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Abstract

We study (local) properties of complex analytic mappings (and modules

over them) by analyzing their underlying family of fibres. Two important

properties of such mappings, namely openness and flatness, are our main

object of interest. Failure of either of these properties manifests itself as

some sort of degeneracy in the family of fibres. The first goal of this thesis

is to develop criteria that allow one to effectively (i.e., computationally)

detect these degeneracies, and in addition, that can be applied to the case

of mappings with singular targets. This is the subject of Chapters 2 and 3.

Particularly regarding flatness, no such algorithms that work in the general

setting of singular targets were known before.

We prove that a mapping germ ϕ : X → Y (under some assumptions) is

flat (resp. open) if and only if after pulling ϕ back by the blowing-up of the

origin in Y , the special fibre does not contain an irreducible component (resp.

an isolated irreducible component). Algebraically, this criterion is equivalent

to a test for a specific zero-divisor in the local ring (resp. reduced local ring)

of the pullback. Also, as a generalization of previous flatness criteria of

Auslander’s type to the case of singular bases, we prove that an analytic R-

module F is flat if and only if the analytic tensor product F ⊗̃R · · · ⊗̃RF︸ ︷︷ ︸
n times

⊗̃RS

has no vertical components, where R is a complex analytic algebra which is an

integral domain of dimension n, and S is the local ring of a desingularization

of Specan(R).

Our second goal is to characterize different modes of the above mentioned

degeneracies. This is the topic of Chapter 4. We study the verticality index

of a mapping, defined as the highest fibred power in which no verical com-

ponents emerge. This is a gauge which measures the level of non-openness

ii



of mappings. We obtain some results about verticality index, especially on

its behaviour over singular targets.

Keywords: analytic module, analytic tensor product, complex analytic

set, fibred product, flatness descent, flatness testing, local geometry, openness

testing, singular base, torsion-free, vertical component, zero-divisor.
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Chapter 1

Introduction

1.1 Overview

The present thesis concerns essentially the (local) properties of holomorphic

mappings of complex analytic sets, and thus belongs to the realm of complex

analytic geometry. We study the behaviour of such mappings by analyzing

the family of their fibres. The motivation of this research is two-fold. On

the one hand, studying the family of fibres of a mapping can help one to

understand the behaviour of the mapping. On the other hand, understanding

the behaviour of a mapping helps to study its family of fibres—viewed as a

parametrized family of complex spaces. Broadly speaking, the former is an

approach in complex analysis, and the latter in the theory of singularities.

In addition, due to the strong interaction with commutative algebra (thanks

to the algebraically closed C), our study often produces analogous results

in the algebraic category (see Appendix), which can be used for effective

computation with the aid of computer algebra.

Let us mention some classical examples of how the family of fibres encodes

information about the properties of a mapping. Let ϕ : X → Y be a holo-

morphic mapping of analytic sets. It is not true, in general, that the image

ϕ(X) is an analytic set, which means that ϕ(X) might not be an object of

1



Chapter 1 2

our category. Remmert gives a sufficient condition for ϕ(X) to be an analytic

set; namely, that the fibres of ϕ be all of the same dimension (Remmert’s

Rank Theorem). Remmert’s Open Mapping Theorem is another instance,

where openness of ϕ is characterized in terms of a simple continuity condi-

tion on the topological dimension of fibres. Flatness, the algebraic sister of

openness, has also a tight relation with the continuity of fibres. In a simple

case, for a mapping ϕ with finite fibres, flatness turns out to be equivalent

to the condition that multiplicities of the fibres are locally constant.

Two important properties of a holomorphic mapping ϕ : X → Y , namely

openness and flatness, are our main object of interest. Failure of either of

these properties manifests itself as some sort of discontinuity or degeneracy

in the family of fibres of ϕ. This fact is expressed in the classical criteria

of Remmert (for openness) and Hironaka (for flatness). Based on these cri-

teria, the first goal of our thesis is to develop algorithms to effectively (i.e.,

computationally) detect such degeneracies, even for mappings with singular

targets. This is done in Chapters 2 and 3. The next goal is to characterize

different modes of such degeneracies, leading to a classification of non-open

or non-flat mappings. This is the topic of Chapter 4.

1.2 Preliminaries

Throughout, C denotes the field of complex numbers, and N denotes the

set of natural numbers {0, 1, 2, . . . }. For n ∈ N, the n-fold Cartesian power

of C is denoted by Cn, and we may use the notation Cn
x to indicate that

a coordinate system x = (x1, . . . , xn) is chosen for Cn endowed with the

canonical structure of a C-vector space. Topology is always the Euclidean

one.



Chapter 1 3

Complex spaces and mappings

Let U be an open subset of Cn, where n ∈ N. A subset X ⊆ U is called an

analytic subset of U if, for every ξ ∈ U , there exist an open neighbourhood

V of ξ in U and finitely many holomorphic functions f1, . . . , fr : V → C such

that X ∩ V = {x ∈ V | f1(x) = · · · = fr(x) = 0}.

Consider OU , the sheaf of holomorphic functions on an open set U in

Cn. Let I be a coherent ideal of OU , and consider the quotient OU/I with

the support A := {x ∈ U | (OU/I)x 6= 0}. We obtain a C-ringed space1

(A, (OU/I)|A), which is called a (complex) local model. We call I the defining

ideal of the local model. In fact, A is easily seen to be an analytic subset of

U (see e.g. [F, § 0.13]), and we call OA = (OU/I)|A the sheaf of holomorphic

functions on A.

By gluing together local models, one obtains a complex analytic space.

Definition 1.1. A complex analytic space is a C-ringed space (X,OX) such

that the topological space X is Hausdorff and for every ξ ∈ X, there exists

an open neighbourhood U ⊆ X with the restriction (U,OX |U) isomorphic

(as a C-ringed space) to some local model. M

By a complex space, or simply a space, we always mean a complex an-

alytic space. By a complex mapping (or a complex morphism), or simply a

mapping, we mean a morphism (X,OX)→ (Y,OY ) of complex spaces, which

is a C-ringed space morphism (ϕ, ϕ∗), where ϕ : X → Y is a continuous map-

ping of topological spaces, ϕ∗ : OY → ϕ∗OX is a C-algebra homomorphism,

and ϕ∗OX is the direct image of OX under ϕ. We use the same notation

for a complex space (or mapping) and its underlying topological space (or

mapping), but we do clarify whenever necessary. For instance, we denote the

space (X,OX) simply by X, and the mapping (ϕ, ϕ∗) : (X,OX) → (Y,OY )

1A C-ringed space is a pair (X,OX) consisting of a topological space X and a sheaf of
C-algebras OX (the structure sheaf on X), such that for every ξ ∈ X, the stalk OX,ξ is a
local ring with the maximal ideal mX,ξ and with the residue field OX,ξ/mX,ξ isomorphic
as a C-algebra to C.
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by ϕ : X → Y . Note that in the case that X and Y are local models, the

underlying topological mapping ϕ : X → Y is just a holomorphic mapping

in the classical sense.

We reserve O to mean always the structure sheaf as defined above.

Given a complex space X, the complex germ of X at ξ is the pair

(Xξ,OX,ξ) (may be denoted simply by Xξ), where the first element is the

germ at ξ of the topological space X, and the second is the stalk at ξ of

the sheaf OX . We call OX,ξ also the local ring of X at ξ. A morphism

ϕξ : Xξ → Yη of complex germs is the germ at ξ ∈ X of a complex morphism

(ϕ, ϕ∗) : (X,OX)→ (Y,OY ), where ϕ(ξ) = η.

Let ϕξ : Xξ → Yη be a morphism of complex germs. The induced homo-

morphism ϕ∗ξ : OY,η → OX,ξ of local rings makes OX,ξ a module over OY,η.
This is what we mean every time by the module structure of the local ring

of the source over the local ring of the target of a mapping. We would like to

recall how the homomorphism ϕ∗ξ acts. Suppose Xξ is a reduced germ (i.e.,

OX,ξ has no nilpotent elements). We can assume that X ⊆ Cm and Y ⊆ Cn

are already local models, where m,n ∈ N. Then for every germ fη ∈ OY,η
of a holomorphic function f defined on a neighbourhood of η in Y , we have

ϕ∗ξ(fη) = (f ◦ ϕ)ξ, for some suitable representative ϕ : X → Y such that

ϕ(X) is contained in the domain of f . In case Xξ is not reduced, we have

ϕ∗ξ(fη) = (f̃ ◦ ϕ̃)ξ, where f̃ and ϕ̃ are respectively holomorphic extensions of

some representatives f and ϕ to some neighbourhoods of η in Cn and ξ in

Cm, and (f̃ ◦ ϕ̃)ξ ∈ OX,ξ is the class of (f̃ ◦ ϕ̃)ξ (as a power series about ξ)

modulo the ideal defining Xξ in Cm
ξ .

Given mappings ϕ1 : X1 → Y and ϕ2 : X2 → Y , it can be shown that

the fibred product X2×Y X1 in the category of complex spaces exists (see [F,

§ 0.32]).2 The underlying topological space of the fibred product of X1 and

2In any category, the fibred product of morphisms ϕ1 : X1 → Y and ϕ2 : X2 → Y is
an object, denoted by X2 ×Y X1, together with morphisms ϕ′1 : X2 ×Y X1 → X2 and
ϕ′2 : X2 ×Y X1 → X1, such that we have ϕ2 ◦ ϕ′1 = ϕ1 ◦ ϕ′2 and the following universal
property holds: for every object X and morphisms ψ2 : X → X2 and ψ1 : X → X1
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X2 is the same as the fibred product of their underlying topological spaces;

that is, it coincides with the set {(ξ2, ξ1) ∈ X2 ×X1 | ϕ2(ξ2) = ϕ1(ξ1)}. The

underlying topological mapping of the pullback ϕ′1 : X2 ×Y X1 → X2 of ϕ1

by ϕ2 is just a projection, and so is ϕ′2, the pullback of ϕ2 by ϕ1. We will

mention about the sheaf structure of the fibred product soon.

Remark 1.2 (pasting Cartesian squares). Consider the following diagram

of morphisms (in any category):

X3 ×X2 (X2 ×Y X1) −−−→ X2 ×Y X1 −−−→ X1y y y
X3 −−−→ X2 −−−→ Y

Two internal squares are Cartesian by definition. Then using the universal

property of fibred product, one can show that the outer rectangle is also a

Cartesian square. In other words, X3 ×X2 (X2 ×Y X1) ' X3 ×Y X1. By

multiple pasting of Cartesian squares, one can easily obtain the following

corollaries about fibred product:

(i) Associativity. Given morphisms X1 → Y , X2 → Y , and X3 → Y , we

have

(X1 ×Y X2)×Y X3 ' X1 ×Y (X2 ×Y X3).

(ii) Commutativity with base change. Given morphisms X1 → Y , X2 → Y ,

and Z → Y , we have

satisfying ϕ1 ◦ψ1 = ϕ2 ◦ψ2, there exists a unique morphism ψ : X → X2×Y X1 such that
ϕ′1 ◦ ψ = ψ2 and ϕ′2 ◦ ψ = ψ1. In this case, ϕ′1 is called the pullback of ϕ1 by ϕ2, ϕ′2 is
called the pullback of ϕ2 by ϕ1, and the (commutative) diagram

X2 ×Y X1
ϕ′

2−−−−→ X1yϕ′
1

yϕ1

X2
ϕ2−−−−→ Y

is a called a Cartesian square. The mapping ϕ2 ◦ ϕ′1 (which is equal to ϕ1 ◦ ϕ′2) is called
the fibred product of ϕ1 and ϕ2, and is denoted by ϕ2 ×Y ϕ1 : X2 ×Y X1 → Y .
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(X1 ×Y X2)×Y Z ' (X1 ×Y Z)×Z (X2 ×Y Z).

M

The i-fold fibred power of a mapping ϕ : X → Y , i ≥ 1, will be denoted

by ϕ{i} : X{i} → Y , where X{i} is the i-fold fibred power of the space X

(over Y ). (Of course, X{1} := X and ϕ{1} := ϕ.)

For more on complex spaces and morphisms, see [F] or [GPR]. For a brief

review of basic categorical tools we need, we suggest [La, Chapter I].

Complex analytic algebras and modules

Consider a complex space X and a point ξ ∈ X. Let a local model for

X at ξ be given about the origin of some Cn
x by the holomorphic functions

f1, . . . , fr defined on an open subset U ⊆ Cn
x containing the origin. That is,

the defining ideal of the local model is given by I := f1OU + · · ·+ frOU . By

definition,

OX,ξ ' (
OU
I

)0 =
C{x}

(f1,0, . . . , fr,0)
,

where C{x} denotes the ring of convergent power series in variables x =

(x1, . . . , xn) and with coefficients in C, and where f1,0, . . . , fr,0 are the power

series expansions of f1, . . . , fr about the origin. We call I0 = (f1,0, . . . , fr,0)

the defining ideal of the germ Xξ in Cn
x.

In general, for any ideal I ⊆ C{x} (which by Noetherianity is finitely

generated, and hence is the defining ideal of a complex germ), a C-algebra of

the form C{x}/I is called an analytic C-algebra. It is a local ring with the

maximal ideal equal to (x) · C{x}/I.

Taking C-algebra homomorphisms as morphisms, analytic C-algebras form

a category, which is dually equivalent to the category of complex germs. This

fact is called Anti-Equivalence Principle (see e.g. [F, § 0.21]). To every ana-

lytic C-algebra C{x}/I, where x = (x1, . . . , xn), we assign a unique (isomor-
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phism class of a) complex germ denoted by Specan(C{x}/I), and represented

by (X0,C{x}/I), where X0 is the germ at the origin of the zero set of I in

Cn
x. Any morphism R → A of analytic C-algebras corresponds to a unique

mapping germ SpecanA→ SpecanR.

Let R = C{y}/J be an analytic C-algebra, where J is an ideal of C{y}.
We define R{x} := C{y, x}/(J · C{y, x}), which can be regarded naturally

as an R-subalgebra of R[[x]] (formal power series with coefficients in R). For

any ideal I ⊆ R{x}, the quotient R{x}/I is called an analytic R-algebra.

Taking the morphisms as R-algebra homomorphisms, analytic R-algebras

form a category. The coproduct in this category exists and is called the

analytic tensor product. We denote it by ⊗̃R.

Let R{x}/I and R{x′}/I ′ be two analytic R-algebras. It can be shown

(cf. [GR]) that

(1.1)
R{x}
I
⊗̃R

R{x′}
I ′

=
R{x, x′}

I⊗̃R1 + 1⊗̃RI ′
,

in which by I⊗̃R1 and 1⊗̃RI ′ we mean respectively the ideals in R{x, x′}
generated by the images of the canonical homomorphisms I → R{x, x′} and

I ′ → R{x, x′}. Identifying I and I ′ with their generators, we may denote the

right-hand side of (1.1) simply by R{x, x′}/(I + I ′).

