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Abstract 

Continuous Phase Modulation (CPM) is a power/bandwidth efficient signaling technique for 

data transmission. In this thesis, two subclasses of this modulation called Continuous Phase 

Frequency Shift Keying (CPFSK) and Continuous Phase Chirp Keying (CPCK) are 

considered and their descriptions and properties are discussed in detail and several 

illustrations are given. Bayesian Maximum Likelihood Ratio Test (MLRT) is designed for 

detection of CPFSK and CPCK in AWGN channel. Based on this test, an optimum receiver 

structure, that minimizes the total probability of error, is obtained. Using high- and low-SNR 

approximations in the Bayesian test, two receivers, whose performances are analytically 

easy-to-evaluate relative to the optimum receiver, are identified. Next, a Maximum 

Likelihood Sequence Detection (MLSD) technique for CPFSK and CPCK is considered and 

a simplified and easy-to-understand structure of the receiver is presented. Finally, a novel 

Decision Aided Receiver (DAR) for detection of CPFSK and CPCK is presented and closed-

form expressions for its Bits Error Rate (BER) performance are derived.  

Throughout the thesis, performances of the receivers are presented in terms of probability of 

error as a function of Signal-to-Noise Ratio (SNR), modulation parameters and number of 

observation intervals of the received waveform. Analytical results wherever possible and, in 

general, simulation results are presented. An analysis of numerical results is given from the 

viewpoint of the ability of CPFSK and CPCK to operate over AWGN Channel. 

Keywords: Continuous phase modulation, Frequency shift keying, Chirp modulation, 

Optimum receivers, Sub-optimum receivers, Viterbi receiver, Decision Aided receiver. 
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Chapter 1 

Introduction 

In this Chapter, an overview of the functional block diagram of a Digital Communication 

System (DCS) is presented with emphasis on digital modulation and demodulation sub-

blocks. Digital modulation techniques and parameters that are used to describe the 

performance of the DCS are also given. Transmission and detection strategies, 

particularly, those associated with CPFSK and CPCK, are discussed. All in all the 

emphasis in this Chapter is mainly on the literature review, problem statements, their 

justifications, approaches for their solutions, and organization of the thesis.  

1.1 Digital Communication System (DCS) Overview 

Digital Communication has become one of the most rapidly growing industries in the 

world, and its products cover a wide array of applications and they are exerting a direct 

impact on our daily lives. Basically, communication involves implicitly the transmission 

of information from one point to another through a succession of processes. The first step 

is the generation of a message signal, either analogue (voice, music or picture) or digital 
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(computer data). The second step is to describe that message signal with a certain 

measure of precision by using a set of electrical, aural or visual symbols. These symbols 

are encoded in a form that is suitable for transmission over the available physical 

medium. The encoded symbols are transmitted using a transmission device to a specific 

destination. The encoded symbols are received on the other side using a receiver device. 

Then, the encoded symbols are decoded to produce an estimate of the original symbols. 

Thus, the message signal is re-created with a definable degradation in quality due to 

signal fading, system imperfections and the different types of noise (Thermal noise, 

Additive White Gaussian Noise (AWGN)…). A typical digital communication system is 

shown in Figure 1.1. 

Figure 1.1: Block Diagram of General Digital Communication System  

Information source may be either analog (audio or video) or digital (computer output) 

signal. In a Digital Communication System, messages produced by source are always 

converted to a sequence of binary digits (         ). If source output is analog, 

Analogue to Digital conversion (Sampling, Quantization and Encoding) is employed 

using Analogue to Digital convertor (ADC). 

 

Input Transducer 
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Channel 

Encoder 
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Channel 
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Channel 
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The second stage is the source encoder. Ideally, we would like to represent the source 

output by as few binary digits as possible. Thus, the objective of the Source Encoder is to 

provide an efficient representation of the source output. The process of efficiently 

converting the source output into a sequence of binary digits is called Source Encoding or 

Data Compression. Examples of source encoding are Huffman Coding and Lempel-Ziv 

Coding [50]. These use information theoretic concepts to remove redundancies present in 

the source output. 

The third stage is the channel encoder block. The purpose of the channel encoder is to 

introduce, in a controlled manner, some redundancy in the binary sequence at its input; 

primarily to combat the effects of noise and interference over the channel. The added 

redundancy improves the fidelity of the received signal and increases the signal’s 

immunity to noise. It provides the message with error detection and correction 

capabilities. Examples of channel encoding are single-parity check codes, convolutional 

coding and cyclic redundancy check codes. Typically, channel encoding involves taking 

 -information bits at a time as input and in response producing a unique  -bit sequence, 

called the code word, as output. The amount of redundancy introduced by the channel 

encoder in this manner is measured by the ratio    . The code rate is the ratio    .  

The fourth stage is the Modulator. Modulation is a fundamental process in any 

communication system and especially so in a radio system. In Digital Communication 

Systems (DCS), the modulator’s function is the translation between digital data and the 

electrical signal required at the input to the Radio Frequency (RF) section. The modulator 

can be considered as a signal sub-system that maps input data, usually binary 0 and 1, on 

to a modulated RF carrier for later processing, transmissions and amplification by the RF 

section. First, the modulator maps the binary information sequence into a set of values 

suitable for the modulation scheme that will be used at the Radio Frequency (RF) 

transmission stage. Second, each value in the set is assigned to its corresponding RF 

signal that will be used over the channel. Suppose that the coded information sequence 

will be transmitted one bit at a time at some uniform rate   bits/sec. The coded bits will 

be assigned to two values, +1 or -1.Next, each value is assigned to two signals,       or 

     . An illustration is shown in Figure 1.2. 
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Figure 1.2: Block Diagram of Binary Modulator 

The block diagram of a binary modulator is shown in Figure 1.2. In Binary Modulation, 

two values,    or   , are used to map to       or      . Alternatively, the modulator 

may transmit   coded information bits at a time by using      values, where each one 

of the    possible  -bit sequences has its own distinct waveform                .   

is called the modulation order and the modulation scheme is called  -ary modulation. 

Various types of waveforms can be used at the RF stage, such as phase shift keying and 

frequency shift keying. Thus, the modulator is characterized by the modulation order and 

the type of waveforms used in the process along with other modulation parameters 

specific to each scheme. The modulation stage decides the bandwidth occupied by the 

transmitted signal. Furthermore, modulation controls the robustness of the 

communication system to channel impairments, due both to the RF sub-systems (such as 

phase distortion and amplifiers nonlinearity) and the RF channel (such as additive noise, 

multipath fading and dispersion). Thus, a suitable choice of modulation scheme is 

important for the efficient operation of DCS.  

The communication channel represents the physical medium that is used to send the 

signal from the transmitter to the receiver. Different channels can be used such as 

wireless/free space channels, telephone/wire-line channels, fiber-optic channels, 

underwater channels, storage channels, etc. The essential feature of the physical medium 

is that the transmitted signal is corrupted in a random manner by a variety of 

mechanisms- additive thermal noise (AWGN), fading or signal attenuation, amplitude 

and phase distortion and multipath distortion especially in wireless communication. 

First Stage 

0 →    

1 →    

  → 𝑆  𝑡  

  → 𝑆  𝑡  

Second Stage 

Binary Modulator 
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The Source encoder, channel encoder and modulator form the integral parts of the 

transmitter. The reverse of all these processes is taken care of on the destination side by 

the receiver, which will typically contain a demodulator, channel decoder and source 

decoder. When an analog output is desired, the output of the source decoder is fed to the 

Digital to Analogue converter (DAC) to reconstruct the estimated message. Because of 

channel conditions and distortions, the message at the destination output is an 

approximation to the original source message. Each one of the blocks shown in Figure 

1.1 is a research field on its own. In this thesis, our focus is on the 

modulation/demodulation sub-blocks of DCS.  

1.2 Modulation Scheme Parameters 

Radio systems are always strictly limited by the regulating authorities to certain 

frequency bands. Usually, each one of those bands is shared among multiple users of the 

system by means of Frequency Division Multiple Access (FDMA) and, therefore, the 

bandwidth occupied by each user is narrower, and more users can be accommodated. 

Moreover, communication system bandwidth requirement is determined by the spectrum 

of the modulated signal, which is typically presented as a plot of Power Spectral Density 

(PSD) as a function of frequency. Theoretically speaking, the PSD should be zero outside 

the occupied band, where in practice, however, this is never the case, and the spectrum 

extends to infinity beyond the band’s limit. This is either due to the specific 

characteristics associated with the different modulation schemes or due to the 

imperfectness of the practical implementation of filters. Therefore, it is essential to set the 

bandwidth,  , of the modulated signal such that the signal’s power portion falling 

beyond the band’s limit is less than a certain threshold. In practical implementation, this 

threshold is determined by the system’s tolerance to Adjacent Channel Interference 

(ACI), which is also another feature of the modulation scheme. In addition, the 

bandwidth or spectral efficiency of a modulation scheme is defined as the channel data 

rate   per unit bandwidth occupied (             ). 

Another parameter used in characterizing a modulation scheme is the Bit-Error-Rate 

(   ) performance.     is defined as the ratio of bits received in error to the total 
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number of bits received. Moreover,     is also referred to as the probability of bit error, 

    , and is frequently plotted logarithmically against Signal-to-Noise-Ratio (   ) in 

  . For a more system-independent measure, the coordinate of this graph is normally the 

   -energy-to-noise density ratio      . This is due to the fact that noise power spectral 

density    is a primary feature of a channel and independent of the bandwidth of the 

system, unlike the noise power.       is dimensionless, since    has dimension of 

        , which is equivalent to       .  

In addition, modulator and demodulator complexity is another parameter that plays a 

major role in determining the choice of a specific modulation scheme for any DCS. The 

number of correlators required in the implementation of the demodulator is normally used 

as a complexity measure for each modulation scheme. Moreover, all DCS require a 

particular degree of synchronization with incoming signals by the receivers, which 

further increases the complexity of receivers especially in coherent detection.  

Hence, the ultimate choice of one modulation scheme over the others in a DCS depends 

on spectral efficiency,     performance and receiver complexity. In general, these 

parameters can be viewed as a set of basis-functions that can be used to pinpoint DCS as 

a point in a three-dimensional space. Following this analogy, trade-offs in the design of a 

DCS exist among these three main resources. In practice, two types of modulation 

schemes are found, one that is optimized for bandwidth efficiency and the other that is 

optimized for power efficiency. The choice of which one to go with depends on the DCS 

in question, if it is either power-limited or bandwidth limited. Consequently, different 

modulation schemes are referred to as either power-efficient or bandwidth-efficient. 

While efficient power and bandwidth utilization is considered an important criteria in the 

design of DCS, there are situations where this efficiency is sacrificed in order for other 

design objectives to be met, such as providing secure communication in a hostile 

environment. A major advantage of such systems is their ability to reject intentional or 

unintentional interference. The class of signals that provide this requirement is referred to 

as spread-spectrum modulation. In a spread-spectrum system, the transmitted signal is 
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spread over a wide frequency band, usually much wider than the minimum bandwidth 

required for information to be conveyed.  

Nowadays, indoor wireless communication is of great importance and its market share 

has been growing rapidly due to its advantages over cable networks such as users’ 

mobility, wiring cutoffs and flexibility. Classical applications are cordless phone systems, 

Wireless Local Area Networks (WLANs) for office and home applications and flexible 

mobile data transmission links between robots, actuators, sensors, and controller units in 

industrial environments. Because of the hostile electromagnetic (EM) environment, 

which includes severe EM emissions from other devices as well as multipath propagation 

distortions [1], communication link robustness is an extremely important feature for 

wireless communication system, and here comes in spread-spectrum technology. 

Spread-spectrum’s most important ability is its robust data transmission even in very 

noisy radio environments [2]. The critical processes in spread spectrum systems are the 

spreading and de-spreading functions in the transmitter and receiver. In Frequency 

Hopping (FH) and Direct Sequence (DS) systems, the synchronization of the de-

spreading code needs high computational effort and it is difficult. Chirp modulation and 

Linear Frequency Modulation (FM) are spread spectrum signaling techniques in which 

the carrier frequency is swept over a wideband during a given data pulse interval. In such 

systems, the spreading is accomplished solely for combating multi-path distortions, 

whereas in Code Division Multiple Access (CDMA), this objective is achieved by using 

additional coding [3]. Spreading and de-spreading with chirp signals can be easily 

implemented using Surface Acoustic Wave (SAW) technology [4], which offers a rapid 

close-to-optimum method for both generation and correlation of wideband chirp pulses 

[5].  Moreover, these devices are very compact and can be realized at low cost, due to the 

analog correlation process involved in the complex synchronization circuits.  

While a variety of modulation techniques exist in the literature, the emphasis in this 

thesis is on phase modulations. In particular, two subclasses of phase-continuous signals 

referred to as Continuous Phase Frequency Shift Keying (CPFSK) and Continuous Phase 

Chirp Keying (CPCK) are considered, in an attempt to arrive at power efficient 
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modulations. In the next Section, an overview of the relevant development in the area of 

CPM is provided with particular references to CPFSK and CPCK modulations, detection 

techniques, receivers and their performance. 

1.3 Review of Continuous Phase Modulation (CPM)  

Over the past twenty years or so, research has been intensely focused on finding efficient 

Digital Communication Systems, especially modulation techniques that can meet high bit 

rate transmissions. Generally speaking, one modulation scheme is chosen over another 

based on which one requires the least value of     for a specific error rate threshold and 

still satisfies the various system constraints [6]. 

In this context, constant-envelope CPM has emerged as an excellent modulation 

technique for applications in satellite communication and global digital radio channels. 

CPM offers excellent bandwidth and power efficiency [7]. Moreover, CPM designs are 

fairly immune to nonlinear channel effects because of their constant-envelope 

characteristic. Although there are many CPM classes with diverse properties and 

applications, they are all based on the usage of inherent memory, which is introduced by 

the continuous phase. This continuous phase constraint offers enhanced bit error 

probability performance [8], sharper spectral roll-off [9], and permits multi-symbol 

detection rather than the conventional symbol-by-symbol detection. In general,     

performance is improved by increasing the number of observation intervals. However, 

the implementation of the corresponding optimal receiver becomes much more complex. 

Thus, it is important to examine the class of constant envelope CPM for its ability to offer 

tradeoffs among receiver complexity, bandwidth and power. 

Osborne and Luntz [10] considered a bandwidth efficient modulation technique, 

Continuous Phase Frequency Shift Keying (CPFSK), and showed that Binary CPFSK 

with a modulation index of         and optimum 3-bit observation receiver can 

outperform Binary Phase Shift Keying (BPSK). Later, these results were extended to the 

more general case of  -ary CPFSK by Schonhoff [11]. In these works, the focus was on 

finding optimum modulation parameters that provide least    . However, it is important 

to examine the loss in performance relative to the optimum if one were to use non-
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optimum modulation parameters due to bandwidth and receiver complexity constraints. It 

is noted that [10, 11] in order to arrive at     performance of the optimum receiver, 

high-and low-    approximations have been employed. Nevertheless, it is not clear as to 

the value of     that distinguishes high-    from that of low-   . Thus, an 

investigation to answer this question is important.  

Moreover, Aulin et. al. have studied CPM using minimum Euclidean distance notion in 

the signal space, and have suggested schemes that are efficient in terms of bandwidth and 

power compared to PSK [8, 12]. Optimum signaling schemes have been determined 

based on maximizing the minimum Euclidean distance in signal-space. Again, it is noted 

that an examination of distance properties as a function of modulation parameters is 

important to understand the ability of CPM to operate over practical communication 

channels.  

In addition, Miyakawa’s et. al. have suggested the use of time-varying modulation 

indices from one bit interval to the next and have demonstrated that multi-h CPFSK can 

outperform single-h CPFSK [13]. Anderson and Taylor [14] generalized Miyakawa’s 

work by imposing certain constraints on the modulation indexes employed and have 

confirmed that multi-h phase codes can achieve up to   dB     performance 

improvement in approximately the same bandwidth relative to PSK. In another work, 

Aulin and Suridberg [15] have thoroughly worked on the distance properties of multi-  

signals. In addition, Raveendra and Srinivasan [16] have arrived at optimum multi-h 

CPM schemes, which minimize the bit-error-probability. Moreover, they have arrived at 

closed-form expressions describing bit error rates of an easy-to-implement multi-h CPM 

Average Matched Filter (AMF) receiver. 

