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Abstract

A Physically Unclonable Function (PUF) is a new and promising approach

to provide security for physical systems and to address the problems associated

with traditional approaches. One of the most important performance metrics of a

PUF is the randomness of its generated response, which is presented via unique-

ness, uniformity, and bit-aliasing. In this study, we implement three known PUF

schemes on an FPGA platform, namely SR Latch PUF, Basic RO PUF, and Ander-

son PUF. We then perform a thorough statistical analysis on their performance. In

addition, we propose the idea of the Hybrid PUF structure in which two (or more)

sources of randomness are combined in a way to improve randomness. We in-

vestigate two methods in combining the sources of randomness and we show that

the second one improves the randomness of the response, significantly. For ex-

ample, in the case of combining the Basic RO PUF and the Anderson PUF, the

Hybrid PUF uniqueness is increased nearly 8%, without any pre-processing or

post-processing tasks required.

Two main categories of applications for PUFs have been introduced and an-

alyzed: authentication and secret key generation. In this study, we introduce an-

other important application for PUFs. In fact, we develop a secret sharing scheme

using a PUF to increase the information rate and provide cheater detection capa-

bility for the system. We show that, using the proposed method, the information

rate of the secret sharing scheme will improve significantly.

Keywords: FPGA, Hardware Security, Information Rate, Message Authenti-

cation Code, Physically Unclonable Functions, Robust Secret Sharing, VHDL
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Chapter 1

Introduction

The traditional approach to prevent passive physical attacks such as counterfeit-

ing, cloning, reverse engineering and the insertion of malicious components in-

clude cryptographic primitives such as encryption/decryption algorithms, digital

signature schemes, and authentication codes. The problem with these types of

security measures is that, they rely on the protection of thesecret keys which are

stored in non-volatile memory such as EEPROMs or fuses. The sensitive data

stored in such memory can be read out directly through invasive attacks [1]. To

counter this issue, expensive protective coatings are applied but still, the devices

are vulnerable to sophisticated physical attacks.

Therefore, physically unclonable functions (PUFs) are introduced to address

such problems. A PUF is achallenge-responseprimitive which is used in a physi-

cal system to provide the required security measures [1,13]. Instead of storing the

secret key in a memory, it can be intrinsically generated by the PUF. In fact, a PUF

generates aresponseto a givenchallenge. The idea behind the PUF is that, the

output response is totally random and unpredictable. It is also unique for different

instances, even if the two instances are exactly the same anduse the exact same

components. This is because the PUF response depends solelyon the unique and

random characteristics of physical devices, such as gate delays. In fact, the very

important feature of a PUF is its unclonability, i.e., even if an attacker has access

to the circuit and builds an exact same copy of it using the same components, the

1



CHAPTER 1. INTRODUCTION 2

response of the new device to a given challenge would be different from that of

the original device to the same challenge.

1.1 PUF Constructions

A variety of PUF constructions have been introduced during the past ten years

[14]. Non-electrical PUFs include Optical PUFs [15, 16], Acoustical PUFs [17],

and Coating PUFs [18]. Optical PUFs use an optical micro-structure which is

built by mixing microscopic refractive glass spheres on a tiny transparent epoxy

plate [15]. This micro-structure is called a token. When a laser beam is applied

to the token, it will generate a random pattern that can be further processed to

produce the PUF response. The pattern generated by the tokenwill substantially

change even with a slight change in the laser beam, in terms ofits wavelength, an-

gle, or focal distance. Acoustical PUFs are built upon the acoustical delay lines.

An alternating electrical signal is transformed to a mechanical vibration using a

transducer. This vibration propagates through a solid medium (acoustical line)

which includes random scatterers. At the other end of the line, the wave is trans-

formed back to an electrical signal. The produced electrical signal has unique

properties which depend on the random physical characteristics of the acoustical

line. Therefore, this electrical signal can be used as the unique PUF response. In

Coating PUFs, a protective coating material is inserted onto the device using ran-

dom dielectric particles which have random properties in size, shape and location.

In fact, in Coating PUFs, a random element is purposely inserted into the device in

order to provide more strength against physical attacks. Therefore, Coating PUFs

are different from otherintrinsic PUFs in which the random element is intrinsic

to the device.

In addition, Electrical PUFs are categorized as Memory-based PUFs and Delay-

based PUFs. Memory-based PUFs include SRAM, SR Latch, Flip-Flop, Butterfly,

and Buskeeper PUFs [19–24]. The idea behind memory-based PUFs is to bring

a bistable memory element (which can contain only 1 bit of information) into its
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metastable state where it is not clear to which stable state it will fall back. This

settling state is totally random and unpredictable for different memory elements

due to random physical variations.

Moreover, delay-based PUFs consist of Arbiter PUFs [2, 25],Ring-Oscillator

PUFs (RO PUFs) [3,8,13,26–28], and Glitch PUFs [8,9,29]. The random element

used in delay-based PUFs to produce response bits is the gatedelay. For example,

in Ring Oscillator PUFs, two identical ring oscillators produce two clocks with

different frequencies. The frequency of each RO depends on the delay of the in-

verters used in the feedback loop of the ring oscillator. Therefore, the frequencies

can be compared to each other to produce one response bit, based on which ring

oscillator is faster. In this study, we focus on electrical PUFs and discuss their

characteristics in more details in Chapter 2.

1.2 PUF Performance Metrics and Properties

Some of the important performance metrics of PUFs include reliability, unique-

ness, uniformity, and bit-aliasing [6, 30]. Reliability ofa PUF is a measure of its

reproducibility. The reliability of an ideal PUF is 100%, i.e., the PUF generates

the same response to a given challenge at different instances of time and under

different environmental conditions. Uniqueness is a measure of inter-distance

variations of the response bits among different PUF instances. In other words, if

a specific challenge is applied at the same time and under the same conditions to

two identical PUF instances, the response of the two PUFs should be different.

Ideally, this value should be 50%. Uniqueness is one of the most important fea-

tures of PUFs and represents the randomness of the PUF response bits [30]. Also,

uniformity of a PUF measures the ratio between the number of 1’s and the total

number of response bits. Uniformity of an ideal PUF is 50% meaning that, 50%

of the response bits are 1 and 50% are 0, and therefore, the PUFresponse does not

have a biased behavior towards a specific bit value. Another important factor of

a PUF which also represents the randomness of the PUF response is bit-aliasing.
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Bit-aliasing of a given bit position in the PUF response is its percentage Hamming

Weight (HW) across several PUF instances. Again, this valueshould be ideally

50% for all response bit positions. The definition of these properties along with

their formulations are provided in details in Chapter 3.

1.3 PUF Applications

Two main applications have been introduced for PUFs: deviceauthentication and

secret key generation [1]. Authentication is performed in two steps. First, in the

enrollment phase, a trusted party (authentication authority) records a number of

challenge-response pairs (CRPs) in a database. Then, in theverification phase, a

random challenge chosen from the database is applied to the PUF under verifica-

tion and if the generated response is ”close enough” to the recorded response, the

PUF is verified to be authentic. Figure 1.1 shows a general PUF-based authenti-

cation scheme [1].

Challenge-Response Pairs 

Challenge1 Response1 

Challenge2 Response2 

Challenge3 Response3 

Challenge4 Response4 

Challenge5 Response5 

… … 

Enrollment 

Phase

Authentic

PUF

Verification

Phase

PUF under 

verification

Challenge

Secure database 

Response

Record

Selected

Challenge

Generated

Response

Corresponding 

Response Match? 

Figure 1.1: A general PUF-based authentication scheme [1]

One of the most important requirements of a practical PUF which is utilized in

a device authentication process is a large set of challenge-response pairs (CRPs).
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Because the CRP which is chosen by the authentication authority is transferred

over an insecure channel, an attacker can capture and reuse this information to

attack the authentication system. In order to prevent such replay attacks, each

challenge-response pair should be used only once during theauthentication pro-

cess. Therefore, the utilized PUF should provide a large number of challenge-

response pairs so that a device can be authenticated a significant number of times

before the CRP set is exhausted.

In secret key generation, on the other hand, a specific key should be regener-

ated for unlimited number of times. In other words, because the secret key is not

stored in the system, and the PUF circuit produces it whenever it is needed, the

regenerated response (key) should be 100% noise-free. As proposed by Suh et al.,

the secret key generator based on PUF works as follows [1]: inthe initialization

phase, a specific challenge is applied to the PUF and a response is generated, as

shown in Fig. 1.2. Then, using an error correcting code such as BCH, the error

correcting syndrome (called Helper Data) for that responseis computed. The ap-

plied challenge and the syndrome are then stored publicly ona chip or a server.

In the reconstruction phase, the same challenge is applied to the PUF and the

noisy output will be corrected using the computed syndrome to produce the same

response as the secret key. Note that, the publicly stored syndrome reveals infor-

mation about the PUF response and thus the secret key. Therefore, if aq-bit secret

key is needed and the syndrome bit-size isb, the number of PUF response bits

should be at least|r| = b+ q [1].

1.4 Thesis Outline and Contributions

In Chapter 2, we discuss different memory-based and delay-based PUFs in more

details. More specifically, the construction and properties of SRAM, SR Latch,

Flip-Flop, Butterfly, Buskeeper, Arbiter, Ring Oscillator, and Glitch PUFs are dis-

cussed. Additionally, more details about the PUF applications are provided. The

first contribution of this thesis is introduced in Chapter 3.It includes proposing a

novel Hybrid PUF structure to improve the randomness of the generated response.
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Challenge-Syndrome Pairs 

Challenge1 Syndrome1 

Challenge2 Syndrome2 

Challenge3 Syndrome3 

Challenge4 Syndrome4 

Challenge5 Syndrome5 

… … 

Initialization 

Phase

PUF

circuit

Re-generation

Phase

Challenge

Public database 

Response

Corresponding 

Syndrome 

Generated

Noisy 

Response

|r|

ECC

Encoding 

Syndrome b

Record

PUF

circuit

|r|

Selected

Challenge

ECC

Decoding

b

|r|

Original

Noise-free

 Response 

Hash

Function Key

q

Figure 1.2: A secret key generation scheme using PUF [1]

In fact, two known PUF schemes are combined in a way to take advantage of both

of them. We analyze the performance of the proposed scheme interms of relia-

bility, uniqueness, uniformity, and bit-aliasing and compare it with other imple-

mented schemes. The second contribution is discussed in Chapter 4. We propose

an efficient secret sharing scheme based on PUF properties. The information rate

which is the main factor in assessing the efficiency of a secret sharing scheme

is increased using our method. Our proposed scheme also provides cheater de-

tection capability for the system. Finally, conclusion andfuture work are briefly

discussed in Chapter 5.



Chapter 2

Literature Review

In this chapter, we briefly review the proposed schemes in theliterature related

to both PUF applications and PUF design. As mentioned in the previous chapter,

both memory-based and delay-based PUFs are chosen, which include SRAM, SR

Latch, Flip-Flop, Butterfly, Buskeeper, Arbiter, Ring Oscillator, and Glitch PUFs.

We describe the PUF structures and explain how the response bits are generated.

Also, each structure’s advantages and disadvantages are mentioned.

2.1 PUF Applications

In this section, we briefly review the proposed works published in the open litera-

ture regarding the applications of PUFs.

2.1.1 Authentication

As discussed before, in device authentication, there is no need to generate 100%

noise-free response bits. In fact, if the generated response is ”close enough” to

the one stored in the database, the PUF under verification is authenticated. There-

fore, the failure rate of the authentication system which isdefined as the device

misidentification probability [30], depends on the reliability and uniqueness prop-

erties of the utilized PUF. It also depends on the number of PUF response bits.

7
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In other words, a longer PUF response can authenticate a bigger population of

devices with less failure rate [6]. In addition, the resilience of the authentication

system against the replay attacks depends on the number of challenge-response

pairs provided by the PUF. Thus, all the works which are proposed to either im-

prove the reliability, uniqueness, number of response bits, and/or number of CRPs,

can be considered as works related to the authentication application.

2.1.2 Secret Key Generation

The main building block in a secret key generator scheme using PUF is the error

correcting code (ECC) which is used to produce a 100% noise-free response. The

use of 2D Hamming codes for error correction is suggested in [12]. Also, using

a more realistic model of PUFs noisy properties, Suh et al. suggested the use of

BCH codes as the ECC [31]. In addition, a new syndrome coding scheme that

restricts the amount of leaked information by the PUF error-correcting codes is

proposed in [32].

A fuzzy extractor implementation on FPGAs is proposed in [33] to generate

uniformly distributed and noise-free cryptographic keys.The proposed fuzzy ex-

tractor has two stages; the first stage generates a noise-free key using an ECC,

and the second stage transforms the response using a universal hash function to

achieve a uniform or any other required distribution of keys. A 128-bit secret

key using an RO-PUF is proposed in [13] using a fuzzy extractor which includes

a BCH(255,37,45) error correcting code. In addition, Maes et al. proposed a

practical low overhead secret key generation called PUFKY,which can generate

a 128-bit secret key with a failure rate of10−9, in 5.62 ms, and with low area

overhead [7].

2.2 Memory-based PUFs

As discussed before, a bistable memory cell which has 2 stable states (0 and 1),

goes to the metastable state for a short period of time and then settles in one of
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the 2 states. This settling state is random and unpredictable for each memory cell.

Therefore, this random behavior is used to build a PUF which produces random

response bits. For example, as shown in Fig. 2.1, an SRAM memory cell consists

of 2 cross-coupled inverters at its core. The transient behavior of an SRAM cell

when it is powered up is what an SRAM PUF is built upon [19]. Typical SRAM

cells are designed to have perfectly matched inverters. However, due to uncontrol-

lable process variations, thestrengthof the inverters will not match in an SRAM

cell. Based on which inverter is stronger, the memory cell will settle in one of the

stable states. If the difference between the strength of theinverters is significant,

the produced response bit (which is the settling state of thecell) will be stable. On

the other hand, if the inverters are somehow equally strong,the settling state on

eachpower-upwill be different due to noise effects, resulting in an unstable bit.

VDD

GND

Figure 2.1: SRAM cell logic circuit

The power-up state of 8190 bytes of SRAM from different memory blocks

on different FPGA boards are collected in [19]. The uniqueness is reported to

be 49.97% and the reliability is shown to be 96.43% at normal conditions and

88% for higher temperature conditions. The main drawback ofthis PUF scheme

is that, the response bit is generated only on the power-up state of the circuit. In

other words, the response bit cannot be re-generated while the circuit is opera-

tional. This drawback makes the SRAM PUF an impractical PUF because for

each sample of the response bit, one has to turn the circuit off and on again.

Other memory-based PUFs are depicted in Fig. 2.2. The basic principle of

these PUFs is the same as that of the SRAM PUF: random mismatchbetween
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nominally matched cross-coupled devices. For example, in the SR Latch PUF, 2

cross-coupled NAND (or NOR) gates constitute a simple SR Latch.

Response 
Reset

(a) SR Latch PUF cell 

Latch Latch

Response 

(b) D Flip-Flop PUF cell 

Latch

Latch

preset 

clear 

Response 

(c) Butterfly PUF cell (d) Buskeeper PUF cell 

Bus

Response 

Figure 2.2: Different memory-based PUF structures

In the NAND-based SR Latch, when theResetsignal is 0, the output bit is 1.

