
ADVANCES IN MANIPULATION AND

RECOGNITION OF DIGITAL INK

(Thesis format: Monograph)

by

Vadim Mazalov

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Vadim Mazalov 2013

Abstract

Handwriting is one of the most natural ways for a human to record knowledge. Recently,

this type of human-computer interaction has received increasing attention due to the rapid evo-

lution of touch-based hardware and software. While hardware support for digital ink reached

its maturity, algorithms for recognition of handwriting incertain domains, including mathe-

matics, are lacking robustness. Simultaneously, users maypossess several pen-based devices

and sharing of training data in adaptive recognition setting can be challenging. In addition,

resolution of pen-based devices keeps improving making theink cumbersome to process and

store. This thesis develops several advances for efficient processing, storage and recognition

of handwriting, which are applicable to the classification methods based on functional approx-

imation. In particular, we propose improvements to classification of isolated characters and

groups of rotated characters, as well as symbols of substantially different size. We then de-

velop an algorithm for adaptive classification of handwritten mathematical characters of a user.

The adaptive algorithm can be especially useful in the cloud-based recognition framework,

which is described further in the thesis. We investigate whether the training data available in

the cloud can be useful to a new writer during the training phase by extracting styles of individ-

uals with similar handwriting and recommending styles to the writer. We also perform factorial

analysis of the algorithm for recognition ofn-grams of rotated characters. Finally, we show a

fast method for compression of linear pieces of handwrittenstrokes and compare it with an

enhanced version of the algorithm based on functional approximation of strokes. Experimental

results demonstrate validity of the theoretical contributions, which form a solid foundation for

the next generation handwriting recognition systems.

Keywords: Handwriting recognition, compression of digital ink, cloud computing

ii

Acknowledgements

I would like to express deep appreciation to my advisor, Dr. Stephen M. Watt, for guidance and

support throughout the research. His enthusiasm and welcoming attitude fostered the creativity

and productivity needed to complete this thesis.

I thank my colleagues and friends Rui Hu and Paul Vrbik for consistent help they have been

offering throughout the years. I also thank all other members ofthe Ontario Research Centre

for Computer Algebra for the environment that encourages contribution and personal growth.

Most importantly, I thank all of my family for so much I was given.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Outline of Chapters .. 3

2 Previous Work and Preliminaries 4

2.1 Introduction to Digital Handwriting 4

2.2 Orthogonal Series .. 5

2.3 Classification with Convex Hulls 7

2.4 Distance to Simplex .. 7

2.4.1 Problem Definition . 8

2.4.2 Distance to a Simplex . 9

2.5 Integral Invariants 9

2.6 Approximation of Invariants 11

2.7 Rotation-Invariant Recognition 12

2.7.1 Geometric Moments . 12

2.7.2 CII and CCFII . 13

2.7.3 CCFMI . 14

2.8 Shear-Invariant Recognition 15

2.8.1 Overview of Affine Methods . 16

iv

2.8.2 A Shear-Invariant Algorithm .. . 18

2.9 Digital Ink Compression via Functional Approximation 21

2.9.1 Ink Representation . 21

2.9.2 Bases for Approximation .21

2.9.3 Algorithms . 23

2.10 Experimental Dataset 25

3 Improving Isolated and In-Context Classification of Handwritten Characters 26

3.1 Introduction .27

3.2 Improving Isolated Symbol Classification 28

3.3 Improving In-Context Invariant Classification 29

3.4 Experimental Results .. . 32

3.4.1 Isolated Symbol Classification 32

3.4.2 In-Context Classification .. . 33

3.5 Conclusion . 34

4 Recognition of Relatively Small Handwritten Characters,or “Size Matters” 35

4.1 Introduction .35

4.2 Previous Work . 37

4.3 Size-Sensitive Classification Schemes 37

4.3.1 The Unit of Measurement . 37

4.3.2 1-Dimensional Classification 38

4.3.3 3-Dimensional Classification 40

4.3.4 Weight-Based Classification .. . 40

4.4 Experiments . 42

4.4.1 Experimental Setting .42

4.4.2 Performance before the Improvement 43

4.4.3 1-Dimensional Classification 44

4.4.4 3-Dimensional Classification 44

4.4.5 Weight-based classification 45

4.5 Conclusion and Future Work .. . 45

v

5 A Structure for Adaptive Handwriting Recognition 46

5.1 Introduction .46

5.2 Modelling the Recognition Error 48

5.3 Adaptive Recognition .. . 49

5.4 Experimental Results .. . 49

5.4.1 Modelling the Recognition Error 49

5.4.2 Correlation between class measurements andA, B andC 53

5.4.3 Adaptive Recognition .54

5.5 Conclusion . 55

6 A Cloud-Based Recognition Framework 56

6.1 Introduction .56

6.2 Clouds Serving Clouds .. 58

6.2.1 Recognition Flow . 59

6.2.2 Manipulation of Clouds .62

6.3 Orthogonal Projection of Cloud Samples 63

6.3.1 Related Work . 63

6.3.2 Orthogonal Projection .63

6.4 Implementation .65

6.4.1 Initial Training . 66

6.4.2 Implementation of the Application 68

6.4.3 Attractive Display of Recognized Characters 70

6.5 Experimental Evaluation 70

6.5.1 Setting . 71

6.5.2 Results . 72

6.6 Semi-Automated Training of the Recognizer 72

6.6.1 User-Style Similarity .. 73

6.6.2 Experimental Evaluation .. 74

6.7 Conclusion . 75

7 Factorial Analysis of the Recognition Algorithm 76

vi

7.1 Introduction .76

7.2 A 24 Factorial Design with 5 Replications 77

7.3 Evaluation of the Parameterµ in the Legendre-Sobolev Inner Product 82

7.3.1 Experimental Error . 82

7.3.2 Two-Factor Full Factorial Design 82

7.3.3 Visual Verification of Assumptions 86

7.4 Conclusion . 87

8 Linear Compression of Digital Ink via Point Selection 89

8.1 Introduction .90

8.2 Related Work . 91

8.2.1 Digital ink compression .. 91

8.2.2 Approximation of univariate convex functions 91

8.2.3 Decomposition of digital curve in inflection-free parts 92

8.3 Enhanced Compression via Functional Approximation 92

8.4 The Linear Compression Algorithm 93

8.4.1 Decomposition into Inflection-Free Parts 93

8.4.2 Compression of Inflection-Free Parts 95

8.4.3 Complexity . 95

8.4.4 Correctness . 95

8.4.5 Discussion . 96

8.5 Experiments . 97

8.5.1 Experimental Setting .97

8.5.2 Experimental Results .98

8.6 Conclusion . 100

9 Conclusion 101

9.1 Retrospective .101

9.2 Future Work . 102

Bibliography 103

vii

A Factorial Analysis Sign Table 111

Curriculum Vitae 112

viii

List of Figures

2.1 Possible projection scenarios 9

2.2 Geometric representation of the first order integral invariant 11

2.3 Rotation of a symbol .12

2.4 Skews of 0.0, 0.2, 0.4, 0.6 and 0.8 radians. 17

2.5 Aspect ratio size normalization. 18

2.6 Ambiguity introduced by shear and rotation 21

2.7 Example of blending. .. 24

3.1 Distorted characters: (a) division vs. (b) modulus; (c)angle bracket vs. (d)

angle vs. (e) less than . 30

3.2 Characters from the training dataset 30

3.3 Recognition error of non-transformed characters for different values ofµ 32

3.4 The optimal values ofµ for samples with different complexity 32

3.5 Average maximum error in coefficients of (a)I0 and (b)I1 depending onµ . . . 33

3.6 Recognition error (%) for different size of contextn and different angles of ro-

tation (in radians)

34

4.1 Examples of scaled small characters from the top row to the bottom: period,

comma, quotes. 38

4.2 Convex hull of a sample .. 40

4.3 Examples of the weight function depending on the relative size:ω(s) = s1/4,

ω(s) = s, andω(s) = s4 . 41

4.4 Relative frequency vs relative size for the different classes in the ORCCA dataset 42

ix

4.5 The classification rate depending onα for: “.” and “,” (left), “.” and the rest of

the classes (centre), “,” and the rest of the classes (right). 43

4.6 The recognition error depending on the size threshold for s{“ .” ,{...}}, s{“ .” ,“ ,” }, and

s{“ ,” ,{...}} . 44

5.1 Recognition error for all classes, depending onn, the number of training sam-

ples in a class . 52

5.2 Examples of approximation of error for classes of different sizeN 53

5.3 RMSE results: (a) Average RMSE for classes of differentN, (b) Percentage of

classes that are approximated with RMSE less or equal given RMSE 53

5.4 Adaptive recognition error of the (N + 1)-th sample in a class: (a) For each

author, (b) Average among the authors 54

6.1 The data flow diagram for recognition and correction 59

6.2 The format of the SOAP message sent to the cloud 60

6.3 A sample that belongs to classes “q” and “9” 62

6.4 Sammon projection of the classes: “8” (red), “1” (green)and “C” (blue) 64

6.5 Samples of different sub-clusters of the character “1” 65

6.6 2-dimensional orthogonal projection of points 66

6.7 Interaction of user interfaces for collection and recognition with the cloud . . . 67

6.8 The structure of a catalog 67

6.9 The main window of the training application 68

6.10 Client interface for recognition 69

6.11 (a) A set of provided samples, and (b) the average sample. 70

6.12 The average recognition error of the (N+1)-th sample in a class among all

classes by an author. All authors are shown in the plot. 71

6.13 The average recognition error among all authors of the (N+1)-th sample in a

class for the Basic strategy (solid) and the Null strategy (dash). 72

6.14 An example of characters written in a similar style (a) “9” and “a” are written

clockwise, and (b) “a” and “9” are written counterclockwise. 73

6.15 The style prediction accuracy 74

x

7.1 Scatter plot of residuals versus the predicted response. 83

7.2 Normal quantile-quantile plot for residuals 84

7.3 Scatter plot of residuals versus the predicted response. 87

7.4 Normal quantile-quantile plot for residuals 88

8.1 Approximation of a sample with different error thresholds (dash line) and the

original curve (solid line) .. . 97

8.2 Compressed size depending on the maximal approximationerror for handwrit-

ing and geometric objects: for Rule 1 (maximal distance) andRule 2 (based on

the angle), and for enhanced functional approximation 100

xi

List of Tables

2.1 An example of the execution flow 9

2.2 Different approximation thresholds. .. 22

3.1 The recognition error, the maximum approximation errorand the average rela-

tive error for different degrees of approximationd, µ = 0.04 33

4.1 Classification error, depending onβ andγ . 45

5.1 The mean and the standard deviation of the parameters 52

5.2 The measurements with the largest absolute values of thecorrelation coeffi-

cients for each approximation variable 54

7.1 Experimental errors .. . 78

7.2 Values ofyi j − ȳ·· . 79

7.3 Percentage variation 80

7.4 Confidence intervals for the factors and interactions 81

7.5 Confidence intervals form= 1,m= 5 andm= ∞ 82

7.6 Recognition error for different values ofµ for different datasets 83

7.7 ȳ· j andα j values . 84

7.8 ȳi· andβi values . 85

7.9 Experimental error .. 85

7.10 Confidence intervals for effects . 86

8.1 Compressed size (%) as a function of the maximal error (εmax) and the number

of exponent bits (p) for 7 coefficient bits (br) for the handwriting dataset 98

8.2 Compressed size (%) as a function of the maximal error (εmax) and the number

of exponent bits (p) for 7 coefficient bits (br) for the dataset of geometric objects 98

xii

8.3 Compressed size (%) as a function of the maximal error (εmax) and the number

of coefficient bits (br) for 4 exponent bits (p) for the handwriting dataset 98

8.4 Compressed size (%) as a function of the maximal error (εmax) and the number

of coefficient bits (br) for 4 exponent bits (p) for the dataset of geometric objects 99

8.5 Time (in seconds) for compression of the handwriting dataset 99

8.6 Time (in seconds) for compression of the dataset of geometric objects 99

A.1 Sign table of the factorial analysis of the algorithm forrecognition ofn-grams

of rotated characters .111

xiii

Chapter 1

Introduction

Efficient processing and classification of digital ink becomes especially relevant with the recent

popularity of tablet devices and touch-based interfaces. One of the sub-problems in handwrit-

ing recognition is handwritten mathematics, which allows two-dimensional input and com-

munication of mathematical knowledge in a more natural way,compared with conventional

typesetting systems. Writing mathematics on a digital canvas is similar to traditional pen-on-

paper input. It does not require learning any languages and can be efficient, given a robust and

reliable implementation. According to a study [4], pen-based input of mathematics is about

three times faster and two times less error-prone than standard keyboard- and mouse-driven

techniques. The hardware support of digital ink has reachedits maturity, while algorithms for

recognition of characters and spatial analysis of expressions are still the subject for improve-

ment.

Accuracy of the mathematical equations recognizer is clearly based on the classification

rate of individual characters. Although considerable progress has been achieved in the field of

handwriting recognition, classification of mathematical symbols requires further improvement.

Among the factors that make classification of mathematics especially challenging, compared

to normal text recognition, is the relatively large set of similar looking few-stroke symbols that

can be subjected to transformations. The absence of a fixed dictionary of multi-symbol “words”

makes the syntactic verification of recognized formulas challenging. The two-dimensional

nature of mathematical expressions requires an accurate differentiation between fluctuations in

positioning and intentional super- or sub-scripting over abaseline.

We make the following contributions to the art of online recognition of characters and

test them on the dataset of handwritten mathematical symbols. We improve classification of

segmented symbols and develop a method for in-context recognition of samples. We propose

a technique for classification of small characters based on the relative size of the samples with

respect to other symbols in the collection and demonstrate the superior performance of the

1

2 Chapter 1. Introduction

method compared to our previous results [50]. We further note that the recognition error can be

decreased if the technique is able to adapt to the handwriting of the user, since each individual

has their own writing style. We propose an adaptive algorithm that allows rapid improvement

of the classification rate by adjusting the weights of training samples.

Increasing reliability and decreasing cost of cloud technologies open new perspectives for

improvement of pattern recognition applications available to public. The training samples and

correction history produced by individuals can benefit others, asymptotically decreasing the

recognition error. In addition, modern users don’t limit themselves with a single device and

typically rely on cloud services to synchronize data acrossdifferent platforms. Handwriting

recognition applications can certainly enhance their usability if they take advantage of the

opportunities available in the cloud. We present a cloud-based framework for recognition of

handwritten characters. Finally, we perform factorial analysis of the algorithm for recognition

of rotatedn-grams of characters to estimate the influence of the configuration parameters of

the algorithm on its performance.

Efficient processing of digital ink is the foundation for all of the discussed algorithms and

most other pen-based applications. Modern devices typically collect ink in high resolution,

which is important for certain purposes, e.g. authentication of a user based on the signature.

In general, however, the high precision makes the ink data cumbersome and costly to process,

transmit over networks and store. We investigate two compression schemes that allow one

to decrease the volume of data, while losing very little knowledge about the curve. The first

method is based on functional approximation of strokes withhigh-degree orthogonal polynomi-

als, and the second is based on piecewise linear approximation of the strokes. We demonstrate

that the size of an ink database can be reduced to a large degree, while preserving the shape of

the strokes.

Overall, this thesis addresses several facets of handwriting recognition systems. First, it

significantly enhances the existing recognition algorithmby improving its performance and

making it more robust for special characters. Then it develops a cloud architecture that allows

sharing of the training data and correction history across devices. Then it proposes methods for

compression of digital ink to facilitate compact storage and fast transmission. These contribu-

tions can be naturally integrated in the cloud environment.Some ideas can also be considered

as the basis for cloud-based classification systems in otherpattern recognition and machine

learning domains, where public knowledge is useful for improving individual performance.

The presented results form a valuable asset to developers offrameworks for manipulation and

recognition of digital ink.

1.1. Outline of Chapters 3

1.1 Outline of Chapters

The thesis is organized into the following Chapters:

Chapter 1 presents an overview of the problems addressed in the thesis.

Chapter 2 introduces the necessary preliminaries and the previous research.

Chapter 3 improves isolated and in-context classification of handwritten characters.

Chapter 4explains how to make the character recognition algorithm robust against samples

of substantially different size.

Chapter 5 discusses a structure for adaptive handwriting recognition by assigning weights

to training samples.

Chapter 6 presents the cloud-based handwriting recognition framework.

Chapter 7 demonstrates factorial analysis of the in-context rotation invariant classification

algorithm with respect to the most important parameters.

Chapter 8 draws the algorithm for linear piecewise compression of digital ink and im-

proves the earlier developed method of approximation of strokes with higher degree orthogonal

polynomials.

Chapter 9 concludes the thesis and proposes directions for future work.

Chapter 2

Previous Work and Preliminaries

2.1 Introduction to Digital Handwriting

In online handwriting, a curve is given as an ordered set of points in a Euclidean plane. Pen-

based devices capture coordinates of a stylus as functions of time. Additionally, some hardware

can collect other data – the degree of pressure, pen angle or coordinates of pen-up points, i.e.

when a stylus does not touch the screen. However, we disregard this information to remain

device-independent.

A curve is given as a sequence of points

(x0, y0, t0), (x1, y1, t1), ..., (xn, yn, tn)

wherexi , yi, ti ∈ R, i = 0..n, andt0 < t1 < ... < tn. Devices typically collect points equally

spaced in time and thereforeti can be omitted. Most often, coordinates are represented as

integers, and indeed that is how our experimental dataset isstored [48].

Writing on the canvas would not be that useful without the ability for a machine to under-

stand the handwriting. Researchers have been tackling the problem of handwriting recognition

for about half a century [57]. A variety of methods have been proposed, e.g. based on Markov

chains and functional approximation. We mostly build on thefoundation of the classifica-

tion algorithm with functional approximation of strokes, described in [26]. However, a brief

description of the general idea behind the approach with Markov chains is given below [48].

Markov chain methods typically model behaviour of elementsof a handwritten curve, as-

suming those elements satisfy the Markov property (future states of the process depend only

upon the present state). In the early papers, e.g. see [15], acurve is encoded as a sequence of

directions selected from the set ofs states. The probability distribution of the first piece of the

curve is encoded as a vectorM1 = [P0,P1, ...Ps], wherePi is the probability that the first stroke

4

2.2. Orthogonal Series 5

is pointing in thei-th direction, and
∑s

i=0 Pi = 1, 0 ≤ Pi ≤ 1. Then the stochastic transition

matrix at thek-th piece is











































P00 P01 · · · P0s

P10 P11 · · · P1s
...

...
. . .

...

Ps0 Ps1 · · · Pss











































wherePi j is the probability of transitioning from the directioni at thek−1 piece to the direction

j at thek-th piece. Therefore a handwritten curve is represented as acollection ofn stochastic

transition matrices, and each matrix represents a piece of the curve. During the classification

phase, a curveR to be classified is split inton pieces with corresponding directionsR1, ...,Rn.

The probability of the curve to belong to a training classC is computed as

p(1)
R1
· p(2)

R1R2
· ... · p(n)

Rn−1Rn

wherep(1)
R1

is the probability of the first piece of the classC to point in the directionR1, and

p(k)
Rk−1Rk

is the probability of thek-th piece of the classC to point from the directionRk−1 to the

directionRk. Then the curveR is classified based on the maximum probability among training

classes.

Besides considering the direction of a stroke, sometimes other measures are introduced,

e.g. the length of the stroke and direction of the pen up movements [71]. In addition, a context

analysis is included by considering substrokes in sets, rather than independently.

2.2 Orthogonal Series

Two functionsf (λ) andg(λ) defined on the domain [a, b] are orthogonal on this interval with

respect to a given continuous weight functionw(λ), if their inner product

〈 f , g〉 ≡
∫ b

a
f (λ)g(λ)w(λ)dλ = 0.

One method to approximate a functionf : R→ R is as a linear combination of polynomials up

to some degreed from a given basisP = {Pi : R→ R, i = 0, 1, ..., d}:

f (λ) ≈
d
∑

i=0

fiPi(λ), fi ∈ R, Pi ∈ P

6 Chapter 2. PreviousWork and Preliminaries

where polynomialsPi , i = 0, 1, ..., d are orthogonal with respect to an inner product〈·, ·〉.
Gram-Schmidt orthogonalization of the monomial basis

{

1, λ, λ2, ...
}

can be used to generate

the system of orthogonal polynomials{P0,P1, ...} with respect to a given inner product. The

coefficients fi can be found as [38]

fi =
〈 f ,Pi〉
〈Pi ,Pi〉

.

With this method, one is able to obtain representation of coordinate functions as follows:

X(λ) ≈
d
∑

i=0

xiPi(λ), Y(λ) ≈
d
∑

i=0

yiPi(λ).

The coordinate functionsX(λ) andY(λ) may be parameterized in various ways, such as

by time or by arc length. Parameterization by arc length is preferable, since it provides inde-

pendence of speed of writing of curves. A possible problem, though, is that arc length is not

invariant under all affine transformations. For transformation-invariant parameterization one

could use time, invariant under affine transformations, or special affine arc length, invariant

under area preserving transformations [3]:

F(L) =

L
∫

0

3
√

x′(λ)y′′(λ) − x′′(λ)y′(λ)dλ.

Char and Watt proposed to represent a character as a vector ofcoefficients of the approx-

imation of the curve coordinates with truncated orthogonalseries [9]. They used Chebyshev

polynomials of the first kind

Tn(λ) = cos(narccosλ).

These are orthogonal on the interval [−1, 1] for w(λ) = 1/
√

1− λ2. Even though Chebyshev

polynomials are fast to calculate and allow accurate approximation of a curve with low degree

series, the form of its weight function creates difficulties for online computation of approxima-

tion. Therefore it was proposed to use Legendre polynomialsthat allow recovering a function

online [23] from its moments [70]. It was described how to compute the firstd coefficients of

the truncated Legendre series for a functionf (λ), normalized to a desired range and domain,

in online timeOLn[O(d),O(d2)], wheren is the number of known equally-spaced values of

f [48].

In later work [24], the authors demonstrated that Legendre-Sobolev polynomials perform

better than Legendre polynomials for recognition purposes. The Legendre-Sobolev polynomi-

2.3. Classification with Convex Hulls 7

als are orthogonal with respect to the inner product

〈 f , g〉 =
∫ b

a
f (λ)g(λ)dλ + µ

∫ b

a
f ′(λ)g′(λ)dλ.

whereµ is a parameter, that we call the “jet scale”.

Legendre-Sobolev polynomials are suitable for online computation of coefficients and pro-

vide a more accurate description of a curve for a lesser degree of approximation than Legendre

polynomials (due to the presence of derivatives in the innerproduct). Classification is based

on Euclidean distance between coefficient vectors of subject and training samples. The authors

presented results that demonstrate that classification rates with elastic matching and Legendre-

Sobolev approximation are similar, while the latter is moreefficient [48].

2.3 Classification with Convex Hulls

The technique of recognition via convex hulls represents classes by some fixed number of

nearest neighbours and is similar to the recognition with SVMs. However, a subject sample

is assigned to the class with a corresponding convex hull located on the smallest distance to

the sample. Nearest neighbours are selected with the Manhattan distance, which is among

the fastest distances known, requiring 2d − 1 arithmetic operations, whered is the dimension.

Distance to convex hulls is evaluated with the squared Euclidean distance, which takes 3d − 1

operations [20, 48].

Computing the distance from a point to a convex hull is generally expensive. However, one

can represent a convex hull as a simplex if the number of nearest neighbours is less than the

dimension of the vector space and the points are in generic position. If the points happen to

not be in generic position, a slight perturbation is done with a little affect on the distance [20].

Details of the algorithm are explained in Section 2.4.

Classification of multi-stroke characters can be implemented similarly to the classification

of a single-stroke with functional approximation, see [25]. In the case of a multi-stroke sample,

consecutive strokes are joined to obtain the function to approximate, and the number of strokes

is included in the class label [20].

2.4 Distance to Simplex

The task of computing the distance from a point to a convex hull of k nearest neighbours occurs

in various applications of machine learning. This section is based on the poster presented at

the East Coast Computer Algebra Day 2012, abstract of which is published in [22].

8 Chapter 2. PreviousWork and Preliminaries

2.4.1 Problem Definition

The classification algorithm is based on computation of the distance from a point to a simplex

in n-dimensional Euclidean space. The distance is computed by the means of recursive projec-

tions onto linear subspaces containing lower-dimensionalsubsimplexes, proceeding until the

projection is in the interior. Since any generic set of points of size not exceeding the dimension

of the vector space plus one forms a simplex, we view the distance to the convex hull ofk

nearest neighbors as the distance to a simplex. When thek nearest neighbors are not in generic

position one may perform simplicial decomposition of theirconvex hull.

Several methods have been proposed with various degrees of efficiency that either solve

a more general problem, such as finding the distance from a point to a polytope, or a more

specialized problem, such as computing the distance to a canonical simplex. The paper [72]

relies on the observation that the distance from a point to a convex object is twice the distance

to a maximal margin SVM hyperplane. In [78], the minimum distance from a pointY to a

polytopeon vertices{P1, . . . ,Pm} is found using quadratic programming to minimizeXTX for

X =
∑m

k=1(Pk − Y)wk and
∑m

k=1 wk = 1 for all wk ≥ 0. The paper [12] proposes an algorithm for

computing the distance from a point to acanonical simplex. Similarly to the method in [78],

the authors construct a function to be minimized, introducethe Moreau’s proximity operator to

the function and derive several properties that allow them to obtain a succinct algorithm.

Another technique for acanonical simplexwas developed in [58]. The work presents a

recursive algorithm that locates a solution in a strictly lower-dimensional space. The solution

is found using Lagrange multipliers and properties of a canonical simplex. The dimension of

the problem is decreased by removing the points that have negative corresponding coefficients.