Later on, Hwang et. al. have introduced the concept of asymmetric modulation indices 

[17]. In this technique, the modulation indices were set as a function of the data symbols 

and it was demonstrated that performance improvements can be achieved over 

conventional multi-h schemes in essentially the same bandwidth. Fonseka and Mao [18] 

considered a class of nonlinear asymmetrical multi-h CPFSK with the ability to achieve 

higher distance properties relative to other multi-h schemes. By adaptively changing 
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modulation indices in a time-varying manner, it is also possible to obtain an adaptive 

multi-h CPFSK signaling [19]. This signaling scheme realizes higher coding gains 

compared to the well-known Minimum Shift Keying (MSK) scheme. Further important 

works in nonlinear CPFSK has been carried out [20, 21, 22]. Also, Raveendra and 

Srinivasan [23] considered a Decision Directed Receiver for coherent demodulation of a 

subclass of CPM over AWGN. 

Chirp modulation or Linear FM represents a class of spread-spectrum signals. It is useful 

in certain communication systems for its abilities such as anti-eavesdrop, low-Doppler 

sensitivity and anti-interference [24]. Moreover, there are several applications of chirp 

signals in communication such as cordless systems, radio telephony, data communication 

in High Frequency (HF) band, air-ground communication via satellite repeaters and 

WLANs. Recently, Institute of Electrical and Electronics Engineers (IEEE) introduced 

Chirp Spread Spectrum (CSS) physical layer in the new wireless standard 802.15.4a [25], 

which uses chirp modulation with no additional coding. The new standard, 802.15.4a, 

targets applications in sensor actuator networking, industrial and safety control, medical 

and private communication devices.  

A combination of chirp modulation [26] with some kind of pseudo-random coding has 

been shown to produce significant improvement in anti-jam performance. Among several 

applications of chirp signals in communication are cordless systems, data communication 

in High Frequency (HF) [27], radiotelephony, WLANs [28] and air-ground 

communication via satellite repeaters [29][30].  

While majority of chirp signals are employed in radar applications [31], Winkler [32] 

first proposed them for data communication, due to their noise immunity property to 

intentional interference. Hirt and Pasupathy studied the performance of coherent and non-

coherent binary chirp signals over AWGN channel [33, 34]. Since the optimum receivers 

were required to make independent bit-by-bit decisions, it was concluded that chirp 

systems did not compare favorably with conventional PSK and FSK systems. By 

introducing phase continuity into chirp signals at bit transitions, the use of multiple-bit 

detection techniques became possible, which offered power advantages [35]. Thus, Hirt 



11 

 

and Pasupathy considered a class of CPM referred to as Continuous Phase Chirp (CPC) 

binary signals [33] and showed that an advantage of 1.66 dB at most can be achieved 

over conventional PSK. Raveendra extended this work to the more general case of  -ary 

signaling [36]. It was shown that 4-ary chirp system with five bit observation interval, 

when coherently detected, offers an     gain that is nearly equal to 3.2 dB compared to 

that of the conventional 4-PSK system. Also, Raveendra introduced a class of multi-mode 

binary CPC signals [37] that used the concept of time-varying modulation parameters. He 

showed that dual-mode phase-continuous chirp signals, with two different sets of 

modulation parameters, outperform conventional CPC signals by nearly 0.8 dB. Fonseka 

extended these results [38] to include partial response CPC signals. More recently, Bhumi 

and Raveendra [39] considered digital asymmetric phase continuous chirp signals. They 

showed that it can outperform dual-mode chirp modulation that was considered before 

[37]. Wang, Fei, and Li [40] proposed a structure for chirp Binary Orthogonal Keying 

(BOK) system. They obtained an expression for the probability of bit error and showed 

that chirp BOK performs better than traditional BOK modulation in Additive White 

Gaussian Noise (AWGN) channel.  

Several other works in this area clearly exhibit the choice of chirp modulation in a variety 

of digital communication systems [41, 42, 43, 44, 45 and 46]. In all these works, binary 

chirp systems with receivers that are required to make independent bit-by-bit decisions 

have been considered.   

In the literature, there are several other notable papers, which address the advancement in 

CPM over the past 20-30 years [12, 13, 17, 18, 33 and 37].  

1.4 Problem Statement and Justification  

The optimum coherent receiver which minimizes the bit error probability observes the 

received CPM signal contaminated with AWGN, over several bit intervals and makes a 

decision on the first bit in this interval. The optimum receiver is complex and its precise 

analysis is too complicated to attempt analytically. The complexity of the receiver grows 

exponentially as the number of observed symbol intervals. Also, the performance of the 
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optimum receiver is determined in terms of the performance of the sub-optimum 

receivers.  

These sub-optimum receivers have been arrived at based on high- and low-    

approximations. It is not obvious as to the value of     that defines the boundary 

between high- and low-   . Also, most performance analyses have focused on 

determining the optimum modulation parameters that achieve minimum    . Thus, our 

first objective in the thesis is to derive from first principles, the structure of the optimum 

receiver and subject it to high- and low-    performance analysis. Closed-form 

expressions for     are then derived and used to find the boundary between high- and 

low-   s; first using analytical results and then using simulations. Moreover, we 

provide a thorough investigation of the effect of modulation parameters on     

performance for the subclasses of CPM namely CPFSK and CPCK. This study is carried 

out using exhaustive computer search and backed with mathematical analysis, wherever 

possible.  

It is well-known that the Viterbi Algorithm (VA), a Maximum Likelihood Sequence 

Estimation (MLSE) technique, is widely used for estimation and detection problems in 

digital communications. In this thesis, we are particularly interested in the application of 

VA for detection of CPFSK and CPCK signals. The main issue is to develop VA in 

software to examine the performance of specific CPFSK and CPCK signaling.  

The problem of finding low-complexity receivers for CPM has received wide spread 

attention by researchers. One is particularly interested in arriving at reduced complexity 

receivers whose performances are comparable to that of the optimum receiver. In fact, in 

all these works, four different types of receivers are considered, of which two are 

generally receivers that work for all CPM schemes and the other two work for binary 

schemes with a modulation index of 0.5. In this thesis, quite different to the approaches 

available in the literature, we introduce a low-complexity receiver, for both CPFSK and 

CPCK, which we have called Decision Aided Receiver (DAR). The detection strategy 

involves first obtaining coarse estimates and then using these to refine the estimate in a 

specific bit in the observation interval. Not only we provide the decision aided detection 
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strategy, but also we obtain closed-form expression for estimating the     of such a 

receiver. 

1.5 Thesis Contributions 

The major contributions of the thesis are summarized below: 

 Two subclasses of constant-envelope phase-continuous signals called CPFSK and 

CPCK signals are presented. Mathematical descriptions and properties of these 

signals are given and illustrated. 

 Optimum and sub-optimum receivers are derived based on Bayesian Maximum 

Likelihood Ratio Test (MLRT). Performance of these receivers is analyzed and 

the effect of the different modulation parameters on     is examined in detail for 

CPFSK and CPCK modulations.  

 Minimum Distance Criteria for both CPFSK and CPCK signaling techniques are 

provided, and optimum parameters that maximize the minimum distance are 

determined through extensive computer search. 

 Performance of the Maximum Likelihood sequence Estimation (MLSE) receiver, 

which is referred to as Viterbi Algorithm (VA) is provided for specific CPFSK 

and CPCK modulations.    

 A novel Decision Aided Receiver (DAR) for CPFSK and CPCK modulations is 

presented and closed-form expressions for     of the receiver are derived. Best 

CPFSK and CPCK systems for DAR have been determined and illustrated. 

1.6 Thesis Organization  

Chapter 2 provides the concept, mathematical descriptions and properties of CPM 

signals. A mathematical frame work required for the understanding of Continuous 

Phase Chirp Keying (CPCK) and Continuous Phase Frequency Shift Keying (CPFSK) 

signaling techniques is described. We demonstrate the fundamental difference 

between CPFSK and CPCK signaling techniques. Illustrations of phase functions, 

frequency functions, phase trees and trellises, baseband and passband waveforms for 

CPFSK and CPCK as a function of modulation parameters are all provided.  
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In Chapter 3, the problem of detection of CPM in AWGN channel is considered. Using 

Maximum Likelihood Ratio Test (MLRT), an optimum receiver is derived for detection 

of arbitrary CPM signals in AWGN channel. Also, we discuss the computational 

complexity of this optimum receiver for CPFSK and CPCK. Two sub-optimum receivers 

for high- and low-    values are derived. The low-   , sub-optimum, also known as 

Average Matched Filter (AMF), receiver is examined thoroughly for CPFSK and CPCK. 

At high-   , another sub-optimum receiver is provided. A thorough examination of the 

relationship among    , Signal-to-Noise Ratio (   ), modulation parameters and 

detection observation length are provided using number of illustrations. An attempt is 

made to answer the question, “What value of     separates high-    from low-    

when studying the effect of the modulation parameters on     ?” A composite bound is 

provided using the performance of sub-optimum receivers that represents the 

performance of the optimum receiver.  

In Chapter 4, we present the distance properties of both signaling schemes, CPFSK and 

CPCK. This lays the ground work for introducing the MLSE receiver for CPFSK and 

CPCK signals, also known as the Viterbi Algorithm (VA) receiver. Advantages of Viterbi 

receiver over the MLRT-based receiver are demonstrated and performance of Viterbi 

receiver for specific CPFSK and CPCK schemes is illustrated. 

In Chapter 5, a Decision Aided Receiver (DAR) for CPFSK and CPCK as an alternative 

for the AMF receiver is presented. Decision aided detection strategy is presented and 

explicit expressions for computation of     are developed for AWGN environment. 

Numerical results are reported, and a discussion of the performance of DAR is given. 

The thesis is concluded in Chapter 6 by summarizing the work carried out, contributions 

made and conclusions from the results obtained. Also, we outline areas for further 

research in the light of the needs of modern reliable DCS and the work done in the thesis. 
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Chapter 2 

Continuous Phase Modulation (CPM) 

Continuous Phase Modulation (CPM) is a memory-type, constant-envelope, nonlinear 

modulation, which allows the use of power efficient low cost, nonlinear power amplifiers 

without introducing distortion. Digital transmission using constant-envelope CPM has 

become important because of its attractive properties. The constant-envelope designs are 

fairly immune to nonlinear channel effects. Although constructions of CPM are diverse in 

their properties and applications, they all rely upon the use of inherent memory 

introduced by the continuous phase. This constraint of continuous phase not only 

provides faster spectral roll-off, but also permits multiple symbol detection rather than 

the more conventional symbol-by-symbol detection. In this Chapter, two subclasses of 

CPM called Continuous Phase Frequency Shift Keying (CPFSK) and Continuous Phase 

Chirp Keying (CPCK) are described, although the treatment provided applies, in general, 

to any CPM. Concepts, mathematical descriptions and properties of CPM signals are 

presented with primary focus on CPFSK and CPCK signaling techniques, which will be 

used all through the thesis. 
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2.1 Description of CPM Signals 

The general form of a CPM signal is given by 

       √
   

  
                                                   

where    is the symbol energy,    is the symbol duration,    is the carrier frequency,    is 

the initial phase offset which is assumed to be zero for coherent detection without any 

loss of generality.   is a sequence of independent and identically distributed  -ary 

information symbols each taking one of the              —     values with an equal 

probability of     such that 

                                                                          

In this work, the focus is binary case,    . The information carrying phase,       , 

during the     symbol interval is given by 

       ∑               

     

   

                                          

where       and the phase function      is defined as the integral of an 

instantaneous frequency pulse and is given by: 

                                           ∫      

 

 

                                                    

The derivative of      is the frequency pulse shape     . That is 

{

 
                           

 
                               

 

                                                 

where   is the frequency response pulse length. The frequency pulse length dictates the 

time interval over which a single input data symbol can affect the instantaneous 



17 

 

frequency. Depending on the value of  , two different schemes of CPM can be defined. 

When     , the entire pulse extends over one full symbol interval. This type of CPM is 

known as full response CPM. When     , only a part of the pulse shape extends over a 

symbol and is known as partial response CPM signaling. In this work, we are only 

interested in full response CPM. 

2.2 Frequency Pulse Shapes 

One of the reasons for CPM to be a bandwidth efficient scheme is that it uses pulse 

shaping. Using various frequency pulse shapes such as Rectangular (REC), Raised 

Cosine (RC), Chirp, and Half-Cycle Sinusoid (HCS), various subclasses of CPM have 

been constructed. Table 2.1 lists the frequency pulse shaping functions used to describe 

CPFSK and CPCK modulations. 

Table 2.1: Rectangular and Chirp Frequency Pulse Shapes with     

 

CPFSK (REC) 
     2

 

  
        

 
              

 

 

CPCK (Chirp) 
     2

  

  
 

  

  
         

 
              

 

 

In CPM, the information carrying phase is continuous all the time for all the 

combinations of data symbols. Therefore, memory is introduced into the CPM signal by 

means of its continuous phase. The quantity h, in Table 2.1 is the modulation index and 

represents the ratio of peak-to-peak frequency deviation and the symbol rate. Ideally, h 

can take any real value, but in order to limit the number of phase states, h is chosen a 

rational value between           and ratio of two prime numbers   and  , i.e.    

    . In some cases, the modulation is described using more than one modulation 

parameter. Chirp is one such example, which will be explained later. 
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2.3 General Schematic of CPM Modulator 

  

 

 

Figure 2.1: Basic structure of single-h CPM modulator 

Figure 2.1 represents a conceptual block diagram of the single-h CPM, which is the focus 

of this thesis. Data sequence   passes through the pulse shaping filter and the multiplier 

to form frequency pulse sequence, which is then FM modulated to generate the CPM 

signal. 

2.4 Phase States of CPM Signals 

The phase of CPM can be represented by a tree structure. The tree structure is found by 

manipulating the information carrying phase of Equation 2.3. It can be viewed as the sum 

of two phase terms: instantaneous phase and accumulated phase. The phase of CPM 

signal during the     symbol interval to give 

       ∑               

 

       

       ∑   

   

    

                                       

                                                                                      

where         is the instantaneous phase 

         ∑              

 

       

                                              

which represents the changing part of the total phase during                and is 

determined by the current data symbols and previous   —  symbols. The first term of 

Equation 2.6, is dependent on the sequence of     past input data symbols and the 

current data input,                , and is called the correlative state. There are      

 𝜋   𝜋𝑓𝑐 

𝒂 𝑠 𝑡 𝒂  

𝑓 𝑡  

Pulse Shaping Filter  FM  

Modulator 
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possible correlative states. Since we are only interested in full response CPM      , 

then 

                                                                 

and    is the accumulated phase, the phase state, which represents the constant part of the 

total phase in the same interval is 

         ∑   

   

   

                                                    

The accumulated phase can be interpreted as the sum of the maximum phase changes 

contributed by each symbol, accumulated along the time axis up to the           symbol 

interval. It can be computed recursively as: 

                                                                  

The phase behavior of CPM signals can be best described by sketching the set of phase 

trajectories        generated by all possible values of the information sequence     . 

These phase diagrams are called phase trees and they are specific to each CPM scheme, 

based on the different modulation parameters, the  -ary points and most importantly the 

phase function     .  

A phase tree is a graphical representation of the phase of CPM signals and shows the 

amount of phase deviation as a function of time. For any random information sequence, 

the phases of CPM follow a unique continuous phase trajectory. Moreover, a phase tree 

can be interpreted as the set of all possible    phase trajectories associated with a data 

sequence of length  . Two examples are shown in Figures 2.2 and 2.3 for the two phase 

functions considered in this work. The joints represent the start of one bit interval and at 

each joint, we have two possibilities of input in the case of binary modulation,   . The 

solid line represents a data input   , and the dotted line represents a    data input. The 

joints themselves represent the accumulated phase at the end of that bit interval. Phase 

functions affect the shape of the path the CPM signal takes when changing from one 

phase to another. In Figure 2.2, it’s seen that a REC phase function results in a straight 
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path between one phase and the other. In Figure 2.3, a Chirp phase function results in a 

curvy path between one phase and the other. Thus, it is intuitively concluded that 

different phase functions will have different performances.      