Using the universal property and uniqueness of fibred product and co-

product, one proves that analytic tensor product of algebras is dual to the

fibred product of mapping germs: Given mappings X → Y and X ′ → Y ,

respectively with ξ 7→ η and ξ′ 7→ η, we have

OX′×YX,(ξ′,ξ) ' OX,ξ⊗̃OY,ηOX′,ξ′ ,

or

Specan(OX,ξ⊗̃OY,ηOX′,ξ′) ' (X ′ ×Y X)(ξ′,ξ).

Let R be an analytic C-algebra. A module F over R is called an analytic
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R-module3 if it is finitely generated over some analytic R-algebra A (called its

witness ring). In this case, we can represent F by an A-module isomorphism

as F ' Ap/M , for some p ∈ N and some A-submodule M of Ap, where Ap is

the p-fold direct sum of A. Note that, as every analytic R-algebra R{x}/I is

a finitely generated module over R{x}, we can always choose a witness ring

of the form R{x}.

Analytic tensor product of two analytic R-modules F and G is defined as

follows. First, let A and B be witness rings for F and G respectively. Then,

F ⊗̃RG := (F ⊗A (A⊗̃RB))⊗A⊗̃RB ((A⊗̃RB)⊗B G).

This definition is independent of the chosen witness rings, up to isomorphism

of R-modules. For analytic R-modules F = R{x}p/M and G = R{x′}q/M ′,

we have

(1.2) F ⊗̃RG =
R{x, x′}pq

M⊗̃R1 + 1⊗̃RM ′ ,

in which byM⊗̃R1 and 1⊗̃RM ′ we mean respectively theR{x, x′}-submodules

ofR{x, x′}pq generated by the images of the canonical homomorphismsM q →
(R{x, x′}p)q and M ′p → (R{x, x′}q)p. We denote the right-hand side of (1.2)

simply by R{x, x′}pq/(M q +M ′p).

Vertical components

Let (Xξ,OX,ξ) be a complex germ. A (closed) subgerm (Xι,ξ,OXι,ξ), where

OXι,ξ = OX,ξ/Iι,ξ for some coherent ideal Iι of OX , is called an irreducible

component of (Xξ,OX,ξ) if Iι,ξ is an associated prime of the OX,ξ-module

OX,ξ. Let {(Xι,ξ,OX,ξ/Iι,ξ)}ι be the set of all irreducible components of

(Xξ,OX,ξ). A maximal element of {Xι,ξ}ι (with respect to inclusion) is called

an isolated irreducible component (whose defining ideal is then an isolated

associated prime of the OX,ξ-module OX,ξ); but if Xι1,ξ ⊆ Xι2,ξ for some

3We chose this terminology from [GR]. Sometimes, following [GK], such a module is
called an almost finitely generated R-module.
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ι1 and ι2, then Xι1,ξ is called an embedded irreducible component (whose

defining ideal is then an embedded associated prime of the OX,ξ-module

OX,ξ).

For a complex space X, irreducible components of its germs can be glued

together to obtain the global irreducible components. However, we shall never

need the details of this beyond just the fact that the germ Xι,ξ at ξ ∈ X of

every irreducible component Xι of X is decomposed into some irreducible

components of Xξ of the same dimension as Xι, and conversely, given X

and ξ ∈ X, every irreducible component of Xξ has a representative which

is dominantly (i.e., with a non-empty interior) contained in an irreducible

component of X. We refer the interested reader to [ST] and [K].

Definition 1.3 ([K]). Let ϕ : X → Y be a mapping. An irreducible com-

ponent Σ of X (passing through ξ) is called a vertical component of ϕ (at

ξ)—or, when the mapping ϕ is clear, a vertical component (at ξ) over Y—if

ϕ(Σ) has no interior points in Y .4 M

For a mapping germ ϕξ : Xξ → Yη, an (isolated or embedded) irreducible

component Xι,ξ of Xξ is called an (isolated or embedded) vertical compo-

nent if there exist representatives Xι and ϕ : X → Y , with Xι ⊆ X, such

that ϕ(Xι) has empty interior in Y . As the dimension of the image of an

irreducible space is equal to the dimension of the image of every of its non-

empty open subsets,5 it follows that a mapping ϕ : X → Y has a vertical

component at ξ ∈ X if and only if ϕξ : Xξ → Yη has a vertical component

in the above sense. In fact, given ϕ : X → Y , any vertical component of its

germ ϕξ : Xξ → Yη at a point ξ ∈ X has a representative which dominantly

4Authors sometimes define verticality by requiring that ϕ(Σ) be a nowhere-dense subset
of Y , instead of having no interior points. These two definitions are equivalent, because the
image of an analytic set by a holomorphic mapping is a locally finite union of manifolds.

5 For a mapping ϕ : X → Y with X irreducible, the (complex) dimension of the image
set ϕ(X) is given by the Dimension Formula as dimϕ(X) = dimX − λ, where λ is the
minimal fibre dimension of ϕ. Note that the locus of points at which the fibre dimension
is λ is open and dense in X. So, from the Dimension Formula, one can conclude that
dimϕ(U) = dimϕ(X) for every non-empty open subset U ⊆ X. See [L, § V.3] for details.
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(i.e., with a non-empty interior) embeds in a vertical component of ϕ.

More generally, one can define the notion of verticality for an analytic

module ([GK, Definition 4.4]) as follows. Let F be an analytic module over

an analytic C-algebra R. Let A be an analytic R-algebra over which F is

finitely generated, and let τ : SpecanA → SpecanR be the mapping germ

induced by the canonical homomorphism R → A. Consider AssAF , the set

of all associated primes of the A-module F . Every p ∈ AssAF defines a

closed subgerm Specan(A/p) (of SpecanA) which we are going to call an

irreducible component of the A-module F . Now, we say that the A-module

F has a vertical component over R if there exists some p ∈ AssAF such that

the irreducible germ Specan(A/p) has a representative which is mapped by

a representative of τ into a subset with empty interior in the target. It is not

difficult to show (see [GK, Proposition 3.6]) that if the A-module F has a

vertical component over R, then it does so for any other choice of a witness

ring A. Therefore, we can safely speak of F having a vertical component

over R or not, without mentioning a witness ring at all.

In particular, a mapping germ ϕξ : Xξ → Yη has no vertical components

if and only if the module OX,ξ has no vertical components over OY,η.

The notion of vertical component can be viewed as a geometric gener-

alization of the zero-divisor. In fact, the emergence of some special types

of vertical components is equivalent to the presence of zero-divisors. The

following remark elaborates on this.

Remark 1.4. Let ϕξ : Xξ → Yη be a mapping germ, with Yη irreducible

(i.e., OY,η is an integral domain). Let Σξ be an irreducible component of Xξ

defined by an associated prime p of the OX,ξ-module OX,ξ. Suppose there

exist representatives ϕ : X → Y and Σ ⊆ X, such that the image germ

of Σ is contained in a proper complex subgerm of the target; that is, there

exists a (nonzero) germ fη ∈ OY,η such that ϕ(Σ)η ⊆ Specan(OY,η/(fη)) &
Yη. Of course, Σξ is then a vertical component of a special type, which is

named algebraic vertical component by Adamus [A2]. Now, by the action
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of ϕ∗ξ explained before, it follows that ϕ∗ξ(fη) ∈ p. Recall that the union of

associated primes of a module is equal to the set of all zero-divisors (together

with zero). Thus, ϕ∗ξ(fη) is a zero-divisor in the OX,ξ-module OX,ξ, and hence

fη is a zero-divisor in the OY,η-module OX,ξ. Conversely, one can similarly

see that if fη ∈ OY,η is a zero-divisor in OX,ξ, then there exist representatives

ϕ : X → Y of ϕξ and Σ of an irreducible component of Xξ such that ϕ(Σ)η

is contained in the hypersurface germ Specan(OY,η/(fη)) & Yη.

Similarly for an analytic R-module F (with R an integral domain), F

has a vertical component admitting a representative whose image germ is

contained in Specan(R/(f)) & SpecanR, if and only if f is a zero-divisor in

F (where f ∈ R). M

Some other definitions and conventions

We will say that a mapping ϕ : X → Y is dominant if ϕ(X) has a non-

empty interior in Y .6 A mapping germ ϕξ : Xξ → Yη is called dominant if

there exists an open subset U ⊆ X containing ξ such that ϕ|V : V → Y is

dominant for every open subset V ⊆ U containing ξ; in other words, every

sufficiently small representative of ϕξ is dominant.

Throughout our study, we will need to assume that the target space of our

mapping is locally irreducible (and connected); that is, every local ring of the

space is an integral domain. We require this naturally in order for the relation

between the desired properties of a dominant mapping and the continuity of

its family of fibres to exist. Indeed, for example, consider the canonical

embedding ϕ : Cx1 → {x1x2 = 0} ⊆ C2
x1,x2

, whose fibres form a trivial

family of singletons, but the mapping is not even open for a vacuous reason.

Sometimes, the weaker assumption of irreducibility at only the special point

would suffice (e.g., in Theorem 3.5).

6We remark that this is not the common definition for dominance in algebraic geometry,
where a mapping is defined to be dominant if the image is dense in the target. In fact,
by taking Zariski topology and over irreducible targets, these definitions turn out to be
equivalent.
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A mapping ϕ : X → Y is finite at a point ξ ∈ X if the germ of its fibre

passing through ξ is the singleton (ϕ−1(ϕ(ξ)))ξ = {ξ}. In this case, it can

be shown that there exist an open neighbourhood U of ξ in X and an open

subset V ⊆ Y with ϕ(U) ⊆ V , such that the restriction ϕ|U : U → V is finite

as a topological mapping (i.e., a continuous mapping which is closed and has

only finite fibres (see e.g. [GPR, § I.8])). We say that ϕ : X → Y is finite if

it is finite at every ξ ∈ X.

We emphasize that the topology of a complex space X is the Euclidean

topology induced by the local model spaces. For a subset A ⊆ X, the

dimension at ξ ∈ X, denoted by dimξ A, is defined as the largest dimension of

a (complex) manifold which is contained in A and is adherent to ξ. Dimension

of A is defined as dimA := sup ξ∈X{dimξ A}, which is in fact the supremum

dimension of all manifolds contained in A.

A complex mapping ϕ : X → Y is said to be open if it is open as a

morphism between topological spaces; that is, if it maps every open subset

of X onto an open subset of Y . We say that a mapping ϕ : X → Y is open

at ξ ∈ X, or ϕξ : Xξ → Yϕ(ξ) is an open morphism of germs, if there exists a

representative ϕ : X → Y which is an open mapping.

A complex mapping ϕ : X → Y is said to be flat at ξ ∈ X, or ϕξ : Xξ →
Yϕ(ξ) is said to be a flat morphism of germs, if OX,ξ is a flat module over

OY,ϕ(ξ).
7 (Recall that the module structure of OX,ξ over OY,ϕ(ξ) is by default

the one induced by ϕ∗ξ .) A mapping ϕ : X → Y is said to be flat if it is flat

at every point of X. More generally, given a mapping ϕ : X → Y , a coherent

OX-module F is said to be flat over OY at ξ ∈ X if the stalk Fξ is a flat

module over OY,ϕ(ξ).

A mapping is flat at a point, only if it is open at that point ([D], or see

e.g. [F, § 3.19]).

7An R-module M is called a flat module over R if, for any R-modules N1 and N2 such
that N1 ⊆ N2, the canonical homomorphism N1 ⊗RM → N2 ⊗RM is injective. (See e.g.
[La].)
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Remark 1.5. Up to an isomorphism of the source, every mapping can be

regarded as a projection. Indeed, let ϕ : X → Y be a mapping, and consider

its graph Γϕ ⊆ Y ×X, defined as the analytic inverse image of the diagonal

space DY ⊆ Y × Y under the mapping idY × ϕ : Y ×X → Y × Y ; that is,

Γϕ = DY ×Y×Y (Y ×X). Then we have a canonical isomorphism Ψ : X → Γϕ,

so that by considering the projection π : Y ×X → Y , we get π ◦Ψ = ϕ. (It

is said that ϕ and π|Γϕ are right-equivalent.) In this case, if we assume that

Y ⊆ Cn
y , then for ξ ∈ X with the image ϕ(ξ) = 0, we can write

OX,ξ ' OΓϕ,(0,ξ) '
OX,ξ{y}

(y1 − ϕ1,ξ, . . . , yn − ϕξ,n)
,

where ϕ1, . . . , ϕn ∈ OX(X) are the n coordinate components of ϕ. If we

assume additionally that X ⊆ Cm
x , then for 0 ∈ X with the image ϕ(0) = 0,

we can write

OX,0 ' OΓϕ,(0,0) '
C{y, x}

I0 + (y1 − ϕ̃1,0, . . . , yn − ϕ̃n,0)

' OY,0{x}
I0 + (y1 − ϕ̃1,0, . . . , yn − ϕ̃n,0)

,

where ϕ̃ is an extension of ϕ to an open neighbourhood U ⊆ Cm of X,

ϕ̃1, . . . , ϕ̃n ∈ OCm(U) are the n coordinate components of ϕ̃, and I is the

ideal sheaf defining X in Cm. The last isomorphism is due to the fact that

the ideal I0 + (y1− ϕ̃1,0, . . . , yn− ϕ̃n,0) already contains the ideal defining Y0

in Cn
0 . M

Let R be a (commutative) ring, and let M be an R-module. A nonzero

element r ∈ R is called a zero-divisor in M if r · m = 0 for some nonzero

m ∈M . In this case, m is also called a zero-divisor of the module M over R.

Finally, by the dimension of a local ring R we mean its Krull dimension,

that is the supremum of all n ∈ N for which there is a chain of prime ideals

p0 & · · · & pn in R. For the local ring of a space X at ξ ∈ X, recall that

dimOX,ξ = dimξX (see e.g. [L, § IV.4.3]).



Chapter 1 14

1.3 Review of the main results

This thesis is based on, and is a continuation of, the approach initiated in

analytic geometry by Kwieciński et al. [KT, K, GK]. The idea is that by

raising the mapping to its fibred powers, the degeneracies in the family of

fibres will eventually grow to the extent that the exceptional fibres themselves

form irreducible components of the source—which are vertical components

(see Definition 1.3).

In [KT], the authors show that for a complex mapping ϕ : X → Y with Y

locally irreducible and of dimension n, ϕ is open if and only if the n-fold fibred

power ϕ{n} : X{n} → Y has no isolated vertical components. This was later

improved by Adamus [A2] to the following: For a mapping ϕ : X → Y with

pure-dimensional X and locally irreducible Y of dimension n, ϕ is open at

ξ ∈ X if and only if the n-fold fibred power ϕ{n} : X{n} → Y has no isolated

algebraic vertical components (see Remark 1.4) at the diagonal point in X{n}

corresponding to ξ. The latter is equivalent to the lack of zero-divisors in

the reduct (i.e., the quotient by the nilradical) of the n-fold analytic tensor

power of OX,ξ over OY,ϕ(ξ).