When the reset is released, the output bit will converge to either 0 or 1 depend-

ing on the internal mismatch between the 2 gates. 128 NOR-based SR Latches

are instantiated on 19 ASICs manufactured in 130 nm CMOS technology [20].

The uniqueness and reliability at nominal conditions are reported as 50.55% and

96.96%, respectively. The main advantage of the SR Latch PUFis that the PUF

response bits can be re-generated at any time when the circuit is powered and op-

erational. In fact, we can take many samples from the response bit to analyze the

PUF performance by connecting aclock to the Reset signal. In addition, a major-

ity voting technique can be applied on the samples to generate more reliable bits.

Flip-Flop, Butterfly, and Buskeeper PUFs behavior and principle are basically

similar to those of the SRAM PUF. Like the SRAM PUF, the response bits gener-

ated by these PUFs are obtained only on the device power-up state. The power up

states of 4096 Flip-Flops on 3 different FPGA boards are measured in [21]. After

applying simple majority voting techniques on the output bits, the uniqueness and

reliability are estimated as 50% and 95%, respectively. Also, implementation of
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64 Butterfly cells on 36 FPGA boards yields a uniqueness of approximately 50%

and a reliability of 95% [22]. Finally, a 8192-bit BuskeeperPUF has been imple-

mented on an ASIC platform in [34]. The uniqueness is estimated as 48.88%. At

normal conditions, the reliability is reported as 95.84% and under higher temper-

ature conditions, it is shown to be approximately 83%.

2.3 Delay-based PUFs

2.3.1 Arbiter PUF

Figure 2.3 depicts a basic Arbiter PUF design proposed in [2]. The basic idea

of this scheme is to let a rising-edge signal travel through two different delay

paths. At the end of the delay paths, anarbiter circuit decides which path is the

winner of the race. The arbiter circuit has 2 inputs and 1 output. If the rising edge

arrives at the first input before it arrives at the second input, the output will be

1, and 0 otherwise. The delay paths are implemented as a chainof switch boxes.

Each switch box has aselectsignal which determines the connection between the

2 inputs and the 2 outputs. If theselectis 0 the connection is straight and if it

is 1, the connection is crossed. As shown in the figure, the switch box can be

implemented using two2 − to − 1 multiplexers. Since there are a number of

switch boxes in the chain, the set ofselectsignals can be considered as the PUF

challenge bits, and the outputs for each configuration can beconsidered as the

PUF response bits. The structure of the utilized switch boxes, and thus the delay

lines must be nominally perfectly symmetrical so that the output bits depend only

on the random physical and manufacturing variations. Also,the arbiter circuit

must be completely fair, i.e., it must not have a biased behavior towards a specific

bit. As suggested by Lin et al. in [35], a basic SR latch is the best option for a fair

arbiter because of its symmetric construction.

There is a non-trivial chance that, both delay lines are almost identical. In this

case, the rising edge arrives at the 2 inputs of the arbiter atnearly the same time.
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Therefore, the arbiter goes into its metastable state and after a short period of time,

it will settle down in one of its 2 stable states. Although theoutput in this case is

totally random, it is not static for each device and therefore, it is the main cause

of unreliability in an Arbiter PUF.

…..

…..

Switch Box 

Arbiter 

Challenge 

0

1

0

1

Response bit 

Figure 2.3: A basic Arbiter PUF design [2]

Gassend et al. [36] implemented the basic Arbiter PUF designon a set of

FPGA chips. This implementation lacks low-level control over the placement

and routing of the delay lines. The reliability is reported to be 99.9% under nor-

mal conditions, which is a high value. However, the uniqueness of this scheme

has an extremely low value: 1.05%. Hence, this Arbiter PUF implementation is

very biased which is a result of non-symmetric delay line design. Another imple-

mentation is performed by the same group on ASIC platform which controls the

placement and routing of the switch boxes. The uniqueness isshown to improve

significantly: 23%. But, it is still far from the ideal 50%. The reliability is also

shown to be very high: 99.3% under normal conditions and 95.18% under high

temperature conditions.

The most important issue with the basic Arbiter PUF is its weak resilience

against modeling attacks. The digital delay line is additive by nature, meaning

that, the total delay of the delay line paths is the sum of the delay of the switch

boxes in the chain. Therefore, an attacker will be able to predict unknown re-

sponses as accurately as possible after monitoring a specific number of challenge

response pairs. It is shown in [25] that the basic Arbiter PUFscheme is 96.45%
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predictable after observing 5000 CRPs. Hence, it is easily broken through mod-

eling attacks.Feed-forwardArbiter PUF is thus proposed in [2] to increase the

resilience of Arbiter PUFs against modeling attacks. The idea of feed-forward Ar-

biter is shown in Fig. 2.4. As we can observe, theselectsignal of a switch box in

the main delay path is determined by the inserted arbiterA∗. The implementation

results on ASIC platform indicate that the uniqueness of thenew Arbiter PUF is

increased to 38%, while its reliability is decreased to 90.16% under high temper-

ature conditions. The reliability is decreased because thenumber of arbiters are

increased in the design and as discussed before, each arbiter can go to a metastable

state which results in noisy outputs. This scheme is also shown to be vulnerable

against modeling attacks [37,38]. In fact, the feed-forward Arbiter PUF is shown

to be 97.5% predictable after observing 50000 CRPs.

…..

…..

Switch Box 

Arbiter 

Challenge 

Response bit 

Arbiter 

A*

Figure 2.4: The feed-forward Arbiter PUF design [2]

Majzoobi et al. proposed a more advanced technique to make Arbiter PUFs

resilient against modeling attacks in [39]. In this technique, multiple arbiter PUFs

are used in parallel and their outputs are XOR’ed to generatethe response bits.

Although this technique makes modeling attacks much harder, it is still shown

that modeling attack against such scheme is feasible. Rührmair et al. show that

the new scheme with 64 switching boxes and 3 parallel arbiters is 99% predictable

with 60000 challenge-response pairs being observed [38].
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2.3.2 RO PUF

Figure 2.5 shows a basic RO PUF structure proposed in [1]. It includesN identical

u-stage ring oscillators shown in Fig. 2.6. Note that, the number of stages in a

ring oscillator is the number of inverters in the feedback loop. The ring oscillator

generates a clock signal, the frequency of which is directlyrelated to the delay of

the inverters.

Counter

Counter

Challenge

>?

Response

0 or 1

Ref_Counter
Ref_Clock Run Time? 

Figure 2.5: An architecture of an RO PUF [1]

The outputs of the ring oscillators are connected to the inputs of twoN−to−1

multiplexers. A2 log2N-bit challenge selects a pair of ring oscillators, the outputs

of which will be connected to the clock inputs of the two counters.

…

Enable

odd number of inverters (u)

Figure 2.6: A basic ring oscillator circuit

The two counters will start counting at the same time and after a specific pe-

riod of time (determined by theRef CounterasRun Time), the counter outputs

are compared. If the upper counter has a greater value, the response bit will be

1, otherwise 0. Theoretically, the oscillation frequency of all the ring oscillators
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should be the same because they are exactly identical. However, due to the in-

herent inter-chip and intra-chip process variations, as well as the environmental

conditions, the delays of the inverters will vary across different ring oscillators,

thus affecting the oscillation frequency of the ROs [28]. Note that, the pair of

ring oscillators that generate two oscillation frequencies which differ more, will

produce a more reliable response bit, because the environmental changes will less

likely reverse the relation between their frequencies. In other words, the reliability

of a PUF depends greatly on the difference between the oscillation frequencies of

any RO pair. Additionally, one of the advantages of the RO PUFis that, the ring

oscillator can be implemented as a hard macro and instantiated as many times as

needed in the top-level design. Using this technique, all the ROs will be identical

in terms of placement and routing. A large scale characterization of RO PUF is

provided in [26]. The uniqueness is shown to be 47.31% and thereliability is

measured to be 99.14% under normal conditions.

In order to improve the reliability of an RO PUF, a 1-out-of-γ masking was

introduced in [1]. In this scheme, the RO pair that has the maximum frequency

distance among other pairs are selected and their frequencies are compared to

produce the response bit. The reliability of this PUF schemeimplemented on 15

FPGA chips shows a uniqueness of 46.15% and a reliability of 99.52% under nor-

mal conditions [1]. The main drawback of this scheme is the huge area overhead.

In fact, γ times more area is used to produce the same number of responsebits.

Maiti et al. addressed this drawback by proposing and constructing aconfigurable

RO [3]. Figure 2.7 depicts their proposed 3-stage configurableRO, each stage of

which can fit into 1 SLICE.

Enable

G1 G3G2

Figure 2.7: Maiti’s Configurable RO [3]
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Despite the basic RO (Fig. 2.6) that has only one path in the feedback loop, in

this configurable RO the three signals,G1,G2, andG3 can select the inverters to

be included in the loop. This provides us with 8 different ring oscillators (because

of the delay variations of different LUTs and wires within the FPGA), while it

occupies the same amount of area (1 CLB) compared to a basic RO. Similar to

the 1-out-of-γ masking scheme, a configuration for the one pair of configurable

ROs which has the maximum frequency distance among the 8 configurations can

be selected in order to improve the PUF reliability. In summary, the configurable

ROs can be used in a 1-out-of-γ manner (whereγ = 8), while occupying the same

amount of area. Another important advantage of the Maiti’s configurable RO is its

ability to create 8 response bits instead of a single response bit. Implementation

results for 64-, 128-, and 256-RO PUFs under varying voltageand temperature

shows that, using the 1-out-of-8 scheme with the configurable RO improves the

PUF reliability while maintaining a high value of uniqueness.

In addition, Xin et. al improve Maiti’s configurable RO by increasing the

number of possible configurations to 256 [4]. Figure 2.8 shows their proposed

configurable 3-stage RO which can also fit into 1 CLB. As we can see, similar to

Maiti’s design, each stage is implemented in 1 SLICE. However, a latch is inserted

in all SLICES and the signalseldetermines whether or not a latch should be in-

cluded in the path coming from the preceding stage. Because the delay associated

with each latch is random and unpredictable due to manufacturing variations, it

can be considered as another random factor in the PUF design that helps enhance

the PUF unclonability. Note that, the other select signals,bxi, have the same

functionality as select signals,Gi, in Maiti’s RO.

Because there are 8 configuration signals in the ring oscillator, namelysel[3..0]

and bx[3..0], 256 different RO configurations are available, each of which can

generate different oscillation frequencies. Thus, this scheme is able to generate

even more response bits for a given challenge while occupying the same amount

of area. It is shown that the reliability of this RO PUF designwith 128 ROs is
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Figure 2.8: Xin’s Configurable RO in One CLB [4]

98.98% and the uniqueness is reported to be 40% for the same number of ROs.

In addition, a multi-voltage RO PUF is proposed in [5] as depicted in Fig. 2.9.

The idea behind this scheme is the dependency of the combinational path of digital

cells delay on the supply voltage. As we can see in Fig. 2.9, the supply voltage

of each column of inverters is different and can be selected amongd different

values. Because the oscillation frequency of each RO depends on the delay of

the inverters included in its feedback loop, and the delay ofthe inverters depends

on process variations as well as the supply voltage, different ROs generate clock

signals with different frequencies. The authors claim thatthis new RO PUF can

produce a higher number of response bits, consumes less amount of area, and is

more reliable in case of temperature variations. It can generate a higher number

of response bits because the supply voltage of the differentcolumns is considered

as another random factor that can directly influence on the oscillation frequencies

of the ROs. Therefore, by changing the supply voltages of theinverter columns,

each pair of ROs can generate a set of different response bits. However, one of the

important drawbacks of this scheme is that, the inverters used in different columns

are not identical any more. Thus, if an attacker gains accessto the supply voltage

configuration of a chip through an invasive attack, they would most likely estimate



CHAPTER 2. LITERATURE REVIEW 18

the most probable response bits.
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…
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vdd1 vdd2 vdd3 
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… vcu

vdd1 vdd2 vdd3 

Figure 2.9: Multi-voltage RO PUF [5]

The 1-out-of-γ masking scheme proposed in [1] is a good example of PUF

post-processing. In fact, an additional processing is performed on the ring oscil-

lator frequencies to provide more reliable response bits. In addition, the previous

schemes suffer from the fact that, the number of PUF responsebits and the num-

ber of challenge-response pairs provided by the PUF are limited to the area. The

idea of RO frequencies post-processing is further investigated in [6]. In this study,

an identity-mapping functionalong with a quantization process are applied on the

RO frequencies in order to increase the number of challenge-response pairs. The

proposed scheme is shown in Fig. 2.10.

Sample

Measurement

Identity

Mapping
Quantization 

Challenge Response

Helper Data 

Digital DigitalPhysical Quantity Real Value 

Figure 2.10: The RO PUF with identity-mapping [6]

In the sample measurement phase, the challenge,c, selects each ring oscillator

one at a time and the selected RO frequency is measured and recorded. Therefore,

the ”Physical Quantity” in the figure refers to the RO frequencies. In the identity-

mapping phase, any subset of RO frequencies whose cardinality is greater than 2

is selected and a correspondingQ-value is computed for each subset. The ”Real
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Value” in the figure refers to thisQ-value because it is not a digital value and

it can have more than 2 values. Therefore, a quantization process is required to

transform these real values to digital strings which are used as the PUF response

bits. It is shown that, the proposed scheme can provide upto2N −N − 1 response

bits, whereN is the number of ring oscillators. Therefore, it is observedthat, with

a small number of ring oscillators (and thus, a small area cost), a large number

of response bits and a large set of CRPs can be produced. The only expense that

is paid is the additional post-processing applied on the RO outputs. Experimen-

tal data obtained from an implementation on 125 FPGAs shows auniqueness of

49.99% which is nearly ideal. Also, the reliability is demonstrated to be 90%

under high temperature conditions (70◦C).

Another good example of post-processing on the generated ROfrequencies

is the one proposed by Maes et al. in [7] and shown in Fig. 2.11.There areβ

batches of ring oscillators where each batch containsα ring oscillators. In total,

there areβ × α number of ROs. The design of each batch is similar to the basic

RO structure shown in Fig. 2.5, i.e., allα ring oscillators are fed into anα− to−1

multiplexer and the output of the multiplexer is connected to the clock input of a

counter. The counter counts for a specific period of time which is determined by

a reference counter. The count value after this run time represents the frequency

of the selected RO. The frequencies ofβ ROs selected from each batch are mea-

sured simultaneously and anh-bit response is generated based on the ordering of

the measured frequencies. Therefore, the total number of generated response bits

is equal toh × α. The process of encoding theβ frequency measurements and

transforming them into anh-bit response is performed in 3 steps. First, the mea-

sured frequencies are normalized by removing the oscillator-dependent structural

bias. The bias value is shown to be the mean value of the RO frequency which is

estimated by averaging the frequency over many measurements on many devices.

The estimated mean value for different ROs are called the normalization terms

which need to be computed only once and can be stored in a ROM for later use.

