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Abstract 

The Shannon Human Splicing Pipeline software has been developed to analyze variants on a 

genome-scale. Evidence is provided that this software predicts variants affecting mRNA 

splicing. Variants are examined through information-based analysis and the context of novel 

mutations as well as common and rare SNPs with splicing effects are displayed. Potential 

natural and cryptic mRNA splicing variants are identified, and inactivating mutations are 

distinguished from leaky mutations. Mutations and rare SNPs were predicted in genomes of 

three cancer cell lines (U2OS, U251 and A431), supported by expression analyses. After 

filtering, tractable numbers of potentially deleterious variants are predicted by the software, 

suitable for further laboratory investigation. In these cell lines, novel functional variants 

comprised 6–17 inactivating mutations, 1–5 leaky mutations and 6–13 cryptic splicing 

mutations. Predicted effects were validated by RNA-seq data of the three cell lines, and 

expression microarray analysis of SNPs in HapMap cell lines. 
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List of Abbreviations, Symbols, Nomenclature 

 A431 - epidermoid squamous carcinoma-derived cell line. 

 API – A library of functions, data structures, classes, etc. which can be exploited by a 

programmer. 

 ASSA - Automated splice site analysis server. A tool to predict the effects of sequence 

changes that alter mRNA splicing in human diseases. 

 dbSNP – Single Nucleotide Polymorphism database. A public-domain archive of single 

nucleotide polymorphisms. 

 GCC – GNU Compiler Collection. The standard compiler for most Unix-line operating 

systems.  

 FASTA format – A text-based file containing nucleotide sequences (can also contain 

peptide sequences) for one or more region in a genome. 

 hg18 – Also called NCBI36. The March 2006 human reference sequence.  

 hg19 – Also called GRCh37. The February 2009 human reference sequence. The most 

recent patch is GRCh37.p11. Patch data generally contains alternate haplotype regions. 

 HGNC – HUGO Gene Nomenclature Committee. HUGO- or HGNC-approved.  

 HUGO – Human Genome Organisation. 

 Indel - A genomic insertion or deletion. Indels range in size from a single nucleotide to 

multiple kilobases. 

 Java Swing – The primary Java GUI toolkit. It is an API which provides graphical user 

interface design functionality. 

 NGS – Next generation sequencing.  

 NMD – Nonsense-mediated mRNA decay. A surveillance pathway which reduces errors 

in gene expression by eliminating mRNA transcripts that contain a premature stop codon. 

 PCR - Polymerase chain reaction. Used to amplify a small number of (or one) DNA 

segments, resulting in many copies of the sequence.    

 qPCR – Quantitative real-time polymerase chain reaction. For one or more specific 

sequences in a sample, sequences can be detected and quantified. 

 Ri  - Information content in bits.  

 RNA-seq – Uses high throughput sequencing to sequence cDNA in order to measure the 

levels of RNA transcripts and their isoforms in a sample. 

 SNP – Single nucleotide polymorphism. A single-nucleotide substitution in the genome. 

A SNV that has been characterized. 

 SNV – Single nucleotide variant. A single-nucleotide substitution in the genome.  

 U251 - glioblastoma-derived cell line 

 U2OS - osteosarcoma-derived cell line 

 VUS- Variant of Unknown Significance. A variant which has been documented but has 

no known pathogenic significance.
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1 Introduction 

The volume of human next-generation sequencing (NGS) data requiring bioinformatic 

analysis has necessitated development of high-performance software for genome scale 

assembly and analysis 
1
. Genomic variations found in these analyses, particularly single 

nucleotide polymorphisms (SNPs), have traditionally been interpreted in terms of amino 

acid modifications in coding regions. Clinically-significant non-coding variants are a 

relatively unexplored source of pathogenic mutations and lack a general, high-throughput 

method to interpret their effects. In this thesis I present genome-scale software which I 

adapted and further developed to quantify the effect of mutations in the common classes 

of splice donor (U1) or acceptor (U2)-type sites in a high-throughput manner. Mutations 

predicted with this method will be useful for pinpointing potentially deleterious variants 

suitable for further laboratory investigation.  

Clinical studies have deemed the vast majority of known variants in patients with 

Mendelian (single-gene) disorders to be of uncertain pathogenic significance (VUS) 
2,3

. 

Cis mutations can affect protein translation, mRNA processing and initiation of 

transcription. In silico methods have been developed for the first two of these cases (e.g., 

4,5
), but have only been routinely applied for protein coding changes in genome-scale 

applications (e.g., 
6
). Many NGS studies classify splicing mutations only as those located 

within the highly conserved dinucleotides within each splice junction (e.g.,
7
). Although 

more sensitive methods have been developed which assess other conserved sequence 

elements 
8-12

, none have been scaled for the large numbers of variants generated by NGS 

and nor have they been validated for this data. Exonic variants in close proximity to 

splice junctions but outside of this window may be classified as synonymous, missense or 

nonsense substitutions, yet still have profound effects on splicing, which may be the 

predominant contributor to the phenotype. Unless multiple affected patients are reported 

with the same mutation, the mutations are transmitted through pedigrees, and functional 

assays verify their effects, these variants in patients are generally classified as VUS. 

mRNA splicing mutations are common in Mendelian diseases 
13,14

, and it is likely that 

they contribute to many complex disorders. Clearly, genome-scale predictive methods 
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that filter out benign or small changes in mRNA splicing due to sequence variation will 

be essential for mutation discovery in exomes, complete genomes and high-density 

targeted deep sequencing projects. Examination of individual variants in the laboratory 

with functional assays is both expensive and inefficient as many variants are not likely to 

be deleterious, or differ significantly in their pathogenicity.  

The Automated Splice Site Analysis (ASSA) 
5
 server evaluates single mutations that 

change splice site strength with information-based models 
15

. The average information, 

Rsequence, of a set of binding sites recognized by the same protein (such as U1 or U2) 

describes the conservation of these sequences. Sequences are ranked according to their 

individual information content (Ri in bits) 
15-17

. Individual information content is a 

portable, universal measure which allows direct comparison of binding sites across the 

genome or transcriptome, regardless of the sequence or protein recognizer. Functional 

binding sites have Ri > 0, corresponding to ∆G < 0 kcal/mol 
18

. Strong binding sites have 

Ri >> Rsequence, while weak sites have Ri << Rsequence. Any sequence variation may change 

its protein binding affinity, which is reflected by a change in the computed Ri of that 

binding site. A 1-bit change in information content (∆Ri) corresponds to a ≥ 2 fold change 

in binding affinity (100/2
∆Ri

). The ASSA server has been widely used and its sensitivity 

and specificity has previously been extensively validated in hundreds of studies of 

individual mutations (http://tinyurl.com/splice-server-citations). However, it requires 

approximately 30 seconds to examine a single variant and is therefore not suitable for 

comprehensive analysis of whole-genome sequencing data. The Shannon pipeline was 

implemented using the same mathematical approach and information weight matrices as 

ASSA to carry out batch information-based analysis of thousands of mutations from the 

BRCA1 and BRCA2 genes in the Breast Cancer Information Core Database 
19

. In the 

present study, the software has been adapted to perform a single matrix algebraic 

calculation across a genome with an efficient state machine that significantly increases 

computational speed over ASSA.  

During the tenure of my M.Sc. I was involved in the release of three papers 
20-22

. In this 

thesis, I will present work described in 
20

. My contribution in 
21

 was the implementation 

an algorithm which determines single-copy regions (regions not repeated elsewhere in the 

http://tinyurl.com/splice-server-citations
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genome) without the use of a catalogue of repetitive sequences. This work allowed me to 

appreciate the scope and sheer size of genome-scale programming projects. In particular, 

although my program was executed on the Shared Hierarchical Academic Research 

Computing Network (SHARCNET) using 128 cores, the full execution time of the 

software was ~3 months. This inspired me to become involved with a software project 

operating on a genome-scale, which executed in a far shorter time. Additionally, my role 

in 
22

 was to assist in modifications to ASSA (and the newer ASSEDA). Implementing 

these modifications improved my understanding of molecular information theory and its 

applications related to splicing prediction.  

Several years ago, C libraries were developed by Tyson Whitehead which calculate the 

information content of a genomic region based on information weight matrices 
19,20

. 

These libraries were designed to execute very quickly while not sacrificing specificity. 

Chromosomes are stored in memory one at a time and each base is stored using 17 bytes. 