Our main result on testing for openness is Theorem 3.1. This is an im-

provement with respect to previous works in several ways. First, it involves

only one fibred product rather than possibly a high fibred power of the map-

ping. Second, taking fibred product with the blowing-up of a point has less

complexity, in general, compared with the fibred product of a mapping with

itself. Indeed, the defining equations of the blowing-up are simply quadratic

polynomials. These two factors make for a considerable reduction of com-

putational expense overall. And third, our criterion explicitly determines a

location (namely the special fibre) where an (isolated) irreducible component

is produced in the pullback of a non-open mapping. This has turned the de-

tection algorithm into a test for a specific zero-divisor (see Corollaries 3.2

and 3.3), versus a search for general zero-divisors.



Chapter 1 15

The first flatness criterion in terms of fibred powers appears in [K]. It

states that a mapping ϕ : X → Y with Y locally irreducible is flat if and

only if, for every i ≥ 1, the fibred power ϕ{i} : X{i} → Y has no vertical

components. In [GK], the flatness of a mapping ϕ : X → Y with pure-

dimensional X and n-dimensional, smooth Y is proved to be equivalent to

the lack of vertical components in the n-fold fibred power ϕ{n} : X{n} → Y .

The latter is of course an improvement as to the effectiveness, but at the

expense of losing the generality of allowing the target to be singular. This

criterion is generalized in [ABM] to the case of coherent modules (still over

smooth bases) as follows: Consider a mapping ϕ : X → Y with Y smooth

and of dimension n, and let F be a coherent module over X. Then F is

flat over OY at ξ ∈ X if and only if the n-fold analytic tensor power of

Fξ has no vertical components over OY,ϕ(ξ). In [A1], an upper bound for

fibred powers in the criterion [K] is given which works in the general case

of singular targets, but it is equal to the (not easy to determine) minimal

number of generators of the flattener ideal. This type of flatness criterion,

in fact, originates in the algebraic work of Auslander [Au], who proved that

a finitely generated module over an unramified regular local ring R is free

(equivalently, flat, in this case) if and only if M has no zero-divisors over R.8

Our main result on testing for flatness is Theorem 3.5. This is an im-

provement with respect to previous works in several ways. The comparison

regarding the first two factors is similar to the ones mentioned above about

our openness criterion. Now third, our criterion explicitly determines a loca-

tion (namely the special fibre) where an irreducible component is produced

in the pullback of a non-flat mapping. This has turned the detection al-

gorithm into a test for a specific zero-divisor (see Corollaries 3.8 and 3.9).

Prior to this, all criteria in their general forms are in terms of only vertical

components (which do not produce zero-divisors in general). And fourth, our

8There have been also efforts to obtain generalized flatness criteria of Auslander’s type
in the algebraic setting. Over regular bases, the best result we know of is given by [AI].
Over singular bases, various results exist but only in (very) special cases (see e.g. [HW]).
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criterion applies to the case of singular bases (targets) as well.

In Chapter 2, we present a flatness testing method (Theorem 2.5) that

was developed by us with the aim of extending the previous flatness criteria

of Auslander’s type, as in [GK] or [ABM], to the case of singular bases. Of

course, Theorem 2.5 has a lesser computational value compared to the highly

efficient results in section 3.2 (which were developed later). Also, alongside

the proof of Theorem 2.5, we observe that flatness descent always holds in

the complex analytic category (Proposition 2.4), which is independently a

new and interesting result.

Chapter 4 opens a new direction of research, in which we go beyond just

the detection and try to characterize different modes of non-openness. We

take the index introduced in [KT] as a gauge for this purpose, and concentrate

on its behaviour and the calculation of it. The main results of this chapter

are Propositions 4.6, 4.9, and 4.12.

All numbered results of this dissertation are new (except for Lemma 4.3,

which is of course well-known) and were obtained during the doctoral study

of the author. Chapters 2 and 3 contain joint work (see [AS1, AS2]) with

Janusz Adamus, the supervisor of the thesis.



Chapter 2

Flatness and fibred powers, a
generalization to the singular
target case

The aim of this chapter is to extend the best previously known flatness

criterion of Auslander’s type, so that it is applicable to the modules (or

mappings) with singular bases (targets). We need first to develop some tools,

among which the flatness descent is an independently interesting result in the

category of analytic C-algebras.

2.1 Associativity of analytic tensor product

over different bases

Lemma 2.1. Let R be an analytic C-algebra, and let S be an analytic R-

algebra.

(i) Let A be an analytic R-algebra, and let B and C be analytic S-algebras.

Then (A⊗̃RB)⊗̃SC ' A⊗̃R(B⊗̃SC) (as R- or S-algebras).

(ii) Let F be an analytic R-module, and let G and H be analytic S-modules.

17
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Then (F ⊗̃RG)⊗̃SH ' F ⊗̃R(G⊗̃SH) (as R- or S-modules).

Proof. (i) By definition, we have S = R{y}/I, A = R{x}/J , B = S{x′}/K,

and C = S{x′′}/L, for some ideals I, J , K, and L. Then, using (1.1) we

write

(A⊗̃RB)⊗̃SC = (
R{x}
J
⊗̃R

R{y}
I
{x′}
K

)⊗̃S
S{x′′}
L

' (
R{x}
J
⊗̃R

R{y, x′}
I +K

)⊗̃S
S{x′′}
L

=
R{x, y, x′}
J + I +K

⊗̃S
S{x′′}
L

' S{x, x′}
J +K

⊗̃S
S{x′′}
L

=
S{x, x′, x′′}
J +K + L

' R{y, x, x′, x′′}
I + J +K + L

.

Similarly, one obtains that

A⊗̃R(B⊗̃SC) ' R{y, x, x′, x′′}
I + J +K + L

.

All isomorphisms are clearly R- or S-algebra isomorphisms.

(ii) Set S = R{y}/I for some ideal I, and take presentations F '
R{x}p/M , G ' S{x′}q/N , and H ' S{x′′}r/P , for some submodules M ,

N , and P , and some p, q, r ∈ N. Then using (1.2), carry out a similar cal-

culation as in part (i) to see that both (F ⊗̃RG)⊗̃SH and F ⊗̃R(G⊗̃SH) are

isomorphic (as R- or S-modules) with

R{y, x, x′, x′′}pqr

I pqr +M qr +N pr + P pq .

Corollary 2.2 (cf. [AS1, Lemma 3.1]). Let R be an analytic C-algebra, and

let S be an analytic R-algebra. Let F and G be analytic R-modules. Then

(F ⊗̃RG)⊗̃RS ' (F ⊗̃RS)⊗̃S(G⊗̃RS) (as R- or S-modules).
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In particular, analytic tensor power commutes with the analytic base change.

That is, for every i ≥ 1, we have

(F ⊗̃
i
R)⊗̃RS ' (F ⊗̃RS)⊗̃

i
S (as R- or S-modules).

Proof. Write

(F ⊗̃RG)⊗̃RS ' F ⊗̃R(G⊗̃RS)

' F ⊗̃R(S⊗̃S(G⊗̃RS))

' (F ⊗̃RS)⊗̃S(G⊗̃RS).

The first isomorphism is by associativity of analytic tensor product over all

the same bases, which is concluded from the dual fact in Remark 1.2. The

second isomorphism is obvious (because the action of ⊗̃SS is an isomorphism,

as it is so with the coproduct in any category). The last isomorphism is by

Lemma 2.1.

All isomorphisms are over S, and hence over R, too.

2.2 Analytic flatness descent

By definition, a ring homomorphism R → S descends flatness if, for any

R-module F , flatness of F ⊗R S (as an S-module) implies flatness of F (as

an R-module). In general, flatness descent is a rare luxury, as opposed to

the converse fact, namely, that flatness is always preserved by base change.

However, as we show below, it does hold for analytic modules over integral do-

mains and analytic C-algebra homomorphisms inducing dominant morphisms

of complex germs. Upon realizing this, we would like to set a terminology

for flatness descent in the analytic category.

Definition 2.3. We will say that a homomorphism R → S of analytic

C-algebras analytically descends flatness if S-flatness of F ⊗̃RS implies R-

flatness of F for every analytic R-module F . M
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We shall now prove what we claimed about flatness descent in the complex

analytic category.

Proposition 2.4 ([AS1, Proposition 2.1]). Let τ : R → S be a homomor-

phism of analytic C-algebras, where R is an integral domain. If the induced

morphism SpecanS → SpecanR of complex germs is dominant, then τ ana-

lytically descends flatness.

Proof. For a proof by contradiction, suppose the morphism SpecanS →
SpecanR is dominant and there exists a non-flat analytic R-module F such

that F ⊗̃RS is flat over S. According to Hironaka’s local flattener theorem

(see e.g. [BM1, Theorem 7.12]), there exists a unique nonzero ideal P in R

such that F ⊗̃RR/P is R/P -flat and, for every morphism of complex germs

ϕ : T → SpecanR, if F ⊗̃ROT is OT -flat then ϕ factors as

T → SpecanR/P ↪→ SpecanR.

Since SpecanR is irreducible, it follows that SpecanR/P has empty interior in

SpecanR. Setting T := SpecanS, we get a contradiction with the dominance

of SpecanS → SpecanR.

2.3 Flatness testing by desingularizing the tar-

get

We will now state and prove the main result of this chapter, which is a

generalization to the singular target case of the following criterion:

[ABM, Theorem 1.9] Let F be an analytic module over an analytic

C-algebra R, where R is n-dimensional and a regular ring. Then,

F is a flat module over R if and only if the n-fold analytic tensor

power F ⊗̃R · · · ⊗̃RF has no vertical components over R.
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Theorem 2.5 ([AS1, Theorem 1.6]). Let F be an analytic module over an

analytic C-algebra R, where R is an integral domain of dimension n. Con-

sider any analytic R-algebra S, regular and of dimension n, such that the

induced morphism SpecanS → SpecanR of complex germs is dominant. The

following statements are equivalent:

(i) F is a flat module over R,

(ii) the analytic module F ⊗̃R . . . ⊗̃RF︸ ︷︷ ︸
n times

⊗̃RS has no vertical components over

S (or, equivalently, over R).

Proof. By Proposition 2.4 and since flatness is preserved by analytic base

change (see [H], or for sketch of a proof, see [GPR, § II.2]), it follows that F

is a flat R-module if and only if F ⊗̃RS is a flat S-module. As S is regular,

it follows from [ABM, Theorem 1.9] (above) that F is R-flat if and only if

the n-fold tensor power (F ⊗̃RS)⊗̃
n
S has no vertical components over S. By

Corollary 2.2, this is equivalent to saying that (F ⊗̃
n
R)⊗̃RS has no vertical

components over S.

It remains only to observe that an analytic S-module M has a vertical

component over S if and only if it does so over R (with the R-module struc-

ture of M as induced by S). To see this, let M be such a module. Let A

be an analytic S-algebra over which M is finitely generated. Now, A is a

witness ring for both the S- and R-module structure of M .

Let σ : Z → Y , σ(0) = 0, be a dominant representative of the mapping

germ SpecanS → SpecanR, where Z and Y are n-dimensional irreducible

spaces with OZ,0 = S and OY,0 = R. Consider Specan(A/p), an irreducible

component of M over A, where p is an associated prime of the A-module

M . Let Σ be a representative of the germ Specan(A/p), with an image W

under a representative of SpecanA→ SpecanS. Take Σ small enough so that

W ⊆ Z. As σ is a dominant mapping between irreducible spaces of the same

dimension, it is elementary to see that σ(W ) has no interior points if and
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only if W has no interior points. Hence, the result follows from the definition

of vertical component of an analytic module (see page 10).

Remark 2.6. Such an S as required in Theorem 2.5 always exists for any

reduced analytic C-algebra R. Indeed, we can take the local ring of a desin-

gularization of SpecanR (see e.g. [BM2], and cf. e.g. [Ha1, Ha2] on algebraic

varieties). M

The geometric version of Theorem 2.5 reads as follows.

Corollary 2.7 ([AS1, Corollary 1.9]). Consider ϕ : X → Y , where Y is

locally irreducible and of dimension n. Let σ : Z → Y be a complex mapping

which is dominant, with Z smooth and of dimension n. (E.g., σ can be a

desingularization of Y .) Let

ϕ′ : Z ×Y X ×Y · · · ×Y X︸ ︷︷ ︸
n times

→ Z

be the pullback of ϕ{n} : X ×Y · · · ×Y X︸ ︷︷ ︸
n times

→ Y by σ. Take a point ξ ∈ X and

a point ξ′ ∈ σ−1(ϕ(ξ)). The following statements are equivalent:

(i) ϕ is a flat mapping at ξ ∈ X,

(ii) ϕ′ has no vertical components at (ξ′, ξ, . . . , ξ),

(iii) σ ◦ ϕ′ has no vertical components at (ξ′, ξ, . . . , ξ).

Proof. Immediate; apply Theorem 2.5 with R = OY,ϕ(ξ), S = OZ,ξ′ , and

F = OX,ξ.

We now show by an example that tensoring with S in Theorem 2.5 is in

general necessary in order to test for flatness. This will show also that the

result [ABM, Theorem 1.9] that we extended, would not work in general over

a non-regular base.
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Example 2.8 (cf. [AS1, Example 4.5]). Let Y be the curve in C2
y1,y2

defined

by y3
1 − y2

2 = 0. Define the parametrization mapping σ : Z = Ct → Y , by

t 7→ (t2, t3). Then, in fact, σ is a desingularization of Y .

Set R := OY,0 = C{y1, y2}/(y3
1 − y2

2), and S := OZ,0. By Remark 1.5, we

have S ' C{y1, y2, t}/(y1 − t2, y2 − t3). Consider an R-module F := S. We

want to investigate flatness of F over R.

As dimR = 1, in light of Theorem 2.5 we should compute

F ⊗̃RS '
C{y1, y2, t, t

′}
(y1 − t2, y2 − t3, y1 − t′2, y2 − t′3)

,

in which we immediately find that y1 · (t− t′) = 0, where t− t′ is the class

of t− t′ modulo the ideal (y1 − t2, y2 − t3, y1 − t′2, y2 − t′3). Of course, t− t′

is a nonzero element of F ⊗̃RS (as t− t′ does not belong to the ideal, which

can be seen by looking at the orders of the generators with respect to t and

t′). Even more obvious is that y1 is not a zero element of R. Thus, F ⊗̃RS
has a zero-divisor over R, and hence, by Remark 1.4, a vertical component

over R. We conclude, by Theorem 2.5, that F is not a flat module over R.

Non-flatness of F over R can also be independently verified, easily, by means

of the characterization of flatness in terms of multiplicities (see e.g. [F, §
3.13]).

