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Abstract

Handwriting is one of the most natural ways for a human tong&nowledge. Recently,
this type of human-computer interaction has received asing attention due to the rapid evo-
lution of touch-based hardware and software. While hardwapport for digital ink reached
its maturity, algorithms for recognition of handwriting aertain domains, including mathe-
matics, are lacking robustness. Simultaneously, userspossess several pen-based devices
and sharing of training data in adaptive recognition sgttan be challenging. In addition,
resolution of pen-based devices keeps improving makingntheumbersome to process and
store. This thesis develops several advancesffaient processing, storage and recognition
of handwriting, which are applicable to the classificatiogthods based on functional approx-
imation. In particular, we propose improvements to classiifon of isolated characters and
groups of rotated characters, as well as symbols of sulstsrdifferent size. We then de-
velop an algorithm for adaptive classification of handwentmathematical characters of a user.
The adaptive algorithm can be especially useful in the cloasked recognition framework,
which is described further in the thesis. We investigatetivtyethe training data available in
the cloud can be useful to a new writer during the trainingsphay extracting styles of individ-
uals with similar handwriting and recommending styles @whiter. We also perform factorial
analysis of the algorithm for recognition ofgrams of rotated characters. Finally, we show a
fast method for compression of linear pieces of handwrittieokes and compare it with an
enhanced version of the algorithm based on functional agmiation of strokes. Experimental
results demonstrate validity of the theoretical contiitms, which form a solid foundation for

the next generation handwriting recognition systems.
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Chapter 1
Introduction

Efficient processing and classification of digital ink beconsgeially relevant with the recent
popularity of tablet devices and touch-based interface® @ the sub-problems in handwrit-
ing recognition is handwritten mathematics, which allows-dimensional input and com-
munication of mathematical knowledge in a more natural veaynpared with conventional
typesetting systems. Writing mathematics on a digital aansg similar to traditional pen-on-
paper input. It does not require learning any languages andbe €icient, given a robust and
reliable implementation. According to a study [4], pendzaput of mathematics is about
three times faster and two times less error-prone than aterdyboard- and mouse-driven
techniques. The hardware support of digital ink has readlsedaturity, while algorithms for
recognition of characters and spatial analysis of expoassare still the subject for improve-
ment.

Accuracy of the mathematical equations recognizer is lgldssed on the classification
rate of individual characters. Although considerable pesg has been achieved in the field of
handwriting recognition, classification of mathematigahbols requires further improvement.
Among the factors that make classification of mathematips@ally challenging, compared
to normal text recognition, is the relatively large set ofigar looking few-stroke symbols that
can be subjected to transformations. The absence of a figgdrdary of multi-symbol “words”
makes the syntactic verification of recognized formuladiehging. The two-dimensional
nature of mathematical expressions requires an accutéestitiation between fluctuations in
positioning and intentional super- or sub-scripting ovbaaeline.

We make the following contributions to the art of online rgoition of characters and
test them on the dataset of handwritten mathematical syante improve classification of
segmented symbols and develop a method for in-context nétmy of samples. We propose
a technique for classification of small characters baseti@netiative size of the samples with
respect to other symbols in the collection and demonsthaestiperior performance of the
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method compared to our previous results [50]. We furthee tiwdt the recognition error can be
decreased if the technique is able to adapt to the handgfithe user, since each individual
has their own writing style. We propose an adaptive algorithat allows rapid improvement
of the classification rate by adjusting the weights of tragnsamples.

Increasing reliability and decreasing cost of cloud tedbgies open new perspectives for
improvement of pattern recognition applications avagabl public. The training samples and
correction history produced by individuals can benefit hasymptotically decreasing the
recognition error. In addition, modern users don't limiemhselves with a single device and
typically rely on cloud services to synchronize data acdiffgerent platforms. Handwriting
recognition applications can certainly enhance their isalf they take advantage of the
opportunities available in the cloud. We present a clouskddramework for recognition of
handwritten characters. Finally, we perform factoriallgsia of the algorithm for recognition
of rotatedn-grams of characters to estimate the influence of the coratigur parameters of
the algorithm on its performance.

Efficient processing of digital ink is the foundation for all bktdiscussed algorithms and
most other pen-based applications. Modern devices typicallect ink in high resolution,
which is important for certain purposes, e.g. authenticatif a user based on the signature.
In general, however, the high precision makes the ink datebemsome and costly to process,
transmit over networks and store. We investigate two cosgme schemes that allow one
to decrease the volume of data, while losing very little klealge about the curve. The first
method is based on functional approximation of strokes high-degree orthogonal polynomi-
als, and the second is based on piecewise linear approgmaitihe strokes. We demonstrate
that the size of an ink database can be reduced to a largeediedriée preserving the shape of
the strokes.

Overall, this thesis addresses several facets of handgniécognition systems. First, it
significantly enhances the existing recognition algoritynimproving its performance and
making it more robust for special characters. Then it dgyebcloud architecture that allows
sharing of the training data and correction history acressogs. Then it proposes methods for
compression of digital ink to facilitate compact storagd &ast transmission. These contribu-
tions can be naturally integrated in the cloud environm8nine ideas can also be considered
as the basis for cloud-based classification systems in gtiéern recognition and machine
learning domains, where public knowledge is useful for iowomg individual performance.
The presented results form a valuable asset to developé&anaéworks for manipulation and
recognition of digital ink.
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1.1 Outline of Chapters

The thesis is organized into the following Chapters:

Chapter 1 presents an overview of the problems addressed in the thesis

Chapter 2 introduces the necessary preliminaries and the previaesreh.

Chapter 3 improves isolated and in-context classification of hanttemicharacters.

Chapter 4 explains how to make the character recognition algorithmasbagainst samples
of substantially dferent size.

Chapter 5 discusses a structure for adaptive handwriting recogniiipassigning weights
to training samples.

Chapter 6 presents the cloud-based handwriting recognition franewo

Chapter 7 demonstrates factorial analysis of the in-context roteitiwariant classification
algorithm with respect to the most important parameters.

Chapter 8 draws the algorithm for linear piecewise compression oftalignk and im-
proves the earlier developed method of approximation oksts with higher degree orthogonal
polynomials.

Chapter 9 concludes the thesis and proposes directions for futur&.wor



Chapter 2

Previous Work and Preliminaries

2.1 Introduction to Digital Handwriting

In online handwriting, a curve is given as an ordered set @itpon a Euclidean plane. Pen-
based devices capture coordinates of a stylus as functitinseo Additionally, some hardware
can collect other data — the degree of pressure, pen angatioates of pen-up points, i.e.
when a stylus does not touch the screen. However, we distégiarinformation to remain
device-independent.

A curve is given as a sequence of points

(XO, YO, tO), (Xl’ yl’ tl)’ ceey (Xn, Yn, tn)

wherex;, y,ti € R,i = 0..n, andty < t; < ... < t,. Devices typically collect points equally
spaced in time and therefotecan be omitted. Most often, coordinates are represented as
integers, and indeed that is how our experimental datasétried [48].

Writing on the canvas would not be that useful without thditytfior a machine to under-
stand the handwriting. Researchers have been tacklingaoidemn of handwriting recognition
for about half a century [57]. A variety of methods have beeppsed, e.g. based on Markov
chains and functional approximation. We mostly build on thendation of the classifica-
tion algorithm with functional approximation of strokesstribed in [26]. However, a brief
description of the general idea behind the approach wittkMachains is given below [48].

Markov chain methods typically model behaviour of elemarita handwritten curve, as-
suming those elements satisfy the Markov property (futtaies of the process depend only
upon the present state). In the early papers, e.g. see [thfva is encoded as a sequence of
directions selected from the set®$tates. The probability distribution of the first piece o th
curve is encoded as a vectdr, = [Py, P4, ...Ps], whereP,; is the probability that the first stroke
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is pointing in thei-th direction, andy,>,P; = 1,0 < P; < 1. Then the stochastic transition
matrix at thek-th piece is

Poo Poir -+ Pos
Pio P11 -+ Pis
PsO Psl e Pss

whereP;; is the probability of transitioning from the directioat thek—1 piece to the direction
j at thek-th piece. Therefore a handwritten curve is representeccaiextion ofn stochastic
transition matrices, and each matrix represents a piedeecfurve. During the classification
phase, a curvR to be classified is split inta pieces with corresponding directioRs, ..., R.
The probability of the curve to belong to a training cl&sis computed as
1) . @ (n)

PR, * PRk, - * PRUR,
where p(Rll) is the probability of the first piece of the cla€sto point in the directiorR;, and
pg‘z_le is the probability of thek-th piece of the clas€ to point from the directiorr,_; to the
directionRy. Then the curvd is classified based on the maximum probability among trginin
classes.

Besides considering the direction of a stroke, sometimiesranheasures are introduced,
e.g. the length of the stroke and direction of the pen up meves{71]. In addition, a context
analysis is included by considering substrokes in setserdhan independently.

2.2 Orthogonal Series

Two functionsf (1) andg(1) defined on the domaira]b] are orthogonal on this interval with
respect to a given continuous weight functiefn), if their inner product

b
(f.q) = f F()gAWAAL = O,

One method to approximate a functibn R — Ris as a linear combination of polynomials up
to some degred from a given basi® = {P, : R—> Ri=0,1,...,d}:

d
f()~ > fiPi(1), fieR PieP
i=0
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where polynomials?;,i = 0,1,...,d are orthogonal with respect to an inner product).
Gram-Schmidt orthogonalization of the monomial ba{&i,sd, A2, } can be used to generate
the system of orthogonal polynomidgB,, Py, ...} with respect to a given inner product. The

codficientsf; can be found as [38]
. (f,Py)

ERGHE)
With this method, one is able to obtain representation ofdioate functions as follows:

d d
X() = Y %P, YD)~ Y yiPi(a).
i=0 i=0

The coordinate functionX(1) andY(1) may be parameterized in various ways, such as
by time or by arc length. Parameterization by arc length égvable, since it provides inde-
pendence of speed of writing of curves. A possible problémough, is that arc length is not
invariant under all fiine transformations. For transformation-invariant pananieation one
could use time, invariant undeffiame transformations, or specidfiae arc length, invariant
under area preserving transformations [3]:

L

F(L) = f Iy ) — X Dy .

0

Char and Watt proposed to represent a character as a veaodhients of the approx-
imation of the curve coordinates with truncated orthogaeaies [9]. They used Chebyshev
polynomials of the first kind

Tn(1) = cosparccost).

These are orthogonal on the intervall[ 1] for w(1) = 1/ V1 - 2. Even though Chebyshev
polynomials are fast to calculate and allow accurate appratton of a curve with low degree
series, the form of its weight function createffidulties for online computation of approxima-
tion. Therefore it was proposed to use Legendre polynorthalsallow recovering a function
online [23] from its moments [70]. It was described how to pute the firsd codficients of
the truncated Legendre series for a functidi), normalized to a desired range and domain,
in online timeOL,[O(d), O(d?)], wheren is the number of known equally-spaced values of
f [48].

In later work [24], the authors demonstrated that Leger8trBelev polynomials perform
better than Legendre polynomials for recognition purpo$ée Legendre-Sobolev polynomi-
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als are orthogonal with respect to the inner product

b b
(f.g) = f FDG)AA + s f (g (da.

whereu is a parameter, that we call the “jet scale”.

Legendre-Sobolev polynomials are suitable for online cataon of codicients and pro-
vide a more accurate description of a curve for a lesser degrapproximation than Legendre
polynomials (due to the presence of derivatives in the immeduct). Classification is based
on Euclidean distance between fiaeent vectors of subject and training samples. The authors
presented results that demonstrate that classificaties véth elastic matching and Legendre-
Sobolev approximation are similar, while the latter is meffecient [48].

2.3 Classification with Convex Hulls

The technique of recognition via convex hulls represerassgs by some fixed number of
nearest neighbours and is similar to the recognition wittMSY However, a subject sample
is assigned to the class with a corresponding convex huditéocon the smallest distance to
the sample. Nearest neighbours are selected with the Manhaistance, which is among
the fastest distances known, requirirdj-21 arithmetic operations, whetkis the dimension.
Distance to convex hulls is evaluated with the squared Heah distance, which taked 3 1
operations [20, 48].

Computing the distance from a point to a convex hull is gdheeapensive. However, one
can represent a convex hull as a simplex if the number of seasghbours is less than the
dimension of the vector space and the points are in genesitiguo. If the points happen to
not be in generic position, a slight perturbation is donénaitittle fect on the distance [20].
Details of the algorithm are explained in Section 2.4.

Classification of multi-stroke characters can be implemeésimilarly to the classification
of a single-stroke with functional approximation, see [dB]the case of a multi-stroke sample,
consecutive strokes are joined to obtain the function to@pmate, and the number of strokes
is included in the class label [20].

2.4 Distance to Simplex

The task of computing the distance from a point to a convelkdilinearest neighbours occurs
in various applications of machine learning. This sect®based on the poster presented at
the East Coast Computer Algebra Day 2012, abstract of wkiphblished in [22].
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2.4.1 Problem Definition

The classification algorithm is based on computation of ie&dce from a point to a simplex
in n-dimensional Euclidean space. The distance is computelddomeans of recursive projec-
tions onto linear subspaces containing lower-dimensisubsimplexes, proceeding until the
projection is in the interior. Since any generic set of pewitsize not exceeding the dimension
of the vector space plus one forms a simplex, we view the ristdo the convex hull ok
nearest neighbors as the distance to a simplex. Whdartharest neighbors are not in generic
position one may perform simplicial decomposition of thenvex hull.

Several methods have been proposed with various degredBodrecy that either solve
a more general problem, such as finding the distance fromra fmia polytope, or a more
specialized problem, such as computing the distance to @ngzal simplex. The paper [72]
relies on the observation that the distance from a point twnaex object is twice the distance
to a maximal margin SVM hyperplane. In [78], the minimum diste from a poin¥ to a
polytopeon verticegPs, .. ., Py} is found using quadratic programming to minimi&X for
X =Y (P — Y)wgand Y, wi = 1 for allw, > 0. The paper [12] proposes an algorithm for
computing the distance from a point tacanonical simplex Similarly to the method in [78],
the authors construct a function to be minimized, introdbheeMoreau’s proximity operator to
the function and derive several properties that allow thewbtain a succinct algorithm.

Another technique for @anonical simplexvas developed in [58]. The work presents a
recursive algorithm that locates a solution in a strictlwdo-dimensional space. The solution
is found using Lagrange multipliers and properties of a c&za simplex. The dimension of
the problem is decreased by removing the points that havetimegorresponding cdiécients.

If all of the codficients are non-negative then the solution is found. A sinhilgic was used
to devise a method to find the distance to a more general typerofex objects -eonvex
polyhedral cone$76]. The method finds the nearest poiin the coneK to a pointQ as

a positive linear sum of a subset of vectors from the geneyaget. The con& is split in

subconesx,, K», .... On each iteration the algorithm finds a poijte K; which is closer taQ

than isP;_;. Since there is a finite number of cones, the algorithm tesitemat some step.

The method we use is similar to that of Michelot [58], excéyait it computes the distance
to a general simplex. While this could be accomplished byirfiga linear transformation
mapping the general simplex to the canonical one, and catipgythe Michelot’s method, it
is simpler to perform the computation directly.
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Figure 2.1: Possible projection scenarios

Recursive call S | @
1 {S0(0,0),S1(3,0),S,(2,-1)} | a1 =2,a, = -1
2 {S0(0,0), S1(3, 0)} a =3
3 {So(3,0)}

Table 2.1: An example of the execution flow

2.4.2 Distance to a Simplex

The method below is based on recursive computation of thegron from the point to the
smallest linear subspace that contains the simplex. Thiegtion is expressed as a linear
combination of the generating vectors of the simplex. Thetars with corresponding positive
codficients are used as the input for the next recursive call. Tgaithm stops when all of
the codficients of a projection are non-negative or when the simpbetains only one vertex.

LetS; e R",i =0..d,d > 0,d < nbe points of a simplex anfd € R" is the point from which
the distance should be computed, whifds then-dimensional Euclidean space. We assume
that the points of the simplex are in generic position, he.wectorss; - $,$ - %, .. S5 - S
are linearly independent. For a detailed description, dgerihm 1. The complexity of the
algorithm isO(d*), whered is the number of vertices. In practice, however, the alponit
performs much faster, since on each recursive call the dimaemrops by more than one.

An example of the execution flow of the algorithm for a poR{#,1) and a simplex
S = {S(0,0), S1(3,0), S,(2, 1)} is shown in Table 2.1. During the third recursive call, the
algorithm returns the Euclidean distance betweet)4and (30).

2.5 Integral Invariants

To recognize characters invariant with respect to certainsformations, e.g. rotation, we in-
vestigated integral invariant functions [16]. These isats are computed from the coordinate
functions, which are then also functions of the curve patanmtion. Exposing the sample
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Algorithm 1 DistanceToSimpleX, {S, ..., Sq}).
Input: A point P and a simplex with verticelsS,, ..., Sq}.
Output: Distance fromP to the simplex.

if d=0 then
return Euclidean distance betwe@mandS,.
end if
Translate so th&, is the origin.
Find projectionP’ of P to the linear subspace with the set of basis ve@®ctsS,, ..., 3. The
projection can be computed as a solution of the system

d
> aiS.§) =(P.§),j=12..d
i=1

and expressed & = Y%, o;S.
if ¥ o <lande; >0,Vi=1.dthen
{The projection is inside the simplex, see Figure 2}1(a)
return Euclidean distance betwe&uandP'.
else if di such thaty; < 0then
{See Figure 2.1(B)
S’ « Sq U {Sjla; > 0}.
return DistanceToSimpleX S’)
else
(>4, @ >1ande; > 0,Vi = 1..d, see Figure 2.1(3)
return DistanceToSimpleX S\ So)
end if

to transformations results in the same invariant functioAs opposed to dierential invari-
ants, such integral invariants are relatively insenstivemall perturbations, and are therefore
applicable to classification of handwritten charactersw@ampling noise [20].

As the name suggests, integral invariants are obtainedtbgriation. Out of the infinite
family of invariants we studied the first three [16], which defined in terms of the coordinate
functionsX(1) andY(1):

(1) = VX200 + Y2(1) = R(),
1) = [ XY - FXWYQ.

1,(2) = X(2) fo ‘ X(@)Y(@)dY(r) - %Y(/l) fo ’ X3(1)dY(r) - %XZ(A)YZ(/I).

FunctionsX(1), Y(1) can be of any desired parameterization. The funcki¢t) can be geo-
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Figure 2.2: Geometric representation of the first ordegirgeinvariant

metrically represented as the area between the curve asecasit (Figure 2.2).
Functionly(1) is independent of transformations of the special orthaggnoupS 2),
while I,(2) andl,(2) are invariant under the group of special linear transfdiona, S L(2).

2.6 Approximation of Invariants

The coordinate functions are represented by the truncatadsLegendre-Sobolev orthogonal
series (for details, see Section 2.2). Therefore, we catewhre approximation of invariants
introduced above as

1l
i

where

i =P [ PUOPLIP (e
Lo [ PP P - 2P ()P ()PP
- 5P [ PUOPIOIPIR - GPLOPOPLPD)

HereP; denotes the-th Legendre-Sobolev polynomial.

In our algorithms, these functions are, in turn, approxadatith the orthogonal series.
Therefore, it is reasonable to estimate how well the invasi@an be approximated. To eval-
uate the quality of approximation, we compared fioents of an original sample and the
same sample sheared by 1 radian. The error of the 12-th degpeeximation provides suf-
ficient accuracy for our algorithms and such invariants carsiccessfully deployed for our
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Figure 2.3: Rotation of a symbol

purposes [21, 48].

2.7 Rotation-Invariant Recognition

This section describes the main ideas presented in “Otienttndependent Recognition of
Handwritten Characters with Integral Invariants” co-au#d with Watt.

Different solutions have been proposed, usually dealing adthocrotation of a charac-
ter after it is completely written (Figure 2.3). This rotati as well as symbol resizing, are
performed during the normalization stage in most of them@iechniques. We proposed a dif-
ferent approach: rather than rotating a sample by some a&stihamount, we computed from
the sample certain functions that are invariant under imtatWe examined to what extent
these transformationdtact the classification rate and presented new algorithmeléssify-
ing symbols in the presence of such transformations. TheWoilg methods were considered:
classification with integral invariants (CIl) and classation with coordinate functions and
integral invariants (CCFIl). For these we used the theoryntégral invariants of paramet-
ric curves [16]. To objectively evaluate recognition rateéhese techniques, we compared to
a similar algorithm that uses geometric moment functiomgtie rotation-independent clas-
sification. We called this last method classification witlorebnate functions and moment
invariants (CCFMI). For CII, we take the integral invariaiais the curves to be approximated
and look for nearest classes in a manner we describe belowCE#6ll, the topN classes are
selected with integral invariants, then the sample is eot&b determine the angle which gives
minimal distance based on coordinate curves. The CCFMI odathsimilar to CCFIl except
that it computes geometric moment invariants to obtainNopandidates. These algorithms
are online in the sense that most of the computation is paddrwhile the sample is written,
with minor overhead after pen-up. The algorithms are as wdépendent of translation and
scaling, which is achieved by dropping the constant terims fthe series and by normalizing
the codficient vectors respectively.

2.7.1 Geometric Moments

Similar to integral invariants, moment invariants provadgamework to describe curves inde-
pendently of orientation. Among moment functions one cdectgeometric, Zernike, radial
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and Legendre moments [60]. For the purpose of online cuagsification under pressure of
computational constraints, geometric moments are of apeterest since they are easy to
calculate, while invariant under scaling, translation estdtion.

Having been introduced by Hu [30], geometric moments areslyidsed for shape and
pattern classification [44, 56, 60]. A & g)-th order moment of can be expressed as

Mg = ) D XY F(xY)
Xy

In general, translation invariance is achieved by comutentral moments

Mo Mo1
Mpq = (X=X0)P(Y = ¥0)3f (X, y), Xo = — andyp = —
le Zyl Moo Moo

and scale normalization is performed as

Mpg = Npq/(ﬂoo)(p+q+2)/2

The first three moment invariants are derived from algebra@riants and can be represented
as

My = 1720 + 02, M2 = (720 — 1102)* + 4751, M3 = 120102 — 1125

Independence of orientation of the above expressions caerifeed by substitution with the
geometric moments obtained after rotation transformation

1+ cos 2y ) 1- cos 2y
My, = Tmzo— Sin 2o myq + Tmoz,

sin v sin 2
mp, = 5~ Mo+ COSZMy— —— My,

1-cos 2y ) 1+ cos 2y
%2:—2 mzo+sm2am11+—2 Mo2.