Subtracting this mean value from the measured frequency results in the normal-
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ized frequency. The normalized frequencies are then transformed into anh′-bit

vector based on the order of the frequencies using the proposed Lehmer-Gray En-

coder. It is shown that, some bits among the generatedh′ bits are biased and/or

dependent to each other. Therefore, in order to increase theentropy and thus, the

randomness of the response bits, a simple compression is performed on theh′

bits. In fact, the bits which suffer the most from the bias and/or dependencies are

XOR’ed with each other to produce anh-bit response, whereh′ ≤ h.

RO 11 RO 12 RO 1

RO 21 RO 22 RO 2

RO 1 RO 2 RO

…

…

…
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Figure 2.11: The RO PUF structure proposed in [7]

Possible modeling attacks that can be applied on the Basic ROPUF are dis-

cussed in [38]. It is mentioned that, if an attacker can select the challenge-response

pairs adaptively, they can sort the RO frequencies in a specified order without

knowing the exact frequency of each RO. Then, the attacker will be able to pre-

dict the responses with a correctness rate of 100% because the absolute value of

the RO frequency does not have any effect on the generated response. In fact,

the response is produced based on the ranking of the RO frequencies. Maiti et

al. investigate the security of their proposed RO PUF with identity-mapping ( [6])

against this modeling attack. Since the produced response of this scheme does

not solely depend on the frequency ranking of the ROs, it is shown to be resilient

against this attack. In other words, because the RO frequencies are first trans-

formed intoQ-values, and then theQ-values are transformed into binary strings

using the quantization function, the sorting technique proposed in [38] will not

work against this scheme. Additionally, five other cases areconsidered to analyze
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the security of the RO PUF with identity-mapping in [6]: uniformity of response,

response conditioned by challenge, inter-response dependency test, differential at-

tack, and reverse engineering attack. The proposed scheme is shown to be resilient

in all cases [6].

Finally, the effect of the FPGA chipagingon the Basic RO PUF is investigated

in [40]. Aging is considered to be anirreversibletemporal change that has the po-

tential of affecting the reliability and randomness of the PUF response and thus,

making the PUF unsuitable for authentication and secret keygeneration applica-

tions. It is shown that, the reliability of the RO PUF is reduced by 6% with aging.

However, the uniqueness and entropy of the RO PUF do not seem to be affected

by this parameter. Therefore, the security of the RO PUF is not compromised with

aging.

2.3.3 Glitch PUF

Any combinatorial logic has a glitch behavior. The occurrence, the number and

the shape of the glitches on the output of the combinatorial logic is partially ran-

dom and device-specific depending on the random process variations. The glitch

behavior of such circuit can thus be converted into random response bits. In other

words, Glitch PUFs produce response bits from the unwanted glitches in the cir-

cuit.

Anderson PUF proposed in [8] is an example of Glitch PUFs. As discussed be-

fore, in order to have a set of identical ring oscillators in terms of placement and

routing, one should create a ring oscillator as a hard macro and instantiate it as

many times as needed in the top level PUF design. The drawbackof this approach

is that, the design flow becomes too complicated with the use of hard macros. In

fact, the designer must work at a lower level of abstraction than Register-Transfer

Level (RTL). Also, routed hard macros tend to cause longer run times in the Place

and Route (PAR), and might even cause PAR to crash. The Anderson PUF ad-

dresses these issues. It does not need the use of hard macros and can be easily
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embedded in a design’s HDL. Figure 2.12 depicts the proposedPUF circuit.
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Figure 2.12: The proposed Anderson PUF circuit [8]

Two LUTs within a slice are used as 16-bit shift registers. LUT A is initialized

with 0x5555 and LUT B is initialized with0xAAAA. Therefore, shift register A

generates a bit stream of0101... and shift register B generates a bit stream of

1010....Note that, these two bit streams are complement of each other. Because

the delays associated with the shift registers and the multiplexers they drive are

different due to process variations, the outputN2 can be either a constant 0 or a

short positive spike. The presence or absence of a positive spike onN2 is utilized

to decide the response bit. This process is shown in Fig. 2.13. The response bit

is 1 if a spike is applied to the asynchronous preset input of the flip-flop, and 0

otherwise. The PUF circuit shown in Fig. 2.12 generates only1 response bit. This

circuit can be instantiated as many times as needed to createa multi-bit response.

PRE

D Q

N2

0 or glitch 

clk

Flip-Flop

0 or 1 

(response bit) 

Figure 2.13: PUF response bit generation [8]

The aforementioned design along with a pulse width tuning approach are im-

plemented on a Virtex-5 65nm FPGA and the performance is analyzed under
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temperature variation. It is shown that, on average, 3.6% ofsignature bits are

unstable under high temperature conditions, which is in line with other published

PUF circuits. Also the uniqueness is reported 48.28%. Another implementation

of a 64-bit Anderson PUF on 5 Spartan-6 FPGAs in [41] shows a uniqueness of

45.62%.

Another example of Glitch PUFs is the one proposed in [29] andlater im-

proved in [9]. Figure 2.14 depicts the Glitch PUF proposed in[9]. The generated

response bit is the parity of the number of glitches that occur during a specific

period of time. In fact, the output of the combinatorial logic, which is chosen to

be the AES S-Box as an example, is connected to a toggle flip-flop. If the number

of glitches is odd, the response will be 1 and if it is even, theresponse will be

0. To improve the reliability of the proposed scheme, the unstable bits are iden-

tified in a pre-processing stage and the information about them is stored in the

system. These unstable bits are ignored when the PUF is actually used in practice.

This technique is calledbit-maskingand adds extra overhead to the system but

it is shown to improve the reliability, significantly. The proposed scheme along

with the bit-masking technique is implemented on 16 FPGA chips and the relia-

bility is reported to be 98.7% under normal conditions. However, it is shown that

the applied bit-masking technique ignores almost 38% of theresponse bits. This

demonstrates that, the proposed Glitch PUF without the bit-masking technique

suffers from a substantial instability. Since the bit-masking technique is a general

technique and not specific to Glitch PUFs, it is concluded that the proposed Glitch

PUF does not show a suitable practical behavior. In addition, the uniqueness is

reported to be 35%.

Input

Register
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Figure 2.14: The Glitch PUF [9]
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Table 2.1: Comparing the performance of different PUF schemes in the literature
in terms of uniqueness and reliability (%)

PUF Scheme Uniqueness
Reliability

Platform
Number Any

Normal Higher Temperature of Processing
Conditions Conditions Boards Applied?

Basic RO[26] 47.31 99.14 96
Xilinx Spartan

125 No
3E FPGA

RO with 1-out-of-γ
46.15 99.52 N/A

Xilinx Virtex 4
15 Yes

masking [1] LX25 FPGA

Configurable RO [4] 40 98.98 N/A
Xilinx Spartan

4 Yes
3E FPGA

RO with identity-
49.99 99 90

Xilinx Spartan
125 Yes

mapping [6] 3E FPGA
RO with Lehmer-

48.4 98 91
Xilinx Spartan 6

10 Yes
Gray Encoder [7] XC6SLX45 FPGA

Anderson [8] 48.28 N/A 96.4
Xilinx Virtex

36 No
5 FPGA

Anderson [41] 45.62 N/A N/A
Xilinx Spartan 6

5 No
XC6SLX45 FPGA

SR Latch [20] 50.55 96.96 N/A 130nm CMOS ASIC 19 No
SR Latch [34] 37.01 96.6 87.29 65nm CMOS ASIC 192 No

Table 2.1 summarizes the performance of the PUFs discussed in this chapter in

terms of uniqueness and reliability. Note that, a fair comparison between different

PUFs performance can be done only when they are all implemented on the same

platform, under the same conditions, and even designed by the same developer.



Chapter 3

Implementation Results

In this chapter, we provide the implementation results of different PUF schemes in

terms of reliability, uniqueness, uniformity, and bit-aliasing. First, the formal def-

initions and formulations of these PUF performance metricsare presented. Then

more details on the implemented schemes, design parameters, and measurement

system are provided. Finally, the implementation results are presented and dis-

cussed.

3.1 PUF Performance Metrics

In this section, four important PUF characteristics including reliability, unique-

ness, uniformity, and bit-aliasing are discussed. Therandomnessof a PUF re-

sponse is determined by itsentropy. However, it is very difficult to estimate and

calculate the entropy of a PUF response because one cannot learn the complete

details about the statistical distribution of the PUF responses which is generally

determined by very complex and even chaotic physical processes [34]. So, the

randomness of the PUF responses is truly indicated by uniqueness, uniformity,

and bit-aliasing [6].

25
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3.1.1 Reliability

Reliability of a given PUF instance is a measure of stabilityof the PUF response

bits to a given challenge at different times and under different conditions [3]. Ide-

ally, the value of reliability is 100%, meaning that the PUF under study generates

the exact same response to a given challenge at different times and under different

conditions, such as different temperatures or different supply voltage values. It is

defined as [3]:

Reliability = (1−
2

m× (m− 1)

m−1∑

i=1

m∑

j=i+1

HD(ri, rj)

a
)× 100% (3.1)

wherem is the number of response samples,a is the number of response bits, and

HD is the Hamming distance between two response samplesri andrj . So, we

basically takem number of samples of the response of a given PUF instance to

a specific challenge, calculate the Hamming distance between any two responses

(where the total number of unique comparisons betweenm responses ism×(m−1)
2

),

and calculate the average number of unstable bits amonga response bits. This

value represents the average instability or intra-distance of the given PUF instance.

Finally, reliability is derived by reducing this value from100%.

3.1.2 Uniqueness

Another important feature of a PUF is its uniqueness. Uniqueness is a measure

of inter-distance variations of the response bits of different PUF instances. In

other words, if a specific challenge is applied at the same time and under the same

conditions to two identical PUF instances, the response of the two PUFs should

be different. Ideally, this value should be 50%. It is calculated as [3]:

Uniqueness =
2

g × (g − 1)

g−1∑

i=1

g∑

j=i+1

HD(ri, rj)

a
× 100% (3.2)

whereg is the number of PUF instances under study,a is the number of response

bits, andHD is the Hamming distance between two response samplesri and
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rj. The same challenge is applied tog identical PUF instances and the average

Hamming distance between the response bits of any two PUF circuits is calculated

(where the total number of unique comparisons betweeng different PUF circuits

is g×(g−1)
2

).

3.1.3 Uniformity

Uniformity is the measure of uniform distribution of 0’s and1’s in the response

of a single PUF instance. It is defined as [14,42]:

Uniformity =
1

m× a

m∑

i=1

a∑

j=1

ri,j × 100% (3.3)

wherem is the number of response samples,a is the number of response bits, and

ri,j is thej-th bit of thei-th response sample. Ideally, uniformity should be 50%

meaning that 50% of the response bits are 1 and 50% are 0.

3.1.4 Bit-aliasing

Another important indicator of a PUF randomness and unclonability is bit-aliasing.

The bit-aliasing of thej-th response bit is the average Hamming weight of that bit

position across several PUF instances. Ideally, this valueshould be0.5 for all bit

positions in the PUF response. It is defined as [26]

Bit− aliasingj =
1

g

g∑

i=1

ri,j (3.4)

for all j, 0 ≤ j ≤ a, whereg is the number of PUF instances andri,j is thej-th

bit of thei-th PUF instance response.

3.2 Design concepts: Basic PUFs

Among the memory-based PUF schemes, the SR Latch PUF is chosen because of

its ability to re-generate the response bits when the circuit is powered and opera-
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tional. We also implement the Basic RO and Anderson PUFs and we evaluate and

compare their performance through statistical analysis.

3.2.1 SR Latch PUF

A NAND-based SR Latch PUF is implemented as shown in Fig. 3.1.A clock is

connected to the reset signal and whenever the level of the clock is 1, the output

bit is read and recorded. Note that, if we need to obtain anN-bit response, we

have to instantiate the SR Latch unitN times and obtain 1 bit from each unit.

LUT

(NAND) 

LUT

(NAND) 

Response

clock
D

D

D

D

Q

Q

Q

Q

Figure 3.1: The NAND-based SR Latch [10]

In order to achieve the best results for the SR Latch PUF in terms of random-

ness of the response bits, some details related to the implementation of the SR

Latch have to be considered [10]. First of all, the flip-flops used on the input side

of the latch are necessary to reduce the skew of the clock signal. The flip-flop

used on the output bit (Q signal) is used to balance the capacitive load of theQ

signal with the capacitive load of theQ signal [10]. Note that, our platform in

this study is a Virtex II Pro FPGA evaluation board. Each CLB of a Virtex II Pro

FPGA has four SLICEs, and each SLICE contains two lookup tables and two flip-

flops. Therefore, each lookup table (NAND gate) along with its input and output

flip-flops are implemented in a single SLICE. So, the SR Latch shown in Fig. 3.1

requires only two SLICEs which can be placed in a single CLB. However, in or-
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der to guarantee the symmetrical implementation of theQ andQ signals, the two

SLICEs have to be placed in two separate CLBs. Even the distance between the

two CLBs is important and has direct effect on the PUF performance. A thorough

analysis is performed on the effect of the placement of the CLBs on the random-

ness of the generated response bits in [10]. Based on our initial implementations

and experiments, we obtained the best results when the distance between the two

CLBs is 1 CLB. In other words, if one of the lookup tables alongwith the cor-

responding flip-flops is fitted in the SLICEX0Y0, the other lookup table and its

flip-flops are implemented in the SLICEX0Y4.

3.2.2 Basic RO PUF

As discussed before, an RO PUF generates the response bits bycomparing the

frequencies of two different ring oscillators (Fig. 2.5). Note that, the counter size

and run time should be carefully selected because, as we can observe, the response

of the PUF relies on the difference between the oscillation frequency of different

ring oscillators. Thus, the run time should be long enough todifferentiate between

the oscillation frequency of different ring oscillators. On the other hand, it should

not be too long to cause a counter overflow. Also, the counter size should be

big enough to prevent a counter overflow. A more detailed discussion on how to

select the counter size and run time is provided in [13]. Alsonote that, in order

to generate anM-bit response,M different challenges (where each challenge is

2 log2N bits wide) have to be applied to makeM comparisons between different

ROs. So, one of the disadvantages of this design is the low ratio of the number of

response bits to the number of challenge bits (1
2 log

2
N

).

The maximum number of possible comparisons betweenN different ROs is

equal to:N×(N−1)
2

. However, not every comparison will result in an uncorrelated

response bit. For example, if A is greater than B and B is greater than C, then A

will be greater than C. Therefore, the comparison between A and C is correlated to

the comparisons between A and B, and B and C. It is shown in [3] that, selecting

and comparing the adjacent RO pairs (i.e., comparingRO1 with RO2, RO2 with
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RO3, RO3 with RO4, etc.) eliminates the effect of this correlation. Thus, we

perform onlyN−1 comparisons out of the total number of comparisons, resulting

in a response which isN − 1 bits wide.

3.2.3 Anderson PUF

As mentioned in Chapter 2, Anderson PUF design is an example of the Glitch

PUFs which produce response bits from unwanted glitches in the circuit (Fig.

