risk of 

diabetes, particularly T2D, as p.G319S lowered the T2D age at onset following a gene 

dosage effect. Subsequent in vitro functional analyses of the p.G319S variant suggested 
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lowered insulin secretion due to a combination of reduced HNF1A mRNA expression via 

the introduction of alternative splicing events as well as reduced HNF1A transactivation 

activity (Bjorkhaug et al., 2005; Harries et al., 2008). The p.G319S variant provided 

evidence of a private T2D susceptibility variant among the Oji-Cree and spurred the 

search for additional genetic variants that may also contribute to T2D risk in the Oji-Cree 

and indeed other aboriginal populations.  

 

Additionally, Hegele et al. used a genome-wide scan using 190 microsatellite 

markers to agnostically investigate additional T2D susceptibility loci in the Oji-Cree 

(Hegele et al., 1999b). Although this initial scan revealed potential T2D susceptibility 

loci, the study was limited in terms of genome coverage and resolution. More recently, 

genome-wide association studies (GWAS) have been used to identify T2D-related loci by 

testing for genetic association using markers of common variation known as single 

nucleotide polymorphisms (SNPs) that occur approximately every 300 nucleotides across 

the genome. To date, the largest T2D GWAS have involved cohorts of European and 

Asian descent (Kooner et al., 2011; Voight et al., 2010). Testing for association between 

T2D and millions of SNPs in multi-ethnic populations has identified several T2D-

associated loci which have implicated pathways related to β-cell dysfunction and insulin 

secretion in modulating T2D risk (Voight et al., 2010). Additional GWAS on glycemic 

traits have confirmed overlap between at least five T2D susceptibility loci and fasting 

blood glucose (FBG)-associated loci suggesting shared biological mechanism between 

disease status and disease-related clinical trait (Billings and Florez, 2010). Surprisingly, 

relatively few genetic studies have been performed within aboriginal communities despite 
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global aboriginal populations showing remarkable increases in T2D frequency (Yu and 

Zinman, 2007). 

 

Using T2D GWAS meta-analyses from European and South Asian cohorts, we 

sought to investigate the frequencies of established T2D-associated variants in a subset of 

Canadian aboriginal populations. Our primary objective was to test for association 

between established T2D-associated variants and T2D status in 2 Canadian aboriginal 

populations; the Oji-Cree of Sandy Lake, Ontario and the Inuit of Inuvik, Northwest 

Territories. We also tested for association between T2D variants and FBG in Sandy Lake, 

Inuvik and Greenland non-diabetic aboriginal populations. Our secondary objective was 

to compare the accumulation of T2D variants in T2D patients and controls from the 

Sandy Lake and Inuvik populations in the form of a composite genetic risk score (GRS). 

We demonstrate that the established T2D-associated variants are not strongly associated 

with T2D in either of these Canadian aboriginal populations individually or as part of a 

risk score. However, the Inuvik Inuit T2D patients showed a significantly higher risk 

score based on South Asian-identified T2D variants compared to non-diabetic Inuvik 

controls. Furthermore, a South Asian-identified T2D-associated variant in the gene 

encoding high mobility group 20A (HMG20A) was significantly associated with FBG in 

a combined cohort of Inuvik and Greenland Inuit suggesting a potential T2D 

susceptibility locus common between South Asians and Inuit. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Study populations 

All individuals involved in this study gave informed consent and the use of the DNA 

samples given for research was approved by the University of Western Ontario Research 

Ethics Board for Health Sciences Research Involving Human Subjects (Review number 

07920E, Appendix A-1). Study participants were randomly sampled from 2 Canadian 

aboriginal groups and 1 Greenland Inuit group. Relevant demographic data are listed in 

Table 4.1. Participants of Oji-Cree descent from Sandy Lake (n=399), Ontario were 

randomly selected from the Sandy Lake Health and Diabetes Project (Harris et al., 1997). 

Fasting blood samples were collected at the time of the health study in order to measure 

plasma glucose as well as for DNA extraction. Participants of Inuit descent (n=282) were 

randomly selected from the Inuvik Inuit community of the Northwest Territories as well 

as Greenland and Denmark (n=187) (Bjerregaard et al., 2003).  

 

4.2.2 Study design 

Using clinical diagnoses of T2D, we performed tests for association between a panel of 

17 T2D GWAS-identified SNPs and T2D status (Table 4.2). We performed this study 

with Sandy Lake T2D cases (n=68) and controls (n=320) in addition to Inuvik T2D cases 

(n=13) and controls (n=247). FBG concentrations were also available for the Sandy Lake 

(n=321), Inuvik (n=136), and Greenland (n=187) populations. Within each population, 

we tested for association between blood glucose concentration and T2D-associated SNP 

genotypes. Whole-genome amplified DNA samples from each aboriginal group were 
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Table 4.1. Canadian aboriginal study population demographics. 

 

 Sandy Lake Inuvik Greenland 

n 399 282 187 

Male (%) 44 33 40 

Diabetic (%) 17.5 4.6 n.d.  

Age (years) 29±16 45±16 43±15 

BMI 27±6 31±7 26±5 

TG (mmol/L) 1.4±0.7 1.74±1.3 1.0±0.5 

Fasting glucose (mmol/L) 6.3±2.9 5.3±0.8 5.7±0.9 

BMI, body mass index; n.d., no data; TG, triglyceride concentration. 

118



T
a
b

le
 4

.2
 T

o
p

 T
2
D

-a
ss

o
ci

a
te

d
 v

a
ri

a
n

ts
 i

d
en

ti
fi

ed
 b

y
 G

W
A

S
 i

n
 E

u
ro

p
ea

n
 a

n
d

 S
o
u

th
 A

si
a
n

 c
o
h

o
rt

s.
 

E
u

ro
p

ea
n

-i
d

en
ti

fi
ed

 T
2

D
 v

a
ri

a
n

ts
 

C
H

R
 

S
N

P
 

N
ea

re
st

 

G
en

e 
P

o
si

ti
o
n

 
A

ll
el

es
 

(m
in

/m
a
j)

 

R
A

F
 

O
R

 
P

-v
a

lu
e 

R
ef

er
en

ce
 

E
U

 
S

A
 

3
 

rs
4

6
0

7
1

0
3
 

A
D

A
M

T
S
9
 

6
4
,7

1
1
,9

0
4
 

T
/C

 
0
.7

6
 

n
r 

1
.0

9
 

1
.2

x
1

0
-8

 
(Z

eg
g
in

i 
et

 

al
.,

 2
0
0

8
) 

3
 

rs
1

8
0

1
2

8
2
 

P
P

A
R

G
 

1
2
,3

9
3
,1

2
5
 

G
/C

 
0
.8

6
 

n
r 

1
.1

4
 

1
.7

x
1

0
-6

 
(S

ax
en

a 
et

 

al
.,

 2
0
1

0
) 

3
 

rs
4

4
0

2
9

6
0
 

IG
F

2
B

P
2
 

1
8
5
,5

1
1
,6

8
7
 

T
/G

 
0
.2

9
 

n
r 

1
.1

4
 

8
.9

x
1

0
-1

6
 

 

6
 

rs
7

7
5

4
8

4
0
 

C
D

K
A

L
1

 
2
0
,6

6
1
,2

5
0
 

C
/G

 
0
.3

1
 

n
r 

1
.1

2
 

4
.1

x
1

0
-1

1
 

 

7
 

rs
8

6
4

7
4

5
 

JA
Z

F
1

 
2
8
,1

8
0
,5

5
6
 

C
/T

 
0
.5

0
 

n
r 

1
.1

0
 

5
.0

x
1

0
-1

4
 

 

8
 

rs
1

3
2

6
6

6
3

4
 

S
L

C
3
0
A

8
 

1
1
8
,1

8
4
,7

8
3
 

T
/C

 
0
.6

5
 

0
.7

6
 

1
.1

2
 

5
.3

x
1

0
-8

 
 

9
 

rs
1

0
8

1
1

6
6

1
 

C
D

K
N

2
A

/2
B

 
2
2
,1

3
4
,0

9
4
 

C
/T

 
0
.8

3
 

n
r 

1
.2

0
 

7
.8

x
1

0
-1

5
 

 

1
0

 
rs

1
1

1
1
8

7
5
 

H
H

E
X

 
9
4
,4

6
2
,8

8
2
 

T
/C

 
0
.5

3
 

n
r 

1
.1

3
 

5
.7

x
1

0
-1

0
 

 