One can omit translation and scale normalization of momantwormalizing a sample’s coor-
dinates first. In this case the moment invariants are derivegrms of momentsn,,.

2.7.2 Cll and CCFlI

Consider the coordinate functioX¢1) andY(1) of a single- or multi-stroke sample. The
first step is to approximat¥(1) and Y(2) as truncated series in basis of Legendre-Sobolev
polynomials. Letxy, Xi,....Xq be the coéficients of the approximation foxX(1) and similarly
for Y(1). Note, that these cdigcients are computed while the curve is written with a small
constant time overhead after pen-up [23].
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Since the first polynomial (for any inner product) is 1, pdixy, yo) can be thought of as
the curve’s center. We can therefore normalize the curvie rmeispect to position by simply
discarding the first cdcients. Scale normalization is performed by normalizing tlector
(X1, ---» Xd» Y1, ---» Ya), taking advantage of the fact that the norm of the vectorapgrtional to
the size of the curve, to obtaimy ..., X4, Y1, ..., Yd)-

A similar process of approximation is then applied to theamant functions, yielding a
2d-dimensional vector for each sampl%,l(, E),d, E,l, G_,d)- Taking the second term in
the expression fol;(1) as precomputed, the Legendre-Sobolevitcients can be calculated
quickly, in time quadratic ird. The codicients forly(2) are computed in the same way.

The CII algorithm relies on approximation of the invarianbétions, as described above.
We select the class closest to the sample in the space fifooeets of truncated polynomial
series. The algorithm does not depend on the number of slasisee only one class is con-
sidered.

As an alternative, in CCFII the céigients (oo, . . ., log, I10, - . ., l1q) are used to select the
closestN candidate classes. The value férmay be determined empirically to ensure high
probability of the correct class being within the ones chod¢aving a fixed small number of
classes with the correct class among them, we evaluate thienalidistance from the sample
to each class with respect to various sample rotations. gresedure gives correct class as
well as the rotation angle. The angle is determined as thetigplto the minimization problem

min Z(Xk — (X% COS + Yy Sina))? + Z(Yk — (=% Sina + Yk cosa))?|,
“ UK k

where Xy, Y are the cofficients of the Legendre-Sobolev approximation of the comii
functions of the training symbols, ang, yx are the cofficients of the test sample.

2.7.3 CCFKMI

The (p + g)-th moment functions of a sample’s coordinates can be ssprkas

mpq(/lt’) = Z

{ t
i=1 j=1

X(A)PY () (X(), Y(47))

where X(1;) andY(4;) are the coordinateX andY at sample point. We take the intensity
function to be of the fornf (X(4i), Y(1;)) = vX(4i)? + Y(4;)? and work directly with moments,
since normalization with respect to size and position isady performed in the algorithm.
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Specifically, we tested the following rotation invariants

Mo(2) = Moo(4),
M31(12) = Mpo(A) + Moa(A4),
M2(2) = (Mpo(2) — Moa(2))? + 4my4(2)°.

As in CCFIl, CCFMI selects the tol classes with rotation invariant functions. To make a
fair comparison, we considered the classification rateviorcombinations of moment invari-
ants: Mg(1), M1(1) and My(2), My(2). Classification withM;(2), M,(2) in general gave 3%
higher error rate. We therefore focused on improving thegaition rate ofMy(1) andM4(1)
by variation of number of classes and number of nearest heigis.

Our tests showed that CII gives a 88% recognition rate. Téuegnition rate does not
depend on the angle to which test samples are rotated. Ndihbe the frequency of occurrence
of the correct class in the tdy classes depend on rotation angle.

It was found that CCFIl has a better error rate than CCFMI. IC&lBo requires fewer num-
ber of candidate classes and fewer nearest neighbour catigms. Both methods, however,
show better performance than Cll, see details in [20].

As expected, we noticed an increase in error rate with thegtiost angle for CCFIl and
CCFMI. The typical misclassifications that arise are whemisgls have similar shape and are
normally distinguished by their orientation, for exampl€ ‘and /", “+” and “x”, “U” and
“c”. As a possible solution to this, a system could considetéheency to write characters in
similar orientations and restrict the range of angles farbg symbols. This is investigated in
Chapter 3.

2.8 Shear-Invariant Recognition

We addressed another class of transformations that oftaur at practice: shear, or “skew”,
transformations. This may be seen as a theoretically sarnddf “de-slanting”. Samples that
have been sheared seem to be quite common in handwritingyazechwith other transforma-
tions. Also, the maximal shear angle, for which a charaststiil readable by a human can be
quite large (Figure 2.4), compared to the correspondingmmaxotation angle. We therefore
expect that, in practice, a large amount of shear can ocalcamsider shear invariance as a
useful addition to the set of tools for character recognif@0]. This section is based on the
paper “Toward Atine Recognition of Handwritten Mathematical Characterg] -authored
with Golubitsky and Watt.

Shear is harder to deal with than rotation. Since shear doegraserve the length of
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strokes, parameterization by the Euclidean arc length iesmger robust. Size normalization
requires special attention as well. We developed an alguaritnvariant with respect to shear,
rotation, scale and translation, and then proposed a waxtén@ the invariance of the method
to the full &fine group, while keeping the recognition rate higher thahdhelassification with
the dfine integral invariants alone [20].

2.8.1 Overview of Afine Methods

In this section we briefly describe some of the existing mashavariant under the group of
affine transformations and thefiirences with our approach.

Stroke-Based Afine Transformation This approach was proposed in [3] to minimize dis-
tortions in handwriting by applying stroke-basefree transformation. The algorithm denotes
stroke-wise uniform fine transformation for a strokewith A; andb;, whereA is a 2x 2
matrix for shear, rotation and scale ands a 2-dimensional translation vector. For a sample, a
set ofN strokes is selected to construct the objective functiohéform of least-squares data
fitting to determine the optima; andb; as

Fi = Z At + by = ril[> — min for A, b, (1< i < N)
K

wheret, andry arek-th feature points of the sample to be classified and a referesample

respectively, angl|| is the Euclidean norm. This yields th&iae transformation with the least
distance between corresponding strokes of the input an@enee sample. This procedure is
repeated for each reference sample and then distance-tlassification takes place. Recog-
nition of handwritten characters as gray scale images wgsoged in [73], using similar ideas.

Minimax Classification with HMM  An online method, robust againsfiiae distortions,
was developed in [34], based on continuous-density hiddarkd models (CDHMM). LeN
be the number of character clas§gsi = 1, ..., N, each containingy CDHMMs

(A m=1,...m}.

In the non-&ine approach, an input samples classified as member of claSgsin terms of the
joint likelihood of the observatiohand the associated hidden state sequ&ggen CDHMM
A™, p(1, S|A'™), as follows

arg max{max[maxlog n(l, Sl/l(.m))]} :
j m S J
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Figure 2.4: Skews of 0.0, 0.2, 0.4, 0.6 and 0.8 radians.
In order to eliminate fine distortions between the input and training samples, utteas use
arg max{max[mgxlog p(l, S|rA(,1§m)))]} ,
j m

wherel' is a specific transformation af™ with parameters,, andA = arg max p(l, Ta(1™)).
The authors propose solving this optimization problem littee iterations of the EM algo-
rithm described in [43].

Affine Moment Invariants Affine moment invariants (AMIs) are independent of actions of
the general fline group and can be used in recognition of handwritten chersa§l8]. A
central moment of ordep + g for a 2-dimensional obje can be represented as

Jipg = f f (X - %)P(y — yo)clxcly

where &, Y¢) is the center of gravity of the obje€t In the work, the first four iine moments
were calculated to obtain a description of an isolated ateran the form of a 4-dimensional
vector. Samples were classified by the minimum Euclideatawnit to the training samples.
The performance of AMIs is compared with that of the geormmetroment invariants, which
are invariant under rotation, scale and translation. It e@scluded that AMIs gave a better
recognition rate than geometric moments.

As opposed to the first two methods described above, we pedmosechnique of classify-
ing handwritten characters with integral invariants. $anly to the classification with AMIs,
affine-invariant quantities are computed from the originaleumwithout using any specific
transformations of the input sample. However, AMIs, asiogtly defined, provide curve-to-
value correspondence, unlike the curve-to-curve corredgace with the integral invariants.
This allows to obtain a richer description of a curve withextessive computation. In fact, we
considered only 2 invariants and found thenffisient for an acceptable classification accuracy
of samples under ffierent transformations. In order to further improve the sifaation rate,
an analysis is still performed on a sample to obtain a nuralemeasure of the distortion (i.e.
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Figure 2.5: Aspect ratio size normalization.

the angle of rotation or shear). However, only small subsaiclasses is the subject of this
analysis, and it is computationally inexpensive.

2.8.2 A Shear-Invariant Algorithm

In this section we discuss an algorithm, invariant undeashie addition to rotation, scale and
translation [20]. We consider flierent size normalization methods and parameterizations of
the coordinate functions to ensure appropriate settinghi®method. The algorithm itself is
given at the end of the section.

Size Normalization Size normalization is traditionally implemented by restgh sample to
achieve standard values of certain parameters. Earlispénrameter was the Euclidean norm
of the vector of Legendre-Sobolev dheients of the coordinate functions [26]. While this
norm can still be used to rescale rotated samples [20], wtiswariant under shear andhiae
transformations in general. Instead, we look at the nornmefLtegendre-Sobolev cfirient
vector ofl;. We can then normalize the d@eient vectors of the coordinate functions by
multiplying them by ¥ /|I1]|. Finally, we compute the c@écients ofl, from the normalized
codficients of the coordinate functions. Computing the norm,chllows us to extend the
invariance ofl; andl, from the special linear grous L(2, R), to the general linear group,
GL(2, R). Invariance under the generdtiae group, Af(2, R), is obtained by dropping the first
(order-0) coéicients from the ca@cient vectors of the coordinate functions [26].

To evaluate the performance|ff|| for normalization, we consider two other normalization
approaches typical in handwriting recognition: height asgect ratio [44]. Both of these are
not perfect in the presence dfiae transformations. While normalization by height is inxat
under horizontal shear, it becomes inaccurate if sampéesidsjected to rotation. Aspect ratio
is suitable for rotation, but becomes inaccurate for ladggrees of shear (Figure 2.5).

Parameterization of the Coordinate Functions Parameterization by time and arc length
are among the most popular choices in online handwritinggeition. Parameterization by
arc length is usually preferable, since it is nffieated by variations in writing speed and is
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invariant under Euclidean transformation. It may be exggdsas

AL(Y) = fo V@) + (Y (@)

When one looks at the group dfime transformations, however, parameterization by ardteng
may no longer be the best choice, since it is no longer ineairkeor example, it is changed by
shear distortion. Instead, we may consider parametesizdly special fiine arc length. We
use dfine arc length in the form

AAL(1) = jo\ VIX (T)Y”(7) = X7 (7)Y’ (7)|dr.

The Algorithm  In online classification algorithms, a symbol is given as aticmous curve
defined by a discrete sequence of points. When a symbol is gpyenultiple strokes, they
are joined. The curve is parameterized with an appropriatetifon (Section 4.2) and the
Legendre-Sobolev cdigcients of the coordinate functions are computed online citstp are
accumulated [23]. Using the representation@f) in Section 2.7.2, cd&cients of the invari-
ant are computed as

i =, Py / (P, P, i=1.d.

Here(P;, P;) is the Legendre-Sobolev inner product. Similarly, we clataicodficients for
I,(1) and obtain a @dimensional vector for each sample

(Il,l’ eees Il,d’ |2,1’ seey |2,d)'

Taking the second term in the expressionlfoas precomputed, each ¢heient of the approx-
imation can be computed in time quadraticdnEach coéficient of I, is computed inO(d*)
operations. Note that one can also compute invariants tiehidegree [16]. We expect, how-
ever, higher degree invariants tfiext the classification rate only slightly, while introdugia
noticeable computational overhead. For example, it woalké ©(d’) operations to calculate
the codficients ofl; [16].

Given the representation of a character in terms of LegeSdtmlev coéicients of the
invariant functions, we classify the sample based on thanite to the convex hulls of nearest
neighbours in the same representation.

We selectN classes closest to the Legendre-Soboleviaoent vector of the integral in-
variants. To find the correct class among these, we solveotloeving minimization problem
for each of these class€s

min CHNN(X(¢). Ci).
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whereX(¢) is the sheared image of the test sample cot\and CHNN(X, C) is the distance
from a pointX (in the Legendre-Sobolev space) to the convex huk akarest neighbors in
classC.

It is not infeasible to solve the minimization problem byitny all possible angles, given
that the precision of 1 degree is certainlyffstient for our purposes. Our error rates were
calculated using this method. However, there are also ntoeemt methods. If we replaced
the classC by a single point Xo, ..., Xg, Yo, ..., Yg) in the Legendre-Sobolev space of the
coordinate functions, then we could find the minimum amoreg\alues of the distance at
the boundary points of the interval of shear (i.e. the sretli@d the largest admissible shear
angles) and the stationary point

X _
¢ = arctan—z"( k Xk).

2k Yk

Experimental results demonstrated that the approximaroor of integral invariants is
negligible: the absolute error for the 12-degree approtionas of the order of 10.

The error rate of the algorithm was examined foffetient choices of parameterization
of the coordinate functions: arc length, time arfiine arc length. We also compared size
normalization techniques described above.

Parameterization by arc length, which is not invariant uistiear, gives a lower recognition
rate than parameterization by time for large distortionswelver, for shear up to about 0.45
radians £25 degrees) it yields a noticeably better classificatioa.r&arameterization of the
coordinate functions byféine arc length results in relatively low recognition rateeg@mce of
second order derivatives makes it sensitive to samplinggeations, even though itis invariant
under specialfine transformation, see details in [21].

We have discovered that size normalization by height givedest classification rate un-
der shear transformation. Such normalization, howeverptssuitable for some otheffme
transformations, e.g. rotation. Normalization with agpatio performs similarly to normal-
ization by height at smaller degrees of shear, but tffemince in classification rates becomes
noticeable with the increase of deformation. Normalizabg |, performs just as well as nor-
malization by height and remains invariant undéna transformations. We therefore consider
size normalization with; as the most suitable approach, if transformation of charat¢akes
place.
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Figure 2.6: Ambiguity introduced by shear and rotation

2.9 Digital Ink Compression via Functional Approximation

We studied whether it is feasible to apply the theory of fior@l approximation to describe a
stroke up to some given threshold of the maximal pointwisereand root mean square error.
If so, what is the compression one could expect as the regsliah approximation? This
section is based on the paper “Digital Ink Compression viackanal Approximation” [50]
co-authored with Stephen M. Watt, that appeared in the pdings of the 12th International
Conference on Frontiers in Handwriting Recognition.

We empirically investigated fferent approaches to obtain the minimal overall size of co-
efficients of an approximation that satisfies the given errostramts. We considered com-
pression of handwritten regular text, since it commonlyursdn pen-based computing and
incorporates dierent kinds of patterns. An example word and its approxiomatith different
thresholds are shown in Table 2.2 and the correspondingefide have observed that limiting
the maximum error also limits the root mean square errombuvice versa. Therefore, in our
experiments we have limited the maximum error.

2.9.1 Ink Representation

A variety of digital ink standards are in use today. Amongsthene can mention vendor-
specific or special-purpose formats: Jot [66], Unipen [k, Serialized Format (ISF) [59]

or Scalable Vector Graphics (SVG) [17]. In 2003, W3C introeld a first public draft of an

XML-based markup language for digital trace descriptiofkML. This has evolved to the

current standard definition in 2010 [11]. InkML has receiadincreasing attention due to
its vendor neutrality and XML base. In general, a trace i®giin InkML as a sequence of
multidimensional points. Each coordinate gives the value marticular channel at that point.
Pre-defined channels includeandy coordinates, pressure and various angles.

2.9.2 Bases for Approximation

We wish to determine which bases will be suitable for congices We have investigated three
families of orthogonal polynomials with useful properteesd have included Fourier series for
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Table 2.2: Diferent approximation thresholds.

comparisonChebyshev polynomiats the first kind, defined a§,(1) = cosfiarccost), have
weight functionw(1) = \/ﬁ and are used in numerical approximation for their propefty o
minimizing the maximum error. In [9] it was reported that Glishev polynomials are suitable
for succinct approximation of strokes and perform bettantBernstein polynomialé.egendre

polynomialsare defined as

1 d ., N
2"n! ﬁ(t -
and have weight functiow(1) = 1. Legendre-Sobolev polynomiase constructed by applying

the Gram-Schmidt orthogonalization to the monomial bagjsusing the inner product

Pn(t) =

b b
(f.g) = f FDGM)AL + f (g ()da
whereu = 1/8 as described in [26].

A property of the Legendre and Legendre-Sobolev orthogbasgs, as applied to online
stroke modeling, is the ability to recover a curve from mota@omputed in real time, while
the stroke is being written. The déieients of the stroke may then be calculated on pen-up in
constant time depending only on the degree of approxim§#8h Fourier serieson [-L, L]
are provided for comparison, since we are not restrictedirselection of approximation basis.

d
f(9~ 2+ Y (ancosC) + fasin))
n=1

where

an | 1t cos | nrx
[,Bn ]_ Z[L f(x)[ sin }(T)dx
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2.9.3 Algorithms

Overview At a high level, our compression method takes the followiegs for each stroke:

1. Segment the stroke using one of the methods described.b&asure the segments
overlap by an amount at segmentation points.

2. For each segment, compute the orthogonal serigfi@eats for each coordinate func-
tion (e.g. xv, p, wherep is pressure).

3. Compress the stream of ¢beients.
To reconstruct a stroke, the process is reversed:

1. Decompress the cfiient stream to obtain the curve segments.
2. Blend the curves on the overlaps to obtain the piecewissdatate functions.
3. Obtain traces by evaluating the coordinate functionk e desired sample frequency.

On a given segment, the series fiméents are computed by numerical integration of the re-
quired inner products. The cost to compute the compressitingar in the number of trace
sample points and in the number of @d@ent sizgapproximation degree combinations al-
lowed.

To obtain a more compact form for the ¢bheient stream, it may be compressed with
a deflation tool. In the experiments below we use gzip, whicpléments a combination of
LZ77 [79] and Hdfman coding [33].This is for convenience only — a more spedimethod
would be used in a production setting.

Parameterization Choice We tested two used choices for curve parameterization widel
used in pen-based computing: time and arc length. We olds#raeparameterization by time,
while being easier to compute, also gives better compresstomparison of the results is
presented in [52] for approximation with Chebyshev polyrdswith integer cofficients.

Segmentation We cannot expect long, complex strokes to be well approxathhy low de-
gree polynomials. Instead of varying the degree to suit &roks, we segment strokes into
parts that we can separately approximate. We have exploeethtee methods to segment
traces, described here.

Fixed Degree Segmentatidde fix the degree of the approximating functions. Intervéls o
approximation are constructed to allow the maximal lengthiwthe given error threshold. If
the available interval can be approximated with a lower éed.g. the end of the curve has
been reached), it is handled appropriately.
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Figure 2.7: Example of blending.

Fixed Length Segmentatiaive fix the length of intervals and approximate each interval
with the minimal degree possible, but not greater than 2@d&p the algorithm computation-
ally feasible).

Adaptive Segmentatiofihe most comprehensive variant is to fix a maximum permissi-
ble degree and maximum permissible fmgent size (digits for text, bits for binary), and to
perform fixed degree segmentation for each combinationn Tteecombination of degree and
codficient size that gives the smallest resulting total sizelexc¢ed. The degree and dteient
size are saved together with the fia@ent data.

Segment Blending If we allow a large error threshole (9. 4%), then it becomes possible
to notice naive segmentation because we do not match tieeivat the segmentation points.
This can be observed in the Table 2.2. To make the stroke $maotl to improve the ap-
proximation, we blend the transition from one piece to aaptty overlapping the segments
slightly and transitioning linearly from one segment to tiext on the overlap. Therefore, the
approximation is given in segments, and takes form

N N d
) = > Wi Fi(D) ~ > WD) > ciPi(a)
j=1 j=1

i=0

with the weight function

0, 1<—-a

A dj—a<asa
W) =1 1, Aj<A<A-a

2 A —a<A< g

0, A> Aj

wherea is a proportion of approximation pieces andare the segment transition points. The
value ofamay be estimated empirically, butrent types of curves will have a certain portion
of overlap necessary for smooth transition. An example ofleaded sample is given in the
Figure 2.7.
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2.10 Experimental Dataset

The described dataset of handwritten mathematical cleasastused in the experiments through-
out the thesis. The dataset currently comprises 50,703lsarfipm 242 classes. These sam-
ples have been collected from several sources: 26,139athesavere gathered at the On-
tario Research Center for Computer Algebra (special madtiead characters, Latin letters
and digits), 9,762 samples (digits, Latin letters and nrattecal symbols) from the LaViola
database [42], and 14,802 samples (mostly digits) from WNII27] handwriting database [21,
48].

All the samples are stored in a single file in InkML format. Tenber of strokes is in-
cluded in the class labels. Thus, if a character, such ass"Written with diferent number of
strokes, it will be placed in dlierent classes, even if the shape of the character is iderlea
though this raises the total number of classes to 378, it aasd [25] to give better recognition
rates compared to when the number of strokes is includeckifetiture vector [21, 48].

To avoid confusion, all gathered characters had been Wsunapected to discard symbols
unrecognizable by a human. Symbols that look ambiguous toveah reader (those that may
belong to more than one class) were labelled with all theesponding classes. Classes that
appear indistinguishable without context analysis weregea: such ag andx; o, 0 andO. If
there was at least one sample in the class that could be rieeddyy a human with confidence,
we retained the label of the class. As a result, we obtainegB38&amples assigned to single
classes, 10,224 to 2 classes, 1,954 to 3 classes, 19 to dg;lassl 13 samples to 5 classes. To
increase the precision of the approximation of integrahirants, we precomputed some terms
in the formulas for; andl, in Maple [35] using rational arithmetic [21]. Additional @s of
the experimental setting are given in [26, 48].

The tests are implemented in 10-fold cross-validation. diedeict this process, symbols
were split randomly in 10 parts, preserving the proportienzes of the sets. The normalized
Legendre-Sobolev cdigcients of coordinate functions, integral invariants andmeat invari-
ants were precomputed for all symbols and stored in sepfileg¢21].



Chapter 3

Improving Isolated and In-Context
Classification of Handwritten Characters

It was shown in the previous chapter how to recognize hartthmrcharacters by represent-
ing coordinate functions or integral invariants as truadairthogonal series. The series basis
functions are orthogonal polynomials defined by a Leger®@tieelev inner product. The free
parameter in the inner product, the “jet scale”, has an impacecognition both using coordi-
nate functions and integral invariants.