2.12 and 2.13). The response bit is decided based on the presence or absence of

a glitch signal on the output of the top carry-chain multiplexer (N2). The most

important factor that determines the quality of this designin terms of randomness

is the width of the produced glitch. If the glitch is too narrow, it will be damped

while it propagates through a wire which acts like a low pass filter. Thus, even if

a glitch is produced, the response will be 0 because the glitch is notseenby the

flip-flop. If the 2 shift register-multiplexer blocks, A and B, are located very close

to each other, the produced glitch will be too narrow and the response bits will

always be 0. In fact, 100% of the response bits will be 0 in thiscase. On the other

hand, if the 2 blocks, A and B, are located in a way that they aretoo far from each

other, a glitch will always be present onN2 and therefore, the response bit will

always be 1. The concept oftuning the glitch widthis utilized in the proposed PUF

design to address this issue [8]. The idea is to widen the produced glitch so that

it is seen by the flip-flop. This is accomplished by inserting some intermediate

blocksbetween the blocks A and B, as shown in Fig. 3.2.

Note that, the shift registers in the intermediate blocks are initialized with all

1’s. So, they act like a simple wire. They only cause the transitions from B’s

output to take a little longer and therefore, the glitch willbe widened. Now, if

too many intermediate blocks are inserted between A and B, the response bits will

be 1 with higher probability. So, all the possible number of intermediate blocks

should be tested in order to achieve the best result in terms of uniformity and

randomness. The best tuning was shown to be 5 intermediate blocks (shown in

Fig. 3.2) in [8]. Based on our tests, the tuning which resulted the best uniformity
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LUT B 

LUT A 

PRE 

CLB i

CLB j

SLICE 

SLICE 

SLICE 

SLICE 

Figure 3.2: Tuning the glitch width in the Anderson PUF on a Virtex II platform
[8]

was also 5 intermediate blocks.

3.3 Design Concepts: The Proposed Hybrid PUF

In this section, we propose the idea of the Hybrid PUF structure. The idea is to

combine two (or more) available sources of randomness in a way to improve the

uniqueness while maintaining other important performancemetrics. This struc-

ture is based on the Basic RO PUF which can be combined with anyother PUF

unit that produces a random bit. The RO PUF and the Anderson PUF are com-

bined using two methods and it is shown that the second methodresults in better
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performance. Therefore, we combine the RO PUF with the SR Latch PUF as an-

other example using the second method only. Finally, the implementation results

are presented and discussed in Section 3.5.

3.3.1 RO/Anderson Hybrid PUF, Method 1

As previously discussed, the RO PUF uses the randomly generated RO frequen-

cies to produce the response bits, and the Anderson PUF uses the shift register-

multiplexer delay as its random parameter to generate the response bits. We try to

combine these two ideas to increase the PUF randomness. As shown in Fig. 2.12,

the Anderson PUF works in a clocked manner and the clock is thesame for all

instances. Also note that, the inverters in the RO circuit are implemented using

lookup tables in the FPGA. Thus, an inverter in the RO circuitand a 1-bit buffer

can be used as LUT A and LUT B in the Anderson PUF design. Figure3.3 shows

the proposed scheme.

Enable

0

0
0 or 1 

1

PRE

clock

0

0 1 

1

0 or clock 

D Q

0 or glitch 

Figure 3.3: The proposed RO/Anderson Hybrid PUF structure,method 1

Note that, the output of the inverter and the buffer are complement of each

other which is a requirement of the Anderson PUF. In fact, theproposed scheme

is similar to the Anderson PUF except the fact that, the clockof the system is

generated using a ring oscillator which can be different across different instances.

So, there are two sources of randomness in the scheme, one is the random clock

frequency generated by the RO and the other one is the lookup table-multiplexer

delay. The output of the flip-flop is AND’ed with the RO clock. Therefore, the

output of this scheme is either a 0 or a clock. Similar to the ROPUF structure
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(Fig. 2.5), this block is instantiated as many times as needed and the counter

values are compared after a specific run time to produce the required number of

response bits. Note that, if we haveN number of blocks and if we compare

only the adjacent pairs, as discussed earlier, the number ofresponse bits will be

N − 1. Let us consider two instances of this scheme,instance iand instance j.

Because each instance can have 2 different outputs, 0 or a random clock, there are

4 different scenarios shown in Table 3.1. As we can see, the response bit produced

in scenario 1 is 1, scenarios 2 and 3 will produce 0, and the response bit of the

scenario 4 will be either 0 or 1 (with probability of0.5 for each of them). Note

that, the response bit is the comparison result of the two instances outputs after a

specific run time, similar to the Basic RO PUF scheme. Becausethe occurrence

probability of all scenarios are theoretically equal to0.25, it is expected to have

37.5% (= (0.25× 1+0.25× 0.5)× 100%) of the response bits to be 1 and 62.5%

(= (0.25 × 1 + 0.25 × 1 + 0.25 × 0.5) × 100%) to be 0. This means that the

proposed method has a biased behavior toward the bit 0 and does not improve the

randomness of the response bits. The implementation results presented in Section

3.5 verify this fact.

Table 3.1: RO/Anderson Hybrid PUF method 1 different scenarios
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Instance i output Clock 0 0 Clock
Instance j output 0 0 Clock Clock

Response bit 1 0 0 0 or 1

3.3.2 RO/Anderson Hybrid PUF, Method 2

Figure 3.4 shows method 2 for combining the RO PUF and the Anderson PUF.

The Anderson PUF implementation is exactly the same as the original Anderson

in terms of tuning and in the sense that the input clock to all instances are the

same. The Anderson output bit which is 0 or 1 (with theoretical probability of0.5

for each of them), is connected to theselectsignal of the2 − to − 1 multiplexer

in the ring oscillator circuit. If theselectsignal is 0, the ring oscillator will have 5
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inverters in its feedback loop and therefore, produces a clock with the frequency

of f5. If the selectsignal is 1, there will be only 3 inverters in the feedback

loop which results in a clock with the frequency off3. Note that,f3 is always

greater thanf5 because the frequency of a ring oscillator depends on its feedback

loop delay. A higher number of inverters in the feedback loopresults in a larger

delay and a higher clock period and thus, a lower frequency. So, if there are two

instances of this block,instance iandinstance j, there will be 4 different scenarios

based on the Anderson output bit. These scenarios along withtheir produced

response bits are listed in Table 3.2. Similar to Table 3.1, the produced response

bits are results of comparison between two instances frequencies.
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Figure 3.4: The proposed RO/Anderson Hybrid PUF structure,method 2

Table 3.2: RO/Anderson Hybrid PUF method 2 different scenarios
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Instance i Anderson output 1 0 0 1
Instance j Anderson output 0 0 1 1

Response bit 1 0 or 1 0 0 or 1

The response bit produced in scenario 1 is 1, scenarios 2 and 4will produce

either 0 or 1 (with probability of0.5 for each of them), and the response bit of sce-

nario 3 is 0. Because the occurrence probability of all scenarios are theoretically

equal to0.25, we expect to have 50% (= (0.25×1+0.25×0.5+0.25×0.5)×100%)
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of the response bits to be 1 and 50% (= (0.25×1+0.25×0.5+0.25×0.5)×100%)

to be 0. This means that the proposed method maintains the 50%uniformity of the

response. It also has a potential to improve the uniqueness of the PUF response

because it produces the response bit using two sources of randomness instead of

one. The implementation results presented at the end of thischapter verify this

fact.

An interesting fact about the proposed scheme (Fig. 3.4) is that, even if the

occurrence probabilities of the scenarios are not equal to each other, the theoreti-

cal uniformity of the response will still remain 50%. The occurrence probability

of each scenario is determined by the probability of 1 and 0 generated by the An-

derson PUF (or any other utilized PUF, the output of which is connected to the

selectsignal of the multiplexer). Let us denoteProb1 as the probability of the

generatedselectsignal to be 1 andProb0 as its probability of being 0. Note that

Prob1 = 1 − Prob0. If the uniformity of the utilized PUF is 50%, we will have

Prob1 = Prob0 = 0.5 and thus, the occurrence probability of all scenarios will

be equal to0.25, as discussed before. Here we assume the general case in which

Prob1 is not necessarily equal toProb0. In this case, the occurrence probabilities

of scenarios 1 and 3 are equal toProb1 × Prob0, the probability of scenario 2 is

equal toProb20, and the probability of scenario 4 is equal toProb21. Therefore, the

uniformity of the produced response will be equal toProb1×Prob0×1+Prob20×

0.5+Prob21×0.5 = Prob0× (1−Prob0)+0.5×Prob20+0.5× (1− Prob0)
2 =

Prob0−0.5×Prob20+0.5+0.5×Prob20−Prob0 = 0.5. Thus, even if the utilized

PUF which generates theselectsignal does not have a uniform distribution of 0’s

and 1’s, the theoretical uniformity of the proposed PUF scheme will still remain

50%. Note that, the provided probability analysis is true only if the Basic RO PUF

is assumed to generate 1 or 0 with equal probability of0.5. The implementation

results in Section 3.5 confirm that this assumption is true.

As another example shown in Fig. 3.5, the RO PUF and the SR Latch PUF

are combined using method 2. The Anderson block is simply replaced with the

SR Latch unit. Similar to the Anderson PUF, each SR Latch unitgenerates 1 bit
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that can be connected to the select signal of the multiplexer. Note that, a flip-flop

is inserted on theenableinput of the RO PUF so that both PUF units (RO and SR

Latch) are enabled synchronously.

0

1

 or (  > )

LUT

(NAND) 

LUT

(NAND) 

0 or 1 

Enable

Figure 3.5: The proposed RO/SR Latch Hybrid PUF structure

3.4 Implementation Details and the Measurement

System

In this section, the PUF design parameters and the response measurement system

are discussed.

3.4.1 Design Parameters

The design parameters used in this study are listed in Table 3.3. The number of

PUF units is determined by the required number of response bits and is only lim-

ited by the area constraints. The number of PUF units is set to128 in all structures

but it can be much greater than this value. So, the number of response bits is 128

in the Anderson and the SR Latch PUFs. Also, the number of response bits is 127
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in the Basic RO PUF, RO/Anderson Hybrid PUF method 1, RO/Anderson Hybrid

PUF method 2, and the RO/SR Latch Hybrid PUF.

Table 3.3: PUF implementation parameters
Parameter Symbol Value

FPGA chip N/A
Xilinx VIRTEX II
Pro XC2VP100

Number of PUF
g 4

instances (FPGA boards)
Ref Counter

Ref Clock 25 MHz
clock frequency

Number of PUF units in
N 128

the challenge-response system
Number of stages

u 5
in each RO

Number of intermediate
N/A 5

blocks in Anderson PUF
Distance between the 2

N/A 1 CLB
NAND gates in the SR Latch

Number of response bits a

128 in Anderson PUF
128 in SR Latch PUF
127 in Basic RO PUF

127 in RO/Anderson Hybrid PUF method 1
127 in RO/Anderson Hybrid PUF method 2

127 in RO/SR Latch Hybrid PUF

Counter run time Run Time 30000 clock cycles

Counter size N/A 32 bits
Number of response

m 50
samples

PUF unit placement N/A 2-Dimensional

Also, the number of stages in the ring oscillator design is set to 5 which means

that 5 inverters are used in the feedback loop. Each ring oscillator uses 5 SLICEs

in 2 configurable logic blocks (CLBs). Note that, the ring oscillator is created as

a hard macro and is instantiated as many times as needed (128)in the top-level

PUF design. Figure 3.6 shows four identical ring oscillators implemented as hard

macros. All the ring oscillators are identically placed androuted. Thus, the only

random parameter which influences on the oscillation frequency is the delay of the

inverters. We have also used the hard macro technique in the SR Latch PUF and

the RO/SR Latch Hybrid PUF. Note that we cannot use the hard macro technique

in the other PUF structures, Anderson PUF, RO/Anderson Hybrid PUF method 1,
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and RO/Anderson Hybrid PUF method 2, because in these structures, the PUF unit

requires a power (VCC/GND) component. Power components areno longer sup-

ported in the 5.1i FPGA Editor and later when creating hard macros. Therefore,

a similar technique proposed in [8] is used to make sure that the placement and

routing of all units are identical. This technique uses therloc andAREA GROUP

physical constraints. Using these constraints, the designer can force the placement

and relative location of the components.

Figure 3.6: Four identical ring oscillators implemented ashard macros: the logic
in the white ellipse represents 1 ring oscillator.

Another important design parameter is the placement of the PUF units in the

chip. It is shown in [43] that, a systematic variation in the components delays in

a die exists in an FPGA chip. In other words, the correlated intra-die variation

causes a systematic pattern of the frequencies of several ring oscillators. As sug-

gested by Maiti et al. in [3], the PUF units should be placed asclose as possible to

each other to eliminate the effect of correlated or spatial intra-die variation. Sev-

eral placement strategies are analyzed in [13]. Based on ourinitial experiments

on different placement strategies, we consider only the 2-Dimensional placement

strategy depicted in Fig. 3.7. In fact, this strategy shows the highest reliability
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and uniqueness among other strategies. All the PUF units in all PUF structures

are placed in theSLICE X56Y88:SLICE X87Y183 range so that the compar-

ison between different structures is fair.

Finally, after implementing the RO/SR Latch Hybrid PUF scheme, it was no-

ticed that the SR Latch PUF is so sensitive to the surroundinglogic. In other

words, the high frequency clocks generated by the RO units affect the perfor-

mance of the SR Latch and, as shown in Section 3.5, the reliability of this scheme

is the worst among all other implemented schemes. Also, the uniqueness of this

scheme does not seem to improve significantly.
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Figure 3.7: 2-Dimensional placement of PUF units

So, we separate the RO and SR Latch units as shown in Fig. 3.8 toreduce

the effect of the surrounding logic. It is shown in Section 3.5 that, separating

the RO and SR Latch units improves the reliability and uniqueness of the RO/SR

Latch Hybrid PUF scheme, significantly. The same method was applied on the

RO/Anderson Hybrid PUF method 2 but the improvements were negligible. It is

concluded that the Anderson PUF is not affected by the surrounding logic as much

as the SR Latch PUF.

3.4.2 Measurement System

Figure 3.9 depicts our measurement system block diagram. The user sends astart

signal via keyboard. It is transmitted to the FPGA board through the serial port
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Figure 3.8: Separating the RO/SR Latch PUF units

of the computer. After receiving the start signal, the PUF starts generating the

response bits and when the response is ready, it is transmitted to the computer

through the serial transmitter. Note that, in this system, the user does not provide

the challenge to the PUF; instead, the challenges are applied internally to the

PUFs to produce the response bits. In addition, in the Anderson PUF and the SR

Latch PUF structures, all the 128 bits of response are obtained at the same time.