The longest human chromosomes can therefore be represented using a few gigabytes of 

memory. Reference sequences for each chromosome are read from FASTA files and 

parsed at disk speed (parsed as fast as the disk can read the file). As a consequence, the 

libraries require only several seconds to parse each chromosome. Sequence blocks, four 

kilobytes in size, are extracted from the appropriate region of a parsed FASTA file and 

information analysis is performed. As the appropriate regions of the genome are extracted 

from memory on demand there is no need for indexing, thus execution speed is highly 

optimized.  

In this thesis I describe the development of software which extends these C libraries. 

Variants are annotated, stratified, ordered in terms of relevance, presented in a user-

friendly manner, and the code is integrated with the CLC-Bio Workbench. Predicted 

deleterious mutations are compared with RNA-seq data from genomes of three cancer 

cell lines to assess their validity. 
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2 Literature Review 

2.1 Overview of splicing mechanisms 

The human genome contains approximately 3,000,000,000 nucleotides 
23

.  It is comprised 

of DNA which is made up of four nucleotides - adenine, thymine, cytosine, and guanine -  

denoted A, T, C, or G joined by phosphodiester bonds. These nucleotides form a code 

which eventually translates into proteins necessary for survival. Nucleotides (bases) can 

form base pairs with other nucleotides. For each base, there is another nucleotide which 

binds to it called its complementary base. The base A binds readily to the base T, and G 

binds with C. Base pairs are formed by hydrogen bonds (AT and GC base pairs 

experience 2 or 3 hydrogen bonds respectively). In the genome, DNA forms its double 

helix structure by pairing a strand to another complementary strand. Only ~1.1% of DNA 

directly codes for proteins and these regions are referred to as exons. Collections of exons 

and non-coding regions called introns between them (along with other regulatory 

elements such as promoters, enhancers, etc.) form genes. To ensure proper gene function, 

introns must be precisely removed to result in an mRNA suitable for translation to protein 

24
.  

2.1.1 The spliceosome and the splicing process 

Introns are bound by conserved sequences that define their 5′ and 3′ ends. The 

spliceosome is comprised of small nuclear RNA (snRNA) and protein and is a 

macromolecule which excises introns during splicing. During transcription to RNA, the 

spliceosome acts in two major steps. First, the 5′ splice site base pairs with the U1 

snRNA which is part of the spliceosome and splicing factor 1 (SF1) binds to the branch 

point, located upstream of the 3′ splice site 
25

. The 5′ splice site and branch point are 

drawn together, and the 5′ splice site undergoes a nucleophilic attack which breaks the 

phosphodiester bond at the splice junction and simultaneously forms a linkage between 

the branch point and the 5′ end of the intron. This results in an intron conformation 

structure similar to a lariat. In the second step, the newly released 3′ hydroxyl of the 5′ 

exon attacks the 3′ splice site. Again, the phosphodiester bond at the splice junction is 

broken, and in its place a bond is formed between the two exons 
24

.    



5 

 

2.1.2 Donor and acceptor splice sites 

Located at each end of an intron is a splice site denoted as a donor site at the 5′ end of the 

intron or acceptor site at the 3′ end. Both of these sites are referred to as natural sites (the 

splice site used in the absence of mutation). The efficiency of splicing is partially 

determined by the highly conserved GT and AG dinucleotides present at the donor and 

acceptor sites, respectively. These dinucleotides are certainly not the sole determinants of 

normal splicing however.  The length of donor and acceptor sites have been defined as 

10bp (-3, +6) and 28bp (-25, +2) respectively where 0 refers to the first nucleotide of the 

splice junction 
26

. In 1986, a study examined approximately 400 vertebrate genes and 

derived consensus sequences for both donor and acceptor sites 
27

. The strong 

conservation of these regions was evident – even across species barriers – which implied 

an important role in splicing.  

Point mutations within splice sites affecting pre-mRNA splicing account for 

approximately 15% of human genetic disease 
28

. Mutation within any region of a donor 

or acceptor site can contribute to a reduction (or in rare cases, a strengthening) of the 

site’s binding affinity to the spliceosome. Weakened natural sites may cause aberrant 

splicing. 

2.1.3 Splice site recognition and variation 

Proper definition of donor and acceptor sites is central to proper RNA and protein 

formation. Splicing machinery is tasked with locating exons (137 nucleotides long on 

average) separated by much longer intronic regions 
29

. This task is made more difficult 

through the existence of “decoy” sites (cryptic splice sites). These sites contain similar 

sequences to splice sites and must be accounted for. If splicing machinery relied only on 

nucleotide sequence, cryptic sites would be frequently used in place of natural sites (sites 

which are generally used barring genetic variation). In 1994, a study catalogued instances 

mammalian splice site mutation 
30

. In this study, four phenotypes were observed as a 

result of splice site mutation. Exon skipping, cryptic site use, creation of a pseudo-exon 

entirely within an intron, and intron retention were observed. In particular, 55% of 

observed phenotypes demonstrated exon skipping. The prevalence of exon skipping 
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(when only one splice site of an intron is affected) implied that splice sites are recognized 

as pairs 
29

. In addition, the size of exons is also a factor. Only 3.5% of exons are of length  

>300 nucleotides and less than 1% >400. This again implies that the sequence of splice 

sites is not the only determining factor in splice site recognition.  

Up to ~50% of deleterious alterations in genes may be caused by splicing mutations 
31

. 

Although mutations located anywhere in a gene can impair the splicing process, most 

deleterious variants have been found in the GT/AG dinucleotides located at splice 

junctions 
31

. The GT/AG nucleotides are highly conservered. However, any nucleotide 

substitutions within splice sites may alter splicing outcome. There are three main 

potentially deleterious outcomes which can occur as a result of variation within splice 

sites (Figure 1). A mutation may weaken a splice site to such a degree that it no longer 

functions effectively. This may cause the affected exon to be missing from the resulting 

mRNA (exon skipping) or the exon to extend past the natural site into the intron (intron 

inclusion). Other mutations may weaken a splice site to a degree insufficient to cause 

exon skipping. Mutations of this type may result in a lesser expression of a normal splice 

isoform (leaky). Finally, mutations that strengthen nearby cryptic sites or weaken a 

natural site with a cryptic site nearby may lead to cryptic site binding. Cryptic site 

binding may shorten or extend an exon. Multiple mRNA splice isoforms can be 

produced. Variation in the nucleotide sequence of donor or acceptor sites can increase or 

decrease the abundance of a specific isoform in the population of mRNA.     

2.2 Molecular information theory 

Information theory was first devised by Claude E. Shannon and published in his article 

“A Mathematical Theory of Communication, Part I.” in 1948. It is a branch of 

mathematics used to quantify information and determine the information content in a 

system. Two main aspects of communication are addressed; 1) methods to measure 

information, and 2) determination of the maximum information which can be sent and 

received through a communications system.  

  



7 

 

 

Figure 1. Types of splicing mutations that affect structure and/or abundance of 

resulting transcripts 

The diagram illustrates potential outcomes of mRNA splicing mutations predicted by the 

Shannon pipeline. Intervening sequences (IVS) contain an intron and other nucleotides 

not present in the resulting mRNA. Variation within splice donor and/or acceptor sites 

may lead to altered splicing events such as exon skipping (◊), exonic (□) or intronic (△) 

cryptic site use, and/or reduction in the abundance of normally spliced mRNA forms, 

termed leaky mutations (○).  
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2.2.1 Basics of molecular information theory 

Molecular information theory describes biological interactions by exploiting the 

mathematics of information theory 
32

 and applying it to biological systems. In particular, 

information-based methods can be used to calculate the information content of binding 

sites recognized by one kind of macromolecule (e.g., the spliceosome). Known binding 

sites must be aligned and examined, however the contributions of individual positions are 

not ignored as they are in consensus sequences. A consensus sequence aligns sequences 

and reports the most prevalent base at each position. The information content of sites 

recognized by a single macromolecule is denoted Rsequence. Two sources of information 

are needed to compute Rsequence: 1) The nucleotide sequences where a macromolecule has 

demonstrated the ability to bind. 2) The sequences must be viewed in the context of an 

entire communication system. Thus, the nucleotide composition of the genome in which 

the macromolecule functions must be determined 
33

.  