1
0

 
rs

7
9

0
3
1

4
6
 

T
C

F
7
L

2
 

1
1
4
,7

5
8
,3

4
9
 

T
/C

 
0
.2

6
 

0
.3

0
 

1
.3

7
 

1
.0

x
1

0
-4

8
 

 

1
1

 
rs

5
2

1
9
 

K
C

N
J1

1
 

1
7
,4

0
9
,5

7
2
 

T
/C

 
0
.4

7
 

n
r 

1
.1

4
 

6
.7

x
1

0
-1

1
 

 

1
2

 
rs

7
9

6
1
5

8
1
 

T
S

P
A

N
8

 
7
1
,6

6
3
,1

0
2
 

C
/T

 
0
.2

7
 

n
r 

1
.0

9
 

1
.1

x
1

0
-9

 
 

S
o
u

th
 A

si
a

n
-i

d
en

ti
fi

ed
 T

2
D

 v
a

ri
a

n
ts

 

C
H

R
 

S
N

P
 

N
ea

re
st

 

G
en

e 
P

o
si

ti
o
n

  
A

ll
el

es
 

(m
in

/m
a
j)

 

R
A

F
 

O
R

 
P

-v
a

lu
e 

R
ef

er
en

ce
 

E
U

 
S

A
 

2
 

rs
3

9
2

3
1

1
3
 

G
R

B
1
4

 
1
6
5
,2

1
0
,0

9
5
 

C
/A

 
0
.6

4
 

0
.7

4
 

1
.0

8
 

1
.6

x
1

0
-9

 
(K

o
o

n
er

 e
t 

al
.,

 2
0
1

1
) 

3
 

rs
1

6
8

6
1

3
2

9
 

S
T

6
G

A
L

1
 

1
8
8
,1

4
9
,1

5
5
 

A
/G

 
0
.8

6
 

0
.7

5
 

1
.0

8
 

1
.3

x
1

0
-7

 
 

1
0

 
rs

1
8

0
2
2

9
5
 

V
P

S
2
6
A

 
7
0
,6

0
1
,4

8
0
 

A
/G

 
0
.3

1
 

0
.2

6
 

1
.0

7
 

2
.1

x
1

0
-8

 
 

1
5

 
rs

7
1

7
8
5

7
2
 

H
M

G
2
0
A

 
7
5
,5

3
4
,2

4
5
 

A
/G

 
0
.7

1
 

0
.5

2
 

1
.0

8
 

9
.2

x
1

0
-1

3
 

 

1
5

 
rs

2
0

2
8
2

9
9
 

A
P

3
S
2

 
8
8
,1

7
5
,2

6
1
 

C
/A

 
0
.3

1
 

0
.3

1
 

1
.0

8
 

1
.2

x
1

0
-1

1
 

 

2
0

 
rs

4
8

1
2
8

2
9
 

H
N

F
4
A

 
4
2
,4

2
2
,6

8
1
 

A
/G

 
0
.1

9
 

0
.2

9
 

1
.0

9
 

8
.2

x
1

0
-1

2
 

 

C
H

R
, 

ch
ro

m
o

so
m

e;
 E

U
, 
E

u
ro

p
ea

n
; 

m
aj

, 
m

aj
o
r 

o
r 

m
o
re

 f
re

q
u
en

t 
al

le
le

; 
m

in
, 

m
in

o
r 

o
r 

le
ss

 f
re

q
u
en

t 
al

le
le

; 
O

R
, 

o
d

d
s 

ra
ti

o
; 

R
A

F
, 

ri
sk

 

al
le

le
 f

re
q

u
en

cy
; 

S
A

, 
S

o
u
th

 A
si

an
. 
R

is
k
 a

ll
el

es
 a

re
 u

n
d
er

li
n
ed

. 

 

119



Variants included in our analysis had call-rates >90%, minor allele frequency (MAF) 

>1% and were in Hardy Weinberg equilibrium (P>0.05). The 17 T2D SNPs were 

cumulatively assessed as a composite GRS in order to assess the combined effect of these 

variants on T2D susceptibility as well as FBG concentration. 

 

4.2.3 Statistical analyses 

Study cohort demographics were evaluated using chi-square (χ2) tests for dichotomous 

variables and t-tests for continuous variables using SAS v9.2 (Cary, NC); the nominal 

level of statistical significance was set at P<0.05. Logistic regression was used to test for 

association between T2D variants and T2D status using PLINK 

(http://pngu.mgh.harvard.edu/purcell/plink/). Statistical significance was defined as a 

Bonferroni-corrected P<0.0029. Our logistic regression model was adjusted for 

potentially confounding variables including age, sex, body-mass index (BMI) and 

aboriginal population status in analyses combining populations. Similarly, our linear 

regression model was adjusted for age, sex, BMI and aboriginal population status when 

combining aboriginal populations. ~200,000 SNP genotypes were available for a subset 

of Inuvik Inuit (n=142) from genotyping on the custom Cardio-Metabochip genotyping 

array (Illumina Inc.; San Diego, CA) which were used to perform identity-by-state and 

multidimensional scaling experiments within this specific subset of Inuvik Inuit (Figure 

4.1). Genetic risk scores were constructed using study participants with complete 

genotyping for the 17 T2D-associated SNPs. As each SNP includes an allele associated 

with T2D risk, each participant’s risk score reflects the sum of T2D-associated risk 

alleles for each of the 17 SNPs. Mean risk scores were compared between T2D patients 
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Figure 4.1 Principal components analysis with Inuvik and HapMap-derived 

populations. The first two principal components were plotted with HapMap populations 

of known ancestry to compare the reported ancestry of Inuvik participants. CEU (green, 

n=267), Caucasians; INV (orange, n=146), Inuvik; CHB/JPT (red, n=250), 

Chinese/Japanese; GIH, (blue, n=101), East Indian; YRI, (purple, n=203), African.  
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and healthy controls using t-tests. Risk scores for non-diabetics were also compared with 

FBG concentrations by creating risk score bins and calculating mean FBG concentrations 

per risk score bin. The strength of correlation between risk score and FBG concentrations 

was judged based on the r
2
 value for the line of best fit where  statistical significance was 

defined by P<0.05.    

 

4.2.4 Power calculations 

In order to have at least 80% power to detect a true positive association for a SNP 

representative of our SNP panel (MAF=0.20, OR=1.09, P=0.05), our study required 

approximately 8000 T2D patients and 32,000 healthy controls. Relative to these 

calculations, our study cohort was considerably underpowered. However, no Aboriginal-

based populations or databases currently exist that would meet these requirements for 

adequate statistical power. Power calculations were performed using Power and Sample 

Size Calculation software (Dupont and Plummer, 1990). 

 

4.3 RESULTS 

 

4.3.1 Study participants 

Demographic data for each aboriginal group tested for association is shown in Table 4.1. 

T2D status was only available for the Sandy Lake Oji Cree and Inuvik Inuit. Based on 

these population samples, the Sandy Lake Oji Cree sample showed the highest frequency 

of T2D participants at 17.5%, which recapitulated the notoriously high T2D prevalence 

reported in the greater Sandy Lake aboriginal population; mean FBG was also highest 
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among the Sandy Lake Oji Cree. T2D frequency within the Inuvik Inuit sample was 

comparatively low, which was representative of the low T2D frequency observed in the 

greater Inuvik Inuit population.  

 

4.3.2 Establishing T2D variant frequencies in aboriginal populations 

First, we sought to determine allele frequencies for each of our candidate T2D variants in 

our aboriginal study populations. As variant frequencies are known to differ across multi-

ethnic populations, we were not surprised to observe variance in T2D risk-associated 

allele frequencies between the three aboriginal populations and the reference European 

and South Asian populations (Table 4.3). While the majority of variants showed similar 

allele frequencies across all study and reference populations, it was interesting to observe 

considerable decreases in risk allele frequencies for variants near TSPAN8 and AP3S2 

when comparing the European and South Asian cohorts versus our aboriginal study 

populations. Furthermore, it was also noteworthy that the HNF4A risk allele represented 

the minor allele in the reference populations but approached or attained major allele 

status within our aboriginal study populations.  