However, in a practical PUF, the user applies a specific challenge and checks the

response to verify the PUF instance. The challenge-response system implemented

in this work is only intended to analyze the performance of the PUF structures in

terms of reliability, uniqueness, uniformity, and bit-aliasing.
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Figure 3.9: The measurement system block diagram
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3.5 Results and Discussion

In this section, we provide the implementation results of the seven PUF structures:

SR Latch PUF, Basic RO PUF, Anderson PUF, RO/Anderson HybridPUF method

1, RO/Anderson Hybrid PUF method 2, and two implementationsof the RO/SR

Latch Hybrid PUF. We compare the performance of all structures in terms of relia-

bility, uniqueness, uniformity, and bit-aliasing. The reliability of all structures are

also analyzed under different environmental conditions such as different FPGA

chip ambient temperatures and supply voltage values. The schemes under study

are also compared with each other in terms of the area consumption of their PUF

units. Table 3.4 presents the implementation results in terms of reliability, unifor-

mity, and uniqueness. In addition, figures 3.10 and 3.18 compare the uniqueness

and bit-aliasing of different structures, respectively.

As shown in Table 3.4, the average reliability is almost the same for the SR

Latch, Basic RO, and Anderson PUFs. Also note that, all the Hybrid PUF schemes

show a lower reliability level than other basic schemes (SR Latch, Basic RO,

and Anderson PUFs). This is because there are two sources of instability in the

Hybrid schemes. The source of instability in the Basic RO PUFis the unstable

frequency of a single ring oscillator. In other words, even the frequency of the

clock generated by a single RO is not constant. If the frequencies of two adjacent

ROs which produce 1 bit of response are so close to each other,the generated

response bit will be unstable due to noise effects. The same scenario happens in

the Anderson PUF, where a response bit is produced based on the relation between

the two shift register-multiplexer delays. If these delaysare so close to each other,

the produced response bit will be unstable. In the case of theSR Latch PUF, if

the difference between the strength of the NAND gates is small, the produced

response bit (which is the settling state of the cell) will beunstable.

As mentioned before, the reliability of the RO/SR Latch Hybrid PUF is the

worst among all schemes. We separate the RO and SR Latch unitsto investigate

the effect of the surrounding logic on the SR Latch PUF behavior. As shown in
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Table 3.4, the reliability of this scheme is significantly improved when the RO and

SR Latch units are separated. The same method was applied on the RO/Anderson

Hybrid PUF method 2. However, the improvements were not noticeable. Thus, it

is concluded that, the Anderson PUF behavior is not affectedby the surrounding

logic, compared to the SR Latch PUF.

Table 3.4: Implementation results in terms of reliability,uniformity, and unique-
ness (%)

PUF Scheme
Reliability Uniformity

Uniqueness
Average Variance Average Variance

SR Latch 98.8291 0.07458 36.5156 53.10403 36.1979
Basic RO 99.0249 0.53151 50.0551 6.16962 39.895
Anderson 98.9927 0.12851 64.1328 372.50034 39.974
RO/Anderson Hybrid PUF method 1 98.444 0.20538 45.0669 17.30003 36.0892
RO/Anderson Hybrid PUF method 2 98.4757 0.44152 45.4016 8.51688 48.5564
RO/SR Latch Hybrid PUF 93.6325 7.09239 48.3071 5.02041 39.6325
RO/SR Latch Hybrid PUF with

97.5325 1.58409 49.4094 18.75504 46.063
separated RO/SR Latch blocks

In terms of uniformity, the Basic RO PUF and the RO/SR Latch Hybrid PUF

show the best performance among all schemes. The value of 50.0551% for the

uniformity of the Basic RO PUF confirms that the assumption made in the prob-

ability analysis provided in Section 3.3 is true. Additionally, the RO/Anderson

Hybrid PUF schemes maintain an acceptable level of uniformity, although the

Anderson PUF does not show a good value for this performance metric. This

behavior is totally reasonable based on the probability analysis provided in Sec-

tion 3.3. The problem with the Anderson PUF scheme is the necessary tuning

process. We observed in our experiments that, when we tune the Anderson PUF

for 1 FPGA board, other boards do not seem be tuned at all. For example, the

uniformity of the tuned board is measured to be 50.6875% which is close to ideal.

Now, when the exact same design is implemented on another board, the unifor-

mity shows to be 78.8594%. The high value of variance for uniformity of the

Anderson PUF is due to this variation among different boards. In addition, the SR

Latch PUF does not show a good value for uniformity. The average uniformity of

36.5156% represents a biased behavior of this PUF toward thebit 0, which is not

good for practical purposes.
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One of the most important indicators of a PUF randomness is the uniqueness

of its produced response. An ideal PUF has a uniqueness of 50%. As we can

see in Table 3.4, the RO/Anderson Hybrid PUF method 2 and the RO/SR Latch

Hybrid PUF with separated RO/SR Latch blocks show the best performance in

terms of uniqueness. This shows that, the proposed method takes advantage of

both sources of randomness properly. Figures 3.11, 3.12, 3.13, 3.14, 3.15, 3.16,

and 3.17 show the distribution histogram of the Hamming distance between any

pair of PUF instances, and Fig. 3.10 compares the distribution histograms of

different structures.
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Figure 3.10: Comparison between different schemes in termsof Uniqueness

The best non-ideal PUF would have a normal distribution withthe mean value

of 0.5. As shown in these figures, the RO/Anderson Hybrid PUF method2 and

the RO/SR Latch Hybrid PUF with separated RO/SR Latch blocksshow the best

Hamming distance distribution among other structures. Note that, the value of0.5

is presented using the range [61:65] in the figures because wehave 128 (or 127)

bits of response in different schemes and0.5× 128 = 64 (or 0.5× 127 = 63.5).
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Figure 3.11: Uniqueness of the SR Latch PUF structure
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Figure 3.12: Uniqueness of the Basic RO PUF structure
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Figure 3.13: Uniqueness of the Anderson PUF structure
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Figure 3.14: Uniqueness of the RO/Anderson Hybrid PUF structure, method 1
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Figure 3.15: Uniqueness of the RO/Anderson Hybrid PUF structure, method 2
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Figure 3.16: Uniqueness of the RO/SR Latch Hybrid PUF structure

Moreover, bit-aliasing of a PUF response is an important factor in assessing

the practicality and unclonability of a PUF structure. The ideal PUF has a bit-

aliasing of0.5 for all bit positions. Figures 3.19, 3.20, 3.21, 3.22, 3.23,3.24,



CHAPTER 3. IMPLEMENTATION RESULTS 46

2

3

4

er
 o

f 
O

cc
u

rr
en

ce
s

0

1

2

N
u

m
b

er
 o

f 
O

c

Hamming Distance

Figure 3.17: Uniqueness of the RO/SR Latch Hybrid PUF structure with separated
RO/SR Latch blocks

and 3.25 show the distribution histogram of the average Hamming weight across

different PUF instances, and Fig. 3.18 compares the distribution histograms of

different structures. The best non-ideal PUF would have a normal distribution

with the mean value of0.5. So, the best schemes in terms of bit-aliasing among

the schemes under study are the RO/Anderson Hybrid PUF method 2 and the

RO/SR Latch Hybrid PUF with separated RO/SR Latch blocks. This also verifies

the suitability of the proposed Hybrid scheme as a practicalPUF.
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Figure 3.19: Bit-aliasing of the SR Latch PUF structure
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Figure 3.20: Bit-aliasing of the Basic RO PUF structure
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Figure 3.21: Bit-aliasing of the Anderson PUF structure
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Figure 3.22: Bit-aliasing of the RO/Anderson Hybrid PUF structure, method 1
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Figure 3.23: Bit-aliasing of the RO/Anderson Hybrid PUF structure, method 2
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Figure 3.24: Bit-aliasing of the RO/SR Latch Hybrid PUF structure
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Figure 3.25: Bit-aliasing of the RO/SR Latch Hybrid PUF structure with separated
RO/SR Latch blocks
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Additionally, the effect of the FPGA board ambient temperature on the relia-

bility of different PUF structures is investigated in this study. The ambient tem-

perature is increased up to 70 degrees (◦C) and the reliability of different schemes

is recorded for the temperatures 35, 40, 50, 60, and 70◦C. Figure 3.26 shows the

results of this experiment. Note that, since the RO/SR LatchHybrid PUF struc-

ture has the worst reliability among all other schemes, the reliability behaviors of

other structures are not distinguished well in Fig. 3.26. This is why we have also

provided Fig. 3.27 which is basically the same as Fig. 3.26 with the RO/SR Latch

Hybrid PUF structure removed so that the range of the graph distinguishes be-

tween different schemes, well. Changing the ambient temperature (in the studied

range) does not seem to have a significant influence on the reliability of differ-

ent structures. Since all the PUF structures under study produce response bits

based on the mismatch between any two devices (e.g. the NAND gates in the SR

Latch PUF, the shift register-multiplexer in the Anderson PUF, RO frequency in

the Basic RO PUF, etc.), the temperature influences on the pair of devices almost

equally and in the same direction. Thus, the stability of thePUF response bits is

not affected by changing the ambient temperature, significantly.
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Figure 3.26: The effect of the ambient temperature on the reliability of different
PUF structures
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Figure 3.27: The effect of the ambient temperature on the reliability of all PUF
structures except the RO/SR Latch Hybrid PUF structure

Moreover, we analyze the effect of changing the FPGA chip supply voltage on

the reliability of different PUF schemes. The nominal supply voltage of the chip

is 1.5V and we change it to 1.13, 1.22, 1.37, and 1.72V . The result of this exper-

iment is depicted in Fig. 3.28. Note that, the exact measuredvalue for the nominal

voltage is 1.52V . It can be observed that, changing the chip supply voltage does

not significantly influence the reliability of the Basic RO PUF, SR Latch PUF, An-

derson PUF, RO/Anderson Hybrid PUF method 2, and RO/SR LatchHybrid PUF

with separated blocks. All these schemes maintain their reliability at a high level

even with the decrease or increase in the chip supply voltage. On the other hand,

the RO/SR latch Hybrid PUF shows an interesting trend for itsreliability. In fact,

the nominal voltage surprisingly results in the worst reliability among other values

for the chip supply voltage. In addition, the reliability ofthe RO/Anderson Hy-

brid PUF method 1 with the chip supply voltage of 1.13V is equal to 71.8663%,

which is the worst among all cases. The reliability of this scheme shows the high-

est sensitivity to the chip supply voltage, since it increases significantly when the

supply voltage is increased from 1.13V to 1.22V (increases to 94.9889%). It

also shows a noticeable growth (from 94.9889% to 99.6362%) when the supply

voltage is changed from 1.22V to 1.37V .
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Figure 3.28: The effect of the FPGA chip supply voltage on thereliability of
different PUF structures

Table 3.5: Comparison between different structures in terms of area consumption,
placement tuning requirement, and time per response bit

PUF Scheme
Area

Tuning Required?
Time per

No. of CLBs No. of SLICEs No. of LUTs bit (µs)

Basic RO 2 5 6 No 1200
Anderson 5 6 8 Yes 0.08
SR Latch 2 2 2 Yes 0.04
RO/Anderson Hybrid

6 12 7 Yes 1200
PUF method 1
RO/Anderson Hybrid

5 12 15 Yes 1200
PUF method 2
RO/SR Latch Hybrid

4 9 9 Yes 1200
PUF

Finally, Table 3.5 compares different implemented structures in terms of area

consumption, placement tuning requirement, and required time per response bit.

Note that, except the Basic RO PUF, all other PUF units need a tuning process in

order to achieve the best randomness among the response bits. As we can notice,

all Hybrid PUF structures consume more area and logic resources than the basic

structures. Regarding the required time to produce a response bit, the Basic RO

PUF and all Hybrid schemes which are based on RO PUF consume much greater

time than the Anderson and SR Latch PUFs. This is because of theRun Timethat

needs to be passed so that the produced response bit is more stable.

In summary, the proposed method of combining different PUF schemes is

shown to improve the uniqueness and thus, the randomness of the response, sig-

nificantly. The added area overhead in our scheme is very small compared to
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other available methods in the literature. Also, our proposed Hybrid PUF does

not require any pre-processing or post-processing tasks performed on the input or

output of the PUF units. In addition to the uniqueness being increased signifi-

cantly, other important PUF performance metrics are maintained at an acceptable

level. The proposed method is a general approach and can be further studied and

analyzed using other PUF schemes.



Chapter 4

Secret Sharing Based on Physically

Unclonable Functions

As previously discussed, two main categories of applications for PUFs have been

introduced and analyzed: authentication and secret key generation. In this chapter,

we introduce another important application for PUFs. In fact, we develop a novel

and efficient secret sharing scheme using a PUF to increase the information rate

and provide cheater detection capability for the secret sharing system.

4.1 Introduction

Secret sharing is a fundamental cryptographic primitive which is used in numer-

ous applications such as secure information storage, Byzantine agreement [44],

threshold cryptography [45], secure multiparty computations [46–48], access con-

trol [49], attribute-based encryption [50, 51], and generalized oblivious trans-

fer [52,53]. Secret sharing was invented independently by Shamir [54] and Blak-

ley [55] in 1979. In a basic scheme of secret sharing there aren players and a

dealer who has a secrets. The dealer divides the secret inton shares and gives

a share to each of then playerspi, 1 ≤ i ≤ n. This step is called the share

computation phase. Let us denoteP as the set of all players in the system. An

authorized set is defined as any subset ofP that can reconstruct the secret, in the

53
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secret reconstruction phase, only when all the players in that subset are present.

In fact, if at least one player in the authorized set is not present, other players in

that authorized set will have no information about the secret. The collection of all

the authorized sets is defined as the access structure of the scheme. Shamir’s se-

cret sharing scheme is based on the polynomial interpolation. In this scheme, the

dealer builds a random polynomialf(x) = a0 + a1x+ a2x
2 + . . .+ ak−1x

k−1 by

selectingk − 1 random coefficients,a1, a2, . . ., ak−1. Also,a0 is equal to the se-

cret to be shared,s. Then, the dealer obtainn points on the polynomial,(i, f(i)),

wherei = 1, 2, . . . , n. Each player receives a point as his share. Because the

polynomial is of degreek − 1, at leastk points are needed to calculate all coef-

ficients and reconstruct the polynomial. Once the coefficients are computed,a0

will be saved as the secret,s. This scheme is called(n, k)-threshold secret shar-

ing scheme, meaning that, any subset ofn players whose cardinality is equal to

or greater than a threshold,k, will be considered as an authorized set. In other

words, anyk players will be able to reconstruct the secret, while less thank play-

ers will have no information about the secret. Ito et al. proposed and constructed

secret sharing schemes for general access structures in [56]. Even more efficient

schemes were proposed in [57–61].

Information rate is an important efficiency metric of a secret sharing scheme

and is defined as [62]:

ρ =
log |S|

max log |Sp|
(4.1)

whereS is the set of secrets,|S| is the bit-size of the setS, and for anyp ∈ P ,

the share of the playerp is taken from the setSp. In addition,max represents the

maximum function. In fact, the information rate,ρ, of a secret sharing scheme

is the ratio between the bit-size of the set of secrets and themaximum bit-size of

the corresponding shares given to the players. A secret sharing scheme is called

ideal if ρ = 1. Improving the information rate of a secret sharing scheme is an

important concern [63], which is addressed in this study.



CHAPTER 4. SECRET SHARING BASED ON PHYSICALLY UNCLONABLE FUNCTIONS 55

Another important issue associated with secret sharing schemes is dealing with

dishonest players. In such scenarios, if there is at least one player who fakes his

share, then other honest players cannot gain access to the secret. With some of

the shares being faked, the reconstructed secret,s′, will be different from the orig-

inal secret, i.e.,s′ 6= s. A robust secret sharing scheme is a scheme which can

recover the shared secret even with the existence of some incorrect shares [64].