It remains to notice that F itself does not have any vertical components

over R. This is geometrically clear, as the mapping σ : Z → Y does not have

any vertical components (passing through 0 ∈ Z). M
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A fast method of detecting
degeneracy in the family of
fibres

By passing to fibred powers of a mapping, all exceptional fibres get amplified,

so that they eventually stand out in the form of vertical components. This

is what we have seen so far. In this chapter, we introduce a new method

of openness and flatness testing. Its development was triggered when we

were trying to find a test map which would pick out the exceptionality of

the special fibre alone. Consequently, this would make for a greatly efficient

method of detection. We show that pulling a mapping back by the blowing-

up of the special point in the target leads to the formation of a vertical

component precisely when the special fibre is exceptional. Note that blowing-

up of a point is an isomorphism outside of only a single fibre, which is the

reason why it proves to be the right tool for our purpose.

Throughout this chapter, if not mentioned otherwise, we consider a setup

as follows.

24
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Setup

Let ϕ : X → Y be a morphism between complex analytic spaces X and Y ,

with dimY ≥ 1. We exclude the obvious case of dimY = 0, as every mapping

over a singleton has only a single fibre. Since all our discussion concerns only

local properties, without loss of generality, we will assume that X ⊆ Cm
x and

Y ⊆ Cn
y , where m,n ∈ N, and assume that 0 ∈ X, 0 ∈ Y , and ϕ(0) = 0.

We set β : Cn
z → Cn

y to be the mapping defined by

(z1, . . . , zn) 7→ (z1zn, . . . , zn−1zn, zn),

which, in fact, is the blowing-up of Cn
y with center the origin, restricted to an

affine coordinate chart Cn
z . We denote the strict transform of Y under β by

Yst, which is (by definition) the smallest closed subspace of Cn
z that contains

β−1(Y )\{zn = 0}. The underlying topological space of Yst is the closure of

β−1(Y )\{zn = 0} in Cn
z , and it can be shown that if J ⊆ C{y} is the defining

ideal of the germ Y0 in Cn
y , then the defining ideal of (Yst)0 in Cn

z will be

Jst := {f ∈ C{z} | zkn · f ∈ β∗0(J) · C{z} for some k ∈ N} (cf. e.g. [Ha1, Ha2]

on algebraic varieties).

We will need to have that Yst passes through the origin of Cn
z to ensure

that the germ (Yst)0 would not be empty, and also, equivalently, the element

yn would not belong to J . This is always possible up to a (linear) change

of coordinates in Cn
y . Indeed, if the vector (0, . . . , 0, 1) ∈ Cn

y belongs to the

tangent cone of Y at the origin, then the strict transform of Y under β will

contain 0 ∈ Cn
z .9 We always assume that such a coordinate system is set on

9The tangent cone of Y ⊆ Cn at 0 is the set of all tangent vectors to Y at 0. A
vector v ∈ Cn is a tangent vector to Y at 0 if there exist sequences {si}∞i=1 ⊆ Y and
{λi}∞i=1 ⊆ R+, such that si → 0 and λisi → v when i → ∞. It is not difficult to
see that the set of all (complex) lines through the origin lying inside the tangent cone
of Y minus the lines inside {yn = 0} is in one-to-one correspondence with the set of
limit points of Yst inside the exceptional divisor β−1(0) = Cn−1. The correspondence
is established by sending a tangent vector v = (v1, . . . , vn) 6∈ {yn = 0} to the point
(v1/vn, . . . , vn−1/vn) ∈ β−1(0) = Cn−1. See also [W].

Now, it is clear that if the yn-axis is tangent (in the above sense) to Y at 0, then the
origin in β−1(0) will be attained by Yst as required.
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the target of β. Of course, if we happen to need a change of coordinates in

Cn
y again (e.g., in the proof of Theorem 3.5), we shall choose only one that

fixes yn. However, at the end of this chapter, we will give a coordinate-free

version of our testing criteria.

Now, the mapping β|Yst : Yst → Y is going to be our test map for two

kinds of degeneracies in the family of fibres of the mapping ϕ : X → Y . In

section 3.1, we study degeneracy in the sense of Remmert’s Open Mapping

Theorem, and we derive an openness testing method. In section 3.2, we

study degeneracy in the sense of Hironaka’s flatness criterion, and we derive

a flatness testing method.

3.1 Openness testing by a single blowing-up

Here, we present our openness testing method. We state and prove it first in

the geometric form.

Theorem 3.1 (cf. [AS2, Theorem 4.1]). Consider ϕ : X → Y and β|Yst :

Yst → Y as above, with X of pure dimension and Y locally irreducible. Let

ϕ′ : Yst ×Y X → Yst

be the pullback of ϕ : X → Y by β|Yst : Yst → Y . The following statements

are equivalent:

(i) ϕ is an open mapping at 0 ∈ X,

(ii) no isolated irreducible component of Yst ×Y X passing through (0, 0) is

mapped to the singleton zero by (β|Yst) ◦ ϕ′.

Proof. For (i) ⇒ (ii), suppose ϕ is open at 0 ∈ X. Then, by Lemma 4.3

(below), ϕ′ is open in a neighbourhood of (0, 0). This implies that no isolated

irreducible component of Yst ×Y X through (0, 0) can be mapped by ϕ′ into
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the set (β|Yst)
−1(0) (which has empty interior in Yst), and hence none can be

mapped by (β|Yst) ◦ ϕ′ into {0} ⊆ Y .

To prove (ii) ⇒ (i), suppose that ϕ is not open at 0 ∈ X. Then, by

Remmert’s Open Mapping Theorem10 and upper semi-continuity of fibre di-

mension, we get fbd0ϕ > dimX − dim0 Y , or

(3.1) dimX ≤ dim0 Y − 1 + fbd0ϕ,

where fbd0ϕ := dim0 ϕ
−1(ϕ(0)). Since β|Yst is a biholomorphism outside

(β|Yst)
−1(0), we can write Yst×Y X = T∪T ′, where T ′ = (β|Yst)

−1(0)×ϕ−1(0),

and T is biholomorphic with ϕ−1(Y \{yn = 0}). As T embeds inX, we readily

have that dimT ≤ dimX. Also, dim0(β|Yst)
−1(0) = dim0 Y − 1. Now, by

(3.1),

dimT ≤ dim0 Y − 1 + fbd0ϕ = dim(0,0) T
′.

It follows that dim(0,0) T
′ = dim(0,0)(Yst ×Y X), and hence T ′ must contain

an isolated irreducible component of Yst ×Y X through (0, 0). By definition

of T ′, such a component is mapped to 0 ∈ Y by (β|Yst) ◦ ϕ′.

The algebraic version of Theorem 3.1 now follows.

Corollary 3.2. Consider ϕ : X → Y and β|Yst : Yst → Y as above, with X

of pure dimension and Y locally irreducible. We have OY,0 = C{y}/J , where

J is the defining ideal of Y at 0 in Cn
y . By Remark 1.5, we have OYst,0 '

C{y, z}/Jst and OX,0 ' C{y, x}/I, for some ideals I and Jst (containing J).

The following statements are equivalent:

(i) ϕ is an open mapping at 0 ∈ X,

(ii) yn (or, equivalently, zn) is not a zero-divisor in
C{y, x, z}√
I + Jst

.

10Remmert’s Open Mapping Theorem. Let ϕ : X → Y be a complex mapping,
with Y locally irreducible. Then, ϕ is an open mapping if and only if fbdξϕ = dimξX −
dimϕ(ξ) Y for every ξ ∈ X. (See e.g. [GPR, § II.1], [L, § V.6], or [F, § 3.9].)



Chapter 3 28

Proof. Let ϕ′ : Yst ×Y X → Yst be the pullback of ϕ by β|Yst . We have

OYst×YX ' (C{y, x}/I)⊗̃C{y}/J(C{y, z}/Jst) = C{y, x, z}/(I + Jst), and the

induced homomorphism on local rings
(
(β|Yst) ◦ ϕ′

)∗
0

is the canonical homo-

morphism C{y}/J → C{y, x, z}/(I + Jst).

It suffices to show that assertion (ii) is equivalent to assertion (ii) of

Theorem 3.1. First note that yn, the class of yn in C{y}/J , is nonzero by the

Setup (on page 25). So, assertion (ii) is true if and only if yn is not a zero-

divisor in C{y, x, z}/
√
I + Jst . By Remark 1.4, the latter is equivalent to the

statement that (β|Yst)◦ϕ′ has no isolated irreducible components which pass

through (0, 0) and are mapped into {(y1, . . . , yn) ∈ Y | yn = 0}. And this

statement is equivalent to assertion (ii) of Theorem 3.1, since {(y1, . . . , yn) ∈
Y | yn = 0} intersects the image of β|Yst only at 0.

Finally, notice that yn − zn ∈ Jst, so yn and zn can be divisors of zero in

C{y, x, z}/
√
I + Jst only at the same time.

The criterion becomes even simpler if the target is smooth, as the follow-

ing corollary shows.

Corollary 3.3. Consider ϕ : X → Y as above, with X of pure dimension

and Y smooth. We can write OY,0 = C{y}. By Remark 1.5, we have OX,0 '
C{y, x}/I, for an ideal I. Let Ĩ be the ideal obtained from I by substituting

yiyn for yi, i = 1, . . . , n− 1. The following statements are equivalent:

(i) ϕ is an open mapping at 0 ∈ X,

(ii) yn is not a zero-divisor in
C{y, x}√

Ĩ
.

Proof. With Y being smooth, we can set J = 0 in Corollary 3.2, and

Jst = (y1 − z1zn, . . . , yn−1 − zn−1zn, yn − zn). Then we obtain a (C-algebra)

isomorphism
C{y, x, z}√
I + Jst

→ C{y, x}√
Ĩ

,
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defined by yi 7→ yiyn, yn 7→ yn, and zj 7→ yj, where i = 1, . . . , n − 1 and

j = 1, . . . , n. Now, assertion (ii) of Corollary 3.2 gets converted to assertion

(ii) above.

In Theorem 3.1 and its corollaries, the assumption of pure-dimensionality

for the source space is necessary. In the following example, we give a non-

open mapping with a source space which is not pure-dimensional, such that

no vertical components exist in the mapping or its pullback by our blowing-

up. This example will prove to be even more interesting later in the context

of our flatness criterion, Theorem 3.5.

Example 3.4 ([AS2, Example 4.5]). Let X ⊆ C9 = C3
t × C6

x be defined as

X = X1 ∪X2, where

X1 = {(t, x) ∈ C9 | t1x1 + t2x2 + t3x3 = t2x1 + t1x2 = x4 = x5 = x6 = 0},
X2 = {(t, x) ∈ C9 | t1 = t2 = t3 = 0}.

Clearly, X2 is irreducible, of dimension 6. We claim that X1 is of pure

dimension 4. To see this, set A = {(t, x) ∈ X1 | det

[
t1 t2
t2 t1

]
= 0}. In X1\A,

one can solve the first two defining equations of X1 for x1 and x2, hence

X1\A is a 4-dimensional manifold. On the other hand, it is easy to compute

that dimA = 3. Since X1 is defined by 5 equations in C9, it follows that

dimξX1 ≥ 4 for every ξ ∈ X1. Therefore, A is nowhere-dense in X1, and so

X1 = X1\A is of pure dimension 4.

Define ϕ : X → Y = C3 as

(t, x)→ (t1 + x4, t2 + x5, t3 + x6).

We claim that ϕ is not open at 0. Suppose otherwise that ϕ|U is open for

some open subset U ⊆ X at 0, which implies that ϕ|U∩(X1\X2) is open. Then,

by Remmert’s Open Mapping Theorem, for every ξ ∈ U∩(X1\X2), we should

have

(3.2) fbdξϕ|U∩(X1\X2) = dim
(
U ∩ (X1\X2)

)
− dimY = 4− 3 = 1.



Chapter 3 30

But consider the set W = {(t, x) ∈ X1 | t3 = 0, t1 = t2 6= 0}, in which for

every ξ, it is easy to see that fbdξϕ|U∩(X1\X2) = fbdξϕ = 2. Note that W is

a subset of X1\X2 and is adherent to 0, hence W ∩
(
U ∩ (X1\X2)

)
is not

empty. So we get points inside U ∩ (X1\X2) at which fibre dimension is 2,

and this contradicts (3.2).

Now, consider β : Z = C3
z → Y , given as β(z1, z2, z3) = (z1z3, z2z3, z3).

Consider the pullback ϕ′ : Z ×Y X → Z. We shall show that β ◦ ϕ′ has

no isolated irreducible components mapped to 0 ∈ Y . Suppose otherwise

that Σ is such a component. Then, of course, Σ lies in the fibre of β ◦ ϕ′

above 0 ∈ Y , which is just the space C2
z1,z2
× C3

x1,x2,x3
. So by irreducibility,

Σ = C2
z1,z2
× C3

x1,x2,x3
. But on the other hand, C2

z1,z2
× C3

x1,x2,x3
is the fibre

of the mapping β ◦ ψ′ above 0 ∈ Y , where ψ′ : Z ×Y X2 → Z is the pullback

by β of the open mapping ϕ|X2 . By Theorem 3.1, it follows that the fibre

over 0 ∈ Y of β ◦ ψ′ contains no isolated irreducible components (through

(0, 0)), which implies that Σ cannot be an isolated irreducible component of

Z×Y X2; while it actually is, as we have an embedding Z×Y X2 ↪→ Z×Y X.

Therefore, such Σ cannot exist. M

3.2 Flatness testing by a single blowing-up

In this section, we present our flatness testing method analogous to Theo-

rem 3.1 above. Although the geometric proof of this openness criterion was

the main motivation for us to develop a similar criterion for flatness, the proof

of the flatness criterion is totally different and is based on the characteriza-

tion of flatness by Hironaka in terms of algebro-combinatorial properties of

the algebra of power series. First, let us recall the required formalism.

Hironaka’s diagram of initial exponents

Let R = C{y}/J be an analytic C-algebra with the maximal ideal m, where

y = (y1, . . . , yn) and J is a proper ideal of C{y}. Set x = (x1, . . . , xm).
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Given α = (α1, . . . , αm) ∈ Nm and a positive integer p, we will denote

by xα the monomial xα1
1 · · ·xαmm , and by xα,j, for j = 1, . . . , p, the p-tuple

(0, . . . , 0, xα, 0, . . . , 0) with xα in the j’th place. Then, a p-tuple of formal

power series f = (f1, . . . , fp) ∈ R{x}p (recall that R{x}p ⊆ R[[x]]p) can be

written as f =
∑

α,j cα,jx
α,j, where cα,j ∈ R and the indices (α, j) belong to

Nm × {1, . . . , p}.

The mapping R → C, g 7→ g(0), of evaluation at zero (defined as eval-

uation at 0 of a representative of g (modulo J), or, defined canonically

by identifying the target as C ' R/m) induces the evaluation mapping

R{x}p → C{x}p defined as f =
∑

α,j cβ,jx
α,j 7→ f(0, x) =

∑
α,j cα,j(0)xα,j.