 

4.3.3 Replication of T2D variant associations in aboriginal populations 

First, we tested for association between 17 T2D-associated SNPs and T2D status in the 

Sandy Lake Oji Cree and Inuvik Inuit samples. T2D patients from both aboriginal groups 

showed significantly higher BMI, TG and fasting glucose compared to controls as 

expected. T2D patients were also, on average, significantly older than controls (Table 

4.4). Our logistic regression analysis failed to replicate association that approached 
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nominal significance in either of the Sandy Lake Oji Cree or the Inuvik Inuit cohorts, 

although some variants, such as those in PPARG and KCNJ11, replicated similar effect 

sizes as those previously observed in GWAS meta-analysis (Table 4.5). 

 

4.3.4 Association between T2D variants and fasting blood glucose 

Next, we tested for association between the 17 T2D-associated SNPs and FBG using an 

adjusted linear regression model including non-T2D patients from the Sandy Lake Oji 

Cree, Inuvik Inuit and the Greenland Inuit cohorts (Table 4.6). The Sandy Lake Oji Cree 

cohort showed associations of nominal significance (P<0.05) for variants at the CDKAL1, 

CDKN2A/2B, and RPS26A loci. The Inuvik Inuit cohort showed associations of nominal 

significance at the ADAMTS9, TCF7L2, TSPAN6, and HMG20A loci. The Greenland 

Inuit cohort showed only one association of nominal significance at the HMG20A locus. 

Because the Inuvik and Greenland Inuit share similar ancestry, both cohorts were merged 

(n=436) and re-analyzed using a linear regression model adjusted for covariates as well 

as population identity. The combined analysis showed that each copy of the T2D-

associated variant in HMG20A, also the major allele, was associated with a 0.18 mmol/L 

increase in FBG (P=1.6x10
-4

). The significance of this association in the combined Inuit 

cohort surpassed a Bonferroni-corrected level of significance (P<2.9x10
-3

). This 

association suggests a potential biological connection between a T2D susceptibility locus 

and FBG concentration in Inuit descendants. Further assessment is required in additional 

Inuit cohorts to confirm this association. 
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4.3.5 T2D genetic risk scores in aboriginal populations 

Finally, we tested whether T2D patients from the Sandy Lake Oji Cree and Inuvik Inuit 

cohorts carried a significantly greater accumulation of multiple T2D-associated variants 

through the use of a composite GRS. There was no significant difference between mean 

risk scores using all 17 SNPs for T2D patients and healthy controls in either the Sandy 

Lake Oji Cree or Inuvik Inuit cohorts. As a sub-analysis, we sub-divided risk scores 

based on T2D SNPs identified in either the European or South Asian cohort meta-

analyses. No significant difference was observed in either the Sandy Lake Oji Cree or 

Inuvik Inuit cohorts based on the European T2D SNP risk score. Conversely, we 

observed a nominally significant difference in mean South Asian-derived risk scores 

between Inuvik Inuit T2D patients and healthy controls (Table 4.7, Figure 4.2C). The 

same South Asian risk score adjusted for the reported effect sizes for each risk allele 

produced a similar nominally significant result (Table 4.7). We further tested whether 

risk score correlates with FBG independently in combined  non-diabetic Inuvik (n=184) 

and Greenlanders of unknown diabetic status (n=159) using regression analysis; however 

no association was identified (Figure 4.3). 

 

4.4 DISCUSSION 

 

The principal finding of our study is that established T2D-associated variants are not 

associated with T2D status in Canadian aboriginal patients. We were unable to replicate 

associations between 17 GWAS-identified T2D variants and the Sandy Lake Oji-Cree or  
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Table 4.7 Genetic risk scores in T2D and non-T2D patients in two aboriginal 

Canadian populations. 

 

Non-weighted 

 GRS type Non-T2D GRS T2D GRS P-value 

Sandy Lake European 10.4±0.1 10.1±0.3 0.29 

 South Asian 4.4±0.1 4.3±0.2 0.74 

 Cumulative 14.8±0.1 14.4±0.3 0.28 

 

Inuvik Inuit European 11.2±0.1 10.8±0.6 0.48 

 South Asian 7.2±0.1 8.1±0.3 0.049 

 Cumulative 18.4±0.2 18.9±0.6 0.51 

Weighted 

 GRS type Non-T2D GRS T2D GRS P-value 

Sandy Lake European 11.7±0.1 11.4±0.3 0.29 

 South Asian 4.8±0.09 4.7±0.2 0.74 

 Cumulative 16.5±0.2 16.1±0.4 0.28 

     

Inuvik Inuit European 12.4±0.2 12.0±0.7 0.61 

 South Asian 7.8±0.1 8.8±0.4 0.049 

 Cumulative 20.5±0.2 20.9±0.7 0.58 

Mean risk scores are shown ± standard deviation in cohorts of T2D patients and 

healthy controls. GRS, genetic risk score. 
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Figure 4.2. Frequency distributions of non-weighted T2D risk scores in Inuvik T2D 

patients and healthy controls. Inuvik T2D patients (n=11) and healthy Inuvik controls 

(n=184) with complete genotyping were included. A) Combined risk scores were 

calculated using a total of 17 T2D variants identified in both European and South Asian 

cohorts (min. score=0, max. score=34). Mean risk scores between T2D patients and 

controls, 18.9 and 18.4 respectively, were non-significant (P=0.51). B) European-derived 

risk scores included 11 T2D variants identified in T2D GWAS in European cohorts (min. 

score=0, max. score=22). Mean risk scores between T2D patients and controls, 10.8 and 

11.2 respectively, were non-significant (P=0.48). C) South Asian-derived risk scores 

included 6 T2D variants identified by T2D GWAS in South Asian cohorts (min. score=0, 

max. score=12). Mean risk scores between T2D patients and controls, 8.1 and 7.2 

respectively, were non-significant (P=0.05). Statistics were calculated using Student’s t-

test. 
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Figure 4.3. Correlation between fasting blood glucose and T2D genetic risk score. 

Mean fasting blood glucose (FBG) values are plotted for participants sorted into bins of 

genetic risk score based on 17 T2D variants. Non-diabetics from Inuvik Inuit (n=184) and 

Greenland Inuit (n=159) populations with complete genotyping for 17 T2D variants were 

included. However, no significant association was observed (P=0.45). Statistics were 

calculated from a linear regression model. 
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Inuvik Inuit T2D patients. Our T2D GRS analysis supported this finding, however, 

Inuvik Inuit T2D patients showed a modestly higher accumulation of South Asian T2D 

risk alleles compared to controls. One significant association was detected between a 

T2D-associated variant from the HMG20A locus (rs7178572) and FBG in the two Inuit 

populations studied here which suggests a potential T2D-related susceptibility locus 

common between South Asians and Inuit descendants.  

  

Our study provides novel insight into T2D susceptibility amongst aboriginal 

Canadians. The largest GWAS of T2D loci to date have focused on cohorts of European, 

East Asian and South Asian descent and have successfully identified several T2D 

susceptibility loci of modest effect. Previous genetic studies in aboriginal Canadian 

populations, guided by a candidate gene approach, identified variants associated with 

T2D risk and so we sought to apply a similar approach by investigating the top common 

variants from T2D GWAS in aboriginal Canadian populations. Using a case-control 

approach in Sandy Lake Oji-Cree and Inuvik Inuit samples, we were unable to replicate 

previous GWAS-identified associations with T2D. This was not entirely unexpected 

given statistical limitations due to small sample size involved as well as issues 

surrounding the replicability of GWAS-identified variants in multi-ethnic populations. 

The prevailing concept regarding GWAS findings suggests that the top variant at a locus 

tags additional variants through linkage disequilibrium. Between multi-ethnic 

populations, however, patterns of linkage disequilibrium differ and so GWAS-identified 

risk variants may vary from population to population as variant frequencies also differ 

(Cooper et al., 2008; Fu et al., 2011). Thus, it remains possible that the top T2D loci from 
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European and South Asian cohorts may not directly translate to T2D susceptibility in 

Canadian aboriginal populations. 

 

In addition to the dichotomous analysis of T2D status, GWAS have investigated 

the role of common variation in modulating clinical T2D-related traits such as FBG. 

These studies, performed in participants without diabetes, were initiated to develop better 

understanding of the biological pathways involved in regulating diabetes-related 

quantitative traits. Cumulatively, common variation explains ~10% of the inherited 

variation in FBG concentration suggesting a modest role for common variation in FBG 

variability (Dupuis et al., 2010). As several loci have been associated with both T2D 

status and FBG, such as GCKR, MTNR1B and TCF7L2, we tested whether our panel of 

top T2D-associated variants was associated with FBG in three aboriginal populations. 