Sequences recognized by a single macromolecule within a genome known to experience 

macromolecule binding are aligned in a manner to allow the greatest homology between 

bases. The Rsequence of the site can then be calculated. The general formula for uncertainty 

can be modified as follows to represent nucleotide sequences  

                                           

 

    

 

(2.1) 

where B = {A,C,G,T}, and f (B,L) is the frequency of base B in position L is found in the 

sequence. This equation can be applied to a full genome by exploiting existing data on 

the nucleotide content of the human genome. If a set of random nucleotides sequences 

were extracted from the human genome and aligned, all four bases would be observed, 

with probabilities P(B). Thus, the equation can be modified as follows  

                                   

 

   

 

(2.2) 
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When this formula is applied genome-wide, the resulting uncertainty is higher than when 

applied to only known binding sites. This implies there is a pattern in the nucleotide 

sequences located at splice sites. This was certainly an expected result, as splice site 

sequences were known to be conserved. For each position L, that decrease in uncertainty 

can be demonstrated by  

                     

 

                    
(2.3) 

 Rsequence(L) is therefore a measure of the information gained (uncertainty lost) by aligning 

the binding sites. Information is additive 
16

, thus the total information gained is equal to 

the decrease in uncertainty across all sites 

                                           

 

 
(2.4) 

where Hnb is the probability of obtaining a particular combination of n bases. Although 

information itself is additive, this equation has been simplified by assuming that the 

frequencies of bases observed at one position are statistically independent of any other.  

2.2.2 Information weight matrices 

Information content can be defined as the number of choices needed to describe a 

sequence pattern, using a logarithmic scale in bits 
33

. These data can be represented as a 

weight matrix calculated by 

                                                  (2.5) 

Riw(b,l) (also referred to as RIBL) is a two dimensional array containing b rows and l 

columns where b = {A,T,C,G}, l is the position in the splice site, and e(n(l))) is a sample 

size correction factor for the n sequences at position l used to create f(b,l). The 2 

represents the bits of uncertainty a recognizer has before binding to a site containing 4 

possible bases (log2(4)). As a whole, this matrix represents the sequence conservation of 

each nucleotide, measured in bits and can be exploited to compare sites to one another, 

search for new sites, to compare sites to other quantitative data such as DNA-protein 
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binding strength, and other applications 
34

. The most frequent base at each position of the 

weight matrix is assigned the largest individual information (Ri  in bits) value. Therefore, 

a consensus sequence can be generated by selecting the highest Ri value at each position. 

The individual information of a sequence can be compared to an information weight 

matrix in the following way  

                                         

 

    

 

(2.6) 

where j is an individual sequence and s(b,l,j) is a simple two dimensional array which 

represents the jth sequence. As j is a single sequence, frequencies are not involved in this 

matrix as such. Instead, elements in s(b,l,j) contain the value 0 at every position with the 

exception of base b at position l which contains 1.  

2.2.3 Information theory and human splicing site mutations 

The human genome can be viewed as a system which contains information. As is widely 

known, DNA triplets code for the synthesis of specific amino acids. However, this is not 

the only kind of information stored within the genome. As discussed in chapter 2.1, splice 

sites are comprised of similar, conserved DNA sequences. Information can be described 

as a decrease in uncertainty, therefore the similarity of splice sites implies that they 

contain information.  

The effects of genetic variation (base substitutions) within a sequence can be calculated 

by examining the Ri or the common and variant alleles. The difference between their 

respective information contents is denoted as ΔRi. As Ri is on a logarithmic scale, the 

minimum change in binding affinity of two sites is 2
ΔRi

 
15

. Riw(b,l) matrices have been 

computed for 56,985 acceptor and 56,286 donor sites 
35

. Matrices used by the Shannon 

pipeline are based on these models and were obtained using the same method, but are 

based on sites on both strands. Models in 
35

 were based on only on the positive (+) strand. 

Matrices used by the pipeline are based on 108,079 acceptor sites and 111,772 donor 

sites. The mean distribution of Ri values across these sites is denoted Rsequence where the 

Rsequence of donor and acceptor sites are computed separately. Therefore, Rsequence 
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represents the average information required for splicing to occur at a splice site. It also 

reflects the strength of the splice site. Those splice sites which have Ri values << Rsequence 

are weak sites, while those with Ri >> Rsequence are strong sites. Non functional sites have 

Ri values less than ~1.6 bits. 
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3 Shannon pipeline - Methods 

3.1 Shannon pipeline software architecture 

I have implemented the Shannon pipeline plugin using the CLC-Bio genomics developer 

toolkit to simplify access to this technology and interpretation by novice users. The same 

plugin can be executed on a single client computer, a remote server or a grid system, and 

benefits from automated software updates. The server version uses an architecture in 

which a Workbench client transmits variant data to the server, which performs the 

computations, and returns results that can be filtered and formatted on the client. A 

standalone version of the fully functional Genome Workbench plugin is also available. 

By contrast, the splicing mutation feature that is native in CLC-Bio Genomics’ products 

is limited to detecting changes in dinucleotides at the exon boundaries, which represent 

fewer than 5% of all splicing mutations detected by the Shannon pipeline. 

The Shannon pipeline uses an efficient algorithm coded in C to quickly analyze genome-

scale data sources for information changes (Figure 2). Methods for computing Ri and Ri 

values determine the dot product of an information weight matrix and the unitary 

sequence vector for each genomic window and comparing the resultant scalar values of 

the reference and variant sequences 
36

. C libraries determine the information content of a 

position in the reference genome and after a variant is introduced. This method uses 

convolution-style sliding-window computation of all sequence changes for each complete 

chromosome sequence resident in RAM. To expedite processing, the software currently 

only handles single nucleotide variants (SNV) – which are the most prevalent type of 

variation. Changes in Ri introduced by genomic variation are computed by subtracting the 

initial Ri value of a position by the sum over a surrounding window, then adding the new 

value for each position (∆Ri). Perl scripts wrap these C libraries and annotate output. 

Integration with the CLC-Bio Workbench environment was achieved through code 

written in Java utilizing the CLC-Bio developer API. This software is assembled as a 

client plugin requiring a connection to the server to execute, a server plugin and a 

standalone client plugin. Two additional dependency plugins contain a modified 

dbSNP135 (containing only variant, rsID and overall frequency), Ensembl Exon Data 



13 

 

(Build 66) and GRCh37 (hg19)/NCBI36 (hg18), respectively, allowing the software to 

execute with no active internet connection and incorporates all necessary annotations 

required to contextualize a potential mutation.  

Input flat files containing sequence variants that differ from the reference genome are 

imported into the CLC-Bio Java environment. The file must be either Variant Call 

Format (VCF) 
37

 or a tab-delimited format with the following fields: [chromosome #] 

[unique identifier] [coordinate] [reference/variant]. Coordinates can be hg18 or hg19. All 

variants appearing in this study are hg19. Genomic insertions and deletions (indels) 

present in input files are not considered for analysis. 

3.2 Perl scripts and modules 

Two Perl scripts were previously written to perform variant annotation. I significantly 

modified these scripts by increasing memory/time efficiency and modularizing the code 

to simplify testing. To this end, I divided the two preexisting scripts into 5 Perl modules. 

I wrote an additional two Perl scripts and several modules to automate plugin installation 

and filtering of variants. I will briefly describe the functionality of the scripts and 

modules here. A straightforward Perl script that splits variants on each chromosome into 

separate files will not be described. 

3.2.1.1 MainControl.pl 

This script is executed from within Java code and serves as part of the connection 

between command-line code and the CLC-Bio Workbench. More details related to this 

interconnectivity can be found in section 3.3.1.6. Standard output and standard error are 

redirected stdout.log and stderr.log respectively. This was done to allow detailed error 

messages to be effectively communicated to the CLC-Bio Workbench. The main purpose 

of the script is to call a series of Perl modules which each append some annotation to an 

array of data. The array is passed by reference from each module back to MainControl.pl 

and passed to the next module. The script also updates a variable containing a 

rudimentary progress percentage which is sent to the Workbench every 5 seconds. It is 

used to update a progress bar displayed to the user. Between the execution of each 

module the progress percentage is updated to an increased value. 
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Figure 2. Flow chart of the Shannon Human Splicing Pipeline. 

