

17

Durupinar et al. encompassed the same terminology though they defined personality as a

pattern of unified behavioral, temperamental, emotional, and mental traits. Samuel Ma

states that personality has a high influence on decision making, action selection,

expressiveness, and character behavior [29]. Although we stated that emotions also have

an effect on the above parameters, the main difference between emotion and personality

is the fact that personality is long lasting and persistent while emotions are temporary. In

other worlds, emotions give us an idea about how the agent would behave in a particular

state of mind, but personality is the causal reason that the behavior occurs within that

state of mind.

The rationale of introducing personality in a multi-agent system is to provide diversity in

agent behavior and their choice of actions and planning [44]. During social simulation,

having different personalities enables researchers to test different strategies [28, 29, 30].

In the case of human-like agents in the virtual world, personality is a key ingredient in

creating a suspension of disbelief for the audience. Personality enables the designer to

make each character unique and represents this coherently through different media in the

virtual world. Johns and Silverman, in [31], identified personality as a dimension of

individual differences that should be considered to determine what causes people to

choose different alternatives despite holding similar emotional states. It is a measure to

explain why people follow different goals, and demonstrate different thinking processes

and emotional responses.

Personality theorists in the psychology domain have strived for decades to define basic

dimensions of personality that generate the differences among people [32]. Generally

speaking there are two main stream theories: trait theories and social learning theories

[29]. A class of traits theories define what traits are and assume that a unique

combination of these traits are ingrained in each person’s mentality. Based on these

theories, future behavior and the decisions of an individual can be predicted if we have

enough knowledge about their traits. However, social learning theories argue that

personality can be changed from different situations and new experiences.

18

2.3.1.1 OCEAN Personality Model

One of the most influential personality models in the field of AI is OCEAN or the Five

Factor Model (FFM) [5], also known as the Big Five. In this model, personality can be

devised into five dimensions: openness, conscientiousness, extroversion, agreeableness,

and neuroticism. These traits have been defined in a bipolar fashion so we can view them

as a range from -1 to 1. The highest score in each trait means the character is in harmony

with that trait and the lowest score demonstrates opposite qualities of that trait are being

projected. In a virtual world, if a person is not very social and during a social occasion

does not feel content, his score on the extroversion scale would be lower than 0 with a

default range of -1 to +1. In the following paragraphs, what each trait stands for will be

discussed [25, 33, 34].

 Extraversion: Extraversion influences the frequency of social interactions. That is to

say, the more extroverted a character is, the more they will interact and appear

outgoing. This trait also influences the interpretation of positive versus negative

interactions. Extroverted agents place more importance on positive events than

negative ones. Therefore, the effects of Encourage, Agree, Facilitate Problem and

Gain Competence interactions increase as extraversion increases, while the effects

of Discourage, Disagree, Obstruct Problem and Lose Competence are reduced.

 Agreeableness: Agreeableness influences the frequency of positive socio-emotional

interactions. It determines the level of friendliness, generosity, and the tendency to

get along with other people. More agreeable agents agree more often with others

and encourage others more frequently. In addition, agreeable agents perform more

actions for the group rather than for themselves. On the positive end of the

spectrum, expressions of altruism, concern, and emotional support are shown, while

the negative end represents hostility, self-centeredness, spitefulness, and jealousy.

 Conscientiousness: Conscientiousness indicates the level that the individual is

governed by conscience. In this context, conscientiousness determines the level of

which a person is organized and careful. Conscientiousness affects the planning

algorithm. It affects the degree to which an individual considers the full

consequences of his actions before taking them. Higher levels of this trait allow one

19

to avoid courses of action that lead to negative consequences even if they are

accompanied by substantial positive actions. Furthermore, there would be an

unlikelihood of choosing a course of action that would be considered dishonorable

or risky. Often this may be at the expense of missed opportunities but success is

also related to this trait.

 Neuroticism: Neuroticism refers to emotional instability and the tendency to

experience negative emotions. A high level of neuroticism causes an individual to

place more importance on negative events rather than positive ones. For decision-

making purposes, this trait governs the degree to which a human being is willing to

experience stress, pain, or take risks in the pursuit of goal achievements.

 Openness: Openness describes the imaginative and creative aspect of a human

character.

2.3.1.2 Reiss’s 16 motive Model

Reiss’s 16 motives is another interesting model. Reiss contends that motives are the

reason governing people’s voluntary behavior. They indicate the meaning of human

behavior, and may reveal a person's values. Motives often affect a person's perception,

cognition, emotions, and behavior [35]. There is a motive behind each consequence of

action in reaching one’s goal. Furthermore, these motives can affect one’s behavior

unconsciously or indirectly. Consequently these motives that are created in a human mind

are what form the personality.

Although the OCEAN personality model provides a general framework to investigate a

human being’s personality, using this model to create personality in human like agents

needs careful consideration. The OCEAN model does not provide mappings from traits to

human cognitive process such as emotion appraisal [22, 23], decision making or intention

recognition. This lack of a well-defined mapping makes it a bit of a challenge to apply it

practically in human like agents.

Another interesting personality model in scholars is Reiss’s 16 basic motives theory [35].

The basis of Reiss’s theory is laid in his eight hypotheses [35]. We are going to bring

attention to those hypotheses in order to understand this model with more depth:

20

 Each of the 16 basic desires is a trait motive (Hypothesis 1). This is the first

hypothesis in Reiss’s model. Everything in his model is based on these 16 traits and

how people decide to achieve them.

 The satiation of each basic desire produces an intrinsically valued feeling of joy, a

different joy for each basic desire (Hypothesis 4). These different types of joy

satisfy a need.

 Everybody embodies the 16 basic desires though individuals prioritize them

differently (Hypothesis 5). People behave as if they are trying to maximize the

experiences they have of these 16 intrinsic joys with their own individual priorities;

this is what makes people behave differently or seek different goals. In other words,

these 16 desires are encompassed in every human being but what differentiates

them is how much value they place on each desire. From another perspective, one

unusually weak or strong desire on one of these traits can be used to define one’s

personality. For example, this taxonomy can be used to demonstrate a power

hungry personality when someone has a strong desire to gain power over others but

has a normal set point for all other traits.

 Each basic desire is theoretically regarded as a continuum of potential motivation

anchored by opposing values (Hypothesis 6). The theory of 16 basic desires holds

that individuals are motivated to aim for a point of moderation, (called a set point or

sensitivity). Set points are what an individual is aiming for. Once they reach that set

point, the desire is fully satisfied however temporarily.

 The theory of 16 basic desires holds that motivation is based on discrepancies

between the amount of an intrinsic satisfier that is desired and the amount that was

recently experienced (Hypothesis 7). When a person experiences more power than

he or she desires, the individual is motivated to be submissive for a period of time

to balance the experience toward a desired rate. When a person experiences less

power than he or she desires, the individual is motivated to be domineering for a

certain period of time.

 Basic desires organize our attention, cognitions, feelings, and behavior into a

coherent action (Hypothesis8). We pay attention to the stimuli that are relevant to

21

the satisfaction of our desires, and we tend to ignore a stimulus that does not satisfy

our desires.

In conclusion, Reiss makes a case that psychological needs are linked to motivations. He

provides a conceptual framework based on an analysis of the nature of basic human

desires and psychological needs. Moreover, he makes a solid connection between basic

needs, traits, motivation, and personality type analysis. This allows for a sensible

coupling of personality descriptions within social change [6].

Reiss’s model can benefit a designer with designing goal based characters that have the

same motives as humans. It also provides guidelines on how to make different

personalities and how to make them distinguished. However, this model is still abstract in

the sense that it talks about satisfying a motive through traits within an extremely broad

setting. Additionally, implementing all of these 16 traits for NPC in the world is

computationally expensive and seems unnecessary. Furthermore Reiss distinguishes

between individual’s personalities only based on their motives and dismiss other

temperament. Many scholars think that personality should distinguish between individual

emotional responses and action selection. These two factors have not been considered in

Reiss’s model.

2.3.1.3 Summary

In this section we discussed the definition of personality from scholars. We also

explained two widely accepted models of personality: OCEAN and Reiss’s. The OCEAN

model is general and expressive enough for explaining the nature of human differences

through personality; however it is too abstract to be applied in a computer agent.

Unfolding traits to low level behavior in this model is subjective to the designer choice.

Reiss’s model defines personality dimensions based on human motives and categorizes

them into 16 motives. Reiss’s model clearly explains and distinguishes how each trait is

related to a motive in human beings; however it does not explore other dimensions that

can be used to distinguish between two different personalities such as emotional reaction

or action tendency.

33

consultation, if an event confirms a goal state achievement it cannot be appraised

simply by applying emotion rules.

Collaboration of emotion and Memory is necessary to apprise the group of events

that makes any change on the agent active plan or previously stored goal state.

Memory checks the received event with agent goals and plans; if it detects any

accomplishment or failure, emotion rules will be applied. This separation of data

and process imposes a technical difficulty for processing back and forth between

the emotion and Memory modules. However, it makes our system flexible for using

any emotion model in the emotion module.

Emotion from an event will be applied to emotion reactive rules. For example, if the

agent fails to achieve a long term goal it may burst into tears. It is important to note

that the agent does not plan to execute impulsive actions (arrow 3) whereas the

emotion rules dictate impulsive action execution upon the appraised emotion. The

final step in the emotion module is to integrate the result of appraised emotion into

the agent Emotional State.

Emotion expression, impulsiveness, and how the agent copes with an appraised

emotion could be determined in our model in one processing cycle by applying

emotion rules and consulting with active roles as well as Memory. The Emotion

Traits threshold, emotion rules in response to a received event and integration of

these appraisals to update the agent Emotional State in each processing cycle will

be affected by active roles (arrow 2). This will be described further in Section 3.3

and 3.5.

 Memory: The event and appraised emotion will be stored in a Memory Cell. The

Memory updates facts which have been changed. The agent TOM module processes

the event, and updates agents’ profile that were involved in the event based on

actions tags; this will be discussed further in Section 3.4.1.4. The Memory module

is also responsible to keep the track of the agent planning and validating the next

action in the sequence of events by checking its preconditions with the current

world state. If the Memory validates an action, it will be executed by sending the

34

confirmation to the planning module, otherwise the action is invalid, and so the

current stored plan and the agent should make a new plan (arrow 5). If the current

plan has reached the final state, the Memory informs the intention recognition to set

a new goal for the agent (arrow 4). The record of achievement or failure of the plan

should be stored in the agent active roles (arrow 6).

 Intention Recognition: Intention recognition processes the agent active roles (arrow

7) and sets the agent intention on the most important goal. The goal importance and

the intention process to select the most important will be thoroughly explained in

Section 3.5.1 and 3.6. This goal will be passed to the planning module.

 Planning: The Planning module receives the agent goal and the current world state

(including the agent active roles, arrow 8) comes up with a plan that takes the agent

from the initial state to the goal state. This plan will also be stored in the Memory

(arrow 5). If the planning module receives the confirmation from Memory that the

current plan is still valid, it will execute the next action in the plan action sequence

(arrow 8).

In this section we briefly discussed the agent high level process and how all modules

work in collaboration with each other and the agent active roles. In the following

section we briefly discuss preliminary terms in our design and then move on to discuss

each component thoroughly.

3.2 Preliminaries

Our main system consists of three main sub-systems: Authoring System, Event Handler

and Agent (Figure 3.2). The Authoring System enables the designer to create the

environment including facts, actions as well as agents. The designer can create his own

agent with given roles. The Agent role formalizes its deliberative and reactive behavior in

the environment. The Agent demonstrates the design’s innovative features to simulate a

believable behavior based on its authored roles and traits. Finally the Event Handler’s

main task is to collect actions from all agents in the world and output the final result

based on the designer’s given scenario. At runtime, the Event Handler receives actions

and distributes the result. In this Section we give a brief description of our main

preliminary terms.