Although our findings were largely negative, we identified a modest association between 

the South Asian-identified HMG20A locus (rs7178572) and FBG. In a combined cohort 

of Inuvik Inuit and Greenland Inuit, we observed that the T2D risk allele for this variant 

was also associated with a 0.18 mmol/L increase in FBG per copy of the T2D risk allele 

(P=1.6x10
-4

). As this trend was not observed in the Sandy Lake Oji-Cree sample, our 

findings suggest that this variant may be unique to South Asian and Inuit descendants 

however, further validation is required. The observed effect of the HMG20A variant on 

FBG is almost twice that reported by the top GWAS-identified loci on FBG (β= ~0.07 

mmol/L) although the clinical relevance of such an effect is not clear. 
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Although our study is the first to test for association between established T2D 

variants and T2D status as well as FBG concentration, our findings must be considered 

within the context of specific limitations. First, our statistical power to detect associations 

between the 17 T2D-associated variants and T2D was limited by sample size. The T2D 

variants featured in our study were identified in cohorts that included thousands of 

participants which is essential to detecting significant associations of small effect size. 

Due to the limited sample size of the aboriginal populations featured in our study, we 

cannot rule out the potential for these 17 T2D variants in playing a role in T2D 

susceptibility among Canadian aboriginals. Furthermore, the modest association detected 

between the HMG20A variant and FBG, while notable, also requires additional validation 

given our limited statistical power. 

 

Secondly, our approach which targeted GWAS-identified T2D loci is likely to 

have excluded additional loci that may be uniquely associated with Canadian aboriginal 

populations. The application of GWAS to a Canadian aboriginal population would 

facilitate an agnostic search for T2D susceptibility loci, however, the sticking point 

remains identifying a sizable population to afford adequate statistical power. One option 

that may help in addressing this issue may be combining aboriginal populations with 

related ancestry such as the circumpolar Inuit populations. 

 

Thirdly, previous studies have shown that there is often difficulty in replicating 

GWAS findings across multi-ethnic populations (Cooper et al., 2008; Fu et al., 2011; 

Imamura and Maeda, 2011). On an individual variant basis, this is partly due to the 
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variability in allele frequencies that exist between populations of different ethnicity. For 

example, the lead SNP from the UBE2E2 locus (rs6780569) has a reported minor allele 

frequency (MAF) of ~9% in Europeans, however, the same variant has a MAF of ~22% 

in East Asians (Fu et al., 2011). With a lower MAF, larger sample sizes are required in 

order to maintain adequate statistical power thus variability in allele frequency may 

confound the ability to replicate an association in ethnically diverse populations. 

Accordingly, the lead SNP from UBE2E2 was associated with T2D in East Asians 

(P=1.0x10
-9

) but was not replicable in Europeans (P=0.98) (Yamauchi et al., 2010). 

Although statistical power limitations in our study prevent the ruling out of associations 

between top T2D variants and aboriginal T2D susceptibility, it may be expected that the 

established T2D variants may vary in effect size or frequency in Canadian aboriginal 

populations. 

 

Lastly, limited data on our participants’ relatedness to other participants within 

each aboriginal sample prevented adjustment for any inflation in association signal due to 

common ancestry. The inclusion of multiple closely related participants in either cases or 

controls may inflate allele frequencies simply due to relatedness and not due to T2D 

susceptibility. This effect may also confound quantitative trait analysis as closely related 

participants may cluster at either end of a quantitative trait spectrum. Future studies must 

carefully document family structures and relatedness within aboriginal populations 

especially as these populations are likely to be small with low net migration into these 

communities. 
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In summary, we have demonstrated that the top GWAS-identified T2D-associated 

variants were not associated with T2D susceptibility in a sample of Canadian aboriginals. 

We also demonstrated, through a composite GRS that aboriginal T2D patients did not 

carry a significantly higher burden of T2D-associated variants compared to controls. One 

variant in HMG20A was associated with FBG in aboriginals of Inuit descent; however, 

this observation requires further replication in larger cohorts. Due to the power 

limitations of our study, the findings reported here have not ruled out the potential role 

for genetic variation at these established loci in modulating T2D susceptibility and 

glycemic traits in aboriginal populations. Further studies involving larger aboriginal 

cohorts with well-documented information on relatedness will contribute towards the 

ongoing investigation of T2D determinants amongst Canadian aboriginal populations and 

will provide a more conclusive assessment of the degree of overlap between European- 

and South Asian-identified T2D variants in aboriginal populations.  
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CHAPTER 5 

 

DISCUSSIONS AND CONCLUSIONS 

 

5.1 Genetic characterization of complex disease 

 

Over the past decade, our concept of genetic predisposition to complex disease has 

rapidly gained depth. As a result of the efforts of international consortia such as the 

Human Genome Project and the International HapMap Project (International Hapmap 

Consortium, 2003), the map of common genomic variation has enabled a leap forward to 

high-resolution genome-wide association studies (GWAS). At the time of this thesis 

work, the GWAS approach was established as a versatile and effective tool for 

discovering novel disease susceptibility loci and validating candidate loci based on the 

frequencies of common variants. Combined with targeted resequencing, findings from the 

GWAS era have provided new perspectives on complex disease susceptibility and have 

also supported re-evaluation of current concepts of complex disease genetics. 

 

The studies presented within this thesis reflect application of the current 

established techniques to characterize the genetics of complex disease susceptibility. 

Using candidate gene resequencing, the GWAS approach and targeted genotyping of 

GWAS-identified variants, we have demonstrated the application of modern genetic 

approaches to investigate complex diseases relating largely to cardiovascular disease 

(CVD). We implemented these techniques via 1) a candidate gene resequencing study in 
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circumpolar Inuit populations that revealed private, common missense variants within the 

low-density lipoprotein receptor (LDLR) gene; 2) the most comprehensive genomic 

analysis of a pre-dementia phenotype known as “cognitive impairment, no dementia” 

(CIND) utilizing cardio-metabolic and Alzheimer disease (AD)-associated variants; and 

3) a type 2 diabetes (T2D) candidate variant analysis in North American and Greenland 

aboriginals based on T2D GWAS meta-analyses. Cumulatively, these studies recapitulate 

the current molecular genetics techniques and analytical approaches widely utilized in 

order to assess the role of common variation on disease susceptibility and phenotypic 

variability.  

 

5.1.1 p.G116S in LDLR is associated with LDL-C among the Inuit 

We have reported the private, common p.G116S and p.R730W variants in LDLR within 

five circumpolar Inuit populations. Furthermore, we showed that G116S was robustly 

associated with a large effect on plasma low-density lipoprotein cholesterol (LDL-C) 

while p.R730W showed a modest non-significant effect on LDL-C (Table 2.4). Although 

our statistical analyses have implicated p.G116S as having a considerable effect on 

plasma LDL-C concentration, additional biochemical experiments are required in order to 

establish causal mechanisms underlying the observed p.G116S association with higher 

LDL-C. As follow-up experiments, we will investigate the effects of either LDLR variant 

on LDLR expression as well as receptor activity. 

 

Our findings regarding p.G116S and p.R730W have provided new insight into the 

unique genetic architecture of Inuit descendants as well as potential CVD risk factors 
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exclusive to the Inuit. As LDLR has been well-established in cholesterol homeostasis, we 

applied direct Sanger sequencing of LDLR coding regions to test for the presence of 

coding variants associated with plasma LDL-C. Interestingly, the variants p.G116S and 

p.R730W were observed with relatively high frequencies (5%-17%) across five distinct 

Inuit samples (Table 2.1, Figure 2.1). In line with the fact that LDLR is a major 

regulator of LDL-C homeostasis, we replicated independent associations between mean 

LDL-C and p.G116S or p.R730W carrier status in a combined Inuit cohort (Table 2.3A). 