In this chapter we develop methods of improving seriesdbaseognition. For isolated
classification, the first consideration is to identify opginvalues for the jet scale in fiierent
settings. For the coordinate functions, we find the optimare in a small interval with the
precise value not strongly correlated to the geometric dexity of the character. For integral
invariants, used in orientation-independent recognjtisa find the optimal value of the jet
scale for each invariant. Furthermore, we examine the @ptilagree for the truncated series.
For in-context classification, we develop a rotation-imsat algorithm that takes advantage of
sequences of samples that are subject to similar distorfitve algorithm yields significant
improvement over orientation-independent isolated rettmmn and can be extended to shear
and, more generally,fizne transformations. This chapter is based on the paper tvimpy
isolated and in-context classification of handwritten elsters” [51] co-authored with Stephen
M. Watt, that appeared in proceedings of the 19th Conferend@ocument Recognition and
Retrieval.

26
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3.1 Introduction

It was proposed earlier [9] to represent an ink sample asapeterized curve and to approxi-
mate the coordinate functions by truncated orthogonalnmotyial series. Later, the Legendre-
Sobolev (LS) basis was found to perform better, yieldindp9a recognition rate [26] with a
dataset of samples, most of which were collected as isofatebols. Although the samples
do exhibit certain amount of rotation and sheatr, it is expethat symbols written in a natural
environment are more likely to be distorted in this way. Tdrads the issue, we developed
integral invariant methods for rotation- and shear-iraatrclassification [20, 21].

Our current goal is to improve the already good recognitetes obtained with these or-
thogonal basis methods. We do this by optimizing the choid®asis functions in two ways:
We optimize the free parameter in the inner product defimitioeach of several settings, and
we also optimize the series truncation order. Additiondfly orientation-independent recog-
nition, we show that considering sequences of nearby cteasa@voids orientation ambiguities
to a large extent.

We find optimal values for use with the coordinate functiond with integral invariants.
We minimize classification error by investigating the rofettee jet scaleu in description of
coordinate and invariant functions. We also study whetheret exists a dependence between
complexityof a character and the optimain its recognition. These optimizations are directly
applied in the proposed algorithm for distortion-invatiatassification, taking advantage of
the natural property of human handwriting — writing chagastwith similar transformation.
Experiments are performed for the case of rotation, and #esisetting can be used for shear-
and, more generallyfiane-independent recognition.

Some work has been done in context-dependent recognitisaiafwriting, mostly relying
on statistical approaches. The context-aware classditaif a symbol is often represented
in some sort of a joint distribution function of the charaaed its neighbours. For example,
some authors propose [71] to consider substrokes in st#tey than independently, and encode
them in HMMs. To keep the model computationally feasibleidalan Markov network is used
to share states of flerent HMMs. A similar approach is taken elsewhere [7], whbeeau-
thors build trigraph models and share certain parametdévgelea those trigraphs. Context can
also be useful when dealing with ambiguous segmentatiorodwritten words [74], where
the classification task is represented as an optimizatiobl@m in a Bayesian framework by
explicitly conditioning on the spatial configuration of tblearacters. As cited above, the con-
text is typically taken into account for cursive words regibign. We find context useful in a
different setting — classification of well-segmented symbailsjexted to certain distortion.

As it was discussed in Chapter 2, the main idea of the clagBdit methods we consider is
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to represent the coordinate functions in terms of an orthaboasis and to use distance-based
classification in the cdicient space [26]. The Legendre-Sobolev inner product usethns
one free parametet, which may be assigned any non-negative value. Becauspatameter
determines the relative weight of the coordinates and temivatives (i.e. the weights in the
jet space), we call thejet scale In earlier worku = 1/8 was taken as a suitable value.

The rotation-independent [20] and shear-invariant [2@pathms compute special func-
tions from coordinates. These functions are invariant ttage transformations and therefore
describe curves in terms of values that remain relativehstant, even when samples are ro-
tated or sheared on large angles, see Section 2.5.

The chapter is organized as follows: Section 3.2 describesadncepts and experimental
methods for improving isolated character recognition ki¢oordinate functions. Section 3.3
presents a recognition approach for in-context classificadf distorted characters. Experi-
mental results are given in Section 3.4. Section 3.5 cordltide chapter.

3.2 Improving Isolated Symbol Classification

It is easily seen that the jet scale parametern the LS inner product has an impact on
recognition rate. We would like to understand this depengdetter in order to optimize this
parameter. For each value pftonsidered in the experiments, LS polynomials are gersirate
orthogonal with respect to the corresponding inner praduct

For these experiments we use a dataset of about 50,00Cddlandwritten mathematical
symbols, identical to that described earlier 2.10.

Coordinate Functions To optimizeu for coordinate functions, we consider recognition of
the original samples in our dataset without additionalaitsin. The coordinate functions of
samples are approximated with LS polynomials fdfatentu. We test values qi in the range
from O to 0.10 with the step of 0.002 and from 0.10 to 0.20 wité step of 164. Values
outside this range give substantially worse results. Saesngle classified with the distance to
the CHNN in the space of the céigcients of coordinate functions [26].

Integral Invariants  To study the impact oft on integral invariants, we consider characters
with unknown orientation. The whole collection of origirelmples is rotated by an angie
betweenr/9 and 2r. All multiples of 7/9 are tested. For each anglg.andl, are computed
for the original and transformed samples. The invariardgtaen approximated with LS series
for different values of: € (0,0.2] with the step of 0.002. For each valueofthe average
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maximum approximation error with respect to angle is fousid a

kr

1¢ .
w= ﬁ;n}jaxqj -¢?) (3.1)

kr .
whereg; is the j-th codficient of thei-th original sample, anq;:’ is the corresponding cfie
cient of the sample, rotated on ange

Complexity of Handwritten Characters We consider the possibility that the optimal value
of u may depend on the nature of the characters to be recognirathderstand this, we take
the notion of a sample’s complexity as

d
n= > (X" + Y,
i=1

whereX; andY; are normalized cdicients of approximation of the sample with orthogonal
polynomials. Co#ficients of higher degree are typically greater for “complekaracters —
characters that contain large number of loopg@namount of curvature.

Degree of Approximation The degree of the truncated seridsregulates how well curves

are approximated. In general, higher degree polynomiaisige lower error. Sometimes,

however, higher order approximation of equidistant nodag cause extreme oscillation at the
edges of an interval (Runge’s phenomenon). To find the optegree, we evaluate the recog-
nition error, the maximum absolute and the average relapypeoximation error depending on
d. The approximation errors are computed similar to the wsyghown in subsection 3.2, but
instead of cofficients we compare original and approximated coordinatsamiples.

3.3 Improving In-Context Invariant Classification

Context-Dependent Recognition There are two main approaches to recognition of hand-
written mathematics: symbol-at-a-time and formula-aitvee. Even though comprehensive
semantic and syntactic verification of math is quite chaieg, studies suggest that context
can play an important role in accurate classification andngratical information can be an
asset [68]. Moreover, it has been shown [75] tharams provide useful information in a
mathematical setting. These facts suggest that contextfioanation should be taken into ac-
count, especially considering large number of similarpgltbsymbols that appear ambiguous
on their own.
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(a) (b) (©) (d) (e)
Figure 3.1: Distorted characters: (a) division vs. (b) madu(c) angle bracket vs. (d) angle
vs. (e) less than

o= & Fp
—
Figure 3.2: Characters from the training dataset

Figure 3.1 shows typical challenges that arise in classibicaf individual samples, but
which are resolved by considering context.

Algorithm  To improve classification of transformed characters, we@se to recognize a
set ofn samples at a time with the assumption that the characteng iset are transformed by
approximately the same degree, see Algorithm 8. This assomig justified, since samples
written by a person are subject to similar distortions. Mg, we find that symbols in our
dataset exhibit various degrees of rotation and shear. Bual transformations incorporate
noise to the model and reflect real-life handwriting. We adeisthe case of rotation. Shear
may be handled similarly. The algorithm is applied to a segaeofn characters rotated on
a random angle € [-8,8]. The value ofe,, given in (3.2), can be interpreted as the error
likelihood in recognition of the sequence distorted by agl@aa. The value is derived from the
observation: while the distance to the closest class issdsorg and sum of the distances to the
closestp classes is increasing, the possibility of a recognitiooras declining. Therefore, in
the last step the algorithm finds and returns the amgiétransformation that yields the least
error likelihood of the whole sequence.

Complexity Analysis As has been shown [23], the dfeients of ad-dimensional approxi-
mation can be computed in online tir®a.,,[O(d), O(d?)], whereO(d) is the time complexity as
each new point is observed a@dd?) is the cost at pen up. Sample normalization is performed
in linear time. It was shown [21] how to compute eachftioeent of approximation of; in
O(d?). Distance from a point to a CHNNs theoretically computed i@(d*). It performs much
faster in practice, however, because at each recursivéheatlimension often drops by more
than one [20].
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Algorithm 2 In-context rotation-invariant recognition

Input: A set ofn rotated test samples and an anglef the maximum possible rotation of the
samples.

Output: A set ofn recognized samples and the anglef rotation of the samples.

fori=1tondo

Approximate coordinate function§(1) andY;(1), parameterized by arc length, with LS
polynomials up to degreg

Cixy = (XiO, ...xid; YiO, Yld)

Normalize the sample with respect to position by ignorirg@korder cofficientsX;, and
Yio, and with respect to size by dividing each ffagent by the nor Z‘jj:l(xizj +Y7).
Approximatelg andl; with LS polynomials, yielding

i _ (0 (0-11 |1
Cn = (ligs ---ligs lio» -+-1ia)-

With Euclidean distance between vectiyr of the test sample and analogous vectors of

training characters: Find closest CHNN. TheseT classes serve as candidates for the
i-th sample in the sequence.
end for

for @« = —B to B8 by step of 1 degredo
Compute

i=1

n D]_
_ ior
€y = | | P D) (3.2)
=1 “ia

whereD! is the Euclidean distance to tixh closesCHNN, among the candidate classes
T for the sampleéin the sequence, rotated by angleandp is a parameter to be evaluated.

DistanceD is computed in the space of d@eients of LS polynomials of coordinate
functions.

end for
Finde, = min_s<,<s €,
return nandy.

Experimental Setting The experimental setting is described in Section 2.10. Thdahis
trained with non-transformed samples. For the recognpioaise, sequences wBfcharacters
are taken from the dataset and each sequence is rotated hgaarangley € [-8, B].
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3.4 Experimental Results

3.4.1 Isolated Symbol Classification

Coordinate Functions Figure 3.3 shows the error rate for recognition usingficcients of
the X andY coordinate functions. An error rate of approximately 2.4%eached fon = 0.04
and therefore this value is taken as the optimum for appration of coordinate functions.

Optimal u for Characters with Different Complexities We find that the optimak value

is not strongly correlated with the complexity of charaste©n the other hand, the recog-
nition error is correlated with the complexity. Sampleshasmall complexity 4< n < 4.5
(most of which are linear symbols such as “-”) have 0% clasifon error for most of values
of u € (0,0.1]. Recognition error is increasing with the increase of ptaxity and reaches
5.8% for samples that have the maximal value;of 8.2 in our dataset, such as “g”. The
optimal values of« for recognition of samples with flerent complexities are shown in Fig-
ure 3.4. Results of Spearman and Kendall tau-a correlat&is between complexity apcare
respectivelyp, ,(13) = 0.52 p = 0.047 andr,,(13) = 0.38, p = 0.053.

Integral Invariants  Figure 3.5 shows the average maximum error of thefments of inte-
gral invariants with respect tofiierent rotation angles as explained in section 3.2. The @btim
value ofyu, giving minimal error forlg andl, is found to be 0.012. Thus, for robust rotation-
independent classification, each invariant should be ajpaded with the obtained. This
value is preferable, since it provides the highest degreevafiance.
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Table 3.1: The recognition error, the maximum approxinragaor and the average relative
error for diferent degrees of approximatidpu = 0.04

Degree of approximation 9 10 | 11 | 12 | 13 | 14 | 15
Recognition error % 257 2.49|2.46|2.43|2.44| 2.45| 2.46
Maximum approximation erroy 707 | 539 | 539 | 484 | 475 | 494 | 500
Average relativeerror{10®) | 1.9 | 1.6 | 1.4 | 1.2 | 11| 10| 1.2

Evaluation of Degree of Approximation The recognition error, the maximum absolute ap-
proximation error and the average relative approximatioorere presented in Table 3.1. We
find degree 12 to be the optimum for recognition of symbolsuinanllection.

It is interesting that the recognition error starts to iase ford > 12. A similar trend
applies to the maximum absolute and average relative erfbings confirms that higher or-
der approximation may not be the optimal choice. On one hanthy lead to the Runge’s
phenomenon and on the other hand it may cause overfitting.

3.4.2 In-Context Classification

There are 3 parameters that in-context recognition ratedegend on, see Algorithm 8: the
numberp of closest classes in computation of error likelihood, thitation angle, and the size
of the set of characters. To evalugteve fix the parametar = 3 and perform classification for
valuesp of 2, 3 and 4. We find thgb has almost noféect on recognition error, and therefore,
we takep = 3 and continue the experiments.

With the fixed value ofp, evaluation is performed depending v@and the rotation angle,
see Figure 3.6. A significant reduction in error rate is agfilecompared to the results reported
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Figure 3.6: Recognition error (%) forftierent size of context and diterent angles of rotation
(in radians)

earlier [20], which are equivalent to= 1. The major improvement is obtained if sequences of
lengthn = 3 are recognized, rather than 1 or 2. For example, with mtadf 1 radiann = 3
gives an error rate of 3.75% versus 8.2% reported previo&slymore accurate classification
andor depending on an application, highrecan be used.

3.5 Conclusion

We have investigated several methods for improvement bbgrdnal-series based character
recognition, both in the case of isolated characters of knofientation and sequences of char-
acters of unknown orientation. We have found (1) an optiraage of values for the jet scale
for coordinate basis functions, (2) that this optimal vabfig:, to a first approximation, does
not depend on the complexity of the characters tested, (@napvalues for the jet scale for
the integral invariant$, andl, used for transformation-independent recognition, andhd
optimal degree of the approximating series. In additiongdeecloped an in-context rotation-
invariant algorithm that yields substantially better festhan isolated recognition and can be
extended to other transformations. These findings can egritied into a character recognition
system in the cloud.



Chapter 4

Recognition of Relatively Small
Handwritten Characters, or “Size
Matters”

Shape-based online handwriting recognitioffets on small characters, in which the dis-
tortions and variations are often commensurate in size thghcharacters themselves. This
problem is emphasized in settings where characters maywidedy different sizes and there
is no absolute scale. We propose methods that use size mtionmo adjust shape-based clas-
sification to take this phenomenon appropriately into antolihese methods may be thought
of as a pre-classification in a size-based feature spaceramggaeral in nature, avoiding hand-
tuned heuristics based on particular characters. Thigehsbased on the paper “Recognition
of Relatively Small Handwritten Characters or “Size Matéico-authored with Stephen M.
Watt [55], that appeared in the proceedings of the 13th mattgwnal Conference on Frontiers
in Handwriting Recognition.

4.1 Introduction

Size normalization is usually one of the early steps in tigegaition of both handwritten and
typeset characters, but can also be the source of errorsac@éis can have filerent sizes for
two reasons: First, the same symbol may appearfferdint sizes. An obvious example of this
would be footnotes and titles havingfidirent sizes from normal text. Other examples would
include: place names in map labels having greatly varying, sind the symbols of mathemat-
ics, which are smaller when written as superscripts or sysisor larger when written asary
operators. Secondly, fierent symbols within the same symbol set may haffedint size rel-

35
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ative to each other. For example, a period will be smallen théower case “0”, which will in
turn be smaller than a capital “M”. When these two situatiamscombined, size normalization
is a double-edged sword—it is required, but it can also leaddreased ambiguity.

We are motivated by the application of online mathematiealdwriting recognition. Char-
acters will be of greatly varying size and size can vary onaatter-by-character basis, rather
than word-by-word or sentence-by-sentence. In this ggttwe have found it fective to use
shape-based classification with orthogonal series repiasen of the curves traced, see Chap-
ter 2. It was observed, however, that for very small tracessttape of the curve, when scaled,
may be quite arbitrary. In these cases, the original sizesgfibol is of high importance.

Recognition systems may adogd hocrules to identify characters of unusual size, e.g.
commas, long lines, arrowstc What is lacking in this approach are general principles
by which such symbols requiring special treatment may berdehed without anya priori
knowledge of the symbol set, and how special rules to reeeghiem may be generated.

We propose a two-step processing method with samples bestgie-classified by size,
and then recognized by shape. We take advantage of the lssi@r@analysis techniques on a
space of feature vectors computed from size measures. Hyidmused in two ways: first to
do absolute classification based on size, and second, to dmdeal classification, weighting
unusually sized samplesftérently than samples whose size tends to the mean. These idea
can further be extended to literally any symbol set to idgtitiose classes that are more easily
separated by size measures than shape measures, e.gldisesic.

We present three approaches to classification of small ctemsabased on the relative size
of the samples with respect to other symbols in the collacti@he size of all samples is
expressed in a metric unit, derived from the dataset. In teerfiethod, that can be regarded
as a 1-dimensional classifier, a feature is computed frortiex leased on its width and height,
regulated by a parameter. Given that the parameter is gtnthe method is shown to yield
good results for our purposes. This method can be furtheneed to linear characters, such
as “—", “|” with appropriate size measure. The second method is a glerest version of the
first technique and it suggests to compute several parasnaeonly from the size of a letter,
but also from its shape, e.g. the area of the convex hull oktpints of the character. Then,
one-vs-one support vector machine (SVM) classificatiombexs a natural way to fierentiate
classes, if the number of classes is small. However, theres@ne dictionaries with large set
of characters that have identical shape and can only benglisthed by its size. Examples
include some capital and low-case characters from the batinGreek alphabets, e.g. Kk, Oo,
most of the symbols from the Russian alphabet, Bsg. I'r, 1x, Vu, musical notation, and
Benesh notation. The third approach is the most robust atab$eifor collections with large
number of small classes. The distance to the convex hull eficeents of approximation of



4.2. REevious Work 37

coordinate functions [26] is adjusted based on the sizeeofdbt sample and the average size
of samples in the candidate class. All of the methods are sliovmprove significantly the
current state of our algorithm with respect to small chamact

The rest of the chapter is organized as follows. Some of thénpinaries are given in
Section 4.2. Description of the size-sensitive classificaschemes is given in Section 4.3,
including the details of the measurement unit, the 1-dinoerad and 3-dimensional classifi-
cation algorithms, as well as the weight-based method. ixpatal setting and results are
reported in Section 4.4. Section 4.5 concludes the chapter.

4.2 Previous Work

Partially related problems have been studied in the pastorientional approach to identi-
fication of small samples is by comparison with a fixed thréshexpressed in pixels. The
adaptive normalization method developed in [45] adjustssilze of a character based on its
aspect ratio. In [5] it is proposed to estimate the princlipa, and correspondingly the size of
symbols, using the pixel count histogram when projectedervertical axis. Recognition rate
of handwritten numerals depending on the size was invdstiga [29]. In [63] it is proposed
to perform size normalization with a Hough transform.

These methods are designed for either processing charaudependently or for extraction
of information from a set of characters. In contrast, we pegpto apply special classification
rules torelativelysmall symbols.

An efficient technique for online classification of characters lesn described in Chap-
ter 2. The technique is overall robust, but has a drawbadt&tek to size-normalization — it
does not take into account the initial size of a sample. Asaltesmall samples are scaled to
the size of a regular character that leads to incorrectitlzeson. Examples of small samples
are shown in Figure 4.1, where it is easy to observe thatpkiance, normalized period can
be mis-classified as many other symbols, comma resemblesiagbracket, while quotes are
hard to distinguish from “11”. Thus, the algorithm requiee®bust adaptive size normalization
approach.

4.3 Size-Sensitive Classification Schemes

4.3.1 The Unit of Measurement

To treat small sampledieciently, one has to identify what the small character is. 3ize of
a small symbol should not be dependent on the device, notifigéelnas a constant amount of
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Figure 4.1: Examples of scaled small characters from therd@pto the bottom: period,
comma, quotes.

pixels. Instead, the size should be expressed in terms of pooperties of the dataset. Similar
to the notion ofEx-typographywe choose to take the average height of lower-caas the
unit measure, and denote this valueexsanalogous to thex measure in CSS [1]. In other
words,excan be understood as a metric unit for all characters in ddaéa In this setting, we
can separate small classes from other classes based onidwizemeasures.

4.3.2 1-Dimensional Classification

The algorithm described in this section is the simplest fafa classifier, since only one
feature is analyzed — the size of the sample. Despite itslsitiypin the experimental section
we show that this technique has very low error in recognitbrcertain classes due to the
dynamic nature of the size measure.

The Size Measure If the size of a character is analyzed by its bounding box, there are
essentially two types of size measures: perimeter-bastdr@a-based. The perimeter-based
measure is studied in this sectisft) = aw(c) + h(c) , wherea is a parametery(c) andh(c)

are width and height of the bounding box of the character. Mgiecally find thea that gives
the lowest classification error. The area-based featurensidered in Section 4.3.3.

Classification Consider a dataset with only two clasgesx} that are to be classified with
respect to size, and the average size of less than the average size>af Let s, be the
size threshold that separates the classes. Then a samplthiea@lass (x) is considered to be
classified incorrectly, if its size is greater (smaller)risa ,,. We denote witH, (1) the set of
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Algorithm 3 Find Separating Threshold(, S, s)
Input: S, — the set of samples of the classS, — the set of samples of the classs— the
array of sizes of samples from both classes, sorted in asweocter.
Output: S x;-
Compute diferences between consecutive elementS asA; = §i] — gi — 1],i = 1,..,n.
Diosry <= 0
forall i =n-1to0do
Compute the overlap for samples of the class di] is the threshold

Diogity < KoginAis1 + Do givy)

wherek, gij; is the number of incorrectly discriminated samples &dr the thresholdyi].
end for
Disop < O
forall i = 1tondo

Compute the overlap for samples of the clasf di] is the threshold

Discsin < KicsinAi + Dy si-13)

wherek, iy is the number of incorrectly discriminated samplesxdfor the threshold
dil.

end for

forall i =0tondo

Dio it < Dioginy + Discoil)

end for
return {[m] | Do x gy = irzrg)iqD{o,X,s[i]}}

incorrectly classified samples of(x). Then, the overlap of the classes is computed as

Diesseoat = ) J(S(1) = Sios) + D (Stog = (1)

i€l iely

The thresholds, ., that minimizes the overlap can be found®n) given that sizes have
been computed and stored in a sorted array, whesethe total number of samples iand
%, see Algorithm 3 for details. The algorithm can be easilgpgied to an arbitrary amount of
classes.

