May 2013

Kontakt

Michael Lukaszuk
The University of Western Ontario

Supervisor
Dr. Omar Daniel
The University of Western Ontario

Graduate Program in Music

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Music

© Michael Lukaszuk 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Composition Commons

Recommended Citation
https://ir.lib.uwo.ca/etd/1253

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswardin@uwo.ca.
KONTAKT

(Thesis format: Score)

by

Michael Lukaszuk

Graduate Program in Music

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master in Music Composition

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Michael Lukaszuk 2013
Abstract

Kontakt is a c. 14-minute composition for string orchestra and audio signal processing that deals with imitation and ensemble communication. The first and third section of the piece are comprised of a series of sound objects. The second section uses one of these objects to create a collection of palindromic motives, phrases and subsections. The pitch material in my thesis composition consists of a slowly evolving cell containing three intervals at a time. The piece uses Max/MSP software to create delay networks, live recording and playback of audio material, harmonization of live material, and quadraphonic sound diffusion. In *Kontakt*, imitation is explored using canonic, spatial, textural, and timbral effects. A three-part interplay consisting of 1) performing acoustic material, 2) digital processing and 3) interpretation of the processed material creates a deep connection between the acoustic and electroacoustic elements in the piece.

Keywords

Kontakt, electroacoustic music, divided string orchestra, Canadian music
Acknowledgments

Thank you to Dr. Omar Daniel for acting as my thesis advisor and for his invaluable guidance and support throughout my program of study. Thanks also to Dr. David Myska for his many helpful recommendations in acting as my second reader.
Table of Contents

Abstract……………………………………………………………………………………ii

Acknowledgements………………………………………………………………………iii

Table of Contents…………………………………………………………………………iv

Cover Page……………………………………………………………………………v

Instrumentation…………………………………………………………………………vi

Notation Guide…………………………………………………………………………vii

Electronicians Guide…………………………………………………………………… viii

Score………………………………………………………………………………………1

Curriculum Vitae………………………………………………………………………67

iv
Kontakt

(2013)

String Orchestra and audio signal processing

Michael Lukaszuk
Kontakt

Instrumentation

8 violins, 3 violas, 2 cellos, 1 double bass
Divided in two groups

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 violins</td>
<td>2 violins</td>
</tr>
<tr>
<td>1 viola</td>
<td>2 violas</td>
</tr>
<tr>
<td>1 cello</td>
<td>1 cello</td>
</tr>
<tr>
<td></td>
<td>1 double bass</td>
</tr>
<tr>
<td></td>
<td>2 electronicians</td>
</tr>
</tbody>
</table>

Two electronicians will process audio from group 2.

Suggested Seating Arrangement

Groups are arranged in two semicircles. Instruments belonging to Group 2 appear in italics in the above diagram.
Notation

Accidentals carry through the measure.

The note heads in parentheses indicate how long the gliss. should last. This gliss. should last as long as the combination of a sixteenth, quarter and half note. Do not rearticulate unless a change of bow direction is necessary, or the following notation is used:

Rearticulate this note as fast as possible until the line ends.

Excessive/Extreme bow pressure to create a scratchy sound.

Start playing this note at a random point in the measure.

Gradually change from one mode of execution to the next.

A beam that thickens over time into three beams indicates an unmeasured accelerando. During such passages the performer should not concern themselves with playing the exact number of notes on the page.
The Electroacoustic Component

Electronician 1 is given a variety of cues throughout the piece. All of these are to be executed using a Behringer BCF2000 MIDI control surface (or a controller with similar features). Electronician 1 manipulates a Max/MSP patch to affect the delay times, reverb decay time, computer generated transpositions of audio material, live recording, playback and sound diffusion. All cues list information in the following order:

Cue 1 – all channels
Record buffer A until-------------------------
Delay Times – 1 = __ ms , 2 = __ ms , 3 = __ ms
Feedback = __
Reverb Decay time = __ ms
Transposition - Major 2nd above
Spatio = 1 + 2

The first line in a cue indicates which of the six input channels will be active during the processing.

The input channels should be assigned as follows:

Group 2

Violin 1 = Channel 1
Violin 2 = Channel 2
Viola 1 = Channel 3
Viola 2 = Channel 4
Cello = Channel 5
Double Bass = Channel 6

The last line in a cue indicates which of the four loudspeakers will be used.

Electronician 2 controls the loudspeaker output levels using a mixing console or similar audio interface. Levels are notated using standard dynamic markings (i.e. mp, ff) and crescendo/decrescendo hairpin signs. All output gains are equal unless a specific number appears above a hairpin.

e.g.:

l.

Raise and lower the output gain for speaker 1. Gains for other output channels that may be active are not to be altered.
Please refer to the Max/MSP patch for more information on setup and performing cues. Contact Michael Lukaszuk to obtain a copy of the Max/MSP patch.