35

Figure 3.2: System main components

3.2.1 Fact

The fact representation is similar to first order logic in that it provides an evaluation of

the truth or falsity of facts, but differs in that numerical values can be assigned to a fact as

well. Each fact has a name, takes a predefined number of literals, and outputs either a

number or true/false value. Facts can also have a target. For example, the fact Happy

(Sue) targets Sue. A numeric value enables a quantitative comparison between facts from

the same types. Quantitative comparison between facts greatly enhances state utility

calculation for planning and decision making where the agent will be able to evaluate

different world states and choose the one with the highest utility. A world state is a

collection of facts with their environmental variables (Figure 3.3).

36

Figure 3.3: Schematic world state with its facts.

3.2.2 Action

An Action is a single atomic step that has been identified with a name. Each action has a

set of preconditions, and post conditions with their associated probability (Figure 3.4).

Like world state presentation, post conditions and preconditions are represented by

conjunctions of facts. As long as preconditions are satisfied, the action is valid to be

executed. Upon the action execution, only one post condition will affect the world state at

run time. The post condition of Sue Attacking Kathy could be Kathy getting injured or

possibly dying but only one of them will become true. The agent is informed about the

probability of each post condition while the actual post condition after the action

execution will be determined by the Event Handler.

 In the action structure, there are certain types of preconditions that the agent could not

plan to make true. More precisely, the action can only be chosen if the agent’s current

state satisfies the precondition. For example, in the case of Sue attacking Kathy, a

precondition could be that Sue’s affinity towards Kathy is below a certain threshold. If

this precondition has been satisfied by the current relationship between Sue and Kathy,

attack is a valid action. Otherwise, Sue will not plan to first decrease the affinity level in

order to attack her later on in the scenario. However, for other preconditions, the agent

could plan to make them happen; for example, Sue will enter the room that Kathy is

inside to attack her.

37

In order to remove the need for an ontology system, we chose to use a tagging system for

actions. There are two types of tags that will be used to annotate the action. The first

group is emotion appraisal variables such as desirability, desirability for other,

praiseworthiness and etc. from the OCC model. The second is personality trait variables.

Emotion appraisal variables help the agent appraise the emotion of a received action

based on emotional rules. The second type of tags will be used in the agent personality

traits and completing TOM profiles will be discussed in Section 3.5.2.2 and 3.4.1.4. The

main premise behind personality tags is that the agent has a greater tendency to choose

actions with traits that closely correlate to their own personality, and when other agents

perform actions, the agent can interpret other agents’ personalities by means of these

tags.

Figure 3.4: Action with a precondition and three post conditions

38

Action personality tags may come from a classic personality model trait like OCEAN.

The designer can create his own meaningful tags in the context of the story. For example,

the designer can generate a tag like extroverted and stipulate that social activities require

a higher degree of the extroversion trait whereas individual activities demand a lower

level. Tagging a group of actions with the extroversion trait makes it necessary to use it

as a personality trait in some of the agent’s roles.

3.2.3 Event Handler

The agent passes its selected action to the Event Handler, which then determines the

action’s post condition (Figure 3.5). The Event Handler applies the necessary changes in

the world state based on the post condition and distributes the action, along with a

corresponding new world state, to other agents through message passing as an event. For

example, if Sue chooses to slap Kathy, she passes this action to the Event Handler. The

Event Handler then distributes “Kathy was being slapped by Sue” to other agents. How

this action affects each individual agent’s state or their social relationships will not be

included in the message.

More interestingly, the Event Handler has the potential to manage the story at run time

based on the designer’s previously written plot. When the agent executes an action that

has more than one post condition, the Event Handler determines which one will affect the

world state. It manages the story at run time by collecting actions and determining results

according to the scenario or world rules. For example, the action of shooting a rabbit has

two post conditions: the rabbit may get killed with a probability of 30 percent or it may

run away with a probability of 70 percent. If the agent shoots a rabbit, the Event Handler

receives this action. If shooting killed the rabbit, the Event Handler has to modify the

world state according to that. Note that all events should not be scripted in the Event

Handler by the designer; instead they should be determined dynamically based on the

world’s state.

In conclusion, the Event Handler collects agents’ action and distributes the result. It

keeps the world state consistent by modifying facts upon newly-received actions. Finally,

it notifies the agent about new settings in the global environment. For example, if the

39

agent walks in to a room, the Event Handler is responsible for describing the room to the

agent, including who and what takes place in it.

3.2.4 Message Passing

Messages inform the agent about the world’s current state, or of events that have taken

place. When the agent chooses an action, it should be passed to the Event Handler, upon

which the Event Handler distributes this action as an event inside of a message to other

agents in the world. The message will be processed by an agent perception module.

Figure 3.5: The Event Handler functionality in the runtime

3.2.5 The Authoring System

 Authoring System is a design tool to create the environment as well as agents. The agent

will be defined by at least one role and its goal, personality trait, and TOM profiles. The

designer can use the Authoring Tool’s functions to modify different characters in his or

40

her own proposed scenario or story. The Authoring Tool facilitates implementation of

various traits and roles that generate emergent behaviors at runtime. The Authoring Tool

can also provide users with template roles. These template roles can be customized to

define different characters by means of different attributes in the same social context that

has been define by the role.

3.3 Emotion

Loyall has defined emotions as one of the first requirements for believability. Presence of

emotion reaction, effect of emotion state on decision making, and their role in regulating

social relationships are a requirement specification of the emotion module in our

proposed model. In everyday language emotional state (mood) and emotion are used

interchangeably; however many scholars believe that it’s necessary to distinguish them

from one another. Gebhard discusses that emotional state is not generally related to one

event, action or an object, whereas emotion can be associated with only one event [50].

Gebhard describes emotional state as an affective state which has a great impact on

human’s cognition functions such as decision making, motivation, and appraisal.

In order to take this difference in to account, our model proposed two components for

managing agent emotion data: a) Emotion Traits, and b) Emotional State Dimensions.

Emotion Trait is output from immediate event appraisal by emotion rules, for example

love, hate, anger, gratitude. The agent Emotional State is an aggregation value of

appraised Emotion Traits.

To follow a data driven approach and create a more robust and reusable architecture we

decided to separate emotion data representation (Emotion Traits and Emotional State

Dimensions) as discussed below from emotion rules. As it has been discussed earlier in

Chapter 2 there has not been any universal agreement on one acceptable emotion model

among scholars. Separation of data and process for emotion subsystem enables the

designer to place his own desirable emotion model.

Emotion rules dictate how the agent should react to an external stimulus. They should be

applied in three consecutive phases; first the event will be appraised based on appraisal

41

rules. The result of this process is an Emotion Trait like anger or gratitude. Second the

appraised trait will be checked for any reactive action. Finally the Emotion Trait updates

the agent Emotional State.

3.3.1 Emotion Trait

The Emotion Trait is the immediate emotion appraised from an event by applying

emotion rules. For example, accomplishing a goal makes the agent happy and losing a

wallet makes him upset. An example of Emotion Trait in an OCC model is: Pride,

Shame, Love and etc.

The Emotion Trait structure should minimally have the following variables:

 Name: Each Emotion Trait has a name such as: Pride, Anger.

 Range: Each Emotion Trait has a valid range which defines minimum and

maximum value that it can be assigned to it.

 Threshold: Threshold determines the degree that this Emotion Trait needs to

achieve to be felt or triggered an action tendency. An Appraised Emotion Trait

with the value below the Threshold will be discarded. The Threshold of the same

Emotion Trait for one agent is the same.

 Value: Value should be within the valid range that will be determined by applying

emotion rules.

 Emotional State Dimension Tag: Each emotion has one or more Emotional State

Dimension Tags that identify which Emotional State Dimension it belongs to. The

mechanism of this mapping can follow any emotional state representation model.

An Emotion Trait can be used to represent the agent emotional reaction to what is

happening in the world. The designer can assign the same values to different agents’ trait

variables (Emotional State Dimension Tags and Threshold). However, our model has the

potential to override trait variables in the personality section of the agent and therefore

create distinguishable behavior. For example, by assigning a low threshold to an agent’s

anger trait, the agent would demonstrate anger more easily.

50

important enough to be saved in Memory. For example, the designer can define a

thief by following set of rules:

Grabbing(X, Y) = True

Own (Z, X) =True

Z! =Y

=>

Thief (Y) =True

By having the above rules in the belief module, if the agent cares about recognizing

a thief, and it receives an event which confirms a robbery, that event will be saved

in the Memory. Each Memory Cell may have a pointer to one or more profiles in

TOM which helps the agent remember what made them update a trait value in a

profile. This mechanism enables the agent to revise their Memory upon receiving

new facts. Bob may tag Sue as a thief while she is driving a red Ferrari but later, if

he realizes that it was her father’s car which she had borrowed, he may modify his

previous judgment of her.

1. Request for Re-Planning: If an event forces the agent to update or change their plan,

the event will be saved in a Memory Cell. This category may or may not generate

emotion in the agent.

3.4.1.4 TOM

Theory of mind (TOM) enables an agent to take the preferences and personalities of other

actors into account in their decision-making and interaction. TOM consists of an array of

profiles that formalize an agent’s knowledge about other actors. There are two

approaches to provide the agent with the mental model of other agents as illustrated in

Figure 3.9: a) the designer authors profiles; or b) the agent updates profiles according to

received actions. Both approaches result in taking other agents’ profiles into account.

Updating profiles is more realistic; however, it is a process of trial and error.

51

Additionally, it demands that the agents become engaged in many interactions for its final

model to become similar to the other agents’ personalities. On the other hand, authoring

is a fast and straightforward method that is necessary when agents need to know each

other in advance (for example for story reasons) but there has been no prior game

execution to permit the generation or updating of TOM within the game, in such a case

pre-authoring is the only way for the agents to have the proper TOM. Authoring enables

the designers to take control over the story as they can specify exactly what one agent

thinks of another agent.

Figure 3.9: TOM module with two options for pre-authoring and learning

Ideally, an agent needs a knowledge base and some type of ontology system to interpret

other agents’ personalities based on actions. Such interpretation is used to predict future

situations. However, using an ontology system puts a heavy burden on the system’s

performance. This burden encourages us to use action tagging that has been described

earlier in Section 3.2.2 for the recognition of other agents’ personalities.

Action tags can be as simple as ‘good/bad’ or ‘moral/immoral’, for example. In our

architecture, the type and variety of tags completely depends on the designer and what

they are looking for from an agent’s personality according to a scenario. For example, in

52

simulating bullying in school, slapping someone can be tagged with ‘violent’, ‘bully’,

and ‘bad temper’. The observer of an action uses these tags to update the profiles of

actors involved in the action. For example, if Kathy slapped Sue and Joe saw it, he will

change Kathy’s profile based on slap tags. Our model is flexible in a way that it can be

used to implement any personality model such as OCEAN, as long as the designer

provides a consistent mapping from traits to actions. In a given state with a set of

available actions, TOM finds their priority based on the actor’s profile and actions’ tags.

3.4.2 Memory Functions

Memory functions are responsible for creating an interface between Memory modules

and other agent components as it has been illustrated in Figure 3.10. Upon receiving an

event from the emotion module, these functions filter the event independently and make

the necessary changes by coordinating with other agent modules. This is illustrated in

Figure 3.1. Note that all received events from the perception module will be passed to

both the emotion and Memory modules.

 Updating Active Memory: Upon receiving a message, it will be checked for

consistency with Active Memory and values will get updated. These updates may

cause the agent to revise their plans.

 Re-Planning: If the new world state makes the agent’s previously generated plans

invalid, the current world state will be sent to the agent planning section.

 Updating Event History: If the event appraises an emotion, it will be recorded in a

Memory Cell. This process works as a filter. It checks the message and, as soon as

it satisfies one of the mentioned conditions, it is qualified. If the event is

emotionally-significant, the generated emotion will be saved as well as the event.