For an R{x}-submodule M of R{x}p, we will denote by M(0, x) the image

of M under the evaluation mapping (of variables y at 0).

Let L be any positive linear form on Rm, L(α) =
∑m

i=1 λiαi (where

λi > 0). We define a total ordering on Nm × {1, . . . , p} (denoted by L

again) by lexicographic ordering of the (m + 2)-tuples (L(α), j, α1, . . . , αm),

where (α, j) ∈ Nm × {1, . . . , p}, and α = (α1, . . . , αm). For a p-tuple f =∑
α,j cα,jx

α,j ∈ R{x}p, define the support of f as

supp(f) := {(α, j) ∈ Nm × {1, . . . , p} | cα,j 6= 0},

and if f is a nonzero element, the initial exponent of f (with respect to

the total ordering L) as expL(f) := minL(supp(f)), where minL denotes the

minimum with respect to the total ordering L.

For an R{x}-submodule M of R{x}p, the diagram of initial exponents of

M is defined as

NL(M) := {expL(f) | f ∈M\{0}} ⊆ Nm × {1, . . . , p}.

Note that NL(M) + Nm = NL(M), since M is an R{x}-module. Indeed,

expL(xγ · f) = expL(f) + (γ, 0) for any f ∈ R{x}p and γ ∈ Nm.

Now, we are ready to recall Hironaka’s flatness criterion (see e.g.

[BM1, Theorem 7.9]):
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Let M be an R{x}-submodule of R{x}p. Then, R{x}p/M is a flat

module over R if and only if there exists a positive linear form L

such that for every nonzero element f ∈M , supp(f) ∩NL(M(0, x)) 6= ∅.

Our main flatness criterion

Theorem 3.5 ([AS2, Theorem 1.8]). Consider ϕ : X → Y and β|Yst : Yst →
Y as above, with Y irreducible at 0 ∈ Y . Let F be a coherent OX-module.

Then, F is a flat module over OY at 0 ∈ X if and only if yn is not a zero-

divisor in the module F0⊗̃OY,0OYst,0.

To prove Theorem 3.5, we will need the following lemma.

Lemma 3.6 ([AS2, Lemma 3.1]). Let n ≥ 2, and let h(y) =
∑
|α|=d hαy

α ∈
C[y1, . . . , yn] be a homogeneous polynomial of degree d ≥ 2. There exist

nonzero c1, . . . , cn−1 ∈ C, such that after substituting yj + cjyn for yj, j =

1, . . . , n− 1, h(y) will contain a monomial cydn for some nonzero c ∈ C.

Proof. Set Eh := {α = (α1, . . . , αn) ∈ Nn | hα 6= 0}, and set D := |Eh|. If

D = 1, then the lemma holds with c1 = · · · = cn−1 = 1. Suppose then that

D ≥ 2. Let α∗ be the maximal element of Eh with respect to the lexicographic

ordering of the n-tuples (α1, . . . , αn) ∈ Nn. Set M := max{|hα|/|hα∗| | α ∈
Eh}; then M ≥ 1. Define

c1 = (DM)d
2(n−1), c2 = (DM)d

2(n−2), . . . , cn−1 = (DM)d
2

,

and, for α = (α1, . . . , αn), set p(α) := d2(n−1)α1 + d2(n−2)α2 + · · ·+ d2αn−1.

Now, after the substitutions yj 7→ yj + cjyn, j = 1, . . . , n − 1, ev-

ery term hαy
α of h gets transformed into a finite sum of terms, of which

precisely one depends only on the variable yn. This term is of the form

hαc
α1
1 c

α2
2 · · · c

αn−1

n−1 y
d
n, which is hαD

p(α)Mp(α)ydn. Hence, h(y) contains a term

cydn, where c =
∑

α∈Eh hαD
p(α)Mp(α). Therefore, to prove the lemma (i.e., to
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prove that c 6= 0) it suffices to show that

|hα∗Dp(α∗)Mp(α∗)| >
∑

α∈Eh\{α∗}

|hαDp(α)Mp(α)|.

Given α = (α1, . . . , αn) ∈ Eh\{α∗}, there exists 0 ≤ j0 < n such that αj = α∗j
for all 1 ≤ j ≤ j0, but αj0+1 < α∗j0+1. Note that, since |α| = |α∗| and α∗ is

the unique maximal element of Eh, we actually have j0 ≤ n − 2. It follows

that

p(α) ≤ d2(n−1)α∗1 + · · ·+ d2(n−j0)α∗j0 + d2(n−j0−1)(α∗j0+1 − 1) + d2(n−j0−2)d

= d2(n−1)α∗1 + · · ·+ d2(n−j0)α∗j0 + d2(n−j0−1)α∗j0+1 − d2n−2j0−3(d− 1)

≤ p(α∗)− d(d− 1).

Hence, for every α ∈ Eh\{α∗},

|hαDp(α)Mp(α)| = |hα|
|hα∗|

· |hα∗ |Dp(α)Mp(α) ≤M |hα∗ |(DM)p(α
∗)−d(d−1).

Consequently∑
α∈Eh\{α∗}

|hαDp(α)Mp(α)| ≤ DM |hα∗|(DM)p(α
∗)−d(d−1)

= |hα∗|(DM)p(α
∗)−d(d−1)+1 < |hα∗|(DM)p(α

∗),

because d(d− 1) ≥ 2 (as d ≥ 2) and DM > 1.

Proof of Theorem 3.5. As F0 is an analytic module over OY,0, we can write

F0 = OY,0{x}p/M for some p ∈ N, where x = (x1, . . . , xm) and M is an

OY,0{x}-submodule of OY,0{x}p. Write OY,0 = C{y}/J , where J is the defin-

ing ideal of Y in Cn
y about the origin. Then write OYst,0 = OY,0{z}/Jst, by

Remark 1.5. Note that

(3.3) (y1 − z1zn, . . . , yn−1 − zn−1zn, yn − zn) · OY,0{z} ⊆ Jst.

Suppose F0 is flat over OY,0. Since flatness is preserved by analytic base

change, F0⊗̃OY,0OYst,0 is flat and hence (by basic properties of flat modules)
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torsion-free over OYst,0 .
11 Now, as the exceptional divisor (germ) {zn = 0}0

never contains an irreducible component of the strict transform (germ) (Yst)0,

it is evident that the class of zn in OYst,0 is non-zero and is not a zero-divisor

(in the ring OYst,0). Therefore, zn cannot be a zero-divisor in the module

F0⊗̃OY,0OYst,0 . As yn − zn ∈ Jst, it follows that the same is true for yn.

Conversely, suppose F0 is not flat over OY,0. Then, by the criterion of

Hironaka (see page 31), there exists some (p-tuple of formal power series)

f ∈M\{0} such that

(3.4) supp(f) ⊆ (Nm × {1, . . . , p})\NL(M(0, x))

(for some arbitrary positive linear form L on Rm), where by M(0, x) we mean

the module obtained from M by evaluation at 0 of variables y.

Write f =
∑

α∈Nn
1≤j≤p

aα,jx
α,j, where aα,j ∈ OY,0 denotes the class of aα,j =

aα,j(y) ∈ C{y} modulo J . Set d := ordyf (i.e., the maximum power of the

maximal ideal (y) · OY,0 that contains all the coefficients aα,j of f). Choose

a monomial aα∗,j∗x
α∗,j∗ of f , with ordyaα∗,j∗ = d. Write aα∗,j∗ =

∑
ν≥d a

(ν)
α∗,j∗ ,

where for every ν, a
(ν)
α∗,j∗ ∈ C[y] is the homogeneous part of aα∗,j∗ of degree

ν. By a change of coordinates as in Lemma 3.6, we can assume that a
(d)
α∗,j∗

contains a monomial c∗ydn, for some c∗ ∈ C\{0}.

By evaluating y at 0, we get f(0, x) = 0. This is because f(0, x) ∈
M(0, x), while on the other hand, by (3.4), we have

supp(f(0, x)) ∩NL(M(0, x)) ⊆ supp(f) ∩NL(M(0, x)) = ∅.

It follows that f ∈ (y) · OY,0{x}p, so that if we consider f̃ := f(z1zn, . . . ,

zn−1zn, zn, x) ∈ OY,0{x, z}p, then f̃ will be divisible by zn, and in fact divisible

by zdn. Define the element g ∈ OY,0{x, z}p as g = z−dn · f̃ . Notice that g

contains the monomial

z−dn · aα∗,j∗(z1zn, . . . , zn−1zn, zn)xα
∗,j∗ .

11We recall that an element m of an R-module M is called a torsion element if m is
annihilated by a non-zero element r ∈ R which is not a zero-divisor in the ring R.
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This implies that after evaluating y and z at zero, we should get a nonzero

element g(0, x, 0) ∈ C{x}p, as it will contain the monomial(
z−dn · aα∗,j∗(z1zn, . . . , zn−1zn, zn)xα

∗,j∗
)
|y=z=0 = c∗xα

∗,j∗ .

Next, consider

F0⊗̃OY,0OYst,0 =
OY,0{x, z}p

M + Jst · OY,0{x, z}p
,

in which we denote the class of g by g.

We need to show g 6= 0. Suppose otherwise that g ∈M +Jst ·OY,0{x, z}p.
Then, evaluating variables y and z at zero gives g(0, x, 0) ∈M(0, x) +Jst(0) ·
C{x}p. We have Jst(0) = 0, as the germ (Yst)0 is non-empty by the Setup.

Hence g(0, x, 0) ∈ M(0, x). On the other hand, supp(g(0, x, 0)) ⊆ supp(f);

thus by (3.4), it can only be that g(0, x, 0) = 0 which is not the case as we

observed above.

Now, by (3.3), we readily have

zdn · g = f̃ ≡ f (mod Jst · OY,0{x, z}p).

Thus zdn · g = 0. Let d0 be the minimal power for which we have zd0n · g = 0.

Since g 6= 0, we have d0 ≥ 1. Then zd0−1
n · g 6= 0, while zn · (zd0−1

n · g) = 0.

This means that zn is a zero-divisor in F0⊗̃OY,0OYst,0 . As yn − zn ∈ Jst, it

follows that the same is true for yn.

The geometric version of Theorem 3.5, stated for mappings, reads as

follows.

Corollary 3.7. Consider ϕ : X → Y and β|Yst : Yst → Y as above, and with

Y irreducible at 0 ∈ Y . Let

ϕ′ : Yst ×Y X → Yst

be the pullback of ϕ : X → Y by β|Yst : Yst → Y . The following statements

are equivalent:
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(i) ϕ is a flat mapping at 0 ∈ X,

(ii) no irreducible component of Yst ×Y X passing through (0, 0) is mapped

to the singleton zero by (β|Yst) ◦ ϕ′.

Proof. Let ϕ′ : Yst ×Y X → Yst be the pullback of ϕ by β|Yst . Using Re-

mark 1.5, we have

OYst×YX '
C{y, x}

I
⊗̃C{y}

J

C{y, z}
Jst

=
C{y, x, z}
I + Jst

,

for some ideals I and Jst, and the induced homomorphism on local rings(
(β|Yst)◦ϕ′

)∗
0

is the canonical homomorphism C{y}/J → C{y, x, z}/(I+Jst).

Putting F := OX in Theorem 3.5, it follows that flatness of ϕ at 0 ∈ X
is equivalent to the fact that yn is not a zero-divisor in C{y, x, z}/(I + Jst),

which is equivalent to the fact that the class of yn in C{y}/J (which is nonzero

by the Setup) is not a zero-divisor in C{y, x, z}/(I + Jst). By Remark 1.4,

the latter is equivalent to the statement that (β|Yst) ◦ ϕ′ has no irreducible

components which pass through (0, 0) and are mapped into {(y1, . . . , yn) ∈
Y | yn = 0}, and this itself is equivalent to the fact that (β|Yst) ◦ ϕ′ has

no irreducible components which pass through (0, 0) and are mapped into

0 ∈ Y . Indeed, {(y1, . . . , yn) ∈ Y | yn = 0} intersects the image of β|Yst only

at 0.

The following version of Theorem 3.5 is suitable for computational pur-

poses. Its formulation allows one also to have a comparison with the previous

criteria of Auslander’s type.

Corollary 3.8 (cf. [AS2, Theorem 1.3]). Let F be an analytic module over

the analytic C-algebra and domain R = C{y}/J ; say F = R{x}p/M , for

some p ∈ N, and some R{x}-submodule M of R{x}p. Let Y ⊆ Cn
y be

a representative of the complex germ SpecanR (at 0 ∈ Y ), and consider

β|Yst : Yst → Y as above. By Remark 1.5, we have OYst,0 ' R{z}/Jst =: S,

for some ideal Jst. Then we have F ⊗̃RS =
R{x, z}p

M + Jst
p , and the following

statements are equivalent:
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(i) F is a flat module over R,

(ii) yn (or, equivalently, zn) is not a zero-divisor in the module F ⊗̃RS.

Proof. Immediate; in Theorem 3.5, let X ⊆ Cm
x be a representative of the

complex germ Specan(R{x}) (at 0 ∈ X) and let F be a coherent module on

X such that F0 = F . (Also yn − zn ∈ Jst, so yn and zn can be divisors of

zero in R{x, z}p/(M + Jst
p) only at the same time.)

And again, the criterion becomes even simpler if the base is smooth, as

the following corollary shows.

Corollary 3.9 ([AS2, Theorem 1.2]). Let F be an analytic module over the

(regular) n-dimensional analytic C-algebra R = C{y}; say F = C{y, x}p/M
for some p ∈ N and some C{y, x}-submodule M of C{y, x}p. Let M̃ be the

module obtained from M by substituting yiyn for yi, i = 1, . . . , n − 1. The

following statements are equivalent:

(i) F is a flat R-module,

(ii) yn is not a zero-divisor in the module
C{y, x}p

M̃
.

Proof. In Corollary 3.8, set J = 0, R = C{y}, and get Jst = (y1−z1zn, . . . , yn−1−
zn−1zn, yn − zn). Then we obtain an (R-module) isomorphism

R{x, z}p

M + Jst
p →

C{y, x}p

M̃
,

defined by yi 7→ yiyn, yn 7→ yn, and zj 7→ yj, where i = 1, . . . , n − 1 and

j = 1, . . . , n. Now, assertion (ii) of Corollary 3.8 gets converted to assertion

(ii) above.

Example 3.10 ([AS2, Example 5.2]). Consider ϕ as in Example 3.4. Being

not open at 0, ϕ is not flat at 0 ([D], or see e.g. [F, § 3.19]). We want to

verify non-flatness of ϕ at 0 directly, by using Corollary 3.9.