If all of the coefficients are non-negative then the solution is found. A similar logic was used

to devise a method to find the distance to a more general type ofconvex objects –convex

polyhedral cones[76]. The method finds the nearest pointP in the coneK to a pointQ as

a positive linear sum of a subset of vectors from the generating set. The coneK is split in

subconesK1,K2, On each iteration the algorithm finds a pointP j ∈ K j which is closer toQ

than isP j−1. Since there is a finite number of cones, the algorithm terminates at some step.

The method we use is similar to that of Michelot [58], except that it computes the distance

to a general simplex. While this could be accomplished by finding a linear transformation

mapping the general simplex to the canonical one, and conjugating the Michelot’s method, it

is simpler to perform the computation directly.

2.5. Integral Invariants 9

b

b

S0 S1

S2

P

P′

(a)

b

b

S0 S1

S2

P

P′

(b)

b

b

S0 S1

S2

P

P′

(c)

Figure 2.1: Possible projection scenarios

Recursive call S α

1 {S0(0, 0),S1(3, 0),S2(2,−1)} α1 = 2, α2 = −1
2 {S0(0, 0),S1(3, 0)} α1 =

4
3

3 {S0(3, 0)}

Table 2.1: An example of the execution flow

2.4.2 Distance to a Simplex

The method below is based on recursive computation of the projection from the point to the

smallest linear subspace that contains the simplex. The projection is expressed as a linear

combination of the generating vectors of the simplex. The vectors with corresponding positive

coefficients are used as the input for the next recursive call. The algorithm stops when all of

the coefficients of a projection are non-negative or when the simplex contains only one vertex.

Let Si ∈ Rn, i = 0..d, d ≥ 0, d ≤ n be points of a simplex andP ∈ Rn is the point from which

the distance should be computed, whereRn is then-dimensional Euclidean space. We assume

that the points of the simplex are in generic position, i.e. the vectorsS1 − S0,S2 − S0, ...,Sd − S0

are linearly independent. For a detailed description, see Algorithm 1. The complexity of the

algorithm isO(d4), whered is the number of vertices. In practice, however, the algorithm

performs much faster, since on each recursive call the dimension drops by more than one.

An example of the execution flow of the algorithm for a pointP(4, 1) and a simplex

S = {S0(0, 0),S1(3, 0),S2(2,−1)} is shown in Table 2.1. During the third recursive call, the

algorithm returns the Euclidean distance between (4, 1) and (3, 0).

2.5 Integral Invariants

To recognize characters invariant with respect to certain transformations, e.g. rotation, we in-

vestigated integral invariant functions [16]. These invariants are computed from the coordinate

functions, which are then also functions of the curve parameterization. Exposing the sample

10 Chapter 2. PreviousWork and Preliminaries

Algorithm 1 DistanceToSimplex(P, {S0, ...,Sd}).
Input: A point P and a simplex with vertices{S0, ...,Sd}.
Output: Distance fromP to the simplex.

if d = 0 then
return Euclidean distance betweenP andS0.

end if
Translate so thatS0 is the origin.
Find projectionP′ of P to the linear subspace with the set of basis vectorsS= S1, ...,Sd. The
projection can be computed as a solution of the system

d
∑

i=1

αi〈Si ,Sj 〉 = 〈P,Sj 〉, j = 1, 2, ..., d

and expressed asP′ =
∑d

i=1αiSi.
if
∑d

i=1 αi ≤ 1 and αi ≥ 0,∀i = 1..d then
{The projection is inside the simplex, see Figure 2.1(a)}
return Euclidean distance betweenP andP′.

else if∃i such thatαi < 0 then
{See Figure 2.1(b)}
S′ ← S0 ∪ {Si |αi > 0}.
return DistanceToSimplex(P,S′)

else
{
∑d

i=1 αi > 1 and αi ≥ 0,∀i = 1..d, see Figure 2.1(c)}
return DistanceToSimplex(P,S \ S0)

end if

to transformations results in the same invariant functions. As opposed to differential invari-

ants, such integral invariants are relatively insensitiveto small perturbations, and are therefore

applicable to classification of handwritten characters with sampling noise [20].

As the name suggests, integral invariants are obtained by integration. Out of the infinite

family of invariants we studied the first three [16], which wedefined in terms of the coordinate

functionsX(λ) andY(λ):

I0(λ) =
√

X2(λ) + Y2(λ) = R(λ),

I1(λ) =
∫ λ

0
X(τ)dY(τ) − 1

2
X(λ)Y(λ),

I2(λ) = X(λ)
∫ λ

0
X(τ)Y(τ)dY(τ) −

1
2

Y(λ)
∫ λ

0
X2(τ)dY(τ) −

1
6

X2(λ)Y2(λ).

FunctionsX(λ), Y(λ) can be of any desired parameterization. The functionI1(λ) can be geo-

2.6. Approximation of Invariants 11

Figure 2.2: Geometric representation of the first order integral invariant

metrically represented as the area between the curve and itssecant (Figure 2.2).

FunctionI0(λ) is independent of transformations of the special orthogonal groupS O(2),

while I1(λ) andI2(λ) are invariant under the group of special linear transformations,S L(2).

2.6 Approximation of Invariants

The coordinate functions are represented by the truncated sum of Legendre-Sobolev orthogonal

series (for details, see Section 2.2). Therefore, we can write the approximation of invariants

introduced above as

I0(λ) ≈

√

√

√














d
∑

i=1

x̄iPi(λ)















2

+















d
∑

i=1

ȳiPi(λ)















2

I1(λ) ≈
d
∑

i, j=1

x̄i ȳj

[∫ λ

0
Pi(τ)P

′
j(τ)dτ −

1
2

Pi(λ)P j(λ)

]

I2(λ) ≈
d
∑

i, j,k,l=1

xi xjykylµi jkl

where

µi jkl = Pi(λ)
∫ λ

0
P j(τ)Pk(τ)P

′
l (τ)dτ

−
1
2

Pl(λ)
∫ λ

0
Pi(τ)P j(τ)P

′
k(τ)dτ −

1
6

Pi(λ)P j(λ)Pk(λ)Pl(λ).

HerePi denotes thei-th Legendre-Sobolev polynomial.

In our algorithms, these functions are, in turn, approximated with the orthogonal series.

Therefore, it is reasonable to estimate how well the invariants can be approximated. To eval-

uate the quality of approximation, we compared coefficients of an original sample and the

same sample sheared by 1 radian. The error of the 12-th degreeapproximation provides suf-

ficient accuracy for our algorithms and such invariants can be successfully deployed for our

12 Chapter 2. PreviousWork and Preliminaries

Figure 2.3: Rotation of a symbol

purposes [21, 48].

2.7 Rotation-Invariant Recognition

This section describes the main ideas presented in “Orientation-Independent Recognition of

Handwritten Characters with Integral Invariants” co-authored with Watt.

Different solutions have been proposed, usually dealing withad hocrotation of a charac-

ter after it is completely written (Figure 2.3). This rotation, as well as symbol resizing, are

performed during the normalization stage in most of the online techniques. We proposed a dif-

ferent approach: rather than rotating a sample by some estimated amount, we computed from

the sample certain functions that are invariant under rotation. We examined to what extent

these transformations affect the classification rate and presented new algorithms forclassify-

ing symbols in the presence of such transformations. The following methods were considered:

classification with integral invariants (CII) and classification with coordinate functions and

integral invariants (CCFII). For these we used the theory ofintegral invariants of paramet-

ric curves [16]. To objectively evaluate recognition rate of these techniques, we compared to

a similar algorithm that uses geometric moment functions for the rotation-independent clas-

sification. We called this last method classification with coordinate functions and moment

invariants (CCFMI). For CII, we take the integral invariants as the curves to be approximated

and look for nearest classes in a manner we describe below. For CCFII, the topN classes are

selected with integral invariants, then the sample is rotated to determine the angle which gives

minimal distance based on coordinate curves. The CCFMI method is similar to CCFII except

that it computes geometric moment invariants to obtain topN candidates. These algorithms

are online in the sense that most of the computation is performed while the sample is written,

with minor overhead after pen-up. The algorithms are as wellindependent of translation and

scaling, which is achieved by dropping the constant terms from the series and by normalizing

the coefficient vectors respectively.

2.7.1 Geometric Moments

Similar to integral invariants, moment invariants providea framework to describe curves inde-

pendently of orientation. Among moment functions one can select geometric, Zernike, radial

2.7. Rotation-Invariant Recognition 13

and Legendre moments [60]. For the purpose of online curve classification under pressure of

computational constraints, geometric moments are of special interest since they are easy to

calculate, while invariant under scaling, translation androtation.

Having been introduced by Hu [30], geometric moments are widely used for shape and

pattern classification [44, 56, 60]. A (p+ q)-th order moment off can be expressed as

mpq =
∑

x

∑

y

xpyq f (x, y)

In general, translation invariance is achieved by computing central moments

µpq =
∑

x

∑

y

(x− x0)p(y− y0)q f (x, y), x0 =
m10

m00
andy0 =

m01

m00

and scale normalization is performed as

ηpq = µpq/(µ00)(p+q+2)/2

The first three moment invariants are derived from algebraicinvariants and can be represented

as

M1 = η20 + η02, M2 = (η20 − η02)
2 + 4η2

11, M3 = η20η02 − η2
11.

Independence of orientation of the above expressions can beverified by substitution with the

geometric moments obtained after rotation transformation

m′20 =
1+ cos 2α

2
m20 − sin 2α m11 +

1− cos 2α
2

m02,

m′11 =
sin 2α

2
m20+ cos 2α m11 −

sin 2α
2

m02,

m′02 =
1− cos 2α

2
m20 + sin 2α m11 +

1+ cos 2α
2

m02.

One can omit translation and scale normalization of momentsby normalizing a sample’s coor-

dinates first. In this case the moment invariants are derivedin terms of momentsmpq.

2.7.2 CII and CCFII

Consider the coordinate functionsX(λ) andY(λ) of a single- or multi-stroke sample. The

first step is to approximateX(λ) andY(λ) as truncated series in basis of Legendre-Sobolev

polynomials. Letx0, x1,...,xd be the coefficients of the approximation forX(λ) and similarly

for Y(λ). Note, that these coefficients are computed while the curve is written with a small

constant time overhead after pen-up [23].

14 Chapter 2. PreviousWork and Preliminaries

Since the first polynomial (for any inner product) is 1, point(x0, y0) can be thought of as

the curve’s center. We can therefore normalize the curve with respect to position by simply

discarding the first coefficients. Scale normalization is performed by normalizing the vector

(x1, ..., xd, y1, ..., yd), taking advantage of the fact that the norm of the vector is proportional to

the size of the curve, to obtain (¯x1, ..., x̄d, ȳ1, ..., ȳd).

A similar process of approximation is then applied to the invariant functions, yielding a

2d-dimensional vector for each sample (Ī0,1, ..., Ī0,d, Ī1,1, ..., Ī1,d). Taking the second term in

the expression forI1(λ) as precomputed, the Legendre-Sobolev coefficients can be calculated

quickly, in time quadratic ind. The coefficients forI0(λ) are computed in the same way.

The CII algorithm relies on approximation of the invariant functions, as described above.

We select the class closest to the sample in the space of coefficients of truncated polynomial

series. The algorithm does not depend on the number of classes, since only one class is con-

sidered.

As an alternative, in CCFII the coefficients (̄I0,0, . . . , Ī0,d, Ī1,0, . . . , Ī1,d) are used to select the

closestN candidate classes. The value forN may be determined empirically to ensure high

probability of the correct class being within the ones chosen. Having a fixed small number of

classes with the correct class among them, we evaluate the minimal distance from the sample

to each class with respect to various sample rotations. Thisprocedure gives correct class as

well as the rotation angle. The angle is determined as the solution to the minimization problem

min
α















∑

k

(Xk − (xk cosα + yk sinα))2 +
∑

k

(Yk − (−xk sinα + yk cosα))2















,

whereXk, Yk are the coefficients of the Legendre-Sobolev approximation of the coordinate

functions of the training symbols, andxk, yk are the coefficients of the test sample.

2.7.3 CCFMI

The (p+ q)-th moment functions of a sample’s coordinates can be expressed as

mpq(λ`) =
∑̀

i=1

∑̀

j=1

X(λi)
pY(λ j)

q f
(

X(λi),Y(λ j)
)

whereX(λi) andY(λi) are the coordinatesX andY at sample pointi. We take the intensity

function to be of the formf
(

X(λi),Y(λ j)
)

=
√

X(λi)2 + Y(λ j)2 and work directly with moments,

since normalization with respect to size and position is already performed in the algorithm.

2.8. Shear-Invariant Recognition 15

Specifically, we tested the following rotation invariants

M0(λ) = m00(λ),

M1(λ) = m20(λ) +m02(λ),

M2(λ) = (m20(λ) −m02(λ))
2 + 4m11(λ)

2.

As in CCFII, CCFMI selects the topN classes with rotation invariant functions. To make a

fair comparison, we considered the classification rate for two combinations of moment invari-

ants: M0(λ), M1(λ) and M1(λ), M2(λ). Classification withM1(λ), M2(λ) in general gave 3%

higher error rate. We therefore focused on improving the recognition rate ofM0(λ) andM1(λ)

by variation of number of classes and number of nearest neighbours.

Our tests showed that CII gives a 88% recognition rate. This recognition rate does not

depend on the angle to which test samples are rotated. Neither does the frequency of occurrence

of the correct class in the topN classes depend on rotation angle.

It was found that CCFII has a better error rate than CCFMI. CCFII also requires fewer num-

ber of candidate classes and fewer nearest neighbour computations. Both methods, however,

show better performance than CII, see details in [20].

As expected, we noticed an increase in error rate with the rotation angle for CCFII and

CCFMI. The typical misclassifications that arise are when symbols have similar shape and are

normally distinguished by their orientation, for example “1” and “/”, “ +” and “×”, “U” and

“⊂”. As a possible solution to this, a system could consider thetendency to write characters in

similar orientations and restrict the range of angles for nearby symbols. This is investigated in

Chapter 3.

2.8 Shear-Invariant Recognition

We addressed another class of transformations that often occur in practice: shear, or “skew”,

transformations. This may be seen as a theoretically sound form of “de-slanting”. Samples that

have been sheared seem to be quite common in handwriting, compared with other transforma-

tions. Also, the maximal shear angle, for which a character is still readable by a human can be

quite large (Figure 2.4), compared to the corresponding maximal rotation angle. We therefore

expect that, in practice, a large amount of shear can occur and consider shear invariance as a

useful addition to the set of tools for character recognition [20]. This section is based on the

paper “Toward Affine Recognition of Handwritten Mathematical Characters” [21] co-authored

with Golubitsky and Watt.

Shear is harder to deal with than rotation. Since shear does not preserve the length of

16 Chapter 2. PreviousWork and Preliminaries

strokes, parameterization by the Euclidean arc length is nolonger robust. Size normalization

requires special attention as well. We developed an algorithm, invariant with respect to shear,

rotation, scale and translation, and then proposed a way to extend the invariance of the method

to the full affine group, while keeping the recognition rate higher than that of classification with

the affine integral invariants alone [20].

2.8.1 Overview of Affine Methods

In this section we briefly describe some of the existing methods invariant under the group of

affine transformations and the differences with our approach.

Stroke-Based Affine Transformation This approach was proposed in [3] to minimize dis-

tortions in handwriting by applying stroke-based affine transformation. The algorithm denotes

stroke-wise uniform affine transformation for a strokei with Ai andbi, whereAi is a 2× 2

matrix for shear, rotation and scale andbi is a 2-dimensional translation vector. For a sample, a

set ofN strokes is selected to construct the objective function in the form of least-squares data

fitting to determine the optimalAi andbi as

Fi =
∑

k

‖Aitk + bi − rk‖2 → min for Ai , bi, (1 ≤ i ≤ N)

wheretk andrk arek-th feature points of the sample to be classified and a reference sample

respectively, and‖·‖ is the Euclidean norm. This yields the affine transformation with the least

distance between corresponding strokes of the input and a reference sample. This procedure is

repeated for each reference sample and then distance-basedclassification takes place. Recog-

nition of handwritten characters as gray scale images was proposed in [73], using similar ideas.

Minimax Classification with HMM An online method, robust against affine distortions,

was developed in [34], based on continuous-density hidden Markov models (CDHMM). LetN

be the number of character classesCi , i = 1, ...,N, each containingMi CDHMMs

{

λ(m)
i ,m= 1, ...,Mi

}

.

In the non-affine approach, an input sampleI is classified as member of classCi in terms of the

joint likelihood of the observationI and the associated hidden state sequenceS given CDHMM

λ(m)
j , p(I ,S|λ(m)

j), as follows

arg max
j

{

max
m

[

max
S

log p(I ,S|λ(m)
j)
]}

.

2.8. Shear-Invariant Recognition 17

Figure 2.4: Skews of 0.0, 0.2, 0.4, 0.6 and 0.8 radians.

In order to eliminate affine distortions between the input and training samples, the authors use

arg max
j

{

max
m

[

max
S

log p(I ,S|ΓÂ(λ(m)
j))
]}

,

whereΓA is a specific transformation ofλ(m)
j with parametersA, andÂ = arg maxA p(I , ΓA(λ(m)

j)).

The authors propose solving this optimization problem withthree iterations of the EM algo-

rithm described in [43].

Affine Moment Invariants Affine moment invariants (AMIs) are independent of actions of

the general affine group and can be used in recognition of handwritten characters [18]. A

central moment of orderp+ q for a 2-dimensional objectO can be represented as

µpq =

"
O
(x− xc)

p(y− yc)
qdxdy

where (xc, yc) is the center of gravity of the objectO. In the work, the first four affine moments

were calculated to obtain a description of an isolated character in the form of a 4-dimensional

vector. Samples were classified by the minimum Euclidean distance to the training samples.

The performance of AMIs is compared with that of the geometric moment invariants, which

are invariant under rotation, scale and translation. It wasconcluded that AMIs gave a better

recognition rate than geometric moments.

As opposed to the first two methods described above, we proposed a technique of classify-

ing handwritten characters with integral invariants. Similarly to the classification with AMIs,

affine-invariant quantities are computed from the original curve, without using any specific

transformations of the input sample. However, AMIs, as originally defined, provide curve-to-

value correspondence, unlike the curve-to-curve correspondence with the integral invariants.

This allows to obtain a richer description of a curve withoutexcessive computation. In fact, we

considered only 2 invariants and found them sufficient for an acceptable classification accuracy

of samples under different transformations. In order to further improve the classification rate,

an analysis is still performed on a sample to obtain a numerical measure of the distortion (i.e.

18 Chapter 2. PreviousWork and Preliminaries

Figure 2.5: Aspect ratio size normalization.

the angle of rotation or shear). However, only small subset of top classes is the subject of this

analysis, and it is computationally inexpensive.

2.8.2 A Shear-Invariant Algorithm

In this section we discuss an algorithm, invariant under shear, in addition to rotation, scale and

translation [20]. We consider different size normalization methods and parameterizations of

the coordinate functions to ensure appropriate setting forthe method. The algorithm itself is

given at the end of the section.

Size Normalization Size normalization is traditionally implemented by rescaling a sample to

achieve standard values of certain parameters. Earlier, this parameter was the Euclidean norm

of the vector of Legendre-Sobolev coefficients of the coordinate functions [26]. While this

norm can still be used to rescale rotated samples [20], it is not invariant under shear and affine

transformations in general. Instead, we look at the norm of the Legendre-Sobolev coefficient

vector of I1. We can then normalize the coefficient vectors of the coordinate functions by

multiplying them by 1/
√
‖I1‖. Finally, we compute the coefficients ofI2 from the normalized

coefficients of the coordinate functions. Computing the norm ofI1 allows us to extend the

invariance ofI1 and I2 from the special linear group,S L(2,R), to the general linear group,

GL(2,R). Invariance under the general affine group, Aff(2,R), is obtained by dropping the first

(order-0) coefficients from the coefficient vectors of the coordinate functions [26].

To evaluate the performance of‖I1‖ for normalization, we consider two other normalization

approaches typical in handwriting recognition: height andaspect ratio [44]. Both of these are

not perfect in the presence of affine transformations. While normalization by height is invariant

under horizontal shear, it becomes inaccurate if samples are subjected to rotation. Aspect ratio

is suitable for rotation, but becomes inaccurate for largerdegrees of shear (Figure 2.5).

Parameterization of the Coordinate Functions Parameterization by time and arc length

are among the most popular choices in online handwriting recognition. Parameterization by

arc length is usually preferable, since it is not affected by variations in writing speed and is

2.8. Shear-Invariant Recognition 19

invariant under Euclidean transformation. It may be expressed as

AL(λ) =
∫ λ

0

√

(X′(τ))2
+ (Y′(τ))2dτ.

When one looks at the group of affine transformations, however, parameterization by arc length

may no longer be the best choice, since it is no longer invariant. For example, it is changed by

shear distortion. Instead, we may consider parameterization by special affine arc length. We

use affine arc length in the form

AAL(λ) =
∫ λ

0

3
√

|X′(τ)Y′′(τ) − X′′(τ)Y′(τ)|dτ.

The Algorithm In online classification algorithms, a symbol is given as a continuous curve

defined by a discrete sequence of points. When a symbol is given by multiple strokes, they

are joined. The curve is parameterized with an appropriate function (Section 4.2) and the

Legendre-Sobolev coefficients of the coordinate functions are computed online, as points are

accumulated [23]. Using the representation ofI1(λ) in Section 2.7.2, coefficients of the invari-

ant are computed as

I1,i = 〈I1,Pi〉 / 〈Pi ,Pi〉, i = 1..d.

Here 〈Pi ,Pi〉 is the Legendre-Sobolev inner product. Similarly, we calculate coefficients for

I2(λ) and obtain a 2d-dimensional vector for each sample

(I1,1, ..., I1,d, I2,1, ..., I2,d).

Taking the second term in the expression forI1 as precomputed, each coefficient of the approx-

imation can be computed in time quadratic ind. Each coefficient of I2 is computed inO(d4)

operations. Note that one can also compute invariants of higher degree [16]. We expect, how-

ever, higher degree invariants to affect the classification rate only slightly, while introducing a

noticeable computational overhead. For example, it would takeO(d7) operations to calculate

the coefficients ofI3 [16].

Given the representation of a character in terms of Legendre-Sobolev coefficients of the

invariant functions, we classify the sample based on the distance to the convex hulls of nearest

neighbours in the same representation.

We selectN classes closest to the Legendre-Sobolev coefficient vector of the integral in-

variants. To find the correct class among these, we solve the following minimization problem

for each of these classesCi:

min
φ

CHNNk(X(φ),Ci),

20 Chapter 2. PreviousWork and Preliminaries

whereX(φ) is the sheared image of the test sample curveX and CHNNk(X,C) is the distance

from a pointX (in the Legendre-Sobolev space) to the convex hull ofk nearest neighbors in

classC.

It is not infeasible to solve the minimization problem by trying all possible angles, given

that the precision of 1 degree is certainly sufficient for our purposes. Our error rates were

calculated using this method. However, there are also more efficient methods. If we replaced

the classC by a single point (X0, . . . ,Xd,Y0, . . . ,Yd) in the Legendre-Sobolev space of the

coordinate functions, then we could find the minimum among the values of the distance at

the boundary points of the interval of shear (i.e. the smallest and the largest admissible shear

angles) and the stationary point

ϕ = arctan
∑

k(Xk − xk)
∑

k yk
.

Experimental results demonstrated that the approximationerror of integral invariants is

negligible: the absolute error for the 12-degree approximation is of the order of 10−5.

The error rate of the algorithm was examined for different choices of parameterization

of the coordinate functions: arc length, time and affine arc length. We also compared size

normalization techniques described above.

Parameterization by arc length, which is not invariant under shear, gives a lower recognition

rate than parameterization by time for large distortions. However, for shear up to about 0.45

radians (≈25 degrees) it yields a noticeably better classification rate. Parameterization of the

coordinate functions by affine arc length results in relatively low recognition rate. Presence of

second order derivatives makes it sensitive to sampling perturbations, even though it is invariant

under special affine transformation, see details in [21].

We have discovered that size normalization by height gives the best classification rate un-

der shear transformation. Such normalization, however, isnot suitable for some other affine

transformations, e.g. rotation. Normalization with aspect ratio performs similarly to normal-

ization by height at smaller degrees of shear, but the difference in classification rates becomes

noticeable with the increase of deformation. Normalization by I1 performs just as well as nor-

malization by height and remains invariant under affine transformations. We therefore consider

size normalization withI1 as the most suitable approach, if transformation of characters takes

place.

2.9. Digital Ink Compression via Functional Approximation 21

Figure 2.6: Ambiguity introduced by shear and rotation

2.9 Digital Ink Compression via Functional Approximation

We studied whether it is feasible to apply the theory of functional approximation to describe a

stroke up to some given threshold of the maximal pointwise error and root mean square error.

If so, what is the compression one could expect as the result of such approximation? This

section is based on the paper “Digital Ink Compression via Functional Approximation” [50]

co-authored with Stephen M. Watt, that appeared in the proceedings of the 12th International

Conference on Frontiers in Handwriting Recognition.

We empirically investigated different approaches to obtain the minimal overall size of co-

efficients of an approximation that satisfies the given error constraints. We considered com-

pression of handwritten regular text, since it commonly occurs in pen-based computing and

incorporates different kinds of patterns. An example word and its approximation with different

thresholds are shown in Table 2.2 and the corresponding figure. We have observed that limiting

the maximum error also limits the root mean square error, butnot vice versa. Therefore, in our

experiments we have limited the maximum error.