Client and server tasks are depicted separately. Interactions between them are denoted by 

arrows crossing the client/server barrier. The pipeline can also be executed on the client 

in a standalone manner. In that case, all server actions are performed on the client 

machine.  
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3.2.1.2 InstallShannonPipeline.pm   

C libraries must be compiled before they can be executed. The C libraries are installed as 

Perl modules through the use of preexisting Perl wrappers. This Perl module 

automatically compiles the libraries if necessary. To check if the libraries are already 

installed I use “eval ‘require Rogan::FASTA” (Rogan::FASTA is the name of one of the 

modules). If the module is already installed, installation will not take place. Otherwise, a 

series of commands will be run, some of which are used for potential error reporting. The 

current directory is changed to the location where the libraries will be installed and the 

date and current directory are sent to stdout.log. All external commands are run by calling 

Perl’s system function using an array constructed specifically for each command. The 

commands are:  

1) my $makeClean = qq(make clean 2>> ./stderr.log 1>> ./stdout.log); 

2) my $createMakefile = qq(perl Makefile.PL LIB="./installeddir/" PREFIX="./extras/" 

2>> ./stderr.log 1>> ./stdout.log); 

3) my $makeCommand = qq(make 2>> ./stderr.log 1>> ./stdout.log); 

4) my $makeInstall = qq(make install 2>> ./stderr.log 1>> ./stdout.log); 

Command number 2 specifies LIB and PREFIX options to allow local installation 

without the need for root access. Each command is executed using system. System error 

codes are trapped and examined. If an error occurs in any of these steps, execution stops 

and error code 100 is sent to the Workbench, indicating a problem with installation. 

3.2.1.3 Pipeline-Initial-Scan.pl 

A parameters file created by Java code is examined to determine the location of 

appropriate FASTA files containing the reference genome, as well as the location of 

donor and acceptor information weight matrices. Chromosomes are examined one at a 

time. Before variants on a chromosome can be examined, the appropriate FASTA file is 

parsed into an efficient state machine using a C library. Donor and acceptor information 

weight matrices are also parsed. Each variant is examined using C libraries to determine 

its Ri before and after the contribution of a specific variant. The following information is 

written to a file for each variant: 1) chromosome, 2) variant unique ID, 3) splice site 
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coordinate, 4) Ri before variant contribution, 5) Ri after variant contribution, 6) donor or 

acceptor site, 7) strand, 8) variant coordinate, 9) variant (e.g., G/T). The process is 

repeated for all chromosomes. 

3.2.1.4 WriteTracksAndFindIfWithinGene.pm 

In addition to plot and tabular output, BED tracks are also generated by the pipeline. The 

tracks contain ΔRi for each variant and can be viewed in a genome browser. The module 

reads the file generated by Pipeline-Initial-Scan.pl line by line. Hash tables are created 

which allow constant time searches named donorpos (positive strand, donor), donorneg, 

accpos, and accneg. Each variant is sent to a generalized function which accepts the 

appropriate hash, file handle to write to (appropriate track), chromosome number, and 

variant ΔRi. This function simultaneously appends to the appropriate track file as well as 

adding each variant to the appropriate hash.  

Ensembl Gene 66 is examined along with the list of variants. If a variant is found within 

transcript start and end coordinates, then it is within a gene. Variants meeting that 

requirement are added to an array which is returned by reference to MainControl.pl. 

Variants not found to be within an exon are not annotated further.  

3.2.1.5 AnnotateNaturalSites.pm 

This module determines if there is a nearby natural site close to the variant. The array of 

variants found to be within an exon by WriteTracksAndFindIfWithinGene.pm are 

examined along with natural site coordinates found in Ensembl Gene 66. Hash tables are 

built containing the locations of donor and acceptor natural sites on both strands. If a 

variant is found to affect a known natural site the variant is annotated as a natural site. 

Otherwise it is annotated as a cryptic site. The array is returned to the main Perl script for 

further annotation. 

3.2.1.6 AnnotateExons.pm 

Each variant within a cryptic site is examined to determine if there is a natural site 

nearby. The presence of a natural site allows the cryptic and natural site to be directly 

compared to one another. It can be determined if the cryptic site flanks the 3′ or 5′ end of 
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the exon and Ri values of the cryptic and natural site can be compared after the 

contribution of the cryptic variant is observed. The range to check for a nearby natural 

site is determined by a field in the parameters file created using Java code. Currently, this 

value is 300. Thus, a range of up to 300 bp around the cryptic site is examined and 

compared with natural sites from Ensembl Gene 66. Variants near a natural site are 

annotated 3′ or 5′ flanking and returned. 

3.2.1.7 GetStrengthsOfNearestNaturalSites.pm 

Nearby natural sites potentially found in AnnotateExons.pm are compared with the 

appropriate variant cryptic site to determine which site has the higher Ri value. If the 

nearby natural site has the higher Ri, the variant is annotated as greater. Otherwise the 

variant is annotated as less. If a variant does not have a nearby natural site within 300bp, 

a ‘-‘ is annotated to the variant as a placeholder. The resulting variants are returned for 

further annotation. 

3.2.1.8 AnnotateKnownVariants.pm 

It must be determined if a variant has been previously documented in dbSNP or if it is a 

novel variant. The array returned from the previous module is used to generate a hash 

containing the chromosome, coordinate, variant, and unique ID of each variant. Each 

entry in dbSNP is examined and compared to the hash. If there is a match at the same 

chromosome, coordinate, and variant then the variant is annotated with the appropriate 

rsID. This task is made more difficult as each coordinate in dbSNP can have multiple 

variants. Additionally, dbSNP reports variants as if they were located on the positive 

strand. Thus, if the strand is ‘-‘, the reverse complement of the variant must be compared 

to the dbSNP entry. Again, if no rsID is found, a ‘-‘ is annotated as a placeholder. There 

is no more annotation to perform at this point. The array is returned to the main script and 

written to a file which will be imported by Java code to be viewed in the CLC-Bio 

Workbench. 
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3.2.1.9 FilterOutputData.pl 

The user may request that output contain variants on only the positive strand, negative 

strand, or both. Additionally, the user may request that only donor sites, acceptor sites, 

cryptic sites, or natural sites be displayed. This script accesses those preferences as 

command-line arguments and eliminates variants matching the request criteria from the 

file to be imported to the Workbench.  

3.3 CLC-Bio integration 

The CLC-Bio Genomics Workbench is a commercial workspace for genomics research 

(www.clcbio.com). Files are not generally used in this workspace, instead files are 

imported as ClcObjects (objects). These objects represent specific biological data and are 

associated with appropriate editors, viewers, and other object types. The Workbench is 

also a host to third-party applications (plugins) generally implemented using pure Java. 

As the Shannon pipeline was coded in C and Perl, a Java-based connection to the CLC 

environment was required. Additionally, as run-time is a paramount concern for the 

pipeline given the number of variants it examines simultaneously, the existing C libraries 

could not be converted to Java while maintaining necessary execution speed. Thus, I 

designed the Java code not only to communicate with the CLC-Bio Workbench, but also 

with the Perl and C code on the command-line. 

3.3.1 Java classes 

The CLC-Bio application programming interface (API) contains classes which smooth 

integration of Java code with their system and provide additional bioinformatics-related 

functionality. I developed a total of 16 classes in Java (Table 1) to provide functionality 

including object importers, a wizard to allow users to input pipeline preferences, help 

screens, a bridge between Java and command-line code, and additional miscellaneous 

classes. Some classes are very short and required very little modification from example 

code provided on the CLC-Bio developer’s website (connection.clcdeveloper.com). 