 

Figure 2.2: Phase Tree for REC Phase Function 

 

Figure 2.3: Phase Tree for Chirp Phase Function 
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Since phase is continuous, it repeats the same pattern over every     bit interval. Hence, 

the number of phase states increases with an increase in time and the tree becomes more 

complex. Thus, in order to reduce complexity in tracking, it is required to restrict this 

growth, which can be achieved by plotting the phase trajectory on modulo-   scale i.e. 

between the range of        or       . The resultant plot is known as a phase trellis. In 

other words, the phase trellis is a modulo-   version of the phase tree. The phase trellis is 

also a key concept when it comes to applying Maximum Likelihood Sequence Detection 

(MLSD) for CPM signals detection, referred to as the Viterbi Algorithm (VA). 

The trellis structure is obtained by reducing the phase modulo-  . The phase reduced 

modulo-   is termed the physical phase, and we denote it as  ̃     . It is impossible to 

distinguish between two phases that differ by   , and thus, the physical phase is the 

phase that is observable.  

During the     symbol interval,  ̃      is given by 

 ̃                                                                                                                                     

 0 ∑               

 

       

   1                                                                       

 0 ∑               

 

       

            1                                                     

 0 ∑               

 

       

  ̃ 1                                          

The                     ,  ̃ , is given by 

 ̃                                                                                             

 0      ∑    

   

   

1                                                     
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The tree will reduce to a trellis structure if the modulation index,  , is set to a ratio of two 

relatively prime integers, such that      , so a finite number of terminal phases is 

produced at the end of each bit interval. The modulation index, h determines the number 

of phase states in a CPM signal. That is for full-response CPM signal with        

where   and   have no common factors, the different values at the time instants      

    will have the terminal/physical phase states   , which is given by: 

   ,  
  

 
 
   

 
   

       

 
-                                                  

when   is even and 

   ,  
  

 
 
   

 
   

        

 
-                                                 

when   is odd. 

Hence, there are   terminal phase states when   is even and    states when   is odd. For 

example, for binary modulation,    , with pulse length     with              , 

the number of phase states is four. Going by another example, let       , then 

according the to the Equations 2.13 & 2.14, binary CPFSK has   terminal states which 

are                                    and with        ,   terminal states and 

corresponding phase states are              . A diagram illustration is shown in Figure 

2.4. 

 

 

 

 

                            (a)                                                     (b)       

Figure 2.4: Signal Constellation Diagrams for CPFSK 
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An alternative representation to the state trellis is the state diagram, which also illustrates 

the state transitions at the time instants         . This is an even more compact 

representation of the CPM signal characteristics. Only the possible (terminal) phase states 

and their transitions are displayed in the state diagram. Time does not appear explicitly as 

a variable. For example, the state diagram for the CPFSK signal with       is shown 

in Figure 2.5. 

 

Figure 2.5: State diagram for binary CPFSK with      . 

However, for the real  , the number of states is huge and it becomes practically complex 

to implement receivers such as VA receiver. The state vector at the     bit interval is: 

                                                                          

 

Figure 2.6: Phase Trellis for REC Phase Function 
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State vectors pinpoint the location of the signal at the at the     bit interval for a certain 

transmitted sequence. For full response CPM,            , we only need the 

accumulated phase till that point and the current data point in order to identify the next 

phase. The concept of state vector is the key idea behind the operation of the Viterbi 

decoder, which will be discussed in Chapter 4. A phase trellis example is shown in Figure 

2.6.  

To properly view the phase trellis diagram, we may plot the two quadrature components 

                  and                   as functions of time. Thus, we generate 

a three-dimensional plot in which the quadrature components    and    appear on the 

surface of a cylinder of unit radius. For example, Figure 2.7 illustrates the phase trellis 

cylinder obtained with binary modulation, a modulation index       , and a 

rectangular pulse with    . The solid lines in Figure 2.7 represent a data input +1, and 

the dashed lines represent a -1 data input. The shape of the line changes based on the 

phase function in use. Specific examples for CPFSK and CPCK will be shown later.  

 

 

 

 

      (a) 3D coordinates for Phase Cylinder                        (b) Phase Cylinder 

Figure 2.7: Modulo    Phase Trajectory Wrapped Around a Cylinder 

It is apparent now that infinite varieties of CPM signals can be generated by choosing 

different pulse shapes, the modulation index h and the data format. Among these, single-h 

and multi-h are major subclasses for power/bandwidth efficient CPM systems. We next 

describe two subclasses of CPM, CPFSK and CPCK, and discuss their phase properties 

and trellis structures. 
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2.5 Continuous Phase Frequency Shift Keying (CPFSK) 

In rectangular pulse shaping (Linear Pulse Shaping), phase changes linearly with the 

time, and the frequency is held constant throughout the data interval. In general, 

frequency pulse of length L is denoted by LREC. With L = 1, 1REC-CPM signal is called 

Continuous Phase Frequency Shift Keying (CPFSK). Note that although the rectangular 

pulse-shaping function is discontinuous, the phase response function is continuous. 

Frequency function     , of linear pulse shape with full response CPM (L = 1) signaling 

is given as: 

     2

 

  
        

 
              

                                                

and the corresponding phase function         

     {

        

  
  

 
        

        

                                                

So, for full response CPFSK, 

                                                                  

where        , the instantaneous phase is 

                       
              

 
                           

and   , the accumulated phase or phase state is 

     ∑    

   

   

                                               

Figures 2.8, 2.9, 2.10 and 2.11 show CPFSK frequency and phase functions for data 

inputs   . Figures 2.8 and 2.9 show the frequency functions associated with data inputs 

+1 and -1, respectively. These graphs describe the behavior of the frequency during a bit 

interval with a data input either +1 or -1. These figures show that the frequency of the 
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carrier signal is changed to a certain value in response to the incoming data    and held 

constant during the bit interval. Hence, the corresponding phase of the signal varies 

linearly as shown in Figures 2.10 and 2.11, having a positive slope for data input = +1, 

and a negative slope for data input = -1.  

 

Figure 2.8: Frequency Function for CPFSK with Data Input +1 

 

Figure 2.9: Frequency Function for CPFSK with Data Input -1 
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Figure 2.10: Phase Function for CPFSK with Data Input +1 

 

Figure 2.11: Phase Function for CPFSK with Data Input -1 
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In order to better understand CPFSK signals, we provide the following plots. Figure 2.12 

shows the phase state plot for 2-CPFSK with      . It can be inferred from the Figure 

that the transmitted sequence is                , based on the direction the signal moves 

in, or the slope of the signal within the bit interval. Figure 2.13 shows the physical phase 

state, which is the observed phase. The jumps in the physical phase state are not 

discontinuities. They are the phase state but wrapped within the interval       . Figures 

2.12 and 2.13 amplitudes are the normalized phase with respect to   . Figure 2.14 shows 

the baseband CPFSK signal for the input used in Figures 2.12 and 2.13. No 

discontinuities are present due to the inherent memory characteristics of CPM signals. 

Figure 2.15 shows the passband CPFSK signal. It can be noticed how frequency changes 

based on the data input, increasing with a +1 input and decreasing with -1 input. 

Moreover, the frequency change is noticed to be instantaneous at the beginning of each 

interval and holds its value for the rest of the bit interval.  

 

Figure 2.12: Phase State for CPFSK,       
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Figure 2.13: Physical Phase State for CPFSK,       

 

Figure 2.14: Binary CPFSK Baseband Signal with       
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  Figure 2.15: Binary CPFSK Passband Signal with       

 

Figure 2.16: Phase Tree for CPFSK Normalized with Respect to       
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Figure 2.17: Phase Trellis for CPFSK Normalized with Respect to       

Figures 2.16 and 2.17 show the phase tree and phase trellis for 2-CPFSK and      , 

respectively. We emphasize that the phase transitions in the state trellis diagram in Figure 

2.17 from one state to another are not true phase trajectories. They represent phase 

transitions for the terminal/observed states at the time instants         ,      . 

Figure 2.18 shows the phase cylinder for the phase states shown in Figure 2.12. The path 

wrapped around the phase cylinder of Figure 2.18 is only one of the possible paths that 

go all over the general cylinder shown in Figure 2.5. In other words, Figure 2.18 is one 

case of a more general case shown in Figure 2.5, and which case is shown depends on the 

randomly transmitted sequence. Since we are transmitting  -bits, then we will have    

possible paths.  
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Figure 2.18: Phase Cylinder for 2-CPFSK,       

2.6 Continuous Phase Chirp Keying (CPCK) 

For the major part, CPCK has the same fundamentals as CPFSK, apart from the fact that 

each one of them uses a different phase function, which adds some new parameters in the 

case of CPCK. In CPCK, the phase function      is given by, 
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and       is the instantaneous frequency deviation. For CPCK signaling 
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And the CPCK phase function in Equation 2.21 becomes 

     

{
 

 
                                    

 , 
 

 
  (

 

 
)
 

-                 

                           

                                       

where   and   are dimensionless parameters,   represents the initial peak-to-peak 

frequency deviation divided by the bit rate    , and   stands for the frequency sweep 

width divided by    . We usually express   in terms of a third dimensionless parameter, 

 , where      .   and   are independent signal parameters. Note that       gives 

the continuous phase frequency shift keying (CPFSK) waveform where       and 

         . Here,   is also called the modulation index. Following from Equation 2.21, 

2.22 and 2.23, for full response CPCK, the function describing the phase is a little bit 

different than the one for CPFSK and is described as follows: 

       ∑               

 

    

 

                     ∑   

   

   

               

                                                                                 

where        , the instantaneous phase is 

                          , 
        

 
  (

        

 
)
 

-         

and   , the accumulated phase or phase state is 

         ∑    

   

   

   ∑    

   

   

                                         

For consistency, we show next the same type of plots for CPCK as that for CPFSK. 
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Figure 2.19: Instantaneous Frequency Deviation with Input Data    

 

Figure 2.20: Instantaneous Frequency Deviation with Input Data    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

Normalized Time with Respect to T in Seconds

N
o
rm

a
li
z
e

d
 F

re
q

u
e
n

c
y 

w
it

h
 R

e
s
p

e
ct

 t
o

 h
/T

Frequency Function With Input data = -1, Binary CPCK

 

 

q < 0

q > 0

q = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

Normalized Time with Respect to T in Seconds

N
o
rm

a
li
z
e

d
 F

re
q

u
e
n

c
y 

w
it

h
 R

e
s
p

e
ct

 t
o

 h
/T

Frequency Function With Input data = +1, Binary CPCK

 

 

q < 0

q > 0

q = 0

𝑤 

𝑤 



35 

 

 

Figure 2.21: Phase Function with Input Data    

 

Figure 2.22: Phase Function with Input Data    
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interval with a data input either    or   . These Figures show that the frequency of the 

carrier signal varies linearly as a function of time, in response to the incoming data   , 

and hence, the corresponding phase of the signal varies in a nonlinear manner as shown 

in Figures 2.21 and 2.22.The Figures also show the effect of the parameter  , and it can 

be inferred from the graph that the value of  , which is in terms of the modulation index 

  and the frequency sweep width  , dictates the rate at which the frequency changes 

during a bit interval. Moreover, the different values of   associated with the different 

values of   can be found through  

                  

Figures 2.19 and 2.20 indicate the way to find   graphically using the arrows on the side 

of the plots. Next, we plot the up-chirp,      , and down-chip signals,      , 

during one bit interval in Figures 2.23 and 2.24, respectively. It can be seen how the 

frequency changes during the     bit interval corresponding to the     data input.  

 

Figure 2.23: CPCK Signal with Input Data   
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function within the bit interval. If it is concaved up, then the transmitted data bit is +1, 

otherwise it is a -1. 

 

Figure 2.24: CPCK Signal with Input Data    

Figure 2.26 shows the physical phase state, which is the observed phase. The jumps in the 

physical phase state are not discontinuities. They are the phase state but wrapped within 

the interval       . Figures 2.25 and 2.26 amplitudes are the normalized phase with 

respect to   .  

 

Figure 2.25: Phase State for CPCK 
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Figure 2.26: Physical Phase State for CPCK 

Figure 2.27 shows the baseband CPCK signal for the input used in Figures 2.25 and 2.26. 

No discontinuities are present due to the inherent memory characteristics of CPM signals. 

Figure 2.28 shows the passband CPCK signal. It can be noticed how frequency changes 

based on the data input, decreasing with a +1 input and increasing with -1 input. 

Moreover, the frequency change is noticed to be linear starting at the beginning of each 

interval and keeps changing linearly till the end of the bit interval.  

 

Figure 2.27: Binary CPCK Baseband Signal 
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Figure 2.28: Binary CPCK Passband Signal 

We demonstrate the difference between CPCK and CPFSK by comparing the passband 

signals for CPFSK and CPCK. During each time interval in CPFSK, the frequency 

changes to a different value based on the input data and is held constant. On the other 

hand, the frequency changes linearly in CPCK, either increasing or decreasing within one 

bit interval based on the input data. This indicates that the frequency changes in CPFSK 

are discontinuous, jumping from one level to the other, which can be inferred from 

Figures 2.8 and 2.9. On the other hand, in CPCK, the frequency is a linear continuous 

function, oscillating linearly between two frequency values. 

Figures 2.29 shows the phase tree for 2-CPCK. The phase transitions shown in Figure 

2.29 represent the true phase transitions at the time instants     ,      . 

Figure 2.30 shows the phase cylinder for the phase states shown in Figure 2.25. The path 

wrapped around the phase cylinder of Figure 2.30 is only one of the possible paths that 

go all over the general cylinder shown in Figure 2.5.  
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Figure 2.29: Phase Tree for CPCK 

 

Figure 2.30: Phase Cylinder for CPCK 
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2.7 Summary 

In this Chapter, we presented the concept, mathematical descriptions and properties of 

CPM signals. Moreover, we have laid the mathematical frame work required for the 

development of Continuous Phase Chirp Keying (CPCK) and Continuous Phase 

Frequency Shift Keying (CPFSK) signaling techniques, which will be used all 

through the thesis. It has been shown that the main difference between CPFSK and 

CPCK is in the way the frequency changes within the bit interval. This difference is 

attributed to properties associated with the different phase functions used. Figure 2.31 

shows the combined phase tree for both CPFSK, in blue, and CPCK, in red. CPFSK 

can be considered as a special case of CPCK when the frequency sweep width,    . 

MATLAB based graphs and Figures were provided for illustration purposes wherever 

possible.  

 

 

Figure 2.31: Phase Cylinder for CPCK 
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Chapter 3 

Optimum and Sub-optimum Receivers for 

CPFSK and CPCK  

When the signal has no memory, the general symbol-by-symbol detector, such as the 

ones employed for PSK, FSK, QPSK…etc., is optimum in the sense that it minimizes the 

probability of a symbol error. In contrast, for a transmitted signal that has memory, such 

as in CPM schemes, the optimum detector bases its decisions on observation of a 

sequence of received signals over successive signal intervals. There are mainly two types 

of receivers, based on the way the detection technique is applied, however; both of them 

are based on minimizing the probability of error using maximum-likelihood theory.  

In this Chapter, we derive the structure of the optimum receiver for detection of CPM 

buried in AWGN.  

The primary focus in this Chapter is to understand the relationship among modulation 

parameters, Signal-to-Noise Ratio (   ) and number of observed symbols. The 
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relationship among those parameters are identified using extensive computer simulations. 

In the literature, receiver analyses are based on “high” and “low”     approximations, 

which gives rise to another major question, which is “What value of     that separates 

high-    from low-    when studying the effect of the different parameters on    ?” 

Moreover, we verify the results reported in the literature using simulation of the 

receivers. Also, we discuss the computational complexity involved in the analysis and 

simulation of the optimum receiver for CPFSK and CPCK. 

First, we design a maximum a posteriori probability algorithm that makes decisions on 

the first symbol by observing the received waveform over   symbols. We then perform a 

detailed analysis to arrive at optimum and sub-optimum receivers for CPFSK and CPCK. 

Bounds on the performance of these receivers are then derived and illustrated for various 

CPFSK and CPCK signals.  

We consider only the coherent case and it will be assumed that synchronization is 

established, i.e., that the carrier phase and the symbol timing are precisely known by the 

receiver. The channel is assumed to be an Additive White Gaussian Noise channel with 

one-sided power spectral density of            .   

3.1 Optimum Receiver using Bayesian MLRT 

First, we start by developing the basic ideas of classical detection theory. The first step is 

a Source that generates an output. In the simplest case this output is one of two choices. 