The classification error is measured as described in Algorg.
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Algorithm 4 classificationErrokf)
Input: « - the parameter in the size measure.
Output: Classification error.

For the giverw: Compute sizes of samples.

{In 10-fold cross-validation over the dataset

for i = 1to 10do
Take thei-th training set and find,, ., with Algorithm 3.
Tests,, «; with thei-th test set. The classification error is reported as the odincorrectly
discriminated samples to the total number of samples ingbieset.

end for

return The average discrimination error over the 10 runs.

Figure 4.2: Convex hull of a sample

4.3.3 3-Dimensional Classification

In this scheme three features are extracted from charadtegsheight and the width of the
bounding box, and the area of the convex hull of points of Hrede, see Figure 4.2. We test
whether these indicators arefBciently discriminative with an SVM classifier.

4.3.4 Weight-Based Classification

The letter “.” can usually be classified based on its sizexmnits. By analyzing sizes of
characters in a dataset, one can obtain the minimal sizehbie of samples, other than “.". If
the size of a test sample is smaller than the threshold, themutomatically classified as “.".
If the size is greater, the character still can be “.”. Therefthe class of “.” is considered in
computation of distances, described below.

Unlike “.”, other small symbols, such as “,”, preserve itgial shape after normalization,
even though the letter maybe scaled significantly and agseardiferent character. Thus, the
shape and size should both be considered in classificatlmmdiEtance to the small classes is
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Algorithm 5 WeightedClassificationg
Input: X - a test sample.
Output: The result of classification.

s « width(x) + height)
{Selectk nearest neighbours of candidate clag3gs.., Cy, as described in [26]
fori=1toNdo

di < D(x, CHNN})

if Cj is a class of small symbotken

di — (w(sq) +Blw(s) — w(s)) -

end if
end for
return C;|d; = ir_qirl\lldi

Weight

Relative size

Figure 4.3: Examples of the weight function depending onrtHative size:w(s) = sY4,
w(s) = s, andw(s) = &

adjustedbased on the average relative size of samples in the claghamelative size of the
test sample
Dadj = (w(S) + Blw(S) — w(sJ)) - D(x, CHNN)

wheres;, is the relative size of the test sampigthe sum of its width and height} is the
average relative size of samples in the test cdla8ss a paramete)/Dyq;(X, CHNN)) is the
distancgadjusted distance from the test sample to the convex hldlrefarest neighbours of
the class [26], wherei is one of the small classes. The distance to regular-sizsetais
computed without the weight adjustment. We take the functi¢s) to have the forns” where
v is a numeric parameter to be evaluated. See Figure 4.3 far@ea ofw(s). This method is
illustrated in Algorithm 5.

Besides their size, small characters can usually Herdntiated by positioning, relative
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Figure 4.4: Relative frequency vs relative size for thiedent classes in the ORCCA dataset

to the baseline and mean line. However, we leave that asalysinother recognition layer,
responsible for the spatial segmentation of formulas.

4.4 Experiments

4.4.1 Experimental Setting

The experimental dataset is based on the database of h#tedvatharacters, collected at the
Ontario Research Centre for Computer Algebra, a subseeafataset described in [26]. Since
the dataset does not contain classes with small charastershtained samples “.” and /"
by decomposing the following symbols: “"a" “ <", “@’, “=",“I"* . 7 “1"* ",*@",“?",")".
Visual examination of the small characters written withie tontext of another character and
the small letters written independently did not reveal Bigant differences. Therefore, we find
this setting adequate. Overall, we have collected 803 ssswbl’.” and 315 samples of 7;””.
The physical size of aaxunit is 823. The relative frequency of sizes of samples, shiow
Figure 4.4, was computed as follows:

1. Split the range of sizes ikintervals: &, 1), (S1, S2), --.» (Sc-1, &) In the experiments,
k = 40.

2. The relative frequency on an intervals found as the ratio of the numby, of samples
in the interval to the total number of samples in the clarﬁg:ziz'j n;.
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Figure 4.5: The classification rate dependingxdior: “.” and “,” (left), “.” and the rest of the
classes (centre), “,” and the rest of the classes (right)

3. Sizes are computed as the sum of width and heightavithl.

Note, that the most frequent size of “.” 46 0.02ex Therefore, the value of.0lex may be
interpreted ashicknesof digital ink and can be used in calligraphy of recognizedrelters
or for beautification of scripts. Another interesting olvsdiion is that the frequencies seem to
be centered approximately ek = 2, which provesxbeing the appropriate unit of measure
for this type of analysis.

The recognition experiments were performed in 10-fold enealidation: each collection

has been split randomly in 10 approximately equal parts hactkassification rate has been
measured 10 times.

4.4.2 Performance before the Improvement

To estimate the performance of the methods developed ichiaigter, we first measure recog-
nition of small characters with the algorithm describedd6][and optimized in [51], where
97.6% classification rate was achieved. The recognizernisdd with all samples from our
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dataset (small and regular) and tested with small samplés. obtained classification error
of the small samples is 17.5%, which is significantly higher than the classificatioroewf
regular sized characters reported in [51].

4.4.3 1-Dimensional Classification

In this experiment, all characters are divided in threegudrt, “,”, and the rest of the regular
size classes in the dataset, denoted..ds The objective is to find optimal values afthat
allow correct pair-wise discrimination between the paiftee recognition error as a function
of @ is shown in Figure 4.5. The values @fthat yield the lowest classification error between
“7and ) (0.6%), “.” and{...} (0.2%), “,” and{...} (0.8%) are respectively 0.1, 1.3, 4.4, and
the values of the size threshadd ., are respectively .@6ex 0.34exand Q95ex The stability

of the recognition error depending on the threshold is shiovigure 4.6.

4.4.4 3-Dimensional Classification

These experiments were performed with the SVM-Java [3'dya iinplementation of SMO [62]
technique for training an SVM. A subset of the collectionegular classes has been considered
in this experiment: we randomly selected 1000 samples. Tsses of “.” and “,” remained
unchanged. The following respective error rates have bbtaired for one-versus-one clas-

sification with the linear kernel for the classes “.” and “”, and {...}, “,” and {...}: 2.38%,
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Table 4.1: Classification error, dependinggandy
B 03] 06| 03| 06|09 03| 06] 0.9
0% 24 | 24| 27| 27| 27| 30| 3.0 3.0
Er.,% | 2.75| 3.48| 2.76| 2.94| 3.21| 2.06 | 2.23| 2.60

1.44%, 4.92%. These results can be further improved by deriag alternative kernels.

4.4.5 Weight-based classification

With optimization of the parametefsandy, we obtained the classification error, as reported
in Table 4.1. With the best result of 2.06% error, one can essignificant improvement over
the original error of 17.5% of the algorithm on small samples

4.5 Conclusion and Future Work

We have presented methods to address the large shapeoraridtat can occur in small charac-
ters in handwritten samples. When there are only one or tassek which have much smaller
characters than the rest, we have found that simple distation based on an optimized linear
combination of width and height to be verffective. We have shown this can be combined
effectively with shape-based methods by weighting shape aedispending on size of typical
characters in the classes. We have found that using the atka convex hull of characters,
rather surprisingly, does not improve the accuracy ovanguai linear combination of width
and height.

The presented work does not addrededentiation between disconnected segments of a
symbol and independent small characters. This is the qunesfi recognition of groups of
strokes that can be solved by construction of classificati@ories and computation of the
confidence of each theory. In this chapter we have focuseckuisidg general methods for
very small characters. The developed contributions wilkenthe cloud-based recognition
engine more robust.



Chapter 5

A Structure for Adaptive Handwriting
Recognition

We present an adaptive approach to the recognition of hattdwmathematical symbols, in
which a recognition weight is associated with each trairsample. The weight is computed
from the distance to a test character in the space dfic@nts of functional approximation
of symbols. To determine the average size of the trainingosathieve certain classification
accuracy, we model the error drop as a function of the numiidesiiaing samples in a class and
compute the average parameters of the model with respelitdasses in the collection. The
size is maintained by removing a training sample with theimah average weight after each
addition of a recognized symbol to the repository. Expentaeshow that the method allows
rapid adaptation of a default training dataset to the haitihgrof an author with &icient use
of the storage space. This chapter is based on the papertét&te for Adaptive Handwriting
Recognition” co-authored with Stephen M. Watt [53], thap@@red in the proceedings of the
13th International Conference on Frontiers in HandwritRegognition.

5.1 Introduction

It was described in Chapter 2 how samples are classified ihlistance to the convex hull
of k nearest neighbors in the space of fti@éeents of approximation. The method yields high
accuracy, but has a significant drawback — it does not adaydrtations in writing style of
trained classes. This is not acceptable in a productiorr@mwient, since out of the box recog-
nition applications are usually trained with a default dataof samples. Such dataset relieves
the user from an exhaustive training of a mathematical neizeg that may include several
hundred classes. However, default training of some classgditer from the writing style of

46
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the user. This concern is aggravated for online algorithastypically depend on the direction
and order of writing of strokes. Therefore, instances tpaear identical visually, but written
in different styles, will be represented by points, positionedosolutely diferent locations
in the codficients space. Thus, some training samples may represesat aod have negative
impact on diciency and accuracy.

The exemplar-based learning in higher dimensions is ahngilhgy due to the increase of
sparsity of samples of a class. Therefore, selection afitrgiexemplars has been thoroughly
studied in instance-based machine learning and relatdetatpns [77]. Some methods sug-
gest to retain a subset of the original instances [28, 2]ledther techniques propose to com-
pute prototypes from the training data [39]. Due to the reatfrour classification method, we
investigate the former approach. It can be dividethorementalstart from an empty training
set and add instances one by one), dadrementa(start from the training set with all sam-
ples and remove instances that are redundant or decreasa@gc A decremental procedure
DROP1[77] suggests to remove a point if all of its neighbors calh Isé correctly classified
without the point. This and many other techniques [28, 2jigthe local relationship between
samples without taking into account that the training dettasay change over time, moving
the underlying points in various directions.

We develop an online algorithm for adaptive recognition afdtwritten characters that is
based on reinforcement of samples that have positive ingractassification and removal of
samples that cause error or are neutral. The method is Riitaboth settings: When users
train a recognizer from scratch or when they use the defatdiseét as the starting point. In the
latter setting, to determine the average size of a trainiags¢ we model the error drop as a
function of the number of samples and attempt to correlatapeters of the model with some
spatial measurements of the class.

The proposed adaptive algorithm computes the participatight of each of th& neigh-
bors in a correct (incorrect) recognition and adds (subgjdke value to (from) the total weight
of the neighbor. In a sense, the method is similar tolB&algorithm [2], in which removal
or retaining of instances is based on counters. HoweveldBBenethod is @line, meaning
that it is run only once to select good classifiers out of thel pbtraining samples, while our
algorithm is online and makes removal decisions with eaghsample available from the in-
put. The method presented has potential of asymptotic ingonent in performance over the
course of its use and is suitable for a variety of instan@atanachine learning applications.
Unlike some algorithms, based on neural networks or hiddarkt models, the proposed
technique uses only gradual updates, making it suitablestdftime applications.

The main results of this chapter are

e an experimental analysis of how error rate drops as a fumctiche class size;
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e an empirical model for the error rate, fitting the experina¢édata well, to determine the
average size of a class for desired accuracy;

e an adaptive algorithm for distance-based symbol recagnitiising the functional ap-
proximation framework.

This chapter is organized as follows. Section 5.2 explaursapproach to modelling the
recognition error. The adaptive recognition algorithmregented in Section 5.3. Section 5.4
gives the experimental results that show good approximaifahe error function and rapid
adaptation of the recognition algorithm to the writing stgf a user. Finally, Section 5.5
concludes the chapter.

5.2 Modelling the Recognition Error

In our classification paradigm, the concept of personalizedgnition can be reformulated as
continuous formation of the training set. A set of trainifguacters of a class forms a cluster
in the space.A priori knowledge of the average initial size of a training classdbieve a
desired classification accuracy is important for compawesfe. It has an additional usability-
related benefit: When a new class is introduced to the dathgetiser can be informed about
the expected error drop depending on the number of sampteslirced to the class.

Here and below, we will use the following notatiamis the number of training samples that
the class contains in a given moment &hig the maximal number of training samples available
in the class. Based on our observation, convergence of tdogméion error of samples of a
class can be closely described by the models

An+ B
= 5.1
e = ——= (5.1)
whereA, B andC are parameters, or
e(n) = ae?'® (5.2)

wherea andp are parameters, arfdn) is a monotonically increasing function.

Our objective is to find values of the parameters for eaclscl&e expect the parameters to
be dependent on some inner properties of a class, as we# ag#itioning of the class relative
to neighboring classes. Further, the mean parameters aaselddo describe the average error
drop.



5.3. AbaprtivE RECOGNITION 49

5.3 Adaptive Recognition

Most commonly, misclassification of handwritten charagteccurs when dierent samples
are written similarly, since writing styles of users canyvaignificantly. On the other hand,
classes of characters provided by one user can usually bendiisated well. As discussed in
Chapter 2, onlk samples of a candidate class are used in classification sf ayiebol. Each
of thesek exemplars should be awarded a weight, computed as a furaftibe distance to the
test sample. If the training symbol is located relativelysd to the test character, the weight
should have large absolute value, otherwise the weightldlo@uclose to zero. If the training
sample is of the same class as the test symbol, the weighldsbeyositive and otherwise —
negative.

In general, distances between training samples withingsaa not follow any of the ma-
jor univariate distributions, since a class may contairess\styles that group the exemplars.
Therefore, basing the weight on statistical properties obas can be quite challenging. In-
stead, we take the weight as follows: For a given test satgpled a training exempldy, the

recognition weight has the form
1

M A+ 1
whered(ts, t;) is the distance between the points. This weight is adddutéotal weight of the
samplet;, if ts andt; belong to the same class, and subtracted otherwise.

When a new sample is recognized, it is added to the classjrantt@neously a sample with
the minimal average weight is removed from the dataset teeptats growth. Nevertheless,
at any given moment, the size of a class should not be lesskiffdne number of nearest
neighbours that form convex hull during classification)eTutline of the method is presented
in Algorithm 6.

5.4 Experimental Results

This section presents experimental results of modellieg#tognition error and the adaptive
classification method. The experimental dataset is idaitiicthe one described in [26].

5.4.1 Modelling the Recognition Error

We conducted a series of experiments to measure how theni@iocogate changed as points
were added to the classes. Each class was measured sgpardted following manner: All
symbols from the class to be tested were removed from th@rnadata set and the symbols
from other classes were retained. Further, the samplestfrertest class were separated ran-
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Algorithm 6 Adaptive recognition algorithm
Input: ts— a test sample to be recognized.

{Recognize the sample as explained in Chapt€l2— recognition class o
{Recompute weighjs
fori=1—Tdo
{For each of the candidate classes
if T; = Clthen
for j=1— kdo
{Increase the weight of each nearest neiglthan the correct clags
W, — W,
end for
else
for j=1— kdo
{Decrease the weight of each nearest neighbor the incorrect clags
W, — Wy, —
end for
end if
{Increase the counter
for j=1— kdo
G, <Gy +1
end for
end for
{Remove the exemplar with the minimal average weight amoagltsses with the number
of samples> k}
Remove exempldar: W, = rr?jin{%, [Ti| > Kk}
ij

1
t qtpil

1
d(ts,tij)+1

Assign an initial weight tds and add; to the recognized class.
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domly into a test seP; and a training seP,. Then the symbols fror®, were added, initially
one at a time and then in larger groups. After each additiquoaits, the recognition rate of
the ensemble was measured using the test set. Thus, for keash tbe recognition rate was
tested first with O training points, then with 1 training poithen with 2, then after 3, 4,5, 6, 7,
8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, ... until @lttaining points were used. The
number of training points ranged from 10 to 2048, dependmthe class. This whole process
was repeated ten times, and the recognition rate recordeddiass after a particular number
of points was reported as the average of these ten measuseniba testing sets were selected
randomly, but disjoint. The set of classes is denote@.ashe outline of experiments is given
in Algorithm 8.

Algorithm 7 Outline of the experimental setting
for Each class in the set of classeQ do
Split samples in the class for 10-fold cross-validation.
for i = 1to 10do
Take the-th partP; for testing and the re$; for training.
{Introduce integer variables used in splitting the trairset
S—0,k«3
while s < |P;| do
Clear the training set for the class
Conduct training with the firss samples fronP,.
Conduct testing with samples froR.
if s=2then
ke—k+1
end if
{Increase the amount of training samples
S s+ 2¢3
{where 2-2 was selected heuristically, based on the observation thtih@ samples
to a small training set has bigger impact than to a larger set
end while
end for
end for

Some of the samples have several class labels. Thereferegdbgnition error can be less
than 100%, even if the class has zero training samples in ésuks of recognition for all
classes, depending onare given in Figure 5.1.

We make a few observations: First, we see that for all classa®cognition rate improves
dramatically with each of the first few symbols added. Mosthef functions have shape that
can be modelled with (5.1). For approximation, we used theliNearfit Maple [35] command
to evaluateA, B andC. In classes with more than a few dozen samples, the erroapaieared
to drop df similarly to a negative exponential function, see Equabdh In Equation 5.2,
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Figure 5.1: Recognition error for all classes, depending,adhe number of training samples
in a class

A B C
Mean| -0.007| 11.718| 23.398
o 0.054 | 9.805 | 9.805

Table 5.1: The mean and the standard deviation of the paeasnet

f(n) = +/n was found to perform well. By taking the logarithm of bothesdthe parameters
can be evaluated as a linear regression betweea(lgy@and v/n. We used the LeastSquares
Maple command to compute the least squares approximation.

We tested both models (5.1) and (5.2) and computed the aeoay mean square error
(RMSE) among classes, obtaining respectively 0.03 and 048del (5.1) performed the better
of the two, and so this is the one upon which we have concewltr&xamples of approximation
with (5.1) for different values oN and the average model are given in Figure 5.2. We observed
that classes of smaller size, witth < 64, are approximated not as good as larger classes,
partially due to non-stable behaviour of the error functiornthe small testing set. Therefore,
the mean parametefs B andC were computed among classes wit4 training samples. The
mean and the standard deviation of the variables are showabie 5.1. The small mean value
of parameteA can be considered as an argument that the error model (1 Decaimplified

to e(n) = -2-. On the other hand, such simplification will make the mods$ Ieobust and

n+C"*

may have negativefiect on the approximation accuracy. Therefore, we decidéeep the
parameter.

The average RMSE between the modelled recognition raterenddtual recognition rate
for classes of certain size is presented in Figure 5.3(gurEi5.3(b) shows the percentage of
classes that are approximated with RMSE less or equal a galae.
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5.4.2 Correlation between class measurements amg Band C

We question whether parametéksB andC are related to spatial characteristics of the class,
such as positioning of points within the class and distanceeighboring classes. For each
classi, the following measurements are considered (in Euclidéstante)

. R"1 - the maximal distance from the class center to any pointerctass.

R.5 - the minimum radius of a ball centered at the class centeretheloses 75% of
points in the class.

R, - the average of radii from all points in the class to the ctasger.

R = R, + oj, Whereo is the standard deviation of the radii from points in the sltas
the class center.

DL - the minimum distance between points of the class to thesstawighboring class.
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Measurement Spearman Kendal tau-a
A D, -0.29 -0.19
B D, -0.55 -0.39
C D, -0.59 -0.42

Table 5.2: The measurements with the largest absolutes/afilbe correlation cdgcients for
each approximation variable

Error, %

T T T T T J
0 10 20 30 40 50 60
N

(@) (b)

Figure 5.4: Adaptive recognition error of thi ¢ 1)-th sample in a class: (a) For each author,
(b) Average among the authors

In addition, we study the measurements
Di = min(d; - R - R),

|5iL = avdd;j - RiL - RJL)
j#i
whereL is any of the labels,175, a, o andd;; is the distance between centers of classasl
j-
Spearman and Kendall tau-a tests did not demonstréieisat correlation of these mea-
sures with the model parameters. The largest absolutesvafusatistically significant corre-
lation codficients for corresponding class measurements are presaniable 5.2.

5.4.3 Adaptive Recognition

For this experiment, each character in the collection igyassl to the author who provided
the symbol. Then for each author, the dataset is split in tardsp samples provided by the
author (used in testing) and the rest of the dataset. Duhiedraining phase, for each class,
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we randomly selecK samples and form the default training set. The valu& pothe initial

size of a training class, can be determined from the erroreftiad, and for this experiment

we takeK = 30. During the testing phase, a test sample is extracted &rcemdomly chosen
class among those written by the test author and recognizedrecognition error of thBl-th
sample by the author is computed as the ratio of the numberissEoognitions of theN-th
sample to the total number &f-th samples tested. This run is repeated 200 times and the
average for each author is reported in Figure 5.4(a). Fi§uté) shows the average error
among all the writers. We observe that the adaptive algoridm average results in a rapid
decrease of error and convergest89% accuracy.

5.5 Conclusion

We have shown how handwriting recognition techniques basefilinctional approximation
methods are well suited to adaptive setting. Rather thaanizong the workflow as a training
phase followed by a use phase, we see continuous improverhetognition results taking
advantage of correction history. In our setting, based aweo hulls of classes in the cidie
cient space, adaptation consists of weight-based evolveshthe shape of the class envelopes.
The experiments have shown that the error rate drops appabely as An+ B)/(n + C) as
samples are seen, and ti#aB andC slightly vary by class and correlate with class measure-
ments to a minor degree. The average values of the parancetefse used to determine the
size of each class in a default training dataset. The irsgabssembled this way serves as an
input to a weight-based adaptive classifier. The weight ofx@mplar is computed from the
distance to the test sample. With each recognition, the sywith the minimal average weight
gets deleted from the collection. Experiments show thattbdel allows rapid adjustment to
the style of a particular writer and converges to approxatyd@9% accuracy. This model is an
important element of the adaptive cloud-based recogn#rohitecture.



Chapter 6
A Cloud-Based Recognition Framework

While writer-independent handwriting recognition syssesine now achieving good recogni-
tion rates, writer-dependent systems will always do better expect this dierence in perfor-
mance to be even larger for certain applications, such asamettical handwriting recognition,
with large symbol sets, symbols that are often poorly wmitend no fixed dictionary. In the
past, to use writer-dependent recognition software, aewwbuld train the system on a par-
ticular computing device without too much inconvenienceddy, however, each user will
typically have multiple devices used infidirent settings, or even simultaneously. We present
an architecture to share training data among devices anal safe benefit, to collect writer
corrections over time to improve personal writing recognit This is done with the aid of a
handwriting profile server to which various handwriting Bpgtions connect, reference, and
update. The user’s handwriting profile consists of a cloudashple points, each represent-
ing one character in a functional basis. This provides catp@rage on the server, rapid
recognition on the client, and support for handwriting eeatg. In this chapter we use the
word “cloud” in two senses. First, it is used in the sense ofidIstorage for information to be
shared across several devices. Secondly, it is used to reats©f handwriting sample points
in the function space representing curve traces. We “writelouds” in both these senses. This
chapter is based on the paper “Writing on Clouds” co-authaii¢gh Stephen M. Watt [54], that
appeared in the proceedings of the 2012 Conferences ohdatglComputer Mathematics.