These classes will not be described as they are straightforward to code and are necessary 

for all plugins.    
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3.3.1.1 Importing variant data  

VCF is the standard format used by researchers and industry to store variants. It was 

necessary that I develop a Java class to import VCF files into a format compatible with 

the CLC-Bio Workbench. To reduce the degree to which error handling within the 

command-line portion of the plugin is required, checks are performed during the import 

process to ensure proper variant formatting. Although VCF files can contain a great deal 

of data for each variant, the Shannon pipeline requires only 5 fields of ≥ 9 potential fields 

in VCF. These fields are: 1) the chromosome within which the variant is located 

(CHROM), 2) genomic coordinates of the variant (POS), 3) a unique variant identifier 

(ID), 4) the reference nucleotide at the genomic coordinates specified (REF), and 5) the 

nucleotide observed at that position as a result of variation (ALT). VCF files are read 

entirely into memory and examined line by line (one variant on each line) to ensure 

proper formatting. First, the CHROM column is examined to ensure the chromosome 

specified is a valid chromosome. Valid chromosomes include {1…22,X,Y, human 

alternate locus/patch information for GRCh37.p11}. Preceding letters such as “Chr”, 

“chr”, or “ch” are removed and if the remaining chromosome field matches a valid 

chromosome, CHROM is valid. Genomic coordinate must be an integer within valid 

chromosome lengths for the chromosome specified. In several instances, hg18 

chromosomes are longer than their hg19 counterparts. The Shannon pipeline accepts data 

using either hg18 or hg19 coordinates, however at the time of import the genome build is 

unknown. Therefore, a valid genomics coordinate is defined as 0 ≤ valid coordinate ≤ 

max(hg18 chromosome length, hg19 chromosome length). The ID column does not have 

to be examined as any input is valid. However, to ensure it is a unique identifier “-#” is 

appended to each variant ID, where # is the line number of the VCF file. The REF field 

must contain a single valid nucleotide. Multiple REF nucleotides imply an indel, the 

contribution of which the Shannon pipeline cannot currently predict. Multiple ALT 

nucleotides split the variant into multiple separate variants with single REF and ALT 

nucleotides. Valid variants are stored in a tabular format object in the CLC-Bio 

Workbench environment named “[name of VCF file][timestamp]”. Those variants which 

fail any of these formatting requirements are stored in an object “[name of VCF 

file]_InvalidVariants” with appropriate error messages appended to each variant.  
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Table 1. Shannon pipeline Java class list and brief descriptions 

Class name Package 
Significant 

modification 
required 

Brief description 

LaunchPipelineAlgo Base  
Executes Shannon pipeline command-
line code and imports results. 

LaunchPipelineParameters Base  
Allows wizard parameters to be 
accessed by LaunchPipelineAlgo 

VCFImport Base  Imports VCF files as GeneralClcTabular 

PlotImportDeltaRi Base  
Imports Shannon pipeline results and 
creates ΔRi plot objects. 

PlotImportFinalRi Base  
Imports Shannon pipeline results and 
creates Ri plot objects 

PipelineOutputClcTabularImport Base  
Imports Shannon pipeline command-line 
results as GeneralClcTabular 

VariantClcTabularImport Base  
Imports variants in ‘Shannon Basic 
Format’ as GeneralClcTabular 

CommandLineExecutor Base  
Creates and executes a command-line 
process  

InitClient Client  
Creates a folder in the Workbench 
containing sample imported variants 

LaunchPipelineRemoteAlgoAction Client  
Creates instance of LaunchPipelineAlgo 
and launches preferences wizard 

LaunchPipelineView Client  
Creates layout of wizard screen three 
and sends user preferences to 
LaunchPipelineParameters  

PipelineActionGroup Client  
Specify Shannon pipeline icon and add 
Shannon pipeline launcher to the 
Workbench toolbox  

LaunchPipelineCommand Server 
 

Creates instance of LaunchPipelineAlgo 
to run on server machine 
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A second import class I developed which imports variants in the format [chromosome #] 

[unique identifier] [coordinate] [reference/variant] will not be described in detail. All 

formatting checks use the same methods as described in the VCF import class. This class 

was devised primarily for testing in the early stages of pipeline development. 

3.3.1.2 Manhattan-style plot importer 

Visual representations of data allow overall trends to be observed and individual outliers 

to be easily identified. CLC-Bio’s API provides a class for this purpose named 

MAScatterPlot. My task was to prepare Shannon pipeline data for visualization as well as 

create plots using MAScatterPlot. It is required that data points are sorted before plot 

creation. I implemented a Quicksort algorithm to accomplish the sort. After sorting, data 

are separated into an array representing the X axis of the plot and an array representing 

the Y axis. MAScatterPlot allows tooltips to be displayed upon hovering the mouse 

pointer over a data point. Tooltips contents include chromosome, coordinate, ΔRi, Ri after 

variant contribution, and rsID (if available). Separate plots are created to visualize both 

ΔRi and final Ri for each chromosome {1..22,X,Y} as well as a genome-wide plot. Thus, 

if variants are present on all chromosomes a total of 50 plots are generated.  

3.3.1.3 Tabular results importer 

All Shannon pipeline results are imported and displayed in tabular format. Results 

generated during command-line execution are recorded in a tab delimited file. The 

tabular import class functions similarly to the variant importer. The Shannon pipeline 

results file is read into memory and examined line by line and data are reordered and 

formatted. Column headers are named as well as the resulting tables. 

Variants are split into four separate tables. ‘Complete Variant Information’ contains all 

variants. ‘Inactivating Variant Information’ and ‘Leaky Variant Information’ contain 

variants predicted to be inactivating or leaky respectively. ‘Cryptic Variant Information’ 

contains all variants located within cryptic splice sites. Column headers in Inactivating 

Variant Information and Leaky Variant Information tables are Chromosome, Coordinate 

(of splice site), Strand, Ri-initial, Ri-final, ΔRi, Type (donor or acceptor), Gene Name, 

Location (natural site or cryptic site), Input Coodinate (of variant), Input Variant, and 
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Input ID (unique variant ID). There are additional column headers in the Complete 

Variant Information and Cryptic Variant Information tables which are Location Type 

(intronic or exonic), Loc. Rel. to Exon (cryptic site is 5′-flanking or 3′-flanking compared 

to the nearest exon), Dist. From nearest nat. site, Loc. of nearest nat. site (coordinate of 

nearest natural site), Ri of Nearest Nat. Site, Cryptic Ri relative to nat. (greater or less), 

rsID if Available, and Average Heterozygosity (if rsID is available).  

Columns containing real numbers are rounded to two decimal places. Strand is 

represented as ‘0’ or ‘1’ in Shannon pipeline results and is converted to ‘+’ or ‘-‘ 

respectively. Some columns may have fields which contain no data such as Loc. Rel. to 

Exon if a nearby natural site is not found. In these cases the entry is filled with a null 

value to allow automatic sorting. By default, ClcGeneralTabular sorts columns when the 

header is clicked. To function intuitively, columns must contain only a single type of data 

or null values. If more than one type of data are present, sorting will default to 

lexicographical order. 

3.3.1.4 User preferences 

I created a wizard built upon CLC-Bio’s class ClcWizardStepView. The first screen of 

the wizard is created entirely by CLC-Bio and determines whether the Shannon pipeline 

should run on a client (local computer), server, or grid system. The second and fourth 

screens through which the user selects the location of Shannon pipeline input and where 

to save Shannon pipeline results are also generated by CLC-Bio. I have restricted the 

object types which may be used as Shannon pipeline input to GeneralClcTabular objects. 

This object type is generated by the import classes discussed in 3.3.1.1.  

I created the third wizard screen (Figure 3) using Java Swing. A JComboBox allows the 

user to indicate which genome build is appropriate. Variants are represented in hg18 or 

hg19 coordinates. Four groups of three JRadioButtons are used to determine the 

following: 1) In the types frame, donor, acceptors, or both may be displayed to the user 

after pipeline execution. 2) cryptic sites, donor sites, or both types of sites may be 

displayed. 3) In the ‘Output Format’ frame, the user can opt to create delta Ri plots, final 

Ri plots, or both. 4) The user can opt to view output containing one or both strands. By 
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default, the selections made are hg19, show donors and acceptors, show cryptic and 

natural sites, show both types of plots, and show both strands. Choices made at this step 

are recorded using the class LaunchPipelineParameters which extends CLC-Bio’s class 

AlgoParametersInterpreter. I tailored functions in the class to accept the specific choices 

users are offered. This class allows parameters to be accessed by the LaunchPipelineAlgo 

class (discussed in 3.3.1.6). 

3.3.1.5 Ensembl, and dbSNP, and human genome distributions 

Four large databases are required for variant annotation and Ri prediction. Ensembl Gene 

66 contains information needed for gene annotation. The Single Nucleotide 

Polymorphism Database 130/135 (dbSNP) is used to determine if a variant is novel. Two 

full reference genomes (hg18, hg19) in FASTA format are also required to examine 

variants on each respective genome build.  

As CLC-Bio requires that a plugin can run with no internet connection, it was necessary 

to package the databases for release. In the initial stages of plugin development I 

attempted to package the necessary databases along with the plugin itself. However, this 

would have made updating the plugin difficult and would result in very large downloads 

for users every update. It was decided – with input from CLC-Bio – to instead package 

the databases in separate plugins. By employing this method, database plugins can be 

downloaded once by the user and any subsequent updates to the main plugin can be 

downloaded separately. This solution also lends itself to future updates of the reference 

genome versions and associated annotations, and the development of applications that 

enable mutation analysis in non-human genomes.   