Chapter 3 38

By Remark 1.5, we can write OX,0 = C{y, t, x}/(I1 + I2), where

I1 = (y1 − t1 − x4, y2 − t2 − x5, y3 − t3 − x6)

I2 = (t1x1 + t2x2 + t3x3, t2x1 + t1x2, x4, x5, x6) ∩ (t1, t2, t3).

We want to verify that OX,0 = C{y, t, x}/(I1 + I2) is not a flat module over

OY,0 = C{y}.

Let Ĩ1 and Ĩ2 denote the ideals obtained from I1 and I2 by substituting

y1y3 for y1 and y2y3 for y2; that is,

Ĩ1 = (y1y3 − t1 − x4, y2y3 − t2 − x5, y3 − t3 − x6)

Ĩ2 = (t1x1 + t2x2 + t3x3, t2x1 + t1x2, x4, x5, x6) ∩ (t1, t2, t3).

With the help of a computer algebra system (Singular, see [GrPf]), we have

found the element x6y2 − x5 ∈ C{y, t, x} which does not belong to Ĩ1 + Ĩ2,

but y3(x6y2 − x5) ∈ Ĩ1 + Ĩ2. To see this, on the one hand we have

y3(x6y2 − x5) = x6y2y3 − x5y3

≡ x6(t2 + x5)− x5y3 = t2x6 + x5x6 − x5y3 (mod Ĩ1)

≡ 0 + x5x6 − x5y3 (mod Ĩ2)

≡ x5x6 − x5(t3 + x6) = −t3x5 (mod Ĩ1)

≡ 0 (mod Ĩ2).

On the other hand, suppose that x6y2 − x5 ∈ Ĩ1 + Ĩ2. Then, after evaluating

at zero the variables y1, y2, y3, t1, t3, x1, x2, x3, x4, and x6, we would get

−x5 ∈ (t2 + x5, t2x5) · C{t2, x5}, which is false. M

We finish this chapter by presenting a coordinate-free version of our open-

ness and flatness criteria.

Theorem 3.11. Consider the mapping ϕ : X → Y , with ϕ(ξ) = η and

Y locally irreducible. Let β : Ỹ → Y be the blowing-up of Y with center
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{η}. Pick ξ′ ∈ β−1(η), and let the exceptional divisor around ξ′ be defined

by f ∈ OeY . Let Yst be the strict transform of Y under β. Then we have the

following:

(i) The mapping ϕ is open at ξ if and only if fξ′ is not a zero-divisor in

(OX,ξ⊗̃OY,ηOYst,ξ′)/
√

(0) .

(ii) A coherent OX-module F is at ξ ∈ X flat over OY if and only if fξ′ is

not a zero-divisor in the module Fξ⊗̃OY,ηOYst,ξ′.

Proof. Let n be a natural number at least equal to the embedding dimension

of Y at η, and choose local models about η for Y in Cn
y , and about ξ′ for Ỹ

in Cn
z , according to the Setup at page 25. Then we can assume that fξ′ = zn.

Part (i) now follows from Corollary 3.2, and part (ii) from Theorem 3.5.
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Characterizing non-open
complex mappings

Following [KT], for a mapping ϕ : X → Y , we define

φvert(ϕ) := sup{i ≥ 1 | ϕ{i} has no (isolated) vertical components}

if ϕ has no (isolated) vertical components, and φvert(ϕ) := 0 otherwise. We

are going to call φvert the (topological) verticality index of ϕ.

In this chapter, we will study the behaviour of the topological verticality

index. We will call it simply a verticality index, while we mean always

the topological one. Likewise, as it is only a topological study of complex

mappings, by a vertical component we will always mean an isolated one.12

First, let us summarize some known facts about this index. A mapping

ϕ : X → Y with Y locally irreducible is open if φvert(ϕ) = ∞, or else

0 ≤ φvert(ϕ) < dimY and it is not open ([KT, Theorem 3.2]). Based on

this, it is natural to view φvert as an index that for a fixed n, partitions all

non-open mappings with n-dimensional targets into n classes, where the i’th

class, i = 0, . . . , n− 1, is identified with φvert(ϕ) = i.

12Of course, one can consider the study of verticality index by taking into account also
the embedded vertical components, with the aim of leading to a characterization of non-flat
mappings.

40
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With regard to the family of fibres, the verticality index measures how

much any fibre of the mapping can be approximated by means of the general

fibres. This description is made precise in the following equivalent definition

for the verticality index ([KT, Proposition 6.2]):

For a mapping ϕ : X → Y , the index φvert(ϕ) is equal to the

supremum of all i for which we have that, for every x1, . . . , xi

taken on an arbitrary fibre ϕ−1(ϕ(ξ)), and for every subset B ⊆ Y

with empty interior, there exist a sequence (yj)j in Y \B with

yj → ϕ(ξ), and sequences (xk,j)j, k = 1, . . . , i, such that xk,j ∈
ϕ−1(yj) and xk,j → xk.

For every i ≤ φvert(ϕ), ϕ{i} is quasiopen, meaning that it maps subsets of

X with interior points to subsets of Y with interior points; this is a simple

consequence of having no (isolated) vertical components.

4.1 Verticality index over smooth targets

When Y is smooth (and connected), a formula for the verticality index of a

mapping ϕ : X → Y is given by

(4.1) φvert(ϕ) = min
p
{
[

dimY − dimϕ(Xp)− 1

fbdϕ|Xp − (hp − dimY )

]
| fbdϕ|Xp > hp−dimY },

where hp = min{dimξX | ξ ∈ Xp}, and {Xp}p is an equidimensional partition

of X for ϕ ([KT, Theorem 3.5]). An equidimensional partition {Xp}p is a

locally finite partition of X such that each Xp is a non-empty irreducible

(locally closed) complex subspace of X, and such that the restriction ϕ|Xp is

an equidimensional mapping (i.e., a mapping whose non-empty fibres are all

of pure and the same dimension). One readily verifies that formula (4.1) is

independent of the choice of an equidimensional partition.

We denote the right hand side of (4.1) by φs. We know (from the proof
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of [KT, Theorem 3.5]) that in the case of singular Y , one only has φvert(ϕ) ≤
φs(ϕ).

Let λ be the minimal, and κ the maximal fibre dimension of ϕ. For every

j, λ ≤ j ≤ κ, define X
(j)
ϕ := {x ∈ X | fbdxϕ = j}. Every X

(j)
ϕ is a (locally

closed) complex subspace of X, by the Cartan-Remmert Theorem (which

states that fibre dimension is an upper semicontinuous function on X in

the analytic Zariski topology; see e.g. [L, § V.3]). We obtain a partitioning

{X(j)
ϕ }λ≤j≤κ of X, which we are going to call the fbd-partition of X with

respect to ϕ. Since they are easier to compute than the equidimensional

partitions, we would like to use fbd-partitions in the study and calculation

of φvert. The following remark is the first indication of how we do this. We

give a simplified version of formula (4.1).

Remark 4.1. When X is of pure dimension m, and Y is locally irreducible

(and connected) and of dimension n, then

φs(ϕ) = min{

[
n− dimϕ(X

(j)
ϕ )− 1

j − (m− n)

]
| λ ≤ j ≤ κ, j > m− n}.

M

Proof. We want to construct an equidimensional partition out of the fbd-

partition {X(j)
ϕ }λ≤j≤κ, and calculate φs by formula (4.1). First, one should

observe that for any j, each fibre of ϕ|
X

(j)
ϕ

is of pure dimension j, and hence

further restrictions to the regular locus reg(X
(j)
ϕ ) and its connected compo-

nents will also have pure j-dimensional fibres. We put these components

(which are mutually disjoint) as the initial members of our equidimensional

partition. To complete this partition, we have to stratify the singular locus

sng(X
(j)
ϕ ). Suppose Xp ⊆ sng(X

(j)
ϕ ) is to be a member of the equidimensional

partition. We have fbdϕ|Xp ≤ j, and also dimϕ(Xp) ≤ dimϕ(X
(j)
ϕ ). So, as to

formula (4.1), the partition members out of sng(X
(j)
ϕ ) will not count. There-

fore, it suffices to consider only those (equidimensional) partition members

we have obtained out of reg(X
(j)
ϕ ), which then gives the formula that we are

after.
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The above formulas provide a way of explaining different cases of vertical-

ity (viewed as different modes of non-openness) for the mappings with smooth

targets. Considering a mapping ϕ : X → Y as a family of fibres parametrized

by the smooth space Y , ϕ shows verticality sooner if it possesses higher di-

mensional fibres (larger j) parametrized by higher dimensional subsets of Y

(larger dimϕ(X
(j)
ϕ )). Roughly speaking, a low verticality index means the

stronger presence of exceptional fibres in the family. Now, we construct a

family of examples which shows that for a fixed target dimension n, all the

cases of verticality, namely φvert = 0, . . . , n− 1, can actually happen and so,

our classification of non-open mappings is not void.

Example 4.2. Choose n, ` ∈ N, with 1 ≤ ` ≤ n. Let X be the analytic

subset of C2n+1 with coordinates (y1, . . . , yn, x1, . . . , xn+1), defined by

y1x1 + · · ·+ y`x` + x2
n+1 = 0 and y2x1 + · · ·+ y`x`−1 + y1x` = 0.

(If ` = 1, consider the second equation as y1x1 = 0.)

Set Y = Cn, with coordinates (y1, . . . , yn). Define ϕ : X → Y as the

projection. We claim that φvert(ϕ) = `− 1.

First, we justify that X is pure-dimensional. If ` = 1, then X is just a

union of two (2n−1)-dimensional planes (one of which is clearly vertical over

Y ). So suppose that ` > 1.

For y ∈ Y = Cn, define Dy =

[
y1 · · · y`−1 y`
y2 · · · y` y1

]
, and set A =

{
(y, x) ∈

X | rankDy < 2
}

. We have

A =
{

(y, x) ∈ X | ∃ c ∈ C\{0} s.t. (y1, . . . , y`) = c(y2, . . . , y`, y1)
}

∪
{

(y, x) ∈ X | y1 = · · · = y` = 0
}

=
{

(y, x) ∈ X | ∃ c ∈ C\{0} s.t. y1 = c`y1, y2 = c`−1y1, . . . , y` = cy1

}
∪
{

(y, x) ∈ X | y1 = · · · = y` = 0
}

=
⋃
c∈C
c`=1

{
(y, x) ∈ X | y2 = c`−1y1, . . . , y` = cy1

}
.
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By considering the defining equations of X, we get

A =
⋃

c∈C, c`=1

{
(y, x) ∈ C2n+1 | y2 = c`−1y1, . . . , y` = cy1,

y1x1 + c`−1y1x2 + · · ·+ cy1x` + x2
n+1 = 0,

c`−1y1x1 + · · ·+ cy1x`−1 + y1x` = 0
}
,

in which multiplying the third equation by c gives us

A =
⋃

c∈C, c`=1

{
(y, x) ∈ C2n+1 | y2 = c`−1y1, . . . , y` = cy1,

y1x1 + c`−1y1x2 + · · ·+ cy1x` + x2
n+1 = 0,

y1x1 + c`−1y1x2 + · · ·+ cy1x` = 0
}
,

which simplifies to

A =
⋃

c∈C, c`=1

{
(y, x) ∈ C2n+1 | y2 = c`−1y1, . . . , y` = cy1,(4.2)

xn+1 = 0,

y1(x1 + c`−1x2 + · · ·+ cx`) = 0
}
.

It is now easily seen that dimA = 2n− `. Write X = A∪ (X\A). Since X is

defined by two equations, we have dimξX ≥ 2n + 1− 2 = 2n− 1, for every

ξ ∈ X (see footnote 13 on page 54). On the other hand, dimA = 2n − ` <
2n− 1, and hence dimA < dimξX, for every ξ ∈ X. We conclude that A is

a nowhere-dense subset of X. Then X\A is open and dense and hence for

pure-dimensionality of X it will suffice to show X\A is pure-dimensional.

Take a point (η, ξ) ∈ X\A, where η ∈ Cn
y and ξ ∈ Cn+1

x . Since rankDη =

2, there is a nonsingular submatrix

[
ηi ηj
ησ(i) ησ(j)

]
, for some i, j, 1 ≤ i < j ≤ `,

where σ is the permutation
(
1 2 · · · `

)
. It follows that we can solve the

defining equations of X in a neighbourhood of (η, ξ) in X\A for xi and xj.

Hence dim(η,ξ)(X\A) = 2n + 1 − 2 = 2n − 1, and in particular, X\A is of

pure dimension.
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Now, we are able to calculate φvert(ϕ) by means of Remark 4.1. We need

to find the fbd-partition of X with respect to ϕ. Take a point η ∈ Y = Cn. If

rankDη = 2, then from defining equations of X, we get dimϕ−1(η) = n− 1.

If rankDη < 2 and η1 6= 0, then by (4.2), we get ϕ−1(ϕ(η)) = {(η, x) ∈
C2n+1 | xn+1 = 0, x1 + c`−1x2 + · · ·+ cx` = 0}. So again, dimϕ−1(η) = n− 1.

Finally assume rankDη < 2 and η1 = 0, or equivalently by (4.2), η1 = · · · =
η` = 0. In this case, ϕ−1(ϕ(η)) = {(η, x) ∈ C2n+1 | xn+1 = 0}, and hence

dimϕ−1(η) = n. Thus, there is only one non-generic fibre locus to consider:

X
(n)
ϕ , with ϕ(X

(n)
ϕ ) = {η1 = · · · = η` = 0}. One then calculates

φvert(ϕ) = φs(ϕ) =

[
n− (n− `)− 1

n− (2n− 1− n)

]
= `− 1.

M

4.2 Behaviour of verticality index under pulling

back

We first state and prove two simple lemmas that will come handy in our

arguments.

Lemma 4.3. The pullback of every open mapping is open.

Proof. By definition (page 12), it suffices to justify this in the category of

topological spaces. So let ϕ1 : X1 → Y and ϕ2 : X2 → Y be continuous

mappings of topological spaces, where ϕ1 is open. We want to show the

pullback ϕ′1 : X2 ×Y X1 → X2 is open. Take a basis open set (U2 × U1) ∩
(X2 ×Y X1), for some basis open sets U2 ⊆ X2 and U1 ⊆ X1. It suffices to

show that ϕ′2((U2 × U1) ∩ (X2 ×Y X2)) is an open subset of X2. We have

ϕ′2((U2 × U1) ∩ (X2 ×Y X1)) = {ξ2 ∈ U2 | ϕ2(ξ2) = ϕ1(ξ1) for some ξ1 ∈ U1}
= ϕ−1

2 (ϕ1(U1)) ∩ U2.

But ϕ−1
2 (ϕ1(U1)) is open in X2 by openness of ϕ1 and continuity of ϕ2. So

the intersection ϕ−1
2 (ϕ1(U1)) ∩ U2 is an open subset of X2.
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Lemma 4.4. Let ϕ : X → Y and σ : Z → Y be mappings, and let ϕ′ :

Z ×Y X → Z be the pullback of ϕ by σ. If σ is surjective and has no vertical

components, then φvert(ϕ
′) ≤ φvert(ϕ).