6.1 Introduction

The recognition method described in Chapter 2 does not reguoany training samples to
discriminate a class. However, because there are a largberuoh classes in handwritten
mathematics, the training dataset may contain tens of #mssof characters. The underlying
recognition model allows the dataset to evolve over thes®of normal use. Furthermore,

56
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as a user makes corrections to mis-recognized input, na@wrgadata is obtained. Therefore,
synchronization of the dataset across several pen-basecegenay become tiresome. To
address this aspect, we propose to delegate the storagetaditiing database, as well as some
of the recognition tasks to a cloud.

In this chapter we describe a cloud-based recognition atnire. It has potential to be
beneficial not only to end users, but also to researcherifidiu. A cloud infrastructure can
assist in the capture of recognition history. The “knowlgtgptained from the public usage of
the recognition software can help to improve the accuraagicoously. This serves as a basis
for an adaptive recognition that results in asymptoticease of user-, region-, or country-
centered classification rate. Additionally, such a modal aaanumber of other advantages:
First, it allows the writer to train the model only once andrituse the cloud with any device
connected to the Internet. Secondly, it gives the user acesarious default collections
of training samples acrossftérent alphabets (e.g. Cyrillic, Greek, Latin), languages.(
English, French, Russian), and domains (e.g. regular teathematics, musical notation,
chemical formulae). Thirdly, it provides a higher level ointrol over the classification results
and correction history.

The architecture we present may be applicable to a varietgaafgnition methods across
different applications, including voice recognition, docutreeralysis, or computer vision. To
demonstrate its use in recognizing handwritten mathewmlati@racters, we have performed an
experiment to measure the error convergence as a functibwe afput size and find an average
number of personal samples in a class to achieve high agcurac

Cloud computing allows remote, distributed storage and@xan. The economic stimuli
for providing software services in a cloud infrastructure aimilar to those for centralized
supply of water or electricity. This relieves consumersrfra number of issues associated
with software maintenance, while the provider may contuslpimprove the service. Agility
of a cloud service is usually achieved by its internal orgation according to the principles
of the Service-Oriented Architecture (SOA). SOA allowsitiplg computational tasks into
loosely coupled units, services, that can be used in maltiphssociated software packages.
An external application executes a service by making a kbediugh the network. The service
consumer remains independent of the platform of the sepriméder and the technology with
which the service was developed.

Several related projects have been described that mosgigttdevelopment of managed
experimental repositories and resource sharing in theegbof. document analysis [41], as-
tronomical observations [69], or environmental resea¢hlp contrast, our primary objective
is improvement of usability of recognition software acrdg$erent pen-based devices. Col-
lecting a comprehensive database that facilitates raséathe second priority.
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The rest of the chapter is organized as follows. Section éstribes the cloud—based
recognition framework, starting by giving an overview oétbomponents. Then the flow of
recognition and correction, as well as possible manipaatiof clusters, are presented. Sec-
tion 6.3 describes the implementation of projection of si@sfrom high-dimensional space
to the plane. This is important for visual analysis of thectiggiveness of the classification
indicators. Section 6.4 describes details of the impleatent of the system, the structure of
a personal profile, the interface for training and recognitithe server side, as well as calli-
graphic representation of recognized characters. SeBttopresents experimental evaluation.
In Section 6.6 we show that the cloud environment can impregegnition flow by semi-
automated training of the recognizer, based on conditipradability of writing styles of the
user. Section 6.7 concludes the chapter.

6.2 Clouds Serving Clouds

Touch screens with the ability to handle digital ink are beow de factostandards of smart
phones and tablet computers. The variety of such platfolmaBenges conventional recogni-
tion applications because:

e Certain mobile devices have limited storage capacity amdpedational power, restrict-
ing ink storage and processing. Recognition of handwritiath requires extra resources
to build classification theories and to calculate the configeof each theory [8].

e Development of a single recognition engine that ruffi€iently across all the platforms
is not easy, and in most cases a traffehas to be made fiecting classification perfor-
mance.

e The evolving personal training datasets and correctiotoiies are not synchronized
across the devices.

Similar to the software as a service delivery model, we psep have digital ink col-
lected and, possibly, processed through a thin client,tbstorage and some computationally
intensive procedures are performed centrally in the cloud.

From the high-level, the system contains the following edata

e Canvasof a pen-based device, that can collect digital ink.

e HLR (High-Level Recognizer) accepts raw ink from the canvasgertbrms initial pre-
processing of the ink.
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Results

Y _—
Canvas Ink: oefficients Recognizer oefficients, Results— Database

————Caorrection arrection

Figure 6.1: The data flow diagram for recognition and coroect

e Recognizeis a character recognition engine, developed accordinigetinciples de-
scribed in [26].

e Databasestores personal handwriting data, profiles of samplesectbon history, etc.

Profiles of training samples are clouds of points in the spheg@proximated curves, each
point being one character. These points are saved in a dgatabthe cloud. When users sign
up for the service, they are assigned a default datasetiningessamples. If a person has sev-
eral handwriting domains (e.g. fterent fields using mathematics, physics, music, etc), each
domain should have a separate dataset, and the recogrppticadion should allow switching
between the subjects. The user shapes the datasets threegésaof recognitions and correc-
tions. Below, we show experimentally that the number of@ctions decreases over time and
eventually becomes quite small.

6.2.1 Recognition Flow

The overall recognition flow is shown in Figure 6.1. The Higével Recognizer (HLR) ac-
cepts raw ink from the canvas and preprocesses it. The ootpeé HLR is available to the
recognizer in the form of normalized déieients. The coicients are recognized. The results
of classification are sent to the canvas and saved in theaksab

Representation of Characters For a single-stroke character, after approximation of dbor
nates with truncated orthogonal series, the sample carpbesented as

1
—’ b 3X,’ 9 ey b 6-1
TRV X05 Y0» X15 Y1 -+» Xg» Yo (6.1)

wherexg, Yo are Legendre-Sobolev cdeients that control the initial position of the character,
X1, Y1, - X Yy are normalized cdicients, and|x, yl| is the Euclidean norm of the vector [26]

Xl’ A4 Xd’ yl’ cecy yd
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cogficients := ﬁ X0; Yoi X3 Yii -1 X Yy
msg := <m:Process>
<m:mt>cogficients</m:mt>
(<m: tr>cogficients</m: tr> <m: tr>cogficients</m: tr> + )?
</m:Process>

Figure 6.2: The format of the SOAP message sent to the cloud

The first three elements in (6.1) are ignored during recagmibut used in restoring the initial
size and location of the character.

For a multi-stroke symbol, céiécients are computed for every stoke, as described for a
single-stroke character, and also for all strokes joineglieetially. Coéicients of strokes
are used for display of the sample and normalizedfsments of joined strokes are used for
classification.

The described representation of samples allows signifisaving on storage space and
computations, since céiecients of symbols can be directly used in recognition withrepet-
itive approximation [50]. However, this compression sckamlossy and should not be used
when precision of digital ink is of high importance, e.g. ppécations that involve processing
of personal signatures.

Recognition Individual handwriting can dier significantly from the default collection of
training samples. This is illustrated by the historical of@ personal signature as a form of
authentication of documents. It is to be expected that aesstal recognition system should
adapt to personal writing style. Witkknearest neighbors and related methods, the test sam-
ple can be easily introduced to the training set after diaasion. This facilitates adaptive
recognition, since the model remains synchronized withwthier’s style.

Two modes of recognition are possibliecal andremote

Local recognitionis suitable for devices with slicient computational capabilities. In this
mode, the points that form the convex hulls of classes amedton the device locally and
periodically synchronized with the server. Synchronmatan be performed through a profile
of samples. The local recognition mode is useful when the dees not have a network
connection and therefore can not take advantage of the eemobgnition described below.

In remote recognitiomode, digital curves are collected and preprocessed ypealt the
codlicients are sent to a remote recognition engine. Having rezed the character, the server
returns encoding of the symbol and nearest candidatesmiddeg allows to minimize the load
on the bandwidth, since the training dataset does not have synchronized with the device.
Codfticients can be transmitted in the body of a SOAP message, tigngyntax shown in
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<soap:Body xmlns:m="http://www.inkml.org/processing">
<m:Process>
<m:mt>0.005;94;-91;11;2;-14;64;-70;
-18;1;-75;14;14;8;4;-2;4;0;-9;5;10;-11;5;</m:mt>
</m:Process>
</soap:Body>

Listing 1: An example of the body of a SOAP message for a siaggleke character

<soap:Body xmlns:m="http://www.inkml.org/processing">
<m:Process>
<m:mt>1;0;0;-5;-22;-14;-15;-44;-72;20;13;-27;43;4;
-28;48;-1;-10;16;-32;-17;-1;-12;</m:mt>
<m:tr>0.005;92;-85;-1;3;-7;62;-79;-30;
4;-61;32;4;-2;15;-4;-4;6;-3;0;6;-9;0;</m:tr>
<m:tr>0.009;115;-100;-71;-102;-10;-1;11;1;
-6;-8;556;-5;-9;2;35-2;-5;6;6;-5;-9;</m:tr>
</m:Process>
</soap:Body>

Listing 2: An example of the body of a SOAP message for a natifbke character

Figure 6.2. The elemerin:mt> contains the normalization weight, the original fiaments of

the 0-degree polynomials, and the normalizedfieccients used in recognition. Additionally,
for a multi-stroke sample, then: tr> element is used to represent each stroke independently.
Examples of messages for a single-stroke and a multi-stlo&eacter are shown in Listing 1
and Listing 2 respectively. The bodies of the SOAP messagasin enough information for
both recognition and restoring approximate represemtati@ character in its initial position.

The results of recognition can be returned in a SOAP messegshown in Listing 3.
The body contains Unicode values of the top candidates tbleritae client application to
visualize recognized characters in a printed format. Fihigcaphic rendering, corresponding
codficients can be included as well.

When the recognition is incorrect, the user can fix the resulthe canvas. A correction
message is sent from the canvas to the recognizer and theadatessee Figure 6.1. The cor-
rection message may contain Unicode value of the new clesrant the ID of the sample.
After correction, if the recognition engine is context-siime, neighboring characters can be
reclassified. Implementation of sensitivity to the contdepends on the domain. With hand-
written text, this task is solved by comparing a recognizeddwith entries in a dictionary.
With mathematics, it is a harder problem, since expressaomsepresented as trees. Progress
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<soap:Body xmlns:m="http://www.inkml.org/processing">
<m:Response>
<m:Unicode>0030, 004F, 006F</m:Unicode>
</m:Response>
</soap:Body>

Listing 3: An example of the body of a SOAP response from tlegaition service

Figure 6.3: A sample that belongs to classes “q” and “9”

can be achieved by considering the most popular expressidine subject and their empirical
or grammatical properties, see for example [47].

6.2.2 Manipulation of Clouds

With the discussed representation of samples as cloudglrdininensional space, they can also
be treated as sets. In this context, corresponding thealelbmains become applicable, such
as the set theory or some elements of computational geam@tmysider training characters
from two classes, sayand j, forming setsS; andS; respectively. Thets; N S; will produce
samples written in an ambiguous way: If class@sd j represent characters 9 agdhen a
sample that belongs to both classes can look as the one shdwguire 6.3. A naive approach
to compute such an intersection is to find the subset of poirdach cluster with the distance
to the second cluster being zero. To make the clouds lineagdgirable, the samples that belong
to both clusters can be deleted or assigned a specific latsginifar operation is to fin&, \ Se.
This will give the samples that look fiierent from samples of the adjacent class.

Another example is computing the “average” character, asdmter of mass of samples in
a style, and using the character in calligraphic renderfrrg@gnized samples.

These and other operations can be expressed naturally estiops on the classes rep-
resented as clouds of points. With some other machine lggafnameworks the analogous
procedures can be more awkward.
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6.3 Orthogonal Projection of Cloud Samples

6.3.1 Related Work

High-dimensional data samples, very frequently used inim&dearning applications, can be
hard to analyze without visual representation. A numbettefapts have been made to nidp
dimensional clusters to a plane. One of the most popularadstts Sammon projection [64],
named after John W. Sammon. Sammon proposed to map higmsiional space to a lower
dimensionality (typically two or three) with the objectite preserve the distances and their
ratios between points in high dimension and correspondangtpin low dimension.

More formally, if dj; is the distance between poiritand j in high dimension and;; is the
distance between projections of the points then the fund¢hiat Sammon proposed to minize

is as follows )
(dij —d;)

1
o 2. di 2 d

i<j

i<]
Sammon proposed to solve the minimization problem with igreticlescent algorithm.

We use Sammon projection for 2-dimensional representafioglationship between three
classes: Characters “8” (with 1453 samples), “1” (with 58mples) and “C” (with 642 sam-
ples). Sammon mapping of samples in these classes is shdviguire 6.4

We find this projection not truly reflect the relationshipweén classes and, therefore, look
for an alternative way of representation of clusters.

6.3.2 Orthogonal Projection

In this section we develop another method for projectingifsdfrom high dimension to a plane.
In the algorithm we consider three classges, andcs, with no requirement for the clusters to
be linearly-separable. The overview of the method is as\i!

1. Find an Support Vector Machine (SVM) hyperplane that sspa two of the classes, say
¢, andc,
Wy-X—b; =0

where: denotes the dot product amd is the normal vector.

2. Find another SVM hyperplane that separates the cldfssm one of the classes or c,,
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Figure 6.4: Sammon projection of the classes: “8” (red),(green) and “C” (blue)

say between classesandc; (in practice, it is better to separate the closest classes)

W,-X—b,=0

3. Consider intersection of the hyperplanes

W,-X—-by =0
Wy -X—b,=0

Find translation of the hyperplanes, so that their intediseqyoes through the origin.
After substitutionx; = X; +t; andx, = X} + tp, wherety, t, € R, the translation can be
obtained by solving the following system

Witl + Witz - bl =0

W%tl + W%tz - b]_ =0

Having found the translation parametérandt,, all samples in the clustecs, ¢, andcs
should undergo the same translation.

4. After the translation, each of the hyperplanes forms @ovespace oveR: V; andVs,.
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We denote

65

Vo=ViNnV,
V=V,UV;
V=VuV

One can consecutively generate a basi®fpW4, V, andV. With Gram-Schmidt orthog-
onalization process, an orthogonal and then orthonornsad baf V can be obtained.

5. Coordinates of each sample are computed in the basid projected to the subspa¢e
yielding 2-dimensional representation of the sample.

This algorithm results in a mapping, shown in Figure 6.6 him Eigure, it is easy to notice
that the samples of characters “1” are somewhat separateissub-clusters. The reason
is that each sub-cluster forms samples written with cerséyte. Indeed, Figure 6.5 shows
two samples written in diierent styles available in the cluster: Figure 6.5(a) fomrtbeh-west
sub-cluster and Figure 6.5(b) for the south-east.
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Figure 6.5: Samples of flerent sub-clusters of the character “1”

6.4 Implementation

From a high level viewpoint, the system contains the follogwarts, as shown in Figure 6.7.

e A user interface for training (used to collect profiles of idders).
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| - «C 1 ¢+ 3|

Figure 6.6: 2-dimensional orthogonal projection of points

e A user interface for recognition (ink canvas, HLR, and ratoer).

e A cloud — a web infrastructure that serves as a recognizeth@rremote recognition
mode) and as arfigcient storage of user-specific training data, allowing ascapdate,
sharing, continuous adaptation of the shapes of clusterdrethe current prototype im-
plementation, the back end consists of a web server, ancagiph server, and a DBMS.

Communication between the client application for trainamyd the cloud is performed
through sending profiles, i.e. zipped XML documents thataiorpersonal catalogs (clouds of
points). The application server communicates with thelzkga through SQL.

6.4.1 Initial Training

In an adaptive recognition environment, the training phas®t required. However, having
some number of training samples in each class can signifydgarrove the initial recognition.

Training is normally performed before usage of the applicabr after introducing a new
character to the repository. Once training is finished tlodlpris synchronized with the cloud.
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Figure 6.7: Interaction of user interfaces for collectiow aecognition with the cloud
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Figure 6.8: The structure of a catalog

A profile is a dataset of training characters used in recagnifThe dataset is a collection
of catalogs. Each catalog is a hierarchical container ot®Jg) styles, and samples. Figure 6.8
shows a structure of a catalog where

e Catalogis a catalog of related symbols, e.g. Latin characterstgigiathematical oper-
ators, etc.

e Symbalis a recognition class, e.ga*, “1” or “ +”.

e Stylgis a style, i.e. one of the possible ways to write the symbaik. i©cognition algo-
rithm is dependent on the direction of writing and the nundfgren-ups of a character.
For example, symbdl can have two styles: one style represents writing the clterac
from the top to the bottom and another style — from the bottthé top.

e Sampleis a training sample, written according to the correspondiyle.
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Figure 6.9: The main window of the training application

Each user can have several profiles used together or indepiyydepresenting, for example,
different areas of mathematics, chemistry or muSicstenprofiles should also be available —
the default collections of typical symbols, styles, and gle®in a domain.

The XML tree of a profile corresponds to the hierarchy of alogtalt should contain
symbols, styles, samples, and fia@ents. The normalized cficientsc; € [-1, 1] can be
compactly stored in a byte variable as [£2,/where [X] is rounding ofx to an integer [26].

6.4.2 Implementation of the Application

For simplicity, our current model is implemented in thresr-airchitecture. The client appli-
cations for collection, recognition, and the applicati@emver have been developed in Java.
Requests to the application server are routed through a erebrs

Client Application for Collection of Characters The front end provides a convenient in-
terface for the user to input and manage training sample ifiterface comes along with
the structure of the user profile. Specifically, the main windf the application is a tabbed
panel with each tab representing a catalog of samples, amshd-igure 6.9. A tab contains
a list of symbols of the catalog. Once the user selects a slyitiegpanel with styles becomes
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Figure 6.10: Client interface for recognition

available. Styles are shown as animated images for visu@lizof stroke order and direction.
The discussed elements of the interface (catalogs, symtyles, and samples) are highly
dynamic: A context menu is available that allows to creata@ldlete or to merge with another
element. A profile can be saved on a local hard drive and remjeas well as synchronized
with the server.

Each provided sample should be assigned to a style. If alsagdanot been selected, it is
determined automatically based on its shape and the nunilstro&es. This recognition is
usually of high accuracy, since the candidate classes e sif the selected symbol and the
number of styles is typically small.

The Client Interface for Recognition Classification of handwritten characters takes place
when a user performs handwritten input through a separatecapon. The current implemen-
tation is integrated with the InkChat [31], a whiteboardteaie that facilitates engineering,
scientific, or educational pen-based collaboration onlNevertheless, a number of alternative
applications can be used as the recognition front end, eaghBfush [40], a pen-based system
for interactive mathematics, or Mathink [67], a mathenstimen-based plug-in that can run
inside computer algebra systems, such as Maple [35], ordectiprocessing software, such
as Microsoft Word.

There can be two approaches to recognition — charactetiatea(each character is recog-
nized as it is written) and formula-at-a-time (characteesracognized in a sequence, taking
advantage of the context and common deformation of samptdaksification results can be
displayed super-imposed on the digital ink or replace it. éach entered character, a context
menu is available that lists the top recognition candidaassshown in Figure 6.10. If the
user chooses another class from the candidates listed gotitext menu, adjacent characters
should be reclassified based on the new context information.
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Figure 6.11: (a) A set of provided samples, and (b) the aeesagple

The Server Side The server side has the following interacting parts: thechpaveb server,
an application server, and MySQL DBMS. The user uploads fil@to the application server
as a zipped file. The profile is unzipped and parsed. Infoonasi inserted in the database.

Upon download of a profile, the process is reversed — the eseissa request to the appli-
cation server over the web server. The application servectsedata from the database, forms
an XML profile, performs compression, and sends it to thentlie

In the current implementation, a client communicates wité application server over
HTTP, but an encrypted communication channel is suggestedproduction environment.
Furthermore, profiles are recommended to be stored in tlabase in an encrypted format.

6.4.3 Attractive Display of Recognized Characters

Some research has shown that averaging can be used to makddak attractive [61]. We
adopt a similar approach to generate visually appealinguauT he shape of each output stroke
is obtained by taking the average of @o@ents of approximation of corresponding strokes of
samples in the style
_ X6
CG=——

n
wherec; is thei-th average cd#cient of a stroke and is the number of samples in the style.
The traces of the average character are then computed feavérage series. This approach
allows personalized output, representing samples in alysappealing form and yet preserv-
ing the original style of the writer, as illustrated in Figus.14.

6.5 Experimental Evaluation

We describe results of an experiment that shows performahealaptive author-centered
recognition that can be implemented in the cloud infrastmec The experimental setting aims
to simulate decrease in the classification error dependirg wser’s input size, given that the
application is initially trained with a default dataset.
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Figure 6.12: The average recognition error of tNe-1)-th sample in a class among all classes
by an author. All authors are shown in the plot.

6.5.1 Setting

The experimental dataset is identical to the one describ8éction 2.10. Further, each sample
is assigned to one of the 369 authors. Then for each authoddtaset is split in two parts:
samples provided by the author (used in testing) and theofeke dataset (used in training).
A test sample is extracted from a randomly chosen class athosg written by the test author
and recognized. The recognition error of tReth sample by the author is computed as the
ratio of the number of misrecognitions of thieth sample to the total number Bfth samples
tested. This run is repeated 200 times and the average igedp®Ve consider two strategies
for processing the recognized character

e Null strategy: The test sample is disregarded after recognifitis strategy is imple-
mented for comparison with the Basic strategy.

e Basicstrategy: The test sample is added to the correspondingrgaclass. This facili-
tates adaptive recognition when the training cluster isstéfd to the style of the current
user with each new sample provided.

The Basic strategy does not provide a mechanism to remawingasamples that have
negative impact on recognition. In Chapter 5, we developeddaptive instance-based
classifier that assigns a dynamic weight to each trainingielar. If the exemplar partic-
ipates in a correct (incorrect) classification, the weighibhcreased (decreased). Samples
with the minimal average weight are removed from the dataset
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Figure 6.13: The average recognition error among all astbbthe N+1)-th sample in a class
for the Basic strategy (solid) and the Null strategy (dash).