We refer to them as hypotheses and label them    and    in the two-choice case referred 

to as binary decision-theory problem. More generally, the output might be one of   

hypotheses, which we label   ,   , . . . ,   , and this type of problem is referred to as 

composite hypotheses problem. The basic components of a composite decision-theory 

problem are shown in Figure 3.1. 

The second component of the problem is a probabilistic transition mechanism; the third 

is an observation space. The transition mechanism is considered as a device that knows 

which hypothesis is true. Based on this knowledge, it generates a point in the observation 

space according to some probability law.  
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In general, we confine our discussion to problems in which the observation space is 

finite-dimensional. In other words, the observations consist of a set of N numbers and can 

be represented as a point in an N-dimensional space. This class of problems is referred to 

as the classical decision problem. 

 

  

 

 

 

 

 

 

Figure 3.1 Components of a Decision Theory Problem 

The fourth component of the detection problem is a decision rule. After observing the 

outcome in the observation space a guess is made on which hypothesis was true, and to 

accomplish this a decision rule that assigns each point to one of the hypotheses is 

developed. 

As mentioned before, CPM signals have better bandwidth and energy performance due to 

the phase continuity constraint of CPM. Thus, obtaining this performance requires a 

multiple interval observation rather than the symbol-by-symbol decisions in memory-less 

modulation schemes.  
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The receivers in this section are quite general and apply to CPM schemes with any pulse 

shape and any modulation index, but we will specify them at the end of each section for 

CPFSK and CPCK schemes. 

This receiver makes a decision about one symbol only, based on observation of a 

sequence of consecutive symbols. Once the decision is made, the receiver in principle 

starts from scratch again, processing the following symbol by sliding the observation 

interval. The received binary CPM signal during the     symbol is modeled as 

                                                                             

where we use the notations from Chapter 2 for full response CPM 

       √
   

  
                                                      

where  

       ∑           

 

   

                                          

   is the initial phase offset which is assumed to be zero for coherent detection without 

any loss of generality. In determining the optimum receiver structure for detecting 

symbol   , we shall use a shorthand notation developed in [10] for the received signal, so 

that Equation 3.1 becomes  

                                                                        

where    is the first symbol, and    is the      -tuple               where   is the 

observation interval. This is a classic composite-hypotheses probability theory problem in 

which the receiver chooses one hypothesis to be true. We have   hypotheses, where 

    for binary modulation case, under the source output of Figure 3.1, and they are all 

corrupted by noise.   
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The    hypotheses are 

                                                                              

                                                                              

. 

. 

                                                                              

                                                                              

                                                                              

. 

. 

                                                                        

where       . Since we are only interested on making a decision on the first bit 

transmitted   , we assume full knowledge about which             , has been 

transmitted.  This reduces the previously stated composite hypotheses to a binary one of 

the following form 

                 (           )                                                     

                 (          )                                                

To establish the likelihood ratio test, we need the Probability Distribution Functions 

(PDF) for the previous hypotheses. 

  
 (    |     )

 (    |     )
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Usually, we decompose the signal in each hypothesis according to its basis functions set, 

however, we don’t have a finite basis functions set that can perform such job. Therefore, 

we sample the output waveform each second and obtain   samples. Each noise sample is 

a zero-mean Gaussian random variable   with variance        . The noise samples at 

various instants are independent random variables and are independent of the source 

output. Thus, we have  

            (             )                                                       

            (            )                                                   

where      , and    is the sampling time. In order to simplify the notation, we drop 

the       and    and the previous Equation becomes 

                                                                                   

                                                                             

In the case of AWGN, each sample point of    is a Gaussian random variable. Hence, 

each one of them will have a probability distribution function of the following form 

 (  |     )  
 

√    
   (

           
 

   
) 

 (  |     )  
 

√    
   (

           
 

   
)                                 

where       is the expected value of the     Gaussian random sample,        . 

 (  |     )  
 

√    
   (

          
 

   
) 

 (  |     )  
 

√    
   (

          
 

   
)                                  
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Since we have  -such PDFs and they are all independent and uncorrelated, we can find 

the joint probability distribution function, which will approximate  (    |     ) and 

 (    |     ) as  →  . 

 (    |     )    (  |     )   (  |     )     (  |     ) 

                                ∏ (  |     )

 

   

       
    

   (
  

   
∑         
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 (    |     )    (  |     )   (  |     )     (  |     )                                          

 ∏ (  |     )

 

   

        
 
    (

  

   
∑         

 

 

   

)                  

After simplification, we get 

  
   (

  
  

∑    
              

    
   )

   (
  
  

∑                  
    

   )

 
  

 
  

                           

The true form of      is continuous, and we arrive at the original waveform as  →   in 

the time period of the observation which spans over  -bit time periods;  →   . 

   
 → 

  
   (

  
  

∫    
                     

     
  

 
  )

   (
  
  

∫                         
     

  

 
  )

 
  

 
  

                

where  

∫    
      

  

 

                                                             

So finally, the Bayesian MLRT produces the following  

   (
 
  

∫            
  

 
  )

   (
 
  

∫            
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Additionally, we need to eliminate the factor of   , which is a random variable, by 

considering all possible sequences of   . This is performed mathematically by integrating 

over the PDF of   ,      .   is composed of     binary random variables    such that  

      
 

 
                                                             

      is the density function of the     data bit, and the data are assumed to be 

independent. Hence,       is a joint probability of all          , where       

               3          ∏     

 

   

                            

Thus, 

∫      

 

 

 ∫ ∫ ∫     3     

 

  

 

  

 

  

                                    

where the integral ∫   
 

 
 is taken to mean the     fold integral shown in the previous 

Equation. Going back to the MLRT Equation 
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Carrying out the integration, the MLRT becomes, 
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Using the MLRT, the receiver structure is defined in Figure 3.2, where 

        .
 

  
∫        (          )

  

 

  /                               
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Figure 3.2: Block Diagram of Optimum Coherent Receiver 
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The receiver correlates the received waveform with each of the   possible transmitted 

signals beginning with data   , then forms the sum of the      
 

  
    where    is the 

correlation of the received waveform of the    . A similar operation of correlating and 

summing for the   possible signals with a data    is performed and the decision is based 

on the polarity of the difference of the two sums.  

     is a log-normal random variable. When taking [         ], we get the Gaussian 

random variable back. The performance of the optimum coherent receiver shown in 

Figure 3.2 with the log-normal variable is very complex to be mathematically analyzed. 

For Gaussian random variables, finding the joint probability distribution in order to 

determine the     can be mathematically computed. However, in the CPM optimum 

receiver case, that joint probability distribution function passes through the exponential 

factor, which is considered as a transformation function, transforming the random 

variable and rendering it very complex to be analyzed and computationally exhaustive to 

find the joint probability distribution. Even simulating the optimum performance in 

MATLAB using the receiver structure in Figure 3.2 is not applicable. This is due to the 

problem that the generated Gaussian random variable never have the exact theoretical 

values of the mean and variance desired, and can have a difference from the theoretical 

value of up to the     . That is fine if the decision was to be based before the 

exponential stage. However, once it passes through the exponential block and transforms 

into a log-normal variable, a small difference of      grows exponentially to diverge the 

mean of the random variable from the desired theoretical value by a big margin, and it 

gets even worse for the variance. 

Since the performance of the CPM optimum coherent receiver is very complex to be 

computed analytically, we resort to bounding the optimum performance by the 

performance of two sub-optimum receivers. One receiver performance is tight at high-

    and the other is tight at low-   . Both receivers are used together to give a very 

reasonable and tight bound at all     values.  
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3.2 Average Matched Filter (AMF) Receiver 

This receiver is based on approximating      at low values of       as follows 
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Using this Equation in the MLRT Equation,  
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the receiver becomes, 
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where  

  ̅          ∑  (          )

 

   

                                           

  ∫         ̅            ̅            

  

 

                                    

It can be inferred from the previous Equation that this sub-optimum receiver, which gives 

the upper bound on     at low-   , correlates the received waveform with the average 

waveform given data    and the average waveform given a data   , and makes a 
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decision based on the largest of those correlations. Figure 3.3 shows the low-    

receiver structure. Such a receiver is also referred to as the Average Matched Filter 

(AMF) Receiver.  

 

 

 

 

Figure 3.3: Block Diagram of Sub-Optimum Low-    Coherent Receiver 

  is the decision variable for the low-    coherent receiver shown in Figure 3.3.   is a 

Gaussian random variable, and hence we only need the mean and variance to compute the 

probability of error. The mean of   will depend on the transmitted signal and therefore 

the probability of error depends on the transmitted sequence. We assume the sequence 

 (          ) has been transmitted.   can then be interpreted as follows:  

    [ | (          )]  √                                            

where        is a standard normally distributed random variable with zero-mean and 

unity-variance, and      denotes the expected value of the argument. The mean of   is 

given by 

 [ | (          )]   ∫  (          )    ̅            ̅            

  

 

 

       

The variance of   is independent of a particular transmitted sequence and is given by, 

        *(   [   (          )])
 
+                             

Equation 3.30 reduces to  
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       ∫ ∫              ̅          ̅           ̅          ̅               

  

 

  

 

        

       

We know that  

∫ ∫           
       

  

 

  

 

          
  

 
                                

is the auto correlation function for an Gaussian random variable with      variance. And 

hence the integration will only exist if        . Thus 

        
  

 
 ∫    ̅            ̅             

  

 

                         

Therefore, the probability of error, given  (          ) has been transmitted, is 

  ( | (          ))   *
 [ | (          )]

√      
+                          

where  
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√  
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The probability of error is given by averaging over all the possible transmitted sequences, 

     ∑ ( | (          ))      

 

   

 
 

 
∑ ( | (          ))

 

   

             

The mean and variance can be found based on the CPM scheme being used, and the 

probability of error is affected by the specific modulation parameters for each scheme 

and the number of bit-observations  . Eventually, after a certain  , the     does not 

show any further improvements and that is set as the optimal observation interval. This is 

proved through computer simulations and studying the minimum distance criteria in 
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Chapter 4. Next we derive the     associated with this sub-optimum receiver for both 

CPFSK and CPCK. It is important to note here that the CPM signal changes every     bit. 

Therefore, the mean and variance will be changing at each bit interval. The procedure for 

the following calculations is to compute the contribution to the mean and the variance of 

the     bit, one bit at a time, and sum over the   bits. 

3.2.1 CPFSK Performance 

In CPFSK signaling format, the mean and the variance for the AMF receiver can be 

shown to be  

 [ | (          )]      ∑  

 

   

                                       

where  

                                                                       

                      *        
  

   
                        +           

     ∑   

   

   

                                                         

            *            
                                       

             
+    

       

Next, we examine the effect of one variable on the     while holding the other variables 

constant. Since Binary Phase Shift Keying (BPSK) is regarded to be the best binary 

modulation scheme, it is used as a benchmark for comparing     performances in all the 

following studies. First, we investigate the effect of observation interval,  , on the    .  
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Figure 3.4: CPFSK AMF     vs.     at Different   

Figure 3.4 shows how the AMF     performance varies as   increases. We noticed that 

after   exceeds a certain value, different for different     values, the performance starts 

to slightly degrade before saturating at a certain level. Table 3.1 shows     observations 

for       dB and       dB. This is elaborated in Figure 3.5. For low values of 

   , improvements in     can be witnessed beyond    ; however, that is true up till 

a certain value of    , at which no matter what the     value is, the     reaches its 

minimum value at      for that value of    .  

Table 3.1: CPFSK     Observations for           dB 
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Figure 3.5: CPFSK AMF     vs.   

 

Figure 3.6: CPFSK AMF     vs     for Different   
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Figure 3.6 shows the effect of  , the modulation index, when set to different values. It 

shows that as   increases, CPFSK AMF receiver performance keeps on improving till it 

reaches the performance of BPSK (CPFSK;      ). Afterwards, the performance starts 

degrading again, which is shown in Figure 3.7 for different    . Moreover, to witness 

the effect of   on     for different values of  , we plotted Figure 3.8. In Figures 3.7, 3.8 

and 3.10, the     is normalized by the minimum value of     at all  . 

 

Figure 3.7: CPFSK AMF     vs.   for Different     

 

Figure 3.8: CPFSK AMF     vs.   for Different   at       dB 
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Two main observations are concluded from Figure 3.8. The first is that for all  , the AMF 

    for       is the same, which is equal to the     performance of BPSK. In order 

to confirm this conclusion, we plot Figure 3.9, which shows the performance for CPFSK 

      for different  . Moreover, Figure 3.8 shows that as   increases, the next nearest 

    performance to that of BPSK occurs at        , and this is apparent at high-    

values. The conclusion is backed with the plot in Figure 3.10. 

 

Figure 3.9: CPFSK AMF     vs.     for Different   at       

 

Figure 3.10: CPFSK AMF     vs.   for Different   at        dB 
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Figure 3.10 serves as a guide when designing a system with bandwidth constraints, where 

for a certain  ; receiver complexity, one can decide from Figure 3.10 the best value of   

that accommodates the bandwidth in use and minimizes the    . Next, we try to capture 

the combined effect of   and   on     performance at certain values of     in 3D plots 

and contours graphs. 

3D plots and contours will be further used in the thesis, so we will be providing a general 

description for how these graphs were plotted and how to interpret them. All these graphs 

are showing the     performance     Different modulation parameters;       and  . 

Each graph is normalized by the min{   } corresponding to that graph. The plotted 

    is described by the following Equation 

       

   

        
 

Thus, wherever min{   } exists in each of these graphs, it will be shown as a zero point 

on the vertical z-axis. The color-bar used in these 3D plots and contours is the following 

 

 

The far left, dark blue, indicates 0, where the far right, dark red, indicated the highest 

value corresponding to that graph. The vertical axis in the 3D plots describes how much 

the     at the corresponding coordinates is worse or greater than the min{   }. For 

example, if        
   

        
  , it means that all locations resulting in that     value 

offers a loss of performance 5 times more relative to the min{   }, or the actual value at 

that location is 5 times the min{   }. Moreover, all points within a 3D or a contour plot 

that have the same color means that they all have the same value of    . 

Contours plots are actually a different way of viewing 3D plots, in which a 3D plot is 

viewed from its top. Each line with a different color within a contour plot describes one 

    value and the axes show all the coordinates, or the different sets of modulation 

parameters, that result in that     value. Any empty region in a contour plot that is 

surrounded by dark blue lines indicates the location of min{   } corresponding to that 

contour and its 3D plot, where empty regions surrounded by dark red lines indicates the 

location of max{   }.The same plotting method is used throughout the thesis.  
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Figure 3.11: 3D Graph for CPFSK AMF     vs.   and  ,       dB 

 

Figure 3.12: Contours of CPFSK AMF     vs.   and  ,       dB 
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empty space in the middle of Figure 3.12 complies with the results from Figure 3.8, 

regarding the   {   } occurrence at      . The blue lines around      , has the 

next    {   } value to that provided by      . We have produced similar Figures for 

higher values of     in Figures 3.13 and 3.14.  

 

Figure 3.13: 3D Graph for CPFSK AMF     vs.   and  ,        dB 

  

Figure 3.14: Contours of CPFSK AMF     vs.   and  ,        dB 

0

0.2

0.4

0.6

0.8

1

2

3

4

5

0

500

1000

1500

2000

2500

3000

3500

h, Modulation Index

Bit error probability for LOW SNR Approximation Vs. (h) and (n)

n, Observation Interval

B
it
 E

rr
o

r 
R

a
te

/ 
M

IN
 B

E
R

 f
o
r 

a
ll 

(h
)

h
, 

M
o

d
u

la
ti
o

n
 I

n
d

e
x

n, Observation Interval

Bit error probability for LOW SNR Approximation Vs. (h) and (n)

2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



63 

 

3.2.2 CPCK Performance  

In CPCK signaling format, the mean and the variance for the AMF receiver can be shown 

to be  

 [ | (          )]   ∫  (          )  ̅           ̅            

  

 

 

 ∑ ∑ ∫   (       )

  

      

                           

 

   

 

   

             

where 
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Using the following complex envelope notation, 

∫             
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where 
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           and            describe the phase difference between the signals  (       ) 

and            during the     bit interval with the data difference term (i.e., difference 
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between sequences {          and            during the    bit interval) is given 

by 

        {
         

              
                                 

Similarly, assuming that            was sent, it can be shown that  

                     [ | (          )]                               

The variance is given by 
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1                                           

Since there are more modulation parameters in CPCK than that of CPFSK, it is better to 

analyze the system directly in 3D. Figures 3.15, 3.17 and 3.19 show the log 3D plots for 

CPCK AMF receiver performance vs.   and   at       dB for different values of  . 