These findings were further explored by using multivariate linear regression to test a 

dominant genetic model based on either p.G116S or p.R730W status which further 

supported association between p.G116S and LDL-C (Table 2.4). Importantly, p.G116S 

was consistently associated with raising LDL-C within each Inuit population with a 

summary effect size of ~0.54 mmol/L per allele dose in a combined Inuit cohort while 

p.R730W was non-significantly linked with a modest lowering of LDL-C by ~0.05 

mmol/L per allele dose (Table 2.4). The effect of p.G116S on LDL-C is intriguing as 

common variants are not usually associated with such large effect sizes. The top LDL-C-

associated common variants from GWAS meta-analyses near SORT1, APOE and LDLR 

were reported with per-allele effect sizes of 0.15 mmol/L, 0.18 mmol/L and 0.18 mmol/L 

respectively (Table 2.6) (Teslovich et al., 2010). Furthermore, p.G116S homozygotes do 

not have the severe LDL-C phenotypes characteristic of homozygous familial 

hypercholesterolemia in which patients have plasma LDL-C concentrations 6-10 fold 

normal concentrations (Liyanage et al., 2011). In this context, the effect size associated 

with p.R730W is relatively agreeable with the observed relationship between variant 

frequency and effect size (Figure 2.5). p.R730W is also of interest particularly as the vast 
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majority of LDLR missense variants have been associated with hypercholesterolemia with 

only one LDLR variant previously linked with LDL-C lowering (Boright et al., 1998). 

Ultimately, this study has established the association between p.G116S and LDL-C.  The 

effect of either variant on LDLR function as well as the association between the 

respective effects on LDL-C and CVD-related end-points such as myocardial infarction 

remains to be determined. 

 

5.1.2 Cardio-metabolic and AD variation in “cognitive impairment, no dementia” 

We have described the most comprehensive genetic analysis of the common pre-

dementia phenotype known as CIND (Dube et al., 2013). Using the Cardio-Metabochip 

genotyping array, we utilized a “next-generation” approach to investigate the frequency 

of genomic variants linked with cardio-metabolic traits in CIND patients and controls 

(Voight et al., 2012). Although we replicated a potential association between CIND and 

rs1439568 in the ZNF608/GRAMD3 locus on chromosome 5 (Table 3.3), we did not 

observe strong evidence linking cardio-metabolic variation in CIND. We also sought to 

investigate the potential association between established non-ApoE AD-associated 

variants and CIND. Although no associations were identified, we did replicate similar 

effect sizes as those previously reported for variants in CR1, ABCA7, and PICALM 

(Table 3.4). Given that our sample size was a small fraction of the large cohorts meta-

analyzed in AD GWAS, it is likely that low statistical power hindered our ability to 

detect small yet significant effect sizes. In order to partly address the issue of limited 

power, we assessed the accumulation of multiple AD risk alleles in CIND patients 

compared to controls using a genetic risk score (GRS) utilizing the 11 non-APOE AD-
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associated variants. Comparable AD-GRSs between CIND patients and controls did not 

support a role for non-ApoE AD-associated variants as determinants of CIND status. 

Lastly, we investigated the frequency of the APOE E4 isoform in CIND patients as the 

E4 isoform remains the strongest genetic determinant of AD. The modest association 

between the E4 isoform and CIND status compared to controls (OR=1.35, P=0.044, 

Table 3.5) did not provide robust evidence for the E4 isoform as a marker of CIND; 

however, a previous study identified a 2.7- to 5-fold increase in AD progression from 

CIND in E4 carriers (Hsiung et al., 2004; Tuokko et al., 2003). In summary, our findings 

did not support a strong correlation between common cardio-metabolic and AD-

associated variants in CIND susceptibility. The phenotypic heterogeneity inherent in 

CIND, however, is likely to continually confound further genetic analyses unless pre-

dementia patients can be better stratified based on the disease underlying the observed 

cognitive phenotype. 

 

As no previous studies investigated genetic determinants of CIND or related mild 

cognitive phenotypes with the exception of APOE E4 carrier status, we sought to 

investigate the role of genetic variation in CIND based on the two most common diseases 

leading to dementia which remain AD and vascular dementia (VaD). As VaD- and AD-

related mechanisms account for the majority of dementia cases among the elderly, we 

hypothesized that common variants previously associated with cardio-metabolic traits 

and AD risk were also associated with CIND. The use of the Cardio-Metabochip was 

essential in testing the former part of this hypothesis by facilitating targeted genotyping 

of common variation at genome-wide loci associated with VaD-related traits. This type of 
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trans-disciplinary application represented a novel approach to studying cognitive health 

and may be applicable to the study of similar diseases affecting cognition. In testing the 

latter hypothesis that AD-associated variation is also associated with CIND, we 

developed a panel of 11 AD-associated variants based on the largest AD GWAS meta-

analyses (Hollingworth et al., 2011; Naj et al., 2011). The targeted approaches utilized 

here have represented a multi-disciplinary approach that has not been widely 

implemented but is likely to gain support as it has become increasingly evident that many 

cognitive disorders share similar genetic risk loci (Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013). Ultimately, our study provided a preliminary 

yet comprehensive assessment of genetic determinants of CIND and also highlighted 

some of the issues involved in studying a pre-clinical cognitive phenotype that must be 

considered in future analyses of pre-clinical dementia. 

 

5.1.3 Type 2 diabetes-associated common variation in aboriginal populations 

We have demonstrated that T2D-associated variants from European and South-Asian 

populations are also common among aboriginal Canadians and Greenlanders but are not 

clearly associated with T2D susceptibility. North American aboriginal populations 

continue to experience significant socio-cultural change and a generally accepted 

indicator of increasing “Westernization” has been the rapid increase in T2D frequency 

among aboriginal North Americans. We therefore sought to investigate the frequencies of 

the top GWAS-identified T2D variants from European and South-Asian cohorts in order 

to assess whether putative T2D loci are also applicable within aboriginal populations 

(Table 4.3). Our test for association between T2D variants and T2D status within the 
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Sandy Lake Oji-Cree and Inuvik Inuit did not reveal strong correlations, however, this 

analysis was limited by both the sample size and the small effect sizes attributed to each 

variant regarding T2D risk (Table 4.5). We also tested for association between the T2D 

variants and variability in fasting blood glucose (FBG) within three populations of Inuit 

descent which revealed a modest association between the rs7178572 variant near 

HMG20A on chromosome 15 in a combined analysis (Table 4.6). We further assessed 

the accumulation of multiple T2D variants through a T2D GRS (Table 4.7). While mean 

GRS based on all 17 selected variants or only European-identified variants were similar 

between T2D patients and controls, we observed a nominally significant difference in 

mean GRS between Inuvik T2D patients and controls based on South Asian-associated 

variants. Cumulatively, these analyses did not provide a strong indication that established 

T2D variation is associated with T2D among aboriginals. However, we have provided a 

first look into the frequency and effect sizes of European- and South-Asian-identified 

T2D-associated variation as it applies to aboriginal Canadians and Greenlanders.  

 

Similar to our approach for studying CIND genetics, we utilized large-scale 

GWAS meta-analyses to identify a panel of the top T2D-associated variants. This 

approach allowed us to focus our investigation on established T2D loci which was the 

most feasible means for assessing genetic T2D risk amongst aboriginal populations given 

limited sample sizes. Thousands of T2D patients and controls from homogenous sample 

populations were required in order to identify genome-wide significant associations 

between common variants and T2D as well as T2D-related phenotypes. As no analogous 

aboriginal cohorts exist that would adequately power the discovery of additional T2D-

152



associated variants, our alternate approach took advantage of the wealth of T2D GWAS 

data to propose candidate loci. To further address the issue of limited sample size, we 

combined aboriginal populations of common descent when investigating FBG among the 

Inuit. A similar approach may be required in future genetic studies within aboriginal 

populations in order to improve sample size and statistical power.  

 

An additional consideration for our study related to the investigation of common 

variation in multi-ethnic cohorts. A fundamental requirement for GWAS involves the use 

of homogenous study populations which is usually addressed in part by stratification 

based on ethnicity. Replication of GWAS results in additional multi-ethnic cohorts 

represents a key step in confirming potential gene-disease associations. In addition to our 

study limitations, further ethnicity-specific factors have been hypothesized to affect 

replicability in multi-ethnic association studies using common variants. These factors 

may include gene-gene and gene-environment interactions but ethnicity-specific patterns 

of linkage disequilibrium are believed to largely account for the discrepancies observed 

in multi-ethnic association studies (Fu et al., 2011; Ioannidis et al., 2004; Lanktree et al., 

2009; Lin et al., 2007). While the more pertinent limitations of our study involved issues 

of sample size, future genetic studies aimed at replicating associations in aboriginal 

populations must consider the role of ethnicity-specific patterns of linkage disequilibrium 

as a potential confounding factor. 
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5.2 Current methodological limitations 

 

The most significant limitation hindering genetic studies of complex disease relates 

fundamentally to the uncertainty surrounding the concept of complex disease genetics. 