6.5.2 Results

Figures 6.12(a) and 6.12(b) demonstrate the average rigioogerror of theN-th sample in a
class among all classes by an author for the Null and the Basitegies respectively. Authors
are shown in the plot in étierent colors. These figures show that the approach givesstemis
results for diferent authors. The average recognition error among albesiil presented in
Figure 6.13 for the Basic and the Null strategies.

On average, the Basic strategy demonstrates improvementta/ course of use, which is
most noticeable for less than 20 samples in a class by anra@ven that the dataset contains
several hundred classes, synchronization of samplessadevgces is a valuable advantage and
can make the recognition workflowfeient and smooth.

6.6 Semi-Automated Training of the Recognizer

Handwriting is believed to be individual, and thereforeashbeen used as the primary form of
authentication for centuries. However, the general shaparawritten samples may look alike
among groups of individuals, especially those that haveélairhackground, e.g. nationality,
native language, etc.

The cloud dataset contains samples representitgyent styles of writing the same charac-
ter, some of which are likely to be similar to the handwritofghe user. However, the samples
that represent handwritten stylesfdrent from those of the user make the training dataset noisy
and may cause misclassification.
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Figure 6.14: An example of characters written in a similgtes{a) “9” and “a” are written
clockwise, and (b) “a” and “9” are written counterclockwise

Typically, the classification method that we use does natiregnany training samples to
discriminate a class. However, because there are a largeernafclasses in handwritten math-
ematics, the training dataset may contain tens of thousafindsaracters. Recommendation of
styles applicable to the current user can be a valuable iastdes setting.

In this section, we implement semi-automated training @f tbcognizer by suggesting
styles that are likely to be applicable to the handwritinghefuser, based on the styles the user
has already provided and the styles of writers with simikmdwriting. This research is based
on the assumption that if a group of users write some chagactehe same style, it is likely
that they will write certain other characters in the saméesag well, see Figure 6.14. We are
motivated by the wide and successful usage of recommemdsystems on the Internet that
are designed to recommend products to consumers, basediopulchasing history and the
history of individuals with similar behaviour.

Assume that a user is starting to train the recognizer ayghbevould like to reuse the
training samples of other users who write characters in déngesstyle. In this setting, all the
user needs to do is to identify the styles for correspondnagaxcters. Given that the alphabet
of symbols can be extensive, suggestion of styles to theaasesave time andierts during
the training phase.

6.6.1 User-Style Similarity

Let P(SolS1, Sy, ..., Sp) be the conditional probability that the charact®ris written in style
So given that we already know a set of other styles provided byserS,, S,, ..., S,. Then for
a given character, the style that is suggested to the udee #tdining phase can be found as

rSr]anP(S’|Sl, Sy, ..., Sp) (6.2)
whereS is the set of styles with which the subject character can ligenr
The value of Equation 6.2 can be computed with the chain rule
n

P(NL;SK) = | [P(Sd Nt s))
k=1
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Figure 6.15: The style prediction accuracy

The probability of the user to write given styles can be recorded as
P(mE:lSk)

and computed as the ratio of the number of authors who wrilk efthe corresponding char-
acters in one of the given styles to the total number of astiro provided samples for all of
the corresponding classes.

6.6.2 Experimental Evaluation

Our experimental dataset is based on the one describedfio®2cl0. Further, each sample
is labeled with its style and the author who provided the damfhere are 369 writers in total.
The experimental runs are organized as follows. For eadioguive randomize the list of
styles that the author provided and process the styles ilsth&or each style we compute the
conditional probability that the corresponding charactesritten in given style. Figure 6.15
presents the average prediction accuracy among all wdeggending on the number of styles
n available from the author. From the results we can conclbdednce an author provided
more than 10 styles, we can predict with high accuracy whatsponding styles the author
will be using for other characters. This can speed up thaitrgiof a recognizer, because the
new writer can simply select the styles that are similar eostyles he or she is using, and use
samples from those styles to train the recognizer.
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6.7 Conclusion

We have shown how online handwriting recognition systemdake advantage of centralized,
cloud-based repositories. Incremental training dataympldruth annotations, and the machine
learning framework can usefully reside on a server for theebieof multiple client devices.
We find this particularly fective for symbol sets that occur in mathematical handmgiti

With another meaning of the word “cloud”, our character ggation methods rely on
clouds of points in an orthogonal series fiagent space. The representation of these clouds
of training and recognition support data is quite compatiwang collections of data sets to
be cached locally even on small devices or transmitted deer setwork connections. These
clouds can evolve as new data is received by the server, inmgroecognition. These clouds
also provide a simple butffective method for handwriting neatening, by taking an ayera
point for each style.

We find that placing recognition point sets (“clouds” in oease) in distributed storage and
computing environments (“clouds” in another sense) to bardqularly fruitful combination.

We also demonstrated how the cloud data can be used to impsabdity of the recognizer
by performing semi-automated training based on the datitabl@from other users.



Chapter 7

Factorial Analysis of the Recognition
Algorithm

To understand the influence of factors in the algorithm obgedtion of sequences of ro-
tated characters, we implement its factorial analysiss Thapter is based on the paper “Pen-
Based Computing in Medicine: Factorial Analysis of the Riotalnvariant Recognition Al-
gorithm” [49] that appeared in the proceedings of the 6thadéan Student Conference on
Biomedical Computing and Engineering.

7.1 Introduction

A 2K factorial design allows to evaluate performance of a systepending ork factors with
each factor taking 2 values. This type of analysis receivgaifecant attention due to its sim-
plicity and suficient power in sorting out factors depending on their immacperformance.
A 2K factorial design can be applied in a setting, whéliea of factors is unidirectional —
performance decreases or increases continuously whilet@r fia being changed. Therefore,
selecting two significantly dierent values of a factor and measurinfjetience in performance
is a good starting point in performance evaluation. If thedénce in performance is signifi-
cant enough, a detailed examination may take placerAa2torial design is useful to isolate
experimental errors. In this design each of the experimsentpeated times and it allows to
introduce the error term to the model [36].

We propose to apply the factorial analysis technique tostigate recognition ofi-grams
of characters rotated on approximately the same angle. iiferahce in rotation between
every pair of characters in angram is< 23 (whereg is the noise angle). Havingcharacters
in ann-gram, we look for an angle that allows to minimize likeliltbaf an error in recognition

76
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of the samples. We define likelihood of recognition error as

d,
Yo = p—di

i=1 “'min
Y] = main{%ky € [a1; @z}

whered, is the minimal distance of the test sample (rotated on ampdenong the distances to
convex hulls of nearest neighbours of all training clasaedy.” , d . is the sum ofp minimal
distances for all angles, e.g.

dr:hin = rryn{da|a € [a'min; a’max.l}

dr2nin = nlin{da|da > drlnin & a € [amin; amax]}

whereamin = —amax and angleryay is one of the parameters in the factorial design.
Total error likelihood of samples in-gram is computed as

n
¢ .
Yo = Z ’yl[a—ﬁ;(H,B]
i=1

Wherey{a_ﬂmﬁ] is the minimal likelihood of the-th sample in thex-gram on fr — B; @ + f].
Having found the rotation angle that yields the minimal etikelihood, we normalize
samples with respect to rotation and recognize them withlaegechniques, see Chapter 2.
The rest of the chapter is organized as follows. In Secti@we present the results ob-
tained in factorial design: sign table, estimation of expental error, allocation of variation,
confidence intervals forfects, confidence intervals for predicted responses anficegion of
assumptions. Section 7.3 is devoted to the analysis of mterdepending on the parameter
in the Legendre-Sobolev inner product anfletient datasets. Section 7.4 concludes the report.

7.2 A 2*Factorial Design with 5 Replications

Sign Table We select the following factors for analysis (correspogdmlues are given for
each of the factors)

e The rotation angled): 0.3 and 0.6 radians
e The noise angled): 0.0 and 0.1 radians

e The size of then-gram f): 3and 5
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e | & | &8 | & | &
0.2/-03] 0.1|-0.1| 0.0

01/-03]01]01)|-01
04)-05| 0.0|-0.1| 0.3
03|-05| 00| 00| 0.1
0.3|-0.2| 0.0 |-0.1| 0.0
03|-0.1|-0.1,-0.2| 0.1
0.1/ 00| 00-0.2| 0.1
03] 00|-01}-0.2| 0.1
01/-03]01]02)|-01
01/-03]01]02)|-01
0.2,-04| 00| 02| 0.0
03|-04| 01| 01]|-01
0.3|-0.2| 0.0 |-0.1| 0.0
03/-01-01}-0.1| 0.1
0.2/-01]-0.1| 0.0| 0.0
02/-01-01}-0.1| 0.1

Table 7.1: Experimental errors

e The number of distances to consideifi, d. .. (p): 3 and 5.

We chose to implement &2 factorial design, since we expect all the factors to hayeificant
impact on performance and we would like to perform carefal@ation of the parameters. The
number of experiments in thé2factorial design is feasible.

The model has the form, as discussed in [36] (for all argumehthe sum, refer to the sign
Table A.1)

Y = 0o + Qo Xe + UpXg + OnXn + QpXp + QupXa XB + ... + QopnpXaXsXnXp + €

whereq’s are dfects anck is experimental error. Computation dfects is quite intuitive and
is represented in Table A.1.

Estimation of Experimental Errors Having computed thefiects, we can evaluate the re-
sponsey; for each combination of factors, Xz, Xy, Xp) as

Vi=0o+ QX + QsXg + OnXny + OpXp + OapXey Xg + -+ + QapnpXe; Xg Xy Xp -

The experimental errors are computed as thfedince between the measured and esti-
mated values; = y;; — ¥i. Experimental errors are given in Table 7.1.
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ViV | Yo—V. [ Ya—=VY. | Ya—-V. | ¥5—-V.
04 | 09 | 05 | -07 | -06
03 | 08 | 04 | -03 | 05
09 | -19 | 14 | 14 | 11
06 | -1.4 | 09 | -09 | -08
1.1 0.6 0.8 0.7 0.8
1.1 0.7 0.7 0.6 0.9
0.6 0.5 05 0.3 0.6
0.9 0.6 0.6 0.4 0.7
03 | 08 | 04 | -03 | -06
03 | 07 | 03 | -02 | -05
07 | -13 | -09 | 08 | -1.0
04 | -11 | -05 | 06 | 07
1.1 0.6 0.8 0.7 0.8
1.1 0.7 0.7 0.7 1.0
0.9 0.6 0.6 0.7 0.7
1.0 0.7 0.7 0.7 0.9

Table 7.2: Values ofj; - .

Allocation of Variation The total variation or the total sum of squares is computed as
SST= ) (i - ¥.)
ij

wherey. is the average response for all replications of all combonatof factors. Values of
Yij — Y. are represented in Table 7.2.
SST can be divided into parts as

SST=SS,+S$+S$+SS+...+ SSmp+ SSE

whereS S, = 2rg?, etc.
Values for percentage variation are presented in Table 7.3

Confidence intervals for Hfects The standard deviation of erros,, and termsgierms

_ [SSE o
Oe = —2k(r — 1), Oterms = —\/ﬂ

Confidence intervals, computed@sr t - oerms are presented in Table 7.4. From the table
we can conclude with 95% confidence that all of the factorssayeificant and some of the
interactions are insignificant.
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Parameters| Variation

@ 1.06%
B 86.08%
n 3.99%
p 1.00%

a andp 0.16%
a andn 0.35%
B andn 0.95%
a andp 0.03%
nandp 0.27%
Bandp 0.23%
a, B andn 0.03%
a, B andp 0.03%
a,nandp 0.02%
B,nandp 0.04%
a,B,nandp | 0.00%
Error 5.76%

Table 7.3: Percentage variation

Confidence Intervals for Predicted Responses We compute confidence intervals for re-
sponses for combinations of factors. The standard dewiatiohe mean response, depending
on the number of replications), is

1 1
+ )2,
Nesr M

S = S

wherengs+ is the dfective number of degrees of freedom (DFs) computed as

total number of runs
1 + sum of DFs of parameters usedyin ~

Neff =
Confidence intervals fan= 1, m= 5 andm = oo are given in Table 7.5.

Verification of Assumptions The expressions forfiects shown above are based on the fol-
lowing assumptions:

1. Errors are statistically independent.
2. Errors are Normally Distributed.
3. Errors have constant standard deviation.

These assumptions are validated through visual tests.
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Confidence Intervals lower | upper| Significance

a 95.30| 95.40| Significant

B -0.13 | -0.03 | Significant

n -0.77 | -0.68 | Significant

p 0.11 | 0.20 | Significant

a andg -0.13 | -0.03 | Significant

a andn -0.08 | 0.02 | Insignificant

B andn 0.00 | 0.09 | Insignificant

a andp 0.03 | 0.12 | Significant
nandp -0.06 | 0.03 | Insignificant
Bandp -0.01 | 0.09 | Insignificant
a, B andn -0.08 | 0.01 | Insignificant
a, Bandp -0.03| 0.06 | Insignificant
a,nandp -0.06 | 0.03 | Insignificant
B,nandp -0.04 | 0.06 | Insignificant
a,B,nandp -0.03 | 0.06 | Insignificant

Table 7.4: Confidence intervals for the factors and intévast

Independent Errors  We want to make sure that the errors are independently antigdéy
distributed in the model. We plot residuals versus the ptediresponse. The scaterlpot is
given in Figure 7.1. The scaterplot testifies that our assiomps correct, since there is no
visible trend in the points.

Normally distributed errors  To verify this assumption, we build normal quantile-quknti
plot of residuals, shown in Figure 7.2. As we can observe fitoarplot, the graph is approxi-
mately linear, which testifies that the assumption is carrec

Constant standard deviation of errors (homoscedasticity) We analyze the scaterplot 7.1,
see section 14.7 of [36], and look if the spread of points ffiedent parts of the graph is
significantly diferent. We observe that in fact the points are distributedaqmately the
same and, therefore, we conclude that the errors satisfaggtemption of constant standard
deviation.
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Exper.| ¥ Low(1) | High (1) | Low (5) | High (5) | Low (o) | High (c0)

1 94.73| 94.26 | 95.19 | 9446 | 95.00 94.53 94.92
2 94.88| 94.42 | 9534 | 9461 | 95.15 94.69 95.08
3 94.01| 9355 | 9448 | 93.74 | 94.28 93.82 94.21
4 94.43| 93.96 | 94.89 | 94.16 | 94.70 94.23 94.62
5 96.14| 95.68 | 96.60 | 95.87 | 96.41 95.95 96.33
6 96.14| 95.68 | 96.61 | 95.87 | 96.41 95.95 96.34
7 95.84| 95.37 | 96.30 | 95,57 | 96.11 95.64 96.03
8 95.99| 9553 | 96.46 | 95.72 | 96.26 95.80 96.19
9 94.87| 94.41 | 9533 | 94.60 | 95.14 94.68 95.06

10 | 94.95| 94.49 | 9541 94.68 | 95.22 94.76 95.14
11 | 94.42| 93.96 | 94.89 94.15 | 94.69 94.23 94.62
12 | 94.70| 94.24 | 95.17 94.43 | 94.97 94.51 94.90
13 | 96.14| 95.68 | 96.61 95.87 | 96.41 95.95 96.34
14 | 96.20| 95.74 | 96.67 95.93 | 96.47 96.01 96.40
15 | 96.03] 95.57 | 96.49 95.76 | 96.30 95.83 96.22
16 | 96.13| 95.67 | 96.59 95.86 | 96.40 95.94 96.33

Table 7.5: Confidence intervals for= 1, m= 5 andm = ~

7.3 Evaluation of the Parameteru in the Legendre-Sobolev
Inner Product

7.3.1 Experimental Error

To estimate the jet scalein the Legendre-Sobolev inner product, we implement theehiod
the form of two-factor full factorial design without repéiions. We run the experiments on
the original dataset of samples (samples are not subjezatyttransformation intentionally).
Parametep is evaluated as follows. We first evaluate the average esteramong all datasets
foru = &, 4 = § andu = 7. Having found thap: = = performs slightly better than other
alternatives, we evaluate error for= 3—12 u= 3% We observe: = 3i2 to perform slightly better
and therefore we evaluate error foE 6—14 andu = 614 Both of the last two alternatives perform
worse tharnu = Siz and therefore we stop evaluation. Error rate fdfedent values of: for
different datasets and the average error are given in Table 7.6.

7.3.2 Two-Factor Full Factorial Design

Introduction The factors considered are

1. Parameten (denoted a#\ and dfects asy) with the number of observatiorss= 9.
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Figure 7.1: Scatter plot of residuals versus the predicsdanse

Dataset\u

1

1

3

1

3

1

3

1

5

64
2.12

32
2.16

64
1.93

16
2.12

32
2.10

8
2.24

16
2.36

4
2.32

16
2.34

2.47

2.57

2.49

2.55

2.61

2.47

2.55

2.57

2.59

2.63

2.63

2.67

2.63

2.55

2.65

2.77

2.75

2.79

2.56

2.34

2.40

2.42

244

2.50

2.60

2.58

2.62

2.44

2.34

2.60

2.72

2.68

2.82

2.76

2.80

2.78

2.51

2.22

2.32

2.26

2.24

2.34

2.36

2.40

2.36

2.54

2.37

2.43

2.37

2.43

2.41

2.48

2.58

2.64

2.47

2.56

2.52

2.54

2.52

2.54

2.68

2.73

2.79

2.90

2.69

2.75

2.77

2.77

2.75

2.77

2.73

2.75

Boooxlovm.booml—\

2.67

2.53

2.40

2.50

2.50

2.46

2.52

2.46

2.38

mean

2.53

244

2.45

2.49

2.48

2.52

2.58

2.59

2.60

Table 7.6: Recognition error for lierent values of for different datasets

2. Datasets (denoted Bsand dfectsg) with the number of observatioits= 10.

Variation of the factors is shown in Table 7.6.

According to [36], the additive model for a two-factor desigithout replications is

Yij =Y. +aj+pBi+ 8

wherey; is the observation in the experiment with the first factdoeing at levelj and the
second factog being at level, y. is the mean response; is the éfect of factore at levelj, §;

is the dfect of factorg at leveli, andg; is the error term.
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Figure 7.2: Normal quantile-quantile plot for residuals
1 1 3 1 3 1 3 1 5
H 64 32 64 16 32 8 16 4 16
yj|253| 244 | 245 | 249 | 2.48 | 2.52| 2.58| 2.59| 2.60
«; | 0.01| -0.08| -0.07| -0.03| -0.04| 0.00| 0.06| 0.07| 0.08

Table 7.7:y;; anda; values

Computation of Effects We findy. as the mean observation for all combinationa @ndg

Thena; andg; are found as
aj=Y;-Y.Bi =Y —VY.

Values fory.; ande;, yi. andg; are given in Tables 7.7 and 7.8 respectively.

Experimental error Estimated response is computed as

9ij = )7 + @j +,3i.
Then experimental errors, see Table 7.9, are found as
& =VYij — ¥ij-

Allocation of Variation  The following formula takes place

SSY=SD+SSA+SSB+SSE
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Datasetd 1 2 3 4 5 6 7 8 9 10
yi. 2.19| 254|2.67| 250 | 2.66| 2.33| 2.47 | 2.60| 2.77| 2.49
Bi -0.33| 0.02| 0.15| -0.02| 0.14| -0.19| -0.05| 0.07| 0.24 | -0.03

Table 7.8:y;. andg; values

3 4 5 6 7 8 9

-0.08| 0.05|-0.19| -0.04| -0.05| 0.06 | 0.11 | 0.06 | 0.07
-0.08| 0.11| 0.02 | 0.04 | 0.11 | -0.07| -0.05| -0.04 | -0.03
-0.05| 0.03 | 0.07 | -0.01| -0.09| -0.02| 0.03 | 0.01 | 0.03
0.06 | -0.08| -0.03| -0.04| -0.02| 0.01 | 0.04 | 0.01 | 0.04
-0.23|-0.24| 0.01 | 0.09| 0.06 | 0.16 | 0.04 | 0.07 | 0.04
0.17 | -0.03| 0.06 | -0.04| -0.06| 0.01 | -0.04| -0.01| -0.06
0.06 | -0.02| 0.03 | -0.07| -0.01| -0.06| -0.05| 0.04 | 0.08
-0.14| 0.05| 0.00 | -0.02| -0.03| -0.05| 0.02 | 0.07 | 0.11
0.13| 0.01 | 0.06 | 0.04| 0.04|-0.01| -0.06| -0.11| -0.10
0.17 | 0.12 | -0.02| 0.04 | 0.04 | -0.03| -0.04| -0.10| -0.19

=
N

||~ oo A w N k=

[EY
o

Table 7.9: Experimental error

where
SSY= >y}, SD=ah?,SSA=b ) o}, SSB=a) pLSSE= ) &
] i i ij

Percentage of variation explained by factérgparametey in LS inner product)B (dif-
ferent datasets) and error are 9.47, 72.90 and 17.63 respgctTherefore, selection of the
dataset has the greatest impact on performance.

Analysis of Variance We compute the degrees of freedom for various sums as follows
SSY=SO+SSA+SSB+SSE

ab=1+(a-1)+({b-1)+@-1)b-1)
Then we compute the mean squares as

SSA SSB SSE
MSA= >22'MsB= 22 ° MSE= — >>=
SA= o MSB= g MSE= o

Then theF-ratios to test the significance of factdgksandB are

= _Msa__wMsB
ATMSE ® MSE
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Effect | Mean Hfect | Stand. Dev, Lower Bound| Upper Bound
u 2.52 0.01 2.50 2.54
A
6—14 2.53 0.26 2.01 3.06
3i2 2.44 0.26 1.92 2.97
s 2.45 0.26 1.93 2.98
L 2.49 0.26 1.96 3.01
= 2.48 0.26 1.96 3.01
2 2.52 0.26 1.99 3.04
i 2.58 0.26 2.06 3.11
%1 2.59 0.26 2.07 3.12
1—5;3 2.60 0.26 2.08 3.13
B
1 2.19 0.25 1.69 2.69
2 2.54 0.25 2.04 3.04
3 2.67 0.25 2.17 3.17
4 2.50 0.25 2.00 3.00
5 2.66 0.25 2.16 3.16
6 2.33 0.25 1.83 2.84
7 2.47 0.25 1.97 2.97
8 2.60 0.25 2.09 3.10
9 2.77 0.25 2.26 3.27
10 2.49 0.25 1.99 2.99

Table 7.10: Confidence intervals foffects

Both factors are significant.
Confidence intervals for dfects The standard deviation is computed as

a-1 b-1
= WISE s = s, = %\ s = o

The confidence intervals are presented in Table 7.10.