The performance reported by these Figures is normalized by the min{   } for all   and 

 . Using computer search, it was found that    {   } occurs at       and       

independent of both parameters,   and  , and the minimum value is equal to that of 

BPSK at       dB. After trying for several     values, it was concluded that BPSK 

performance can be achieved using CPCK AMF receiver with only setting       or 
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     . Figures 3.16, 3.18 and 3.20 show the contours corresponding to the 3D plots 

reported in Figures 3.15, 3.17 and 3.19. Supporting the previous conclusion, empty 

regions can be seen around       and       irrespective of  ,   and     value.  

 

   {   } =          3 at       and       

Figure 3.15: 3D Graph for CPCK AMF     vs.   and  ,       dB,     

 

   {   } =          3 at       and       

Figure 3.16: Contours of CPCK AMF     vs.   and  ,       dB,     
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   {   } =          3 at       and       

Figure 3.17: 3D Graph for CPCK AMF     vs.   and  ,       dB,     
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Figure 3.18: Contours of CPCK AMF     vs.   and  ,       dB,     
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   {   } =          3 at       and       

Figure 3.19: 3D Graph for CPCK AMF     vs.   and  ,       dB,     
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Figure 3.20: Contours of CPCK AMF     vs.   and  ,       dB,     
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Figure 3.21: CPCK AMF     vs.    , for       or    . Any Value for   and   

Figure 3.21 shows the     performance for       or      , which  matches BPSK 

performance for all   and  . The   values yielding BPSK performance were found by 

searching the region      . Other values for   can exist outside these boundaries. 

3.3 High-    Receivers 

Two sub-optimum receivers are produced using high-    approximation, and both will 

be used in conjunction with the AMF receiver from the previous section in producing a 

tight bound on the     performance of the optimal receiver. This receiver is based on 

approximating      at high values of       as follows 
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 will yield a sub-optimum decision rule which closely approximates the optimum 

decision rule of the optimum receiver of Figure 3.2. Since the function        is 

monotonic,   ̃   is an equivalent test parameter suggesting that the corresponding sub-

optimum receiver should compute all      and produce a decision depending on the 

largest of these. This will be used in conjunction with the other The sub-optimum 

receiver’s decision rule is therefore given by  

  
   {            }

   {            }

 
  

 
  

                                        

Assuming that  (          ) has been transmitted, then the conditional probability of 

error is given by 

 ( | (          ))

   [(         )  (         )    (         )| (          )]          

Using the union bound, the conditional probability of bit error can be written as, 

 ( | (          ))  ∑   [(         )| (          )]

 

   

             

where we have used the inequality 

                                                                

The upper bound  ̃    on the error rate of the optimum coherent receiver      is then 

given by 

      ̃    
 

 
∑ ∑  0√

  

  
  

      1

 

   

 

   

                                   

where   
       is the normalized distance squared between the signals  (          ) 

and              , given by, 
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∫ | (          )               |

 
  

  

 

                     

where 

       
 

   
∫  (          )               

  

 

                      

For large    , the error rate is mainly determined by the minimum of all distance-

squared values, 

  
        

                                                        

It is possible, therefore, to compare different coherent systems (at high-   ) by simply 

comparing their respective minimum distances. Using PSK (  
   ) as a benchmark, an 

estimate of the     gain (in decibels) relative to PSK is then obtained from 

          (
  

 

 
)                                                     

We will carry out a study of the minimum distance properties of CPM signals in Chapter 

4. It is useful to construct a lower bound on the performance of the coherent CPM 

receiver in order to test the tightness of the upper bound introduced above. The lower 

bound is obtained by supposing that for each transmitted sequence, the receiver needs 

only to decide between that sequence and its nearest neighbor. This receiver will perform 

at least as well as the receiver which does not know which of two sequences. The 

performance of this receiver is a lower bound to the performance of the optimum CPM 

receiver presented in section 3.1. This lower bound on the probability of error can be 

written as 

      ̃     
 

 
∑ 0√

  

  
  

 1

 

   

                                             

  
        

                                                             

Figure 3.23 shows the high-    approximation receiver. 
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Figure 3.22: Block Diagram of Sub-Optimum High-    Receiver 
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3.3.1 CPFSK Performance 

We need to evaluate the correlation function        in order to find the high-    upper 

and lower bounds for CPFSK performances. It can be shown that, 

       
 

 
∑    (

 

 
(       ))     0

  

 
(       )    ∑(       )

   

   

1

 

   

       

First, we start by plotting the upper bound and lower bound for CPFSK     performance for 

      and  ,         in Figure 3.22. It can be seen that at higher values of     the 

lower bound meets with the upper bound to form an even tighter bound. It can also be seen 

that as   increases, there is a noticeable improvement in the     performance, which 

suggests carrying more comparisons in order to have an idea of how the different parameters 

affect the    . Figure 3.24 shows the     performance for high-    approximation for 

CPFSK. 

 

Figure 3.23:     for High-    CPFSK for        ,         
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bound and the lower bound at low-   ,      , which means that these bounds are 

not tight at low-   . On the other hand, in Figure 3.25, it can be seen that these two 

bounds have merged together for        dB. These graphs provide multiple options, 

in terms of values of   and  , when it comes to designing a system to meet a certain 

   , subject to bandwidth and receiver complexity constraints. It is noted that the choice 

of   decides the bandwidth and   decides the complexity of the receiver.   

 

Figure 3.24: High-    CPFSK     vs.   and   for       dB 
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The graphs in these Figures reveal that    {   } is somewhat in the region between 

      and      . As   increases, the min{   } occurs at        . This is related 

to the minimum distance of CPM signals, which will be explained in more detail in 

Chapter 4. We usually take the upper bound performance as a measure for the optimum 

receiver, since the lower bound assumes perfect conditions. It can also be seen from 

Figures 3.24 and 3.25 that the next nearest    {   } occurs at        Next; we plot 

the contours for the upper bound     vs.   and   in Figures 3.26 and 3.27. Comparing 

these results to that of the AMF receivers, it can be inferred that the region [0.5, 0.75] has 

the two    {   } points for both receivers, which is shown in Table 3.2. 

Table 3.2:    {   s} for AMF and High-    Receivers 

   {   } AMF (low-   ) Union Bound (high-   ) 

First Minimum                 
Second Minimum                 

 

 

Figure 3.26: 3D Graph for CPFSK Union Bound     vs.   and  ,        dB 
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Figure 3.27: Contours of CPFSK Union Bound     vs.   and  ,        dB 

3.3.2 CPCK Performance 

We just need to evaluate the correlation function        in order to find the high-    

upper and lower bounds for CPCK performances. It can be shown that 
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For    ,            , the parameters of Equation 3.67 are  

  
       

  
      

 

√ 
     

    

√ 
                        

For    ,        , the parameters of Equation 3.67 are 

  
       

  
         

 

√ 
     

    

√ 
                       

For    ,        , the parameters of Equation 3.67 are 

  
       

  
         

 

√ 
     

    

√ 
                       

For    ,           , 

                                                                        

 

In all cases,      and      are the Fresnel integrals, which require numerical evaluation, 

and are given by: 

     ∫   (
   

 
)  

 

 

      ∫    (
   

 
)  

 

 

                          

Again, since CPCK involves two modulation parameters, we use 3D plots in order to study the 

relation between the     and the combinations of modulation parameters. Figures 3.28, 3.30 and 

3.32 shows the 3D plots for CPCK; Union Upper Bound vs.   and   for       dB       

and  , respectively. The parameters that minimizes     at a certain     value can also be found 

by studying the minimum distance properties of CPCK. Again, all the graphs are normalized by 

their respective    {   }. Figures 3.29, 3.31 and 3.33 show the contours of their corresponding 

3D plots. For CPFSK high-    receiver, the minimum     occurred at         for all   and 

    values. On the other hand, for CPCK high-    receiver, the minimum     occurs at 

different points for different   for all     values. Using the 3D plots and their corresponding 

contours, the min{   } was found at the set of points       reported in Table 3.3. 
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   {   } =          3  

Figure 3.28: 3D plot for CPCK Union Bound     vs.   and  ,    ,       dB 

 

Figure 3.29: Contours of CPCK Union Bound     vs.   and  ,           dB 
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   {   } =            4  

Figure 3.30: 3D plot for CPCK Union Bound     vs.   and  ,    ,       dB 

 

Figure 3.31: Contours of CPCK Union Bound     vs.   and  ,           dB 
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   {   } =            4  

Figure 3.32: 3D plot for CPCK Union Bound     vs.   and  ,    ,       dB 

 

Figure 3.33: Contours of CPCK Union Bound     vs.   and  ,           dB 
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In Table 3.3, the best values of   and   that minimizes union upper bound for       

and   are shown. These values were found using the 3D plots shown in the previous 

Figures. It is observed that there exist several sets of parameters (   ) that give the same 

    threshold, which gives communication systems designers more flexibility when 

trying to meet the design criteria and constraints. 

Table 3.3:           Values for Union Bound Receiver shown in Figure 3.34 

        min{   } at       dB 
                       3 
                         4 
                         4 

 

Figure 3.34: CPCK Union Bound Receiver     
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    when studying the effect of the different parameters on    ?” In this section, we 

plot the composite bound, derived from the performance of the AMF and high-    

-4 -2 0 2 4 6 8 10 12
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No, dB

B
it
 E

rr
o

r 
R

a
te

Bit error probability curve for HIGH SNR Approximation

 

 

CPCK Union Bound n = 2

CPCK Lower Bound n = 2

CPCK Union Bound n = 3

CPCK Lower Bound n = 3

CPCK Union Bound n = 4

CPCK Lower Bound n = 4

BPSK



81 

 

receivers for both CPFSK and CPCK. The optimum performance for CPFSK and CPCK 

will be bounded by these composite bound. Figures 3.35 and 3.36 show the performance 

of CPFSK and CPCK with respect to BPSK, respectively. From these composite bounds 

plots, it is noticed that at a certain     value, the upper bound is decided using the high-

    upper bound instead of the AMF receiver bound. Thus, the point at which the 

optimum receiver performance gets upper bounded by the upper bound of the high-    

receiver instead of the AMF, can be considered as the     value that separates high- and 

low-    for any set of modulation parameters and  . Figure 3.37 combines the results of 

Figures 3.35 and 3.36 into a single Figure to compare the performances of CPFSK with 

CPCK. Parameters used for composite bound are: for CPFSK,     and        , and 

for CPCK,           and       . From Figure 3.37, using high-    upper 

bound, it is noted that CPCK has     advantage of      dB and      dB relative to 

CPFSK and BPSK, respectively. We carried out simulations to verify the mathematical 

analysis provided in the thesis, and Figure 3.38 shows that the simulation results comply 

with the results due to the theoretical derivations. 

 

Figure 3.35: Composite Bound on CPFSK 
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Figure 3.36: Composite Bound on CPCK 

 

Figure 3.37: CPFSK and CPCK Union Bounds,     
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Figure 3.38: CPFSK and CPCK AMF and Union Bound Receivers Simulation 

3.5 Summary and Results 

In this Chapter, we have examined one of the two main Maximum Likelihood Detectors 

for CPM. Optimum CPM MLRT-based receiver was derived, and block diagram for 

receiver implementation has been provided. Also, we have discussed the computational 

complexity involved in analyzing and simulating the optimum receiver for CPFSK and 

CPCK. Since the optimum receiver is very complex to be mathematically analyzed, two 

approximations have been used to arrive at sub-optimum receivers for low- and high-

    values. At low-   , sub-optimum AMF receiver is thoroughly examined for 

CPFSK and CPCK. It was shown that the AMF performance of CPFSK with       

matches that of BPSK for all  . Moreover, it was shown that as   increases, the next 

nearest     performance to that of BPSK occurs at        . For CPCK, it was found 

that    {   } occurs at       and       independent of     value   and  , 

yielding BPSK performance. The   values yielding BPSK performance for CPCK were 

found by searching the region      . Other values for   can exist outside these 
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Using high-    approximation, sub-optimum high-    receiver has been provided for 

CPFSK and CPCK. This receiver has provided two bounds for CPFSK and CPCK 

optimum receiver, an upper bound and a lower bound. Different plots and graphs have 

been provided in both cases in order to study the relationships between     and the 

different modulation parameters for both CPFSK and CPCK, such as:       vs.  , 

      vs.      ,       vs.      ,       vs.      …etc. In general, for CPFSK and 

CPCK, the     performance improved as the length of the observation interval   

increased. However, that amount of improvement decreased with each increment of the 

observation interval length. This indicated that increasing the length of the observation 

interval beyond a certain limit provided only marginal     improvement and higher 

receiver complexity. Moreover, for CPFSK, it has been noted that optimum performance 

is achieved at         for all  , and near optimum performance is achieved at       

for all  . In addition, the difference in performance between the upper bound and the 

lower bound at low-    was relatively big, which means that these bounds are not tight 

at low-   ; however, the performance corresponding to both bounds would meet at 

high-    values. For CPCK, 3D plots were used in order to study the relation between     

and the combinations of modulation parameters. Wherein CPFSK high-    receiver the 

minimum     occurred at         for all   and     values, for CPCK high-    receiver, 

the minimum     occurs at different points for different   for all     values. Using the 3D 

plots and their corresponding contours, the set of points       where min{   } occurs were 

found. The high-    numerical results are best summarized in Table 3.4. 

Table 3.4: Optimum CPFSK and CPCK high-    Systems Parameters 

CPFSK 

    min{   } at       dB 

                 3 

                   4 

                   4 

CPCK 

        min{   } at       dB 

                       3 

                         4 

                         4 
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In order to better understand the performance of high-    approximation, one needs to 

understand the distance properties associated with each signaling scheme. Therefore, we 

have proposed studying the distance criteria for CPFSK and CPCK in Chapter 4. The 

different graphs for AMF receiver and high-    receiver provided in this Chapter helps 

system designers by giving multiple options, in terms of values of   and  , in order to 

meet a certain    , subject to different bandwidth and receiver complexity constraints. It 

is noted that the choice of     and   decides the bandwidth and   decides the complexity 

of the receiver.   

Moreover, in order to answer the question of “What threshold that separates high-    

from low-    when studying the effect of the different parameters on    ?”, plots of 

the composite bounds, derived from the performance of the AMF and high-    

receivers for both CPFSK and CPCK were provided. The optimum performance for 

CPFSK and CPCK will be bounded by these composite bound. It was noticed that if a 

threshold is assumed for a set of modulation parameters, it is not necessarily the same for 

another set of modulation parameters. Even for CPFSK and CPCK with relatively similar 

modulation parameters,              and  , the same threshold does not comply. 

However, after plotting the composite bound for CPFSK and CPCK, it was noticed that at 

a certain     value, the upper bound is decided using the high-    upper bound instead 

of the AMF. Thus, the point at which the optimum receiver performance gets upper 

bounded by the upper bound of the high-    receiver instead of the AMF, can be 

considered as the     value that separates high- and low-    for any set of modulation 

parameters and  . A comparison between optimum CPFSK;     and        , and 

optimum CPCK;           and        performance showed that CPCK has     

advantage of      dB and      dB relative to CPFSK and BPSK, respectively. Computer 

Simulations were carried out to verify the mathematical analysis provided in the thesis, 

and simulation results complied with the results of the theoretical derivations. 

In general, a     expression for CPFSK and CPCK can be given in the following 

format, 
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In addition, CPCK has been found more flexible than CPFSK, from a design point of 

view, in the sense that CPCK allowed for the manipulation of more parameters, which 

gave better control on the modulation scheme, and this can be inferred from Equations 

3.73 and 3.74. In general, CPCK can achieve superior     performances to that of 

CPFSK. 
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Chapter 4 

Viterbi Receiver for CPFSK and CPCK 

The immense capabilities of CPM signaling techniques encouraged designers to use CPM 

in many real-life communication applications; however, when it comes to demodulation 

of CPM, the receiver complexity is always a huge drawback. The complexity associated 

with the MLRT-based optimum receiver was examined in Chapter 3. In such a receiver, 

frame-by-frame detection strategy is employed. Maximum Likelihood Detection (MLD) 

Theory offers another solution for detection of CPM signals by taking advantage of the 

inherent memory/sequence characteristics of CPM. Essentially, it operates using a 

sequence detection strategy, which is Maximum Likelihood Sequence Estimation 

(MLSE). Receivers employing MLSE are referred to as Viterbi receivers. This detection 

approach is based on searching for the minimum Euclidean distance path through the 

trellis that characterizes the memory in the transmitted signal. Viterbi detector is the 

practical implementation of Maximum Likelihood Detection for CPFSK and CPCK 

signals.  
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Since Viterbi receiver utilizes the concept of minimum distance, we first start the Chapter 

by studying the minimum distance properties for both signaling schemes.  