 Updating Profiles: Action tags help the agent to update the actor TOM profile. It is

important to remember that not all actions have a tag. If the action has a tag then the

agent will update a performer profile. Walking is not a significant action; however,

stabbing someone is significant in identifying the other person’s personality. More

interestingly, the agent profile is not necessarily accurate, since the agent only saves

their own interpretation of the other actor’s action(s).

53

 Calculate Action Probability: The agent can pass a group of available actions and a

potential actor to the TOM module in order to calculate the probability of their

successful execution of those actions based on their own and the other actor’s

profile.

Figure 3.10: General overview of the Memory

3.5 Role

Role theory defines a role as the relationship of one person to another person, group or

object. It formalizes an agent’s relationship with its environment and with other agents,

including other agents’ expectations based on this relationship. Acton identifies a role as

a concept that can channel this formalization through belief, desire, and intention [56].

You defines a role as a coherent set of standard behavior, actions, norms, values, and

goals in his model [57].

Roles store agent information that is bound to social context in which the role target is

situated. There is one exception to this, namely, default roles that have no target and are

54

always active; this will be discussed in detail below. The role structure defines the

relationship of an agent with the role target. This formalization defines the role’s

influence on agent behavior when the role is active. The complete structure of roles is

summarized in Figure 3.11.

Figure 3.11: Role’s components

 Name: Each role has a unique name, such as mother, friend, secretary, or boss.

 Personality Traits: Each role stores zero or more personality traits. This allows

active roles to contribute to the expression of agent personality traits. A default role

contains the core personality traits.

 Target: Roles may store a particular target, but this is not necessary (i.e. target-free

roles can be defined; default roles are an example of this). Role targets may be an

agent, a group of agents or an object. For example, a mother role may target the

mother’s children, or a teacher role may target the teacher’s students.

 Context: In addition to a target, roles may define a context—or series of facts—that

cause the role to be activated. For example, a secretary role may have no target, but

may be activated only when the agent is at its workplace

55

 Weight: Each role has a weight that identifies its importance. The degree of

influence of each role when multiple roles are active is determined by their relative

weights.

 Beliefs: Roles may contain beliefs that influence the agent’s appraisal of events, the

world state, and action tags when the role is active. Our system has two belief

components: Reward System and World View. Reward System identifies

desirability of events and facts; World View provides a high level categorization for

actions.

 Goals: Roles may store zero or more goals that are activated in the agent model

when the role becomes active. This allows roles to activate richer behavior than

simple reactions to the environment.

Our design dictates that all agents in the environment possess one or more roles,

including—minimally—a default role that defines the agent’s relationship to the

environment. The default role characterizes default agent behavior when no relevant

social context is influencing such behavior. In this way, the default role models context-

free elements of the agent’s beliefs, personality, and goals. For example, if Bob is usually

a greedy and impatient person (though these qualities may change in particular social

contexts) then greediness and impatience are formalized in Bob’s default role.

All non-default roles store a target, a context, or both. These elements define the

conditions under which the role should be activated, in the presence of the target, under

the conditions defined by the context, or a combination of both. For example, suppose

Bob is friends with Jake. Bob stores a friend role which contains the identity of Jake, as

its target; this friend role is activated during Bob’s planning process if the plan involves

Jake. The friend role also contains beliefs, personality traits, and goals associated with

Bob’s perspective of his friendship with Jake. In this way, non-default roles model a sort

of context-bound adjustment of how beliefs are activated, personality traits expressed,

and goals pursued in particular social contexts.

Our role-based architecture may assign multiple roles to the same agent as illustrated in

Figure 3.12; for example, Bob may be friends with Jake, he may be Sue’s husband, and

56

Kathy’s boss. More interestingly, more than one of Bob’s roles can be active at the same

time; each active role stores its weight, which denotes its importance (and therefore

influence) in Bob’s planning process. Naturally, this may activate conflicting goals and

beliefs from different roles; such a case models Bob’s internal conflict in difficult social

situations. For example, Bob’s default role may strongly forbid killing another human

being, but when a soldier role is activated he may be compelled to kill his enemies.

During a battle, Bob experiences a conflict between his normative moral code and his

duty as a soldier as the two roles compete to determine his propensity for lethal violence.

Figure 3.12: The agent can have multiple roles.

Our Role-based architecture has several advantages:

 Reusability: Once a role has been defined it can be reused for different agents. For

example, a guardian role can be defined for all mothers and father relationships in a

game environment. Furthermore, basic design patterns such as class-based or

prototype-based inheritance can be applied to generate specializations of general

roles, such as a mother role and father role derived from the basic principles of a

guardian role.

 Customizability: Designers are at liberty to customize: (a) the structure of

relationships that activate roles, (b) the structure of traits and goals stored within

roles, and (c) the prioritization of various roles and various traits within each role.

 Understandability: The concept of roles based on social relationships can be easily

understood by non-experts; it is intuitive. One of the main problems with current

57

agent architectures is that they employ complicated, exotic modeling patterns that

are difficult for non-experts to understand.

 Flexibility: Allowing agents to have several roles activated in different contexts

offers flexibility. For example, Sue can be a mother, teacher and wife, and only act

according to those roles when they are relevant to her social context.

 Ease of social knowledge representation: Our architecture provides an easy

solution to import social knowledge to NPCs. The ability to define the

individualized reward system, norm, and value in a role empowers agents to

demonstrate social intelligence without using a complex ontology. For example,

Henry might frown upon cheating on an exam. As long as he can recognize what

“cheating” is in an exam context, he can avoid it.

 Suitability for dramatic narratives: The ability to mix and match roles, and

customize them makes our role-based architecture a perfect choice to create

interactive drama.

3.5.1 Goal

Goal is a desirable state of world that consists of one or a conjunction of several facts.

OCC model identifies three types of goals: Active, Replenishment and Interest. Inspired

by OCC categorization, in our model all goals that can be accomplished by planning are

in the class of Replenishment goals; one Replenishment goal that the agent is currently

planning to accomplish is the active goal. However the agent can not directly take an

action to achieve Interest goals; they are usually presented by a static fact with

importance values. An example would be if Bob is fan of a football team, his team

winning the championship makes him happy but he could not do anything as a fan to

influence the match result.

 The reason that an agent does not actively pursue an interest goal is either because a) the

agent does not have any control over their state, for example being betrayed by another

person in prisoner’s dilemma, or b) the agent role enforces a particular preference for one

world state over another, which is a factor that the agent needs to consider in the

planning. For example, seeing the happiness of a friend can be defined as an interest goal,

58

which causes the agent to avoid a sequence of actions or have less utility for states that

would make this goal false. However one goal that has been defined as an interest for

one can be defined as Replenishment for the other.

3.5.1.1 Replenishment

In our architecture we define two classes of Replenishment goals: a) Story Concern b)

desire based. The nature of both categories is the same in a sense that they both produce

goal directed behavior. Story Concern goals drive the plot forward by compelling an

agent to achieve a specific world state. Desire based goals prevent agents from becoming

idle if they have no active goal in any of their currently active roles. Generally desire

based goals have a lower priority in comparison to Story Concern goals, which means if

there is an unsatisfied Story Concern goal the agent will not start planning to achieve a

desire based goal. The mechanism of this selection will be discussed further in the

intention recognition module.

Story Concern goals explicitly can be defined by the designer to create dilemma or a

specific scenario: for example in prisoner’s dilemma, Alex has the goal to spend fewer

years in prison. Once the agent completes a sequence of actions in a plan to achieve a

Story Concern goal, it will be discarded. On the other hand, desire based goals can be

used to represent repetitive but goal directed behavior; for example the agent gets

gradually hungry a few hours after its last portion of meal.

Dependent on the designer’s choice, Story Concern goals can be used as a mechanism to

dynamically determine the story path. The designer can provide multiple alternative

scenarios for different conditions of a Story Concern goal state and then, at runtime, the

goal final state causes the Event Handler to apply one of the alternative scenarios. This

alternative scenario can be applied by assigning a new role to the agent. For example, if

the agent Story Concern goal of getting married is accomplished successfully, a spouse

role will be assigned to the agent. Dynamic role assignment facilitates our model to be

integrated with a non-deterministic story narration, consequently makes our agent model

more efficient to be used in an interactive drama.

59

a) Story Concern

Story Concern goals mainly can be used as a mechanism to lead the agent through the

story on the plot that the designer wants to simulate. The agent does not develop a desire

or an urge to achieve these goals; in each planning cycle the intention recognition module

chooses an unsatisfied Story Concern goal with the highest importance. The highest

important Story Concern goal will be determined by applying Formula (1) to all Story

Concern goals in the agent active roles and selecting the one with the highest value. In

Formula (1),

 is the importance of the Story Concern goal in its

associated role and ((
))is the importance of the role that Story Concern goal

belongs to in the agent’s current social context.

Formula (1):

 ((

))

As soon as the agent achieves the final state in the plan to achieve the Story Concern

goal, the goal will become deactivated permanently. This class of goals can be used to

manage sub stories in the main plot, or managing the whole path of the story. For

example, in a family drama the agent can have several Story Concern goals such as:

getting married, buying a house, and having kids.

Here is a minimum structure to include Story Concern goals in the role structure:

 Name: Each goal has a name to make it distinguishable from others.

 Set of facts and their associated value: The goal world state is a conjunction of facts

that each can have a different importance in the agent reward system. For example

in the prisoner’s dilemma the goal state will be defined by number of years in

prison and outside of prison. One has negative valence and the other positive.

 Importance: The goal importance determines priority; higher priority determines the

agent urgency to achieve the goal sooner. Goal importance helps the designer to

create a meaningful sequence of milestones in the agent life span.

60

 Activation Status: Activation status will be used to check if the agent has already

achieved the goal in the environment or not. Story Concern goals become

deactivated and discarded after they are achieved.

The importance of Story Concern goal will be determined by applying Formula (1) to all

active roles’ Story Concern goals

b) Desire based

The agent should make a plan to achieve a desire based goal in the same manner as Story

Concern goals. However, unlike Story Concern goals which are discarded once they have

been achieved. Desire based goals need a mechanism to ensure that the agent develops a

desire to achieve these goals again after the most recent fulfillment, as illustrated in

Figure 3.13. A Decay rate variable in the desire based goal structure ensures that the

agent develops an intention over time to achieve a desire based goal again. The presence

of desire based goals prevents the agent from wandering around in the environment

without any purposeful behavior, they also provide a great potential to represent the

quality of being resource bounded in agents. Desire based goals can be used to embed

needs or general routines in the agent. Their nature in directing agent motive has been

inspired by Reiss 16 motive personality model that has been discussed in Section 2.3.1.2.

If the agent does not have any Story Concern goal left, the intention process begins

evaluating desire based goals to choose one with the highest urgency. The urgency

(importance) of each desire based goal has a direct correlation with the difference

between its current value and threshold as well as its importance that drives from

Formula 2. In this formula ((
)) is the weight of role that

 belongs

to.
,

 ,
 (

) are threshold, current value and weight of
 in

the agent role that
 belongs to. More distance and higher importance indicate a

higher urgency to achieve the goal.

Formula (2):

 ((

))

61

Figure 3.13: The agent desirability to achieve the goal increases as the current value

decreases (due to decay rate)

The minimum set of variables for this class of goals is listed below:

 Name: Each goal has a name like: hunger, socializing.

 World State: Replenishment goals only will be defined with one fact.

 Range: Each goal has a valid range; this can be visualized with a tank that the agent

needs to fill.

 Current Value: Is a current state of the goal according to the agent interactions in

the world until a precise moment.

 Threshold: Threshold is a number in the goal valid range that the agent should

minimally achieve to feel satisfied. This number varies depending on the agent

personality. For example, a greedy person has a high threshold for gaining money.

 Importance: The goal importance will be determined by motivational trait of

personality. Goal importance will be used in intention recognition to set the agent

next goal.