2.9.1 Ink Representation

A variety of digital ink standards are in use today. Among these one can mention vendor-

specific or special-purpose formats: Jot [66], Unipen [27],Ink Serialized Format (ISF) [59]

or Scalable Vector Graphics (SVG) [17]. In 2003, W3C introduced a first public draft of an

XML-based markup language for digital trace description, InkML. This has evolved to the

current standard definition in 2010 [11]. InkML has receivedan increasing attention due to

its vendor neutrality and XML base. In general, a trace is given in InkML as a sequence of

multidimensional points. Each coordinate gives the value of a particular channel at that point.

Pre-defined channels includex andy coordinates, pressure and various angles.

2.9.2 Bases for Approximation

We wish to determine which bases will be suitable for compression. We have investigated three

families of orthogonal polynomials with useful propertiesand have included Fourier series for

22 Chapter 2. PreviousWork and Preliminaries

O R C C A
Max. pt-wise err., % 1 2 3 4 5
RMSE, % 0.33 0.67 1 1.33 1.67

Table 2.2: Different approximation thresholds.

comparison.Chebyshev polynomialsof the first kind, defined asTn(λ) = cos(narccosλ), have

weight functionw(λ) = 1√
1−λ2

and are used in numerical approximation for their property of

minimizing the maximum error. In [9] it was reported that Chebyshev polynomials are suitable

for succinct approximation of strokes and perform better than Bernstein polynomials.Legendre

polynomialsare defined as

Pn(t) =
1

2nn!
dn

dtn
(t2 − 1)n

and have weight functionw(λ) = 1. Legendre-Sobolev polynomialsare constructed by applying

the Gram-Schmidt orthogonalization to the monomial basis{λi} using the inner product

〈 f , g〉 =
∫ b

a
f (λ)g(λ)dλ + µ

∫ b

a
f ′(λ)g′(λ)dλ

whereµ = 1/8 as described in [26].

A property of the Legendre and Legendre-Sobolev orthogonalbases, as applied to online

stroke modeling, is the ability to recover a curve from moments computed in real time, while

the stroke is being written. The coefficients of the stroke may then be calculated on pen-up in

constant time depending only on the degree of approximation[23]. Fourier serieson [−L, L]

are provided for comparison, since we are not restricted in our selection of approximation basis.

f (x) ≈ α0

2
+

d
∑

n=1

(αn cos(
nπx
L

) + βn sin(
nπx
L

))

where














αn

βn















=
1

2L

∫ L

−L
f (x)















cos

sin















(
nπx
L

)dx.

2.9. Digital Ink Compression via Functional Approximation 23

2.9.3 Algorithms

Overview At a high level, our compression method takes the following steps for each stroke:

1. Segment the stroke using one of the methods described below. Ensure the segments

overlap by an amount at segmentation points.

2. For each segment, compute the orthogonal series coefficients for each coordinate func-

tion (e.g. x, y, p, wherep is pressure).

3. Compress the stream of coefficients.

To reconstruct a stroke, the process is reversed:

1. Decompress the coefficient stream to obtain the curve segments.

2. Blend the curves on the overlaps to obtain the piecewise coordinate functions.

3. Obtain traces by evaluating the coordinate functions with the desired sample frequency.

On a given segment, the series coefficients are computed by numerical integration of the re-

quired inner products. The cost to compute the compression is linear in the number of trace

sample points and in the number of coefficient size/approximation degree combinations al-

lowed.

To obtain a more compact form for the coefficient stream, it may be compressed with

a deflation tool. In the experiments below we use gzip, which implements a combination of

LZ77 [79] and Huffman coding [33].This is for convenience only — a more specialized method

would be used in a production setting.

Parameterization Choice We tested two used choices for curve parameterization widely

used in pen-based computing: time and arc length. We observed that parameterization by time,

while being easier to compute, also gives better compression. Comparison of the results is

presented in [52] for approximation with Chebyshev polynomials with integer coefficients.

Segmentation We cannot expect long, complex strokes to be well approximated by low de-

gree polynomials. Instead of varying the degree to suit any stroke, we segment strokes into

parts that we can separately approximate. We have explored the three methods to segment

traces, described here.

Fixed Degree SegmentationWe fix the degree of the approximating functions. Intervals of

approximation are constructed to allow the maximal length within the given error threshold. If

the available interval can be approximated with a lower degree (e.g. the end of the curve has

been reached), it is handled appropriately.

24 Chapter 2. PreviousWork and Preliminaries

Figure 2.7: Example of blending.

Fixed Length SegmentationWe fix the length of intervals and approximate each interval

with the minimal degree possible, but not greater than 20 (tokeep the algorithm computation-

ally feasible).

Adaptive SegmentationThe most comprehensive variant is to fix a maximum permissi-

ble degree and maximum permissible coefficient size (digits for text, bits for binary), and to

perform fixed degree segmentation for each combination. Then the combination of degree and

coefficient size that gives the smallest resulting total size is selected. The degree and coefficient

size are saved together with the coefficient data.

Segment Blending If we allow a large error threshold (e.g. 4%), then it becomes possible

to notice naı̈ve segmentation because we do not match derivatives at the segmentation points.

This can be observed in the Table 2.2. To make the stroke smooth, and to improve the ap-

proximation, we blend the transition from one piece to another by overlapping the segments

slightly and transitioning linearly from one segment to thenext on the overlap. Therefore, the

approximation is given in segments,f j, and takes form

f (λ) =
N
∑

j=1

Wj(λ) f j(λ) ≈
N
∑

j=1

Wj(λ)
d
∑

i=0

ci j Pi(λ)

with the weight function

Wj(λ) =























































0, λ ≤ λ j − a
λ−(λ j−a)

a , λ j − a < λ ≤ λ j

1, λ j < λ ≤ λ j+1 − a
−λ+λ j+1

a , λ j+1 − a < λ ≤ λ j+1

0, λ > λ j+1

wherea is a proportion of approximation pieces andλ j are the segment transition points. The

value ofa may be estimated empirically, but different types of curves will have a certain portion

of overlap necessary for smooth transition. An example of a blended sample is given in the

Figure 2.7.

2.10. Experimental Dataset 25

2.10 Experimental Dataset

The described dataset of handwritten mathematical characters is used in the experiments through-

out the thesis. The dataset currently comprises 50,703 samples from 242 classes. These sam-

ples have been collected from several sources: 26,139 characters were gathered at the On-

tario Research Center for Computer Algebra (special mathematical characters, Latin letters

and digits), 9,762 samples (digits, Latin letters and mathematical symbols) from the LaViola

database [42], and 14,802 samples (mostly digits) from UNIPEN [27] handwriting database [21,

48].

All the samples are stored in a single file in InkML format. Thenumber of strokes is in-

cluded in the class labels. Thus, if a character, such as “7” is written with different number of

strokes, it will be placed in different classes, even if the shape of the character is identical. Al-

though this raises the total number of classes to 378, it was found [25] to give better recognition

rates compared to when the number of strokes is included in the feature vector [21, 48].

To avoid confusion, all gathered characters had been visually inspected to discard symbols

unrecognizable by a human. Symbols that look ambiguous to a human reader (those that may

belong to more than one class) were labelled with all the corresponding classes. Classes that

appear indistinguishable without context analysis were merged, such asx and×; o, 0 andO. If

there was at least one sample in the class that could be recognized by a human with confidence,

we retained the label of the class. As a result, we obtained 38,493 samples assigned to single

classes, 10,224 to 2 classes, 1,954 to 3 classes, 19 to 4 classes, and 13 samples to 5 classes. To

increase the precision of the approximation of integral invariants, we precomputed some terms

in the formulas forI1 andI2 in Maple [35] using rational arithmetic [21]. Additional details of

the experimental setting are given in [26, 48].

The tests are implemented in 10-fold cross-validation. To conduct this process, symbols

were split randomly in 10 parts, preserving the proportional sizes of the sets. The normalized

Legendre-Sobolev coefficients of coordinate functions, integral invariants and moment invari-

ants were precomputed for all symbols and stored in separatefiles [21].

Chapter 3

Improving Isolated and In-Context

Classification of Handwritten Characters

It was shown in the previous chapter how to recognize handwritten characters by represent-

ing coordinate functions or integral invariants as truncated orthogonal series. The series basis

functions are orthogonal polynomials defined by a Legendre-Sobolev inner product. The free

parameter in the inner product, the “jet scale”, has an impact on recognition both using coordi-

nate functions and integral invariants.

In this chapter we develop methods of improving series-based recognition. For isolated

classification, the first consideration is to identify optimal values for the jet scale in different

settings. For the coordinate functions, we find the optimum to be in a small interval with the

precise value not strongly correlated to the geometric complexity of the character. For integral

invariants, used in orientation-independent recognition, we find the optimal value of the jet

scale for each invariant. Furthermore, we examine the optimal degree for the truncated series.

For in-context classification, we develop a rotation-invariant algorithm that takes advantage of

sequences of samples that are subject to similar distortion. The algorithm yields significant

improvement over orientation-independent isolated recognition and can be extended to shear

and, more generally, affine transformations. This chapter is based on the paper “Improving

isolated and in-context classification of handwritten characters” [51] co-authored with Stephen

M. Watt, that appeared in proceedings of the 19th Conferenceon Document Recognition and

Retrieval.

26

3.1. Introduction 27

3.1 Introduction

It was proposed earlier [9] to represent an ink sample as a parameterized curve and to approxi-

mate the coordinate functions by truncated orthogonal polynomial series. Later, the Legendre-

Sobolev (LS) basis was found to perform better, yielding 97.5% recognition rate [26] with a

dataset of samples, most of which were collected as isolatedsymbols. Although the samples

do exhibit certain amount of rotation and shear, it is expected that symbols written in a natural

environment are more likely to be distorted in this way. To address the issue, we developed

integral invariant methods for rotation- and shear-invariant classification [20, 21].

Our current goal is to improve the already good recognition rates obtained with these or-

thogonal basis methods. We do this by optimizing the choice of basis functions in two ways:

We optimize the free parameter in the inner product definition in each of several settings, and

we also optimize the series truncation order. Additionally, for orientation-independent recog-

nition, we show that considering sequences of nearby characters avoids orientation ambiguities

to a large extent.

We find optimal values for use with the coordinate functions and with integral invariants.

We minimize classification error by investigating the role of the jet scaleµ in description of

coordinate and invariant functions. We also study whether there exists a dependence between

complexityof a character and the optimalµ in its recognition. These optimizations are directly

applied in the proposed algorithm for distortion-invariant classification, taking advantage of

the natural property of human handwriting – writing characters with similar transformation.

Experiments are performed for the case of rotation, and a similar setting can be used for shear-

and, more generally, affine-independent recognition.

Some work has been done in context-dependent recognition ofhandwriting, mostly relying

on statistical approaches. The context-aware classification of a symbol is often represented

in some sort of a joint distribution function of the character and its neighbours. For example,

some authors propose [71] to consider substrokes in sets, rather than independently, and encode

them in HMMs. To keep the model computationally feasible, a hidden Markov network is used

to share states of different HMMs. A similar approach is taken elsewhere [7], wherethe au-

thors build trigraph models and share certain parameters between those trigraphs. Context can

also be useful when dealing with ambiguous segmentation of handwritten words [74], where

the classification task is represented as an optimization problem in a Bayesian framework by

explicitly conditioning on the spatial configuration of thecharacters. As cited above, the con-

text is typically taken into account for cursive words recognition. We find context useful in a

different setting – classification of well-segmented symbols, subjected to certain distortion.

As it was discussed in Chapter 2, the main idea of the classification methods we consider is

28Chapter 3. Improving Isolated and In-ContextClassification ofHandwrittenCharacters

to represent the coordinate functions in terms of an orthogonal basis and to use distance-based

classification in the coefficient space [26]. The Legendre-Sobolev inner product used contains

one free parameter,µ, which may be assigned any non-negative value. Because thisparameter

determines the relative weight of the coordinates and theirderivatives (i.e. the weights in the

jet space), we callµ the jet scale. In earlier work,µ = 1/8 was taken as a suitable value.

The rotation-independent [20] and shear-invariant [21] algorithms compute special func-

tions from coordinates. These functions are invariant to certain transformations and therefore

describe curves in terms of values that remain relatively constant, even when samples are ro-

tated or sheared on large angles, see Section 2.5.

The chapter is organized as follows: Section 3.2 describes the concepts and experimental

methods for improving isolated character recognition via the coordinate functions. Section 3.3

presents a recognition approach for in-context classification of distorted characters. Experi-

mental results are given in Section 3.4. Section 3.5 concludes the chapter.

3.2 Improving Isolated Symbol Classification

It is easily seen that the jet scale parameter,µ, in the LS inner product has an impact on

recognition rate. We would like to understand this dependency better in order to optimize this

parameter. For each value ofµ considered in the experiments, LS polynomials are generated,

orthogonal with respect to the corresponding inner product.

For these experiments we use a dataset of about 50,000 isolated handwritten mathematical

symbols, identical to that described earlier 2.10.

Coordinate Functions To optimizeµ for coordinate functions, we consider recognition of

the original samples in our dataset without additional distortion. The coordinate functions of

samples are approximated with LS polynomials for differentµ. We test values ofµ in the range

from 0 to 0.10 with the step of 0.002 and from 0.10 to 0.20 with the step of 1/64. Values

outside this range give substantially worse results. Samples are classified with the distance to

the CHNNk in the space of the coefficients of coordinate functions [26].

Integral Invariants To study the impact ofµ on integral invariants, we consider characters

with unknown orientation. The whole collection of originalsamples is rotated by an angleα

betweenπ/9 and 2π. All multiples of π/9 are tested. For each angle,I0 and I1 are computed

for the original and transformed samples. The invariants are then approximated with LS series

for different values ofµ ∈ (0, 0.2] with the step of 0.002. For each value ofµ, the average

3.3. Improving In-Context Invariant Classification 29

maximum approximation error with respect to angle is found as

ω =
1
n

n
∑

k=1

max
i j

(ci j − c
kπ
9

i j) (3.1)

whereci j is the j-th coefficient of thei-th original sample, andc
kπ
9

i j is the corresponding coeffi-

cient of the sample, rotated on anglekπ
9 .

Complexity of Handwritten Characters We consider the possibility that the optimal value

of µ may depend on the nature of the characters to be recognized. To understand this, we take

the notion of a sample’s complexity as

η =

d
∑

i=1

(X1/i
i + Y1/i

i),

whereXi andYi are normalized coefficients of approximation of the sample with orthogonal

polynomials. Coefficients of higher degree are typically greater for “complex”characters –

characters that contain large number of loops and/or amount of curvature.

Degree of Approximation The degree of the truncated series,d, regulates how well curves

are approximated. In general, higher degree polynomials provide lower error. Sometimes,

however, higher order approximation of equidistant nodes may cause extreme oscillation at the

edges of an interval (Runge’s phenomenon). To find the optimal degree, we evaluate the recog-

nition error, the maximum absolute and the average relativeapproximation error depending on

d. The approximation errors are computed similar to the way, as shown in subsection 3.2, but

instead of coefficients we compare original and approximated coordinates ofsamples.

3.3 Improving In-Context Invariant Classification

Context-Dependent Recognition There are two main approaches to recognition of hand-

written mathematics: symbol-at-a-time and formula-at-a-time. Even though comprehensive

semantic and syntactic verification of math is quite challenging, studies suggest that context

can play an important role in accurate classification and grammatical information can be an

asset [68]. Moreover, it has been shown [75] thatn-grams provide useful information in a

mathematical setting. These facts suggest that contextualinformation should be taken into ac-

count, especially considering large number of similar-shaped symbols that appear ambiguous

on their own.

30Chapter 3. Improving Isolated and In-ContextClassification ofHandwrittenCharacters

(a) (b) (c) (d) (e)

Figure 3.1: Distorted characters: (a) division vs. (b) modulus; (c) angle bracket vs. (d) angle
vs. (e) less than

Figure 3.2: Characters from the training dataset

Figure 3.1 shows typical challenges that arise in classification of individual samples, but

which are resolved by considering context.

Algorithm To improve classification of transformed characters, we propose to recognize a

set ofn samples at a time with the assumption that the characters in the set are transformed by

approximately the same degree, see Algorithm 8. This assumption is justified, since samples

written by a person are subject to similar distortions. Moreover, we find that symbols in our

dataset exhibit various degrees of rotation and shear. Suchinitial transformations incorporate

noise to the model and reflect real-life handwriting. We consider the case of rotation. Shear

may be handled similarly. The algorithm is applied to a sequence ofn characters rotated on

a random angleγ ∈ [−β, β]. The value ofεα, given in (3.2), can be interpreted as the error

likelihood in recognition of the sequence distorted by an angleα. The value is derived from the

observation: while the distance to the closest class is decreasing and sum of the distances to the

closestp classes is increasing, the possibility of a recognition error is declining. Therefore, in

the last step the algorithm finds and returns the angleγ of transformation that yields the least

error likelihood of the whole sequence.

Complexity Analysis As has been shown [23], the coefficients of ad-dimensional approxi-

mation can be computed in online timeOLn[O(d),O(d2)], whereO(d) is the time complexity as

each new point is observed andO(d2) is the cost at pen up. Sample normalization is performed

in linear time. It was shown [21] how to compute each coefficient of approximation ofI1 in

O(d2). Distance from a point to a CHNNk is theoretically computed inO(d4). It performs much

faster in practice, however, because at each recursive callthe dimension often drops by more

than one [20].

3.3. Improving In-Context Invariant Classification 31

Algorithm 2 In-context rotation-invariant recognition
Input: A set ofn rotated test samples and an angleβ of the maximum possible rotation of the
samples.
Output: A set ofn recognized samples and the angleγ of rotation of the samples.

for i = 1 to n do
Approximate coordinate functionsXi(λ) andYi(λ), parameterized by arc length, with LS
polynomials up to degreed

ci
xy = (Xi0, ...Xid; Yi0, ...Yid).

Normalize the sample with respect to position by ignoring the 0-order coefficientsXi0 and

Yi0, and with respect to size by dividing each coefficient by the norm
√

∑d
j=1(X

2
i j + Y2

i j).

ApproximateI0 andI1 with LS polynomials, yielding

ci
II = (I0

i0, ...I
0
id; I1

i0, ...I
1
id).

With Euclidean distance between vectorci
II of the test sample and analogous vectors of

training characters: FindT closest CHNNk. TheseT classes serve as candidates for the
i-th sample in the sequence.

end for
for α = −β to β by step of 1 degreedo

Compute

εα =

n
∏

i=1

D1
iα

∑p
j=1 D j

iα

(3.2)

whereD j
iα is the Euclidean distance to thej-thclosestCHNNk among the candidate classes

T for the samplei in the sequence, rotated by angleα, andp is a parameter to be evaluated.
DistanceD is computed in the space of coefficients of LS polynomials of coordinate
functions.

end for
Find εγ = min−β≤α≤β εα
return n andγ.

Experimental Setting The experimental setting is described in Section 2.10. The model is

trained with non-transformed samples. For the recognitionphase, sequences ofn characters

are taken from the dataset and each sequence is rotated by a random angleγ ∈ [−β, β].

32Chapter 3. Improving Isolated and In-ContextClassification ofHandwrittenCharacters

Figure 3.3: Recognition error of non-
transformed characters for different values ofµ

Figure 3.4: The optimal values ofµ for samples
with different complexity

3.4 Experimental Results

3.4.1 Isolated Symbol Classification

Coordinate Functions Figure 3.3 shows the error rate for recognition using coefficients of

theX andY coordinate functions. An error rate of approximately 2.4% is reached forµ = 0.04

and therefore this value is taken as the optimum for approximation of coordinate functions.

Optimal µ for Characters with Different Complexities We find that the optimalµ value

is not strongly correlated with the complexity of characters. On the other hand, the recog-

nition error is correlated with the complexity. Samples with small complexity 4≤ η ≤ 4.5

(most of which are linear symbols such as “-”) have 0% classification error for most of values

of µ ∈ (0, 0.1]. Recognition error is increasing with the increase of complexity and reaches

5.8% for samples that have the maximal value ofη ≈ 8.2 in our dataset, such as “g”. The

optimal values ofµ for recognition of samples with different complexities are shown in Fig-

ure 3.4. Results of Spearman and Kendall tau-a correlation tests between complexity andµ are

respectively:ρµ,η(13)= 0.52, p = 0.047 andτµ,η(13)= 0.38, p = 0.053.

Integral Invariants Figure 3.5 shows the average maximum error of the coefficients of inte-

gral invariants with respect to different rotation angles as explained in section 3.2. The optimal

value ofµ, giving minimal error forI0 andI1, is found to be 0.012. Thus, for robust rotation-

independent classification, each invariant should be approximated with the obtainedµ. This

value is preferable, since it provides the highest degree ofinvariance.

3.4. Experimental Results 33

(a) (b)

Figure 3.5: Average maximum error in coefficients of (a)I0 and (b)I1 depending onµ

Table 3.1: The recognition error, the maximum approximation error and the average relative
error for different degrees of approximationd, µ = 0.04

Degree of approximation 9 10 11 12 13 14 15
Recognition error % 2.57 2.49 2.46 2.43 2.44 2.45 2.46
Maximum approximation error 707 539 539 484 475 494 500
Average relative error (×10−3) 1.9 1.6 1.4 1.2 1.1 1.0 1.2

Evaluation of Degree of Approximation The recognition error, the maximum absolute ap-

proximation error and the average relative approximation error are presented in Table 3.1. We

find degree 12 to be the optimum for recognition of symbols in our collection.

It is interesting that the recognition error starts to increase ford > 12. A similar trend

applies to the maximum absolute and average relative errors. This confirms that higher or-

der approximation may not be the optimal choice. On one hand it may lead to the Runge’s

phenomenon and on the other hand it may cause overfitting.

3.4.2 In-Context Classification

There are 3 parameters that in-context recognition rate candepend on, see Algorithm 8: the

numberp of closest classes in computation of error likelihood, the rotation angle, and the sizen

of the set of characters. To evaluatep, we fix the parametern = 3 and perform classification for

valuesp of 2, 3 and 4. We find thatp has almost no effect on recognition error, and therefore,

we takep = 3 and continue the experiments.

With the fixed value ofp, evaluation is performed depending onn and the rotation angle,

see Figure 3.6. A significant reduction in error rate is achieved compared to the results reported

34Chapter 3. Improving Isolated and In-ContextClassification ofHandwrittenCharacters

Figure 3.6: Recognition error (%) for different size of contextn and different angles of rotation
(in radians)

earlier [20], which are equivalent ton = 1. The major improvement is obtained if sequences of

lengthn = 3 are recognized, rather than 1 or 2. For example, with rotation of 1 radian,n = 3

gives an error rate of 3.75% versus 8.2% reported previously. For more accurate classification

and/or depending on an application, highern can be used.

3.5 Conclusion

We have investigated several methods for improvement of orthogonal-series based character

recognition, both in the case of isolated characters of known orientation and sequences of char-

acters of unknown orientation. We have found (1) an optimal range of values for the jet scale

for coordinate basis functions, (2) that this optimal valueof µ, to a first approximation, does

not depend on the complexity of the characters tested, (3) optimal values for the jet scale for

the integral invariantsI0 and I1, used for transformation-independent recognition, and (4) the

optimal degree of the approximating series. In addition, wedeveloped an in-context rotation-

invariant algorithm that yields substantially better results than isolated recognition and can be

extended to other transformations. These findings can be integrated into a character recognition

system in the cloud.

Chapter 4

Recognition of Relatively Small

Handwritten Characters, or “Size

Matters”

Shape-based online handwriting recognition suffers on small characters, in which the dis-

tortions and variations are often commensurate in size withthe characters themselves. This

problem is emphasized in settings where characters may havewidely different sizes and there

is no absolute scale. We propose methods that use size information to adjust shape-based clas-

sification to take this phenomenon appropriately into account. These methods may be thought

of as a pre-classification in a size-based feature space and are general in nature, avoiding hand-

tuned heuristics based on particular characters. This chapter is based on the paper “Recognition

of Relatively Small Handwritten Characters or “Size Matters”” co-authored with Stephen M.

Watt [55], that appeared in the proceedings of the 13th International Conference on Frontiers

in Handwriting Recognition.

4.1 Introduction

Size normalization is usually one of the early steps in the recognition of both handwritten and

typeset characters, but can also be the source of errors. Characters can have different sizes for

two reasons: First, the same symbol may appear in different sizes. An obvious example of this

would be footnotes and titles having different sizes from normal text. Other examples would

include: place names in map labels having greatly varying size, and the symbols of mathemat-

ics, which are smaller when written as superscripts or subscripts or larger when written asn-ary

operators. Secondly, different symbols within the same symbol set may have different size rel-

35

36Chapter 4. Recognition ofRelatively SmallHandwrittenCharacters, or “SizeMatters”

ative to each other. For example, a period will be smaller than a lower case “o”, which will in

turn be smaller than a capital “M”. When these two situationsare combined, size normalization

is a double-edged sword—it is required, but it can also lead to increased ambiguity.

We are motivated by the application of online mathematical handwriting recognition. Char-

acters will be of greatly varying size and size can vary on a character-by-character basis, rather

than word-by-word or sentence-by-sentence. In this setting, we have found it effective to use

shape-based classification with orthogonal series representation of the curves traced, see Chap-

ter 2. It was observed, however, that for very small traces the shape of the curve, when scaled,

may be quite arbitrary. In these cases, the original size of asymbol is of high importance.

Recognition systems may adoptad hocrules to identify characters of unusual size, e.g.

commas, long lines, arrows,etc. What is lacking in this approach are general principles

by which such symbols requiring special treatment may be determined without anya priori

knowledge of the symbol set, and how special rules to recognize them may be generated.