4.1 Minimum Distance Properties for CPFSK and CPCK 

First, we start by setting the Equations for the case of general CPM, and then we specify 

them for CPFSK and CPCK. This will help us in estimating a limiting value on the     

gain   for CPFSK and CPCK. Assuming narrow-band signals, i.e.,        , 

passband signals may be represented by their complex envelopes and it can be shown that 

distance Equation from Chapter 3 can be written as, 

  
         ∑

 

 
∫   (          )   

 

 

 

   

                                 

           describes the phase difference between the signals  (       ) and 

           during the     bit interval with the data difference term (i.e., difference 

between sequences {          and           during the    bit interval) is given 

by 

        {
         

              
                                 

The optimum coherent receiver produces a decision on the first bit    among the n 

observed bits, and an upper bound on the minimum distance squared   
  is always 

determined by the two data sequences               and               where the 

    indicate that the sequences are identical after the second bit. This will upper bound 

the optimal coherent receiver: that is, 

  
    

                                                             

  
  can be interpreted as the maximum minimum (free) distance for a system with a 

specific set of modulation parameters. This will be used later in finding the Viterbi 

Receiver’s upper bound on    . 
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4.1.1 Minimum Distance Properties of CPFSK 

           
(       ) 

 
   ∑(       )

   

   

                                

  
    

                                                         

The previous Equation suggests that    
       indicating that the     gain    has an 

upper limit of   dB. But, in order to find a tighter upper bound,   
     was computed for 

all possible values of  . Regions where   
       are of no interest to us since there is 

no     gain corresponding to those values of  . Since we constrain   to take values in 

the range      ,   
     has one global maxima at        ,    {  

    }       . 

This actually supports the observations in Chapter 3 for CPFSK, that is the CPFSK’s 

union bound for CPFSK, would reach its optimum value when        .  

 

Figure 4.1: Upper Bound on the Minimum Distance Squared for CPFSK at all   
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Also, It can be seen that   
       is minimized for data sequences that differ only in the 

decision bit position (         and               ) independent of the   value; 

for all  .   
  for such sequence is 

  
                                                           

 

Figure 4.2: CPFSK Minimum Distance Squared with First Bit Difference Only 
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Equation 
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It is important to understand that the actual   
  will always be smaller than the global 

maxima of its bound. For some        , however, a   
  close to this maxima may be 

obtained. With this assumption, the maximum value of   
           indicates that the 

    gain    will be limited to about      dB. 

In order to verify this, using Equations 4.1 and 4.4, we run an exhaustive computer search 

to find the parameters maximizing   
  and    for different   and  , and we report the 

results in Table 4.1. The results shows that the closest we can get to the upper bound is at 

  value       . Moreover, it is showing that the maximum     gain attainable for 

CPFSK is achieved at    , so it can be called the optimum observation interval, where 

further observations don’t add benefits to the system. 

Table 4.1: CPFSK Signal Parameters Maximizing   
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4.1.2 CPCK Minimum Distance Properties 
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Equation 4.10 suggests that    
         indicating that the     gain    has an upper 

limit of   dB. But, in order to find a tighter upper bound,   
       was computed for all 
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possible values of    . From Equation 4.11, it can be inferred that   
       

   
          

        . Since more parameters control the CPCK performance than 

that of CPFSK, we provide Figures 4.3 and 4.4. These graphs are 3D plots for   
  vs.   

and  . Regions where   
         are of no interest to us since there is no     gain 

corresponding to those values of    .   
       has many local maxima for integer 

values of   and the global maxima at              ,    {  
      }      . For 

    or    , one needs to work out the problem starting from Equation 4.10, and take 

out the intended parameter. That was done for plotting   
       and   

      . Of 

course,   
       is the CPFSK case that was plotted in the previous section as   

    . 

By manipulating   and restricting the values assigned to it, one can arrive at simpler 

expressions for the   
      . For example, limiting   to only take integer values would 

cancel some terms in the   
       as will be seen next. 

 

Figure 4.3: Upper Bound on the Minimum Distance Squared for CPCK for all     
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Figure 4.4: Contours for Upper Bound on Minimum Distance Squared for CPCK 
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for all  , implying that one bit observation is optimum, i.e, no     gain results from 
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close to this maxima may be obtained. With this assumption, the maximum value of 

  
            indicates that the     gain    will be limited to about      dB. 

In order to verify this, using Equations 4.1 and 4.12, we run exhaustive computer search 

to find the parameters maximizing   
  and    for different   and   and  , and we report 

the results in Table 4.2. We only carried the simulations up till    , because it is 

noticed that     gain increase is not as major from     to     and we are 

approaching the upper bound value for     gain of      dB. So,     can be called the 

optimum observation interval, where further observations don’t add major benefits to the 

system. 

Table 4.2: CPCK Signal Parameters Maximizing   
 
 and    

        
     

                        

                        

                        

4.2 Optimum Viterbi Receiver 

The Viterbi algorithm (VA) is an optimal solution to the problem of estimating the state 

sequence of a discrete time finite state Markov process observed in memory-less noise 

The VA is optimum in the sense that the maximum likelihood estimate of the sequence of 

states is obtained. The Viterbi algorithm performs recursively to choose those sequences 

that maximize the log likelihood function up to the     symbol interval. Since a specific 

sequence of state transitions gives a unique sequence of data symbols, a maximum 

likelihood estimate of the data sequence is also obtained. This is referred to as maximum 

likelihood sequence estimation (MLSE). 

In this section, we describe a class of optimum receivers based on the maximum 

likelihood sequence estimation, which is optimal in the sense that it minimizes the    , 

when decoding an infinitely long sequence, meaning that the optimal performance of the 

Viterbi decoder is achieved as  →  . We start by a quick recap from Chapter 2, 

redefining the terms according to the Viterbi’s optimal requirement. We know the that the 

information carrying phase can be expressed as follows,  
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       ∑              

 

    

                               

For   and      and for any symbol interval  , the phase        is defined by   , the 

correlative state vector                      and the phase state   , where 

   0      ∑   

   

    

1                                        

The number of correlative states is finite and equal to       . Since we are working with 

full response CPM,    , we don’t have a correlative state vector. For rational 

modulation indices the phase tree is reduced to a phase trellis. In this Chapter, we define 

the modulation index as follows  

       (    integers)                                          (4.15) 

There are   different phase states with values *  
  

 
  

  

 
        

  

 
+. The total state 

vector is defined by the  -tuple          and the number of such states is  . All of these 

properties are critical to the receiver structures in this section. 

Usually, phase states and correlative states are assigned to the nodes in the phase tree. 

The root node is arbitrarily given phase state 0. Each node in the tree is labeled with the 

state   . The state trellis diagram can be derived from the phase tree by viewing the 

phases modulo   . By folding the phase tree into a cylinder, the so-called phase cylinder 

is obtained, which was illustrated in Chapter 2. The receiver observes the signal       

              , where the noise      is AWGN. The maximum likelihood sequence 

estimating (MLSE) receiver maximizes the following log likelihood function, 

            ̃       ̃  ∫           ̃     
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with respect to the infinitely long estimated sequence  ̃. The maximizing sequence  ̃ is 

the maximum likelihood sequence estimate and        ̃ is the probability density function 

for the observed signal      conditioned on the infinitely long sequence  . It is equivalent 

to maximize the correlation 

   ̃  ∫          ̃   

 

  

                                                 

In principle, Equation 4.18 states the basic principle for a correlation receiver, in which 

all possible transmitted signals      ̃  are correlated with the received signal and the data 

sequence  ̃ maximizing the correlation is chosen as the received data. This is not a 

feasible structure in practice, not even with reasonably short data bursts. That is due to 

the sheer number of correlations associated with an  -bit long sequence, which is    

correlations. Now define 

    ̃  ∫          ̃   

  

  

                                                 

Thus, we can write 

    ̃        ̃      ̃                                                    

where  

    ̃  ∫                    ̃    

  

      

                            

By using the above formulas it is possible to calculate the function     ̃  recursively 

through Equation 4.20 and the metric     ̃ . This metric can be recognized as a 

correlation between the received signal and an estimated signal over the     symbol 

interval. The possible extensions of those sequences are portrayed in the state trellis 

shown in Chapter 2. The receiver computes   ( ̃   ̃ ) for all    possible sequences  ̃  

and all   possible  ̃ . This makes     different values of   . Rewriting Equation 4.20 

using Equation 4.14 yields 
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  ( ̃   ̃ )  ∫        [           ̃    ̃ ]   

  

      

                      

Now, it can be seen that   ( ̃   ̃ ) is obtained by feeding the signal      into a filter and 

sampling the output of the filter at     ; and that a bank of such filters must be used. 

The receiver correlates the received signal over one symbol interval with all possible 

transmitted alternatives over that symbol interval. By using the finite state description of 

the signals, the correlation receiver can now be implemented without exponential growth 

of the number of receiver signal alternatives. The noise      can be expressed in the 

band-pass form 

                                                                   

Using the basic quadrature receiver of Figure 4.5, the received quadrature components 

are 

 ̂    0√
   

 
          1                                                     

 ̂    0√
   

 
          1                                                     

The LP-filters only remove double carrier frequency terms. Thus, 

                                                                   

By inserting these components in   ( ̃   ̃ ) and omitting double frequency terms, we 

have 

  ( ̃   ̃ )      ̃ ∫  ̂            ̃     

  

      

     ̃ ∫  ̂            ̃     

  

      

 

     ̃ ∫  ̂            ̃     

  

      

     ̃ ∫  ̂            ̃     
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Figure 4.5 Basic Quadrature Receiver 

Note that the receiver of Chapter 3 is optimum with a different criterion. It finds the 

optimum estimate of the first data symbol. In its basic form, the Viterbi algorithm 

assumes that all possible transmitted finite sequences start from one common state and 

end in another common state. The decision about the most likely transmitted sequence is 

delayed at the receiver until the whole sequence is received. The metrics of all candidate 

state paths are successively updated at each trellis section; all possible state transitions 

are extended and all paths are deleted at the next trellis section except the path with 

highest likelihood entering each node. When the whole signal sequence is received, all 

candidate state paths terminate in the same common node at the far end of the trellis, and 

the most likely of these is the MLSE output.  

The performance of the Viterbi detector is the same as that of the MLRT-based derived 

receiver in the sense they are both optimum. This is being said, the MLRT-based receiver 

performance would meet the Viterbi receiver performance as  →   in both cases. 

Where it is mathematically complex and hard to implement the MLRT-based receiver, 

the Viterbi receiver offers a solution by dividing the detection problem into its 

corresponding bit intervals, at the expanse of having delays. Using the upper bound 

distance criteria   
  for both CPFSK and CPCK, the upper bounds on performance of the 

Viterbi receiver for CPFSK and CPCK are shown in Figure 4.6. Matching the conclusion 

from Chapter 3, CPCK provides superior     performance to that of CPFSK due to 

CPCK’s design flexibility. From this Figure, it is noted that CPCK has     advantage of 

nearly 1 dB and 2 dB over CPFSK and BPSK, respectively.  
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Figure 4.6: Upper Bounds on Viterbi Receiver for CPFSK and CPCK 

4.3 Summary and Results 

In this Chapter, we studied the minimum distance properties for both signaling schemes, 

CPFSK and CPCK, and values of optimum operation were provided. Advantages in term 

of     of these optimum systems were highlighted relative to that of PSK. For CPFSK, 

it was shown that the maximum minimum distance between two transmitted sequences, 

max{  
 } =   

        is attained at        , and thus, the upper bound on the     

gain    is limited to about      dB. Since the upper bound is associated with a certain 

constraint on the sequence transmitted, the actual max{  
 }     

  is attained at   

    , close to the optimum upper bound  . Moreover, it was illustrated that no significant 

    gain is attainable for CPFSK with    . So     can be called the optimum 

observation interval, where further observations don’t add benefits to the system and only 

causes exponential growth in the receiver’s complexity. For CPCK, it was shown that the 

maximum minimum distance between two transmitted sequences, max{  
 } =   

  

     is attained at              , and thus, the upper bound on the     gain    is 

limited to about      dB.   
       has many local maxima for integer values of   and 

the global maxima reported previously at              .   
       is the CPFSK case, 
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reported previously as   
    . By manipulating   and restricting the values assigned to 

it, one can arrive at simpler expressions for the   
      . The actual   

  will always be 

smaller than the global maxima of its bound. For some            , however, a   
  

close to the global maxima may be obtained. Computer simulations were carried out in 

order to find the parameters maximizing   
  and    for different  ,   and  . It was 

noticed that     gain increase is not as major from     to     and we are 

approaching the upper bound value for     gain of      dB. So,     was taken as the 

optimum observation interval, where further observations didn’t add major benefits to the 

system.     gains for CPFSK and CPCK were reported at the corresponding sections. 

Studying the distance properties for CPFSK and CPCK was necessary in order to prepare 

for the discussion of the other type of CPM signals receiver, which is the Viterbi receiver. 

The Viterbi receiver is based on the maximum-likelihood sequence estimation (MLSE) 

theory, which searches for the minimum Euclidean distance path through the trellis that 

characterizes the memory in the transmitted signal. Upper bounds results using Viterbi 

receiver were reported for CPFSK and CPCK. Matching the conclusion from Chapter 3, 

CPCK provides superior     performance to that of CPFSK due to CPCK’s design 

flexibility. Using the upper bound distance criteria   
  for both CPFSK and CPCK, the 

upper bounds on performance of the Viterbi receiver for optimum CPFSK;        , 

and CPCK;              , were found. It showed that CPCK provides superior     

performance to that of CPFSK due to CPCK’s design flexibility. It was noted that CPCK 

has     advantage of nearly 1 dB and 2 dB over CPFSK and BPSK, respectively. 

To demonstrate the complexity reduction by the Viterbi receiver, we take a simple 

example. In an  -long sequence, for the MLRT-based receiver, there are    possibilities, 

where   is the modulation order, that needs to correlate the received signal with. And it 

is noticed that the growth in complexity is exponential. Where in the Viterbi receiver, the 

correlation process is taken down to the bit-interval level instead of the full sequence 

duration-level, as in the case of MLRT-based receiver. At each bit duration, there are    

correlations, where       . So the total number of correlations is  -multiple of   . 

These correlations constitute the distance metric, in which the Viterbi algorithm looks for 
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the path with the minimum distance. For example, if     , in the case of binary 

modulation, MLRT-based receiver needs to perform          correlations, where in 

the Viterbi, with        it is only          . Nevertheless, this comes at the 

expense of delaying the outputs and the fact that the Viterbi is only optimum as  →  . It 

is also noticed that the value of   does effect the number of computations performed by 

the Viterbi detector, which has been emphasized in finding the upper bound of Viterbi 

   . Viterbi’s superiority over MLRT-based receiver in terms of the number of 

correlations is only true for a certain threshold,      . For      , the MLRT-based 

receiver has the edge in terms of the number of correlations over the Viterbi receiver. 

Viterbi detector is the practical implementation of Maximum Likelihood Detection for 

CPFSK and CPCK signals. Figure 4.7 shows a comparison between the MLRT-based 

receiver and the Viterbi receiver in terms of the number of required correlations, and how 

the   affects the Viterbi’s number of computations.  