 Decay rate: It determines the goal decay rate and makes sure that the agent starts

planning for the goal after a period of time. For example, if Bob satisfies his hunger

67

3.5.3 Belief

Beliefs are mental attitudes characterizing how the world is viewed through the agent eye

or a particular role. Beliefs determine how one should interpret events, world states, as

well as actions. In our design belief is a very powerful component for encoding common

sense knowledge into the agent architecture without using an ontology system. It

facilitates the agent to evaluate the world state according to its roles. It also helps the

agent to develop a more general categorization of actions independent from their tags and

post conditions. The belief component consists of two main parts: Reward System and

World view.

3.5.3.1 Reward System

As we have mentioned each world and goal state has a set of facts. Meanwhile based on a

scenario there can be several facts that have not been included in the agent goals.

However, the agent may encounter these facts and it will be considered vital from the

believability perspective to demonstrate an appropriate reaction. In the social interaction

the agent may not have any goal that defines happiness as a desirable state, but upon

seeing its friend’s happiness it should be able to at least understand the valence and

desirability of this state. The reward system is the set of facts with their associated

importance that the designer authors according to the agent characteristic and possible

situation in a scenario. The Reward system plays a vital role in leaf evaluation that will

be discussed in Section 3.7.2.1. The agent determines desirability of facts targeting other

agents by filtering them through its own rewards system.

3.5.3.2 World View

World view provides the agent with a high categorization of actions. For example the

agent can categorize cheating, lying to a friend, and betrayal in the group of immoral

actions. This categorization enables the agent to develop a higher level of knowledge

about others social behavior independent from action tags or post conditions. This higher

knowledge enables the agent to make more accurate prediction in its TOM. If the agent

wants to predict the next action of its opponent and traits in its opponents profile are not

helpful in predicting the next probable action. The solution is to compare previously

68

performed action categories of the opponent with available actions. If an agent has been

acting in a certain category, it has a high tendency to choose future actions from the same

category. For example if Alice saw Bob helping a stranger, she identifies him as being

more willing to perform actions from the same category (Like: being kind or honest) in

future. Figure 3.15 is a schematic illustration of this module.

Figure 3.15: Schematic view of the Agent World view.

3.6 Intention Recognition

The Intention Recognition Module processes the planning agent’s roles and the current

world state, and chooses one candidate goal to be the active goal—i.e., the intention—to

be pursued by the planning agent. The agent can have multiple Replenishment goals in

each active role, but at the same time he only pursues achieving one of them, the active

goal. The Intention Recognition Module follows process (1) to select an intention from

the agent’s goals.

The process bellows first attempts to find the Story Concern goal with the highest priority

among all active roles. If there was not any Story Concern goal available it will check

active role for the Desire Based goal with the highest priority.

Process (1):

69

Declaration:

Roles = Set {Set {<i, ActivePursueGoals, ReplenishmentGoals>}}

The set of roles associated with the planning agent, expressed as a tuple of

role importance (i), active pursue goals, and Replenishment goals

StoryBasedGoal = Set { set <f, i>, p}

The set of the planning agent’s Story Concern goals expressed as a tuple

of the goal facts and their associated importance set <f, i>, and the goal

priority (p)

DesireBasedGoal = Set {< f, i, p> }

The set of the planning agent’s desire based goals expressed as a tuple of

the goal fact (f), the goal importance (i), and the goal priority (p)

ActiveRoles(SetOfRoles, StateOfTheWorld)

Return the subset of SetOfRoles that are active given the

StateOfTheWorld

HighestPriorityDesireBasedGoal (SetOfRoles)

Return a desire based goal in Role’s set of goals that has greater or equal

priority with respect to all other Replenishment goals in Role

HighestImportanceStoryBasedGoal(Role)

Return a Story Concern goal in Role’s set of goals that has greater or equal

importance with respect to all other Story Concern goals in the agent active Roles.

The Actual intention recognition Process:

IntentionRecognition(Roles, WorldState):

70

CurrentlyActiveRoles:= ActiveRoles(Roles, WorldState)

If CurrentlyActiveRoles = nil

Return nil

Else

ActiveGoal:= HighestImportanceStoryBasedGoal

(CurrentlyActiveRoles)

If CandidateGoal = Nil

 CandidateGoal:= HighestPriorityDesireBasedGoal

(CurrentlyActiveRoles)

Return CandidateGoal

The Intention Recognition Module first activates high importance Story Concern goals,

and then resorts to high priority Desire Based goals only when there are no Story

Concern goals to activate. Note that although in process(1) the importance of Story

Concern and desire based goals are modeled as variables in fact they drives from

Formula(1) and Formula(2). In the intention recognition active roles, and their weight has

been applied through using two mentioned formulas that make the agent active role to be

selected based on active roles. The candidate goal, or intention, will be selected by the

Intention Recognition Module and will be passed to the Planning Module.

3.7 Planning

After intention recognition, the agent starts planning. Planning consists of searching for a

sequence of actions—called a plan—that results in a goal state. Agent planning has two

phases; in the first phase the agent acquires a planning tree either by building one or

retrieving one that was pre-authored for the situation. In the second phase it traverses the

tree to find the best plan among all possible plans. The planning tree should not be

confused with the planning agent’s plan; a planning tree is a tree of potential action

71

possibilities, whereas a plan is a sequence of actions that lead to a planning agent’s goal

state.

 The planning process starts by receiving the active goal from the intention recognition

module and ends with a plan—sequence of actions—that the agent needs to perform to

achieve the goal. This process is illustrated in Figure 3.16. We will first briefly discuss

construction of the planning tree, and then discuss different types of nodes in the

planning tree as well as processing steps performed by agents that are peculiar to each

node type.

Figure 3.16: General overview of planning process.

3.7.1 Acquiring Planning Tree

The Acquiring Planning Tree module receives two inputs: (a) the intention from the

Intention Recognition Module, and (b) the initial state of all agents in the planning

agent’s environment. Unsurprisingly, the Acquiring Planning Tree outputs a planning

tree. The initial state of an agent includes its Emotional State, active agent roles, and the

current state of the world. The planning tree output by this module is a simulation of the

world environment that consists of world state and various action sequences that lead to

goal satisfaction.

72

Note, however, that degree of goal satisfaction may vary; that is, a particular sequence of

actions that lead to a goal state (i.e., a particular traversal of a completed planning tree)

may be more or less satisfying to the planning agent than another such sequence. This

“multiple solutions” property of planning trees makes planning tree evaluation (described

later) a crucial part of the planning process.

The design of the planning tree evaluation process imposes some constraints on the

structure of planning trees. Branches descending from planning tree nodes model

potential actions and/or consequences of actions committed by agents. The existence of a

branch must be consistent with a simulated world state that corresponds to the

combination of (a) the initial world state input to the Planning Tree Generator, and (b)

additional and/or modified state that arises from applying all actions and consequences

corresponding to traversing the planning tree from its root to the node from which the

branch descends. Put another way, each branch must represent a valid “next action or

consequence” in the series of actions and consequences modeled by the unique traversal

from the root node to the node from which the branch descends. Planning trees are

composed of the following elements:

73

Figure 3.17: General planning tree.

Decision nodes: These are internal nodes with descending branches that represent

different potential actions that could be chosen by the planning agent according to the

simulated world state (Node type A in Figure 3.17)

Non-decision nodes: These are internal nodes with descending branches that represent

one of two things depending on the meaning of the branch that connects the non-decision

node to its parent. If the branch represents an action that has multiple consequences, then

the branches descending from the non-decision node represent the set of potential

consequences associated with the action as illustrated in Figure 3.17 by node type C.

Otherwise, the branches descending from the non-decision node represent potential

actions that could be taken by agents other than the planning agent, which is represented

with node type B in the same figure.

Leaf nodes: Ideally, leaf nodes represent goal states with respect to the planning agent’s

intention. Leaf nodes store the full set of facts that correspond to the sequence of actions

and consequences modeled by the unique path from the root node to the leaf. Leaf nodes

74

that do not correspond to goal states only exist in the event that the Planning Tree

Generator was not able to find any paths from the world state to a goal state. The facts

stored in a leaf describe the set of post-conditions applied by all actions in the path from

the initial state till the current leaf node.

The only constraints on planning trees as a whole are that the root node must be a

decision node and the tree must be of finite height.

There are at least two potential approaches to provide the agent with the planning tree: (a)

choosing a template plan from a planning repository, (b) generating the planning tree.

Both approaches result in a planning tree with the same structure that the agent can use in

the second phase.

Choosing between these two alternatives entails a tradeoff between (a) time vs. space

complexity, and (b) development effort. In the first case, a plan repository may require a

large amount of storage, but plan retrieval will be faster than generation because it will

consist of a simple query to the repository. In the second case, the developer must weigh

the effort required to develop a sufficiently complete repository against the effort

required to produce an adequate planning tree generation algorithm for discovering plans

that are likely to lead to goal satisfaction in a finite number of steps.

The first option mentioned above is to use a planning repository that can be provided to

the agent offline by an expert or a designer. A planning repository is indexed by the

initial state(s) and goal state(s) associated with each planning tree. Producing a planning

tree is then a matter of matching inputs with appropriate index entries and output one of

the planning templates.

The second option is to generate the planning tree each time the agent aims to achieve a

goal based on the initial state. This approach is more flexible to be applied in dynamic

environments like games. As it has been discussed in Chapter 2 one of the main

motivations to design believable agents is failure of classic methods in facing

unpredictable situations. Generating the planning tree at runtime addresses this problem

by considering initial and possible intermediate states. A plausible solution to this

75

problem is to apply forward chaining from the world state in search of a goal state. By

design, each world state includes set of atomic facts that have an assigned numerical or

Boolean value; every action is a name coupled with pre- and post-conditions—facts with

predetermined values; and actions with more than one post-condition will only yield one

of the post-conditions at runtime. By repeatedly applying actions as functions that map a

world state containing the necessary pre-conditions to one or more new world states—

each containing a post-condition—the Planning Tree Generator can track its simulated

world state and construct a valid planning tree.

This approach can be combined with an admissible heuristic that produces a subset of

available actions that could lead to a goal state. The designer can define these admissible

heuristics based on system criteria. Because the agent should be able to perform the

planning in real-time, putting time constraints on the planning tree generation is a rational

option. This time constraint prevents the agent from staying long enough in an idle state

during planning to break the audience immersion. Depending on other parts of system

requirements, limiting the planning tree by number of CPU cycles and memory usage is

another applicable heuristic in order to prevent other system’s processes from starvation

while the agent planning is using all the resources. The designer can also put a limit on

the depth of the planning tree; this means if the goal could not be achieved within a

certain depth the agent drops the planning tree generation. Lastly the designer can keep

the branching factor not to exceed more than a certain number. These admissible

heuristics can help to limit the risk of dealing with a potentially very large planning tree.

Naturally, nodes that have reached a goal state are stored as leaves and not expanded.

Since planning trees must be of finite height, tree generation can abort after some number

of iterations chosen by the implementer. The tree is then either (a) pruned such that all

leaves correspond to goal states, or (b) left “un pruned” as the algorithm failed to find any

paths from the current world state to a goal state. Such a tree construction algorithm

allows the agent to turn planning into a path finding problem, seeking a path from the

current world state to a goal state, or to “the best non-goal state” in the case that no such

path exists in the planning tree.

76

3.7.2 Selecting an alternative: Processing a planning tree

After the planning tree has been generated in the first phase, the agent must select a

plan—a sequence of actions described by a top-down traversal from the root to a leaf.

The first step in selecting a plan is to visit all the tree nodes and annotate them with a

utility value based on (1) the node type, (2) the planning agent’s roles; (3) the planning

agent’s embedded personality traits, (4) the planning agent’s reward system, and (5)

annotations of descendent nodes (6) the planning agent’s TOM profile that has been

discussed in Section 3.4.1.4. As such, the agent visits nodes bottom-up, breadth-first.