Based on GWAS results from recent years, the portion of complex disease heritability 

explained by common variation has fallen short of what was initially expected as outlined 

in the “common disease-common variant” (CDCV) hypothesis (Reich and Lander, 2001). 

Furthermore, the tendency of GWAS to identify variants localized in gene deserts and 

intronic or intergenic regions has complicated the translation of robust association signals 

to biological relevance or clinical utility. Accordingly, new hypotheses have recently 

emerged that aim to account for the “missing heritability” in complex disease 

susceptibility that GWAS has failed to uncover. These hypotheses have largely supported 

the pooling of GWAS data for large-scale meta-analyses, a shift towards investigating the 

role of rare variation in complex disease susceptibility, and further in vitro and in vivo 

modeling of variants.  

 

5.2.1 The CDCV hypothesis then and now 

As previously discussed, the CDCV hypothesis provided the first generally accepted 

concept for the role of common variation in common, complex disease susceptibility. As 

the CDCV model began to formulate in the late 1990’s, it was believed that the 

anticipated catalogue of common human genomic variants would be used to perform 

hundreds of thousands of association tests in what became known as GWAS. A decade 

since the initial draft human genome release, GWAS have been applied to virtually every 
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common complex disease and the overall results were not quite as definitive as expected. 

As GWAS have unanimously revealed, associated variants individually contribute 

modestly to disease risk across almost all complex diseases. Combined analyses 

involving the top GWAS hits from multiple loci for a disease, in the form of risk scores, 

still only explain a modest percentage of disease heritability. The portion of complex 

disease heritability left unexplained by common variation has been dubbed the “missing 

heritability” (Manolio et al., 2009). Based on the small effect sizes assigned to associated 

variants as well as the stringent Bonferroni-corrected significance thresholds required 

when performing >10
6
 tests for association, GWAS require thousands of carefully 

phenotyped cases and controls in order to support the likelihood of detecting association. 

Despite validating candidate disease loci as well as identifying many novel and 

unexpected risk loci, the hunt for the “missing heritability” has come to dominate the 

continued effort to understand complex disease etiology. 

 

 Going forward, the lessons learned from GWAS must be utilized to re-assess and 

improve the current working model of complex disease genetics. Due largely to the issue 

of missing heritability, the CDCV hypothesis has recently been revisited and refined. 

Two main approaches have been described which focus on the continued search for 

common variant associations and on the role of rare variation in complex disease 

susceptibility. The potential remains for additional undiscovered common variants of 

subtle effect to contribute to disease susceptibility but it is believed that GWAS have 

simply been underpowered to detect these associations. Targeted genotyping and 

resequencing efforts have been proposed to help reveal additional common variants while 
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lowering the stringent statistical requirements typical of GWAS by focusing on select 

genomic loci. Similarly, meta-analyses of GWAS data are also likely to reveal previously 

undetected associations due to increased sample sizes and statistical power. Alternatively, 

it is also hypothesized that GWAS-identified variants are tagging low-frequency variants 

– the type that are excluded from GWAS – through linkage disequilibrium. These rare 

variants, of minor allele frequency <1%, are thought to have greater effects on disease 

susceptibility and may contribute to the “missing heritability” puzzle. While these 

approaches aim to account for the “missing heritability”, it has also been suggested that 

the total heritability ascribed to a disease may be overestimated. By failing to account for 

gene-gene or epistatic interactions, total heritability estimates may actually be inflated 

and thus create “phantom heritability” that cannot be explained by the discovery of 

additional variant associations (Zuk et al., 2012). A general road map for the future of 

genomics in complex disease investigation has thus been proposed, however, the extent 

to which these approaches will address current limitations remains to be observed. 

 

5.2.2 Clinical translation of GWAS findings 

A commonly discussed limitation involves the lack of clinical utility in GWAS results. 

As GWAS-identified variants currently explain a small proportion of disease risk or 

phenotypic variability, it has been difficult utilizing GWAS findings to help identify 

high-risk individuals or to re-classify at-risk patients. Although this is a significant 

limitation for the immediate application of GWAS results, the true worth seems to lie in 

the ability for GWAS to nominate disease-associated loci. Identifying the genes involved 

in disease pathogenesis may prove to be just as important as the discovery of a high-risk 
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variant as detailed understanding into disease mechanisms and the biological players 

involved will facilitate the development of therapeutic strategies. To appreciate this 

concept, one may look no further than the example of the targeted inhibition of 3-

hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) by statin therapy. As HMGCR is 

the rate-limiting enzyme in endogenous cholesterol synthesis, its inhibition markedly 

lowers plasma LDL-C and significantly lowers CAD risk (Brugts et al., 2009). Common 

variation at the HMGCR locus has been associated with a modest effect on plasma 

cholesterol yet inhibition of this key enzyme has shown profound effects on cholesterol 

homeostasis which have translated to cardiovascular benefits. Similarly, the GWAS-

identified sortilin gene, encoded by SORT1, has been revealed as a novel receptor 

involved in LDL-C homeostasis and suggests a potential therapeutic target. As many 

common complex diseases have been associated with multiple loci through GWAS meta-

analyses, the monumental task of investigating the explanation underlying these 

association signals is currently underway. Thus the clinical value of GWAS may be 

forthcoming as disease etiology is better understood. 

 

5.2.3 An end to the GWAS era? 

With many common complex diseases now investigated by the >1400 published GWAS, 

the need for the execution of additional GWAS has been questioned largely on the 

grounds that 1) multi-ethnic GWAS data now exist for many common complex diseases 

such as CVD and AD; 2) existing GWAS datasets must be investigated for biological 

relevance; and 3) next-generation genotyping platforms  have been designed for enriched 

genotyping of variants in candidate loci or exonic regions based on GWAS meta-analyses 
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which will permit more direct hypothesis testing. Much remains to be investigated 

through association studies; however, the traditional GWAS approach must be adapted to 

the evolving concept of genetic susceptibility in complex disease etiology in a manner on 

pace with the continued development of the CDCV hypothesis.  

 

5.3 Future directions for genomic analyses of complex disease 

 

As better characterization of the current unexplained heritability will be investigated 

through assessment of rare variation, a variety of strategies – both novel and established 

techniques – are likely to become increasingly important to future genomic studies of 

complex disease. The increasing feasibility of next-generation sequencing (NGS) 

platforms has made whole genome and exome sequencing more accessible where NGS is 

expected to become the new standard approach in variant discovery. Established 

approaches such as studies using population isolates, monogenic disease phenotypes and 

investigations into the extremes of quantitative trait distributions also remain viable 

strategies in the discovery of susceptibility loci.  More experimental approaches may also 

prove insightful such as the use of pre-clinical mouse models to nominate candidate loci 

in human diseases. Together, this range of techniques promises to help better characterize 

the genetic architecture underlying complex disease susceptibility. 

 

5.3.1 Next-generation sequencing 

As only ~10% of common variation is assessed using GWAS panels through the use of 

SNPs (Willer and Mohlke, 2012), whole genome and exome sequencing have become 
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increasingly implemented for the utility offered by the comprehensive assessment of 

genomic variation. Due to the costs of NGS, current applications have been limited in 

sample size relative to GWAS. As a result, a two-stage study design has emerged as a 

common workflow. First, small discovery cohorts of cases and controls are sequenced 

and all genetic variants are identified. The subsequent partitioning of variants based on 

frequency or genomic position can be used to nominate candidate variants for genotyping 

in a larger replication cohort (Kang et al., 2012). Alternatively, exome sequencing offers 

a focused approach to sequencing only protein-coding regions of the genome where 

variation may be more likely to have deleterious effects.  

 

 The recent discovery of a novel large-effect AD-associated variant in the TREM2 

gene independently by two groups illustrates the potential for NGS-based association 

studies. Using NGS in a case-control design, Guerreiro et al. were able to target loci 

harbouring a significant accumulation of rare variants which were then replicated in 

publicly available GWAS datasets (Guerreiro et al., 2013). Jonsson et al. independently 

identified the novel AD-associated variant in TREM2; however, this was accomplished 

by first comprehensively characterizing genetic variation in a genetically homogeneous 

Icelandic population (Jonsson et al., 2013). As described earlier, the use of population 

isolates in association studies represents an established approach which limits genetic 

heterogeneity and improves statistical power (Tian et al., 2008). These workflows are 

likely to represent a recurring strategy applied in future NGS-based studies of complex 

diseases and are summarized in Figure 5.1. 
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Figure 5.1 Investigating rare variation in complex disease. Using recent rare variation 

studies in AD as a template (Guerreiro et al., 2013; Jonsson et al., 2013), a common 

workflow is emerging for studying the role of rare variation in complex disease. A) Next-

generation sequencing (NGS) of the whole genome or the exome is used to 

comprehensively identify genomic variation. This is performed in a small number of 

participants or cases and controls as a variant discovery phase. B) Variation can be 

investigated agnostically by scanning the entire genome  or using a hypothesis-driven 

approach where candidate loci may be prioritized as sites believed to be harbouring a 

burden of variation. C) Rare variants are selected based on allele frequency (MAF<1%). 