 

Figure 4.7: Number of Correlations vs.   
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Chapter 5 

Decision Aided Detection of CPFSK and 

CPCK 

The successful application of CPFSK and CPCK signaling techniques for reliable 

transmission of digital data over communication channels requires complex signal 

processing techniques. Both CPFSK and CPCK offer tradeoffs among power, bandwidth 

and signal processing complexity. It is evident from Chapters 3 and 4 that receivers for 

these signaling techniques are quite complex and the complexity grows exponentially 

with the number of observed symbols in the detection process. Therefore, it is of interest 

to explore alternative receivers that are less complex and yet perform close to that of the 

optimum. Thus, the intent of this Chapter is to present a Decision Aided Receiver (DAR) 

based on heuristics as an alternative for the AMF receiver that is optimum at low values 

of    . Decision aided detection strategy is presented and explicit expressions for 

computation of     are developed for AWGN environment.  
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5.1 DAR Structure and Detection Strategy  

The received signal over  -bit interval contaminated with AWGN with one-sided spectral 

density of    watts/Hz can be modeled as: 

                                                                   

Where      is the noise process and during the interval      , the signal        is 

given by 
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where   is the signal power,     is the carrier frequency,       is the data in the first 

bit interval and   and   represent the modulation parameters and are defined in Chapter 

2. In Equation 5.1,   is an  -bit binary data sequence given by           3      . 

The signal during the     bit interval is given by 
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(5.3) 

The detection strategy consists of observing the received waveforms given in Equation 

5.1 and to produce an estimate of the data transmitted during the first bit interval using 

the algorithm given in Table 5.1. 
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Table 5.1: DAR Detection Algorithm 

Step 1 
 

 →    →   
Observe      during       using the receiver shown in Figure 5.2 and obtain 

estimate of transmitted data   , i.e.  ̂  . Determine   ( ̂  )  

   →   

Step 2 
 

Use estimates  ̂  ,                observe      over             using 

receiver in Figure 5.2; obtain estimate of data   , i.e.  ̂   

   →   
If (    , go to step 2; 

Step 3 

 

 →      →   
Use  ̂  ,          , observe      over        using the receiver in Figure 

5.3. Obtain refined estimate of data     i.e.  ̂  . Determine     ̂     
If     ̂        ̂     go to step 4 

 →   
Go to step 2; 

Step 4 
 

Stop 

The detection strategy given above is also captured using a flow chart shown in Figure 

5.1. The DAR strategy consists of observing the received waveform (            

    ) during       and obtain an estimate  ̂  , of data   . Using  ̂   and observing 

     over       , we obtain  ̂   of data   . Next, using ( ̂    ̂  ), we obtain  ̂ 3 of 

data  3 during the third bit interval. This process is continued until we obtain 

( ̂    ̂      ̂  ). Using the last     of these estimates ( ̂    ̂ 3    ̂  ) and observing 

the received waveform over       , a refined estimate of data   , i.e.  ̂   is 

obtained. The detection process is stopped or continued depending on whether or not an 

improvement in the estimate of the first bit data is obtained relative to the previous 

estimate of the first bit data. In the next section, we present the performance analysis of 

the algorithm for CPFSK and CPCK signaling techniques. 
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Figure 5.1: DAR Detection Strategy Flow Chart 
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Figure 5.2: DAR for Obtaining Estimates  ̂            and          

 

 

 

 

 

 

 

 

Figure 5.3: DAR for Obtaining Refined Estimates  ̂               

5.2 Performance Analysis of DAR  

The receiver shown in Figure 5.2 is used to obtain the first set of   estimates. The 

received waveform during the first bit interval is correlated with the reference signal 

        (    for the first bit interval) to generate     , which is given by 

  ∫    𝑑𝑡
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     ∫            

 

 

                                                                

where  

                                                                     

It is noted that the  -bit length reference signal is represented by        , where 

  (   ̂     ̂       ̂           ) is used to denote the     bit reference waveform. The 

receiver depending upon whether      is greater or less than 0, produces an estimate of 

   denoted by  ̂    to be either a    or a   . Using  ̂    and observing the received 

waveform during the second bit interval, the receiver generates     , which is given by 

     ∫             

  

 

                                                       

where  

         (   ̂         )    (   ̂         )                           

     is compared with 0 to produce  ̂    of transmitted data   . Likewise, during the     

bit interval, the receiver generates 

     ∫             

  

      

                                                                

where  

         (   ̂     ̂           )    (   ̂     ̂           )                

     is compared with 0 to produce an estimate  ̂    of transmitted data   . Expanding 

Equation 5.8 and using Equations 5.1, 5.2 and 5.3, we obtain, 

                                                                    

where      is the signal term and      is the noise term. These are given by 
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     ∫   (                      )[  (   ̂     ̂           )

  

      

   (   ̂     ̂           )]                                                                       

     ∫     [  (   ̂     ̂           )

  

      

   (   ̂     ̂           )]                                                                       

Once estimates ( ̂    ̂      ̂  ) are obtained of data (          ), the receiver shown 

in Figure 5.3 is used along with       estimates ( ̂    ̂ 3    ̂  ) and      over 

       to obtain a refined estimate  ̂       The receiver in Figure 5.3 computes, 

      
′  ∫                 ̂    ̂ 3    ̂               ̂    ̂ 3    ̂      

  

 

 

       
′        

′                                                                                                       

where  

      
′  ∫                   ̂    ̂ 3    ̂   

  

 

            ̂    ̂ 3    ̂                                                                      

      
′  ∫                 ̂    ̂ 3    ̂   

  

 

            ̂    ̂ 3    ̂                                                                      

The estimate is  ̂         if       
′    and  ̂         if       

′   . Using  ̂      

and the receiver in Figure 5.2, the detection process is continued to obtain the remaining 

      refined estimates ( ̂       ̂    3    ̂         The detection process is stopped or 

continued by checking at every refinement  ̂    of    whether or not the probability of 

error in refinement has improved or not. That is   ( ̂     )      ̂   . Since     
  and 

    
′  are Gaussian random variables, we need to find their mean and variance is order to 
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estimate the performance of the DAR. Denoting the transmitted data sequence by 

          and the   estimates by      ̂    ̂      ̂   , the conditional probability 

that  ̂  is in error (   , second iteration) is given by 

  ( ̂   |     )         
′   |           ] (           ) 

                                                
′   |           ] (           ) 

        
′   |           ] (           )                               

Averaging over all possible         3       and   , we obtain, 

  ( ̂   )  ∑ ∑ (           )  

    

       
′   |           ]                    

where  

 (           )        3        ̂    ̂      ̂                                

which upon simplification yields, 

 (           )   

 ( ̂  |          3       ̂    ̂      ̂     )   

                      ( ̂     |          3       ̂    ̂      ̂     )   

                                                                  

 ( ̂   |     )                                   

where 

     →   ( ̂              3          ̂    ̂      ̂     ) 

            |          3          ̂    ̂      ̂     ] 
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To compute Equation 5.17, we need to compute  
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√  
∫    ( 

  

 
)  

 

 

                                       

The mean and the variances required in the evaluation of Equation 5.17 can be computed 

via Equations 5.10, 5.11 and 5.12 and Equations 5.13, 5.14 and 5.15, respectively. The 

performance of the DAR given by Equation 5.17, represents the average probability of bit 

error in deciding data transmitted in the first bit interval. The error probability 

performance of the DAR,   ( ̂   ), is a function of: i)      , Signal-to-Noise Ratio; ii) 

modulation parameters (  for CPFSK,   and   for CPCK); and iii)  , observation length 

of DAR. The set of modulation parameters that should be chosen for a given   and 

     , is the one that minimizes   ( ̂   ).Closed form expressions for CPFSK and 

CPCK are given next. 



111 

 

5.2.1 DAR Performance of CPFSK 

We start by finding the mean and variance for receiver 1 output      according to 

Equation 5.20 and it can be shown that  

 [               3       ̂    ̂      ̂     ] 

    *    *
(    ) 

 
+    * 

(    ) 

 
   +

     *
(    ) 

 
+    * 

(    ) 

 
   ++                                                  

Variance [    |          3       ̂    ̂      ̂     ] 

=                                                              

Now, we need to find the mean and variance for receiver 2 output     
′  according to 

Equation 5.21 and it can be shown that  

      
′ |           ] 

    0          

         .∑    (
(    ̂  ) 

 
)    (

(    ̂  )  

 
   )

 

   

/1          

and  

Variance      
′ |           ] 

=                                                                             

where  

     ∑ 

   

   

    ̂                     ∑ 

   

   

    ̂     

Figure 5.4 provides graphs for the performance of the DAR in comparison to the BPSK 

and AMF receiver for CPFSK, for different values of  . It is very hard to describe the 

behavior of the DAR, since it is based on heuristic considerations. Figure 5.4 (a) shows 
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that for      , the 2-bit DAR provides an     gain = 1.44 dB relative to that of the 2-

bit AMF receiver. For      , 2-bit AMF receiver outperforms 2-bit DAR by 2.16 dB, 

and 2-bit DAR provides     gain of 1.10 dB relative to 2-bit AMF receiver at      . 

This suggested studying the DAR performance at different values of  , which is shown in 

Figure 5.5. Moreover, the graphs of Figure 5.4 suggest that as   increases, the     value 

at which the DAR performance exceeds that of BPSK increases as well. 

  

                  

  

                  

Figure 5.4: Performance,   ( ̂   ), of DAR for CPFSK for      

Figure 5.5 shows the comparison between the AMF receiver and DAR performance       

for different values of    . At each value of    , the     performance      behaves 

differently for the DAR for CPFSK. However, at almost all values of    , DAR 
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dominates the performance, except for a portion on the   axis where AMF receiver 

outperforms the DAR, which supports the findings of Figure 5.4. From Figure 5.5 (a) and 

(b), the middle region where AMF receiver performance exceeds that of the DAR is 

              and              , respectively. That range of the region 

varies as the     varies. From Figure 5.5 graph (c), we observe that for higher values of 

   , the DAR almost meets the performance of the AMF receiver for       . In 

general, the graphs of Figure 5.5 shows that the DAR performance improves as   

increases, where the AMF receiver performance improves up to      , yielding BPSK 

performance, and degrades for        

  

        

 

    

Figure 5.5: Normalized Performance,   ( ̂   ), of DAR and AMF receiver for 

CPFSK vs.  ,                                
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Next we investigate the effect of   on the performance of DAR. Figures 5.6 and 5.7 show 

minimized     performance of DAR for       for         and  . 

 

Figure 5.6: Normalized DAR Performance,   ( ̂   ), vs.   for       dB 

 

Figure 5.7: Normalized DAR Performance,   ( ̂   ), vs.   for        dB 
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Figures 5.6 and 5.7 show that as   increases beyond a specific value      ,     

drastically decreases; improves. Comparing the Figures 5.6 and 6.7, it is shown that for 

higher values of    , values of   at which the     starts to drastically decrease, 

     , becomes higher. For       dB at        , the     starts decreasing and 

reaches its minimum value. For        dB at        , the     starts decreasing 

and reaching its minimum value.  

Moreover, studying the effect of    through Figures 5.6 and 5.7 showed that as   

increases, values of   at which the     starts to drastically decrease,      , becomes 

higher. For example, at        dB for         and  ,                    and 

    , respectively. It can be concluded that      after which the     decreases rapidly, 

is a function of   and    . Also, Figures 5.6 and 5.7 show that as   increases, the 

performance of DAR degrades for all  . Next we analyze the CPCK DAR performance. 

5.2.2 DAR Performance for CPCK 

We start by finding the mean and variance for receiver 1 output      according to 

Equation 5.20 and it can be shown that  

 [               3       ̂    ̂      ̂     ] 

 ,
  (   (  )   
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  (  
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Now, we need to find the mean and variance for receiver 2 output     
′  according to 

Equation 5.21 and it can be shown that  
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In all cases,      and      are the Fresnel integrals, which require numerical evaluation, 

and are given by 

     ∫   (
   

 
)  
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The performance of the DAR for observation lengths   ,    and    sec are shown in 

Figure 5.8(a), (b) and (c), respectively, for optimum CPCK systems. Also, in the same 

figure are shown performances of corresponding AMF receiver for these optimum CPCK 

systems. From Fig. 3(a), it is observed that 2-bit DAR provides an     gain of 4.57 dB 

relative to that of the 2-bit AMF receiver, for optimum CPCK (                 ). 

However, with the latter receiver, decision about the data    is available after    secs, 
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whereas with DAR decision is available only after    secs.     gains of nearly     and 

    dB are observed for     and    , respectively, when optimum CPCK systems 

are employed. By going to    and    observations from   , the performance of the 

DAR becomes better, for optimum CPCK systems.  

  

        

 

    

Figure 5.8: Performance,   ( ̂   ), of DAR for optimum CPCK systems, for (a) 

   , (b)     and (c)     
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Figure 5.9:           ( ̂   )    {  ( ̂   )}  Contours of DAR for CPCK at 

      dB for (a)    , (b)     and (c)     
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Table 5.2: CPCK DAR          Parameters for       dB 

                 

                       5 

                       6 

                         

In Figure 5.9,           ( ̂   )    {  ( ̂   )}  contours of DAR receiver as a function 

of       at       dB are shown for        and  . It is noted from this Figure that 

there exist multiple sets of       that result in optimum CPCK system. In other words, 

there are several sets of       that result in minimum    . In Table 5.2 is shown 

example sets of       for       and   and corresponding minimum     for DAR. 

The contour plots can be effectively used in the CPCK system design using DAR to 

accommodate the different power, bandwidth and receiver complexity requirements. 

5.3 CPFSK vs. CPCK DAR Performance 

In order to compare the performance of CPFSK and CPCK, we have plotted     

performance vs.     in Figure 5.10 for both modulations. In this Figure, performance of 

DAR and AMF receiver for 2-bit optimum CPCK system is shown. In the same Figure, 

the performance of BPSK, DAR and AMF receiver for 2-bit optimum CPFSK system 

(     ) are shown. It is noted that CPCK system is superior to CPFSK system when 

corresponding optimum modulation parameters are used with DAR. Also, we observed 

that CPCK system offers more flexibility in terms of the choice of modulation parameters 

in the overall system design using DAR. 

5.3 Summary and Results 

CPFSK and CPCK signaling techniques are regarded as reliable for transmission of 

digital data over communication channels, and have been used in many practical 

applications. However, these techniques come at the expense of complex signal 

processing techniques, as discussed in Chapters 3 and 4. Thus, in this Chapter, we 

presented a novel Decision Aided Receiver (DAR) based on heuristics for CPFSK and 

CPCK coherent detection, as an alternative for the AMF receiver that is optimum at low 

values of    . Decision aided detection strategy was presented and explicit expressions 



120 

 

for computation of     were developed for AWGN environment, for both CPFSK and 

CPCK for the first refinement. 

 

Figure 5.10: Performance of DAR and AMF Receiver for 2-bit Optimum CPCK and 

CPFSK system 

It turned out that it is very hard to describe the behavior of the DAR, since it is based on 

heuristic considerations. However, we have tried to examine all possible situations in 

order to describe the behavior of DAR. It was shown that the error probability 

performance of the DAR,   ( ̂   ), is a function of: i)      , Signal-to-Noise Ratio; ii) 

modulation parameters (  for CPFSK,   and   for CPCK); and iii)  , observation length 

of DAR. The set of modulation parameters that should be chosen for a given   and 

     , is the one that minimizes   ( ̂   ). 

From the performance analysis carried out, it is clear that the DAR has certain interesting 
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value of     and also is sensitive to the value of  . However, at most values of    , 

DAR outperforms the corresponding AMF receiver, except for a small range of   for 

which AMF receiver outperforms DAR. For example, at       dB the middle region 

where AMF receiver performance exceeds that of the DAR is              , and 

              for       dB. That range of the region varies as the     varies. 

Moreover, it was observed that for higher values of    , the DAR almost meets the 

performance of the AMF receiver for       . In general, the DAR performance 

improves as   increases, where the AMF receiver performance improves up to      , 

yielding BPSK performance, and degrades for         

In addition, it was illustrated that as   increases beyond a specific value      ,     

drastically decreases. It was shown that for higher values of    , values of   at which 

the     starts to drastically decrease,      , becomes higher. For example, the 

    starts decreasing drastically at       dB for          , and for       

    at        dB. 

Moreover, studying the effect of    on the     performance showed that as   increases, 

values of   at which the     starts to drastically decrease,      , becomes higher. For 

example, at        dB for         and  ,                    and     , 

respectively. So, it was concluded that      after which the     decreases rapidly, is a 

function of   and    . 

Analyzing optimum CPFSK system using DAR showed that 2-bit DAR provides an     

gain of 5.63 dB relative to that of the 2-bit AMF receiver, for optimum CPFSK (  

   ).     gains of nearly     and     dB are observed for     and    , respectively, 

when optimum CPFSK systems are employed. By going to    and    observations from 

  , the performance of the DAR becomes better, for optimum CPFSK systems.  