Duration approximately 14:00
D

Vln. I

Vln. II

Vln. III

Vln. IV

Vln. V

Vln. VI

Vla.

Vc.

Vln. I

Vln. II

Vla. I

Vla. II

Vc.

D.B.

Elec. 1

Elec. 2

Channels 1, 2 + 6
Delay 1 = 500ms
Feedback = 0
Rvb decay = 500ms
Transpose up = Maj, 6, 8ve, Maj 9th
Spatio = 1+2
w/ occasional ping-pong

10
Vln. I
Vln. II
Vln. III
Vln. IV
Vln. V
Vln. VI
Vla.
Vc.

D.B.
Elec. 1
Elec. 2

\[\text{Delay times: } 1=1150ms, 2=2300ms, 3=3450ms \]
\[\text{Feedback: } 1.2 \]
\[\text{R/v decay: } 1000ms \]
\[\text{Transpose with each delay: Maj 2, Min 3 and Min 6} \]
\[\text{Spatio: } 1+2 \]
accel. poco a poco
add 1 dly time per bar: 1 = 1500ms, 2 = 750ms, 3 = 375ms, 4 = 187ms
feedback = 1.5
rvb decay 2000
staggered transpositions: Maj 2, Maj 3 and dim.5
spatio = 1+2
rit. until m. 115
148

Vln. I

Vln. II

Vln. III

Vln. IV

Vln. V

Vln. VI

Vla. I

Vla. II

Vc.

D.B.

148

Elec. 1

Elec. 2

All Channels
Add 1 Delay time per bar - 1 = 250ms, 2 = 350ms, 3 = 450ms, 4 = 550ms
feedback = 1
Rvb Decay time = 1000ms
Transposition = randomly select transpositions of Maj 2nd, Maj 3rd, Dim. 5
Spatio = rotation 1-4, new speaker each measure

Legend:

- legato

- p

- fp
Vln. I

Vln. II

Vln. III

Vln. IV

Vln. V

Vln. VI

Vla.

Vc.

D.B.

Elec. 1

Elec. 2

Cue 15

\text{all channels}

Delay times - 1=2500\text{ms}, 2=2600\text{ms}, 3=2700\text{ms}, 4=2800\text{ms}

feedback = 1.5

rvb decay 5000

staggered transpositions down

stapiro = rapid rotations 1-4
K

Vln. I
Vln. II
Vln. III
Vln. IV
Vln. V
Vln. VI
Vla.
Vc.

G R P. 1
G R P. 2

Vln. I
Vln. II
Vln. III
Vln. IV
Vln. V
Vln. VI
Vla.
Vc.

D.B.

Elec. 1
Elec. 2

Channel 1
Loop 1.25x speed
Transpose down = maj. 2nd
Channel 4
Loop 1.5x speed
Transposition up = 8ve + P5
Spatio = 1+2
add-3+4

n
Channel 2
Continuous loop 1 at 1.25x speed
transposition below = 8ve + P4
Channel 4
Continuous loop at 1.75x speed
transposition above = 8ve + P5
Delay time · 1= 1000ms
Spatio = 1
Play buffD (0.5 x speed)
Delay times - 1 = 250ms, 500ms
Roh Decay time = 1500ms
Spatio = alternate 1+3, 2+4 every measure
Vln. I: 245
Vln. II:
Vln. III:
Vln. IV:
Vln. V:
Vln. VI:
Vla.:
Vc.:

GRP. 1

GRP. 2

D.B.:
Elec. 1: 245
Elec. 2:

Channel 2
Delay times: 1= 500ms, 2= 550ms, 3= 750ms, 4= 1500ms
Feedback = 1
Rvb decay time = 1500ms
Spatio = rapidly alternate 3, 4, 2

Note: Enter freely.
Channels 1, 2, 3, 6
Delay time 1 = 1000ms, 2 = 1100ms, 3 = 1200ms, 4 = 1300ms
Feedback = 0.6
Rvb decay time = 8000
Transpose up - Major 6th
\text{unmeasured glissandi, gradually increase number of glissandi per bar}
Curriculum Vitae

Name: Michael Lukaszuk

Post-secondary Education and Degrees:
University of Western Ontario
London, Ontario, Canada
2007-2011 B.Mus.

The University of Western Ontario
London, Ontario, Canada
2011-2013 M.Mus.

Honours and Awards:
Paul Akira Ohashi Summit Award
2011
Western Graduate Research Scholarship
2011-2013
The University of Western Ontario
Dean’s List
2009-2011

Related Work Experience
Teaching Assistant
The University of Western Ontario
2011-2013
Research Assistant
The University of Western Ontario
2010-2011