In fact, if up tot of the shares submitted by the players are fake, a robust secret

sharing scheme can still retrieve the original secret. Someknown robust schemes

are covered in the next subsection. The robustness can be provided by attaching

additional redundancy to the shares given to the players. Adding redundancy to

the shares reduces the information rate, significantly. In this work, we address this

problem and propose, for the first time, a structural model ofan efficient secret

sharing scheme with cheater detection capability, based onphysically unclonable

functions. This scheme can be a new application of PUFs, in addition to authenti-

cation and secret key generation. Note that, with cheater detection capability, the

secret sharing scheme will not have to reconstruct the secret even with some fake

shares because there is always the possibility that the fakeshare is provided by an

illegitimate player. In this case, the scheme can identify and simply exclude the

cheaters from the authorized set.

4.2 Related Work

In this section, we briefly discuss the known robust secret sharing schemes. As

mentioned in [64], the robust secret sharing is impossible if the number of fake

shares is equal or greater than half of the players, i.e.,t ≥ ⌈n/2⌉. There are two

main classes of secret sharing schemes which are robust in the case oft < ⌈n/2⌉

[64]. The first one is the one proposed by Rabin and Ben-Or in [65] based on an

unconditionally secure message authentication code. In this scheme, each player,

pj, 1 ≤ j ≤ n, receives an authentication key,keyji. The playerpj can use his

authentication key,keyji, to verify if the share provided by playerpi, 1 ≤ i ≤ n

andi 6= j, is correct. In other words, each player can verify the correctness of all
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the shares with the help of his authentication keys. When a share is verified to be

correct by at leastt + 1 players, it will be used to reconstruct the secret. As we

can see, each player receivesΩ(nλ) bits in addition to their Shamir share, where

2−λ is the required failure probability in reconstructing the correct secret [64],n

is the number of players, andΩ declares the lower bound notation.

The second scheme is proposed by Cramer, Damgård, and Fehr [66]. In this

scheme, the dealer shares the secrets, which is an element of the finite fieldF,

i.e., s ∈ F among all the players using the standard Shamir scheme. In addition

to the original secret, the dealer shares a randomly chosen field elementy ∈ F

and their productz = s · y ∈ F among the players. In the reconstruction phase,

the reconstructor performs the following for every subset of t + 1 players: he

reconstructss′, y′, andz′ which are supposed to be the secret, the random element,

and their product, respectively. Then, if the equations′ ·y′ = z′ holds, it outputss′

to be the original secret. In fact, using the redundant information,y andz, given

to the players in addition to the actual secret,s, the reconstructor can retrieve the

secret with possibly partly incorrect shares of theset + 1 players. Compared to

Rabin and Ben-Or scheme, this scheme adds much less redundancy to the actual

share. However, the running time of this scheme is exponential in n, because

the reconstructor has to loop over all possible subsets of size t + 1 [64]. A new

robust secret sharing scheme that has the advantages of boththe above schemes is

proposed in [64]. In fact, this scheme has the same low share size as Rabin and

Ben-Or scheme and yet, its share computation and secret reconstruction phases

run in polynomial time. The important problem associated with these schemes

is that they are not efficient schemes in terms of informationrate. In this study,

a general method is proposed to build the existing secret construction schemes

using physically unclonable functions to improve efficiency.

4.3 Preliminaries

We construct our robust secret sharing scheme based on Ito, Saito, and Nishizeki’s

construction [56]. Note that, with a slight modification, our proposed model can
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be built based on other constructions, as well. In addition,the PUF which is used

in our design is a controlled PUF. Therefore, in this section, we briefly describe

and review Ito et al.’s secret construction and controlled PUFs.

4.3.1 Ito, Saito, and Nishizeki’s Constructions

A monotoneaccess structure is an access structure in which, any subsetthat con-

tains an authorized set, is also an authorized set. In Ito et al.’s secret construction,

the dealer shares the secret,s, independently for each authorized setΓ ∈ H, where

H is any monotone access structure. Let us assume thatΓ includesl players. The

dealer choosesl− 1 random strings of bit-size equal to that of the secret, denoted

asr1, r2, . . ., rl−1. The required length of these strings is determined by the secret

bit-size. The dealer then computesrl = s⊕r1⊕r2 . . .⊕rl−1, where⊕ is the bitwise

XOR operation. Next, the dealer gives the shareri to the playerpi ∈ Γ. Note that,

the random strings selected by the dealer should be independent for each player

of each setΓ ∈ H. The reconstruction of the secret can be done only when all the

players in the setΓ pool their shares and computes = r1⊕r2 . . .⊕rl−1⊕rl. On the

other hand, any unauthorized set of players which misses at least one player from

each authorized set will have no information about the secret. For the case where

at least one player from the authorized set fakes his share, the reconstructed secret

will be different from the original secret. Although in a general access structure,

any player can be a member of more than one authorized set, in this study, we

consider the case in which each player is included in only oneauthorized set, for

simplicity. However, this scheme can be extended for the general case, as well. In

this case, each player receives only one random string as their share and because

the bit-size of the random strings should be equal to that of the secret in the ba-

sic scheme, the information rate will be 1 which indicates anideal secret sharing

scheme.

4.3.2 Controlled PUFs

The idea of controlled PUFs is introduced in [11, 12]. As shown in Fig. 4.1,

the idea is to apply an error correcting code (ECC) on the output of the PUF to
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improve its reliability. In addition, two hash functions are applied on the challenge

bits and the ECC output bits in order to restrict the attacker’s direct access to the

PUF challenge and response bits.

The actual challenge which is applied to the PUF and the PUF actual response

arec andr, respectively. However, the challenge and response that are exposed to

the outside world areC andR, and because a hash function is a one-way function,

the actual challenge and response (c andr) cannot be accessed from the outside

world. Of course, if the utilized hash algorithm is known to public, given the

challengeC, one can easily compute the actual challengec (c = hash(C)). But

because hash functions are one-way functions, given the responseR, one can-

not obtain the actual responser. In addition, some of the PUF response bits are

erroneous or unstable due to noise effects and environmental variations. The er-

ror correcting code (ECC) can detect and correct these noisybits with the help

of the Helper Data (W). In fact, for each challenge,C, the actual response is

fed into an ECC encoder to produce the helper data. This helper data along

with the challenge,C, are used to produce a 100% noise-free response,R, i.e.,

R = CPUF (C,W ).

� Controlled PUF

Hash 
Function 

Hash 
Function ECCPUFChallenge (C) Response (R) c r 

Helper Data (W) 

Figure 4.1: The basic idea of a controlled PUF [11,12]

4.4 Our Proposed Model

4.4.1 Basic Scheme

In this subsection, we discuss our secret sharing scheme using a controlled physi-

cally unclonable function (CPUF) based on Ito et al.’s secret construction scheme.
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This scheme has three phases, initialization, share computation, and secret re-

construction. In the initialization phase, the trusted dealer applies different chal-

lenges with different bit-sizes to the controlled PUF and stores the corresponding

challenge-response pair in a secure database. It is explained in the security anal-

ysis subsection why different bit-sizes are needed. Also, ageneral rule on how

to decide the challenge bit-sizes is explained in that subsection. The dealer also

produces the helper data (W ) from each actual response (r) and stores it in the

database along with the corresponding challenge-responsepair. In fact, the dealer

stores the challenge-response-helper data (C,R,W ) in the database. Note that, the

database should be a part of the dealer and it is assumed that the dealer cannot be

hacked, because if its security is compromised, the secret can be read out. Also

note that, the hash function input can be of variable bit-size while its output bit-

size is fixed. Therefore, the challenges applied to the CPUF can have different bit-

sizes. In the share computation phase, the dealer choosesl−1 different responses

from the database,R1, R2, . . ., Rl−1 and computesRl = s⊕R1 ⊕R2 . . .⊕Rl−1.

Then, he gives the corresponding challenges that generate the chosen responses

along with the helper data to the playerspi, 1 ≤ i ≤ l − 1. In other words, the

playerpi receivesCi andWi, whereRi = CPUF (Ci,Wi), for 1 ≤ i ≤ l − 1.

The dealer also givesRl to the playerpl.

In the reconstruction phase, the playersp1, p2, . . ., pl−1 apply their challenges

to the CPUF and provide the helper data, and the corresponding responses are

XOR’ed with one another and the share provided bypl. This scheme is sum-

marized in Fig. 4.2. Note that, because the CPUF is a one-way and more im-

portantly, an unclonable function, the players will not have access to their actual

shares. Therefore, even if all the players are hacked and their stored shares are

read out by an attacker, the attacker will not be able to construct the secret unless

he has access to the original CPUF. In other words, in the existing schemes, if

an attacker has access to all players’ shares, he can retrieve the secret at his con-

venience. That is why most studies assume a limitation on thecapability of the

attacker on how many players he can hack [62, 64]. However, itis not the case
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for our scheme. More importantly, if the attacker clones theCPUF circuit, he will

generate a wrong secret using all the shares. In addition, ifone of the players

of the authorized set is not present in the reconstruction phase, other players will

have no information about the secret. This scheme, similar to the original scheme,

suffers from having dishonest players among the players in the authorized set. In

the next subsection, we propose a modified scheme which has cheater detection

capability. But before that, the information rate and the security of the proposed

scheme is analyzed briefly.

Basic Scheme Steps 

1. The dealer applies different challenges to the controlled 

PUF (CPUF). 

2. The dealer stores the challenge-response-helper data 

sets in a secure database. 

3. The dealer chooses l-1 responses from the database: ,

, …, .

4. The dealer computes .

5. The dealer gives  and  (corresponding to ) to 

player , .

6. The dealer gives  to player .

7. The players , , …,  submit their shares to the 

CPUF.

8. The corresponding responses ( , , …, ) are 

XOR’ed with each other. 

9. Player  submits his share ( ).

10.  is XOR’ed with the result of step 8 to generate the 

secret. 

Initialization Phase 

Steps 1 and 2 

Share Computation Phase 

Steps 3 to 6 

Reconstruction Phase 

Steps 7 to 10 

Figure 4.2: The Basic Scheme design steps

Information Rate

In this subsection, the information rate of the proposed scheme is computed and

compared with the information rate of the original Ito et al.’s construction scheme

[56]. It is shown that, the information rate of the proposed scheme can be even

more than 1 while maintaining the required security level. Let us define the re-

sponse to challenge ratio for a given PUF as the ratio of the generated response

bit-size to the challenge bit-size, i.e.,|r|/|c|. Usually, the bit-size of both chal-

lenge and response of a given PUF are fixed. However, in the controlled PUF
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scheme shown in Fig. 4.1, the bit-size of the challenge,C, can be variable, be-

cause the input to a hash function can be of variable length while its output length

is fixed. Also, the PUF should be designed in a way that, its response bit-size

is the same as that of the secret, i.e.,|R| = |s|. Therefore, the share bit-size of

l − 1 players in this scheme will be equal to|Ci| + |Wi|, and the share bit-size

of playerpl is equal to the secret bit-size which is equal to|Ri|. Note that,|Ci|

for each player can be different but the bit-size of the helper data (Wi) which is

generated from the actual PUF responses is fixed for all players. The bit-size of

Wi is determined by the ECC algorithm used in Fig. 4.1. Now, if the following

condition is assumed to be true:

|Ci|+ |Wi| < |Ri| (4.2)

for all 1 ≤ i ≤ l−1, the information rate will be equal to 1 based on Eq. (4.1), i.e.,

ideal scheme, because the maximum share bit-size among all the players belongs

to the playerpl. The inequality (4.2) will be satisfied only if the number of actual

response bits is greater than the number of the corresponding challenge,|ri| > |ci|

for 1 ≤ i ≤ l − 1. This condition is a necessary condition but it is not sufficient.

The reason is that, the bit-size of the output response,Ri, is less than that of the

actual response,ri, because the input bit-size of the hash function is greater than

the output bit-size. Also, because the helper data,Wi may leak some information

about the actual response bits, the bit-size of the ECC output is less than|ri|.

For the same reason, the input challenge bit-size,|Ci|, is greater than the actual

challenge bit-size,|ci|. In summary, we have|Ci| > |ci| and|Ri| < |ri| for each

playerpi, 1 ≤ i ≤ l − 1. Therefore, having a response to challenge ratio greater

than 1 does not necessarily imply|Ci| + |Wi| < |Ri|. So, we should make sure

that we design the scheme in a way that it satisfies the inequality (4.2).

Up to now, it is shown that, both the original Ito et al.’s scheme and the pro-

posed scheme have an information rate of 1 based on Eq. (4.1).However, our

proposed scheme has a very important difference from the original scheme. In
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the original scheme, the share bit-size of all the players are equal to that of the

secret. However, in our proposed scheme, only one player hasa share of bit-size

equal to the secret bit-size, and the other players have smaller shares. In fact, if

the information rate is defined as [63]:

ρ =
log |S|

avg log |Sp|
(4.3)

whereavg is the average function, the information rate of our proposed scheme

will be equal to: l×|R|

|R|+
∑

l−1

i=1
|Ci|+|Wi|

which can be even more than 1 if|Ci|+ |Wi| <

|Ri| for any 1 ≤ i ≤ l − 1, as discussed before. In other words, it is a more

efficient scheme than the original Ito et al.’s constructionscheme and all but one

of the players will receive smaller shares. Note that, the information rate of the

original scheme is still 1 based on the new equation (4.3).

Security Analysis

For security analysis of the proposed basic scheme, we consider a case where

all but one of the players pool their shares and try to retrieve the secret. In the

original scheme, because the bit-size of the shares of all players are the same and

are equal to the secret bit-size, the complexity of the brute-force approach to guess

the remaining share is equal to the complexity of the brute-force approach to guess

the secret, i.e.,2|s|. In the proposed scheme, the share bit-size of all but one of

the players is equal to|Ci|+ |Wi| which is ideally less than|Ri| = |s|, to provide

an information rate of more than 1. Therefore, the complexity of the brute-force

approach to guess the remaining share is equal to2|Ci|+|Wi| which is less than

2|s|. However, because the bit-size of the challenge applied to the controlled PUF,

|Ci|, can be variable, different players might have different share bit-sizes and

therefore, in this case, thel − 1 players will be able to guess the remaining share

with a small probability, which depends on the number of different challenge bit-

sizes generated by the trusted dealer. For example, let us assume that the secret

length is 500 bits and the shares given to the players can be ofany length between
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200 and 500 bits. When all but one of the players cooperate with each other in

order to guess the remaining share and to eventually retrieve the secret, they would

notice that their own shares are of different bit-sizes. Therefore, the probability

that they will guess the length of the last share correctly will be equal to1/300.

Note that, this probability is valid only if the players are aware of the range of the

valid share lengths. If this is not the case, the probabilitywill be even less than

1/300. Given this small probability and the complexity of2|Ci|+|Wi|, we can claim

that, the security of the system is not compromised. The share bit-sizes can be

chosen completely randomly. There is no specific requirement on how they are

chosen. Also, the range of the bit-sizes is not of critical importance as long as

they meet the information rate requirements. However, the number of bit-sizes

generated by the trusted dealer should be high enough to increase the resilience of

the system against brute-force attack.