We propose a two-step processing method with samples being first pre-classified by size,

and then recognized by shape. We take advantage of the usual cluster analysis techniques on a

space of feature vectors computed from size measures. This may be used in two ways: first to

do absolute classification based on size, and second, to do a blended classification, weighting

unusually sized samples differently than samples whose size tends to the mean. These ideas

can further be extended to literally any symbol set to identify those classes that are more easily

separated by size measures than shape measures, e.g. lines,dots, etc.

We present three approaches to classification of small characters based on the relative size

of the samples with respect to other symbols in the collection. The size of all samples is

expressed in a metric unit, derived from the dataset. In the first method, that can be regarded

as a 1-dimensional classifier, a feature is computed from a letter based on its width and height,

regulated by a parameter. Given that the parameter is optimized, the method is shown to yield

good results for our purposes. This method can be further extended to linear characters, such

as “–”, “|” with appropriate size measure. The second method is a generalized version of the

first technique and it suggests to compute several parameters not only from the size of a letter,

but also from its shape, e.g. the area of the convex hull of trace points of the character. Then,

one-vs-one support vector machine (SVM) classification becomes a natural way to differentiate

classes, if the number of classes is small. However, there are some dictionaries with large set

of characters that have identical shape and can only be distinguished by its size. Examples

include some capital and low-case characters from the Latinand Greek alphabets, e.g. Kk, Oo,

most of the symbols from the Russian alphabet, e.g.Vv, Gg, Dd, Ii, musical notation, and

Benesh notation. The third approach is the most robust and suitable for collections with large

number of small classes. The distance to the convex hull of coefficients of approximation of

4.2. PreviousWork 37

coordinate functions [26] is adjusted based on the size of the test sample and the average size

of samples in the candidate class. All of the methods are shown to improve significantly the

current state of our algorithm with respect to small characters.

The rest of the chapter is organized as follows. Some of the preliminaries are given in

Section 4.2. Description of the size-sensitive classification schemes is given in Section 4.3,

including the details of the measurement unit, the 1-dimensional and 3-dimensional classifi-

cation algorithms, as well as the weight-based method. Experimental setting and results are

reported in Section 4.4. Section 4.5 concludes the chapter.

4.2 Previous Work

Partially related problems have been studied in the past. A conventional approach to identi-

fication of small samples is by comparison with a fixed threshold, expressed in pixels. The

adaptive normalization method developed in [45] adjusts the size of a character based on its

aspect ratio. In [5] it is proposed to estimate the principalline, and correspondingly the size of

symbols, using the pixel count histogram when projected on the vertical axis. Recognition rate

of handwritten numerals depending on the size was investigated in [29]. In [63] it is proposed

to perform size normalization with a Hough transform.

These methods are designed for either processing characters independently or for extraction

of information from a set of characters. In contrast, we propose to apply special classification

rules torelativelysmall symbols.

An efficient technique for online classification of characters hasbeen described in Chap-

ter 2. The technique is overall robust, but has a drawback, related to size-normalization – it

does not take into account the initial size of a sample. As a result, small samples are scaled to

the size of a regular character that leads to incorrect classification. Examples of small samples

are shown in Figure 4.1, where it is easy to observe that, for instance, normalized period can

be mis-classified as many other symbols, comma resembles a closing bracket, while quotes are

hard to distinguish from “11”. Thus, the algorithm requiresa robust adaptive size normalization

approach.

4.3 Size-Sensitive Classification Schemes

4.3.1 The Unit of Measurement

To treat small samples efficiently, one has to identify what the small character is. Thesize of

a small symbol should not be dependent on the device, nor identified as a constant amount of

38Chapter 4. Recognition ofRelatively SmallHandwrittenCharacters, or “SizeMatters”

Figure 4.1: Examples of scaled small characters from the toprow to the bottom: period,
comma, quotes.

pixels. Instead, the size should be expressed in terms of some properties of the dataset. Similar

to the notion ofEx-typography, we choose to take the average height of lower-casex as the

unit measure, and denote this value asex, analogous to theex measure in CSS [1]. In other

words,excan be understood as a metric unit for all characters in a database. In this setting, we

can separate small classes from other classes based on dynamic size measures.

4.3.2 1-Dimensional Classification

The algorithm described in this section is the simplest formof a classifier, since only one

feature is analyzed – the size of the sample. Despite its simplicity, in the experimental section

we show that this technique has very low error in recognitionof certain classes due to the

dynamic nature of the size measure.

The Size Measure If the size of a characterc is analyzed by its bounding box, there are

essentially two types of size measures: perimeter-based and area-based. The perimeter-based

measure is studied in this sections(c) = αw(c) + h(c) , whereα is a parameter,w(c) andh(c)

are width and height of the bounding box of the character. We empirically find theα that gives

the lowest classification error. The area-based feature is considered in Section 4.3.3.

Classification Consider a dataset with only two classes{◦,×} that are to be classified with

respect to size, and the average size of◦ is less than the average size of×. Let s{◦,×} be the

size threshold that separates the classes. Then a sample from the class◦ (×) is considered to be

classified incorrectly, if its size is greater (smaller) than s{◦,×}. We denote withI◦ (I×) the set of

4.3. Size-Sensitive Classification Schemes 39

Algorithm 3 Find Separating Threshold(S◦, S×, s)
Input: S◦ – the set of samples of the class◦, S× – the set of samples of the class×, s – the
array of sizes of samples from both classes, sorted in ascending order.
Output: s{◦,×}.

Compute differences between consecutive elements ofS as∆i = s[i] − s[i − 1], i = 1, .., n.
D{◦,s[n]} ← 0
for all i = n− 1 to 0do

Compute the overlap for samples of the class◦, if s[i] is the threshold

D{◦,s[i]} ← k{◦,s[i]}∆i+1 + D{◦,s[i+1]}

wherek{◦,s[i]} is the number of incorrectly discriminated samples of◦ for the thresholds[i].
end for
D{×,s[0]} ← 0
for all i = 1 ton do

Compute the overlap for samples of the class×, if s[i] is the threshold

D{×,s[i]} ← k{×,s[i]}∆i + D{×,s[i−1]}

wherek{×,s[i]} is the number of incorrectly discriminated samples of× for the threshold
s[i].

end for
for all i = 0 ton do

D{◦,×,s[i]} ← D{◦,s[i]} + D{×,s[i]}

end for
return {s[m] | D{◦,×,s[m]} = min

i=0..n
D{◦,×,s[i]}}

incorrectly classified samples of◦ (×). Then, the overlap of the classes is computed as

D{◦,×,s{◦,×}} =
∑

i∈I◦

(s(i) − s{◦,×}) +
∑

i∈I×

(s{◦,×} − s(i))

The thresholds{◦,×} that minimizes the overlap can be found inO(n) given that sizes have

been computed and stored in a sorted array, wheren is the total number of samples in◦ and

×, see Algorithm 3 for details. The algorithm can be easily extended to an arbitrary amount of

classes.

The classification error is measured as described in Algorithm 4.

40Chapter 4. Recognition ofRelatively SmallHandwrittenCharacters, or “SizeMatters”

Algorithm 4 classificationError(α)
Input: α - the parameter in the size measure.
Output: Classification error.

For the givenα: Compute sizes of samples.
{In 10-fold cross-validation over the dataset}
for i = 1 to 10do

Take thei-th training set and finds{◦,×} with Algorithm 3.
Tests{◦,×} with thei-th test set. The classification error is reported as the ratio of incorrectly
discriminated samples to the total number of samples in the test set.

end for
return The average discrimination error over the 10 runs.

Figure 4.2: Convex hull of a sample

4.3.3 3-Dimensional Classification

In this scheme three features are extracted from characters: the height and the width of the

bounding box, and the area of the convex hull of points of the sample, see Figure 4.2. We test

whether these indicators are sufficiently discriminative with an SVM classifier.

4.3.4 Weight-Based Classification

The letter “.” can usually be classified based on its size inex units. By analyzing sizes of

characters in a dataset, one can obtain the minimal size threshold of samples, other than “.”. If

the size of a test sample is smaller than the threshold, then it is automatically classified as “.”.

If the size is greater, the character still can be “.”. Therefore, the class of “.” is considered in

computation of distances, described below.

Unlike “.”, other small symbols, such as “,”, preserve its initial shape after normalization,

even though the letter maybe scaled significantly and appearas a different character. Thus, the

shape and size should both be considered in classification. The distance to the small classes is

4.3. Size-Sensitive Classification Schemes 41

Algorithm 5 WeightedClassification(x)
Input: x - a test sample.
Output: The result of classification.

sx← width(x) + height(x)
{Selectk nearest neighbours of candidate classesC1, ...,CN, as described in [26]}
for i = 1 to N do

di ← D(x,CHNNi
k)

if Ci is a class of small symbolsthen
di ← (ω(sx) + β|ω(s̄i) − ω(sx)|) · di

end if
end for
return C j |d j = min

i=1..N
di

Figure 4.3: Examples of the weight function depending on therelative size:ω(s) = s1/4,
ω(s) = s, andω(s) = s4

adjustedbased on the average relative size of samples in the class andthe relative size of the

test sample

Dad j = (ω(sx) + β|ω(s̄i) − ω(sx)|) · D(x,CHNNi
k)

wheresx is the relative size of the test samplex (the sum of its width and height), ¯si is the

average relative size of samples in the test classi, β is a parameter,D/Dad j(x,CHNNi
k) is the

distance/adjusted distance from the test sample to the convex hull ofk nearest neighbours of

the classi [26], wherei is one of the small classes. The distance to regular-size classes is

computed without the weight adjustment. We take the functionω(s) to have the formsγ where

γ is a numeric parameter to be evaluated. See Figure 4.3 for examples ofω(s). This method is

illustrated in Algorithm 5.

Besides their size, small characters can usually be differentiated by positioning, relative

42Chapter 4. Recognition ofRelatively SmallHandwrittenCharacters, or “SizeMatters”

Figure 4.4: Relative frequency vs relative size for the different classes in the ORCCA dataset

to the baseline and mean line. However, we leave that analysis to another recognition layer,

responsible for the spatial segmentation of formulas.

4.4 Experiments

4.4.1 Experimental Setting

The experimental dataset is based on the database of handwritten characters, collected at the

Ontario Research Centre for Computer Algebra, a subset of the dataset described in [26]. Since

the dataset does not contain classes with small characters,we obtained samples “.” and “,”/“ ′”

by decomposing the following symbols: “:”, “¨a”, “ ÷”, “ ȧ”, “ �”,“!”,“ . . .”,“ i”,“ j”,“ �”,“?”,“;”.

Visual examination of the small characters written within the context of another character and

the small letters written independently did not reveal significant differences. Therefore, we find

this setting adequate. Overall, we have collected 803 samples of “.” and 315 samples of “,”/“ ′”.

The physical size of anexunit is 823. The relative frequency of sizes of samples, shown in

Figure 4.4, was computed as follows:

1. Split the range of sizes ink intervals: (s0, s1), (s1, s2), ..., (sk−1, sk). In the experiments,

k = 40.

2. The relative frequency on an intervalm is found as the ratio of the numbernm of samples

in the interval to the total number of samples in the class:nm/
∑i=k

i=1 ni.

4.4. Experiments 43

Figure 4.5: The classification rate depending onα for: “.” and “,” (left), “.” and the rest of the
classes (centre), “,” and the rest of the classes (right)

3. Sizes are computed as the sum of width and height withα = 1.

Note, that the most frequent size of “.” is≈ 0.02ex. Therefore, the value of 0.01ex may be

interpreted asthicknessof digital ink and can be used in calligraphy of recognized characters

or for beautification of scripts. Another interesting observation is that the frequencies seem to

be centered approximately atex = 2, which provesex being the appropriate unit of measure

for this type of analysis.

The recognition experiments were performed in 10-fold cross-validation: each collection

has been split randomly in 10 approximately equal parts and the classification rate has been

measured 10 times.

4.4.2 Performance before the Improvement

To estimate the performance of the methods developed in thischapter, we first measure recog-

nition of small characters with the algorithm described in [26] and optimized in [51], where

97.6% classification rate was achieved. The recognizer is trained with all samples from our

44Chapter 4. Recognition ofRelatively SmallHandwrittenCharacters, or “SizeMatters”

Figure 4.6: The recognition error depending on the size threshold for s{“ .” ,{...}}, s{“ .” ,“ ,” }, and
s{“ ,” ,{...}}

dataset (small and regular) and tested with small samples. The obtained classification error

of the small samples is≈ 17.5%, which is significantly higher than the classification error of

regular sized characters reported in [51].

4.4.3 1-Dimensional Classification

In this experiment, all characters are divided in three parts: “.”, “,”, and the rest of the regular

size classes in the dataset, denoted as{...}. The objective is to find optimal values ofα that

allow correct pair-wise discrimination between the parts.The recognition error as a function

of α is shown in Figure 4.5. The values ofα that yield the lowest classification error between

“.” and “,” (0.6%), “.” and {...} (0.2%), “,” and{...} (0.8%) are respectively 0.1, 1.3, 4.4, and

the values of the size thresholds{◦,×} are respectively 0.26ex, 0.34exand 0.95ex. The stability

of the recognition error depending on the threshold is shownin Figure 4.6.

4.4.4 3-Dimensional Classification

These experiments were performed with the SVM-Java [37], a Java implementation of SMO [62]

technique for training an SVM. A subset of the collection of regular classes has been considered

in this experiment: we randomly selected 1000 samples. The classes of “.” and “,” remained

unchanged. The following respective error rates have been obtained for one-versus-one clas-

sification with the linear kernel for the classes “.” and “,”,“.” and {...}, “,” and {...}: 2.38%,

4.5. Conclusion and FutureWork 45

Table 4.1: Classification error, depending onβ andγ
β 0.3 0.6 0.3 0.6 0.9 0.3 0.6 0.9
γ 2.4 2.4 2.7 2.7 2.7 3.0 3.0 3.0
Er.,% 2.75 3.48 2.76 2.94 3.21 2.06 2.23 2.60

1.44%, 4.92%. These results can be further improved by considering alternative kernels.

4.4.5 Weight-based classification

With optimization of the parametersβ andγ, we obtained the classification error, as reported

in Table 4.1. With the best result of 2.06% error, one can observe significant improvement over

the original error of 17.5% of the algorithm on small samples.

4.5 Conclusion and Future Work

We have presented methods to address the large shape variations that can occur in small charac-

ters in handwritten samples. When there are only one or two classes which have much smaller

characters than the rest, we have found that simple discrimination based on an optimized linear

combination of width and height to be very effective. We have shown this can be combined

effectively with shape-based methods by weighting shape and size depending on size of typical

characters in the classes. We have found that using the area of the convex hull of characters,

rather surprisingly, does not improve the accuracy over using a linear combination of width

and height.

The presented work does not address differentiation between disconnected segments of a

symbol and independent small characters. This is the question of recognition of groups of

strokes that can be solved by construction of classificationtheories and computation of the

confidence of each theory. In this chapter we have focused on devising general methods for

very small characters. The developed contributions will make the cloud-based recognition

engine more robust.

Chapter 5

A Structure for Adaptive Handwriting

Recognition

We present an adaptive approach to the recognition of handwritten mathematical symbols, in

which a recognition weight is associated with each trainingsample. The weight is computed

from the distance to a test character in the space of coefficients of functional approximation

of symbols. To determine the average size of the training setto achieve certain classification

accuracy, we model the error drop as a function of the number of training samples in a class and

compute the average parameters of the model with respect to all classes in the collection. The

size is maintained by removing a training sample with the minimal average weight after each

addition of a recognized symbol to the repository. Experiments show that the method allows

rapid adaptation of a default training dataset to the handwriting of an author with efficient use

of the storage space. This chapter is based on the paper “A Structure for Adaptive Handwriting

Recognition” co-authored with Stephen M. Watt [53], that appeared in the proceedings of the

13th International Conference on Frontiers in HandwritingRecognition.

5.1 Introduction

It was described in Chapter 2 how samples are classified with the distance to the convex hull

of k nearest neighbors in the space of coefficients of approximation. The method yields high

accuracy, but has a significant drawback – it does not adapt tovariations in writing style of

trained classes. This is not acceptable in a production environment, since out of the box recog-

nition applications are usually trained with a default dataset of samples. Such dataset relieves

the user from an exhaustive training of a mathematical recognizer that may include several

hundred classes. However, default training of some classesmay differ from the writing style of

46

5.1. Introduction 47

the user. This concern is aggravated for online algorithms that typically depend on the direction

and order of writing of strokes. Therefore, instances that appear identical visually, but written

in different styles, will be represented by points, positioned in absolutely different locations

in the coefficients space. Thus, some training samples may represent noise and have negative

impact on efficiency and accuracy.

The exemplar-based learning in higher dimensions is challenging due to the increase of

sparsity of samples of a class. Therefore, selection of training exemplars has been thoroughly

studied in instance-based machine learning and related applications [77]. Some methods sug-

gest to retain a subset of the original instances [28, 2], while other techniques propose to com-

pute prototypes from the training data [39]. Due to the nature of our classification method, we

investigate the former approach. It can be divided inincremental(start from an empty training

set and add instances one by one), anddecremental(start from the training set with all sam-

ples and remove instances that are redundant or decrease accuracy). A decremental procedure

DROP1[77] suggests to remove a point if all of its neighbors can still be correctly classified

without the point. This and many other techniques [28, 2] study the local relationship between

samples without taking into account that the training dataset may change over time, moving

the underlying points in various directions.

We develop an online algorithm for adaptive recognition of handwritten characters that is

based on reinforcement of samples that have positive impacton classification and removal of

samples that cause error or are neutral. The method is suitable in both settings: When users

train a recognizer from scratch or when they use the default dataset as the starting point. In the

latter setting, to determine the average size of a training class, we model the error drop as a

function of the number of samples and attempt to correlate parameters of the model with some

spatial measurements of the class.

The proposed adaptive algorithm computes the participation weight of each of thek neigh-

bors in a correct (incorrect) recognition and adds (subtracts) the value to (from) the total weight

of the neighbor. In a sense, the method is similar to theIB3 algorithm [2], in which removal

or retaining of instances is based on counters. However, theIB3 method is offline, meaning

that it is run only once to select good classifiers out of the pool of training samples, while our

algorithm is online and makes removal decisions with each new sample available from the in-

put. The method presented has potential of asymptotic improvement in performance over the

course of its use and is suitable for a variety of instance-based machine learning applications.

Unlike some algorithms, based on neural networks or hidden Markov models, the proposed

technique uses only gradual updates, making it suitable forreal-time applications.

The main results of this chapter are

• an experimental analysis of how error rate drops as a function of the class size;

48 Chapter 5. A Structure for Adaptive Handwriting Recognition

• an empirical model for the error rate, fitting the experimental data well, to determine the

average size of a class for desired accuracy;

• an adaptive algorithm for distance-based symbol recognition, using the functional ap-

proximation framework.

This chapter is organized as follows. Section 5.2 explains our approach to modelling the

recognition error. The adaptive recognition algorithm is presented in Section 5.3. Section 5.4

gives the experimental results that show good approximation of the error function and rapid

adaptation of the recognition algorithm to the writing style of a user. Finally, Section 5.5

concludes the chapter.

5.2 Modelling the Recognition Error

In our classification paradigm, the concept of personalizedrecognition can be reformulated as

continuous formation of the training set. A set of training characters of a class forms a cluster

in the space.A priori knowledge of the average initial size of a training class to achieve a

desired classification accuracy is important for compact storage. It has an additional usability-

related benefit: When a new class is introduced to the dataset, the user can be informed about

the expected error drop depending on the number of samples introduced to the class.

Here and below, we will use the following notation:n is the number of training samples that

the class contains in a given moment andN is the maximal number of training samples available

in the class. Based on our observation, convergence of the recognition error of samples of a

class can be closely described by the models

ε(n) =
An+ B
n+C

(5.1)

whereA, B andC are parameters, or

ε(n) = αe−β f (n) (5.2)

whereα andβ are parameters, andf (n) is a monotonically increasing function.

Our objective is to find values of the parameters for each class. We expect the parameters to

be dependent on some inner properties of a class, as well as the positioning of the class relative

to neighboring classes. Further, the mean parameters can beused to describe the average error

drop.

5.3. Adaptive Recognition 49

5.3 Adaptive Recognition

Most commonly, misclassification of handwritten characters occurs when different samples

are written similarly, since writing styles of users can vary significantly. On the other hand,

classes of characters provided by one user can usually be discriminated well. As discussed in

Chapter 2, onlyk samples of a candidate class are used in classification of a test symbol. Each

of thesek exemplars should be awarded a weight, computed as a functionof the distance to the

test sample. If the training symbol is located relatively close to the test character, the weight

should have large absolute value, otherwise the weight should be close to zero. If the training

sample is of the same class as the test symbol, the weight should be positive and otherwise –

negative.

In general, distances between training samples within a class do not follow any of the ma-

jor univariate distributions, since a class may contain several styles that group the exemplars.

Therefore, basing the weight on statistical properties of aclass can be quite challenging. In-

stead, we take the weight as follows: For a given test samplets and a training exemplarti, the

recognition weight has the form

wti =
1

d(ts, ti) + 1

whered(ts, ti) is the distance between the points. This weight is added to the total weight of the

sampleti, if ts andti belong to the same class, and subtracted otherwise.

When a new sample is recognized, it is added to the class, and simultaneously a sample with

the minimal average weight is removed from the dataset to prevent its growth. Nevertheless,

at any given moment, the size of a class should not be less thank (the number of nearest

neighbours that form convex hull during classification). The outline of the method is presented

in Algorithm 6.

5.4 Experimental Results

This section presents experimental results of modelling the recognition error and the adaptive

classification method. The experimental dataset is identical to the one described in [26].

5.4.1 Modelling the Recognition Error

We conducted a series of experiments to measure how the recognition rate changed as points

were added to the classes. Each class was measured separately, in the following manner: All

symbols from the class to be tested were removed from the training data set and the symbols

from other classes were retained. Further, the samples fromthe test class were separated ran-

50 Chapter 5. A Structure for Adaptive Handwriting Recognition

Algorithm 6 Adaptive recognition algorithm
Input: ts – a test sample to be recognized.

{Recognize the sample as explained in Chapter 2} Cl← recognition class ofts

{Recompute weights}
for i = 1→ T do
{For each of the candidate classes}
if Ti = Cl then

for j = 1→ k do
{Increase the weight of each nearest neighborti j in the correct class}
wti j ← wti j +

1
d(ts,ti j)+1

end for
else

for j = 1→ k do
{Decrease the weight of each nearest neighborti j in the incorrect class}
wti j ← wti j − 1

d(ts,ti j)+1

end for
end if
{Increase the counter}
for j = 1→ k do

Cti j ← Cti j + 1
end for

end for
{Remove the exemplar with the minimal average weight among the classes with the number
of samples> k}
Remove exemplart : wt = min

i j
{

wti j

Cti j
, |Ti | > k}

Assign an initial weight tots and addts to the recognized class.

5.4. Experimental Results 51

domly into a test setPi and a training setPr . Then the symbols fromPr were added, initially

one at a time and then in larger groups. After each addition ofpoints, the recognition rate of

the ensemble was measured using the test set. Thus, for each class, the recognition rate was

tested first with 0 training points, then with 1 training point, then with 2, then after 3, 4, 5, 6, 7,

8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, ... until all the training points were used. The

number of training points ranged from 10 to 2048, depending on the class. This whole process

was repeated ten times, and the recognition rate recorded for a class after a particular number

of points was reported as the average of these ten measurements. The testing sets were selected

randomly, but disjoint. The set of classes is denoted asΩ. The outline of experiments is given

in Algorithm 8.

Algorithm 7 Outline of the experimental setting
for Each classω in the set of classesΩ do

Split samples in the class for 10-fold cross-validation.
for i = 1 to 10do

Take thei-th partPi for testing and the restPr for training.
{Introduce integer variables used in splitting the trainingset.}
s← 0, k← 3
while s≤ |Pr | do

Clear the training set for the classω.
Conduct training with the firsts samples fromPr .
Conduct testing with samples fromPi.
if s= 2k then

k← k+ 1
end if
{Increase the amount of training samples}
s← s+ 2k−3

{where 2k−3 was selected heuristically, based on the observation that adding samples
to a small training set has bigger impact than to a larger set}

end while
end for

end for

Some of the samples have several class labels. Therefore, the recognition error can be less

than 100%, even if the class has zero training samples in it. Results of recognition for all

classes, depending onn, are given in Figure 5.1.

We make a few observations: First, we see that for all classesthe recognition rate improves

dramatically with each of the first few symbols added. Most ofthe functions have shape that

can be modelled with (5.1). For approximation, we used the Nonlinearfit Maple [35] command

to evaluateA, B andC. In classes with more than a few dozen samples, the error rateappeared

to drop off similarly to a negative exponential function, see Equation5.2. In Equation 5.2,

52 Chapter 5. A Structure for Adaptive Handwriting Recognition

Figure 5.1: Recognition error for all classes, depending onn, the number of training samples
in a class

A B C
Mean -0.007 11.718 23.398
σ 0.054 9.805 9.805

Table 5.1: The mean and the standard deviation of the parameters

f (n) =
√

n was found to perform well. By taking the logarithm of both sides, the parameters

can be evaluated as a linear regression between log(ε(n)) and
√

n. We used the LeastSquares

Maple command to compute the least squares approximation.