7.3.3 Visual Verification of Assumptions
We verify the following assumptions
Independent Errors The plot of residuals versus the predicted response is givéig-

ure 7.3. The scaterplot testifies that our assumption igcgrsince there is no visible trend in
the points.
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Figure 7.3: Scatter plot of residuals versus the prediadsdaonse

Normally distributed errors  To verify this assumption, we build normal quantile-qukmnti
plot of residuals, shown in Figure 7.4. As we observe fronplbg the graph is approximately
linear, which testifies that the assumption is correct.

Constant standard deviation of errors (homoscedasticity) From the scaterplot 7.3 we ob-
serve that spread of the points is approximately the sametharkfore, the errors have ap-
proximately constant standard deviation.

7.4 Conclusion

In Section 7.2 we performed an investigation of performaoicéne recognition algorithm of
rotated characters in amgram depending on 4 factors: angle of rotation, norsand the
number of samples in computation of error likelihood. Thpeskmental runs were repeated
five times to estimate the error. We observed that the noigke dras the mostfiect on per-
formance and causes about 86% in variation of the recognitite, then comes the value of
n, causing 4% variation, and then rotation angle causing d#éyof variation. These results
demonstrate that the algorithm is highly invariant to riotat We also determined with 95%
confidence that all of the factors are significant, but sonteractions are not. The confidence
intervals for the predicted response foffdient values o (the number of replications): 1, 5
andoeo were shown as well. Finally, we presented visual verificatibassumptions that are in
the core of the factorial design.

In Section 7.3 we focused on evaluation of the classificatioar of the recognition algo-
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Figure 7.4: Normal quantile-quantile plot for residuals

rithm for different values oft and diferent datasets. We computed allocation of variation and
discovered that selection of the dataset has larger impapedormance than the jet scale
In the analysis of variance we found both of the factarydlues and datasets) to be signif-
icant. We also computed confidence intervals fide@s and performed visual verification of
the assumptions.

The results obtained are valuable for better understanafirigje character classification
algorithm and the influence of the configuration parameterissqperformance.



Chapter 8

Linear Compression of Digital Ink via
Point Selection

Each year more devices support digital ink in some form, &ptare, processing or recog-
nition. These devices have a wide range of form factors asourees, from small hand-held
devices to digital whiteboards. These devices are usedriougconfigurations, individually,
tethered for a single user, or in multi-party collaboratidarious vendor-specific binary for-
mats are used to represent digital ink, and there is the vemeldral XML format InkML.
With this increased use of digital ink, itsheient handling has become increasingly important.
Small devices need to be able to handldiiceently. On more powerful devices, ink-handling
applications may need to store a significant amount of moakal th support recognition [50].

In addition, the sampling frequency and spatial resolutibinardware has been increasing
over time, creating opportunities and challenges for irdcpssing applications. The opportu-
nities are associated with the possibility of more detadledlysis, since a device can capture
in high precision variations of pen movement. On the othedhauch high volumes of ink
data require extra resources for processing and storage.

We take the view that lossless compression at time of inkucaps not a meaningful
objective as each ink capture device has a resolution lindtsampling accuracy. So long as
the reconstructed curve lies within these limits, lossy lasdless compression are equivalent.
For our own applications involving recognition, losslessnpression has no benefit. Small
perturbations in strokes give symbols that a human readeldwvecognize as the same [50].

This chapter is based on the paper “Linear Compression atdDigpk via Point Selec-
tion” [52] co-authored with Stephen M. Watt, that appeanmedhie 10th IAPR International
Workshop on Document Analysis Systems.

89
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8.1 Introduction

We present a method to compress digital ink based on pieedimisar approximation within
a given error threshold. The objective is to achieve goodpression ratio with very fast ex-
ecution. The method is designed and especidligotive on types of handwriting that have
large portions with nearly linear parts, e.g. hand drawmggtaic objects. In simple terms, this
problem is solved by removing points that do néeat the shape of the curve significantly,
while the error between the original and the approximatumyes remains within a threshold.
The method can be viewed as a dynamic adjustment of the gefgibints, depending on the
shape of a stroke. More points are removed from straighggoms than regions with high cur-
vature. Thus, we would expect geometric drawings with mamgslto compress particularly
well. We compare this method with an enhanced version of adiee functional approxima-
tion method, finding the new technique to give slightly wocsenpression while performing
significantly faster. This suggests the presented methondoeaused in applications where
speed of processing is of higher priority than the compogssitio.

We have two subproblems that need to be solved:

1. decomposition of digital ink into pieces, suitable fongwession, and

2. compression of the individual pieces.

We present fast, easy to implement solutions to both of tpeselems and show exper-
imentally that the technique yields good compression fardiaitten text and even better
compression for hand drawn geometric objects. The disdussthod is most useful for com-
pression of linear pieces of a curve and can be implementaghag of a multipurpose hybrid
compression algorithm.

We also implement an enhanced version of the compressiohochetescribed in Sec-
tion 2.9 by representing céicients in a more compact form. We measure the compression
rate and time required to process the experimental datasdtsompare with the performance
of the linear method. While losing in compression, the lmaathod is found to perform more
than 10 faster.

The chapter is organized as follows. An improvement to thectional approximation
method is proposed in Section 8.3. The linear compressigorighm is explained in Sec-
tion 8.4. Section 8.5 presents details about the experahsatting and the results obtained.
Section 8.6 concludes the chapter.
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8.2 Related Work

8.2.1 Digital ink compression

A number of digital ink compression algorithms have beerettgped to date. One of the most
popular lossless schemes is to use secofidrdnces [59].

An efficient lossy method was developed in [50]. In this work we gisgsent results of
compression with the industry standard — the secofig¢rénce method. This was based on
piecewise functional approximation of curves by truncaigtiogonal polynomial series and
representation of the pieces by the approximating serieficients. The desired approxima-
tion accuracy is achieved by dynamically changing the degf@pproximation and the size of
pieces.

Another lossy algorithm was presented in [46], based orkstsimplification. It suggests
to eliminate excessive points, forming a skeleton of thgioal curve. The algorithm is based
on iterative computation of chordal deviation — the diseabetween the original curve and
its approximation. Points with the minimal distance are oeed until the distance becomes
larger than a threshold. A “substantially lossless” metivad proposed in [10]. It allows the
compression error's magnitude to be not greater than thelgagrerror's magnitude. In this
approach, the original curve is split into segments and sagment is represented by some
predefined shape, such as a polygon, ellipse, rectanglezeer®eirve. It is not mentioned how
to obtain the shapes from a curve and what compression thieagh gives.

A method for selection of the minimal number of points to eant a curve within an error
bound was proposed in [32]. The technique is based on dynamgramming and has linear
complexity in the number of points selected.

8.2.2 Approximation of univariate convex functions

Several “sandwich” algorithms have been proposed for aymration of univariate convex
functions. For example, see [19] for a method that requiezvative information along with
the function values, and [65] for an iterative algorithm wioaly function values are available.
The latter technique can be briefly described as follows. si@tam a convex function defined
on an interval and some threshold of approximation erfoApproximation on the interval is
obtained by joining its boundary points. Let the approxigraerror of the interval bes, and

0, > 6. Then the intervall is split into subintervals, according to a partitioningarul'he proce-
dure is repeated until the approximation error becomesthes® for each subinterval. Several
partitioning rules are considered, e.g. the maximal euts that selects the point located on
the maximal distance to the approximation curve. The algariconverges quadratically if
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certain conditions on derivatives are satisfied, and ligaarder other conditions.

8.2.3 Decomposition of digital curve in inflection-free pats

Several methods exist for decomposition of digital curvesagments without inflection, e.g.
see [13, 14]. However, these algorithms are primarily desiigfor digital images to extract
convexconcave pieces of an object to determine meaningful pantsomtrast, we are inter-
ested in the decomposition of digital ink. We note that théhoes developed for binary images
are in most cases not suitable for our purpose, since digkas represented as a sequence of
points on a curve, rather than as a field of pixels in two dinoerss

8.3 Enhanced Compression via Functional Approximation

We propose a way to improve the functional approximatiohnégue developed in [50]. As
mentioned earlier, that method is based on piecewise appation of curves by truncated
series in an orthogonal polynomial basis. In [50] we experitad with Chebyshev, Legendre,
Legendre-Sobolev polynomials and Fourier series. It wasdoempirically that Chebyshev
polynomials yield the best compression, as reported in [BOjhe present work our goal is to
improve performance of the method with Chebyshev polyntsaiathe orthogonal basis. The
improvement is to be achieved by representingitcents in a more compact form.

We consider the adaptive segmentation scheme of [50]. febrteace, the degresof the
approximation is selected dynamically. A higher degreeiples a more accurate approxima-
tion of a curve, but increases the compressed size. In th@iaeacheme, the size of dbe
cients is also selected for each trace independentlyffiCeats are recorded as floating-point
numbers with base 2. The significand and the exponent ars teoplement binary integers,
since this is the representation that is most often usedpi@sent integers in computing de-
vices. The significand is encodedarbits, while the exponent is ip bits. The value op is
fixed, and the value dd is dynamically adjusted for each stroke. The following es@ntation
of each information channel of a traces proposed:

e Encode the 0 order céiecient in 2a + p bits, since this cd&cient regulates the initial
position of the trace and is typically larger than the reghefcodficients. This number
of bits is device-dependent and for the test device thisevalppears appropriate with
respect to the maximal non-zero ¢daents occurred.

¢ Find the coéicientcy = max|c,i = 1..d and encode it ia + p bits.
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e Encode cofficientsc;, j = 1..d, as two's complement binary integers = ["’C—H in by
bits, where x] represents rounding ofto the integer.

Thus, a tracéis recorded as

8;di 11C10C1MmI 11.-.F 16, A2C20CoM I 21..F 24 .. AD

whereg is the number of bits for encoding the significaddis the degree of approximation;
4; is the initial value of parameterization of a piegecjo is the 0-order coficient; cjy =
max|Cyl, k= 1..d; ry = [%1 Cjk is thek-th codficient of thej-th piece. This dters from the
method of [50] by having the cdigcientsc; represented as scalings rounded to integers rather
than as significand-exponent pairs.

8.4 The Linear Compression Algorithm

8.4.1 Decomposition into Inflection-Free Parts

The method described in [65] is not suitable for digital irk@iginally presented, since it
requires parameterization and segmentation. We develogtloah that does not require pa-
rameterization and can be used as the first step in processing

Our compression method works with pieces locally curvingme direction or the other,
but not changing back and forth. To be more precise, the csimeeld be decomposed into
parts where the second derivative has constant sign, i.eameal vector in the Frenet frame
is pointing to the same side of the curve.

Definition We say that a sequence of points,f/1), (X2, ¥2), ..., (X», Yn) IS aninflection-free
segmentf and only if the polygon formed by these points, after jomi(x, y1) and n, Yn), is
convex.

The property of a convex polygon that every internal angleess than or equal to is
used in theonline decomposition Algorithm 8. The algorithm, in the body of thiile loop,
lists operations performed on each incoming ink point taoba sequence of inflection-free
segments. This takes into account that

e Two points are considered equal, if their coordinates avaleq

¢ |P| denotes the number of points in the It
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Algorithm 8 ForminflectionFreeSegments()
Input: Points— a stream of input points
Output: C — a list of inflection-free segments

C <[] {list of inflection-free segments fouhd
S « [] {current segment being collected
i« 0 {index of current point without duplicati¢n
while PointshasNext()do
P « PointsgetNext()
if i =0orP=# Pji_; then
Pi <P
if |S| > 2then
if P; = Pgthen
Append the listS to the end of the lis€
S 1]
else
A < Angle(Pi_2,Pi_1,P) — =«
Ageg — Angle(P;, Po, P1) — 7
Aend < Angle(Pi_1, Pi, Po) - n
if AAXA_1<0
or Ay X Aeng < 0 0or Ageg X Aeng < 0 then
Append the listS to the end of the lis€
S <11
end if
end if
AppendP; to the end of the lisg
i—i+1
end if
end if
end while
If S is non-empty, append it to the end of the {5t
return C

o Angle(P, Q,R) is the “oriented” angle between vecto@ and QR In other words,
Angle(P, Q,R) = 27 — Angle(R, Q, P). These angles can be found with the dot and cross
products of given vectors.

o Ageqis the complement of the oriented angle made by the beginm'og)rPo_Pi and the
last point.Agq is the complement of the oriented angle made by the endirtgmec, P;
and the first pointA; is the complement of the oriented angle made by the mostrdurre
three points.

e We test for products less than zero to detect changes irtidinesf curvature. Two angles
in the same direction will give a positive product (either+ag + or — x —) and three
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collinear points will give a zero product.

8.4.2 Compression of Inflection-Free Parts

Once the curve is decomposed as a collection of inflectieagegments, each piece is a subject
to compression. Our compression technique is similar tosdrawich algorithm proposed
in [65]. However, rather than looking at the lower and uppaurids of a function, we find the
distance between a curve and its approximation. If eithenthximal errof] - ||max Or the root
mean square errdlr ||,ms 0N an interval is greater than the respective threshglgor €, the
curve is split into two parts. Other norms on the space ofesioould be used if desired. The
steps are presented in Algorithm 9, considering ftfast and j.last are respectively the first
and the last points of the interval

Definition We write pw(.) for the piecewise linear curve defined by the list of polnt$f two
pointsa andb occur in a listL, with a precedingo, then we say thatg] b] is anintervalin L.
We writeL|l for the sublist ofL restricted to the intervdl

The point of division is found with one of the partitioninges:
Rule 1. Based on the maximalistance the decomposition point is selected based on the
distance from the point to the line that goes through the Hagnpoints of the interval.
Rule 2: Based on thangleformed at the point: if all of the oriented angles within tiegment
are less tham then the minimal angle is considered, otherwise (when athefangles are
greater tham) the maximal angle is found.

8.4.3 Complexity

The decomposition algorithm processes each incoming poinbnstant timeO(1). There
are no additional operations at the last input. It is onlimethat after each point a valid
decomposition is maintained.

The best case time complexity of compression of a pieC¥n3. If the splits always divide
a segment into two equal parts, and the algorithm continnglkthere is a split at every point,
the cost i<O(nlogn). If the splits are made unequally, always splittmgoints as 1 and — 1,
then the cost i©(n?).

8.4.4 Correctness

The termination condition of CompressCurve merits attentif a function satisfies a maxnorm
bound on each element of a partition, then it satisfies thenorax over the union of the
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Algorithm 9 CompressCurv&, R)

Input: S — a list of points for an inflection-free segment
R — a patrtitioning rule (rule 1 or 2)

Output: L — a list of points such that
IPW(S) — pW(L)llmax < €max and
IPW(S) — pw(L)llrms < €&ms

{J is a stack of intervals to be refinéd.
J « [ Interval with first and last point 0§ ]
L[]
while J #[] do
j « Pop an interval frond
a « j.first;b « j.last
if lIpw(SIj) — pW(j)limax > €max
or [[pw(SIj) — pw(j)llrms > &ms then
{Split j according to ruldk at some point in S}
j1<[ac
j2 < [c.b]
Pushj, and thenj; onto the stackl
else
Appenda and therb to the end of list.
end if
Remove elemeng from J
end while
return L

parts. For RMS, note that if a domaihis partitioned ady, ..., D, and /Y op, T(a)/IDil < €,

then Cacp, ++++ + Zacn,) (@) < (D1l + -+ IDnl)e? 50 Taep T(8)/ID] < €, and takef(a) =
(S(a) - S*(a@)*.

8.4.5 Discussion

Binary Encoding of Pointghe sequence of points of a compressed trace can be encoded in
binary for compact representation. Coordinates in oursgdtaave absolute value not greater
than 22 and can be recorded as two’s complement integers in a segloégooups of 14 bits.

Drifting of ApproximationThe presented compression method is not suitable for regheat
resampling. While the approximation to each inflectiorefsegment will lie within any re-
quired error bound, the approximation will lie completety@ne side of the input curve. If the
resulting piecewise linear function is then resampled asdmpressed repeatedly, systematic
drift may occur. To address the issue of drift under repeetitesampling and recompression,
the line segments could be positioned to cross the origumadecso that the error is equal on
both sides of the original.
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Figure 8.1. Approximation of a sample withfiirent error thresholds (dash line) and the
original curve (solid line)

8.5 Experiments

8.5.1 Experimental Setting

The experimental dataset was collected in the Ontario Rels€zentre for Computer Algebra
with a tablet device with the following specifications: 25d6i resolution, 133 pps data rate,
and+.02 sampling error.

Two types of digital ink were collected for the experiments

e Handwriting. Diferent individuals have provided various parts of regulaglih text
to ensure variations in length of strokes and writing styleom the whole collection,
we randomly selected 46 traces containing, on average, iBispgach. This number of
traces is feasible for the adaptive functional approxiorathethod, that requires signifi-
cant amount of time.

e Geometric objects. We collected simple two-dimensionalngetric objects, such as
triangles, rectangles and lines. Then we randomly seleg8ettaces containing, on
average, 68 points each in order to achieve feasible rurtimmgyof the functional ap-
proximation compression algorithm.

In the experiments, the root mean square error was takeishealty as a portion of the
maximal errorems = %emax. Unlike the results reported in [50], we look at the absqlat
relative, approximation error and the binary stream ofitcients does not undergo further gzip
compression. The compressed size is reporteéd} 43, whereS, is the size of the compressed
dataset an&, is the size of the original dataset.

The compression algorithms were implemented and run on éMaplon an Intel Core 2
Duo 2.40 GHz CPU with 2GB RAM, running Ubuntu Linux versiom®24-19-generic.
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Table 8.1: Compressed size (%) as a function of the maxinat é,.,) and the number of
exponent bits|f) for 7 codficient bits ;) for the handwriting dataset

p

€max

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

21.5

14.7

12,5

11.6

10.3

9.6

9.0

8.5

8.1

7.9

7.6

7.3

7.1

6.9

6.7

a

19.2

13.2

11.3

10.3

9.2

8.7

8.1

7.6

7.3

7.1

6.8

6.5

6.3

6.2

6.0

5

19.0

13.6

11.7

10.8

9.5

8.9

8.3

7.9

7.5

7.3

7.0

6.7

6.5

6.4

6.2

Table 8.2: Compressed size (%) as a function of the maximai &,o,) and the number of
exponent bitsf) for 7 codficient bits p,) for the dataset of geometric objects

b €max 1 2 3 4 5 6 7 8 9 | 10| 11| 12| 13 | 14 | 15
3| 223172 150 13.7| 125| 11.7] 109 | 105 | 98| 95| 89| 87 | 84| 81| 7.8
4| 206 150 130 11.9| 108 | 100| 93 | 90 | 85| 82| 7.7 | 76| 7.3 | 7.1 | 6.8
5| 218 162 | 130 | 128 | 116 | 108| 99 | 96 | 91 | 86| 82 | 80| 7.7 | 74| 7.1

Table 8.3: Compressed size (%) as a function of the maxinat é,.,) and the number of
codficient bits p;) for 4 exponent bitsyf) for the handwriting dataset

br

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

20.3

14.6

12.2

11.0

9.7

8.7

8.2

7.5

7.2

7.0

6.6

6.3

6.1

5.9

5.8

18.6

13.5

114

10.0

9.0

8.4

7.6

7.2

7.0

6.7

6.5

6.2

6.0

5.8

5.6

18.5

13.0

111

10.0

8.9

8.3

7.8

7.4

7.0

6.8

6.6

6.3

6.1

5.9

5.8

19.2

13.2

11.3

10.3

9.2

8.7

8.1

7.6

7.3

7.1

6.8

6.5

6.3

6.2

6.0

19.1

13.6

11.7

10.7

9.6

9.0

8.4

7.9

7.6

7.4

7.1

6.8

6.6

6.5

6.3

8.5.2 Experimental Results

Optimal values of p and;ldn the experiments we measure compressed sizefi@reint values

of approximation error. Figure 8.1 shows an original curmd Bnear approximation for dif-
ferent maximal error thresholds. From the figure, one caemeshat compressing the curve
with the maximal error of up to 5 has almost nideet on representation of the curve and can
be used in the applications that do not require high pretisfonk, e.g. recognition.

In the first set of experiments, we look for the optimal valoép andb, in a simplified
manner, see Section 8.3. With fixed = 7, the value ofp was changed and the compressed
size was measured for both datasets. Results for handgvaitid geometric objects are shown
in Tables 8.1 and 8.2 respectively. The valugef 4 was found to be the mosfieient. With
fixed p = 4, b, was changed to find the optimal value. The compressed sizédlsdfalatasets
of handwriting and geometric objects are shown in TableaB®8.4 respectively. The value
of b, = 5 was selected. In a production setting, a more detailediatiah, possibly a grid
evaluation, should be performed.

One can observe that the compression rate as a functiproob, is not changing mono-
tonically, which can be explained by the fact that large galof p or b, may result in large
approximation chunks and vice versa.
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Table 8.4: Compressed size (%) as a function of the maxinat é,.,) and the number of
codficient bits p,) for 4 exponent bitsyf) for the dataset of geometric objects

b fmax | g 2 3 4 5 6 7 8 9 | 10| 11| 12| 13| 14 | 15
T
4 |195| 146 | 128 | 116 | 106 98 | 91|88 82| 79| 74| 72| 69| 6.7 6.3
5195|144 | 124 | 114 | 104 | 97 | 90| 87| 80| 77| 73| 71| 68| 66| 6.3
6| 202|147 | 126|116 | 105| 99 |91 |88| 83| 79| 75| 73| 71| 68| 6.6
7| 206 | 150 130 119 108 | 100 93| 90| 85| 82| 77| 76| 73| 71| 6.8
8| 202 147 | 126 | 116 | 105| 99 (91|88 |83| 79| 75| 73| 71| 68| 6.6
Table 8.5: Time (in seconds) for compression of the handwridataset
€max
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L 25 20 21 21 17 17 17 19 18 15 16 15 15 20 16
F 879 | 1083 | 1287 | 1498 | 1700 | 1982 | 2188 | 2326 | 2479 | 2618 | 2727 | 2915 | 3019 | 3138 | 3327
Table 8.6: Time (in seconds) for compression of the datdsggt@metric objects
€max
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L 12 10 8 9 8 7 8 8 9 9 9 8 8 9 8
F 1188 | 1355 | 1781 | 2034 | 2185 | 2346 | 2475 | 2593 | 2710 | 2830 | 2980 | 3086 | 3180 | 3281 | 3333

Comparison of functional approximation with linear compression The compression rate

of the linear method was measured for the two segmentaties explained in Section 8.4.2 on
both datasets. Figure 8.2 presents the results of the &umadtapproximation and linear com-
pression methods for fiierent values oé,ax. The partitioning rules show similar performance
on the handwriting dataset and almost identical on geomebjects. As expected, due to
the nature of the linear algorithm, we obtained higher casgion of geometric objects than
handwritten text. The functional approximation methodvehigimilar performance on both

datasets.