Analyzing optimum CPCK system using DAR showed that 2-bit DAR provides an     

gain of 4.57 dB relative to that of the 2-bit AMF receiver, for optimum CPCK (      

           ). However, with the latter receiver, decision about the data    is available 

after    secs, whereas with DAR decision is available only after    secs.     gains of 
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nearly     and     dB are observed for     and    , respectively, when optimum 

CPCK systems are employed. By going to    and    observations from   , the 

performance of the DAR becomes better, for optimum CPCK systems.  

Contours of DAR receiver as a function of       at       dB for        and   

showed that there exist multiple sets of       that result in optimum CPCK system. In 

other words, there are several sets of       that result in minimum    . These contour 

plots can be effectively used in the CPCK system design using DAR to accommodate the 

different power, bandwidth and receiver complexity requirements. 

Finally, the Chapter was concluded with a comparison between optimum CPFSK and 

CPCK systems. It was noted that CPCK system is superior to CPFSK system when 

corresponding optimum modulation parameters are used with DAR. Also, we observed 

that CPCK system offers more flexibility in terms of the choice of modulation parameters 

in the overall system design using DAR. 

In general, it can be concluded that DAR outperforms the corresponding AMF receiver 

for both CPFSK and CPCK, but with certain restrictions on the modulation parameters 

used. 
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Chapter 6 

Conclusions 

In this thesis, we investigated the detection strategies, receivers and their performance of 

two subclasses of CPM modulation called Continuous Phase Frequency Shift Keying 

(CPFSK) and Continuous Phase Chirp Keying (CPCK) for data communication. This 

chapter summarizes the contributions made in this thesis and the conclusions from the 

results obtained. It also discusses some important issues and the scope for future research 

as determined by projected demands of DCS. 

6.1 Summary of Contributions  

In Chapter 2, the concept, mathematical descriptions and properties of CPM signals 

were presented in detail. Moreover, the mathematical frame work required for the 

development of Continuous Phase Chirp Keying (CPCK) and Continuous Phase 

Frequency Shift Keying (CPFSK) signaling techniques was provided. It has been 

demonstrated that the main difference between CPFSK and CPCK is the way the 

frequency changes within the bit interval, which is due to the properties associated 
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with the different phase functions used by each signaling technique. Phase functions, 

frequency functions, phase trees and trellises, baseband and passband waveforms for 

CPFSK and CPCK with different modulation parameters have been illustrated and 

verified using MATLAB. CPFSK is considered as a special case of CPCK when the 

frequency sweep width,    . 

In Chapter 3, we have examined one of the two main Maximum Likelihood Detectors for 

CPM. Optimum CPM MLRT-based receiver was derived, and block diagram for receiver 

implementation has been provided. Also, we have discussed the computational 

complexity involved in analyzing and simulating the optimum receiver for CPFSK and 

CPCK. Since the optimum receiver is very complex to be mathematically analyzed, two 

approximations have been used to arrive at sub-optimum receivers for low- and high-

    values. At low-   , sub-optimum AMF receiver is thoroughly examined for 

CPFSK and CPCK. It was shown that the AMF performance of CPFSK with       

matches that of BPSK for all  . Moreover, it was shown that as   increases, the next 

nearest     performance to that of BPSK occurs at        . For CPCK, it was found 

that    {   } occurs at       and       independent of     value,   and  , 

yielding BPSK performance. The   values yielding BPSK performance for CPCK were 

found by searching the region      . Other values for   can exist outside these 

boundaries. 

Using high-    approximation, sub-optimum high-    receiver has been provided for 

CPFSK and CPCK. This receiver has provided two bounds for CPFSK and CPCK 

optimum receiver, an upper union bound and a lower bound. Different plots and graphs 

have been provided in both cases in order to study the relationships between     and the 

different modulation parameters for both CPFSK and CPCK, such as:       vs.  , 

      vs.   and  ,       vs.   and  ,       vs.   and  …etc. In general, for CPFSK 

and CPCK, the     performance improved as the length of the observation interval   

increased. However, that amount of improvement decreased with each increment of the 

observation interval length. This indicated that increasing the length of the observation 

interval beyond a certain limit provided only marginal     improvement and higher 

receiver complexity. Moreover, for CPFSK, it has been noted that optimum performance 
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is achieved at         for all  , and near optimum performance is achieved at      . 

In addition, the difference in performance between the upper bound and the lower bound 

at low-    was relatively big, which means that these bounds are not tight at low-   ; 

however, the performance corresponding to both bounds would meet at high-    values. 

For CPCK, 3D plots were used in order to study the relation between     and the combinations 

of modulation parameters. Wherein CPFSK high-    receiver the minimum     occurred at 

        for all   and     values, for CPCK high-    receiver, the minimum     occurs at 

different points for different   for all     values. Using the 3D plots and their corresponding 

contours, the set of points       where min{   } occurs were found.  

The different graphs for AMF receiver and high-    receiver provided in Chapter 3 

helps system designers by giving multiple options, in terms of values of   and  , in order 

to meet a certain    , subject to different bandwidth and receiver complexity 

constraints. It is noted that the choice of     and   decides the bandwidth and   decides 

the complexity of the receiver.   

Moreover, in order to answer the question of “What threshold that separates high-    

from low-    when studying the effect of the different parameters on    ?”, plots of 

the composite bounds, derived from the performance of the AMF and high-    

receivers for both CPFSK and CPCK were provided. The optimum performance for 

CPFSK and CPCK will be bounded by these composite bounds. It was noticed that at a 

certain     value, the upper bound is decided using the high-    upper bound instead 

of the AMF. Thus, the point at which the optimum receiver performance gets upper 

bounded by the upper bound of the high-    receiver instead of the AMF, can be 

considered as the     value that separates high- and low-    for any set of modulation 

parameters and  . This     value can be thought of as a function of  , the modulation 

scheme in use and its modulation parameters. Comparing optimum CPFSK and CPCK 

using high-    receiver showed that CPCK has     advantage of      dB and      dB 

relative to CPFSK and BPSK, respectively. Computer Simulations verified the 

mathematical analysis provided for the different receivers. In addition, CPCK has been 

found more flexible than CPFSK, from a design point of view, in the sense that CPCK 

allowed for the manipulation of more parameters, which gave better control on the 
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modulation scheme. In general, CPCK can achieve superior     performances to that of 

CPFSK. 

Chapter 3 suggested that tradeoffs between    , power, bandwidth and receiver 

complexity can be further explained through studying the minimum distance properties 

for both signaling schemes, CPFSK and CPCK. In Chapter 4, we studied the minimum 

distance properties for both signaling schemes, CPFSK and CPCK, and values of 

optimum operation were provided. Advantages in term of     of these optimum systems 

were highlighted relative to that of PSK. For CPFSK, it was shown that the maximum 

minimum distance between two transmitted sequences, max{  
 } =   

        is 

attained at        , and thus, the upper bound on the     gain    is limited to about 

     dB. Moreover, it was illustrated that no significant     gain is attainable for 

CPFSK with    . So     can be called the optimum observation interval, where 

further observations don’t add benefits to the system and only causes exponential growth 

in the receiver’s complexity. For CPCK, it was shown that the maximum minimum 

distance between two transmitted sequences, max{  
 } =   

       is attained at 

             , and thus, the upper bound on the     gain    is limited to about      

dB.   
       has many local maxima for integer values of   and the global maxima 

reported previously at              .   
       is the CPFSK case, reported 

previously as   
    . Computer simulations were carried out in order to find the 

parameters maximizing   
  and    for different  ,   and  . It was noticed that     

gain increase is not as major from     to     and we are approaching the upper 

bound value for     gain of      dB. So,     was taken as the optimum observation 

interval, where further observations didn’t add major benefits to the system.     gains 

for CPFSK and CPCK were reported at the corresponding sections. 

Studying the distance properties for CPFSK and CPCK led to the discussion of the other 

type of CPM signals receiver, which is the Viterbi receiver. The Viterbi receiver is based 

on the maximum-likelihood sequence estimation (MLSE) theory, which searches for the 

minimum Euclidean distance path through the trellis that characterizes the memory in the 

transmitted signal. Upper bounds results using Viterbi receiver were reported for CPFSK 
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and CPCK. Matching the conclusion from Chapter 3, CPCK provides superior     

performance to that of CPFSK due to CPCK’s design flexibility. Using the upper bound 

distance criteria   
  for both CPFSK and CPCK, the upper bounds on performance of the 

Viterbi receiver for optimum CPFSK;        , and CPCK;              , were 

found. It showed that CPCK provides superior     performance to that of CPFSK due to 

CPCK’s design flexibility. It was noted that CPCK has     advantage of nearly 1 dB 

and 2 dB over CPFSK and BPSK, respectively. The complexity reduction introduced by 

the Viterbi receiver was illustrated through examples and graphs. 

In Chapter 5, we presented a novel Decision Aided Receiver (DAR) based on heuristics 

for CPFSK and CPCK coherent detection, as an alternative for the AMF receiver that is 

optimum at low values of    . Decision aided detection strategy was presented and 

explicit expressions for computation of     were developed for AWGN environment, 

for both CPFSK and CPCK for the first refinement. 

It turned out that it is very hard to describe the behavior of the DAR, since it is based on 

heuristic considerations. However, we have tried to examine all possible situations in 

order to describe the behavior of DAR. It was shown that the error probability 

performance of the DAR for the first refinement,   ( ̂   ), is a function of: i)      , 

Signal-to-Noise Ratio; ii) modulation parameters (  for CPFSK,   and   for CPCK); and 

iii)  , observation length of DAR. The set of modulation parameters that should be 

chosen for a given   and      , is the one that minimizes   ( ̂   ). 

From the performance analysis carried out, it is clear that the DAR has certain interesting 

features. The performance of CPFSK using DAR is highly dependent on the operating 

value of     and also is sensitive to the value of  . However, at most values of    , 

DAR outperforms the corresponding AMF receiver, except for a small range of   for 

which AMF receiver outperforms DAR. For example, at       dB the middle region 

where AMF receiver performance exceeds that of the DAR is              , and 

              for       dB. That range of the region varies as the     varies. 

Moreover, it was observed that for higher values of    , the DAR almost meets the 

performance of the AMF receiver for       . In general, the DAR performance 
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improves as   increases, where the AMF receiver performance improves up to      , 

yielding BPSK performance, and degrades for         

In addition, it was illustrated that as   increases beyond a specific value      ,     

drastically decreases. It was shown that for higher values of    , values of   at which 

the     starts to drastically decrease,      , becomes higher. For example, the 

    starts decreasing drastically at       dB for          , and for       

    at        dB. 

Moreover, studying the effect of    on the     performance showed that as   increases, 

values of   at which the     starts to drastically decrease,      , becomes higher. For 

example, at        dB for         and  ,                    and     , 

respectively. So, it was concluded that      after which the     decreases rapidly, is a 

function of   and    . 

Analyzing optimum CPFSK system using DAR showed that 2-bit DAR provides an     

gain of 5.63 dB relative to that of the 2-bit AMF receiver, for optimum CPFSK (  

   ).     gains of nearly     and     dB are observed for     and    , respectively, 

when optimum CPFSK systems are employed. By going to    and    observations from 

  , the performance of the DAR becomes better, for optimum CPFSK systems.  

Analyzing optimum CPCK system using DAR showed that 2-bit DAR provides an     

gain of 4.57 dB relative to that of the 2-bit AMF receiver, for optimum CPCK (      

           ). However, with the latter receiver, decision about the data    is available 

after    secs, whereas with DAR decision is available only after    secs.     gains of 

nearly     and     dB are observed for     and    , respectively, when optimum 

CPCK systems are employed. By going to    and    observations from   , the 

performance of the DAR becomes better, for optimum CPCK systems.  

Contours of DAR receiver as a function of       at       dB for        and   

showed that there exist multiple sets of       that result in optimum CPCK system. In 

other words, there are several sets of       that result in minimum    . These contour 
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plots can be effectively used in the CPCK system design using DAR to accommodate the 

different power, bandwidth and receiver complexity requirements. 

Finally, the Chapter was concluded with a comparison between optimum CPFSK and 

CPCK systems. It was noted that CPCK system is superior to CPFSK system when 

corresponding optimum modulation parameters are used with DAR. Also, we observed 

that CPCK system offers more flexibility in terms of the choice of modulation parameters 

in the overall system design using DAR. In general, it can be concluded that DAR 

outperforms the corresponding AMF receiver for both CPFSK and CPCK, but with 

certain restrictions on the modulation parameters used. 

6.2 Recommendations for Future Work  

In light of the work presented in this thesis, there exists a number of areas for further 

research and examination. They are as follows: 

6.2.1 MIMO-CPCK Systems 

With the combination of Internet and multimedia application in next generation wireless 

communication, the demand for wide-band high data rate communication services is 

increasing. Usually more bandwidth is required for higher data-rate transmission. Due to 

spectral limitations, it is often unfeasible or very expensive to increase the bandwidth. 

Moreover, another major pitfall of wireless communication systems (WCS) is fading and 

multipath propagation.  

Most recent developments in information technology proved that spectrally efficient 

transmission over wireless channels is realizable with Multiple Input Multiple Output 

(MIMO) systems. A key feature of MIMO systems is its ability to turn multipath 

propagation, which is usually a hindrance for WCS, into an advantage for the user. 

MIMO systems effectively take advantage of random fading [51] and multipath delay 

spread [54], for increasing transfer rates. A general block diagram for MIMO systems is 

shown in Figure 6.1. The challenge in implementing a MIMO system lies in the efficient 

realization of a detector that can separate the spatially multiplexed signals. 
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In the literature, multipath fading in multi-antenna wireless systems was mostly dealt by 

other diversity schemes, such as time diversity, frequency diversity and receiver 

diversity, with the last scheme being the most widely applied one. However, it is hard to 

efficiently employ receiver diversity at remote locations, since these locations need to 

remain relatively simple, inexpensive and small. Moreover, In Mobile communication 

systems, it may be difficult to put many antennas in the mobile unit. Therefore, multiple 

transmit antennas are preferred at the base stations. Thus, Space-Time Coding schemes 

are gaining growing interest as they offer high data rate transmission over wireless fading 

channels while putting the diversity burden on the base station. 

 

 

 

 

 

Figure 6.1: General MIMO System Block Diagram 

Space-Time Coded (STC) Systems are one of the most recent technical advances that has 

the potential of solving the traffic bottleneck in future internet demanding wireless 

networks. The key idea in space-time systems is that the signal’s natural and conventional 

dimension, time, is complemented with the spatial dimension. In just a few years, STC 

has penetrated large-scale commercial-driven standards such as Wireless Local Area 

Networks (WLANs) and 3G networks with a potential for greater implementation in 4G 

technology. 

Due to the advantages offered by MIMO, STC and CPM systems, a main area of research 

is combining STC with CPM in what is called, STC-CPM system. Actually, our next 

research direction would be the evaluation of STC-CPCK systems performance. Since 

both of them offers various advantages each on its own, it is expected that combining 

them would enhance the total performance of the system.   

Channel Information 

Source Transmitter Receiver 

Estimated 

Massage 

. 

. 

. 
. 
. 
. 



131 

 

6.2.2 Signaling Format 

The information carrying phase of CPM signals can be generally viewed as 

   (          )                                                        

In our work with the DAR, we have considered single-  CPM, yet, this work can be 

extended to multi-  CPM. Moreover, we have employed two distinct pulse shapes i.e. 

REC and Chirp, however, same work can be done employing other pulse shapes such as 

Raised cosine (RC), Spectrally Raised Cosine (SRC), Gaussian Minimum Shift Keying 

(GMSK) and Half-Cycle Sinusoid (HCS). Another area of future work could be the 

extension of DAR algorithm to partial response CPFSK, CPCK and CPM signaling in 

general, which usually gives better distance properties relative to full response CPM. 

6.2.3 Detection Problem  

The DAR receiver we evaluated, assumes ideal conditions such as 100% synchronization, 

ideal coherent detection and pure AWGN channel model, however, it is not practically 

true, hence, another area of future work could be in testing the proposed CPCK DAR in 

non-Gaussian noise. In addition, generalizing the DAR strategy to  -ary CPM is an 

interesting area of research. Moreover, the MLRT-based optimum receiver still requires 

more analysis, in an attempt to find a closed-form expression describing the     

performance. It is also desirable to simulate the actual optimum receiver in order to verify 

the mathematical analysis and performance of the sub-optimum receivers.  
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