We tested both models (5.1) and (5.2) and computed the average root mean square error

(RMSE) among classes, obtaining respectively 0.03 and 0.87. Model (5.1) performed the better

of the two, and so this is the one upon which we have concentrated. Examples of approximation

with (5.1) for different values ofN and the average model are given in Figure 5.2. We observed

that classes of smaller size, withN < 64, are approximated not as good as larger classes,

partially due to non-stable behaviour of the error functionon the small testing set. Therefore,

the mean parametersA, BandC were computed among classes with≥ 64 training samples. The

mean and the standard deviation of the variables are shown inTable 5.1. The small mean value

of parameterA can be considered as an argument that the error model (5.1) can be simplified

to ε(n) = B
n+C . On the other hand, such simplification will make the model less robust and

may have negative effect on the approximation accuracy. Therefore, we decided tokeep the

parameter.

The average RMSE between the modelled recognition rate and the actual recognition rate

for classes of certain size is presented in Figure 5.3(a). Figure 5.3(b) shows the percentage of

classes that are approximated with RMSE less or equal a givenvalue.

5.4. Experimental Results 53

8 16 32 64 128 512 Average

Figure 5.2: Examples of approximation of error for classes of different sizeN

(a) (b)

Figure 5.3: RMSE results: (a) Average RMSE for classes of differentN, (b) Percentage of
classes that are approximated with RMSE less or equal given RMSE

5.4.2 Correlation between class measurements andA, B and C

We question whether parametersA, B andC are related to spatial characteristics of the class,

such as positioning of points within the class and distance to neighboring classes. For each

classi, the following measurements are considered (in Euclidean distance)

• Ri
1 - the maximal distance from the class center to any point in the class.

• Ri
.75 - the minimum radius of a ball centered at the class center that encloses 75% of

points in the class.

• Ri
a - the average of radii from all points in the class to the classcenter.

• Ri
σ = Ri

a + σi, whereσi is the standard deviation of the radii from points in the class to

the class center.

• Di
F - the minimum distance between points of the class to the closest neighboring class.

54 Chapter 5. A Structure for Adaptive Handwriting Recognition

Measurement Spearman Kendal tau-a
A Ď1 -0.29 -0.19
B Ďσ -0.55 -0.39
C Ďσ -0.59 -0.42

Table 5.2: The measurements with the largest absolute values of the correlation coefficients for
each approximation variable

(a) (b)

Figure 5.4: Adaptive recognition error of the (N + 1)-th sample in a class: (a) For each author,
(b) Average among the authors

In addition, we study the measurements

Ďi
L = min

j,i
(di j − Ri

L − Rj
L),

D̄i
L = avg

j,i
(di j − Ri

L − Rj
L)

whereL is any of the labels 1, .75, a, σ anddi j is the distance between centers of classesi and

j.

Spearman and Kendall tau-a tests did not demonstrate sufficient correlation of these mea-

sures with the model parameters. The largest absolute values of statistically significant corre-

lation coefficients for corresponding class measurements are presentedin Table 5.2.

5.4.3 Adaptive Recognition

For this experiment, each character in the collection is assigned to the author who provided

the symbol. Then for each author, the dataset is split in two parts: samples provided by the

author (used in testing) and the rest of the dataset. During the training phase, for each class,

5.5. Conclusion 55

we randomly selectK samples and form the default training set. The value ofK, the initial

size of a training class, can be determined from the error modelling, and for this experiment

we takeK = 30. During the testing phase, a test sample is extracted froma randomly chosen

class among those written by the test author and recognized.The recognition error of theN-th

sample by the author is computed as the ratio of the number of misrecognitions of theN-th

sample to the total number ofN-th samples tested. This run is repeated 200 times and the

average for each author is reported in Figure 5.4(a). Figure5.4(b) shows the average error

among all the writers. We observe that the adaptive algorithm on average results in a rapid

decrease of error and converges to≈ 99% accuracy.

5.5 Conclusion

We have shown how handwriting recognition techniques basedon functional approximation

methods are well suited to adaptive setting. Rather than organizing the workflow as a training

phase followed by a use phase, we see continuous improvementof recognition results taking

advantage of correction history. In our setting, based on convex hulls of classes in the coeffi-

cient space, adaptation consists of weight-based evolvement of the shape of the class envelopes.

The experiments have shown that the error rate drops approximately as (An+ B)/(n + C) as

samples are seen, and thatA, B andC slightly vary by class and correlate with class measure-

ments to a minor degree. The average values of the parameterscan be used to determine the

size of each class in a default training dataset. The initialset assembled this way serves as an

input to a weight-based adaptive classifier. The weight of anexemplar is computed from the

distance to the test sample. With each recognition, the symbol with the minimal average weight

gets deleted from the collection. Experiments show that themodel allows rapid adjustment to

the style of a particular writer and converges to approximately 99% accuracy. This model is an

important element of the adaptive cloud-based recognitionarchitecture.

Chapter 6

A Cloud-Based Recognition Framework

While writer-independent handwriting recognition systems are now achieving good recogni-

tion rates, writer-dependent systems will always do better. We expect this difference in perfor-

mance to be even larger for certain applications, such as mathematical handwriting recognition,

with large symbol sets, symbols that are often poorly written, and no fixed dictionary. In the

past, to use writer-dependent recognition software, a writer would train the system on a par-

ticular computing device without too much inconvenience. Today, however, each user will

typically have multiple devices used in different settings, or even simultaneously. We present

an architecture to share training data among devices and, asa side benefit, to collect writer

corrections over time to improve personal writing recognition. This is done with the aid of a

handwriting profile server to which various handwriting applications connect, reference, and

update. The user’s handwriting profile consists of a cloud ofsample points, each represent-

ing one character in a functional basis. This provides compact storage on the server, rapid

recognition on the client, and support for handwriting neatening. In this chapter we use the

word “cloud” in two senses. First, it is used in the sense of cloud storage for information to be

shared across several devices. Secondly, it is used to mean clouds of handwriting sample points

in the function space representing curve traces. We “write on clouds” in both these senses. This

chapter is based on the paper “Writing on Clouds” co-authored with Stephen M. Watt [54], that

appeared in the proceedings of the 2012 Conferences on Intelligent Computer Mathematics.

6.1 Introduction

The recognition method described in Chapter 2 does not require many training samples to

discriminate a class. However, because there are a large number of classes in handwritten

mathematics, the training dataset may contain tens of thousands of characters. The underlying

recognition model allows the dataset to evolve over the course of normal use. Furthermore,

56

6.1. Introduction 57

as a user makes corrections to mis-recognized input, new training data is obtained. Therefore,

synchronization of the dataset across several pen-based devices may become tiresome. To

address this aspect, we propose to delegate the storage of the training database, as well as some

of the recognition tasks to a cloud.

In this chapter we describe a cloud-based recognition architecture. It has potential to be

beneficial not only to end users, but also to researchers in the field. A cloud infrastructure can

assist in the capture of recognition history. The “knowledge” obtained from the public usage of

the recognition software can help to improve the accuracy continuously. This serves as a basis

for an adaptive recognition that results in asymptotic increase of user-, region-, or country-

centered classification rate. Additionally, such a model has a number of other advantages:

First, it allows the writer to train the model only once and then use the cloud with any device

connected to the Internet. Secondly, it gives the user access to various default collections

of training samples across different alphabets (e.g. Cyrillic, Greek, Latin), languages (e.g.

English, French, Russian), and domains (e.g. regular text,mathematics, musical notation,

chemical formulae). Thirdly, it provides a higher level of control over the classification results

and correction history.

The architecture we present may be applicable to a variety ofrecognition methods across

different applications, including voice recognition, document analysis, or computer vision. To

demonstrate its use in recognizing handwritten mathematical characters, we have performed an

experiment to measure the error convergence as a function ofthe input size and find an average

number of personal samples in a class to achieve high accuracy.

Cloud computing allows remote, distributed storage and execution. The economic stimuli

for providing software services in a cloud infrastructure are similar to those for centralized

supply of water or electricity. This relieves consumers from a number of issues associated

with software maintenance, while the provider may continuously improve the service. Agility

of a cloud service is usually achieved by its internal organization according to the principles

of the Service-Oriented Architecture (SOA). SOA allows splitting computational tasks into

loosely coupled units, services, that can be used in multiple unassociated software packages.

An external application executes a service by making a call through the network. The service

consumer remains independent of the platform of the serviceprovider and the technology with

which the service was developed.

Several related projects have been described that mostly target development of managed

experimental repositories and resource sharing in the context of: document analysis [41], as-

tronomical observations [69], or environmental research [6]. In contrast, our primary objective

is improvement of usability of recognition software acrossdifferent pen-based devices. Col-

lecting a comprehensive database that facilitates research is the second priority.

58 Chapter 6. A Cloud-Based Recognition Framework

The rest of the chapter is organized as follows. Section 6.2 describes the cloud–based

recognition framework, starting by giving an overview of the components. Then the flow of

recognition and correction, as well as possible manipulations of clusters, are presented. Sec-

tion 6.3 describes the implementation of projection of samples from high-dimensional space

to the plane. This is important for visual analysis of the descriptiveness of the classification

indicators. Section 6.4 describes details of the implementation of the system, the structure of

a personal profile, the interface for training and recognition, the server side, as well as calli-

graphic representation of recognized characters. Section6.5 presents experimental evaluation.

In Section 6.6 we show that the cloud environment can improverecognition flow by semi-

automated training of the recognizer, based on conditionalprobability of writing styles of the

user. Section 6.7 concludes the chapter.

6.2 Clouds Serving Clouds

Touch screens with the ability to handle digital ink are becoming de factostandards of smart

phones and tablet computers. The variety of such platforms challenges conventional recogni-

tion applications because:

• Certain mobile devices have limited storage capacity and computational power, restrict-

ing ink storage and processing. Recognition of handwrittenmath requires extra resources

to build classification theories and to calculate the confidence of each theory [8].

• Development of a single recognition engine that runs efficiently across all the platforms

is not easy, and in most cases a trade off has to be made, affecting classification perfor-

mance.

• The evolving personal training datasets and correction histories are not synchronized

across the devices.

Similar to the software as a service delivery model, we propose to have digital ink col-

lected and, possibly, processed through a thin client, but its storage and some computationally

intensive procedures are performed centrally in the cloud.

From the high-level, the system contains the following elements

• Canvasof a pen-based device, that can collect digital ink.

• HLR (High-Level Recognizer) accepts raw ink from the canvas andperforms initial pre-

processing of the ink.

6.2. Clouds Serving Clouds 59

Figure 6.1: The data flow diagram for recognition and correction

• Recognizeris a character recognition engine, developed according to the principles de-

scribed in [26].

• Databasestores personal handwriting data, profiles of samples, correction history, etc.

Profiles of training samples are clouds of points in the spaceof approximated curves, each

point being one character. These points are saved in a database in the cloud. When users sign

up for the service, they are assigned a default dataset of training samples. If a person has sev-

eral handwriting domains (e.g. different fields using mathematics, physics, music, etc), each

domain should have a separate dataset, and the recognition application should allow switching

between the subjects. The user shapes the datasets through aseries of recognitions and correc-

tions. Below, we show experimentally that the number of corrections decreases over time and

eventually becomes quite small.

6.2.1 Recognition Flow

The overall recognition flow is shown in Figure 6.1. The High-Level Recognizer (HLR) ac-

cepts raw ink from the canvas and preprocesses it. The outputof the HLR is available to the

recognizer in the form of normalized coefficients. The coefficients are recognized. The results

of classification are sent to the canvas and saved in the database.

Representation of Characters For a single-stroke character, after approximation of coordi-

nates with truncated orthogonal series, the sample can be represented as

1
‖x, y‖

, x0, y0, x
′
1, y
′
1, ..., x

′
d, y
′
d (6.1)

wherex0, y0 are Legendre-Sobolev coefficients that control the initial position of the character,

x′1, y
′
1, ..., x

′
d, y
′
d are normalized coefficients, and‖x, y‖ is the Euclidean norm of the vector [26]

x1, ..., xd, y1, ..., yd

60 Chapter 6. A Cloud-Based Recognition Framework

coefficients ::= 1
‖x,y‖ ; x0; y0; x′1; y′1; ...; x′d; y′d

msg ::= <m:Process>
<m:mt>coefficients</m:mt>
(<m:tr>coefficients</m:tr> <m:tr>coefficients</m:tr> +)?

</m:Process>

Figure 6.2: The format of the SOAP message sent to the cloud

The first three elements in (6.1) are ignored during recognition, but used in restoring the initial

size and location of the character.

For a multi-stroke symbol, coefficients are computed for every stoke, as described for a

single-stroke character, and also for all strokes joined sequentially. Coefficients of strokes

are used for display of the sample and normalized coefficients of joined strokes are used for

classification.

The described representation of samples allows significantsaving on storage space and

computations, since coefficients of symbols can be directly used in recognition without repet-

itive approximation [50]. However, this compression scheme is lossy and should not be used

when precision of digital ink is of high importance, e.g. in applications that involve processing

of personal signatures.

Recognition Individual handwriting can differ significantly from the default collection of

training samples. This is illustrated by the historical useof a personal signature as a form of

authentication of documents. It is to be expected that a successful recognition system should

adapt to personal writing style. Withk-nearest neighbors and related methods, the test sam-

ple can be easily introduced to the training set after classification. This facilitates adaptive

recognition, since the model remains synchronized with thewriter’s style.

Two modes of recognition are possible,local andremote.

Local recognitionis suitable for devices with sufficient computational capabilities. In this

mode, the points that form the convex hulls of classes are stored on the device locally and

periodically synchronized with the server. Synchronization can be performed through a profile

of samples. The local recognition mode is useful when the user does not have a network

connection and therefore can not take advantage of the remote recognition described below.

In remote recognitionmode, digital curves are collected and preprocessed locally, and the

coefficients are sent to a remote recognition engine. Having recognized the character, the server

returns encoding of the symbol and nearest candidates. Thismode allows to minimize the load

on the bandwidth, since the training dataset does not have tobe synchronized with the device.

Coefficients can be transmitted in the body of a SOAP message, usingthe syntax shown in

6.2. Clouds Serving Clouds 61

...

<soap:Body xmlns:m="http://www.inkml.org/processing">

<m:Process>

<m:mt>0.005;94;-91;11;2;-14;64;-70;

-18;1;-75;14;14;8;4;-2;4;0;-9;5;10;-11;5;</m:mt>

</m:Process>

</soap:Body>

...

Listing 1: An example of the body of a SOAP message for a single-stroke character

...

<soap:Body xmlns:m="http://www.inkml.org/processing">

<m:Process>

<m:mt>1;0;0;-5;-22;-14;-15;-44;-72;20;13;-27;43;4;

-28;48;-1;-10;16;-32;-17;-1;-12;</m:mt>

<m:tr>0.005;92;-85;-1;3;-7;62;-79;-30;

4;-61;32;4;-2;15;-4;-4;6;-3;0;6;-9;0;</m:tr>

<m:tr>0.009;115;-100;-71;-102;-10;-1;11;1;

-6;-8;5;6;-5;-9;2;3;-2;-5;6;6;-5;-9;</m:tr>

</m:Process>

</soap:Body>

...

Listing 2: An example of the body of a SOAP message for a multi-stroke character

Figure 6.2. The element<m:mt> contains the normalization weight, the original coefficients of

the 0-degree polynomials, and the normalized coefficients used in recognition. Additionally,

for a multi-stroke sample, the<m:tr> element is used to represent each stroke independently.

Examples of messages for a single-stroke and a multi-strokecharacter are shown in Listing 1

and Listing 2 respectively. The bodies of the SOAP messages contain enough information for

both recognition and restoring approximate representation of a character in its initial position.

The results of recognition can be returned in a SOAP message,as shown in Listing 3.

The body contains Unicode values of the top candidates to enable the client application to

visualize recognized characters in a printed format. For calligraphic rendering, corresponding

coefficients can be included as well.

When the recognition is incorrect, the user can fix the resulton the canvas. A correction

message is sent from the canvas to the recognizer and the database, see Figure 6.1. The cor-

rection message may contain Unicode value of the new character and the ID of the sample.

After correction, if the recognition engine is context-sensitive, neighboring characters can be

reclassified. Implementation of sensitivity to the contextdepends on the domain. With hand-

written text, this task is solved by comparing a recognized word with entries in a dictionary.

With mathematics, it is a harder problem, since expressionsare represented as trees. Progress

62 Chapter 6. A Cloud-Based Recognition Framework

...

<soap:Body xmlns:m="http://www.inkml.org/processing">

<m:Response>

<m:Unicode>0030, 004F, 006F</m:Unicode>

</m:Response>

</soap:Body>

...

Listing 3: An example of the body of a SOAP response from the recognition service

Figure 6.3: A sample that belongs to classes “q” and “9”

can be achieved by considering the most popular expressionsin the subject and their empirical

or grammatical properties, see for example [47].

6.2.2 Manipulation of Clouds

With the discussed representation of samples as clouds in high dimensional space, they can also

be treated as sets. In this context, corresponding theoretical domains become applicable, such

as the set theory or some elements of computational geometry. Consider training characters

from two classes, sayi and j, forming setsSi andS j respectively. ThenSi ∩ S j will produce

samples written in an ambiguous way: If classesi and j represent characters 9 andq then a

sample that belongs to both classes can look as the one shown in Figure 6.3. A naı̈ve approach

to compute such an intersection is to find the subset of pointsin each cluster with the distance

to the second cluster being zero. To make the clouds linearlyseparable, the samples that belong

to both clusters can be deleted or assigned a specific label. Asimilar operation is to findSq\S9.

This will give the samples that look different from samples of the adjacent class.

Another example is computing the “average” character, as the center of mass of samples in

a style, and using the character in calligraphic rendering of recognized samples.

These and other operations can be expressed naturally as operations on the classes rep-

resented as clouds of points. With some other machine learning frameworks the analogous

procedures can be more awkward.

6.3. Orthogonal Projection of Cloud Samples 63

6.3 Orthogonal Projection of Cloud Samples

6.3.1 Related Work

High-dimensional data samples, very frequently used in machine learning applications, can be

hard to analyze without visual representation. A number of attempts have been made to mapN-

dimensional clusters to a plane. One of the most popular methods is Sammon projection [64],

named after John W. Sammon. Sammon proposed to map high-dimensional space to a lower

dimensionality (typically two or three) with the objectiveto preserve the distances and their

ratios between points in high dimension and corresponding points in low dimension.

More formally, if di j is the distance between pointsi and j in high dimension andd′i j is the

distance between projections of the points then the function that Sammon proposed to minize

is as follows

E =
1

∑

i< j

di j

∑

i< j

(di j − d′i j)
2

di j
.

Sammon proposed to solve the minimization problem with gradient descent algorithm.

We use Sammon projection for 2-dimensional representationof relationship between three

classes: Characters “8” (with 1453 samples), “1” (with 504 samples) and “C” (with 642 sam-

ples). Sammon mapping of samples in these classes is shown inFigure 6.4

We find this projection not truly reflect the relationship between classes and, therefore, look

for an alternative way of representation of clusters.

6.3.2 Orthogonal Projection

In this section we develop another method for projecting points from high dimension to a plane.

In the algorithm we consider three classesc1, c2 andc3, with no requirement for the clusters to

be linearly-separable. The overview of the method is as follows:

1. Find an Support Vector Machine (SVM) hyperplane that separates two of the classes, say

c1 andc2

~w1 · ~x− b1 = 0

where· denotes the dot product and~w1 is the normal vector.

2. Find another SVM hyperplane that separates the classc3 from one of the classesc1 or c2,

64 Chapter 6. A Cloud-Based Recognition Framework

Figure 6.4: Sammon projection of the classes: “8” (red), “1”(green) and “C” (blue)

say between classesc2 andc3 (in practice, it is better to separate the closest classes)

~w2 · ~x− b2 = 0

3. Consider intersection of the hyperplanes



















~w1 · ~x− b1 = 0

~w2 · ~x− b2 = 0

Find translation of the hyperplanes, so that their intersection goes through the origin.

After substitutionx1 = x′1 + t1 andx2 = x′2 + t2, wheret1, t2 ∈ R, the translation can be

obtained by solving the following system



















w1
1t1 + w2

1t2 − b1 = 0

w1
2t1 + w2

2t2 − b1 = 0

Having found the translation parameterst1 andt2, all samples in the clustersc1, c2 andc3

should undergo the same translation.

4. After the translation, each of the hyperplanes forms a vector space overR: V1 andV2.

6.4. Implementation 65

We denote

V0 = V1 ∩ V2

V = V1 ∪ V2

V = V0 ∪ V′

One can consecutively generate a basis forV0, V1, V2 andV. With Gram-Schmidt orthog-

onalization process, an orthogonal and then orthonormal basiseof V can be obtained.

5. Coordinates of each sample are computed in the basiseand projected to the subspaceV′

yielding 2-dimensional representation of the sample.

This algorithm results in a mapping, shown in Figure 6.6. In the Figure, it is easy to notice

that the samples of characters “1” are somewhat separated intwo sub-clusters. The reason

is that each sub-cluster forms samples written with certainstyle. Indeed, Figure 6.5 shows

two samples written in different styles available in the cluster: Figure 6.5(a) for thenorth-west

sub-cluster and Figure 6.5(b) for the south-east.

(a) (b)

Figure 6.5: Samples of different sub-clusters of the character “1”

6.4 Implementation

From a high level viewpoint, the system contains the following parts, as shown in Figure 6.7.

• A user interface for training (used to collect profiles of characters).

66 Chapter 6. A Cloud-Based Recognition Framework

Figure 6.6: 2-dimensional orthogonal projection of points

• A user interface for recognition (ink canvas, HLR, and recognizer).

• A cloud – a web infrastructure that serves as a recognizer (inthe remote recognition

mode) and as an efficient storage of user-specific training data, allowing access, update,

sharing, continuous adaptation of the shapes of clusters, etc. In the current prototype im-

plementation, the back end consists of a web server, an application server, and a DBMS.

Communication between the client application for trainingand the cloud is performed

through sending profiles, i.e. zipped XML documents that contain personal catalogs (clouds of

points). The application server communicates with the database through SQL.

6.4.1 Initial Training

In an adaptive recognition environment, the training phaseis not required. However, having

some number of training samples in each class can significantly improve the initial recognition.

Training is normally performed before usage of the application or after introducing a new

character to the repository. Once training is finished the profile is synchronized with the cloud.

6.4. Implementation 67

Figure 6.7: Interaction of user interfaces for collection and recognition with the cloud

Catalog

Symbol1

Style1

Sample1 Sample2 ...

Style2

...

...

Symbol2

...

...

Figure 6.8: The structure of a catalog

A profile is a dataset of training characters used in recognition. The dataset is a collection

of catalogs. Each catalog is a hierarchical container of symbols, styles, and samples. Figure 6.8

shows a structure of a catalog where

• Catalogis a catalog of related symbols, e.g. Latin characters, digits, mathematical oper-

ators, etc.

• Symboli is a recognition class, e.g. “a”, “1” or “ ±”.

• Stylei is a style, i.e. one of the possible ways to write the symbol. Our recognition algo-

rithm is dependent on the direction of writing and the numberof pen-ups of a character.

For example, symboll can have two styles: one style represents writing the character

from the top to the bottom and another style – from the bottom to the top.

• Samplei is a training sample, written according to the corresponding style.

68 Chapter 6. A Cloud-Based Recognition Framework

Figure 6.9: The main window of the training application

Each user can have several profiles used together or independently, representing, for example,

different areas of mathematics, chemistry or music.Systemprofiles should also be available –

the default collections of typical symbols, styles, and samples in a domain.

The XML tree of a profile corresponds to the hierarchy of a catalog: It should contain

symbols, styles, samples, and coefficients. The normalized coefficientsci ∈ [−1, 1] can be

compactly stored in a byte variable as [127ci], where [x] is rounding ofx to an integer [26].

6.4.2 Implementation of the Application

For simplicity, our current model is implemented in three-tier architecture. The client appli-

cations for collection, recognition, and the application server have been developed in Java.

Requests to the application server are routed through a web server.

Client Application for Collection of Characters The front end provides a convenient in-

terface for the user to input and manage training samples. The interface comes along with

the structure of the user profile. Specifically, the main window of the application is a tabbed

panel with each tab representing a catalog of samples, as shown in Figure 6.9. A tab contains

a list of symbols of the catalog. Once the user selects a symbol, the panel with styles becomes

6.4. Implementation 69

Figure 6.10: Client interface for recognition

available. Styles are shown as animated images for visualization of stroke order and direction.

The discussed elements of the interface (catalogs, symbols, styles, and samples) are highly

dynamic: A context menu is available that allows to create, to delete or to merge with another

element. A profile can be saved on a local hard drive and reopened, as well as synchronized

with the server.

Each provided sample should be assigned to a style. If a stylehas not been selected, it is

determined automatically based on its shape and the number of strokes. This recognition is

usually of high accuracy, since the candidate classes are styles of the selected symbol and the

number of styles is typically small.

The Client Interface for Recognition Classification of handwritten characters takes place

when a user performs handwritten input through a separate application. The current implemen-

tation is integrated with the InkChat [31], a whiteboard software that facilitates engineering,

scientific, or educational pen-based collaboration online. Nevertheless, a number of alternative

applications can be used as the recognition front end, e.g. MathBrush [40], a pen-based system

for interactive mathematics, or MathInk [67], a mathematical pen-based plug-in that can run

inside computer algebra systems, such as Maple [35], or document processing software, such

as Microsoft Word.

There can be two approaches to recognition – character-at-a-time (each character is recog-

nized as it is written) and formula-at-a-time (characters are recognized in a sequence, taking

advantage of the context and common deformation of samples). Classification results can be

displayed super-imposed on the digital ink or replace it. For each entered character, a context

menu is available that lists the top recognition candidates, as shown in Figure 6.10. If the

user chooses another class from the candidates listed in thecontext menu, adjacent characters

should be reclassified based on the new context information.