Proof. Set i := φvert(ϕ) + 1, so that the i-fold fibred power ϕ{i} : X{i} → Y

has a vertical component, say Σ. Let σ′ be the pullback of σ by ϕ{i}, and let

(ϕ{i})′ be the pullback of ϕ{i} by σ. We get the following Cartesian square:

Z ×Y X{i}
σ′−−−→ X{i}y(ϕ{i})′

yϕ{i}
Z

σ−−−→ Y

Suppose σ is surjective. Then the pullback σ′ is surjective, and so σ′−1(reg(Σ))

is a non-empty open subset of Z ×Y X{i}. Let Σ′ be an irreducible compo-

nent of Z ×Y X{i} with a non-empty intersection with σ′−1(reg(Σ)). Then

reg(Σ′) ∩ σ′−1(reg(Σ)) is a non-empty open subset of Σ′, which is mapped

into the set σ−1(ϕ{i}(Σ)) by (ϕ{i})′. Suppose now σ has no vertical compo-

nents, which implies that the inverse image of a set with empty interior by

σ has empty interior. Therefore, σ−1(ϕ{i}(Σ)) has empty interior in Z, as by

verticality of Σ, ϕ{i}(Σ) has empty interior in Y . Now that an open subset

of Σ′ has an image with empty interior in Z, we conclude (by footnote 5

on page 9) that the whole Σ′ should have such image. So (ϕ{i})′, which by

Remark 1.2 is equivalent to (ϕ′){i}, has a vertical component. By definition,

we get φvert(ϕ
′) < i, and thus φvert(ϕ

′) ≤ φvert(ϕ).

Remark 4.5. In Lemma 4.4, the surjectivity of the mapping that pulls

back cannot be weakened, even to dominance. For instance, let X ⊆ C3
x

be defined by x1x3 = x2x3 = 0, and define the mapping ϕ : X → C2
y

as (x1, x2, x3) 7→ (x1, x2 + x3). The mapping ϕ is not open around the

origin, as the irreducible component Cx3 of X is mapped to a line in C2
y.

But the pullback of ϕ by σ : C2
z → C2

y, defined as (z1, z2)
σ7→ (z1, z1z2), is

equivalent to the identity mapping on C2, which shows no verticality. Indeed,

by the structure of the fibred product, the pullback of ϕ by σ is the same
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as the pullback of ϕ|ϕ−1(σ(C2)) by σ, but σ(C2) = (C2
y\Cy2) ∪ {0}, hence

ϕ−1(σ(C2)) = (C2
x1,x2
\Cx2) ∪ {0}, and so ϕ|ϕ−1(σ(C2)) is identified with the

identity mapping on (C2\C) ∪ {0}, which is then pulled back by σ to the

identity on C2 with an infinite verticality index. M

The pullback by an open, surjective mapping preserves the verticality

index of every mapping.

Proposition 4.6. Consider a mapping ϕ : X → Y , and let ϕ′ : X ′ → Z be

its pullback by an open and surjective mapping σ : Z → Y . Then, φvert(ϕ) =

φvert(ϕ
′).

Proof. For every i ≥ 1, form a diagram

T
σi−−−→ X{i}yπ′i yπi

X ′
σ1−−−→ Xyϕ′ yϕ

Z
σ−−−→ Y

where X{i} = X ×Y · · · ×Y X︸ ︷︷ ︸
i times

, πi is a projection, σ1 is the pullback of σ by

ϕ, σi is the pullback of σ1 by πi, ϕ
′ is the pullback of ϕ by σ, and π′i is the

pullback of πi by σ1. Note that, by Remark 1.2, we have T ' Z ×Y X{i} '
X ′{i} = X ′ ×Z · · · ×Z X ′︸ ︷︷ ︸

i times

, so let us set T = X ′{i}.

We have to show that X{i} has a vertical component over Y if and only

if X ′{i} has a vertical component over Z. Observe (by Lemma 4.3) that σ1

and σi are open and surjective, for they are pullbacks of open and surjective

mappings.

Suppose X{i} has a vertical component Σ over Y . Consider σ−1
i (reg(Σ)),

which is an open subset ofX ′{i}, and is non-empty by surjectivity of σi. Hence

σ−1
i (reg(Σ)) intersects the regular locus of some irreducible component Σ′ of
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X ′{i}. Now, reg(Σ′) ∩ σ−1
i (reg(Σ)) is a non-empty open subset of Σ′ which

is mapped to a set with empty interior in Y . Therefore (by footnote 5 on

page 9), Σ′ is a vertical component of X ′{i} over Y ; but since σ is quasiopen,

it follows easily that Σ′ is vertical over Z, too.

Conversely, suppose X ′{i} has a vertical component Σ′ over Z. There is

some irreducible component Σ of X{i} such that σi(Σ
′) ⊆ Σ. We claim that

Σ is a vertical component of X{i}. Since σi(reg(Σ′)) is a (non-empty) open

subset of Σ, it suffices to show that (ϕ◦πi)(σi(reg(Σ′)) is a subset of Y with no

interior points. Suppose otherwise. Then there exists some non-empty open

U ⊆ σi(reg(Σ′)) with the image V = (ϕ ◦ πi)(U) open in Y . We can shrink

V and U to get an open mapping (ϕ ◦ πi)|U : U → V (first shrink V so that

it is smooth and connected, then shrink U to some smooth, connected, open

subset on which fibre dimension is constant and whose image is of dimension

dimV ; we get an open mapping, by Remmert’s Open Mapping Theorem).

Set U ′ = σ−1
i (U) ∩ reg(Σ′) (which is non-empty by surjectivity of σi). We

have

σ−1(V )×V U =
(
(ϕ′ ◦ π′i)−1(σ−1(V ))

)
∩ σ−1

i (U),

hence U ′ is an open subset of σ−1(V ) ×V U . Since (ϕ ◦ πi)|U is open, its

pullback (ϕ′◦π′i)|σ−1(V )×V U : σ−1(V )×V U → σ−1(V ) is open (by Lemma 4.3).

Then, (ϕ′ ◦ π′i)(U ′) will be an open subset of σ−1(V ), which contradicts the

verticality of Σ′ over Z.

On the other extreme, there is the pullback by a blowing-up. We saw in

Theorem 3.1 that blowing-up with center the origin decreases the verticality

index of a mapping to zero in the pullback—unless the mapping has an

infinite verticality index (that is precisely, when it is open).

One now may wonder about the existence of a general relation between the

verticality index of a mapping and that of its pullback. Upon the existence

of an effective relation, one might be able to obtain some sort of test maps,

by which if a given mapping ϕ is pulled back, the verticality index of ϕ would

be determined. We have seen already an instance of such a test map, namely,
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locus of η = (η1, η2, η3) ∈ Y dimension dimϕ−1(η)
η1 = η2, η3 = 0 1 1

η1 6= η2 3 0

locus of η = (η1, η2, η3) ∈ Y dimension dim(ϕ′)−1(η)
η1 = η3, η2 = 0 1 1

η1 6= η3 3 0

Table 4.1: Analysis of fibres for ϕ and ϕ′ (Example 4.7)

the blowing-up, which is able to test whether the verticality index is infinite

or not (Theorem 3.1). In general however, such a luxury cannot exist. In

Example 4.7, we show that the verticality index of the pullback might depend

on factors that are not of interest.

Example 4.7. Define the space

X = {(y, x) ∈ C3 × C | (y1 − y2)x+ y3 = 0},

which is of pure dimension 3. Set Y = C3
y, and consider the projection

ϕ : X → Y . Consider ϕ′ : X → Y defined as ϕ′ = ψ ◦ ϕ, where ψ : Y → Y

is the biholomorphism defined by (y1, y2, y3) 7→ (y1, y3, y2).

Notice that ϕ and ϕ′ are (left-) equivalent mappings (i.e., they are the

same up to a biholomorphism on their targets). Hence, φvert(ϕ) = φvert(ϕ
′).

The goal is to show the following: φvert(ϕ×Y ϕ) = 0, but φvert(ϕ×Y ϕ′) = 1.

The analysis of fibres for ϕ and ϕ′ is summarized in Table 4.1, from which

by Remark 4.1, we calculate

φvert(ϕ) =

[
3− 1− 1

1− (3− 3)

]
= 1.

Hence, ϕ×Y ϕ has a vertical component, and thus, φvert(ϕ×Y ϕ) = 0.

Next, we compute φvert(ϕ×Y ϕ′). Using Table 4.1, we have obtained the

analysis of fibres for ϕ×Y ϕ′ in Table 4.2.

The fbd-partition of X ×Y X ′ with respect to ϕ ×Y ϕ′ is of the form

{X(0)
ϕ , X

(1)
ϕ , X

(2)
ϕ }, with dim(ϕ×Y ϕ′)(X(1)

ϕ ) = 1, and dim(ϕ×Y ϕ′)(X(2)
ϕ ) = 0.
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locus of η = (η1, η2, η3) ∈ Y dimension dim(ϕ×Y ϕ′)−1(η)
η1 = η2 = η3 = 0 0 2
η1 = η2 6= 0, η3 = 0 1 1
η1 = η3 6= 0, η2 = 0 1 1
η1 6= η2, η1 6= η3 3 0

Table 4.2: Analysis of fibres for ϕ×Y ϕ′ (Example 4.7)

Then, by Remark 4.1, we calculate

φvert(ϕ×Y ϕ′) = min{
[

3− 1− 1

1− (3− 3)

]
,

[
3− 0− 1

2− (3− 3)

]
} = 1.

Similar situation is happening for pullbacks. That is, if π is the pullback

of ϕ by itself, and π′ is the pullback of ϕ by ϕ′, then φvert(π) = 0, while

φvert(π
′) = 1. To see this, just observe that ϕ×Y ϕ has a vertical component

if and only if π does; likewise, this holds for ϕ×Y ϕ′ and π′ (this is an easy

consequence of the topology of ϕ and ϕ′, that (as a result of continuity and

φvert 6= 0) send sets with empty interior to sets with empty interior and vice

versa). It follows that φvert(π) = 0, and φvert(π
′) ≥ 1. On the other hand by

Lemma 4.4, φvert(π
′) ≤ φvert(ϕ) = 1, hence φvert(π

′) = 1. M

Remark 4.8. Example 4.7 shows that for a fixed mapping ϕ : X → Y , the

operator

Φϕ : (ψ : Z → Y ) 7→ φvert(ϕ×Y ψ)

is not left-invariant, meaning that, it is not well-defined on the classes of the

left-equivalence relation defined on the set of mappings with targets equal to

Y . M

4.3 Verticality index over singular targets

Recall that if the target of a mapping ϕ : X → Y is not smooth, then we

have only φvert(ϕ) ≤ φs(ϕ). In this section, we will study the index φvert for
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mappings with singular targets. In particular, we will find some classes of

mappings for which we do have φvert = φs.

Proposition 4.9. Consider a mapping ϕ : X → Y , with X of pure di-

mension and Y locally irreducible (and connected). If Y admits a desin-

gularization which is a finite mapping (in particular, if dimY = 1), then

φvert(ϕ) = φs(ϕ).

Proof. Let σ : Z → Y be a finite desigularization of Y . Let ϕ′ : Z×Y X → Z

be the pullback of ϕ by σ, and σ′ : Z ×Y X → X the pullback of σ by ϕ.

Since σ is surjective and has no vertical components, by Lemma 4.4 we get

φvert(ϕ
′) ≤ φvert(ϕ). We know that φvert(ϕ) ≤ φs(ϕ), and Z being smooth,

we have φs(ϕ
′) = φvert(ϕ

′). Altogether,

φs(ϕ
′) = φvert(ϕ

′) ≤ φvert(ϕ) ≤ φs(ϕ).

To conclude the result, it suffices to show φs(ϕ
′) = φs(ϕ). Observe that, for

every ξ ∈ X, the fibre of ϕ through ξ is isomorphic to the fibre of ϕ′ through

every ξ′ ∈ σ′−1(ξ). This implies that if {X(j)
ϕ }j is the fbd-partition of X

with respect to ϕ, then {σ′−1(X
(j)
ϕ )}j is the fbd-partition of Z ×Y X with

respect to ϕ′. To obtain the dimension of the image for each member of the

partition, observe that σ′ is surjective (for σ is so), and thus

σ(ϕ′
(
σ′−1(X(j)

ϕ )
)
) = ϕ(X(j)

ϕ ).

Hence, as a result of finiteness of σ, dimϕ′
(
σ′−1(X

(j)
ϕ )
)

= dimϕ(X
(j)
ϕ ). Now,

if we have the pure-dimensionality of Z ×Y X, then by Remark 4.1 we will

conclude that φs(ϕ
′) = φs(ϕ).

To show Z×Y X is pure-dimensional, first observe that the finite mapping

σ is an open mapping, by Remmert’s Open Mapping Theorem, and surjective,

by definition. It follows that its pullback σ′ is an open (by Lemma 4.3),

finite mapping onto the (pure-dimensional) space X. Pure-dimensionality of

Z ×Y X follows.
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Given only the (singular) target Y , it is interesting to know whether we

are able to determine if φvert = φs holds or not, for every mapping with target

Y . The following two examples (taken from a preprint version of [KT]) show

that this is not the case in general; that is, the equality depends on factors

beyond the properties of the target space (except, of course, for special cases

such as the one in Proposition 4.9).

Example 4.10. Set

Y = {y ∈ C4 | y1y4 − y2y3 = 0},
X = {(y, x) ∈ Y × C | y1x+ y2 = 0, y3x+ y4 = 0},

and consider ϕ : X → Y as the projection.

Take a point η ∈ Y . If η1 6= 0 or η3 6= 0, then ϕ−1(η) is a singleton. If

η1 = η3 = 0, but η2 6= 0 or η4 6= 0, then the fibre over η is empty. Finally

if η = 0, then ϕ−1(η) = C. Thus, the fbd-partition is {X(0)
ϕ , X

(1)
ϕ }, with

dimϕ(X
(1)
ϕ ) = 0.

Since X is defined in C5 by 3 equations, it is at least of local dimension 2

(everywhere). So X
(1)
ϕ = C is nowhere-dense in X, and hence X

(0)
ϕ = X\X(1)

ϕ

is dense. Also X
(0)
ϕ is open in X and of pure dimension 3 (it is locally a graph

of x = −y2/y1 or x = −y4/y3 over the open subset {y1 6= 0 or y3 6= 0} of Y ),

thus we conclude that X is of pure dimension 3.

Now, by Remark 4.1, calculate

φs(ϕ) =

[
3− 0− 1

1− (3− 3)

]
= 2.