Association analyses begin with a gene-based approach where the accumulation of rare 

variants at a given gene or locus is compared between cases and controls. In this 

example, AD cases had a significantly higher accumulation of rare variants in TREM2 

versus controls. Closer investigation revealed that the R47H variant was associated with 

AD status. D) Using publicly available AD GWAS datasets, genotyping data on millions 

of common genomic variants can be used to replicate associations discovered using NGS 

through the direct genotyping of the variant of interest or through imputation. E) A final 

estimate of the variant effect size and frequency can be determined by combining all 

datasets into a single statistical analysis or meta-analysis.   
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 On the clinical side, NGS has proven useful in helping to diagnose patients with 

suspected genetic disorders when candidate re-sequencing approaches have failed. For 

example, Rios et al. used whole genome sequencing to correctly identify the disease-

causing mutations underlying an 11-month-old girl’s sitosterolemia after being 

misdirected by an initial presentation of hypercholesterolemia (Rios et al., 2010). In an 

analogous case, exome sequencing helped elucidate the causal variant underlying AD in a 

patient from a consanguineous family when candidate sequencing of known AD-

associated genes including APP, PSEN1 and PSEN2, failed to identify potential disease-

causing variants (Guerreiro et al., 2012). The subsequent exome sequencing ultimately 

identified a variant in NOTCH3 which was previously associated with cerebral autosomal 

dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); 

the most common hereditary form of stroke (Joutel et al., 1996). Instances of NGS 

approaches applied to solving unusual clinical cases have become increasingly reported 

as the comprehensive nature of genome-wide sequencing provides clinicians with 

unprecedented insight into genetic disease pathogenesis and ultimately improved 

diagnostic capability. 

 

5.3.2 Lessons from monogenic diseases and extreme phenotypes  

Linkage studies of monogenic disorders established the sufficiency of a single deleterious 

variant to cause remarkable phenotypes such as LDLR mutations in FH patients. By 

elucidating the susceptibility loci in monogenic diseases, we gain a fundamental insight 

into the biological pathways involved in modulating disease susceptibility and phenotypic 

variability that can be applied to patients with less severe but unhealthy phenotypes. 
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Combining the study of monogenic disorders with emerging genomic technologies, it will 

be possible to uncover candidate loci that have eluded GWAS but nonetheless may have 

a profound phenotypic effect if perturbed. Furthermore, the process of identifying disease 

variants has become streamlined with the usage of NGS platforms as investigation is no 

longer limited to candidate loci but now incorporates the majority of genomic variation 

(Gilissen et al., 2012). Another emerging approach involves the dichotomizing of 

quantitative traits by sampling disease-free participants that occupy the tail-ends, or 

extremes, of trait distributions. While GWAS have been applied to the extremes of 

phenotypic distributions, NGS approaches have not been widely utilized in this respect 

and may offer new insight into the genetic architecture and biological pathways involved 

in modulating phenotypic variability (Barnett et al., 2012).  

 

5.3.3 Mouse disease models and candidate susceptibility loci 

Model organisms, particularly murine models, play a key role in the development of 

therapeutic strategies and are often utilized in identifying the effects of treatment in 

complex disease models (Welch, 2012). Alternatively, murine models can also be used to 

identify novel loci in complex human diseases. Studies using congenic mapping 

approaches in mice expressing a human disease phenotype such as atherosclerosis or 

hypertriglyceridemia have successfully implicated mouse susceptibility loci in human 

disease. Gargalovic et al. identified an association between variation in the Zhx2 gene 

with plasma lipid metabolism using a congenic mapping technique; a locus that had not 

previously been implicated in human lipid metabolism (Gargalovic et al., 2010). 

Interestingly, a subsequent GWAS meta-analysis on carotid intima media thickness (C-
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IMT), a measure of subclinical atherosclerosis, revealed an association with ZHX2 which 

proposed the potential use of mouse genetics to better understand the genetic architecture 

of complex phenotypes in humans (Bis et al., 2011). Using a different approach, 

Johansen et al. showed that patients with polygenic hypertriglyceridemia (HTG) carried a 

significant burden of rare variants at GPIHBP1 and LMF1 which were first associated 

with murine HTG phenotypes (Johansen et al., 2012). Thus the application of mouse 

genetics in identifying novel susceptibility loci in humans may prove effective in the 

investigation of additional complex phenotypes. 

 

5.4 Personalized medicine and therapeutic strategies 

 

In brief, the concept of personalized medicine has centered on the design and 

implementation of health care tailored to the individual patient’s unique biological and 

genetic components. With the increasing feasibility of whole genome sequencing, there 

has been growing anticipation surrounding the idea that genomic data will facilitate 

improved patient care in the near future. The incomplete understanding between genotype 

and complex disease risk, however, remains the greatest limiting factor in the integration 

of genomic data for the improvement of personalized medicine. Despite this limitation, 

GWAS and emerging genomic techniques have impacted upon the current concept of 

personalized medicine and have shed new light on future genomic applications in 

personalized medicine. GWAS have undeniably helped to advance the concept of 

personalized medicine as well as the field of pharmacogenomics and drug design which 

has suggested that the legacy of GWAS has yet to be fully realized.  
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5.4.1 Personalized medicine in the genomics era 

The formation of risk scores based on GWAS findings served as an initial attempt at 

validating a role for common variants in assessing patient risk. Aggregate scores of risk-

associated alleles from the top GWAS-identified variants associated with a specific 

phenotype were calculated in order to assess the genetic risk burden within the patient. 

These risk scores were then tested in independent cohorts of patients with related 

phenotypes in order to validate the clinical utility of such risk scores with the intention of 

incorporating genetic information within traditional risk algorithms such as the 

Framingham Heart Score. Modest success has been attributed to genetic risk scores that 

assess complex disease risk including CVD and AD (Kathiresan et al., 2008; Rodriguez-

Rodriguez et al., 2012). In one relatively successful study, Kathiresan et al. showed that a 

GRS of 9 variants associated with LDL or HDL cholesterol was an independent risk 

factor for incident CVD, however, genotype score did not improve clinical risk prediction 

(Kathiresan et al., 2008). Associations between GRS and a given phenotype have been 

commonly reported, however the limited ability for GRS to substantially reclassify at-risk 

patients has largely dissuaded the clinical utility of genetic risk prediction in the general 

population (Jostins and Barrett, 2011). Due to the small effects on risk that are ascribed to 

GWAS-identified loci, it may not be surprising that panels of small-effect variants do not 

significantly improve patient risk prediction. With genomic studies shifting from 

common variation toward rare variation, the identification of rare variants with 

potentially larger effects on risk may be more suited for clinical utility in calculating 

complex disease risk in the patient.  
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 As our understanding of the genetic determinants of complex disease progresses, 

it will become increasingly pertinent to assess the patient’s predisposition to disease at 

the earliest time point which is commonly perceived to be in utero. Prenatal genomic 

analysis represents a rapidly developing field within personalized medicine where the 

assessment of disease susceptibility may begin during fetal development (Bianchi, 2012). 