70 Chapter 6. A Cloud-Based Recognition Framework

(a) (b)

Figure 6.11: (a) A set of provided samples, and (b) the average sample

The Server Side The server side has the following interacting parts: the Apache web server,

an application server, and MySQL DBMS. The user uploads a profile to the application server

as a zipped file. The profile is unzipped and parsed. Information is inserted in the database.

Upon download of a profile, the process is reversed – the user sends a request to the appli-

cation server over the web server. The application server selects data from the database, forms

an XML profile, performs compression, and sends it to the client.

In the current implementation, a client communicates with the application server over

HTTP, but an encrypted communication channel is suggested in a production environment.

Furthermore, profiles are recommended to be stored in the database in an encrypted format.

6.4.3 Attractive Display of Recognized Characters

Some research has shown that averaging can be used to make faces look attractive [61]. We

adopt a similar approach to generate visually appealing output. The shape of each output stroke

is obtained by taking the average of coefficients of approximation of corresponding strokes of

samples in the style

c̄i =

∑n
j=1 ci j

n

wherec̄i is thei-th average coefficient of a stroke andn is the number of samples in the style.

The traces of the average character are then computed from the average series. This approach

allows personalized output, representing samples in a visually appealing form and yet preserv-

ing the original style of the writer, as illustrated in Figure 6.14.

6.5 Experimental Evaluation

We describe results of an experiment that shows performanceof adaptive author-centered

recognition that can be implemented in the cloud infrastructure. The experimental setting aims

to simulate decrease in the classification error depending on a user’s input size, given that the

application is initially trained with a default dataset.

6.5. Experimental Evaluation 71

(a) The Null strategy (b) The Basic strategy

Figure 6.12: The average recognition error of the (N+1)-th sample in a class among all classes
by an author. All authors are shown in the plot.

6.5.1 Setting

The experimental dataset is identical to the one described in Section 2.10. Further, each sample

is assigned to one of the 369 authors. Then for each author, the dataset is split in two parts:

samples provided by the author (used in testing) and the restof the dataset (used in training).

A test sample is extracted from a randomly chosen class amongthose written by the test author

and recognized. The recognition error of theN-th sample by the author is computed as the

ratio of the number of misrecognitions of theN-th sample to the total number ofN-th samples

tested. This run is repeated 200 times and the average is reported. We consider two strategies

for processing the recognized character

• Null strategy: The test sample is disregarded after recognition. This strategy is imple-

mented for comparison with the Basic strategy.

• Basicstrategy: The test sample is added to the corresponding training class. This facili-

tates adaptive recognition when the training cluster is adjusted to the style of the current

user with each new sample provided.

The Basic strategy does not provide a mechanism to remove training samples that have

negative impact on recognition. In Chapter 5, we developed an adaptive instance-based

classifier that assigns a dynamic weight to each training exemplar. If the exemplar partic-

ipates in a correct (incorrect) classification, the weight is increased (decreased). Samples

with the minimal average weight are removed from the dataset.

72 Chapter 6. A Cloud-Based Recognition Framework

Figure 6.13: The average recognition error among all authors of the (N+1)-th sample in a class
for the Basic strategy (solid) and the Null strategy (dash).

6.5.2 Results

Figures 6.12(a) and 6.12(b) demonstrate the average recognition error of theN-th sample in a

class among all classes by an author for the Null and the Basicstrategies respectively. Authors

are shown in the plot in different colors. These figures show that the approach gives consistent

results for different authors. The average recognition error among all authors is presented in

Figure 6.13 for the Basic and the Null strategies.

On average, the Basic strategy demonstrates improvement over the course of use, which is

most noticeable for less than 20 samples in a class by an author. Given that the dataset contains

several hundred classes, synchronization of samples across devices is a valuable advantage and

can make the recognition workflow efficient and smooth.

6.6 Semi-Automated Training of the Recognizer

Handwriting is believed to be individual, and therefore it has been used as the primary form of

authentication for centuries. However, the general shape of handwritten samples may look alike

among groups of individuals, especially those that have similar background, e.g. nationality,

native language, etc.

The cloud dataset contains samples representing different styles of writing the same charac-

ter, some of which are likely to be similar to the handwritingof the user. However, the samples

that represent handwritten styles different from those of the user make the training dataset noisy

and may cause misclassification.

6.6. Semi-Automated Training of the Recognizer 73

(a) (b)

Figure 6.14: An example of characters written in a similar style (a) “9” and “a” are written
clockwise, and (b) “a” and “9” are written counterclockwise

Typically, the classification method that we use does not require many training samples to

discriminate a class. However, because there are a large number of classes in handwritten math-

ematics, the training dataset may contain tens of thousandsof characters. Recommendation of

styles applicable to the current user can be a valuable assetin this setting.

In this section, we implement semi-automated training of the recognizer by suggesting

styles that are likely to be applicable to the handwriting ofthe user, based on the styles the user

has already provided and the styles of writers with similar handwriting. This research is based

on the assumption that if a group of users write some characters in the same style, it is likely

that they will write certain other characters in the same style as well, see Figure 6.14. We are

motivated by the wide and successful usage of recommendation systems on the Internet that

are designed to recommend products to consumers, based on their purchasing history and the

history of individuals with similar behaviour.

Assume that a user is starting to train the recognizer and he/she would like to reuse the

training samples of other users who write characters in the same style. In this setting, all the

user needs to do is to identify the styles for corresponding characters. Given that the alphabet

of symbols can be extensive, suggestion of styles to the usercan save time and efforts during

the training phase.

6.6.1 User-Style Similarity

Let P(S0|S1,S2, ...,Sn) be the conditional probability that the characterC0 is written in style

S0 given that we already know a set of other styles provided by the userS1,S2, ...,Sn. Then for

a given character, the style that is suggested to the user at the training phase can be found as

max
S′∈S

P(S′|S1,S2, ...,Sn) (6.2)

whereS is the set of styles with which the subject character can be written.

The value of Equation 6.2 can be computed with the chain rule

P(∩n
k=1Sk) =

n
∏

k=1

P(Sk| ∩k−1
j=1 S j)

74 Chapter 6. A Cloud-Based Recognition Framework

Figure 6.15: The style prediction accuracy

The probability of the user to writen given styles can be recorded as

P(∩n
k=1Sk)

and computed as the ratio of the number of authors who write each of the corresponding char-

acters in one of the given styles to the total number of authors who provided samples for all of

the corresponding classes.

6.6.2 Experimental Evaluation

Our experimental dataset is based on the one described in Section 2.10. Further, each sample

is labeled with its style and the author who provided the sample. There are 369 writers in total.

The experimental runs are organized as follows. For each author, we randomize the list of

styles that the author provided and process the styles in thelist. For each style we compute the

conditional probability that the corresponding characteris written in given style. Figure 6.15

presents the average prediction accuracy among all writersdepending on the number of styles

n available from the author. From the results we can conclude that once an author provided

more than 10 styles, we can predict with high accuracy what corresponding styles the author

will be using for other characters. This can speed up the training of a recognizer, because the

new writer can simply select the styles that are similar to the styles he or she is using, and use

samples from those styles to train the recognizer.

6.7. Conclusion 75

6.7 Conclusion

We have shown how online handwriting recognition systems can take advantage of centralized,

cloud-based repositories. Incremental training data, ground truth annotations, and the machine

learning framework can usefully reside on a server for the benefit of multiple client devices.

We find this particularly effective for symbol sets that occur in mathematical handwriting.

With another meaning of the word “cloud”, our character recognition methods rely on

clouds of points in an orthogonal series coefficient space. The representation of these clouds

of training and recognition support data is quite compact, allowing collections of data sets to

be cached locally even on small devices or transmitted over slow network connections. These

clouds can evolve as new data is received by the server, improving recognition. These clouds

also provide a simple but effective method for handwriting neatening, by taking an average

point for each style.

We find that placing recognition point sets (“clouds” in one sense) in distributed storage and

computing environments (“clouds” in another sense) to be a particularly fruitful combination.

We also demonstrated how the cloud data can be used to improveusability of the recognizer

by performing semi-automated training based on the data available from other users.

Chapter 7

Factorial Analysis of the Recognition

Algorithm

To understand the influence of factors in the algorithm of recognition of sequences of ro-

tated characters, we implement its factorial analysis. This chapter is based on the paper “Pen-

Based Computing in Medicine: Factorial Analysis of the Rotation-Invariant Recognition Al-

gorithm” [49] that appeared in the proceedings of the 6th Canadian Student Conference on

Biomedical Computing and Engineering.

7.1 Introduction

A 2k factorial design allows to evaluate performance of a systemdepending onk factors with

each factor taking 2 values. This type of analysis received significant attention due to its sim-

plicity and sufficient power in sorting out factors depending on their impacton performance.

A 2k factorial design can be applied in a setting, when effect of factors is unidirectional –

performance decreases or increases continuously while a factor is being changed. Therefore,

selecting two significantly different values of a factor and measuring difference in performance

is a good starting point in performance evaluation. If the difference in performance is signifi-

cant enough, a detailed examination may take place. A 2kr factorial design is useful to isolate

experimental errors. In this design each of the experimentsis repeatedr times and it allows to

introduce the error term to the model [36].

We propose to apply the factorial analysis technique to investigate recognition ofn-grams

of characters rotated on approximately the same angle. The difference in rotation between

every pair of characters in ann-gram is≤ 2β (whereβ is the noise angle). Havingn characters

in ann-gram, we look for an angle that allows to minimize likelihood of an error in recognition

76

7.2. A 24 Factorial Design with 5 Replications 77

of the samples. We define likelihood of recognition error as

γα =
dα

∑p
i=1 di

min

γ[α1;α2] = min
α
{γα|α ∈ [α1;α2]}

wheredα is the minimal distance of the test sample (rotated on angleα) among the distances to

convex hulls of nearest neighbours of all training classes,and
∑p

i=1 di
min is the sum ofp minimal

distances for all angles, e.g.

d1
min = min

α
{dα|α ∈ [αmin;αmax]}

d2
min = min

α

{

dα|dα > d1
min & α ∈ [αmin;αmax]

}

whereαmin = −αmax, and angleαmax is one of the parameters in the factorial design.

Total error likelihood of samples inn-gram is computed as

γt
α =

n
∑

i=1

γi
[α−β;α+β]

whereγi
[α−β;α+β] is the minimal likelihood of thei-th sample in then-gram on [α − β;α + β].

Having found the rotation angle that yields the minimal error likelihood, we normalize

samples with respect to rotation and recognize them with regular techniques, see Chapter 2.

The rest of the chapter is organized as follows. In Section 7.2 we present the results ob-

tained in factorial design: sign table, estimation of experimental error, allocation of variation,

confidence intervals for effects, confidence intervals for predicted responses and verification of

assumptions. Section 7.3 is devoted to the analysis of errorrate depending on the parameterµ

in the Legendre-Sobolev inner product and different datasets. Section 7.4 concludes the report.

7.2 A 24 Factorial Design with 5 Replications

Sign Table We select the following factors for analysis (corresponding values are given for

each of the factors)

• The rotation angle (α): 0.3 and 0.6 radians

• The noise angle (β): 0.0 and 0.1 radians

• The size of then-gram (n): 3 and 5

78 Chapter 7. Factorial Analysis of the Recognition Algorithm

e1 e2 e3 e4 e5

0.2 -0.3 0.1 -0.1 0.0
0.1 -0.3 0.1 0.1 -0.1
0.4 -0.5 0.0 -0.1 0.3
0.3 -0.5 0.0 0.0 0.1
0.3 -0.2 0.0 -0.1 0.0
0.3 -0.1 -0.1 -0.2 0.1
0.1 0.0 0.0 -0.2 0.1
0.3 0.0 -0.1 -0.2 0.1
0.1 -0.3 0.1 0.2 -0.1
0.1 -0.3 0.1 0.2 -0.1
0.2 -0.4 0.0 0.2 0.0
0.3 -0.4 0.1 0.1 -0.1
0.3 -0.2 0.0 -0.1 0.0
0.3 -0.1 -0.1 -0.1 0.1
0.2 -0.1 -0.1 0.0 0.0
0.2 -0.1 -0.1 -0.1 0.1

Table 7.1: Experimental errors

• The number of distances to consider in
∑p

i=1 di
min (p): 3 and 5.

We chose to implement a 245 factorial design, since we expect all the factors to have significant

impact on performance and we would like to perform careful evaluation of the parameters. The

number of experiments in the 245 factorial design is feasible.

The model has the form, as discussed in [36] (for all arguments of the sum, refer to the sign

Table A.1)

y = q0 + qαxα + qβxβ + qnxn + qpxp + qαβxαxβ + ... + qαβnpxαxβxnxp + e

whereq’s are effects ande is experimental error. Computation of effects is quite intuitive and

is represented in Table A.1.

Estimation of Experimental Errors Having computed the effects, we can evaluate the re-

sponse ˆyi for each combination of factors (xαi , xβi , xni , xpi) as

ŷi = q0 + qαxαi + qβxβi + qnxni + qpxpi + qαβxαi xβi + ... + qαβnpxαi xβi xni xpi .

The experimental errors are computed as the difference between the measured and esti-

mated valuesei j = yi j − ŷi . Experimental errors are given in Table 7.1.

7.2. A 24 Factorial Design with 5 Replications 79

y1 − ȳ·· y2 − ȳ·· y3 − ȳ·· y4 − ȳ·· y5 − ȳ··
-0.4 -0.9 -0.5 -0.7 -0.6
-0.3 -0.8 -0.4 -0.3 -0.5
-0.9 -1.9 -1.4 -1.4 -1.1
-0.6 -1.4 -0.9 -0.9 -0.8
1.1 0.6 0.8 0.7 0.8
1.1 0.7 0.7 0.6 0.9
0.6 0.5 0.5 0.3 0.6
0.9 0.6 0.6 0.4 0.7
-0.3 -0.8 -0.4 -0.3 -0.6
-0.3 -0.7 -0.3 -0.2 -0.5
-0.7 -1.3 -0.9 -0.8 -1.0
-0.4 -1.1 -0.5 -0.6 -0.7
1.1 0.6 0.8 0.7 0.8
1.1 0.7 0.7 0.7 1.0
0.9 0.6 0.6 0.7 0.7
1.0 0.7 0.7 0.7 0.9

Table 7.2: Values ofyi j − ȳ··

Allocation of Variation The total variation or the total sum of squares is computed as

S S T=
∑

i j

(yi j − ȳ··)
2

whereȳ·· is the average response for all replications of all combinations of factors. Values of

yi j − ȳ·· are represented in Table 7.2.

SST can be divided into parts as

S S T= S Sα + S Sβ + S Sn + S Sp + ... + S Sαβnp+ S S E

whereS Sα = 2krq2
α, etc.

Values for percentage variation are presented in Table 7.3

Confidence intervals for Effects The standard deviation of errors,σe, and terms,σterms:

σe =

√

S S E
2k(r − 1)

, σterms=
σ
√

2kr
.

Confidence intervals, computed asqi ∓ t · σterms, are presented in Table 7.4. From the table

we can conclude with 95% confidence that all of the factors aresignificant and some of the

interactions are insignificant.

80 Chapter 7. Factorial Analysis of the Recognition Algorithm

Parameters Variation
α 1.06%
β 86.08%
n 3.99%
p 1.00%

α andβ 0.16%
α andn 0.35%
β andn 0.95%
α andp 0.03%
n andp 0.27%
β andp 0.23%
α, β andn 0.03%
α, β andp 0.03%
α, n andp 0.02%
β, n andp 0.04%
α, β, n andp 0.00%

Error 5.76%

Table 7.3: Percentage variation

Confidence Intervals for Predicted Responses We compute confidence intervals for re-

sponses for combinations of factors. The standard deviation of the mean response, depending

on the number of replications,m, is

sŷm = se(
1

ne f f
+

1
m

)1/2,

wherene f f is the effective number of degrees of freedom (DFs) computed as

ne f f =
total number of runs

1+ sum of DFs of parameters used in ˆy
.

Confidence intervals form= 1,m= 5 andm= ∞ are given in Table 7.5.

Verification of Assumptions The expressions for effects shown above are based on the fol-

lowing assumptions:

1. Errors are statistically independent.

2. Errors are Normally Distributed.

3. Errors have constant standard deviation.

These assumptions are validated through visual tests.

7.2. A 24 Factorial Design with 5 Replications 81

Confidence Intervals lower upper Significance
α 95.30 95.40 Significant
β -0.13 -0.03 Significant
n -0.77 -0.68 Significant
p 0.11 0.20 Significant

α andβ -0.13 -0.03 Significant
α andn -0.08 0.02 Insignificant
β andn 0.00 0.09 Insignificant
α andp 0.03 0.12 Significant
n andp -0.06 0.03 Insignificant
β andp -0.01 0.09 Insignificant
α, β andn -0.08 0.01 Insignificant
α, β andp -0.03 0.06 Insignificant
α, n andp -0.06 0.03 Insignificant
β, n andp -0.04 0.06 Insignificant
α, β, n andp -0.03 0.06 Insignificant

Table 7.4: Confidence intervals for the factors and interactions

Independent Errors We want to make sure that the errors are independently and identically

distributed in the model. We plot residuals versus the predicted response. The scaterlpot is

given in Figure 7.1. The scaterplot testifies that our assumption is correct, since there is no

visible trend in the points.

Normally distributed errors To verify this assumption, we build normal quantile-quantile

plot of residuals, shown in Figure 7.2. As we can observe fromthe plot, the graph is approxi-

mately linear, which testifies that the assumption is correct.

Constant standard deviation of errors (homoscedasticity) We analyze the scaterplot 7.1,

see section 14.7 of [36], and look if the spread of points in different parts of the graph is

significantly different. We observe that in fact the points are distributed approximately the

same and, therefore, we conclude that the errors satisfy theassumption of constant standard

deviation.

82 Chapter 7. Factorial Analysis of the Recognition Algorithm

Exper. ŷ Low(1) High (1) Low (5) High (5) Low (∞) High (∞)
1 94.73 94.26 95.19 94.46 95.00 94.53 94.92
2 94.88 94.42 95.34 94.61 95.15 94.69 95.08
3 94.01 93.55 94.48 93.74 94.28 93.82 94.21
4 94.43 93.96 94.89 94.16 94.70 94.23 94.62
5 96.14 95.68 96.60 95.87 96.41 95.95 96.33
6 96.14 95.68 96.61 95.87 96.41 95.95 96.34
7 95.84 95.37 96.30 95.57 96.11 95.64 96.03
8 95.99 95.53 96.46 95.72 96.26 95.80 96.19
9 94.87 94.41 95.33 94.60 95.14 94.68 95.06
10 94.95 94.49 95.41 94.68 95.22 94.76 95.14
11 94.42 93.96 94.89 94.15 94.69 94.23 94.62
12 94.70 94.24 95.17 94.43 94.97 94.51 94.90
13 96.14 95.68 96.61 95.87 96.41 95.95 96.34
14 96.20 95.74 96.67 95.93 96.47 96.01 96.40
15 96.03 95.57 96.49 95.76 96.30 95.83 96.22
16 96.13 95.67 96.59 95.86 96.40 95.94 96.33

Table 7.5: Confidence intervals form= 1,m= 5 andm= ∞

7.3 Evaluation of the Parameterµ in the Legendre-Sobolev

Inner Product

7.3.1 Experimental Error

To estimate the jet scaleµ in the Legendre-Sobolev inner product, we implement the model in

the form of two-factor full factorial design without replications. We run the experiments on

the original dataset of samples (samples are not subjected to any transformation intentionally).

Parameterµ is evaluated as follows. We first evaluate the average error rate among all datasets

for µ = 1
16, µ = 1

8 andµ = 1
4. Having found thatµ = 1

16 performs slightly better than other

alternatives, we evaluate error forµ = 1
32, µ = 3

32. We observeµ = 1
32 to perform slightly better

and therefore we evaluate error forµ = 1
64 andµ = 3

64. Both of the last two alternatives perform

worse thanµ = 1
32 and therefore we stop evaluation. Error rate for different values ofµ for

different datasets and the average error are given in Table 7.6.

7.3.2 Two-Factor Full Factorial Design

Introduction The factors considered are

1. Parameterµ (denoted asA and effects asα) with the number of observationsa = 9.

7.3. Evaluation of the Parameter µ in the Legendre-Sobolev Inner Product 83

Figure 7.1: Scatter plot of residuals versus the predicted response

Dataset\µ 1
64

1
32

3
64

1
16

3
32

1
8

3
16

1
4

5
16

1 2.12 2.16 1.93 2.12 2.10 2.24 2.36 2.32 2.34
2 2.47 2.57 2.49 2.55 2.61 2.47 2.55 2.57 2.59
3 2.63 2.63 2.67 2.63 2.55 2.65 2.77 2.75 2.79
4 2.56 2.34 2.40 2.42 2.44 2.50 2.60 2.58 2.62
5 2.44 2.34 2.60 2.72 2.68 2.82 2.76 2.80 2.78
6 2.51 2.22 2.32 2.26 2.24 2.34 2.36 2.40 2.36
7 2.54 2.37 2.43 2.37 2.43 2.41 2.48 2.58 2.64
8 2.47 2.56 2.52 2.54 2.52 2.54 2.68 2.73 2.79
9 2.90 2.69 2.75 2.77 2.77 2.75 2.77 2.73 2.75
10 2.67 2.53 2.40 2.50 2.50 2.46 2.52 2.46 2.38

mean 2.53 2.44 2.45 2.49 2.48 2.52 2.58 2.59 2.60

Table 7.6: Recognition error for different values ofµ for different datasets

2. Datasets (denoted asB and effectsβ) with the number of observationsb = 10.

Variation of the factors is shown in Table 7.6.

According to [36], the additive model for a two-factor design without replications is

yi j = ȳ·· + α j + βi + ei j

whereyi j is the observation in the experiment with the first factorα being at levelj and the

second factorβ being at leveli, ȳ·· is the mean response,α j is the effect of factorα at level j, βi

is the effect of factorβ at leveli, andei j is the error term.

84 Chapter 7. Factorial Analysis of the Recognition Algorithm

Figure 7.2: Normal quantile-quantile plot for residuals

µ 1
64

1
32

3
64

1
16

3
32

1
8

3
16

1
4

5
16

ȳ· j 2.53 2.44 2.45 2.49 2.48 2.52 2.58 2.59 2.60
α j 0.01 -0.08 -0.07 -0.03 -0.04 0.00 0.06 0.07 0.08

Table 7.7: ¯y· j andα j values

Computation of Effects We findȳ·· as the mean observation for all combinations ofα andβ:

Thenα j andβi are found as

α j = ȳ· j − ȳ··, β j = ȳi· − ȳ··

Values forȳ· j andα j, ȳi· andβi are given in Tables 7.7 and 7.8 respectively.

Experimental error Estimated response is computed as

ŷi j = ȳ·· + α j + βi.

Then experimental errors, see Table 7.9, are found as

ei j = yi j − ŷi j .

Allocation of Variation The following formula takes place

S S Y= S S0+ S S A+ S S B+ S S E

7.3. Evaluation of the Parameter µ in the Legendre-Sobolev Inner Product 85

Datasets 1 2 3 4 5 6 7 8 9 10
ȳi· 2.19 2.54 2.67 2.50 2.66 2.33 2.47 2.60 2.77 2.49
βi -0.33 0.02 0.15 -0.02 0.14 -0.19 -0.05 0.07 0.24 -0.03

Table 7.8: ¯yi· andβi values

i\ j 1 2 3 4 5 6 7 8 9
1 -0.08 0.05 -0.19 -0.04 -0.05 0.06 0.11 0.06 0.07
2 -0.08 0.11 0.02 0.04 0.11 -0.07 -0.05 -0.04 -0.03
3 -0.05 0.03 0.07 -0.01 -0.09 -0.02 0.03 0.01 0.03
4 0.06 -0.08 -0.03 -0.04 -0.02 0.01 0.04 0.01 0.04
5 -0.23 -0.24 0.01 0.09 0.06 0.16 0.04 0.07 0.04
6 0.17 -0.03 0.06 -0.04 -0.06 0.01 -0.04 -0.01 -0.06
7 0.06 -0.02 0.03 -0.07 -0.01 -0.06 -0.05 0.04 0.08
8 -0.14 0.05 0.00 -0.02 -0.03 -0.05 0.02 0.07 0.11
9 0.13 0.01 0.06 0.04 0.04 -0.01 -0.06 -0.11 -0.10
10 0.17 0.12 -0.02 0.04 0.04 -0.03 -0.04 -0.10 -0.19

Table 7.9: Experimental error

where

S S Y=
∑

i j

y2
i j ,S S0 = abȳ2

··,S S A= b
∑

j

α2
j ,S S B= a

∑

i

β2
i ,S S E=

∑

i j

e2
i j

Percentage of variation explained by factorsA (parameterµ in LS inner product),B (dif-

ferent datasets) and error are 9.47, 72.90 and 17.63 respectively. Therefore, selection of the

dataset has the greatest impact on performance.

Analysis of Variance We compute the degrees of freedom for various sums as follows

S S Y= S S0+ S S A+ S S B+ S S E

ab= 1+ (a− 1)+ (b− 1)+ (a− 1)(b− 1)

Then we compute the mean squares as

MS A=
S S A
a− 1

,MS B=
S S B
b− 1

,MS E=
S S E

(a− 1)(b− 1)

Then theF-ratios to test the significance of factorsA andB are

FA =
MS A
MS E

, FB =
MS B
MS E

86 Chapter 7. Factorial Analysis of the Recognition Algorithm

Effect Mean Effect Stand. Dev. Lower Bound Upper Bound
µ 2.52 0.01 2.50 2.54
A
1
64 2.53 0.26 2.01 3.06
1
32 2.44 0.26 1.92 2.97
3
64 2.45 0.26 1.93 2.98
1
16 2.49 0.26 1.96 3.01
3
32 2.48 0.26 1.96 3.01
1
8 2.52 0.26 1.99 3.04
3
16 2.58 0.26 2.06 3.11
1
4 2.59 0.26 2.07 3.12
5
16 2.60 0.26 2.08 3.13
B
1 2.19 0.25 1.69 2.69
2 2.54 0.25 2.04 3.04
3 2.67 0.25 2.17 3.17
4 2.50 0.25 2.00 3.00
5 2.66 0.25 2.16 3.16
6 2.33 0.25 1.83 2.84
7 2.47 0.25 1.97 2.97
8 2.60 0.25 2.09 3.10
9 2.77 0.25 2.26 3.27
10 2.49 0.25 1.99 2.99

Table 7.10: Confidence intervals for effects

Both factors are significant.