The planning tree contains three different types of nodes that have been briefly

mentioned in the planning generation section. The annotation process for each node type

is described below.

3.7.2.1 Leaf

Leaf nodes are nodes with no descendants. Each leaf in the planning tree contains one or

more facts that correspond to all sequences of the unique action leads to this node from

the initial state. All actions’ consequences leading to a leaf node will be presented in the

leaf node, so the agent performs the state utility only once and it evaluate action

consequence within a path and not individually.

Facts in each leaf may be categorized into the following two disjoint sets: a) facts that are

members of the planning agent’s interest-based goals or the active goal and b) facts that

are not members of the planning agent’s interest-based goals or the active goal and they

do not target the agent as it has been illustrated in Figure 3.18. We differentiate between

these two sets because the agent follows two different processes to evaluate them (one for

each set). Leaf utility is calculated by Formula (3), where is the agent care of

consequence, is the agent self-desirability and is other desirability.

Formula (3):

 ∑

84

 ∑

3) Probability of each action: The last step is to assign a probability to actions

according to their weights. Higher weight means higher probability, the agent calculate

 that is aggregate weight of all actions (
) from Formula (11) for the non-

decision node. Probability of edge (
) will be calculated by Formula (12).

Formula (12):

3.7.2.3 Decision Node

 As discussed earlier in [3.7.1]a decision node is a node with descending branches that

model potential actions the can be taken by the planner. The first step is to find how

much the agent personality matches with each action. For each action the agent should

evaluate all traits, the process is similar to finding the level of desirability of an action for

another actor based on its profile with couple of modifications.

For each trait the agent first uses its role associated with the planning tree goal if that role

does not have this trait the agent check its other active roles in order of their importance,

finally the last option is to check the default one. The agent uses Formula (13) to

determine the level of desirability for each action based on its tags. In Formula (13) in

addition to the distance between the tag and trait value, importance of the role () and

trait weight () affects the Action weight. This mechanism guarantees that

dominant personality trait and higher priority roles have a higher impact in decision

making. In decision nodes lower weight indicates more harmony between the agent

personality and the action.

Formula (13):

93

model traverses the planning tree. Finally, we represent our model’s potential to create

new situations and socially-aware agents that can make decisions

Finally we represent our model potential to create new situation and socially aware

agents to make decision.

4.2 Prisoner’s Dilemma

The prisoner dilemma was originally framed by Merrill Flood and Melvin Dresher. It is a

two player, perfect knowledge, and a non-zero sum game that both players can win or

lose to varying degrees. It uses a hypothetical situation of two suspects, who are

accomplices in a crime, being arrested by the police. The police have insufficient

evidence to convict either, or both, of two suspects of committing a major crime that

carries, with the conviction, a 10-year prison sentence. The police separate the prisoners

and visit each of them individually to offer the same deal. If one testifies against the other

and the said other remains silent, the betrayer (i.e., testifier) goes free and the silent

accomplice receives the full 10-year sentence. If both remain silent, each is sentenced to

only 1-year in jail for a minor charge. If each betrays the other, they both receive a 5-year

sentence. Each prisoner must choose to betray the other or to remain silent; each subject

has no way of discovering the other subject’s decision before the end of investigation.

The question is, given these parameters, how should each prisoner act?

Stay silent Betray

Stay silent Each serves 1 year A: Goes Free, B: 10 years

Betray A: 10 years,B: Goes Free Each Serves 5 years

prisoner A

prisoner B

Table 1: The Prisoner’s dilemma pay off table

A naive interpretation might reason that:

 If I stay silent I could go to jail for 10 years

 If I tell on my partner, I could go free

103

Alex then calculates the utility of non-decision nodes by applying the probability of each

branch to its associated leaf utility
Formula (18):

Formula (18):

 ∑(
∑ ((

))

∑ ∑ ((
))

)

4.3.3 Decision Node

In the decision node, Alex uses his personality traits to find the weight for staying

silent) or betrayal () by applying his personality traits to Formula (13) . In the

absence of the utility consideration trait, Alex chooses an action with the lowest weight

that will take him to the highest utility Formula (19). is action weight-based on Alex’s

roles and
 is the utility of its decedent node.

After calculating the desirability of all actions available to them, the agent finds the

ground ratio by dividing the utility associated to the most desirable action by its weight,

as discussed in Section 3.7.2.3. In general, the agent follows its personality; deviation

from the standard is only worthwhile if it causes a significant shift in the agent’s utility.

The ground ratio is the deviation of the utility that the agent can gain by following the

closest action to its personality. All other actions have a higher weight but, if one of these

less desirable actions based on the agent’s personality could bring it a significantly higher

utility, the agent will follow that one. The agent uses the ground ratio to find out if the

option of gaining a significantly higher utility by performing a less desirable action is

available or not.

Formula (19):

104

4.4 Scenarios

In this section, we apply our model to test the agent’s decision making in a different

variation of the prisoner’s dilemma. The Authoring System enables us to create

interesting new scenarios by only assigning multiple roles to Alex and Mark (our agents).

Scenario 0 demonstrates simulation of decision theory with our agent default role.

Scenario 1 deals with the main plot of the prisoner’s dilemma; Alex and Mark, who have

not met each other before, use their stranger profile TOM and default roles for making

their individual decisions. Scenario 2 demonstrates our model’s ability to make agent

planning be situated in the social context by introducing a friend role. Scenario 3

demonstrates the quality of asymmetric social roles when Alex treats Mark as an enemy

but Mark considers him as a friend. Finally, scenario 4 simulates an interesting love

triangle that ends with a scarification of one edge to protect his ex-girlfriend and betrayal

of his opponent. In the process of evolving from the traditional scenario to more

complicated ones, the Authoring System changes agent internal data, such as active roles

and TOM profile. By changing how the agent perceives the world and what its priorities

are, the system can simulate more complicated cases. Note that the flexibility in our

design facilitates assigning new and multiple roles to the agent without making any

change in the agent planning process

4.4.1 Scenario 0

In Scenario 0, we present our model's success in modeling the decision theory approach

with our proposed planning tree. The assignments for variables in the planning tree are as

follows:

 Cooperation: The agent is neutral towards being cooperative or not. That means that

staying silent) or betraying the other agent () have equal weight. This makes

the agent choose one option based only on which non-decision node has a higher

utility.

 UC: The decision theory approach only considers probable utility in decision

making without taking into account the agent’s personality. The agent UC is zero.

105

 COC: In the decision theory approach, the agent never considers the other agent’s

utility in leaf nodes, making the agent COC trait equal to zero.

: The decision theory approach does not suggest any practical solutions to

predicting the other agent’s decision.

Considering these variables, the agent who follows the decision theory approach makes a

decision based on comparing the results of the below equations from each of non-

decision nodes:

 (

) ()

 ()

 (

) ()

 ()

Due to the fact that is positive and is negative, even with
 equal to 1, the

agent betrays its opponent. This decision is due to the variable assignment in decision

theory and the inflexibility that these values impose on the agent decision. The

description above shows our planning process’ success in simulating agents that can act

within the decision theory approach’s predictions. In the following section, we describe

our model’s flexibility in allowing for the creation of new situations through assigning

new roles to the agent. A new role can create a new personality or social context for the

agent. The planning tree uses the agent’s role’s preferences and unique attributes to

choose the best action.

4.4.2 Scenario 1

The plot in the first scenario is same as in the traditional prisoner’s dilemma: Alex and

Mark, who have not met each other before, are arrested, and each one has been offered

the same deal. Validity of the TOM module in this scenario will be demonstrated in a

simple situation by walking agents through the planning process and explaining how each

variable affects the decision-making process. Authoring System partial templates for the

106

agent default role and the TOM module for the agent have been shown in Figure 4.5. The

only constraint in assigning a value to “years in prison” and “years of freedom” has been

discussed in Section 4.2 for the general case of the traditional prisoner’s dilemma. The

pay-off arrangement in the traditional prisoner’s dilemma is such that the mutual

cooperation receives higher payoff in comparison to mutual betrayal. However, in our

model, by adding more roles to the agent, we demonstrate how the classic prisoner

dilemma can evolve into more interesting cases. For example: the agent may choose to

betray only to punish its opponent (Scenario 3 and Mark in Scenario 4) or the agent may

have other interests that makes them choose to stay silent (Scenario 4). In the following

paragraphs, we discuss how each variable in the role or TOM can affect agent decision

making.

Default Role TOM

Trait Name Trait value Stranger Profile

Care of consequence Trait Value

Cooperation Cooperation

Utility consideration

Active Pursue Goals

years in prison

years of freedom

Figure 4.5: Authoring Tool partial templates for the first scenario

As we have mentioned before, in our role-based architecture, each agent has at least one

default role that formalizes the agent general behavior when the action does not involve

any of the other active roles’ target. Due to a lack of any previous social ties in the

traditional version of the prisoner’s dilemma, Alex and Mark both use their default roles

107

in the first plot. Because Alex and Mark do not know each other, they use the ‘Stranger’

profile in TOM to predict the other agent’s actions. Consider a case where Alex has an

average level of Cooperation, which means he has no preferences over staying silent or

betraying Mark (). This means in applying Formula (19) to choose an action in

N1,
 is the determining factor. If Alex’s stranger profile does not detect any

preference for Mark to either betray or cooperate (i.e., the profile reflects a neutral degree

of Cooperation, the same as in the decision theory approach), Alex assumes that each of

the two actions has a 50% probability (

). With equal probability for

both of Mark’s actions, Alex’s only determining factor in making the decision is a

comparison between
. Interestingly, with any degree of care of consequence less than

0.5, Alex betrays Mark; otherwise, he stays silent. The reason for this fluctuation in his

decision making can be seen in Formula (16). Care of consequence being equal to 0.5

means that Alex cares for Mark’s situation as much as he cares for himself. Therefore,

among leaf nodes, L1 has a significant advantage.

If we keep Alex’s ‘Stranger’ profile the same, by decreasing Alex’s care of consequence

or decreasing his cooperation level, he betrays Mark. A higher degree of cooperation

from Mark results in
 being greater than

; consequently, N1 (in Figure

4.4) receives a higher weight in the utility calculation of NDN1 (same as N3 and NDN2).

By considering cooperation from Mark, Alex is basically choosing between 1-year in

prison or going free. If Alex has a low degree of care of consequence, he will betray. On

the other hand, by considering the negative value of a 10-year prison sentence for Mark,

Alex may stay silent. The description of the process explains that the close value of

 and

 does not convince Alex to stay silent. With the close value of

 and

 based on Alex’s TOM, he would stay silent only if he is

cooperative or has a high level of COC.

This simple example illustrates how modifying roles and traits through the Authoring

System offers the potential to define more interesting characters. For example, increasing

or decreasing Alex’s cooperation—his willingness to work in collaboration with Mark—

108

will influence Alex’s decision, just as his impression of Mark’s cooperation will also

exert an influence.

With TOM modules in place, we can enhance our agents further by fine-tuning their

personality through their default roles. A high level of cooperation in Alex causes him to

cooperate with Mark even if his TOM profile of Mark has a relatively low cooperation

value. This means, in comparison to the neutral role, now Alex may stay silent despite

expecting a lower level of cooperation in his stranger profile. Intuitively, a lower level of

cooperation in Alex’s personality makes him prone to betray unless a very high level of

cooperation is present in his stranger profile (close to 1).

We only test Utility Consideration in the first scenario. If we assign it to zero, this causes

Alex to not deviate from his personality in any circumstances. A lower level of the

cooperation trait makes him betray, whereas a higher level of cooperation leads him to

stay silent without considering either of the TOM prediction or utility assignment. On the

other hand, the maximum value of utility consideration makes Alex act in the path that

leads to highest utility; he takes into account TOM and still use care of consequence in

the leaf utility assignment. If TOM predicts cooperation and care of consequence as not

being close to 1, Alex will stay silent; otherwise, he will betray as well.