Moreover, as previously discussed, even if an attacker obtains access to the

share of all the players in the authorized set, he will not be able to construct the

secret at his convenience because of the unclonability of the CPUF-based recon-

structor.

4.4.2 Modified Scheme With Cheater Detection Capability

In this subsection, we propose a modified scheme, shown in Fig. 4.3 to provide

cheater detection capability for the basic scheme. In this scheme, the share bit-

size given to each player is exactly the same as in the basic scheme. Therefore,

the information rate is the same as that of the basic scheme. However, additional

processing is performed by the dealer during the share computation phase and

also, extra memory and run time is added to the reconstruction phase. The system

works as follows: during the initialization phase, the trusted dealer applies differ-

ent challenges with different bit-sizes (as in the basic scheme) to the controlled

PUF, generates a helper data from each actual PUF response, and stores the cor-

responding challenge-response-helper data (Ci, Ri, Wi) set in a secure database.
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This procedure is similar to the initialization phase of ourbasic scheme explained

in the previous subsection. In the share computation phase,similar to the basic

scheme, the dealer choosesl − 1 responses,R1, R2, . . ., Rl−1, and gives the cor-

responding challenge along with the generated helper data to each player. He also

givesRl = s⊕R1 ⊕R2 . . .⊕ Rl−1 to the playerpl. The only difference between

the modified and the basic schemes is that, in the modified scheme, the dealer

must choose different challenge bit-sizes for different players. This requirement

is highly recommended in the basic scheme, but in the modifiedscheme it is nec-

essary. This is because the share bit-size is used as the players’ ID and therefore,

no redundant information is attached to the original sharesto identify the players.

This way, we will have a set of valid IDs in the authorized set.Before sending the

share to each player, the dealer computes the message authentication code (MAC)

of the shares using a MAC algorithm and stores them along withthe player’s ID

in a memory in the controlled PUF system which is used in the reconstruction

phase. Note the difference between this memory in the reconstruction system and

the database which is part of the dealer. The memory in the reconstruction system

can be have public access while the database of the dealer must be kept secure.

The dealer then distributes the shares among the players. Inthe reconstruction

phase, each player submits his share to the new system using the controlled PUF

shown in Fig. 4.3. In the figure, “Share (Ci||Wi)” represents the share submitted

by playerpi which is the concatenation ofCi andWi.

�

MAC
Algorithm 

CPUFShare (��||��) Response (��) 

Memory 

Match? 

Authenticated 
Share (��||��) Y 

N 

Cheater Flag 
(�����) 

Figure 4.3: The proposed modified scheme with cheater detection capability



CHAPTER 4. SECRET SHARING BASED ON PHYSICALLY UNCLONABLE FUNCTIONS 65

The system first computes the MAC of the share and compares it with that

stored in the memory. As mentioned before, the system uses the share bit-size to

identify the player. If the computed MAC of the share is matched with that stored

in the memory, the share (the challenge along with the corresponding helper data)

will be applied to the CPUF to generate the corresponding response. This process

is performed for all thel − 1 players and the responses will be bit-wise XOR’ed.

Finally, the XOR result will be XOR’ed with the share provided by the player

pl to reconstruct the secret. This scheme is summarized in Fig.4.4. It is noted

that, if one of the players of the authorized set is not present in the reconstruction

phase, other players will have no information about the secret. In addition, the

cheater detection capability is added to the system using the MAC procedure. If

the computed MAC of the share is not matched with that stored in the memory,

a flag will be set and the system will identify the cheater and the secret will not

be reconstructed. Now, depending on the application and itspolicies, the cheater

can be treated in different ways. He might receive a warning and will have a

chance to provide his share again, or his trustability levelwill be reduced, or

he will be removed from the authorized set permanently. Notethat, the cheater

detection capability of the system depends on the preimage resistance or the one-

way property of the hash function used in the MAC algorithm.

If the player fakes his share in a way that, the bit-size of theshare is also

changed, there will be 2 different cases. In the first case, the system identifies

the player as a cheater because the faked share bit-size is not a valid bit-size. In

the second case, the system will identify the player as another player in the autho-

rized set (this will happen if the faked share bit-size is a valid bit-size). Then it will

compare the MAC of the faked share with the one stored in the memory. If they

do not match (which will be the case because of the second preimage resistance

property of hash functions), the misidentified player, which could be an honest

player, will be identified as a cheater. This problem can be resolved by having

the players submit their shares sequentially in a pre-specified order to identify the

cheaters correctly. Another way to address this problem is to attach a random ID
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Modified Scheme Steps 

1. The dealer applies different challenges to the controlled PUF 

(CPUF). 

2. The dealer stores the challenge-response-helper data sets in a 

secure database. 

3. The dealer chooses l-1 responses from the database: , ,

…, .

4. The dealer computes .

5. (optional) The dealer selects a random ID for each player 

(  for ).

6. The dealer computes the MAC of each player’s share 

( ) and stores the MAC along with the player’s ID in 

the memory. 

7. The dealer gives  and  (corresponding to ) in addition 

to  (if applicable) to player , .

8. The dealer gives  in addition to  (if applicable) to 

player .

9. The players , , …,  submit their shares to the 

CPUF.

10. The MAC of the submitted share of each player is compared 

with the one stored in the memory.  

11. The corresponding responses ( , , …, ) are XOR’ed 

with each other if no cheater flag is set. 

12. Player  submits his share ( ).

13.  is XOR’ed with the result of step 11 to generate the 

secret. 

Initialization Phase 

Steps 1 and 2 

Share Computation Phase 

Steps 3 to 8 

Reconstruction Phase 

Steps 9 to 13 

Figure 4.4: The Modified Scheme design steps

to the share given to each player (IDi given to the playerpi) and storing that ID in

the system memory along with the share MAC. In this case, although we lose effi-

ciency and the information rate will be reduced, we can identify such cases if the

share bit-size and the random ID submitted by the player do not match. Therefore,

the information rate will be equal to: l×|R|

|R|+|IDl|+
∑

l−1

i=1
|Ci|+|IDi|+|Wi|

, where|IDi| is

the bit-size of thei-th player ID.

Note that, if the dishonest players are able to read out the data stored in the

reconstruction system memory via invasive physical attacks, they will not be able

to compromise the security of the system because of the second preimage resis-

tance property of hash functions. In other words, the cheater cannot fake his share

in a way that, its MAC matches the one stored in the memory. Also note that, it is

assumed that the communication between the dealer and the players is secure in

all existing schemes, because if it is not, the shares can be seen by other players

and the secret sharing scheme will be of no use.
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The most important issue in the proposed approach is the casein which the

playerpl fakes his share. In fact, when all other players submit theirshares cor-

rectly and thus, no flag has been set, i.e.,flagi = 0 for 1 ≤ i ≤ l − 1, the player

pl will submit his share to reconstruct the secret. We define this player’s share as

a critical share because of the following reason: if this player fakes his share, the

generated secret will be wrong,s′ 6= s. The fact that the generated secret is wrong

and no cheater flag has been set helps the system to identifypl as the cheater. This

problem also exists in the original secret construction scheme. However, in our

proposed model, we can absolutely detect this player,pl as a cheater. Therefore,

in the share computation phase, we should make sure that we give this critical

share to a player with the highest trustability level. If this player cheats, we can

remove him from the authorized set permanently or we can reduce his trustability

level, depending on the application policies.

The important issue is that, the playerpl can fake his share so that the gener-

ated secret is wrong. Then, he can use his share and the generated wrong secret to

compute the correct secret at his convenience. In addition,the dealer can compute

the MAC ofRl before giving it to the playerpl and store the MAC in the memory.

In the reconstruction phase, the authenticity of the share of this player will also be

verified using the same procedure and a flag will be set if it is not matched with

the one stored in the memory. Again the bit-size of the share which in this case

is equal to that of the secret can be used to identify the player. Because the pro-

posed model helps the system to identify such case, further actions can be made to

shut down the system, for example, to re-compute the shares,and to build a new

system with a new secret.

Finally, it should be mentioned that, the main contributionof the proposed

scheme is its efficiency in terms of information rate and the shares’ bit-size. In

fact, the idea of computing the MAC of the shares and using theMAC to verify

the authenticity of the submitted shares, can be applied to the original Ito et al.’s

construction scheme to provide cheater detection capability. However, in that

case, the information rate will be 1 at its best. It could be even less than 1 in the
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case that, the ID of the players are attached to their actual shares to distinguish

between different players. In contrast, in our proposed scheme, the information

rate can be more than 1 even in the latter case. We achieve thisefficiency at the

expense of extra hardware for the CPUF, extra memory for the secure database,

and the extra initialization phase where the dealer should apply the challenges and

store the challenge-response-helper data sets in its database. Another important

contribution of this study is that, the ability of an attacker on hacking the players

is not required to be limited to a specific number of players. In other words, an

attacker can hack all the players in the access structure, and yet, he will not be

able to compute the secret at his own convenience due to the unclonability of the

PUF-based reconstructor.

Security Analysis

In subsection 4.4.1 we performed a security analysis for theproposed basic scheme

and showed its resilience against the brute-force approach. The same analysis can

be performed for the modified scheme against the same attack.In this subsection,

another important scenario is considered, in which all but one of the players try

to obtain information about the secret by submitting false shares. In other words,

dishonest players submit false shares in order to deceive the honest player. Then,

based on the obtained incorrect secret and using their correct shares, they will ob-

tain information about the correct secret. This is the main attack on secret sharing

schemes and a secure scheme is defined to be resilient againstthis attack [62].

We can observe that, our scheme is also resilient against this attack because this

attack works only for the schemes which cannot detect the cheaters. Our proposed

scheme offers cheater detection capability to the system and identifies the dishon-

est player by setting a cheater flag. In fact, the honest players will not submit

their shares when a cheater flag is set. Therefore, dishonestplayers cannot gain

information about other honest players’ shares to compute the secret at their own

convenience.
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4.4.3 PUF requirements

In this subsection, the features of a good PUF that can be usedin the proposed

model to meet the requirements of our secret sharing scheme are discussed. Be-

sides a high reliability and a close-to-ideal uniqueness which represents the ran-

domness of the response bits, the utilized PUF should have a large set of challenge-

response pairs. This allows each challenge-response pair to be used only once to

prevent modeling attacks against the PUF design. Also, the number of response

bits should be large enough and equal to the secret bit-size.Another important

factor of the utilized PUF is the challenge-response ratio which ideally should be

much greater than 1, i.e.,|r|/|c| ≫ 1, so that the information rate of the proposed

secret sharing scheme can be even more than 1.



Chapter 5

Conclusion and Future Work

In this study, we have implemented three known PUF structures, SR Latch PUF,

RO PUF and Anderson PUF, on four identical FPGA boards and have investigated

their performance in terms of reliability, uniqueness, uniformity, and bit-aliasing.

We have also proposed a Hybrid PUF scheme in which two PUF schemes are

combined with each other to improve the randomness of the response. The per-

formance of this scheme is investigated using two examples.In the first one, RO

PUF and Anderson PUF are combined with each other; and in the second exam-

ple, the SR Latch PUF is combined with RO PUF. Implementationresults show

that, the proposed Hybrid PUF scheme improves the uniqueness and thus, the

randomness of the produced response, significantly.

In addition, we have proposed an efficient secret sharing scheme with cheater

detection capability based on physically unclonable functions (PUFs). The PUF

can generate the random strings that are required for the secret construction scheme.

Additionally, the one-way property and the response to challenge ratio of the PUF

is used to build our scheme and analyze its efficiency in termsof information rate.

It is shown that, under one condition, the information rate can be even more than

1, meaning that the players will receive smaller shares. Theproposed scheme can

detect the cheaters while maintaining the required efficiency. Also, the security of

the proposed scheme against brute-force attack and two other known scenarios is

analyzed to show the resilience of the proposed scheme against these attacks.

70
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The results presented in this work are all obtained by implementing the schemes

on only four FPGA boards. The statistical analysis will be more valid if a larger

number of PUF instances are used. Also, the proposed Hybrid PUF can be imple-

mented in an authentication and/or secret key generation scheme in order to verify

its ability to be used in such applications. Additionally, as discussed previously,

the proposed Hybrid PUF is a general method and its characteristics can be fur-

ther investigated using other combinations. Regarding theproposed secret sharing

scheme based on PUFs, detailed security analysis can be performed against mush

elaborated attacks. Finally, the proposed method can be applied to other existing

secret sharing schemes in order to verify its contribution.
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[47] D. Chaum, C. Crepeau, and I. Damgård, “Multiparty unconditionally secure

protocols,” 1988, pp. 11–19.
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Appendix A

Response Samples

In this appendix, we provide the estimated response of each implemented PUF

structure instance. We have seven different structures, SRLatch PUF, Basic RO

PUF, Anderson PUF, RO/Anderson Hybrid PUF method 1, RO/Anderson Hybrid

PUF method 2, and two implementations of the RO/SR Latch Hybrid PUF which

are described in details in Chapter 3. We have also four identical FPGA evaluation

boards which use the Xilinx Virtex II Pro XC2VP100 FPGA chip.We implement

each PUF structure on each board and we take 50 samples of the produced re-

sponse of each PUF instance. Based on these samples, we estimate the response

of each PUF instance. Note that, the number of response bits of the SR Latch and

Anderson PUF is 128 while other PUFs produce 127-bit responses. The responses

are represented in the hexadecimal format.