To find φvert(ϕ), notice that ϕ is a generically one-to-one mapping, and

thus by the equivalent definition of the verticality index (see page 41), we

should have φvert(ϕ) ≤ 1. Obviously, ϕ has no vertical components, so

φvert(ϕ) = 1. M

Example 4.11. With Y as in Example 4.10, set

X = {(y, x) ∈ Y × C | y1x
2 + y4x+ y2 − y3 = 0},
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and consider ϕ : X → Y as the projection.

Take a point η ∈ Y . If η1 6= 0 or η4 6= 0, then ϕ−1(η) is either a

singleton or a pair of points. If η1 = η4 = 0, then (by defining equations of

Y ) η2η3 = 0, and in order to have a non-empty fibre, we should have (by

defining equations of X) η3 = η4 = 0, and so η = 0 and the fibre will be Cx.

Thus, the fbd-partition is {X(0)
ϕ , X

(1)
ϕ }, with dimϕ(X

(1)
ϕ ) = 0.

Since X is defined in C5 by 2 equations, it is at least of local dimension

3 (everywhere). So X
(1)
ϕ = C is nowhere-dense in X, and so X\X(1)

ϕ = X
(0)
ϕ

is open and dense. Notice that ϕ|
X

(0)
ϕ

: X
(0)
ϕ → Y is a finite mapping with

dimξX
(0)
ϕ ≥ 3 for every ξ ∈ X

(0)
ϕ , and with dimY = 3. This implies that

X
(0)
ϕ is of pure dimension 3. So X is of pure dimension 3.

Now, by Remark 4.1, calculate

φs(ϕ) =

[
3− 0− 1

1− (3− 3)

]
= 2.

To compute that φvert(ϕ) = 2, it is easier to first have Proposition 4.12.

We will work out the computation later in Example 4.18. M

Proposition 4.12. Let Y be a locally irreducible space contained in a space

Υ of local dimension at least N at every point, and let Ω be a space of pure

dimension k. Let X ⊆ Y ×Ω be a space which can be defined in Υ×Ω locally

by at most r holomorphic functions (i.e., every stalk of the coherent ideal of

OΥ×Ω defining X admits r generators). Let ϕ : X → Y be the projection and

suppose ϕ has no vertical components. Then

φvert(ϕ) ≥ φ−(ϕ) := min
λ<j≤κ

[
N − dimϕ(X

(j)
ϕ )− 1

j − (k − r)

]
,

where {X(j)
ϕ }λ≤j≤κ is the fbd-partition of X with respect to ϕ, λ = minξ∈X fbdξϕ,

and κ = maxξ∈X fbdξϕ.

Proof. For every ζ ∈ X{i}, i ≥ 1, the germ X
{i}
ζ will be defined in (Υ× Ωi)ζ

by at most ir equations, according to the underlying set of fibred product.



Chapter 4 54

Hence, by estimating the dimension of intersection,13 for every ζ ∈ X{i}, we

can write

(4.3) dimX
{i}
ζ ≥ dim(Υ× Ωi)ζ − ir ≥ N + i(k − r).

By considering again the set structure of fibred product, write

X{i} =
⋃

(j1,...,ji)

X(j1)
ϕ ×Y · · · ×Y X(ji)

ϕ ,

where the union is taken over all (j1, . . . , ji) ∈ Ni, with λ ≤ j1 ≤ κ, . . . , λ ≤
ji ≤ κ. For (j1, . . . , ji) ∈ Ni, denote by j0 the maximum of {j1, . . . , ji}, and

consider the projection π : X
(j1)
ϕ ×Y · · ·×Y X(ji)

ϕ → X
(j0)
ϕ . Since fbdζ(ϕ◦π) ≤

ij0 for every ζ ∈ X(j1)
ϕ ×Y · · · ×Y X(ji)

ϕ , by Dimension Formula we have

(4.4) dim(X(j1)
ϕ ×Y · · · ×Y X(ji)

ϕ ) ≤ ij0 + dimϕ(X(j0)
ϕ ).

Now suppose i ≥ 1 is such that for every j, λ < j ≤ κ, we have

(4.5) ij + dimϕ(X(j)
ϕ ) < N + i(k − r).

By (4.3), (4.4), and (4.5), we get dim(X
(j1)
ϕ ×Y · · · ×Y X(ji)

ϕ ) < dimX
{i}
ζ , for

any (j1, . . . , ji) 6= (λ, . . . , λ), and every ζ ∈ X{i}. This implies that (X
(j1)
ϕ ×Y

· · · ×Y X
(ji)
ϕ )ζ is a nowhere-dense subgerm of X

{i}
ζ , for any (j1, . . . , ji) 6=

(λ, . . . , λ), and every ζ ∈ X{i}. Now take a point ζ ∈ X{i} and write

X
{i}
ζ =

(
(X(λ)

ϕ ){i}
)
ζ
∪
( ⋃

(j1,...,ji)6=(λ,...,λ)

X(j1)
ϕ ×Y · · · ×Y X(ji)

ϕ

)
ζ
.

We get that
(

(X
(λ)
ϕ ){i}

)
ζ

is a dense subgerm of X
{i}
ζ . On the other hand,

ϕ|
X

(λ)
ϕ

is an open mapping (by Remmert’s Rank Theorem14 and the fact that

13 For any analytic subsets A1 and A2 of a manifold U , we have dimξ(A1 ∩ A2) ≥
dimξ A1 + dimξ A2 − dimU for every ξ ∈ A1 ∩ A2 (see e.g. [L] or [GPR]). By induction
on the number of equations, one obtains that if A1 is defined by r equations in A2, then
dimξ A1 ≥ dimξ A2 − r for every ξ ∈ A1.

14Remmert’s Rank Theorem. Let ϕ : X → Y be a mapping with a constant
r ∈ N such that fbdξϕ = r for every ξ ∈ X. Then, every point ξ ∈ X admits an open
neighbourhood U ⊆ X such that the image ϕ(U) is a locally analytic subset of Y of
dimension dimξX − r. (See e.g. [L, § V.6].)
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ϕ has no vertical components), and therefore by Lemma 4.3 and induction,

it follows that (ϕ|
X

(λ)
ϕ

){i} : (X
(λ)
ϕ ){i} → Y is an open mapping. Thus, X

{i}
ζ

cannot have any vertical components over Y . We thus showed that for any

i ≥ 1 such that (4.5) holds for every λ < j ≤ κ, X
{i}
ζ has no vertical

components for every ζ ∈ X{i}, and hence X{i} has no vertical components.

But (4.5) is equivalent to

i ≤ N − dimϕ(X
(j)
ϕ )− 1

j − (k − r)
,

for every j > λ. (Note that for every j > λ, we have j > k − r, since by

estimation of codimension applied to a fibre, λ ≥ dim Ω − r = k − r). By

definition of φvert, the result follows.

Remark 4.13. The lower bound obtained in Proposition 4.12 for verticality

index of a mapping ϕ is denoted by φ−(ϕ). Note that φ−(ϕ) is not only a

function of ϕ, but rather, it depends also on the parameters of the model in

which we have set up the mapping ϕ according to the proposition. M

Remark 4.14. In Proposition 4.12, the assumption of ϕ having no vertical

components is not really restrictive. If the mapping ϕ has a vertical compo-

nent, then one already computes that φs(ϕ) = 0, and there will be no need

for a lower bound. M

To study the verticality index of a general mapping (not necessarily mod-

elled as a projection), one may apply Proposition 4.12 to the equivalent pro-

jection which can be obtained by the procedure from Remark 1.5. Though,

it may not necessarily be a model leading to an efficient lower approximation

for verticality index.

Corollary 4.15. Let ϕ : X → Y be a mapping, with Y ⊆ CN locally irre-

ducible, and X of pure dimension m. Suppose ϕ has no vertical components.

Then,

φvert(ϕ) ≥ φ−(ϕ) = min
λ<j≤κ

[
N − dimϕ(X

(j)
ϕ )− 1

j − (m−N)

]
,
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where {X(j)
ϕ }λ≤j≤κ is the fbd-partition of X with respect to ϕ, λ = minξ∈X fbdξϕ,

and κ = maxξ∈X fbdξϕ.

Proof. In Proposition 4.12, set Υ = CN and Ω = X. Then the graph of ϕ

(see Remark 1.5), namely Γϕ ⊆ Y ×X, will be defined in CN ×X by r = N

holomorphic functions (i.e., the N components of the mapping ϕ). So, for

the projection Γϕ → Y , which is equivalent to our mapping ϕ, the estimate

in Proposition 4.12 gets converted to the estimate that we are proving.

Corollary 4.16. Let Y be a locally irreducible (and connected) space, and let

X be a pure-dimensional space defined in Y × Ω locally by r = codimY×ΩX

holomorphic functions, where Ω is a space of pure dimension k. Then for

ϕ : X → Y , defined as the projection, we have φvert(ϕ) = φs(ϕ).

Proof. We can assume that ϕ has no vertical components, by Remark 4.14.

In the context of Proposition 4.12, set Υ = Y , and n := N = dimY . Set

m := dimX. Then, by the Dimension Formula, we have λ = m− n, and by

assumption we have k − r = m− n. Now, compare the definition of φ− and

Remark 4.1, to conclude that φ−(ϕ) = φs(ϕ). But φ−(ϕ) ≤ φvert(ϕ) ≤ φs(ϕ),

hence φ−(ϕ) = φvert(ϕ) = φs(ϕ).

By means of our lower bound, we are now able to compute the verticality

index for the mysterious examples we had before.

Example 4.17. Consider ϕ : X → Y from Example 4.10. We justified that

X is of pure dimension 3 = dimY , and ϕ being generically one-to-one, we

get that ϕ has no vertical components. In the notation of Proposition 4.12,

set Υ = Y , N = 3, Ω = C, and k = 1, then using the fbd-partition we

obtained before, calculate

φ−(ϕ) =

[
3− 0− 1

1− (1− 2)

]
= 1.

By Proposition 4.12, φvert(ϕ) ≥ φ−(ϕ) = 1. But φvert(ϕ) ≤ 1 (since ϕ is

generically one-to-one). So φvert(ϕ) = 1. M
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Example 4.18. Consider ϕ : X → Y from Example 4.11. We justified that

X is of pure dimension 3 = dimY , and ϕ being generically finite, it follows

that ϕ cannot have vertical components. We computed that φs(ϕ) = 2. Now,

since X is defined in Y × C by 1 = codimY×CX equation, Corollary 4.16

implies that φvert(ϕ) = 2. M
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[GK] Galligo, A.; Kwieciński, M.; Flatness and fibred powers over smooth

varieties, J. Algebra 232 (2000), no. 1, 48–63.

[GPR] Grauert, H.; Peternell, Th.; Remmert, R.; eds., “Several com-

plex variables VII: sheaf-theoretical methods in complex analysis,”

Springer-Verlag, Berlin, New York, 1994, 369 pp.

[GR] Grauert, H.; Remmert, R.; “Analytische Stellenalgebren” (German),

Band 176, Springer-Verlag, Berlin-New York, 1971, ix+240 pp.

[GrPf] Greuel, G.-M.; Pfister, G.; “A Singular introduction to commutative

algebra,” 2nd edition, Springer, Berlin, 2008, xx+689 pp.

[H] Hironaka, H; Stratification and flatness, Real and complex singulari-

ties (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo,

1976), pp. 199–265.

[Ha1] Hauser, H.; The Hironaka theorem on resolution of singularities (or:

A proof we always wanted to understand), Bull. Amer. Math. Soc.

(N.S.) 40 (2003), no. 3, 323–403.

[Ha2] Hauser, H.; Seven short stories on blowups and resolutions, Proceed-

ings of Gökova Geometry-Topology Conference 2005, 1–48, Gökova

Geometry/Topology Conference (GGT), Gökova, 2006.



Bibliography 60

[HW] Huneke, C.; Wiegand, R.; Tensor products of modules and the rigidity

of Tor, Math. Ann. 299 (1994), no. 3, 449–476.
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Appendix

Derived results in the algebraic
setting

To further justify the regularity criteria of this thesis, we gathered here a

sample list of analogous results in the algebraic category. The main interest

in the following theorems comes from the fact that they allow one to verify

flatness with a help of simple computer algebra algorithms. The results below

are derived from their local analytic analogues according to the following

general scheme: One uses standard faithful flatness arguments to transfer

the statements from the analytic to the formal and then to the algebraic

category. The space of coefficients is then generalized from C to an arbitrary

zero-characteristic field k by means of the Tarski-Lefschetz Principle. We

refer to [AS1, AS2] for details.

Theorem A.1 ([AS1, Theorem 4.1], cf. Theorem 2.5). Let k be a field of

characteristic zero, and let R be an n-dimensional k-algebra of finite type

which is geometrically unibranch. Let A denote an R-algebra essentially of

finite type, and let F denote a finitely generated A-module. Let S be any n-

dimensional, regular R-algebra of finite type such that the induced morphism

SpecS → SpecR is dominant. Then, F is R-flat if and only if the tensor

61
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product

F ⊗R · · · ⊗R F︸ ︷︷ ︸
n times

⊗RS

is a torsion-free R-module (equivalently, a torsion-free S-module).

The following is an immediate corollary to Theorem A.1, which is a neat

generalization of the classical flatness criterion of Auslander for a certain

class of modules.

Corollary A.2 ([AS1, Corrolary 4.2]). Let k be a field of characteristic zero,

and let R be an n-dimensional k-algebra of finite type which is geometrically

unibranch. Let A be a regular, n-dimensional R-algebra of finite type such

that the induced morphism SpecA → SpecR is dominant. Then A is R-flat

if and only if A⊗R · · · ⊗R A︸ ︷︷ ︸
n+1 times

is a torsion-free R-module.

Theorem A.3 ([AS2, Theorem 1.10], cf. Corollary 3.8). Let K denote R or

C. Set R = K[y1, . . . , yn]/I, where I is a proper ideal in K[y1, . . . , yn]. Let

A = R[x1, . . . , xm]/Q be an R-algebra of finite type, and let F be a finitely

generated A-module. Set S = K[z1, . . . , zn], and let τ : K[y1, . . . , yn] → S be

the morphism defined as

τ(y1) = z1zn, . . . , τ(yn−1) = zn−1zn, τ(yn) = zn.

Let Ist be the strict transform ideal of I under τ , and suppose that Ist is a

proper ideal in S. Then, F(x,y) is a flat R(y)-module if yn is not a zero-divisor

in F(x,y) ⊗R(y)
(S/Ist)(z).

Theorem A.4 ([AS2, Theorem 1.1], cf. Corollary 3.9). Let k be a field of

characteristic zero, and set R = k[y1, . . . , yn]. Let F be a module finitely

generated over an R-algebra of finite type, say F = R[x]q/M , where x =

(x1, . . . , xm) and M is a submodule of R[x]q. Let M̃ be the module obtained

from M by substituting yjyn for yj, j = 1, . . . , n − 1. Then F(x,y) is a flat

R(y)-module if and only if M̃ = M̃ :R[x]q yn.
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