The utility consideration trait has a very high potential to create interesting behavior in

agents. However, in the next few scenarios, we will not consider it anymore because we

already know how it affects agent decision making. All agents in the next few scenarios

use the best ratio approach to choose their action. In a denser tree with various branches,

utility consideration has a high potential to make agents less predictable .The first

scenario clearly demonstrates our success in implementing TOM and using it in agent

decision making. Furthermore, the decision tree traversal algorithm uses all of the factors

to determine the final decision.

Figure 4.6 represents a diagram with two sets of data. In each data set the agent COC is

constant and the agent has been tested with different degree of cooperation and expected

cooperation from its opponent. Blue and red dots in the diagram recorded the threshold

that the agent switches from staying silent (cooperative action) to betray (non-

109

cooperative). With the same COC all the points above blue /red line means the gent

would stay silent whereas points above the colored line means the agent would betray. By

decreasing COC, moving from the blue line to the red one, we can see that the same

Cooperation level demands a higher expected cooperation from the opponent to makes

Alex stay silent; Note that the purple point on the red line has a higher level of TOM in

comparison to purple point on the blue line. Comparing the cooperation level of two

yellow points one on the blue line the other one on the red one, also suggests that with the

same level of expected cooperation, Alex with lower level of COC ,yellow dot on the red

line, should be more cooperative to stay silent in comparison to the yellow dot on the

blue line.

The diagram in Figure 4.7 represents the agent threshold for the lowest expected TOM

and cooperation level to stay silent by possessing same level of COC. In this diagram the

agent COC has been kept the same and line represents the agent threshold for changing

its decision from staying silent to betray its opponent. Comparison between red and

purple dots illustrates how a more cooperative agent may stay silent even with a low level

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5

Stranger
Cooperation
level in Alex

TOM

Alex Cooperation

Higher COC for Alex

Lower COC for Alex

Silent

Betray

Figure 4.6: COC impact in Scenario 1

110

of expected TOM from its opponent; whereas a less cooperative agent (purple point) has

a higher threshold for expected cooperation from its opponent to stay silent.

Figure 4.7: TOM versus Action tendency in Scenario1

4.4.3 Scenario 2

In the second scenario, we introduce the friend role to the implementation; each agent has

a friend role towards the other one which enables the testing of more traits. The friend

role can affect decision making whenever an action involves its target. Alex can have two

different values for his cooperation trait: one for the default role, and the other in his

friend role. He can be generally defined as a non-cooperative person, although he may be

willing to cooperate with his own friends. Figure 4.8 represents a partial template for

roles and variables involved in the second scenario. In the new scenario, although the

agent still has a stranger profile, he will not use it due to the fact that a more accurate

model of Mark has been provided.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Stranger
Cooperation
level in Alex

TOM

Alex Cooperation

Silent Betray

111

Trait Name Trait value Trait Name Trait value Stranger Profile

Selfishness Cooperation Trait Value

Cooperation Loyalty Cooperation

Honesty

Utility consideration Interest Basde Goal Mark Profile

Fact and its state value Trait Value

years in prison Betrayed(Mark,Alex)=True Cooperation

years of freedom Betrayed(Mark,Alex)=False Loyaty

Betrayed(Alex,mark)=False

value Betrayed(Alex,Mark)=True

Target

Mark

Importance

value

Affinity

value

TOMDefult Role

Active Pursue Goals

Role importance

Friend Role

Figure 4.8: Authoring Tool partial roles and TOM profiles for Alex in the second

scenario

The friend role changes leaf evaluation as well. When Alex is calculating leaf utility

because of his friendship with Mark, he cares more about his probable state. Our system

provides this consideration by using their friendship affinity level () in Formula

(6) from Chapter 3. Friendship enforces a couple of interest-based goals for Mark and

Alex: now, Alex has a negative value for betraying Mark, or being betrayed by him.

Following the same reasoning, he has a positive reward for not betraying or not being

betrayed. Recently added goals and affinity levels change leaf utility order. In the current

scenario, even with a low level of care of consequence, L1 still has a higher utility in

comparison to others because neither Alex nor Mark has been betrayed. On branches,

due to a higher level of cooperation in Alex’s role towards Mark, is smaller than .

Not surprisingly, Alex also expects more cooperation from Mark, as a friend, meaning

that
 is greater than

. Consequently, when considering all factors

112

involved in the scenario, there is no wonder that both Alex and Mark stay silent.

Figure 4.9: Trait and role importance changes the agent decision in scenario 2.

In the diagram in Figure 4.9 blue dots represent the case that agent has equal weight for

cooperation and loyalty based on its role. Red dots represent higher weight for

cooperation trait in comparison to cooperation during the test. Any dots above each

colored line mean that the agent would stay silent, whereas points under the line make the

agent to betray its opponent. The friend role determines high level of cooperation and

loyalty whereas enemy role makes their values small. As we can see by adding loyalty

trait, now the agent can even cooperate with low level of cooperation, and vice versa.

We can add even more complexity to the traditional prisoner’s dilemma by introducing a

scenario wherein two agents are friends and one of them has actually committed the

crime, and the other one knows about it. This new factor does not change the NDN1 and

NDN2 utility in Figure 4.4. However, and are different when it is taken into

account that Mark is actually guilty of committing the crime and there is an honesty trait

in Alex’s default role. This new modification in the scenario creates a new dilemma for

the agent: if Alex tells the truth that means betraying a friend, which is in contradiction

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Loyalty

Cooperation

Lower weight for cooperation

Higher weight for cooperation

Silent

Betray

113

with his cooperation level in a friendship despite having been approved by the honesty

trait contained within his default role.

There are couples of factors that help us analyze Alex’s decision: the proportional

importance of the friend role and default role; trait weights for honesty and cooperation;

and, finally, how much he cares about not betraying Mark. For a loyal friend with a high

importance for friendship, it would presumably be hard to betray a friend. The point in

introducing the honesty factor is that there is now the possibility of a friend betraying

their peers, even with their possessing a high level of cooperation. Assigning more weight

to the honesty trait and default role in comparison to those of cooperation and friendship

results in Alex testifying against Mark. This is interesting because this creates a conflict

within Alex’s thought processes. People often find themselves in conflicting situations.

The fact that our proposed model facilitates the creation of conflicts, as well as different

approaches that an individual character can take to deal with these conflicts, makes our

agents more interesting and believable. Different approaches that the agent takes to deal

with conflicting scenarios represent: a) more depth in the agent’s decision making and

underlying psychological reasoning; and b) more depth to their personalities.

Figure 4.10: Conflict of interest caused by role overload in Scenario 2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

Honesty

Cooperation

Hiegher weight for friend role

Lower weight for for friend role

Betray

Silent

114

The diagram in Figure 4.10 demonstrates when Alex needs to choose between adhering

to honesty trait in its default role or cooperation trait in his friend role, when he knows

about his friend’s crime. Blue dots represent higher weight of friend role in comparison

to the default role. The Blue and red line illustrate the agent threshold to stay silent by

keeping default and friend role weight constant against each other and changing the

honesty and cooperation degree one associated with Alex’s default role and the other

with his friend role. Any point above each colored line, means Alex betray Mark, his

friend, in favor of his default role and honesty trait. In this diagram we can see that if

Alex has a higher level of honesty he needs to have a higher level of cooperation to stay

silent.

The second scenario clearly explains the encapsulation of personality traits in a role

framework. Furthermore, it demonstrates how the role context can affect agent behavior,

as in, for example, Alex’s dealing with a friend priority in action evaluation with traits

that have been defined in friendship (Kind of confusing explanation of the example). The

agent is capable of handling multiple roles and, even more interestingly, is capable of

using more than one role to evaluate one and the same action from different perspectives.

Lastly, it was a good example to illustrate how conflicting goals or traits from multiple

roles can create dilemmas in a role-based architecture.

4.4.4 Scenario 3

In the third scenario, Mark keeps his friendship with Alex; however Alex secretly hates

Mark. We switch Alex’s role towards Mark to ‘Enemy’, illustrated by a low level of

cooperation and a negative affinity towards Mark. There is also a new trait that can be

used in this plot, namely Alex’s loyalty towards Mark. The new setting enables us to

introduce this trait where Alex treats Mark as an enemy; however, Alex knows he will

probably stay silent (

). Therefore, by using Formula (18) to calculate

NND1 utility, the utility of L1 has a higher weight in comparison to L2, as well as to L3

in NND2. Alex’s interest-based goals are also different from the last case: now, he does

not care about being betrayed by Mark. This means no negative valence will be imposed

on L2 and L3.

115

Negative affinity towards Mark changes the leafs’ utility order. Once again, adjacent

leafs from the betray action have a higher payoff (L3 and L4); with a low degree of

loyalty, Alex will definitely betray Mark. With a higher level of loyalty, it will be a battle

between loyalty and cooperation weight. On Mark’s side, staying silent is still the

candidate action; unfortunately, there is a very narrow chance that Alex will not betray

him. This means Alex goes free while Mark spends 10 years in prison.

This scenario shows the application of asymmetric social relationships in our system. In

our system, roles can be easily created, modified, and applied to the agent. Each role can

be customized for the agent and desirable scenario.

Figure 4.11: COC versus Animosity in Scenario3.

The diagram in Figure 4.11 illustrates relationship between COC, animosity towards the

enemy, and their affect in the agent final decision. By keeping Alex’s cooperation and

expected cooperation from Mark the same, we played around with COC and affinity. In

this Scenario, Alex doesn’t have an Interest goal to betray Mark instead of that he is

using his own belief system to found out about Mark state utility. Due to the fact that

Alex affinity towards Mark is negative, any undesirable state for Mark carries a higher

utility for Alex. On the other hand, Alex knows that with a high probability Mark will

stay silent. With Low COC Alex betrays Mark but as COC increases he only betrays

Alex if he really hates him.

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

|Affinity|

COC

Silent

Betray

116

4.4.5 Scenario 4

The fourth scenario modifies the third one with the introduction of two more new roles.

In this plot, both Alex and Mark are aware of a mutual hatred between them, as the two

“edges” of a love triangle. Alice, who was previously in a relationship with Alex, is now

with Mark. This history motivates us to create considerate ex-boyfriend and jealous lover

roles.

Scenario 3 can be the simple version of the fourth one, where Alex does not care about

Alice anymore but he wants to take revenge on Mark. We can assume that, although Alex

loved Alice in the past, he does not care about her anymore and he feels animosity

towards her partner (Mark) now. This situation gives us same result as Scenario 3. In this

case, Mark may know about the whole situation and still treat Alex as a friend. This

would cost him 10 year in prison due to Alex’s betrayal (Scenario 3).

In the second case, we can assume that Alex, despite his animosity towards Mark, still

cares about Alice’s feelings. He knows that by betraying Mark, Mark would either be

sentenced to 5 or 10 years of prison; if he stays silent it will be either 0 years or 1 year,

which brings less grief to Alice. This time, Alex considers the fact that more years in

prison for Mark means a longer period of grief and sadness for Alice, whom he still has a

positive affinity towards. This can be represented in our model by an interest-based fact

that represents a negative value for Alice’s grief. These considerations, once again, shift

the leafs’ utility ranking to have a higher utility for L1 and L2 and, consequently, a higher

utility for NDN1 in comparison to NDN2. Although in Alex’s decision node, < ,

the propagated utility from leafs and their presentation in
 and

 makes the

decision a battle between how much Alex cares about Alice’s not suffering grief in

contrast to his own default role’s goal, namely to spend as few years in prison as possible.

Surprisingly, Alex may stay silent despite a low level of cooperation.

117

Figure 4.12: Conflict of interest in Scenario4

The diagram in Figure 4.12 demonstrates the battle in Alex mind to betray Mark or stay

silent. Matter of betraying the other side of triangle is a battle between the degrees that

Alex cares for his Ex-lover grief and how much he wants to see his enemy (Mark)

misery. The blue line demonstrates the agent threshold for staying silent by weighting

these two variables against each other. Any point above the blue line represents the agent

betrayal. Betrayal determines the agent higher value towards seeing his enemy misery

despite the fact that he is aware of ex-lover grief.