I created two additional plugins containing these databases. The first plugin contains 

hg18 FASTA files, dbSNP 130, and Ensembl Gene 66 (a ‘lift-over’ was performed to 

transform genomic coordinates to hg18). A second plugin was created which contains 

hg19 FASTA files, dbSNP 135, and Ensembl Gene 66. During execution of the main 

plugin, a check is performed that confirms the required database plugin is also installed. 

If the plugin has not been installed, main execution will halt and a message will be  
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Figure 3. Shannon pipeline genome build, filtering, and display options. 

This is a screenshot of the third wizard screen after selecting ‘Launch Pipeline’. By 

default, the displayed choices are selected. Genome build may be hg18 or hg19. In the 

types frame, donor, acceptors, or both may be displayed to the user after pipeline 

execution. Similarly, cryptic sites, donor sites, or both types of sites may be displayed. In 

the ‘Output Format’ frame, the user can opt to view delta Ri plots, final Ri plots, or both. 

The user can opt to view tabular and plot output containing one or both strands. 
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displayed to the user (and in the error log), informing them that the appropriate database 

plugin must be installed. 

3.3.1.6 LaunchPipelineAlgo class and the command-line 

Development of this class required the creation of Perl code as well. Specifics of the 

necessary Perl scripts can be found in 3.2.1.1 and 3.2.1.2. The overall workflow of a 

Shannon pipeline execution from the Workbench is as follows: 1) Variants are imported 

using importer classes described in 3.3.1.1. 2) The user selects preferences using a wizard 

which are recorded using the LaunchPipelineParameters class and LaunchPipelineAlgo 

reads these parameters. 3) Perl and C code is automatically installed if necessary. 4) A 

parameters file is created and the command-line portion of the Shannon pipeline is 

executed taking these preferences into account. 5) Shannon pipeline results are imported. 

6) Imported Shannon pipeline results (objects) can be viewed in standard CLC-Bio 

editors. The class LaunchPipelineAlgo is involved in steps 2-5.  

Shannon pipeline C libraries must be installed before execution. Previously, a collection 

of Perl wrappers were designed to allow Perl code to make use of the C libraries. As a 

result of this interconnectivity, releasing compiled code would require separate 

distributions not only for different architectures (Linux 64bit, Linux 32bit, etc.) but also 

for different versions of Perl. Additionally, Perl Makefiles produce different executables 

based on whether the Perl installation used to created them is ‘threaded’ or ‘non-

threaded’. Based on this variability, the choice was made to compile the code 

automatically on each machine. I created a Perl script that checks to see if libraries have 

been previously installed, and if not, creates a Perl Makefile and runs ‘make’ and ‘make 

install’ to install them. Additionally, standard output and standard error streams are 

redirected to files that can be viewed from the CLC-Bio Workbench in the case of error. 

LaunchPipelineAlgo executes this Perl script and waits to receive its return code. If the 

installation was unsuccessful, a non-zero code is returned. In particular, error code 100 is 

returned in the case of an unsuccessful installation. In this case, execution halts and “C 

library installation unsuccessful” is appended to the Shannon pipeline execution log. The 

libraries may have to be installed manually in this case. Otherwise, if the libraries are 

already installed or were installed successfully, execution continues. Library installation 
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has been tested on the following system configurations: Perl 5.8.8, 5.10.1, 5.12.3, 5.14.2, 

GCC 4.1.2, 4.2.1, 4.4.3, 4.6.3, Ubuntu 2.6.32, CentOS 2.6.18, Fedora 3.1.0-7, Mac OS X 

(Lion) 10.7.4. 

A parameters file is created which can be accessed by the command-line portion of the 

Shannon pipeline. This file contains both user preferences and hard-coded settings for the 

pipeline. These parameters include the human genome version, Ensembl version, dbSNP 

version, distance from a modified cryptic site to attempt to locate a natural site, maximum 

distance a cryptic site can be from a natural site to display comparisons between them, 

the locations of Ensembl Gene 66, dbSNP 130/135, hg18, hg19, and splice site 

information weight matrices. The parameters file is placed in the directory containing 

command-line Shannon pipeline code. 

After Shannon pipeline results are generated by the command-line code, results must be 

imported. Previously described tabular and plot import classes are invoked to accomplish 

this task. Standard output and standard error files are imported simply as ClcStrings. If 

any import is unsuccessful, execution will continue but a note will be made in the log 

describing the nature of the failure.  

3.3.1.7 Help documentation 

I implemented a series of help screens using JavaHelp. Help is accessed through a 

question mark on the bottom left of the preferences wizard (can be seen in Figure 3). An 

electronic version of help screens can be found online at 

http://www.clcbio.com/files/usermanuals/shannon_pipeline.pdf. Help sections include 

Quick Start, Tables, Plots, Tracks, FAQ, and requirements. In the online version, an 

additional section describing plugin installation is included. 

3.3.1.8 Client-Server architecture and distributions 

As documented in Table 1, three packages of Java classes form the basis of the client-

server architecture of the Shannon pipeline. The base package is shared by both the client 

and server packages. This style avoids code duplication across client and server packages. 

Client and server distributions are created using Apache Ant (Ant). The client distribution 
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can be built in two different formats. The first format contains Perl and C command-line 

based code while it is removed in the other format. This results in a one client distribution 

which can be run independently from a server (standalone) and one which serves only as 

a front end for the server distribution (dependent). The dependent distribution is 

beneficial for those users running a client computer which does not meet the 

requirements to run the Shannon pipeline. The standalone distribution offers greater 

flexibility and allows pipeline execution on either the client or server machines.  

I encountered several hurdles while attempting to create a standalone distribution. First, 

CLC-Bio requires that only one copy of the program can be executed at a time for each 

license a user has obtained. The Workbench has built-in functionality which disallows 

multiple executions of the same plugin on either the workbench or server. However, this 

functionality does not prevent a user from running the Shannon pipeline on their client 

machine and a server machine at the same time. To prevent this, I added code within 

LaunchPipelineAlgo which checks if the Shannon pipeline is already being executed on 

the client or server machines. If the pipeline is being executed in one location, submitting 

a job to the other is disallowed and an error message is displayed to the user.  

Distributions created through Ant are sent to CLC-Bio where they are encoded and 

posted on their website and within the Workbench plugin section for download. C files 

are encrypted independently from CLC-Bio using openssl. Upon a signal from 

LaunchPipelineAlgo, if C libraries are not already installed they are decrypted, compiled, 

and the source is deleted. To use the Shannon pipeline, a user must enter a license key 

provided by CLC-Bio. In total, 5 distributions currently exist for download: 1) Shannon 

pipeline server 2) Shannon pipeline client (standalone) 3) Shannon pipeline client 

(dependent) 4) hg18 databases 5) hg19 databases. Uninstallation is accomplished through 

the plugin widget in the Workbench. In the case of hg18 and hg19 database plugins, 

databases are deleted upon uninstallation.  

Early Shannon pipeline implementations did not run on Mac OS X. I made several minor 

modifications to support Mac execution. First, many OS X directories contain spaces. I 

updated the CommandLineExecutor class to submit command-line processes correctly if 
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spaces are present by submitting the command as an array. Doing this specifies where 

spaces in the command are by placing space delimited elements into the array. Spaces 

present in any single element of the array are automatically escaped properly. Secondly, 

most OS X distributions do not include GCC by default. GCC is required to compile the 

C libraries. Users must manually download either Xcode or other software containing 

GCC to be able to compile the libraries. This requirement is specified in the Shannon 

pipeline documentation. 

3.4 Performance of the Shannon pipeline software 

The unique identifier present in both the VCF or tab-delimited format serves several 

purposes. Input data may be stored in a hash allowing efficient annotation of individual 

variants or those originating from multiple exome or genome sequences. Given the 

minimum overhead from chromosome processing incurred to process each individual 

chromosome present in the input data (~1 hour if all chromosomes present in input file). 

This startup time is based largely on the annotation process. Unique identifiers allow 

input to be combined, thus reducing total run-time and required user interaction.  

To assess performance, all point mutations detected in the complete genomes of the three 

cancer cell lines were analyzed using the pipeline. Variants in the cell lines U2OS 

(osteosarcoma-derived), A431 (epidermoid squamous carcinoma-derived) and U251 

(glioblastoma-derived) were examined and filtered to create tractable sets of variants. 