SR Latch PUF:

Board#1: 06 07 8C 81 44 06 06 80 D6 4F CC 94 17 17 18 6A

Board#2: 4E 84 0C 44 04 18 CE 15 DE 17 4D 1C 87 9D 30 70

Board#3: 45 87 9F 4D 46 CF 86 41 07 17 05 0E 04 D4 21 69

Board#4: 15 16 06 05 07 06 44 51 45 10 06 01 86 08 40 21

Basic RO PUF:

Board#1: 28 88 5B 57 28 82 BD 7F 4A 4C CE F5 58 A8 BD 6B

Board#2: 4A C8 F5 2D 9D 51 C5 BE AA AA 4D A7 08 A5 B4 AF

Board#3: 00 44 EA 7E 04 A6 3F DD 4A 4C D7 7D 58 A5 6C EF
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Board#4: 08 A4 D7 EF 45 0A 66 AD 68 84 C5 DF 14 04 72 AB

Anderson PUF:

Board#1: FB FF FB 7B DA 77 F3 FF F9 FF DB 7D E9 FF BF DF

Board#2: 7A 7A B8 7C F2 24 03 F9 4A AF A2 74 D1 7A 4F 14

Board#3: FA FD EB BF FB B7 F3 FD 7A FD F1 BF FB 7E DE DF

Board#4: 5B A0 31 B6 82 A1 80 64 A8 F7 29 25 7A 35 8C 9E

RO/Anderson Hybrid PUF, method 1:

Board#1: 14 52 C8 53 B2 12 80 9A 85 4E D1 4A D2 5D 58 7B

Board#2: 15 25 E4 59 FA 2A 89 36 CD 55 D2 5B 90 D5 B3 6B

Board#3: 10 8B EC 18 B2 02 94 0F 80 57 81 2F 80 57 05 F7

Board#4: 12 21 F2 16 CB 2A C0 9A 91 55 91 33 91 12 6E F7

RO/Anderson Hybrid PUF, method 2:

Board#1: 16 18 E2 B3 4A 2B DA 96 42 DA 91 97 D2 EB 6A D4

Board#2: 11 54 A9 5D 19 0D E0 1E 92 1D 52 64 D5 99 53 5A

Board#3: 18 23 CA CC A6 6A D2 4A 96 43 32 56 A2 95 92 BE

Board#4: 12 54 9A A6 A2 17 17 2A 84 36 C0 4A A1 54 96 AF

RO/SR Latch Hybrid PUF:

Board#1: 14 F1 37 6F 53 DB AB B3 14 0E 43 6A D4 4A 2B EA

Board#2: 15 14 A2 E6 D5 0D 2A 6A 5C 94 32 6F 94 95 33 43

Board#3: 14 17 69 6F 14 CD 37 72 C5 95 02 6E 04 17 0A 6F

Board#4: 55 10 E3 72 99 54 49 D3 95 34 E6 C3 C5 12 B7 6F

RO/SR Latch Hybrid PUF with separated RO/SR Latch units:

Board#1: 32 2B 39 5C A1 8F AB 5E A2 43 17 5A D2 E3 7A 54

Board#2: 74 38 A6 95 1B 8A 81 B4 C2 95 56 8A A2 AD 81 A2

Board#3: 46 63 8F AD 5A AA 55 BE A6 93 1E DB 82 95 C8 DB

Board#4: 37 92 4D 63 22 86 C5 72 AA 4C A6 DF 23 22 D6 BF
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Hybrid PUF VHDL Code

In this appendix, we provide the VHDL codes for the RO/Anderson Hybrid PUF

method 1 and RO/Anderson Hybrid PUF method 2. Note that, onlythe PUF units

source codes are provided here. Other codes related to the control unit, challenge-

response system, and the measurement system are not provided. Also, note that,

part of the code which is related to the Anderson PUF implementation is obtained

(and modified for our platform) from Dr. Anderson’s personalweb page.

RO/Anderson Hybrid PUF method 1:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

Library UNISIM;

use UNISIM.vcomponents.all;

entity Hybrid1 is

Port (enable : in STD_LOGIC;

output : out STD_LOGIC

);

end Hybrid1;

architecture Behavioral of Hybrid1 is

signal OUT_INT : STD_LOGIC;

signal OUT_INT2 : STD_LOGIC;

signal OUT1 : STD_LOGIC;

signal OUT2 : STD_LOGIC;

signal OUT3 : STD_LOGIC;

signal Int_O1 : STD_LOGIC;
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signal CARRY_BW : STD_LOGIC;

signal CARRY_BW2 : STD_LOGIC;

signal CARRY_BW3 : STD_LOGIC;

signal CARRY_BW4 : STD_LOGIC;

signal C : STD_LOGIC_vector (4 downto 0);

attribute keep : string;

attribute keep of C : signal is "TRUE";

attribute S : string;

attribute S of C : signal is "TRUE";

--controlling the placement of the components

attribute rloc: string;

attribute rloc of FDCPE_inst : label is "X-2Y4";

attribute rloc of FDCPE_inst2 : label is "X-2Y-1";

attribute rloc of LUT1_inst_Buf : label is "X0Y4";

attribute rloc of LUT1_inst_Inv : label is "X0Y0";

attribute rloc of MUXCY_inst : label is "X0Y4";

attribute rloc of Int_MUXCY_inst : label is "X0Y3";

attribute rloc of Int_MUXCY_inst2 : label is "X0Y2";

attribute rloc of Int_MUXCY_inst3 : label is "X0Y1";

attribute rloc of MUXCY_inst2 : label is "X0Y0";

attribute rloc of inst_inv2 : label is "X-2Y2";

attribute rloc of inst_Inv : label is "X-1Y1";

attribute rloc of inst_nand : label is "X-1Y2";

attribute rloc of inst_Inv3 : label is "X-2Y1";

attribute rloc of inst_and : label is "X-2Y3";

begin

inst_nand : LUT2

generic map (

INIT => X"7") -- initialized as a NAND

port map (

O => C(0), -- LUT general output

I0 => enable, -- LUT input

I1 => C(4) -- LUT input

);

inst_Inv : LUT1

generic map (

INIT => "01") -- initialized as a NOT

port map (

O => C(1), -- LUT general output

I0 => C(0) -- LUT input
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);

inst_Inv2 : LUT1

generic map (

INIT => "01")

port map (

O => C(2), -- LUT general output

I0 => C(1) -- LUT input

);

LUT1_inst_Buf : LUT1

generic map (

INIT => "10") -- initialized as a Buffer

port map (

O => out1, -- LUT general output

I0 => C(2) -- LUT input

);

LUT1_inst_Inv : LUT1

generic map (

INIT => "01")

port map (

O => out2, -- LUT general output

I0 => C(2) -- LUT input

);

inst_Inv3 : LUT1

generic map (

INIT => "01")

port map (

O => C(4), -- LUT general output

I0 => out2 -- LUT input

);

inst_Inv4 : LUT1

generic map (

INIT => "01")

port map (

O => out3, -- LUT general output

I0 => C(4) -- LUT input

);

MUXCY_inst : MUXCY

port map (

O => OUT_INT, -- Carry output signal
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CI => CARRY_BW4, -- Carry input signal

DI => ’0’, -- Data input signal

S => out1 -- MUX select

);

Int_MUXCY_inst : MUXCY --intermediate multiplexers

port map (

O => CARRY_BW4, -- Carry output signal

CI => CARRY_BW3, -- Carry input signal

DI => ’0’, -- Data input signal

S => ’1’ -- MUX select

);

Int_MUXCY_inst2 : MUXCY

port map (

O => CARRY_BW3, -- Carry output signal

CI => CARRY_BW2, -- Carry input signal

DI => ’0’, -- Data input signal

S => ’1’ -- MUX select

);

Int_MUXCY_inst3 : MUXCY

port map (

O => CARRY_BW2, -- Carry output signal

CI => CARRY_BW, -- Carry input signal

DI => ’0’, -- Data input signal

S => ’1’ -- MUX select

);

MUXCY_inst2 : MUXCY

port map (

O => CARRY_BW, -- Carry output signal

CI => ’1’, -- Carry input signal

DI => ’0’, -- Data input signal

S => out2 -- MUX select

);

-- this FF captures the glitch

FDCPE_inst : FDCPE

generic map (

INIT => ’0’) -- Initial value of register (0 or 1)

port map (

Q => OUT_INT2, -- Data output

C => out3, -- Clock input

CE => ’0’, -- Clock enable input
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CLR => ’0’, -- Asynchronous clear input

D => OUT_INT2, -- Data input

PRE => OUT_INT -- Asynchronous set input

);

FDCPE_inst2 : FDCPE

generic map (

INIT => ’0’) -- Initial value of register (?0? or ?1?)

port map (

Q => Int_O1, -- Data output

C => out3, -- Clock input

CE => enable, -- Clock enable input

CLR => ’0’, -- Asynchronous clear input

D => OUT_INT2, -- Data input

PRE => ’0’ -- Asynchronous set input

);

inst_and : LUT2

generic map (

INIT => X"8") -- initialized as an AND

port map (

O => OUTPUT, -- LUT general output

I0 => Int_O1, -- LUT input

I1 => out3 -- LUT input

);

end Behavioral;

RO/Anderson Hybrid PUF method 2:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

Library UNISIM;

use UNISIM.vcomponents.all;

entity Hybrid2 is

Port (clk : in std_logic;

enable : in STD_LOGIC;

output : out STD_LOGIC

);

end Hybrid2;

architecture Behavioral of Hybrid2 is

signal sel : STD_LOGIC;
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signal C: STD_LOGIC_vector (5 downto 0);

signal OUT_INT : STD_LOGIC;

signal OUT_INT2 : STD_LOGIC;

signal O1, O2 : STD_LOGIC;

signal Int_O1, Int_O2, Int_O3, Int_O4 : STD_LOGIC;

signal CARRY_BW : STD_LOGIC;

signal CARRY_BW1 : STD_LOGIC;

signal CARRY_BW2 : STD_LOGIC;

signal CARRY_BW3 : STD_LOGIC;

signal CARRY_BW4 : STD_LOGIC;

attribute keep : string;

attribute keep of C : signal is "TRUE";

attribute S: string;

attribute S of C: signal is "TRUE";

attribute rloc: string;

attribute rloc of inst_nand: label is "X-2Y0";

attribute rloc of inst_Inv: label is "X-2Y1";

attribute rloc of inst_Inv2: label is "X-1Y0";

attribute rloc of inst_Inv3: label is "X-1Y1";

attribute rloc of Multiplexer0: label is "X-2Y2";

attribute rloc of inst_Inv4: label is "X-2Y3";

attribute rloc of inst_Inv5: label is "X-1Y2";

attribute rloc of SRL16E_inst: label is "X0Y5";

attribute rloc of Int_SRL16E_inst: label is "X0Y4";

attribute rloc of Int_SRL16E_inst2: label is "X0Y3";

attribute rloc of Int_SRL16E_inst3: label is "X0Y3";

attribute rloc of SRL16E_inst2: label is "X0Y2";

attribute rloc of MUXCY_inst: label is "X0Y5";

attribute rloc of Int_MUXCY_inst: label is "X0Y4";

attribute rloc of Int_MUXCY_inst2: label is "X0Y3";

attribute rloc of Int_MUXCY_inst3: label is "X0Y3";

attribute rloc of MUXCY_inst2: label is "X0Y2";

attribute rloc of FDCPE_inst: label is "X-2Y4";

attribute rloc of FDCPE_inst2: label is "X-2Y1";

begin

inst_nand : LUT2

generic map (

INIT => X"7") -- initialized as a NAND

port map (

O => C(0), -- LUT general output
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I0 => enable, -- LUT input

I1 => C(5) -- LUT input

);

inst_Inv : LUT1

generic map (

INIT => "01") -- initialized as a NOT

port map (

O => C(1), -- LUT general output

I0 => C(0) -- LUT input

);

inst_Inv2 : LUT1

generic map (

INIT => "01")

port map (

O => C(2), -- LUT general output

I0 => C(1) -- LUT input

);

inst_Inv3 : LUT1

generic map (

INIT => "01")

port map (

O => C(3), -- LUT general output

I0 => C(2) -- LUT input

);

Multiplexer0 : MUXCY

port map (

O => C(4), -- Carry output signal

CI => C(1), -- Carry input signal

DI => C(3), -- Data input signal

S => sel -- MUX select

);

inst_Inv4 : LUT1

generic map (

INIT => "01")

port map (

O => C(5), -- LUT general output

I0 => C(4) -- LUT input

);

inst_Inv5 : LUT1
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generic map (

INIT => "01")

port map (

O => output, -- LUT general output

I0 => C(5) -- LUT input

);

SRL16E_inst : SRL16E -- the "top" shift register instance

generic map (

INIT => X"5555")

port map (

Q => O1, -- SRL data output

A0 => ’1’, -- Select[0] input

A1 => ’1’, -- Select[1] input

A2 => ’1’, -- Select[2] input

A3 => ’1’, -- Select[3] input

CE => enable, -- Clock enable input

CLK => CLK, -- Clock input

D => O1 -- SRL data input

);

Int_SRL16E_inst : SRL16E -- Intermediate blocks

generic map (

INIT => X"FFFF")

port map (

Q => Int_O1, -- SRL data output

A0 => ’1’, -- Select[0] input

A1 => ’1’, -- Select[1] input

A2 => ’1’, -- Select[2] input

A3 => ’1’, -- Select[3] input

CE => enable, -- Clock enable input

CLK => CLK, -- Clock input

D => ’1’ -- SRL data input

);

Int_SRL16E_inst2 : SRL16E

generic map (

INIT => X"FFFF")

port map (

Q => Int_O2, -- SRL data output

A0 => ’1’, -- Select[0] input

A1 => ’1’, -- Select[1] input

A2 => ’1’, -- Select[2] input

A3 => ’1’, -- Select[3] input

CE => enable, -- Clock enable input
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CLK => CLK, -- Clock input

D => ’1’ -- SRL data input

);

Int_SRL16E_inst3 : SRL16E

generic map (

INIT => X"FFFF")

port map (

Q => Int_O3, -- SRL data output

A0 => ’1’, -- Select[0] input

A1 => ’1’, -- Select[1] input

A2 => ’1’, -- Select[2] input

A3 => ’1’, -- Select[3] input

CE => enable, -- Clock enable input

CLK => CLK, -- Clock input

D => ’1’ -- SRL data input

);

SRL16E_inst2 : SRL16E -- the "bottom" shift register instance

generic map (

INIT => X"AAAA")

port map (

Q => O2, -- SRL data output

A0 => ’1’, -- Select[0] input

A1 => ’1’, -- Select[1] input

A2 => ’1’, -- Select[2] input

A3 => ’1’, -- Select[3] input

CE => enable, -- Clock enable input

CLK => CLK, -- Clock input

D => O2 -- SRL data input

);

MUXCY_inst : MUXCY

port map (

O => OUT_INT, -- Carry output signal

CI => CARRY_BW4, -- Carry input signal

DI => ’0’, -- Data input signal

S => O1 -- MUX select

);

Int_MUXCY_inst : MUXCY

port map (

O => CARRY_BW4, -- Carry output signal

CI => CARRY_BW3, -- Carry input signal

DI => ’0’, -- Data input signal
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S => Int_O1 -- MUX select

);

Int_MUXCY_inst2 : MUXCY

port map (

O => CARRY_BW3, -- Carry output signal

CI => CARRY_BW2, -- Carry input signal

DI => ’0’, -- Data input signal

S => Int_O2 -- MUX select

);

Int_MUXCY_inst3 : MUXCY

port map (

O => CARRY_BW2, -- Carry output signal

CI => CARRY_BW, -- Carry input signal

DI => ’0’, -- Data input signal

S => Int_O3 -- MUX select

);

MUXCY_inst2 : MUXCY

port map (

O => CARRY_BW, -- Carry output signal

CI => ’1’, -- Carry input signal

DI => ’0’, -- Data input signal

S => O2 -- MUX select

);

-- This FF captures the glitch

FDCPE_inst : FDCPE

generic map (

INIT => ’0’) -- Initial value of register

port map (

Q => OUT_INT2, -- Data output

C => CLK, -- Clock input

CE => ’0’, -- Clock enable input

CLR => ’0’, -- Asynchronous clear input

D => OUT_INT2, -- Data input

PRE => OUT_INT -- Asynchronous set input

);

FDCPE_inst2 : FDCPE

generic map (

INIT => ’0’) -- Initial value of register

port map (

Q => sel, -- Data output
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C => CLK, -- Clock input

CE => enable, -- Clock enable input

CLR => ’0’, -- Asynchronous clear input

D => OUT_INT2, -- Data input

PRE => ’0’ -- Asynchronous set input

);

end Behavioral;
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