On Mark’s side, his ‘Jealous’ role towards Alex makes him develop a very negative

utility against any state that provides his opponent fewer years in prison than he has to

endure. He has a low level of cooperation; he also gives a high probability to Alex’s

betraying him. His negative animosity is an additional factor to lead him to betray Alex.

This scenario ended up in favor of jealous Mark going free, and Alex spending 10 years

in prison.

4.5 Summary and Discussion

Scenario 0 to 4 examined consider some possible variations to the traditional prisoner’s

dilemma. The Authoring Tool facilitates the addition of more varieties by allowing for

the design of new roles, traits, and facts. Although we only tested the proposed model on

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Enemy
Betrayal

Importance

Ex-lover Grief Importance

Betray

Silent

118

one scenario with different variations, our planning algorithm and agent architecture are

general enough to perform within any given scenario and with any role specifications.

The TOM module and its emergent application in the planning tree is one of the main

contributions in our design. In scenario one, the assumption that the other person is a

stranger enables the designer to test the agent’s decision-making with different stranger

profiles. If Alex is not biased towards being cooperative, he does not have any tendency

towards being silent or betraying. The matter of staying silent or betraying will be

determined by Alex’s stranger profile and also his care consequence that has been

determined by the care of consequence trait. A low level of care of consequence allows

Alex to makes his decision only based on his own utility without considering the other

peoples’. With a low level of care of consequence, the agent’s decision is asymmetric to

the decision theory approach. However, by tuning the care of consequences to have a

higher level, the agent will follow the other agent’s decision. As long as care of

consequences does not cause the agent to blindly look for his optimal utility, he will

follow his TOM.

From a psychological stand point, care of consequences enables the agent to make a more

believable decision by considering the existence of other agents and these other agents’

preferences. Although our current prototype does not support recursive TOM, the fact

that the agent considers other agents outside his social network enables him to make more

situated decisions. One of the objections to the decision theory’s solution for the

prisoner’s dilemma is its failure to consider that the other prisoner is also seeking the

highest payoff. Our TOM, care of consequence trait, and their application in the planning

tree, enables the agent to perform more believable behaviors by considering other agents.

The first scenario provides a straightforward test bed to check the functionality of TOM.

Our TOM module affects the agent’s decision-making when the agent is not biased

towards cooperation or does not have a very low level of care of consequence. This is

parallel to human behavior: as long as one personality trait is not dominant, all of the

other factors will also play a role in decision making.

119

In Scenario 2, our role components and their application in the planning tree ensures that

the agent is acting according the role context by:

 Considering role target in state evaluation: Unlike in Scenario 1, the other prisoner

involved in Scenario 2 is a friend who the agent has a role and affinity towards.

This changes the state utility calculation. The consequences of the agent’s action

will be evaluated regarding to what may happened to his friend.

 Behavioral Personality Trait: the agent considers specific personality traits from its

friend role toward the other agent. This makes the agent follow a consistent pattern

of behavior that has been defined by the active role’s personality trait.

 Interest Goal: Defining interested-based goals to avoid betraying a friend is another

mechanism that makes the agent considers their social context.

In the second part of Scenario 2, we add another variation, where the agent has to make a

decision between adhering to his cooperation level or his level of honesty in the default

role. This variation represents our agent model’s success to use all active roles in the

agent’s decision-making process. This variation, and the agent’s decision being based on

the relative importance of the cooperation in default role and honesty in friend role, is a

good demonstration of the role’s architecture potential to create a dilemma-based

scenario. Dilemmas could be created for the agent by providing contradicting

components in different roles and assigning them to the same agent.

The third and fourth scenarios demonstrate the flexibility of our model to change the

agent’s decision by changing its role. In scenario 3, Alex has a negative affinity towards

Mark but he knows that Mark will cooperate. Mark’s profile in Alex’s TOM is the same

as in Scenario 2, but Alex’s negative affinity towards Mark, low level of cooperation, and

lack of interest-based goals, causes him to betray Mark.

Scenario 4 represents a battle between action weight and utility. Although Alex is not

cooperative, he stays silent. The agent makes this decision in favor of preventing to cause

his ex-girlfriend sadness. This scenario clearly demonstrates the role-based architecture

to make the agent make unpredictable but, at the same time, allowing the agent to

perform well-reasoned decisions. If Alex purely makes his decision based on his

120

cooperation level, this decision would have stayed the same. However, in our planning

algorithm, personality traits are only one factor that causes him to perform a different

action in a different situation with the same set of available actions.

Being in a social context can affect the agent’s decision and behavior. In this sense, our

role model and its integration with the planning tree enables the agent to consider their

social context in all planning steps. Being in a certain social context affects: a) the agent’s

action tendency (For example: Alex, with the same default role, chooses a different

action in Scenario 1 and 2.); and b) The agent’s perspective of the word state; our

architecture facilitates this by introducing interest-based goals (For example: Alex’s leaf

utility assignment in scenario 2 and 3 are significantly different.); and c) The agent’s final

decision, even with same action tendency (For example: in scenario 4, Alex has a low

level of cooperation but the utility calculation makes him cooperate.).

In conclusion, the role architecture and its components, such as goals, traits, and the

reward system, add layers in the agent’s decision-making. This layered behavior situates

our agent in their social context. More importantly, because the agent’s decisions involve

many factors, it is hard to predict. By comparing the results from all of the scenarios, we

can assert that the agent’s decision is not based on one single attribute or quality. The fact

that the agent is cooperative does not make him act cooperatively in all given situations.

Predictability, as discussed in chapter 2, is one of the main problems with current NPCs.

The agent’s planning consists of several atomic elements that each play a role in the

decision making process.

121

5 Conclusions

In conclusion, the design presented in this work addresses the problem of believability in

human-like agents that were introduced in Chapter 2. One of the main problems in classic

AI is its rigid structure. Making changes in the behavior of agents created with classical

AI requires modifying scripts, and as the amount of code increases, keeping track of

changes becomes problematic.

5.1 Summary

Four test scenarios in Chapter 4 thoroughly represented our model’s potential to add

more variety to the agent without undergoing a change in the structure of the agent

model. The agent was situated in the social context with role components such as belief,

personality traits and goals. By changing these components the designer can create a new

role and expect a different behavior. Our role-based architecture is expressive; assigning

more than one role to the agent can easily enrich the character with multiple facets based

on how the character relates to others. The planning process is novel in considering the

agent roles’ components in all steps. During the planning process the agent weighs both

the context and its own preferences in pursuit of its goals. The agent utility assignment

has the ability to perceive others’ utility through the agent reward system. Planning not

only considers other agents’ utility but also takes into account the effect of other actors’

decisions. The TOM module enables the agent to take into account the decisions of other

agents. This is another factor that enables the agent to be more socially aware by: a)

considering world facts based on its role, b) considering other actors decision. Due to the

fact that the planning tree focuses on the agent’s active role and evaluates action and

states according to all related roles’ attributes, the agent’s decision is not easily

predictable. The proposed TOM module and its application are general enough that it can

be used in any scenario for any kind of personality. The current implementation can

provide the agent with one facet of contextualized rational decision-making. The agent

can consider multiple facts, roles and traits that can all determine or change the planning

evaluation during the decision making process to some degree.

122

5.2 Contributions

Our proposed model in particular has made the following contributions:

 The Role based architecture ensures that the agent performs coherent behavior in

one specific role. The agent roles define how it perceives events and world facts,

which affects its decision making.

 One of the main factors in the agent decision making is considering other agents in

its planning by means of the TOM module.

 Our planning architecture takes into account all of the agent’s roles’ components.

The planning module guarantees that in all steps the agent evaluates states or

actions based on its active roles.

 Being able to cope with nondeterministic situations makes the agent more

believable. The role based architecture enables the user to author their desired agent

with customized qualities.

5.3 Future Work

This architecture provides many avenues for future work, including:

 TOM: Expanding the TOM module so that it can learn during runtime using

machine learning algorithms. Our TOM module is unique in that it uses the profile

of other agents in order to predict their actions. However TOM module only

performs one level of recursion, so we leave the higher levels of implementation of

theory of mind to future works. Higher levels of theory of mind can construct the

complete planning trees of other agents and therefore come up with a more accurate

prediction.

 Integrating Emotion: Integrating emotion with the planning tree is another

interesting area that can be investigated further. The agent’s Emotional State can

affect its decision making; this can be reflected by mapping Emotion Traits to

specific behavior or traits. The agent in who is enraged can use this personality trait

instead of its active roles personality traits. For example, an agent that is angry has a

123

higher tendency to act as an aggressive person even though its personality is not

aggressive.

 Memory: Memory module can also be optimized for agents that need to perform in

real-time. Our current Memory structure can be optimized by putting limits on the

number of Memory Cells. Introducing heuristics that discard events not only based

on their chronological order but their importance from the agent’s perspective is

another interesting area of research that can be further developed.

 Integration in a Real Game: Deploying the agent model as NPC in a real game

through observing its integration in the game environment with complicated

scenarios and more agents involved has been left for future work as well. This

implementation enable user testing that has been mentioned earlier.

 Other Module: Implementing the complete emotion, planning tree generation,

learning aspect of TOM and intention recognition has been left for future work as

well.

124

6 Refrences

[1] Charness, Gary, and Matthew Rabin. "Understanding social preferences with

simple tests." The Quarterly Journal of Economics 117, no. 3 (2002): 817-869.

[2] Silverman, Barry G., Michael Johns, Jason Cornwell, and Kevin O'Brien. "Human

behavior models for agents in simulators and games: part I: enabling science with

PMFserv." Presence: Teleoperators & Virtual Environments 15, no. 2 (2006): 139-162.

[3] Bacon, Timothy J., Philip Jones, Randall B. Garrett, and Andreas Tolk.

"Integration of psycho-social models and methods in NATO's approach to operations; a

review of NATO research and technology organization (RTO) systems analysis studies

(SAS-074)." In Winter Simulation Conference, pp. 2852-2859. Winter Simulation

Conference, 2009.

[4] Schmorrow, Dylan, Gary L. Klein, Robert Foster, John Boiney, Sean Biggerstaff,

Paul R. Garvey, Matt Koehler, and Barry Costa. Applied Use of Socio-Cultural Behavior

Modeling and Simulation: An Emerging Challenge for C2. Office Of The Deputy Under

Secretary Of Defense (Science And Technology) Rosslyn VA, 2009.

[5] Durupinar, Funda, Jan Allbeck, Nuria Pelechano, and Norman Badler. "Creating

crowd variation with the OCEAN personality model." In Proceedings of the 7th

international joint conference on Autonomous agents and multiagent systems-Volume 3,

pp. 1217-1220. International Foundation for Autonomous Agents and Multiagent

Systems, 2008.

[6] Mateas, Michael, and Andrew Stern. "Façade: An experiment in building a fully-

realized interactive drama." In Game Developers Conference, Game Design track, vol. 2,

p. 82. 2003.

[8] Si, Mei, Stacy C. Marsella, and David V. Pynadath. "Thespian: An architecture

for interactive pedagogical drama." In Proceeding of the 2005 conference on Artificial

Intelligence in Education: Supporting Learning through Intelligent and Socially Informed

Technology, pp. 595-602. 2005.

125

[9] El-Nasr, Magy Seif. "Interaction, narrative, and drama: Creating an adaptive

interactive narrative using performance arts theories." Interaction Studies 8, no. 2 (2007):

209-240.

[10] Barber, Heather, and Daniel Kudenko. "A user model for the generation of

dilemma-based interactive narratives." Proceedings of the AIIDE 7 (2007): 13-18.