Predicted splice-altering mutations not found in dbSNP135 (a list of ~54 million known 

nucleotide polymorphisms) and those with less than 1% average heterozygosity are 

reported (Appendix A).  

The Shannon pipeline processes SNVs to identify and annotate splicing mutations with 

sufficient speed to analyze single or multiple genomes within a few hours. Analysis of all 

single nucleotide substitutions detected in the genome of the U2OS cell line (211,049 

variants) is completed in 1 hour 12 minutes on an I7-based CPU in either Linux or Mac 

OS X (Table 2). The speed analysis is dependent on the number of chromosomes 

represented in the input data. The state machine facilitates the analysis of all variants on a 

single chromosome with the highest efficiency because genomic data for each 
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chromosome must be read and parsed. A complete analysis of 300 variants on a single 

small chromosome (e.g., chromosome 22) can be completed in 5 minutes. Variants 

distributed throughout all chromosomes require at least one hour to process. The Shannon 

pipeline should be executed on a machine with sufficient RAM to store the largest human 

chromosomes in memory with each base requiring 17 bytes of memory (≥ 4 gigabytes). 

When all chromosomes are represented, increasing the number of mutations results in an 

approximately linear increase in actual computation time, after accounting for the 

overhead required for memory management of genome sequences and annotations. For 

example, 2 hours 35 minutes is required to analyse 1,872,893 sequence variants from the 

most recent data release on the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/). 

Increased speed comes at the expense of diminished ability to analyze complex mutations 

on the fly, such as insertions and deletions or multinucleotide substitutions. Such 

variation is significantly less common than SNPs in wildtype genome and exome 

sequences 
38

, but nevertheless can have consequences on gene function and phenotype. 

The ASSA server is capable of analyzing these categories of mutations; however it is 

considerably slower than the Shannon pipeline (30s per variant). In the future, the 

Shannon pipeline will be integrated with the ASSA server to examine complex variants 

seamlessly. 

 

  

http://evs.gs.washington.edu/EVS/
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Table 2. Performance of Shannon Pipeline for mRNA splicing mutation prediction 

Source of variants Number of variants analyzed Running time* 

U2OS cell line 211,049 1h 12m 

A431 cell line 290,589 1h 17m 

U251 cell line 314,637 1h 20m 

ESP 6500 Exomes 1,872,893 2h 35m 

Note *Intel I7 CPU with 16 Gb RAM 
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4 Shannon pipeline - Results 

4.1 Stratification of variants 

Similar to ASSA, the pipeline analysis produces summary tables for different types of 

mutations (assuming each type is represented): 1) complete sets of all splicing variants, 2) 

mutations predicted to inactivate splice sites, 3) leaky splicing mutations that reduce but 

do not abolish splicing and 4) cryptic splice sites that are either activated, inactivated or 

reduced in strength. Inactivating variants are defined as those that reduce the Ri of the 

affected binding site below 1.6 bits 
35

. Binding sites containing a leaky variant are 

defined as those, in which initial Ri is decreased upon mutation to Ri > 1.6. Finally, 

candidate cryptic sites encompass all sites with higher affinity for binding than a 

corresponding natural site based on comparison of their respective Ri values. Tabular data 

can be sorted by clicking the column header of each column. Data can be exported and 

viewed without modification in a spreadsheet program using CLC-Bio’s built in export 

functionality. 

The 5′ end of the first exon and the 3′ end of the last exon of a gene are not splice sites. 

They instead form the boundary of the gene. Therefore, the Shannon pipeline does not 

report mutations that affect their ∆Ri at these positions; the exception being genes that 

encode alternate splice forms using further upstream/downstream exons present in 

Ensembl 66. Variants which alter the strength of cryptic splice sites within the first and 

last exons are also considered. Use of a strengthened cryptic donor in the first exon or 

acceptor in the last exon could lead to a truncated exon. The Shannon pipeline considers 

the exonic cryptic sites of the opposite polarity (acceptors in first exons and donors for 

last exons), as their activation could potentially - but rarely - lead to the formation of a 

cryptic intron within these exons if a second pre-existing cryptic site of opposite polarity 

is present in the proper orientation.  

Although Shannon pipeline output contains a vastly reduced number of potentially 

significant variants, further manual filtering is necessary to obtain the final set of 

functionally relevant sites. Pipeline output is generated for all variants that result in ∆Ri > 
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±1 bit. One bit corresponds to an approximately 2 fold difference in binding affinity, 

which is the limit of detection of fold change by quantitative real-time polymerase chain 

reaction (qPCR)  
39

. The user then filters out those variants least likely to be functionally 

relevant. For example, a natural site that has experienced an increase in information 

content will generally not be of interest. The increase will likely only serve to widen the 

existing gap in Ri between the natural and nearby cryptic sites. Thus, it is recommended 

those natural sites with positive ∆Ri values as well as cryptic sites with reductions in Ri 

value be removed. Pipeline generated annotations that are found in the tabular output help 

simplify the data filtering process. As discussed, tabular results are displayed in separate 

tables used to distinguish natural and cryptic splicing mutations. Recommended filters 

used for cryptic splicing mutations are based on criteria given in 
34

 (a) ∆Ri > 0, (b) cryptic 

site is located within an exon or within an intron less than 300 bp from nearest natural 

site, (c) cryptic splice site Ri value exceeds the strength of the nearest natural site Ri of the 

same type and (d) intronic cryptic splice sites are selected 5′ to the exon if acceptors and 

3′ to the exon, if donors. All reported variants are further categorized according to 

whether they had been previously reported or were novel by the Shannon pipeline. In 

Table 3, only novel and known variants < 1% average heterozygosity in dbSNP are 

reported. Variants < 1% average heterozygosity are more likely to be functionally 

significant due to selection (deleterious variants are selected against). Nevertheless, any 

threshold for filtering based on heterozygosity can be used by the user. 

 

Filtering of cryptic splice sites exceeding the strength of and close to adjacent natural 

sites of the same phase eliminates many predicted unused cryptic sites with changes in Ri 

values. Finally, it is recommended that genes lacking HUGO-approved names or 

encoding non-coding RNAs, and pseudogenes should be filtered out. The manual 

filtering process (especially of cryptic splicing mutations) significantly enriches for likely 

mutations in the genomes of these cancer cell lines by the order of 10,000 fold. 
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Table 3. Enrichment for predicted splicing mutations after processing and filtering 

Note *dbSNP135; <1% heterozygosity; minor allele 

  

Cell 

line  

Initial variants 

analyzed  

Novel 

Natural site  

Novel 

Cryptic site  

Natural site 

(SNP)*  

Cryptic site 

(SNP)* 

Overall 

Mutation 

fraction  

A431  290,589  16  13  13  3  0.015%  

U251  314,637  7 10 18  3 0.012%  

U2OS  211,049  22 9 13 4  0.022%  

Total  816,275  45 32 44  10  0.016%  
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4.2 Displaying results 

Ri and final Ri values are plotted by chromosome location, similar to Manhattan-style 

representations, for either individual chromosomes or entire genomes. Hovering the 

cursor over data points generates tooltips containing information needed to find the 

complete entry within the corresponding tabular data. To locate interesting data points, a 

zoom function allows closer inspection of the plot. This visualization allows patterns to 

be observed and data points which stand out to be easily located and inspected more 

closely in tabular format or on the ASSA server.  

Chromosome-specific, custom browser tracks indicating ∆Ri values in BED format are 

also generated. This enables visualization of predicted mutations in the context of other 

genome annotations, for example, mapped reads from RNA-seq, spliced expressed 

sequence tags (ESTs) and known mRNAs. Figure 4 depicts three methods of displaying 

Shannon pipeline results.  

4.3 Validation with RNA-seq expression data 

RNA-seq analysis using published data from these cell lines 
40

 was used to compare 

Shannon pipeline results with expression data. TopHat 
41

 was executed with the 

following command-line options: -g 5 --solexa1.3-quals -p 8, and examined with the 

Integrative Genomics viewer (IGV) 
42

 to interrogate predictions made with the Shannon 

pipeline. 