Confidence intervals for effects The standard deviation is computed as

se =
√

MS E, sµ =
se√
ab
, sα j = se

√

a− 1
ab
, sβi = se

√

b− 1
ab

The confidence intervals are presented in Table 7.10.

7.3.3 Visual Verification of Assumptions

We verify the following assumptions

Independent Errors The plot of residuals versus the predicted response is givenin Fig-

ure 7.3. The scaterplot testifies that our assumption is correct, since there is no visible trend in

the points.

7.4. Conclusion 87

Figure 7.3: Scatter plot of residuals versus the predicted response

Normally distributed errors To verify this assumption, we build normal quantile-quantile

plot of residuals, shown in Figure 7.4. As we observe from theplot, the graph is approximately

linear, which testifies that the assumption is correct.

Constant standard deviation of errors (homoscedasticity) From the scaterplot 7.3 we ob-

serve that spread of the points is approximately the same and, therefore, the errors have ap-

proximately constant standard deviation.

7.4 Conclusion

In Section 7.2 we performed an investigation of performanceof the recognition algorithm of

rotated characters in ann-gram depending on 4 factors: angle of rotation, noise,n and the

number of samples in computation of error likelihood. The experimental runs were repeated

five times to estimate the error. We observed that the noise angle has the most effect on per-

formance and causes about 86% in variation of the recognition rate, then comes the value of

n, causing 4% variation, and then rotation angle causing only1% of variation. These results

demonstrate that the algorithm is highly invariant to rotation. We also determined with 95%

confidence that all of the factors are significant, but some interactions are not. The confidence

intervals for the predicted response for different values ofm (the number of replications): 1, 5

and∞ were shown as well. Finally, we presented visual verification of assumptions that are in

the core of the factorial design.

In Section 7.3 we focused on evaluation of the classificationerror of the recognition algo-

88 Chapter 7. Factorial Analysis of the Recognition Algorithm

Figure 7.4: Normal quantile-quantile plot for residuals

rithm for different values ofµ and different datasets. We computed allocation of variation and

discovered that selection of the dataset has larger impact on performance than the jet scaleµ.

In the analysis of variance we found both of the factors (µ values and datasets) to be signif-

icant. We also computed confidence intervals for effects and performed visual verification of

the assumptions.

The results obtained are valuable for better understandingof the character classification

algorithm and the influence of the configuration parameters on its performance.

Chapter 8

Linear Compression of Digital Ink via

Point Selection

Each year more devices support digital ink in some form, for capture, processing or recog-

nition. These devices have a wide range of form factors and resources, from small hand-held

devices to digital whiteboards. These devices are used in various configurations, individually,

tethered for a single user, or in multi-party collaboration. Various vendor-specific binary for-

mats are used to represent digital ink, and there is the vendor-neutral XML format InkML.

With this increased use of digital ink, its efficient handling has become increasingly important.

Small devices need to be able to handle it efficiently. On more powerful devices, ink-handling

applications may need to store a significant amount of model data to support recognition [50].

In addition, the sampling frequency and spatial resolutionof hardware has been increasing

over time, creating opportunities and challenges for ink processing applications. The opportu-

nities are associated with the possibility of more detailedanalysis, since a device can capture

in high precision variations of pen movement. On the other hand, such high volumes of ink

data require extra resources for processing and storage.

We take the view that lossless compression at time of ink capture is not a meaningful

objective as each ink capture device has a resolution limit and sampling accuracy. So long as

the reconstructed curve lies within these limits, lossy andlossless compression are equivalent.

For our own applications involving recognition, lossless compression has no benefit. Small

perturbations in strokes give symbols that a human reader would recognize as the same [50].

This chapter is based on the paper “Linear Compression of Digital Ink via Point Selec-

tion” [52] co-authored with Stephen M. Watt, that appeared in the 10th IAPR International

Workshop on Document Analysis Systems.

89

90 Chapter 8. Linear Compression of Digital Ink via Point Selection

8.1 Introduction

We present a method to compress digital ink based on piecewise-linear approximation within

a given error threshold. The objective is to achieve good compression ratio with very fast ex-

ecution. The method is designed and especially effective on types of handwriting that have

large portions with nearly linear parts, e.g. hand drawn geometric objects. In simple terms, this

problem is solved by removing points that do not affect the shape of the curve significantly,

while the error between the original and the approximating curves remains within a threshold.

The method can be viewed as a dynamic adjustment of the density of points, depending on the

shape of a stroke. More points are removed from straighter regions than regions with high cur-

vature. Thus, we would expect geometric drawings with many lines to compress particularly

well. We compare this method with an enhanced version of our earlier functional approxima-

tion method, finding the new technique to give slightly worsecompression while performing

significantly faster. This suggests the presented method can be used in applications where

speed of processing is of higher priority than the compression ratio.

We have two subproblems that need to be solved:

1. decomposition of digital ink into pieces, suitable for compression, and

2. compression of the individual pieces.

We present fast, easy to implement solutions to both of theseproblems and show exper-

imentally that the technique yields good compression for handwritten text and even better

compression for hand drawn geometric objects. The discussed method is most useful for com-

pression of linear pieces of a curve and can be implemented asa part of a multipurpose hybrid

compression algorithm.

We also implement an enhanced version of the compression method described in Sec-

tion 2.9 by representing coefficients in a more compact form. We measure the compression

rate and time required to process the experimental datasetsand compare with the performance

of the linear method. While losing in compression, the linear method is found to perform more

than 100× faster.

The chapter is organized as follows. An improvement to the functional approximation

method is proposed in Section 8.3. The linear compression algorithm is explained in Sec-

tion 8.4. Section 8.5 presents details about the experimental setting and the results obtained.

Section 8.6 concludes the chapter.

8.2. RelatedWork 91

8.2 Related Work

8.2.1 Digital ink compression

A number of digital ink compression algorithms have been developed to date. One of the most

popular lossless schemes is to use second differences [59].

An efficient lossy method was developed in [50]. In this work we alsopresent results of

compression with the industry standard – the second difference method. This was based on

piecewise functional approximation of curves by truncatedorthogonal polynomial series and

representation of the pieces by the approximating series coefficients. The desired approxima-

tion accuracy is achieved by dynamically changing the degree of approximation and the size of

pieces.

Another lossy algorithm was presented in [46], based on stroke simplification. It suggests

to eliminate excessive points, forming a skeleton of the original curve. The algorithm is based

on iterative computation of chordal deviation – the distance between the original curve and

its approximation. Points with the minimal distance are removed until the distance becomes

larger than a threshold. A “substantially lossless” methodwas proposed in [10]. It allows the

compression error’s magnitude to be not greater than the sampling error’s magnitude. In this

approach, the original curve is split into segments and eachsegment is represented by some

predefined shape, such as a polygon, ellipse, rectangle or Bezier curve. It is not mentioned how

to obtain the shapes from a curve and what compression this approach gives.

A method for selection of the minimal number of points to represent a curve within an error

bound was proposed in [32]. The technique is based on dynamicprogramming and has linear

complexity in the number of points selected.

8.2.2 Approximation of univariate convex functions

Several “sandwich” algorithms have been proposed for approximation of univariate convex

functions. For example, see [19] for a method that requires derivative information along with

the function values, and [65] for an iterative algorithm when only function values are available.

The latter technique can be briefly described as follows. Consider a convex function defined

on an intervalI and some threshold of approximation errorδ. Approximation on the interval is

obtained by joining its boundary points. Let the approximation error of the intervalI beδI and

δI > δ. Then the intervalI is split into subintervals, according to a partitioning rule. The proce-

dure is repeated until the approximation error becomes lessthanδ for each subinterval. Several

partitioning rules are considered, e.g. the maximal error rule that selects the point located on

the maximal distance to the approximation curve. The algorithm converges quadratically if

92 Chapter 8. Linear Compression of Digital Ink via Point Selection

certain conditions on derivatives are satisfied, and linearly under other conditions.

8.2.3 Decomposition of digital curve in inflection-free parts

Several methods exist for decomposition of digital curves in segments without inflection, e.g.

see [13, 14]. However, these algorithms are primarily designed for digital images to extract

convex/concave pieces of an object to determine meaningful parts. In contrast, we are inter-

ested in the decomposition of digital ink. We note that the methods developed for binary images

are in most cases not suitable for our purpose, since digitalink is represented as a sequence of

points on a curve, rather than as a field of pixels in two dimensions.

8.3 Enhanced Compression via Functional Approximation

We propose a way to improve the functional approximation technique developed in [50]. As

mentioned earlier, that method is based on piecewise approximation of curves by truncated

series in an orthogonal polynomial basis. In [50] we experimented with Chebyshev, Legendre,

Legendre-Sobolev polynomials and Fourier series. It was found empirically that Chebyshev

polynomials yield the best compression, as reported in [50]. In the present work our goal is to

improve performance of the method with Chebyshev polynomials as the orthogonal basis. The

improvement is to be achieved by representing coefficients in a more compact form.

We consider the adaptive segmentation scheme of [50]. For each trace, the degreed of the

approximation is selected dynamically. A higher degree provides a more accurate approxima-

tion of a curve, but increases the compressed size. In the adaptive scheme, the size of coeffi-

cients is also selected for each trace independently. Coefficients are recorded as floating-point

numbers with base 2. The significand and the exponent are two’s complement binary integers,

since this is the representation that is most often used to represent integers in computing de-

vices. The significand is encoded ina bits, while the exponent is inp bits. The value ofp is

fixed, and the value ofa is dynamically adjusted for each stroke. The following representation

of each information channel of a tracei is proposed:

• Encode the 0 order coefficient in 2a + p bits, since this coefficient regulates the initial

position of the trace and is typically larger than the rest ofthe coefficients. This number

of bits is device-dependent and for the test device this value appears appropriate with

respect to the maximal non-zero coefficients occurred.

• Find the coefficientcM = max|ci |, i = 1..d and encode it ina+ p bits.

8.4. The Linear Compression Algorithm 93

• Encode coefficientscj , j = 1..d, as two’s complement binary integersr j =
⌊

|cM |
cj

⌉

in br

bits, wherebxe represents rounding ofx to the integer.

Thus, a tracei is recorded as

aidiλ1c10c1Mr11...r1diλ2c20c2Mr21...r2di ...λD

whereai is the number of bits for encoding the significand;di is the degree of approximation;

λ j is the initial value of parameterization of a piecej; cj0 is the 0-order coefficient; cjM =

max|cjk |, k = 1..d; r jk =
⌊ |cjM |

cjk

⌉

, cjk is thek-th coefficient of thej-th piece. This differs from the

method of [50] by having the coefficientscj represented as scalings rounded to integers rather

than as significand-exponent pairs.

8.4 The Linear Compression Algorithm

8.4.1 Decomposition into Inflection-Free Parts

The method described in [65] is not suitable for digital ink as originally presented, since it

requires parameterization and segmentation. We develop a method that does not require pa-

rameterization and can be used as the first step in processing.

Our compression method works with pieces locally curving inone direction or the other,

but not changing back and forth. To be more precise, the curveshould be decomposed into

parts where the second derivative has constant sign, i.e thenormal vector in the Frenet frame

is pointing to the same side of the curve.

Definition We say that a sequence of points (x1, y1), (x2, y2), ..., (xn, yn) is an inflection-free

segmentif and only if the polygon formed by these points, after joining (x1, y1) and (xn, yn), is

convex.

The property of a convex polygon that every internal angle isless than or equal toπ is

used in theonlinedecomposition Algorithm 8. The algorithm, in the body of thewhile loop,

lists operations performed on each incoming ink point to obtain a sequence of inflection-free

segments. This takes into account that

• Two points are considered equal, if their coordinates are equal.

• |P| denotes the number of points in the listP.

94 Chapter 8. Linear Compression of Digital Ink via Point Selection

Algorithm 8 FormInflectionFreeSegments()
Input: Points– a stream of input points
Output: C – a list of inflection-free segments

C← [] {list of inflection-free segments found}
S ← [] {current segment being collected}
i ← 0 {index of current point without duplication}
while Points.hasNext()do

P← Points.getNext()
if i = 0 or P , Pi−1 then

Pi ← P
if |S| ≥ 2 then

if Pi = P0 then
Append the listS to the end of the listC
S← []

else
Ai ← Angle(Pi−2,Pi−1,Pi) − π
ABeg← Angle(Pi ,P0,P1) − π
AEnd← Angle(Pi−1,Pi ,P0) − π
if Ai × Ai−1 < 0
or Ai × AEnd < 0 or ABeg× AEnd < 0 then

Append the listS to the end of the listC
S← []

end if
end if
AppendPi to the end of the listS
i ← i + 1

end if
end if

end while
If S is non-empty, append it to the end of the listC
return C

• Angle(P,Q,R) is the “oriented” angle between vectors
−−→
QP and

−−→
QR. In other words,

Angle(P,Q,R) = 2π − Angle(R,Q,P). These angles can be found with the dot and cross

products of given vectors.

• ABeg is the complement of the oriented angle made by the beginningvector
−−−→
P0P1 and the

last point.AEnd is the complement of the oriented angle made by the ending vector
−−−−−→
Pi−1Pi

and the first point.Ai is the complement of the oriented angle made by the most current

three points.

• We test for products less than zero to detect changes in direction of curvature. Two angles

in the same direction will give a positive product (either as+ × + or − × −) and three

8.4. The Linear Compression Algorithm 95

collinear points will give a zero product.

8.4.2 Compression of Inflection-Free Parts

Once the curve is decomposed as a collection of inflection-free segments, each piece is a subject

to compression. Our compression technique is similar to thesandwich algorithm proposed

in [65]. However, rather than looking at the lower and upper bounds of a function, we find the

distance between a curve and its approximation. If either the maximal error|| · ||max or the root

mean square error|| · ||rms on an interval is greater than the respective thresholdsεmax or εrms, the

curve is split into two parts. Other norms on the space of curves could be used if desired. The

steps are presented in Algorithm 9, considering thatj.first and j.last are respectively the first

and the last points of the intervalj.

Definition We write pw(L) for the piecewise linear curve defined by the list of pointsL. If two

pointsa andb occur in a listL, with a precedingb, then we say that [a, b] is an interval in L.

We writeL|I for the sublist ofL restricted to the intervalI .

The point of division is found with one of the partitioning rules:

Rule 1: Based on the maximaldistance: the decomposition point is selected based on the

distance from the point to the line that goes through the boundary points of the interval.

Rule 2: Based on theangleformed at the point: if all of the oriented angles within the segment

are less thanπ then the minimal angle is considered, otherwise (when all ofthe angles are

greater thanπ) the maximal angle is found.

8.4.3 Complexity

The decomposition algorithm processes each incoming pointin constant timeO(1). There

are no additional operations at the last input. It is online,in that after each point a valid

decomposition is maintained.

The best case time complexity of compression of a piece isO(n). If the splits always divide

a segment into two equal parts, and the algorithm continues until there is a split at every point,

the cost isO(n logn). If the splits are made unequally, always splittingn points as 1 andn− 1,

then the cost isO(n2).

8.4.4 Correctness

The termination condition of CompressCurve merits attention. If a function satisfies a maxnorm

bound on each element of a partition, then it satisfies the maxnorm over the union of the

96 Chapter 8. Linear Compression of Digital Ink via Point Selection

Algorithm 9 CompressCurve(S,R)
Input: S – a list of points for an inflection-free segment

R– a partitioning rule (rule 1 or 2)
Output: L – a list of points such that

||pw(S) − pw(L)||max < εmax and
||pw(S) − pw(L)||rms < εrms

{J is a stack of intervals to be refined.}
J← [Interval with first and last point ofS]
L← []
while J , [] do

j ← Pop an interval fromJ
a← j.first; b← j.last
if ||pw(S| j) − pw(j)||max > εmax

or ||pw(S| j) − pw(j)||rms > εrms then
{Split j according to ruleRat some pointc in S}
j1← [a, c]
j2← [c, b]
Push j2 and thenj1 onto the stackJ

else
Appenda and thenb to the end of listL

end if
Remove elementj from J

end while
return L

parts. For RMS, note that if a domainD is partitioned asD1, ...,Dn and
√
∑

a∈Di
f (a)/|Di | < ε,

then (
∑

a∈D1
+ · · · +

∑

a∈Dn
) f (a) < (|D1| + · · · |Dn|)ε2 so

√

∑

a∈D f (a)/|D| < ε, and takef (a) =

(S(a) − S∗(a))2.

8.4.5 Discussion

Binary Encoding of PointsThe sequence of points of a compressed trace can be encoded in

binary for compact representation. Coordinates in our dataset have absolute value not greater

than 213 and can be recorded as two’s complement integers in a sequence of groups of 14 bits.

Drifting of ApproximationThe presented compression method is not suitable for repeated

resampling. While the approximation to each inflection-free segment will lie within any re-

quired error bound, the approximation will lie completely on one side of the input curve. If the

resulting piecewise linear function is then resampled and recompressed repeatedly, systematic

drift may occur. To address the issue of drift under repetitive resampling and recompression,

the line segments could be positioned to cross the original curve so that the error is equal on

both sides of the original.

8.5. Experiments 97

εmax = 1 εmax = 5 εmax = 10 εmax = 15

Figure 8.1: Approximation of a sample with different error thresholds (dash line) and the
original curve (solid line)

8.5 Experiments

8.5.1 Experimental Setting

The experimental dataset was collected in the Ontario Research Centre for Computer Algebra

with a tablet device with the following specifications: 2540dpi resolution, 133 pps data rate,

and±.02 sampling error.

Two types of digital ink were collected for the experiments

• Handwriting. Different individuals have provided various parts of regular English text

to ensure variations in length of strokes and writing styles. From the whole collection,

we randomly selected 46 traces containing, on average, 51 points each. This number of

traces is feasible for the adaptive functional approximation method, that requires signifi-

cant amount of time.

• Geometric objects. We collected simple two-dimensional geometric objects, such as

triangles, rectangles and lines. Then we randomly selected33 traces containing, on

average, 68 points each in order to achieve feasible runningtime of the functional ap-

proximation compression algorithm.

In the experiments, the root mean square error was taken heuristically as a portion of the

maximal errorεrms =
3
4εmax. Unlike the results reported in [50], we look at the absolute, not

relative, approximation error and the binary stream of coefficients does not undergo further gzip

compression. The compressed size is reported asSc/So whereSc is the size of the compressed

dataset andSo is the size of the original dataset.

The compression algorithms were implemented and run on Maple 13 on an Intel Core 2

Duo 2.40 GHz CPU with 2GB RAM, running Ubuntu Linux version 2.6.24-19-generic.

98 Chapter 8. Linear Compression of Digital Ink via Point Selection

Table 8.1: Compressed size (%) as a function of the maximal error (εmax) and the number of
exponent bits (p) for 7 coefficient bits (br) for the handwriting dataset

p
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 21.5 14.7 12.5 11.6 10.3 9.6 9.0 8.5 8.1 7.9 7.6 7.3 7.1 6.9 6.7
4 19.2 13.2 11.3 10.3 9.2 8.7 8.1 7.6 7.3 7.1 6.8 6.5 6.3 6.2 6.0
5 19.0 13.6 11.7 10.8 9.5 8.9 8.3 7.9 7.5 7.3 7.0 6.7 6.5 6.4 6.2

Table 8.2: Compressed size (%) as a function of the maximal error (εmax) and the number of
exponent bits (p) for 7 coefficient bits (br) for the dataset of geometric objects

p
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 22.3 17.2 15.0 13.7 12.5 11.7 10.9 10.5 9.8 9.5 8.9 8.7 8.4 8.1 7.8
4 20.6 15.0 13.0 11.9 10.8 10.0 9.3 9.0 8.5 8.2 7.7 7.6 7.3 7.1 6.8
5 21.8 16.2 13.9 12.8 11.6 10.8 9.9 9.6 9.1 8.6 8.2 8.0 7.7 7.4 7.1

Table 8.3: Compressed size (%) as a function of the maximal error (εmax) and the number of
coefficient bits (br) for 4 exponent bits (p) for the handwriting dataset

br

εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 20.3 14.6 12.2 11.0 9.7 8.7 8.2 7.5 7.2 7.0 6.6 6.3 6.1 5.9 5.8
5 18.6 13.5 11.4 10.0 9.0 8.4 7.6 7.2 7.0 6.7 6.5 6.2 6.0 5.8 5.6
6 18.5 13.0 11.1 10.0 8.9 8.3 7.8 7.4 7.0 6.8 6.6 6.3 6.1 5.9 5.8
7 19.2 13.2 11.3 10.3 9.2 8.7 8.1 7.6 7.3 7.1 6.8 6.5 6.3 6.2 6.0
8 19.1 13.6 11.7 10.7 9.6 9.0 8.4 7.9 7.6 7.4 7.1 6.8 6.6 6.5 6.3

8.5.2 Experimental Results

Optimal values of p and br In the experiments we measure compressed size for different values

of approximation error. Figure 8.1 shows an original curve and linear approximation for dif-

ferent maximal error thresholds. From the figure, one can observe that compressing the curve

with the maximal error of up to 5 has almost no effect on representation of the curve and can

be used in the applications that do not require high precision of ink, e.g. recognition.

In the first set of experiments, we look for the optimal valuesof p andbr in a simplified

manner, see Section 8.3. With fixedbr = 7, the value ofp was changed and the compressed

size was measured for both datasets. Results for handwriting and geometric objects are shown

in Tables 8.1 and 8.2 respectively. The value ofp = 4 was found to be the most efficient. With

fixed p = 4, br was changed to find the optimal value. The compressed sizes for the datasets

of handwriting and geometric objects are shown in Tables 8.3and 8.4 respectively. The value

of br = 5 was selected. In a production setting, a more detailed evaluation, possibly a grid

evaluation, should be performed.

One can observe that the compression rate as a function ofp or br is not changing mono-

tonically, which can be explained by the fact that large values of p or br may result in large

approximation chunks and vice versa.

8.5. Experiments 99

Table 8.4: Compressed size (%) as a function of the maximal error (εmax) and the number of
coefficient bits (br) for 4 exponent bits (p) for the dataset of geometric objects

br

εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 19.5 14.6 12.8 11.6 10.6 9.8 9.1 8.8 8.2 7.9 7.4 7.2 6.9 6.7 6.3
5 19.5 14.4 12.4 11.4 10.4 9.7 9.0 8.7 8.0 7.7 7.3 7.1 6.8 6.6 6.3
6 20.2 14.7 12.6 11.6 10.5 9.9 9.1 8.8 8.3 7.9 7.5 7.3 7.1 6.8 6.6
7 20.6 15.0 13.0 11.9 10.8 10.0 9.3 9.0 8.5 8.2 7.7 7.6 7.3 7.1 6.8
8 20.2 14.7 12.6 11.6 10.5 9.9 9.1 8.8 8.3 7.9 7.5 7.3 7.1 6.8 6.6

Table 8.5: Time (in seconds) for compression of the handwriting dataset

Method
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L 25 20 21 21 17 17 17 19 18 15 16 15 15 20 16
F 879 1083 1287 1498 1700 1982 2188 2326 2479 2618 2727 2915 3019 3138 3327

Table 8.6: Time (in seconds) for compression of the dataset of geometric objects

Method
εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L 12 10 8 9 8 7 8 8 9 9 9 8 8 9 8
F 1188 1355 1781 2034 2185 2346 2475 2593 2710 2830 2980 3086 3180 3281 3333

Comparison of functional approximation with linear compression The compression rate

of the linear method was measured for the two segmentation rules explained in Section 8.4.2 on

both datasets. Figure 8.2 presents the results of the functional approximation and linear com-

pression methods for different values ofεmax. The partitioning rules show similar performance

on the handwriting dataset and almost identical on geometric objects. As expected, due to

the nature of the linear algorithm, we obtained higher compression of geometric objects than

handwritten text. The functional approximation method shows similar performance on both

datasets.

The compression time is given in Table 8.5 for the dataset of handwriting and Table 8.6 for

geometric objects. The linear method performs almost instantly, compared to the compression

with higher-order functional approximation. One can observe a trend of increase of the exe-

cution time of the functional approximation technique withthe increase of the error threshold.

In fact, the running time is around three times higher forεmax = 15 compared to the execution

time for εmax = 1. This growth arises because more combinations of approximation degree and

number of coefficient bits become suitable for approximation of pieces. Evaluation of those

combinations is computationally intensive and can requiresignificantly more time for high

resolution devices.

100 Chapter 8. Linear Compression of Digital Ink via Point Selection

Handwriting Geometric objects

Figure 8.2: Compressed size depending on the maximal approximation error for handwriting
and geometric objects: for Rule 1 (maximal distance) and Rule 2 (based on the angle), and for
enhanced functional approximation

8.6 Conclusion

We have examined two methods for the compression of digital ink or, more generally, sam-

pled curves in any dimension. One method selects a subset of the sample points to give a

piecewise linear function that is within a given tolerance of the original. The second method

adapts previous work based on orthogonal series approximation, representing the coefficients

more efficiently. Our experiments show the piecewise linear approximation method to perform

about 100× faster than the functional approximation algorithm, but ityields a less compact

representation. The proposed piecewise linear compression technique can be used when sim-

plicity or speed are important, such as for hardware implementation and data transmission. On

the other hand, the functional approximation method is suitable for applications that require

compact storage of ink. Depending on the application and thechoice of functional basis, in

this representation certain recognition operations may beperformed without decompression.