[11] Mateas, Michael, and Andrew Stern. "Structuring content in the Façade

interactive drama architecture." Proceedings of artificial intelligence and interactive

digital entertainment 3 (2005): 93-98.

[12] McCoy, Joshua, Michael Mateas, and Noah Wardrip–Fruin. "Comme il Faut: A

System for Simulating Social Games Between Autonomous Characters." (2009)

[13] McCoy, Josh, Mike Treanor, Ben Samuel, Brandon Tearse, Michael Mateas, and

Noah Wardrip-Fruin. "Comme il Faut 2: a fully realized model for socially-oriented

gameplay." In Proceedings of the Intelligent Narrative Technologies III Workshop, p. 10.

ACM, 2010.

[14] Loyall, A. Bryan. "Believable agents: building interactive personalities." PhD

diss., Stanford University, 1997.

[15] Sally, David. "Social maneuvers and theory of mind." Marq. L. Rev. 87 (2003):

893.

[16] Paiva, Ana. "Empathy in Social Agents." International Journal of Virtual

Reality10, no. 1 (2011): 1

[17] Dias, Joao, Samuel Mascarenhas, and Ana Paiva. "Fatima modular: Towards an

agent architecture with a generic appraisal framework." In Proceedings of the

International Workshop on Standards for Emotion Modeling. Leiden, Netherlands 2011.

 [18] Aylett, Ruth, and Sandy Louchart. "If I were you: double appraisal in affective

agents." In Proceedings of the 7th international joint conference on Autonomous agents

126

and multiagent systems-Volume 3, pp. 1233-1236, International Foundation for

Autonomous Agents and Multiagent Systems, 2008.

[19] Aylett, Ruth, Natalie Vannini, Elisabeth Andre, Ana Paiva, Sibylle Enz, and

Lynne Hall. "But that was in another country: agents and intercultural empathy." In

Proceedings of The 8th International Conference on Autonomous Agents and Multiagent

Systems-Volume 1, pp. 329-336. International Foundation for Autonomous Agents and

Multiagent Systems, 2009

[20] Aylett, Ruth, Marco Vala, Pedro Sequeira, and Ana Paiva. "FearNot!–an

emergent narrative approach to virtual dramas for anti-bullying education." In Virtual

Storytelling. Using Virtual Reality Technologies for Storytelling, pp. 202-205. Springer

Berlin Heidelberg, 2007.

[21] Weallans, Allan, Sandy Louchart, and Ruth Aylett. "Beyond Double Appraisal in

Emergent Drama.", tecfalabs.unige.ch, School of Mathematical and Computer Sciences

Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK

[22] Marsella, Stacy C., and Jonathan Gratch. "EMA: A process model of appraisal

dynamics." Cognitive Systems Research 10, no. 1 (2009): 70-90.

[23] Pynadath, David V., and Stacy C. Marsella. "Minimal mental models" In

Proceedings Of The National Conference On Artificial Intelligence, vol. 22, no. 2, p.

1038. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[24] Pynadath, David V., Mei Si, and Stacy C. Marsella. “Modeling Theory of Mind

and Cognitive Appraisal with Decision-Theoretic Agents”. University of Southern

California Los Angeles Inst. For Creative Technologies, 2011.

[25] Pynadath, David V., and Stacy C. Marsella. "PsychSim: modeling theory of mind

with decision-theoretic agents." In International Joint Conference on Artificial

Intelligence, vol. 19, p. 1181. Lawrence Erlbaum Associates LTD, 2005.

[26] Marsella, Stacy C., David V. Pynadath, and Stephen J. Read. "PsychSim: Agent-

based modeling of social interactions and influence." In ICCM, pp. 243–248, 2004.

127

 [27] Klatt, Jennifer, Stacy Marsella, and Nicole C. Krämer. "Negotiations in the

context of AIDS prevention: an agent-based model using theory of mind." In Intelligent

Virtual Agents, pp. 209-215. Springer Berlin Heidelberg, 2011.

[28] Mac Namee, Brian, and Pádraig Cunningham. "A Proposal for an Agent

Architecture for Proactive Persistent Non Player Characters.", tara.tcd.ie (2001).

[29] Prada, Rui, Samuel Ma, and Maria Augusta Nunes. "Personality in Social Group

Dynamics." In Computational Science and Engineering, 2009. CSE'09. International

Conference on, vol. 4, pp. 607-612. IEEE, 2009.

[30] Durupinar, Funda, Nuria Pelechano, Jan M. Allbeck, Ugur Gudukbay, and

Norman I. Badler. "How the ocean personality model affects the perception of crowds."

Computer Graphics and Applications, IEEE 31, no. 3 (2011): 22-31.

[31] Johns, Michael, and Barry G. Silverman. "How emotions and personality effect

the utility of alternative decisions: a terrorist target selection case study." Center for

Human Modeling and Simulation (2001): 10.

[32] Talman, Shavit. "The adaptive multi-personality agent." PhD diss., Department of

Computer Science, Bar Ilan University, 2004.

[33] Ghasem-Aghaee, Nasser, Bardia Khalesi, Mohammad Kazemifard, and Tuncer I.

Ören. "Anger and aggressive behavior in agent simulation." In Proceedings of the

Summer Computer Simulation Conference, pp. 267-274. Society for Modeling &

Simulation International, 2009.

[34] Santos, Ricardo, Goreti Marreiros, Carlos Ramos, José Neves, and José Bulas-

Cruz. "Personality, emotion and mood simulation in decision making." LS Lopes, N. Lau,

P. Mariano & LMR (Eds.), eds., New trends in Artificial Intelligence 8 (2009): 215-216.

[35] Reiss, Steven. "Multifaceted nature of intrinsic motivation: The theory of 16 basic

desires." Review of General Psychology 8, no. 3 (2004): 179-193.

128

[36] Becker-Asano, Christian, and Ipke Wachsmuth. "Affect simulation with primary

and secondary emotions." In Intelligent Virtual Agents, pp. 15-28. Springer Berlin

Heidelberg, 2008.

[37] Ghasem-Aghaee, Nasser, and T. I. Oren. "Effects of cognitive complexity in

agent simulation: Basics." Simulation Series 36, no. 4 (2004): 15

[38] de Melo, Celso M., Peter Carnevale, Stephen Read, Dimitrios Antos, and

Jonathan Gratch. "Bayesian model of the social effects of emotion in decision-making in

multiagent systems." In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, pp. 55-62. International

Foundation for Autonomous Agents and Multiagent Systems, 2012.

[39] Becker-Asano, Christian, and Ipke Wachsmuth. "Affect simulation with primary

and secondary emotions." In Intelligent Virtual Agents, pp. 15-28. Springer Berlin

Heidelberg, 2008.

[40] de Melo, Celso M., Peter Carnevale, Stephen Read, Dimitrios Antos, and

Jonathan Gratch. "Bayesian model of the social effects of emotion in decision-making in

multiagent systems." In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, pp. 55-62. International

Foundation for Autonomous Agents and Multiagent Systems, 2012.

[41] Saunier, Julien, Hazaël Jones, and Domitile Lourdeaux. "I feel what you feel:

Empathy and placebo mechanisms for autonomous virtual humans." In Intelligent Virtual

Agents, pp. 323-329. Springer Berlin Heidelberg, 2009.

[42] Marsella, Stacy, Jonathan Gratch, and Paolo Petta. "Computational models of

emotion." A Blueprint for Affective Computing-A Sourcebook and Manual (2010): 21-

46.

[43] Dufwenberg, Martin, and Uri Gneezy. "Measuring beliefs in an experimental lost

wallet game." Games and Economic Behavior 30, no. 2 (2000): 163-182.

129

[44] Rizzo, Paola. "Goal-based personalities and social behaviors in believable

agents." Applied Artificial Intelligence 13, no. 3 (1999): 239-271.

[45] Rizzo, Paola. "Goal-based personalities and social behaviors in believable

agents." Applied Artificial Intelligence 13, no. 3 (1999): 239-271.

[46] Mac Namee, Brian, Simon Dobbyn, Pádraig Cunningham, and Carol O’Sullivan.

"Simulating virtual humans across diverse situations." In Intelligent Virtual Agents, pp.

159-163. Springer Berlin Heidelberg, 2003.

[47] Steunebrink, Bas R., Mehdi Dastani, and John-Jules Ch Meyer. "The OCC model

revisited." In D. Reichardt, editor, Proceedings of the 4th Workshop on Emotion and

Computing, 2009.

[48] Gratch, Jonathan, and Stacy Marsella. "Evaluating a computational model of

emotion." Autonomous Agents and Multi-Agent Systems 11, no. 1 (2005): 23-43.

[49] Wehrle, Thomas. "Motivations behind modeling emotional agents: Whose

emotion does your robot have." In Grounding emotions in adaptive systems. Zurich: 5th

International conference of the society for adaptive behavior workshop notes (SAB'98),

vol. 60. 1998.

[50] Gebhard, Patrick. "ALMA: a layered model of affect." In Proceedings of the

fourth international joint conference on Autonomous agents and multiagent systems, pp.

29-36. ACM, 2005.

[51] Bo, Xianyu. "Other-regarding preference and the evolutionary prisoner’s dilemma

on complex networks." Physica A: Statistical Mechanics and its Applications 389, no. 5

(2010): 1105-1114.

[52] Hagen, Edward H., and Peter Hammerstein. "Game theory and human evolution:

A critique of some recent interpretations of experimental games." Theoretical population

biology 69, no. 3 (2006): 339-348.

[53] Mark, Dave. Behavioral mathematics for game AI. Course Technology Cengage

Learning, 2009.

130

[54] Russell, Stuart Jonathan, Peter Norvig, John F. Canny, Jitendra M. Malik, and

Douglas D. Edwards. Artificial intelligence: a modern approach. Vol. 74. Englewood

Cliffs: Prentice hall, 1995.

[55] Loyall, Joseph Bates A. Bryan, and Scott Reilly. "An Architecture for Action,

Emotion, and Social Behavior." (1992).

[56] G. Acton. Playing the Role: An Action Selection Architecture For

Believable Behaviour in Non Player Characters and Interactive Agents. Master's thesis,

University of Western Ontario, 2009.

[57] J. YOU. Comprehensive Believable Non Player Characters Creation and

Management Tools for Emergent Gameplay. Master's thesis, University of Western

Ontario,2009 .

[58] Lisetti, Christine L. "Believable Agents, Engagement, and Health Interventions."

In HCI International 2011–Posters’ Extended Abstracts, pp. 425-432. Springer Berlin

Heidelberg, 2011.

[59] Lisetti, Christine L., and Eric Wagner. "Mental health promotion with animated

characters: Exploring issues and potential." In Proc. of the Stanford AAAI Spring

Symposium on Emotion, Behavior and Personality, pp. 33-44. 2008.

[60] Ekman, Paul. "Basic emotions." Handbook of cognition and emotion 98 (1999): 45-

60.

131

Curriculum Vitae

Name: Arvand Dorgoly

EDUCATION

University of Western Ontario Fall 2011- Present

London, On

 Masters in science in Computer Science

Shahid Beheshty University 2007-2011

Tehran, Iran

 Bachelor of science in Software engineering

SUMMARY OF QUALIFICATIONS

 Able to learn any new programming language quickly

 Good team member with leadership skills

 Knowledge of game theory, artificial intelligence, and behavioural economics

 Excellent problem solving and software debugging skills

 Experienced with database design

Technical Skill

 Have experience programming with C++, C#, Java, Prolog, Python, Matlab,

Pascal.

 Familiar with hardware description languages: VHDL,Verilog

 Web/DB technologies: HTML, java scripts, MYSQL

 Familiar with different SDK's including Microsoft Visual Studio, Xcode, Eclipse.

 Familiar with Open CV and OpenGL

PROFESSIONAL EXPERIENCE

 Teaching Assistant, Computer Science, University of western Ontario

 Research Assistant, Computer Science, University of Western Ontario