Until recently, prenatal diagnostic techniques were limited to ultrasonography and fetal 

metaphase karyotyping. The more sophisticated analyses used today have incorporated 

DNA micro-array-based assays implemented in conjunction with karyotyping to identify 

high-risk chromosomal abnormalities. Historically, however, fetal health has largely been 

based on morphological factors and low-resolution genetic analyses. The recent 

discovery that the fetal genome can be sequenced non-invasively from maternal blood 

has opened the door for prenatal screening techniques that utilize current and developing 

genomic technology (Fan et al., 2012). Sequencing of the fetal genome offers variant 

detection at the highest resolution and thus provides the means for identifying potentially 

deleterious point mutations. The utility of this information in personalized medicine 

theoretically has great potential. The effectiveness of this strategy is ultimately dependent 

upon our ability to interpret variation as being deleterious or benign. Thus the quick 

succession of technological advances in genetics has made it easy for our reach to exceed 

our grasp in terms of the ability to generate data but the limitation in using the data for 

clinical decision-making. 
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5.4.2 Defining the “genomics” in pharmacogenomics 

Heterogeneity in patient response to drug treatment remains a major complication in 

delivering cost-effective health care. While trial-and-error may be used for some drugs in 

order to identify the optimal dosage for the patient, this process is imprecise, costly, 

ineffective if the patient cannot metabolize the drug, and potentially hazardous. The 

genetic component underlying the variability in drug response has long been suspected, 

however the genomic techniques described here have only recently been established in 

studies on heterogeneity in drug response as well as susceptibility to adverse reactions. 

As with the study of complex phenotypes, candidate gene studies provided the first albeit 

limited investigations into genetic determinants of variable drug response from which the 

term pharmacogenetics was coined. GWAS have helped expand the concept of the 

genetic architecture underlying drug response while next-generation approaches such as 

whole-genome and exome sequencing are poised to provide even greater detail regarding 

the genetic components involved in modulating pharmacologic effects.  

 

 Statin therapy (3-hydroxy-3methylglutaryl-coenzyme A reductase [HMGCR] 

inhibitors) represents a prime example of a drug treatment that has become better 

understood through modern genomic approaches. Despite their status as the standard drug 

treatment for lowering LDL-C and thus cardiovascular risk, statin-mediated LDL-C 

lowering can vary as much as 10% to 70% in the case of rosuvastatin (Simon et al., 

2006). Accordingly, an important future goal for the prescription of statin drugs has 

focused on the identification of genetic factors that may help in determining the optimal 

statin and drug dosage tailored to the patient. Candidate gene studies importantly 
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identified a common haplotype in HMGCR encoding an alternatively spliced gene 

product associated with reduced LDL-C response to simvastatin (Krauss et al., 2008). 

Subsequent candidate gene studies and GWAS implicated several additional loci which 

helped characterize pathways relevant to statin pharmacodynamics (Chasman et al., 2012; 

Voora and Ginsburg, 2012). Although association signals have been reported at PCSK9, 

ABCG2, LPA, the most consistent findings have associated APOE isoforms with variable 

statin-mediated LDL-C response; carriers of the E2 isoform are associated with the 

greatest LDL-C lowering followed by E3 and E4 isoforms (Voora and Ginsburg, 2012). 

Although these findings have not yet translated to changes in the process of statin 

prescription, GWAS have importantly identified some of the biological players and 

pathways involved in statin uptake and efficacy which will inform future drug design. 

 

 Genomic approaches may also benefit studies on adverse drug reactions (ADRs). 

Again, GWAS on statin myopathy, or muscle pain and weakness due to statin therapy 

(Thompson et al., 2003), successfully identified a robust association between common 

variation at the SLCO1B1 gene and statin myopathy susceptibility (OR=16.9; 95% 

CI=4.7-61.1) (Link et al., 2008). Despite suggestions from the Food and Drug 

Administration as well as the Clinical Pharmacogenetics Implementation Consortium to 

institute clinical genotyping of SLCO1B1 variants to assess patient risk, statin myopathy 

risk continues to be largely managed using trial-and-error and monitoring of serum 

creatine kinase levels (Wilke et al., 2012). Further examples of the potential benefit of 

pharmacogenomics in ADR studies abound (Harper and Topol, 2012). For instance, 

prospective screening of the HLA haplotype HLA-B*5701 in patients taking abacavir, an 
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inhibitor of human immunodeficiency virus (HIV) reverse transcriptase, was shown to 

reduce the frequency of abacavir-related hypersensitivity reactions from 3% to 0% 

(Mallal et al., 2008). As studies continue to make a strong case for the integration of 

pharmacogenomics in patient care, it seems increasingly plausible that genomic data will 

have a greater role in determining safe and effective drug dosage.  

 

 The next stage for pharmacogenomics is likely to involve greater utilization of 

exome or whole genome sequencing for the identification of rare variants that cannot be 

tested for association using traditional GWAS methods. As pharmacogenomics studies 

using NGS have yet to be published, we can only speculate on the potential for NGS to 

advance pharmacogenomics. However, large-scale resequencing studies have provided 

some insight into what may be expected from next-generation studies. One resequencing 

study by Nelson et al. reported an abundance of rare variation in 202 genes encoding 

drug targets where rare variants were observed in ~1 in every 17 bases (Nelson et al., 

2012). Additionally, Ramirez et al. reported an abundance of rare variants in patients 

with drug-induced long QT syndrome (diLQTS) at loci associated with congenital 

arrhythmia syndrome suggesting that rare variation at known arrhythmia loci plays a role 

in diLQTS predisposition (Ramirez et al., 2012). Analogous results may be expected 

when next-generation methods are further integrated into pharmacogenomics, however 

the transition from variant discovery to clinical incorporation remains contested. 
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5.4.3 Pharmacological design 

GWAS and resequencing studies may also prove to be powerful tools in the complicated 

process of drug design. As discussed, GWAS have provided valuable insights into the 

genetic component underlying many common and complex diseases thus improving our 

concept of the biological pathways implicated in any given complex disease. By 

modulating gene expression at GWAS-identified susceptibility loci, it may be possible to 

produce a potentially therapeutic effect. Currently, the technologies exist whereby small 

molecule inhibitors, anti-sense oligonucleotides (ASOs) and gene replacement can 

effectively target and perturb gene expression and have already been incorporated in 

emerging therapeutic strategies. 

 

 The leading-edge of dyslipidemia therapies is represented by a host of novel 

treatment strategies that each utilizes pharmacologic technologies. Lomitapide, a small 

molecule inhibitor of microsomal triglyceride transfer protein (MTTP), was developed as 

a cholesterol-lowering therapy that recently received FDA approval for the treatment of 

homozygous familial hypercholesterolemia (Cuchel et al., 2007). Mipomersen, another 

cholesterol-lowering therapy, is an ASO designed to hybridize to and degrade apoB 

mRNA thus reducing expression of apoB expression and, subsequently LDL cholesterol 

(Ricotta and Frishman, 2012). Advances in viral gene transfer technologies have led to 

breakthroughs in gene therapy research. Alipogene tiparvovec represents the first gene 

therapy approved for marketing in Europe for the treatment of familial lipoprotein lipase 

deficiency (LPLD) (Dube and Hegele, 2012). LPLD patients lack a fully functional copy 

of lipoprotein lipase (LPL) thus alipogene tiparvovec partially restores functional LPL 
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through transient transduction by viral particles containing a functional copy of human 

LPL (Dube and Hegele, 2012). The emerging gene therapies have been well-suited to 

treating monogenic disorders. In translating gene therapy to complex polygenic diseases, 

however, the difficulty remains with identifying the ideal genomic targets which will 

require deciphering the biological relevance of the top GWAS genes. 

 

5.5 Conclusions  

 

Genetic studies of complex human disease are set to undergo a dramatic shift in both the 

technological and analytical approaches used to evaluate genetic risk. The studies 

described here encapsulate the current techniques that have been utilized to develop and 

test our current understanding of genetic susceptibility to common and complex disease. 

We have demonstrated 1) a candidate gene resequencing study in which the private 

common LDLR variant G116S was associated with plasma LDL-C among Inuit 

descendants; 2) the design and execution of a targeted GWAS investigating the role of 

cardio-metabolic and AD-associated variation in pre-dementia susceptibility; and 3) a 

candidate genotyping study of T2D-associated GWAS variants in aboriginal Canadian 

and Greenlander populations. Collectively, these three studies represent the established 

techniques implemented in assessing the genetic architecture underlying complex 

phenotypes. Utilizing these techniques, we have contributed new insight into the genetic 

component underlying plasma LDL-C concentration and cognitive decline as well as the 

frequency of T2D risk alleles in aboriginal Canadians. With the emergence of NGS, rare 

variant analysis has come to represent the shift in focus with the aim of accounting for 
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some of the disease heritability left unexplained by GWAS. The next chapter in the 

genomic study of human disease will undoubtedly require a new set of analytical 

procedures, however the lessons learned from both classical genetics and the recent 

CDCV hypothesis-driven era have been invaluable in establishing a concept of genetic 

risk in complex disease upon which we can continue to build. 
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