Chapter 9

Conclusion

9.1 Retrospective

The theoretical and experimental results reported in this thesis are aimed to enhance perfor-

mance of handwriting recognition systems based on orthogonal approximation of curves by

making them more robust, more accurate and adaptive. We achieve compact representation

of ink for efficient processing, transmission and storage. The presentedresults form a valu-

able asset to developers of frameworks for manipulation andrecognition of digital ink. These

contributions can be naturally integrated in the cloud environment. Some ideas can also be

considered as the basis for cloud-based classification systems in other pattern recognition and

machine learning domains, where public knowledge is usefulfor improving individual perfor-

mance. In particular, we make the following contributions.

(1) We perform optimization of recognition of isolated characters by finding the value of

the jet scale in the Legendre-Sobolev inner product and the degree of approximation of char-

acter strokes that result in the lowest classification error. We also propose an algorithm for

recognition of groups of rotated characters, taking advantage of the natural habit of humans to

write symbols with similar degree of transformation. This algorithm can be extended to shear

and more general affine transformations.

(2) We propose methods for robust classification of samples of substantially smaller size.

We propose a unit of measurement of the size and apply this measurement to classification

algorithms based on the size only. We also propose a recognition method based on adjustment

of the distance to convex hulls of nearest neighbours for classes with small samples.

(3) We develop an adaptive classification method. This method is applicable to the cloud

environment since the training dataset of a user is constantly evolving and synchronized with

101

102 Chapter 9. Conclusion

the cloud. All the pen-based devices used by the writer get the updates from the cloud, thereby

making the continuous training of the application efficient. We show that the adaptive method

allows significant asymptotic improvement of the author-centered classification rate.

(4) We describe the cloud-based architecture that is designed to simplify sharing of training

data across devices and may incorporate other contributions of the thesis.

(5) We also perform factorial analysis of the algorithm for recognition of groups of rotated

characters to analyze the impact of the configuration parameters of the algorithm. We also

study the influence of parameterµ on recognition algorithm, concluding that it is relativelynot

influential.

(6) Finally, we propose and empirically estimate an enhancement to the compression algo-

rithm, based on approximation of strokes with orthogonal polynomials. We also develop a fast

compression scheme based on piecewise linear representation of curves.

9.2 Future Work

For the future work, we recognize the importance of developing an algorithm for recognition

of mathematical expressions in the cloud environment. Besides the challenges associated with

recognition of two-dimensional formulas, an important question posed – which tasks should

be delegated to the cloud and which are to be computed on the client. The computational tasks

may include segmentation of strokes into characters, recognition, spatial analysis of recognized

characters, building the expression tree and analyzing recognition confidence.

The next interesting problem is syntactic and semantic verification of recognized formulas

in the cloud. The main problem encountered is the absence of afixed dictionary of “words” or

“set” of rules that controls the evolution of existing words.

Study of applicability of the cloud-based recognition architecture to other pattern-recognition

domains is probably the primary direction for further research. We believe that the future of

recognition systems is in the cloud due to the number of advantages that it offers, related to stor-

age of training data, collection of feedback, easy enhancement of the classification algorithm,

reliability of service.

Bibliography

[1] Cascading style sheets (css) snapshot 2010, May 2011. W3C Working Group.

[2] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.

In Machine Learning, pages 37–66, 1991.

[3] A. Ali, S. Gilani, and N. Memon. Affine invariant contour descriptors using independent

component analysis and dyadic wavelet transform.Journal of Computing and Informa-

tion Technology, 16(3):169–181, 2008.

[4] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Evaluation of multimodal input

for entering mathematical equations on the computer. InCHI ’05 extended abstracts on

Human factors in computing systems, CHI EA ’05, pages 1184–1187, New York, NY,

USA, 2005. ACM.

[5] Homayoon S.M. Beigi, Krishna Nathan, Gregory J. Clary, and Jayashree Subrahmonia.

Size normalization in on-line unconstrained handwriting recognition. InProc. IEEE Int’l

Conf. Acoustics, Speech and Signal Processing, pages 169–172, 1994.

[6] Bora Beran, Catharine Ingen, and Dennis Robert Fatland.Sciscope: a participatory geo-

scientific web application.Concurrency and Computation: Practice and Experience,

22(17):2300–2312, 2010.

[7] Anne-Laure Bianne, Christopher Kermorvant, and Laurence Likforman-Sulem. Context-

dependent hmm modeling using tree-based clustering for therecognition of handwritten

words. InProc. of the Document Recognition& Retrieval XVII, 2010.

[8] Kam-Fai Chan and Dit-Yan Yeung. Mathematical expression recognition: a survey.IJ-

DAR, 3(1):3–15, 2000.

[9] Bruce W. Char and Stephen M. Watt. Representing and characterizing handwritten mathe-

matical symbols through succinct functional approximation. In Proc. International Con-

103

104 BIBLIOGRAPHY

ference on Document Analysis and Recognition, (ICDAR), pages 1198–1202, Curitiba,

Brazil, September 2007. IEEE Computer Society.

[10] Manjirnath Chatterjee. System and method for ink or handwriting compression.United

States Patent No US 6,549,675 B2, April 2003.

[11] Yi-Min Chee, Max Froumentin, and Stephen Watt. Ink markup language (InkML).http:

//www.w3.org/TR/InkML/. (valid on June 6, 2013).

[12] Y. Chen and X. Ye. Projection onto a simplex.Arxiv preprint arXiv:1101.6081, 2011.

[13] Isabelle Debled-Rennesson, Jean-Luc Remy, and Jocelyne Rouyer-Degli. Detection of

the discrete convexity of polyominoes. InProceedings of the 9th International Confer-

ence on Discrete Geometry for Computer Imagery, DGCI ’00, pages 491–504, London,

UK, 2000. Springer-Verlag.

[14] H. Dorksen-Reiter and I. Debled-Rennesson. Convex andconcave parts of digital curves.

In Reinhard Klette, Ryszard Kozera, Lyle Noakes, and Joachim Weickert, editors,Geo-

metric Properties for Incomplete data, pages 145–159. Springer Netherlands, 2006.

[15] R.F.H. Farag. Word-level recognition of cursive script. Computers, IEEE Transactions

on, C-28(2):172 –175, feb. 1979.

[16] S. Feng, I. Kogan, and H. Krim. Classification of curves in 2d and 3d via affine integral

signatures.Acta Applicandae Mathematicae, pages 903–937, March 2010.

[17] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson.Scalable vector graphics (svg) 1.1 spec-

ification. W3C, January 2003.

[18] Jan Flusser and Tomas Suk. Character recognition by affine moment invariants. InProc.

of the 5th International Conference on Computer Analysis ofImages and Patterns, pages

572–577. Springer-Verlag, 2007.

[19] B. Fruhwirth, R. E. Burkard, and G. Rote. Approximationof convex curves with appli-

cation to the bicriterial minimum cost flow problem.European Journal of Operational

Research, 42:326–338, 1989.

[20] Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. Orientation-independent recog-

nition of handwritten characters with integral invariants. In Proc. Joint Conference of

ASCM 2009 and MACIS 2009: Asian Symposium of Computer Mathematics and Math-

ematical Aspects of Computer and Information Sciences, (ASCM 2009), pages 252–261,

BIBLIOGRAPHY 105

Fukuoka, Japan, December 2009. COE Lecture Note Vol. 22, Kyushu University, ISSN

1881-4042.

[21] Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. Toward affine recognition of

handwritten mathematical characters. InProc. International Workshop on Document

Analysis Systems, (DAS 2010), pages 35–42, Boston, USA, June 9-11 2010. ACM Press.

[22] Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. Analgorithm to compute the

distance from a point to a simplex.ACM Communications in Computer Algebra, 46(2-

180):57–57, June 2012.

[23] Oleg Golubitsky and Stephen M. Watt. Online stroke modeling for handwriting recog-

nition. In Proc. 18th Annual International Conference on Computer Science and Soft-

ware Engineering, (CASCON 2008), pages 72–80, Toronto, Canada, October 2008. IBM

Canada.

[24] Oleg Golubitsky and Stephen M. Watt. Online computation of similarity between hand-

written characters. InProc. Document Recognition and Retrieval XVI, (DRR 2009), vol-

ume 7247, pages C1–C10, San Jose, California USA, January 2009. SPIE and IS&T.

[25] Oleg Golubitsky and Stephen M. Watt. Online recognition of multi-stroke symbols with

orthogonal series. InProc. 10th International Conference on Document Analysis and

Recognition, (ICDAR 2009), pages 1265–1269, Barcelona, Spain, July 2009. IEEE Com-

puter Society.

[26] Oleg Golubitsky and Stephen M. Watt. Distance-based classification of handwritten sym-

bols.International Journal of Document Analysis and Recognition, (doi 10.1007/s10032-

009-0107-7), 2010.

[27] Isabelle Guyon, Lambert Schomaker, Rkjean Planiondon, Mark Liberman, and Stan

Janet. Unipen project of on-line data exchange and recognizer benchmarks. InProc. 12th

International Conference on Pattern Recognition (ICPR 1994), pages 29–33, Jerusalem,

Israel, 1994. IAPR-IEEE.

[28] P. Hart. The condensed nearest neighbor rule (corresp.). Information Theory, IEEE Trans-

actions on, 14(3):515 – 516, may 1968.

[29] Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y Suen, and Tien D Bui. The role of

size normalization on the recognition rate of handwritten numerals.The 1st IAPR TC3

NNLPAR, 1:1–5, 2001.

106 BIBLIOGRAPHY

[30] M.K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Infor-

mation Theory, 8(2):179–187, 1962.

[31] Rui Hu. Portable implementation of digital ink: Collaboration and calligraphy. Master’s

thesis, The University of Western Ontario, London, Ontario, Canada, 2009.

[32] Rui Hu and Stephen M. Watt. Optimization of point selection on digital ink curves. In

ICFHR, pages 527–532, 2012.

[33] David A. Huffman. A method for the construction of minimum-redundancy codes. In

Proceedings of the I.R.E., pages 1098–1102, September 1952.

[34] Qiang Huo and Tingting He. A minimax classification approach to hmm-based online

handwritten chinese character recognition robust againstaffine distortions. InNinth In-

ternational Conference on Document Analysis and Recognition (ICDAR 2007), pages

1226–1230. IEEE Computer Society, July 2007.

[35] Maplesoft Inc. Maple 13 user manual. Technical report,Maplesoft, 2009.

[36] Raj Jain.The art of computer systems performance analysis. John Wiley and Sons, Inc,

1991.

[37] X. Jiang and H. Yu. SVM-JAVA: A java implementation of the SMO (sequential minimal

optimization) for training SVM, 2008.

[38] B.S. Kashin and A.A. Saakyan.Orthogonal Series. Translations of Mathematical Mono-

graphs. American Mathematical Society, 2005.

[39] T. Kohonen.Self-organization and associative memory. Springer-Verlag New York, Inc.

New York, NY, USA, 1989.

[40] George Labahn, Scott Maclean, Mirette Marzouk, Ian Rutherford, and David Tausky. A

preliminary report on the MathBrush pen-math system. InMaple 2006 Conference, pages

162–178, 2006.

[41] Bart Lamiroy, Daniel Lopresti, Hank Korth, and Jeff Heflin. How carefully designed

open resource sharing can help and expand document analysisresearch. InDocument

Recognition and Retrieval XVIII - DRR 2011, volume 7874, San Francisco, United States,

January 2011. SPIE.

[42] Joseph J. LaViola Jr. Symbol recognition dataset. Technical report, Microsoft Center for

Research on Pen-Centric Computing.

BIBLIOGRAPHY 107

[43] C. J. Leggetter and P. C. Woodland. Maximum likelihood linear regression for speaker

adaptation of continuous density hidden markov models.Computer Speech& Language,

9(2):171 – 185, 1995.

[44] C. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten digit recognition: investi-

gation of normalization and feature extraction techniques. Pattern Recognition, 37:265–

279, 2004.

[45] Cheng-Lin Liu, Masashi Koga, Hiroshi Sako, and Hiromichi Fujisawa. Aspect ratio adap-

tive normalization for handwritten character recognition. In Proc. of the Third Inter-

national Conference on Advances in Multimodal Interfaces, ICMI ’00, pages 418–425,

London, UK, 2000. Springer-Verlag.

[46] Zicheng Liu, Henrique S. Malvar, and Zhengyou Zhang. System and method for ink or

handwriting compression.United States Patent No US 7,302,106 B2, November 2007.

[47] Scott MacLean, George Labahn, Edward Lank, Mirette Marzouk, and David Tausky.

Grammar-based techniques for creating ground-truthed sketch corpora.Int. J. Doc. Anal.

Recognit., 14:65–74, March 2011.

[48] Vadim Mazalov. Geometric techniques for digital ink. Master’s thesis, University of

Western Ontario, 2012.

[49] Vadim Mazalov, Dmitry Mazalov, and Anna Pauer. Pen-based computing in medicine:

Factorial analysis of the rotation-invariant recognitionalgorithm. In Proc. of the 6th

Canadian Student Conference on Biomedical Computing and Engineering, pages pp.85–

89. University of Western Ontario, 2011.

[50] Vadim Mazalov and Stephen M. Watt. Digital ink compression via functional approxima-

tion. Proc. of International Conference on Frontiers in Handwriting Recognition., pages

688–694, 2010.

[51] Vadim Mazalov and Stephen M. Watt. Improving isolated and in-context classication of

handwritten characters. pages 82970B–82970B–8, 2012.

[52] Vadim Mazalov and Stephen M. Watt. Linear compression of digital ink via point se-

lection. In Proceedings of the 2012 10th IAPR International Workshop onDocument

Analysis Systems, DAS ’12, pages 429–434, Washington, DC, USA, 2012. IEEE Com-

puter Society.

108 BIBLIOGRAPHY

[53] Vadim Mazalov and Stephen M. Watt. A structure for adaptive handwriting recognition.

In ICFHR, pages 692–697, 2012.

[54] Vadim Mazalov and Stephen M. Watt. Writing on clouds. InProceedings of the 11th

international conference on Intelligent Computer Mathematics, CICM’12, pages 402–

416, Berlin, Heidelberg, 2012. Springer-Verlag.

[55] Vadim Mazalov and Stephen M. Watt. Recognition of relatively small handwritten char-

acters or “size matters”. InFrontiers in Handwriting Recognition (ICFHR), 2012 Inter-

national Conference on, pages 319–324, Sept.

[56] M. Mercimek, K. Gulez, and T.V. Mumcu. Real object recognition using moment invari-

ants.Sadhana, 37(6):765–775, 2005.

[57] Paul Mermelstein and Murray Eden. Experiments on computer recognition of connected

handwritten words.Information and Control, 7(2):255 – 270, 1964.

[58] C Michelot. A finite algorithm for finding the projectionof a point onto the canonical

simplex ofRn. J. Optimization Theory and Applications, 50(1):195–200, July 1986.

[59] Microsoft Inc. Ink serialized format specification.

[60] R. Mukundan and K. R. Ramakrishnan.Moment Functions in Image Analysis: Theory

and Applications. World Scientific, 1998.

[61] D.I. Perrett, K.A. May, and S. Yoshikawa. Facial shape and judgments of female attrac-

tiveness.Nature, 368:239–242, March 1994.

[62] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector

machines.Advances in Kernel Methods-Support Vector Learning, 208:98–112, 1999.

[63] A. Rosenthal, J. Hu, and M. Brown. Size and orientation normalization of on-line hand-

writing using hough transform. InProc. of the 1997 IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP ’97) -Volume 4 - Volume 4, ICASSP

’97, pages 3077–, Washington, DC, USA, 1997. IEEE Computer Society.

[64] Jr. Sammon, J.W. A nonlinear mapping for data structureanalysis.IEEE Transactions on

Computers, page 401409, 1969.

[65] A. Y. D. Siem, D. den Hertog, and A. L. Hoffmann. A method for approximating univari-

ate convex functions using only function value evaluations. INFORMS J. on Computing,

23:591–604, October 2011.

BIBLIOGRAPHY 109

[66] Slate Corporation.Jot - a specification for an ink storage and interchange format, May

1996.

[67] Elena Smirnova and Stephen M. Watt. Communicating mathematics via pen-based com-

puter interfaces. InInternational Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, (SYNASC 2008), pages 9–18, Timisoara Romania, September 2008.

IEEE Computer Society.

[68] Elena Smirnova and Stephen M. Watt. Context-sensitivemathematical character recog-

nition. In Proc. IAPR International Conference on Frontiers in Handwriting Recogni-

tion, (ICFHR 2008), pages 604–610, Montreal, Canada, August 19-21 2008 2008. CEN-

PARMI Concordia University, ISBN 1-895193-03-6.

[69] Alexander S. Szalay. The sloan digital sky survey and beyond.SIGMOD Rec., 37:61–66,

June 2008.

[70] G. Talenti. Recovering a function from a finite number ofmoments.Inverse Problems,

(3):501–517, 1987.

[71] J. Tokuno, N. Inami, S. Matsuda, M. Nakai, H. Shimodaira, and S. Sagayama. Context-

dependent substroke model for hmm-based on-line handwriting recognition. InFron-

tiers in Handwriting Recognition, 2002. Proceedings. Eighth International Workshop on,

pages 78 – 83, 2002.

[72] Pascal Vincent and Yoshua Bengio. K-Local Hyperplane and Convex Distance Nearest

Neighbor Algorithms. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahra-

mani, editors,Advances in Neural Information Processing Systems 14, Cambridge, MA,

September 2002. MIT Press.

[73] Toru Wakahara and Seiichi Uchida. Hierarchical decomposition of handwriting defor-

mation vector field using 2dwarping and global/local affine transformation. In10th In-

ternational Conference on Document Analysis and Recognition, pages 1141–1145. IEEE

Computer Society, July 2009.

[74] J. Wang, P. Neskovic, and L.N. Cooper. A probabilistic model for cursive handwriting

recognition using spatial context. InAcoustics, Speech, and Signal Processing, 2005.

Proceedings. (ICASSP ’05). IEEE International Conferenceon, volume 5, pages v/201 –

v/204 Vol. 5, march 2005.

110 BIBLIOGRAPHY

[75] Stephen M. Watt. An empirical measure on the set of symbols occurring in engineer-

ing mathematics texts. InProceedings of the 2008 The Eighth IAPR International Work-

shop on Document Analysis Systems, pages 557–564, Washington, DC, USA, 2008. IEEE

Computer Society.

[76] Don R. Wilhelmsen. A nearest point algorithm for convexpolyhedral cones and appli-

cations to positive linear approximation.Mathematics of Computation, 30(133):48–57,

January 1976.

[77] D. Randall Wilson and Tony R. Martinez. Reduction techniques for instance-based learn-

ing algorithms. InMachine Learning, pages 257–286, 2000.

[78] Philip Wolfe. Finding the nearest point in a polytope.Mathematical Programming,

11:128–149, 1976.

[79] Jacob Ziv and Abraham Lempel. A universal algorithm forsequential data compression.

IEEE Transactions on Information Theory, 23:337–343, 1977.

Appendix A

Factorial Analysis Sign Table

Table A.1: Sign table of the factorial analysis of the algorithm for recognition ofn-grams of
rotated characters

Exp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1525.6 95.4
α 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1.3 -0.1
β 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -11.6 -0.7
n 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 2.5 0.2
p 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1.3 -0.1
α ∗ β 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -0.5 0.0
α ∗ n 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 0.7 0.0
β ∗ n 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1.2 0.1
α ∗ p 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -0.2 0.0
n ∗ p 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 0.7 0.0
β ∗ p 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -0.6 0.0
α ∗ β ∗ n 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 0.2 0.0
α ∗ β ∗ p 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -0.2 0.0
α ∗ n ∗ p 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 0.2 0.0
β ∗ n ∗ p 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0.3 0.0
α ∗ β ∗ n ∗ p 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 0.0 0.0

y1 94.9 95.0 94.4 94.8 96.4 96.4 95.9 96.2 95.0 95.1 94.6 95.0 96.4 96.5 96.2 96.3
y2 94.4 94.6 93.5 94.0 96.0 96.1 95.8 96.0 94.6 94.6 94.1 94.3 96.0 96.1 95.9 96.0
y3 94.9 95.0 94.0 94.4 96.1 96.0 95.8 95.9 95.0 95.1 94.5 94.8 96.1 96.1 95.9 96.1
y4 94.6 95.0 93.9 94.5 96.0 95.9 95.7 95.8 95.0 95.1 94.6 94.8 96.1 96.1 96.0 96.0
y5 94.7 94.8 94.3 94.5 96.2 96.3 96.0 96.1 94.8 94.9 94.4 94.6 96.2 96.3 96.1 96.2

ymean 94.7 94.9 94.0 94.4 96.1 96.1 95.8 96.0 94.9 94.9 94.4 94.7 96.1 96.2 96.0 96.1 95.4

111

Curriculum Vitae

Name Vadim Mazalov

Post-secondary The University of Western Ontario
Education London, Ontario, Canada

2010 - 2013
PhD(Computer Science)
Supervisor: Pr. Stephen M. Watt

2009 - 2010
MSc(Computer Science)
Supervisor: Pr. Stephen M. Watt

Kuban State University
Krasnodar, Russia
2003 - 2009
BS/MSc (Applied Mathematics and Computer Science)

Roanoke College
Salem, Virginia, USA
2005 - 2006
Exchange Student

Honours and University Students’ Council Teaching Honour Roll
Awards for teaching CS1027a in 2011

Ontario Graduate Scholarship for 2012-2013

GTA Union Scholarship for Academic Achievements, UWO, 2012

GTA Union Scholarship for Academic Achievements, UWO, 2011.

Graduate Thesis Research Award, UWO, 2011.

113

Prasanna Mohan Scholarship, UWO GTA Union, 2010.

Russian Government Scholarship for scientific research and
academic excellence, KubSU, 2007-08 and 08-09.

Krasnodar Region Government Scholarship for scientific research and
academic excellence, KubSU, 2007-08 and 08-09.

Scholarship of Philip Morris Int. for academic achievements and
leadership, KubSU, 2007-08 and 08-09.

Academic Scholarship, KubSU, 2003-09.

Work Experience Lecturer, Research Assistant, Teaching Assistant
The University of Western Ontario
2009 - 2013

Research and Development Specialist
Cyborg Trading Systems
London, Ontario, Canada
2010 - 2013

Software Development Engineer in Test, Intern
Microsoft, Inc.
Redmond, WA, USA
2012-2012

Software Engineer
Peter-Service, CJSC
Krasnodar, Russia
2007 - 2009

Publications

1. Vadim Mazalov and Stephen M. Watt. A structure for adaptive handwriting recognition.
In ICFHR, pages 692–697, 2012.

2. Vadim Mazalov and Stephen M. Watt. Recognition of relatively small handwritten
characters or “size matters”. InFrontiers in Handwriting Recognition (ICFHR), 2012
International Conference on, pages 319–324, Sept.

3. Rui Hu, Vadim Mazalov, and Stephen M. Watt. A Streaming Digital Ink Framework for
Multi-Party Collaboration,Proc. 2012 Conferences on Intelligent Computer Mathemat-
ics, (CICM 2012), pp. 81-95, July 9-14 2012, Bremen, Germany, Springer Verlang.

4. Vadim Mazalov and Stephen M. Watt. Writing on clouds. InProceedings of the 11th

114 Chapter A. Factorial Analysis Sign Table

international conference on Intelligent Computer Mathematics, CICM’12, pages 402–
416, Berlin, Heidelberg, 2012. Springer-Verlag.

5. Vadim Mazalov and Stephen M. Watt. Linear compression of digital ink via point se-
lection. InProceedings of the 2012 10th IAPR International Workshop onDocument
Analysis Systems, DAS ’12, pages 429–434, Washington, DC, USA, 2012. IEEE Com-
puter Society.

6. Lu Xiao and Vadim Mazalov. Message Visualizer: a Visualization Tool for Chat Mes-
sages, pp. 426-428,Proc. 2012 iConference, February 07-10, 2012, Toronto, Canada.

7. Vadim Mazalov and Stephen M. Watt. Improving isolated andin-context classication of
handwritten characters. pages 82970B–82970B–8, 2012.

8. Vadim Mazalov, Dmitry Mazalov, and Anna Pauer. Pen-BasedComputing in Medicine:
Factorial Analysis of the Rotation-Invariant RecognitionAlgorithm, Proc. Canadian
Student Conference on Biomedical Computing and Engineering 2011, pp. 85-89.

9. Vadim Mazalov and Stephen M. Watt. Digital ink compression via functional approx-
imation. Proc. of International Conference on Frontiers in Handwriting Recognition.,
pages 688–694, 2010.

10. Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. Toward affine recognition of
handwritten mathematical characters. InProc. International Workshop on Document
Analysis Systems, (DAS 2010), pages 35–42, Boston, USA, June 9-11 2010. ACM Press.

11. Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. Orientation-independent recog-
nition of handwritten characters with integral invariants. In Proc. Joint Conference of
ASCM 2009 and MACIS 2009: Asian Symposium of Computer Mathematics and Math-
ematical Aspects of Computer and Information Sciences, (ASCM 2009), pages 252–261,
Fukuoka, Japan, December 2009. COE Lecture Note Vol. 22, Kyushu University, ISSN
1881-4042.