The compression time is given in Table 8.5 for the datasean€livriting and Table 8.6 for

geometric objects. The linear method performs almostimistacompared to the compression
with higher-order functional approximation. One can olea trend of increase of the exe-
cution time of the functional approximation technique wtle increase of the error threshold.
In fact, the running time is around three times higherdgy = 15 compared to the execution

time for enax = 1. This growth arises because more combinations of appeiiomdegree and
number of coéficient bits become suitable for approximation of pieces. liat&on of those
combinations is computationally intensive and can reqsigaificantly more time for high

resolution devices.
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8.6 Conclusion

We have examined two methods for the compression of digitabr, more generally, sam-
pled curves in any dimension. One method selects a subsbedample points to give a
piecewise linear function that is within a given toleran¢e¢he original. The second method
adapts previous work based on orthogonal series apprasimaépresenting the céients
more dficiently. Our experiments show the piecewise linear appnation method to perform
about 10& faster than the functional approximation algorithm, buyiélds a less compact
representation. The proposed piecewise linear compressihnique can be used when sim-
plicity or speed are important, such as for hardware imptaaten and data transmission. On
the other hand, the functional approximation method isablet for applications that require
compact storage of ink. Depending on the application ancttioéce of functional basis, in
this representation certain recognition operations magydoformed without decompression.



Chapter 9

Conclusion

9.1 Retrospective

The theoretical and experimental results reported in tiesis are aimed to enhance perfor-
mance of handwriting recognition systems based on orthalgagpproximation of curves by
making them more robust, more accurate and adaptive. We\ackbmpact representation
of ink for efficient processing, transmission and storage. The presesgatts form a valu-
able asset to developers of frameworks for manipulationraadgnition of digital ink. These
contributions can be naturally integrated in the cloud emument. Some ideas can also be
considered as the basis for cloud-based classificatiorragsn other pattern recognition and
machine learning domains, where public knowledge is ugefumproving individual perfor-
mance. In particular, we make the following contributions.

(1) We perform optimization of recognition of isolated cheters by finding the value of
the jet scale in the Legendre-Sobolev inner product and ¢gee@ of approximation of char-
acter strokes that result in the lowest classification eride also propose an algorithm for
recognition of groups of rotated characters, taking achgabf the natural habit of humans to
write symbols with similar degree of transformation. THhigasithm can be extended to shear
and more generalf@ne transformations.

(2) We propose methods for robust classification of samdissilostantially smaller size.
We propose a unit of measurement of the size and apply thisungaent to classification
algorithms based on the size only. We also propose a recognitethod based on adjustment
of the distance to convex hulls of nearest neighbours fasels with small samples.

(3) We develop an adaptive classification method. This nteib@pplicable to the cloud
environment since the training dataset of a user is congtavndlving and synchronized with
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the cloud. All the pen-based devices used by the writer getifialates from the cloud, thereby
making the continuous training of the applicatidi@ent. We show that the adaptive method
allows significant asymptotic improvement of the authanteead classification rate.

(4) We describe the cloud-based architecture that is dedigmsimplify sharing of training
data across devices and may incorporate other contritsutibtihe thesis.

(5) We also perform factorial analysis of the algorithm fecagnition of groups of rotated
characters to analyze the impact of the configuration paemhef the algorithm. We also
study the influence of paramefeon recognition algorithm, concluding that it is relativelgt
influential.

(6) Finally, we propose and empirically estimate an enhianerd to the compression algo-
rithm, based on approximation of strokes with orthogon&pomials. We also develop a fast
compression scheme based on piecewise linear representétiurves.

9.2 Future Work

For the future work, we recognize the importance of develggin algorithm for recognition
of mathematical expressions in the cloud environment. d&ssthe challenges associated with
recognition of two-dimensional formulas, an important gfien posed — which tasks should
be delegated to the cloud and which are to be computed oniéme.cThe computational tasks
may include segmentation of strokes into characters, retiog, spatial analysis of recognized
characters, building the expression tree and analyzinggretton confidence.

The next interesting problem is syntactic and semantidigation of recognized formulas
in the cloud. The main problem encountered is the absencéxadddictionary of “words” or
“set” of rules that controls the evolution of existing words

Study of applicability of the cloud-based recognition at@tture to other pattern-recognition
domains is probably the primary direction for further resba We believe that the future of
recognition systems is in the cloud due to the number of adgms that it Gers, related to stor-
age of training data, collection of feedback, easy enhaeotwf the classification algorithm,
reliability of service.



Bibliography

[1]
[2]

Cascading style sheets (css) snapshot 2010, May 201C Wking Group.

David W. Aha, Dennis Kibler, and Marc K. Albert. Instanbased learning algorithms.
In Machine Learningpages 37—-66, 1991.

[3] A. Ali, S. Gilani, and N. Memon. Afine invariant contour descriptors using independent

[4]

[5]

[6]

component analysis and dyadic wavelet transfodmurnal of Computing and Informa-
tion Technology16(3):169-181, 2008.

Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Evaaraof multimodal input
for entering mathematical equations on the computeCHit '05 extended abstracts on
Human factors in computing systen@H| EA '05, pages 1184-1187, New York, NY,
USA, 2005. ACM.

Homayoon S.M. Beigi, Krishna Nathan, Gregory J. Clanyd dayashree Subrahmonia.
Size normalization in on-line unconstrained handwritiagagnition. InProc. IEEE Int’l
Conf. Acoustics, Speech and Signal Procesgages 169-172, 1994.

Bora Beran, Catharine Ingen, and Dennis Robert Fatl&uikcope: a participatory geo-
scientific web application.Concurrency and Computation: Practice and Experience
22(17):2300-2312, 2010.

[7] Anne-Laure Bianne, Christopher Kermorvant, and Laaeshikforman-Sulem. Context-

[8]

[9]

dependent hmm modeling using tree-based clustering farettwgnition of handwritten
words. InProc. of the Document RecognitiénRetrieval XVI| 2010.

Kam-Fai Chan and Dit-Yan Yeung. Mathematical expressecognition: a surveyiJ-
DAR, 3(1):3-15, 2000.

Bruce W. Char and Stephen M. Watt. Representing and cteiaing handwritten mathe-
matical symbols through succinct functional approximatim Proc. International Con-

103



104 BIBLIOGRAPHY

ference on Document Analysis and Recognition, (ICDARYyes 1198-1202, Curitiba,
Brazil, September 2007. IEEE Computer Society.

[10] Manijirnath Chatterjee. System and method for ink ordvariting compressionUnited
States Patent No US 6,549,675,B®ril 2003.

[11] Yi-Min Chee, Max Froumentin, and Stephen Watt. Ink markanguage (InkML)http:
//www.w3.org/TR/InkML/. (valid on June 6, 2013).

[12] Y. Chen and X. Ye. Projection onto a simplexxiv preprint arXiv:1101.60812011.

[13] Isabelle Debled-Rennesson, Jean-Luc Remy, and Joe&tpuyer-Degli. Detection of
the discrete convexity of polyominoes. Rroceedings of the 9th International Confer-
ence on Discrete Geometry for Computer Imag&¢Cl '00, pages 491-504, London,
UK, 2000. Springer-Verlag.

[14] H. Dorksen-Reiter and I. Debled-Rennesson. Convexcandave parts of digital curves.
In Reinhard Klette, Ryszard Kozera, Lyle Noakes, and JoadNeickert, editorsGeo-
metric Properties for Incomplete datpages 145-159. Springer Netherlands, 2006.

[15] R.F.H. Farag. Word-level recognition of cursive strifomputers, IEEE Transactions
on, C-28(2):172 -175, feb. 1979.

[16] S. Feng, I. Kogan, and H. Krim. Classification of curvefd and 3d via fiine integral
signaturesActa Applicandae Mathematicagages 903-937, March 2010.

[17] Jon Ferraiolo, Fujisawa Jun, and Dean JackS&walable vector graphics (svg) 1.1 spec-
ification. W3C, January 2003.

[18] Jan Flusser and Tomas Suk. Character recognitiorfiineanoment invariants. IRroc.
of the 5th International Conference on Computer Analysisnaiges and Patternpages
572-577. Springer-Verlag, 2007.

[19] B. Fruhwirth, R. E. Burkard, and G. Rote. Approximatiohconvex curves with appli-
cation to the bicriterial minimum cost flow problenEuropean Journal of Operational
Research42:326-338, 1989.

[20] Oleg Golubitsky, Vadim Mazalov, and Stephen M. WattieDtation-independent recog-
nition of handwritten characters with integral invariants Proc. Joint Conference of
ASCM 2009 and MACIS 2009: Asian Symposium of Computer Matienand Math-
ematical Aspects of Computer and Information Science<CKA3009) pages 252—-261,



BIBLIOGRAPHY 105

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Fukuoka, Japan, December 2009. COE Lecture Note Vol. 22skiyWwniversity, ISSN
1881-4042.

Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt.waod dfine recognition of
handwritten mathematical characters. Rroc. International Workshop on Document
Analysis Systems, (DAS 201pages 35-42, Boston, USA, June 9-11 2010. ACM Press.

Oleg Golubitsky, Vadim Mazalov, and Stephen M. Watt. &gorithm to compute the
distance from a point to a simpleXACM Communications in Computer Algeb#6(2-
180):57-57, June 2012.

Oleg Golubitsky and Stephen M. Watt. Online stroke miodefor handwriting recog-
nition. In Proc. 18th Annual International Conference on ComputeeScé and Soft-
ware Engineering, (CASCON 200®gages 72—-80, Toronto, Canada, October 2008. IBM
Canada.

Oleg Golubitsky and Stephen M. Watt. Online computatd similarity between hand-
written characters. IRroc. Document Recognition and Retrieval XVI, (DRR 2008i}
ume 7247, pages C1-C10, San Jose, California USA, Janu@gy 3@IE and IS&T.

Oleg Golubitsky and Stephen M. Watt. Online recogmitad multi-stroke symbols with
orthogonal series. IiProc. 10th International Conference on Document Analysid a
Recognition, (ICDAR 2009pages 1265-1269, Barcelona, Spain, July 2009. IEEE Com-
puter Society.

Oleg Golubitsky and Stephen M. Watt. Distance-basadsification of handwritten sym-
bols. International Journal of Document Analysis and Recognit{doi 10.100710032-
009-0107-7), 2010.

Isabelle Guyon, Lambert Schomaker, Rkjean Planionddark Liberman, and Stan
Janet. Unipen project of on-line data exchange and receghenchmarks. IRroc. 12th
International Conference on Pattern Recognition (ICPR4)99ages 29-33, Jerusalem,
Israel, 1994. IAPR-IEEE.

P. Hart. The condensed nearest neighbor rule (cojrdgformation Theory, IEEE Trans-
actions on 14(3):515 - 516, may 1968.

Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y Suer @ien D Bui. The role of
size normalization on the recognition rate of handwrittemerals. The 1st IAPR TC3
NNLPAR 1:1-5, 2001.



106 BIBLIOGRAPHY

[30] M.K. Hu. Visual pattern recognition by moment invarianIRE Transactions on Infor-
mation Theory8(2):179-187, 1962.

[31] Rui Hu. Portable implementation of digital ink: Collafation and calligraphy. Master’s
thesis, The University of Western Ontario, London, Ontatianada, 2009.

[32] Rui Hu and Stephen M. Watt. Optimization of point seil@cton digital ink curves. In
ICFHR, pages 527-532, 2012.

[33] David A. Huffman. A method for the construction of minimum-redundanayeso In
Proceedings of the |.R.Fpages 1098-1102, September 1952.

[34] Qiang Huo and Tingting He. A minimax classification apgech to hmm-based online
handwritten chinese character recognition robust agatfise distortions. IMNinth In-
ternational Conference on Document Analysis and RecagmiiCDAR 2007) pages
1226-1230. IEEE Computer Society, July 2007.

[35] Maplesoft Inc. Maple 13 user manual. Technical repddplesoft, 2009.

[36] Raj Jain.The art of computer systems performance analy®n Wiley and Sons, Inc,
1991.

[37] X.Jiang and H. Yu. SVM-JAVA: A java implementation ofdtfsMO (sequential minimal
optimization) for training SVM, 2008.

[38] B.S. Kashin and A.A. Saakya@rthogonal SeriesTranslations of Mathematical Mono-
graphs. American Mathematical Society, 2005.

[39] T. Kohonen.Self-organization and associative memao8pringer-Verlag New York, Inc.
New York, NY, USA, 1989.

[40] George Labahn, Scott Maclean, Mirette Marzouk, lanhRtford, and David Tausky. A
preliminary report on the MathBrush pen-math systenMéaple 2006 Conferen¢c@ages
162-178, 2006.

[41] Bart Lamiroy, Daniel Lopresti, Hank Korth, andfbéleflin. How carefully designed
open resource sharing can help and expand document anadgseerch. IrDocument
Recognition and Retrieval XVIII - DRR 20Mblume 7874, San Francisco, United States,
January 2011. SPIE.

[42] Joseph J. LaViola Jr. Symbol recognition dataset. e report, Microsoft Center for
Research on Pen-Centric Computing.



BIBLIOGRAPHY 107

[43] C. J. Leggetter and P. C. Woodland. Maximum likelihowebar regression for speaker
adaptation of continuous density hidden markov modetsmputer Speec Language
9(2):171 - 185, 1995.

[44] C. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handeritdigit recognition: investi-
gation of normalization and feature extraction techniquRegtern Recognition37:265—
279, 2004.

[45] Cheng-Lin Liu, Masashi Koga, Hiroshi Sako, and HirohiEujisawa. Aspect ratio adap-
tive normalization for handwritten character recognitiom Proc. of the Third Inter-
national Conference on Advances in Multimodal Interfad€I '00, pages 418-425,
London, UK, 2000. Springer-Verlag.

[46] Zicheng Liu, Henrique S. Malvar, and Zhengyou Zhangst&m and method for ink or
handwriting compressioruUnited States Patent No US 7,302,106 RBavember 2007.

[47] Scott MacLean, George Labahn, Edward Lank, Mirette 2dak, and David Tausky.
Grammar-based techniques for creating ground-truthediskerporalnt. J. Doc. Anal.
Recognit, 14:65—-74, March 2011.

[48] Vadim Mazalov. Geometric techniques for digital ink. abter’s thesis, University of
Western Ontario, 2012.

[49] Vadim Mazalov, Dmitry Mazalov, and Anna Pauer. Pendohsomputing in medicine:
Factorial analysis of the rotation-invariant recognit@igorithm. InProc. of the 6th
Canadian Student Conference on Biomedical Computing agihEaring pages pp.85—
89. University of Western Ontario, 2011.

[50] Vadim Mazalov and Stephen M. Watt. Digital ink comptiessvia functional approxima-
tion. Proc. of International Conference on Frontiers in Handwrg Recognition.pages
688-694, 2010.

[51] Vadim Mazalov and Stephen M. Watt. Improving isolated én-context classication of
handwritten characters. pages 82970B—82970B-8, 2012.

[52] Vadim Mazalov and Stephen M. Watt. Linear compressibdigital ink via point se-
lection. InProceedings of the 2012 10th IAPR International Workshopooument
Analysis System®AS ’'12, pages 429-434, Washington, DC, USA, 2012. IEEE Com
puter Society.



108 BIBLIOGRAPHY

[53] Vadim Mazalov and Stephen M. Watt. A structure for adagphandwriting recognition.
In ICFHR, pages 692—-697, 2012.

[54] Vadim Mazalov and Stephen M. Watt. Writing on clouds. Aroceedings of the 11th
international conference on Intelligent Computer Mathénsa CICM’12, pages 402—
416, Berlin, Heidelberg, 2012. Springer-Verlag.

[55] Vadim Mazalov and Stephen M. Watt. Recognition of rigkly small handwritten char-
acters or “size matters”. IRrontiers in Handwriting Recognition (ICFHR), 2012 Inter-
national Conference qrpages 319-324, Sept.

[56] M. Mercimek, K. Gulez, and T.V. Mumcu. Real object rend@n using moment invari-
ants.Sadhana37(6):765-775, 2005.

[57] Paul Mermelstein and Murray Eden. Experiments on casmmecognition of connected
handwritten wordsinformation and Contrql7(2):255 — 270, 1964.

[58] C Michelot. A finite algorithm for finding the projectioof a point onto the canonical
simplex ofR". J. Optimization Theory and Applications0(1):195-200, July 1986.

[59] Microsoft Inc. Ink serialized format specification

[60] R. Mukundan and K. R. RamakrishnaMoment Functions in Image Analysis: Theory
and Applications World Scientific, 1998.

[61] D.I. Perrett, K.A. May, and S. Yoshikawa. Facial shapd pudgments of female attrac-
tiveness Nature 368:239-242, March 1994.

[62] J. Platt. Sequential minimal optimization: A fast algiom for training support vector
machines Advances in Kernel Methods-Support Vector Learn@3:98-112, 1999.

[63] A. Rosenthal, J. Hu, and M. Brown. Size and orientatiommalization of on-line hand-
writing using hough transform. IRroc. of the 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP '97ymé# - Volume ACASSP
'97, pages 3077—, Washington, DC, USA, 1997. IEEE Computeredy.

[64] Jr. Sammon, J.W. A nonlinear mapping for data strucamaysis.|EEE Transactions on
Computerspage 401409, 1969.

[65] A.Y.D. Siem, D. den Hertog, and A. L. Hilmann. A method for approximating univari-
ate convex functions using only function value evaluatidh6-ORMS J. on Computing
23:591-604, October 2011.



BIBLIOGRAPHY 109

[66] Slate CorporationJot - a specification for an ink storage and interchange farrnivéay
1996.

[67] Elena Smirnova and Stephen M. Watt. Communicating erattics via pen-based com-
puter interfaces. Imnternational Symposium on Symbolic and Numeric Algorittion
Scientific Computing, (SYNASC 200&ges 9-18, Timisoara Romania, September 2008.
IEEE Computer Society.

[68] Elena Smirnova and Stephen M. Watt. Context-sensitisghematical character recog-
nition. In Proc. IAPR International Conference on Frontiers in Handimg Recogni-
tion, (ICFHR 2008) pages 604—-610, Montreal, Canada, August 19-21 2008 2@018- C
PARMI Concordia University, ISBN 1-895193-03-6.

[69] Alexander S. Szalay. The sloan digital sky survey anghd. SIGMOD Re¢.37:61-66,
June 2008.

[70] G. Talenti. Recovering a function from a finite numbemadments.Inverse Problems
(3):501-517, 1987.

[71] J. Tokuno, N. Inami, S. Matsuda, M. Nakai, H. Shimoda@mad S. Sagayama. Context-
dependent substroke model for hmm-based on-line handgngcognition. InFron-
tiers in Handwriting Recognition, 2002. Proceedings. Eigmternational Workshop gn
pages 78 — 83, 2002.

[72] Pascal Vincent and Yoshua Bengio. K-Local Hyperplané &onvex Distance Nearest
Neighbor Algorithms. In Thomas G. Dietterich, Suzanna Becknd Zoubin Ghahra-
mani, editorsAdvances in Neural Information Processing System<inbridge, MA,
September 2002. MIT Press.

[73] Toru Wakahara and Seiichi Uchida. Hierarchical decosijion of handwriting defor-
mation vector field using 2dwarping and glotatal &fine transformation. 110th In-
ternational Conference on Document Analysis and Recagmipages 1141-1145. IEEE
Computer Society, July 2009.

[74] J. Wang, P. Neskovic, and L.N. Cooper. A probabilistiodal for cursive handwriting
recognition using spatial context. Kacoustics, Speech, and Signal Processing, 2005.
Proceedings. (ICASSP '05). IEEE International Confereomevolume 5, pages/201 —
v/204 \Vol. 5, march 2005.



110 BIBLIOGRAPHY

[75] Stephen M. Watt. An empirical measure on the set of symbocurring in engineer-
ing mathematics texts. IRroceedings of the 2008 The Eighth IAPR International Work-
shop on Document Analysis Systepeges 557-564, Washington, DC, USA, 2008. IEEE
Computer Society.

[76] Don R. Wilhelmsen. A nearest point algorithm for conyelyhedral cones and appli-
cations to positive linear approximatiodMathematics of Computatio30(133):48-57,
January 1976.

[77] D.Randall Wilson and Tony R. Martinez. Reduction teigues for instance-based learn-
ing algorithms. INMachine Learningpages 257-286, 2000.

[78] Philip Wolfe. Finding the nearest point in a polytop&lathematical Programming
11:128-149, 1976.

[79] Jacob Ziv and Abraham Lempel. A universal algorithmdequential data compression.
IEEE Transactions on Information The133:337-343, 1977.



Appendix A

Factorial Analysis Sign Table

Table A.1: Sign table of the factorial analysis of the algon for recognition oin-grams of
rotated characters

Exp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15256 | 95.4
[ 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1.3 -0.1
B 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -11.6 -0.7
n 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 25 0.2
p 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1.3 -0.1
axf 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -0.5 0.0
a*n 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 0.7 0.0
B*n 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1.2 0.1
axp 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -0.2 0.0
nxp 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 0.7 0.0
B*p 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -0.6 0.0
axf*n 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 0.2 0.0
axf*p 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -0.2 0.0
axN*p 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 0.2 0.0
Bxnxp 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0.3 0.0
axfxnxp 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 0.0 0.0
Y1 949 | 950 | 944 | 948 | 964 [ 964 | 959 [ 96.2 95.0 [ 95.1 94.6 | 950 [ 964 | 96.5 [ 96.2 96.3
Y2 944 [ 946 | 935 94.0 [ 96.0 96.1 [ 95.8 [ 96.0 946 | 94.6 94.1 [ 943 | 96.0 96.1 [ 959 96.0
y3 949 [ 95.0 [ 94.0 944 | 96.1 96.0 [ 95.8 [ 959 95.0 [ 95.1 945 [ 948 | 96.1 96.1 [ 959 96.1
Ya 94.6 | 950 [ 93.9 945 [ 96.0 95.9 | 95.7 | 95.8 95.0 [ 95.1 946 | 948 | 96.1 96.1 [ 96.0 96.0
Y5 94.7 | 948 | 943 945 | 96.2 96.3 | 96.0 [ 96.1 94.8 | 94.9 944 | 946 | 96.2 96.3 | 96.1 96.2
Ymean 94.7 | 949 | 94.0 944 | 96.1 96.1 | 958 [ 96.0 94.9 | 94.9 94.4 [ 947 | 96.1 96.2 [ 96.0 96.1 95.4
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