Several variants detected in genomes of U2OS, U251 and A431, which were predicted to 

affect splicing, were compared to the distribution of RNA-seq reads in their respective 

regions of the transcriptome. When interpreting these data, it is assumed that predicted 

mutations are present in a genetic background, in which the other parentally derived 

allele lacks the same variant (i.e., heterozygous). Abnormal reads or exon skipping of the 

mutant allele is viewed in the context of a single allele and expected normal splicing of 

the corresponding exon. For mutations that are predicted to inactivate a splice site, it is 

assumed that a binomial distribution in the number of expected reads is present, based on 
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Figure 4. Twelve DNA sequences and their corresponding information changes. 

The Shannon pipeline software generates the following types of output. A. Tabular 

results showing the first 12 of 134 changes in Ri values at different genomic coordinates 

predicted to be significant, after filtering for cryptic splicing mutations from all variants 

(n=22,197) in a complete genome sequence. The first filter eliminates exonic cryptic 

sites, the second selects cryptic sites with increased Ri values, the third ensures that the 

cryptic site is stronger than the corresponding natural site of the same phase and the final 

filter ensures that all remaining sites exceed the minimum Ri value of a functional splice 

site. B. Manhattan-like plot indicating the locations and changes in Ri of all variants 

which alter splice site information in a region within intron 1 of BRCA1 

(chr17:41277500-41288500) from different individuals with increased breast cancer risk. 

C. Custom track illustrating a cryptic splicing mutation detected in an ovarian serous 

carcinoma that inactivates the acceptor site of exon 4 in STXBP4, resulting in the 

activation a pre-existing, in frame, alternative splice site 6 nucleotides downstream.  
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the wild type allele. Natural splice site mutations are expected to significantly reduce the 

number of splice junction-spanning reads in relative to those in the adjacent exons, 

consistent with exon skipping. In some cases, intron inclusion adjacent to a splice site 

variant with lower Ri value may also be evidence of a splicing mutation. In U2OS, 10 of 

13 novel inactivating variants found in mutated natural splice sites met these criteria, 

along with an additional 2 probable mutations (Appendix A, Table S1). The same criteria 

were met by 2 of 4 (with 1 additional probable) novel inactivating variants in U251 

(Appendix A, Table S2), and 4 of 7 (with 1 additional probable) variants in A431 

(Appendix A, Table S3).  

Shannon pipeline predictions were supported by expression data for 1 of 7 activated 

cryptic site variants in U2OS, 1 of 14 variants in A431 and 0 of 10 in U251. Many of the 

predicted splice sites reside in intronic regions or alternative exons that map far upstream 

or downstream of constitutively expressed exons. They are unlikely to displace 

constitutive isoforms, since donor site recognition is processive 
43

 and the increased 

lengths of such cryptic exons would probably be suboptimal 
44

. Often, these sites are 

associated with rare, alternatively spliced ESTs expressed in other tissues than these cell 

lines. Because these variants are often extra-exonic, changes in expression must be 

inferred indirectly from decreased read count, intron inclusion or increased exon 

skipping. Changes in reading frame from inclusion of out-of-phase intronic sequences 

may induce nonsense-mediated decay (NMD). Reads mapping to adjacent introns are 

expected to be reduced in number as a result of NMD. Sequencing reads that are 

concentrated in the intronic region adjacent to exon of interest are considered support for 

predicted mutations. NMD may also affect transcript read counts associated with severe 

leaky or inactivated natural donor sites, which produce exon skipping with frame-

shifting. Several predicted splicing mutations confirmed by RNA-seq are well-known 

driver mutations that contribute to tumor phenotypes.  

Interesting results include a unique natural donor site mutation within RBBP8 

(NM_203291.1:c.248G>A or chr18:20529676G>A; 6.2  3.2 bits [indicating the change 

in the Ri value of the donor site, before and after it is mutated]) in A431, a tumour 

suppressor gene mutated in numerous neoplasias with a role in endonucleolytic 
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processing of a covalent topoisomerase-DNA complexes. The mutation weakens but does 

not abolish the natural donor site from 6.2 to 3.2 bits. A cryptic mRNA splice form using 

a pre-existing donor site 24bp downstream to the weakened natural site is confirmed by 

RNA-seq (Figure 5A). The ASSA server predicts the activation of this intronic cryptic 

donor site, as well as a second site of equal strength further downstream to the mutated 

donor site (Figure 5B). There are a total of 56 reads that both encroach into the intron 

and overlap this variant. Forty-one of these cover the cryptic exon splice junction of 

interest (the aligned reads stop at the 3.2 bit cryptic site, which is 24 nt downstream of the 

natural site, and continue into the next natural exon). Thirty-one junction spanning reads 

also contain the A-allele. There are an additional 23 reads that cross into the intron, but 

do not extend as far as the cryptic site of interest. In 19 cases, these reads contain the A-

allele. The remaining 4 intron-crossing reads which contain the G-allele appear to be 

misaligned, as they contain short matches (≤ 3 nt) to the downstream exon. There are an 

additional 2 reads that span the junction between the downstream cryptic exon junction 

and the adjacent exon (31 nt downstream; also 3.2 bits). Finally, 12 reads are correctly 

spliced and contain the mutant A-allele, suggesting that the natural site is not completely 

inactivated by this nucleotide substitution, which is consistent with leaky splicing. 

Changes in expression are also noted in other genes. DDX11 is inactivated in U2OS 

(chr12:31242087T>G; 6.89  11.73 bits). DDX11 is a component of the cohesin 

complex which has a crucial role in chromosome segregation, and is essential for survival 

of advanced melanoma 
45

. In U2OS, WWOX, a tumor suppressor gene in osteosarcoma 
46

, 

contains a leaky mutation (chr16:78312497C>A; 10.24  6.67 bits). Both alleles of 

APIP, an apoptosis associated gene, are inactivated in U251 (chr11:34905054G>C; 9.32 

 0.54 bits). Gene expression of APIP is down regulated in non-small cell lung 

carcinoma 
47

. Amplification of METTL2B, which harbors a leaky mutation in U251 

(chr7:128117227G>A; 5.48  2.47 bits), has been demonstrated in several cancers, 

including glioblastoma 
48

. In A431, leaky mutations are also confirmed in the 

glioblastoma-initiating gene TRRAP (chr7:98533187T>G; 9.09  7.16 bits; 
49

) and 

USF1 (chr1:161013165G>T; 4.89  3.59 bits), which encodes a transcription regulator 

important for TGFβ2 expression in glioblastoma 
50

. SYNE2, which is mutated in a  



39 

 

 

 

Figure 5. Predicted mutation splicing phenotype supported by RNA-seq   

Predicted RBBP8 splicing mutation, chr18:20529676G>A (NM_203291.1: c.248G>A), is related 

to transcripts mapped to this region. A. IVG genome browser display of read distribution at the 

exon 4/intron 4 junction. Green boxes within the vertical hashed lines indicate the presence of the 

A allele. B. The natural and cryptic splice sites illustrated by sequence walkers generated on the 

ASSA server. The arrow tail and head draw attention to the location and sequence of the 

reference and variant sequence. The mutation reduces the strength of the natural donor site from 

6.2 to 3.2 bits. All but 3 of the 59 reads extending into the intron contain the variant allele, as 

indicated by the green positions within the reads. These reads extend into the exon and terminate 

at the closest intronic cryptic donor site (chr18:20529700). The mutated natural and cryptic sites 

are of equal strength, which explains splicing at both sites.   
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significant percentage of head and neck squamous cell carcinomas 
51

, contains an 

inactivating splice site variant in A431 (chr14:64669514T>A; 1.89  0.83 bits). 

RRM2B, an inducible DNA repair gene that has been implicated in squamous cell 

carcinoma 
52

, contains an inactivating mutation in A431 (chr8:103250667A>C; 3.6  

15.02 bits). SMARCD1, encoding a chromatin modulator that interacts with nuclear 

receptor transcription factors, is also inactivated in A431 (chr12:50480538G>C; 8.46  

3.21 bits), and has been shown to be mutated in hepato- and other carcinomas 
53

. 

Several mutations were found in potential tumor-associated genes, with either suggestive 

or little supporting expression data. However, defects in many of these genes have been 

implicated in various neoplasias including glioblastoma, osteosarcoma, and epidermoid 

squamous carcinoma. In general, these were predicted leaky mutations, where effects 

(diminished read counts and exon skipping) were inferred against the confounding 

background of a presumably intact allele. Natural site mutations in FANCD2 

(NM_033084.3:c.3106-9T>A; 6.0  3.5 bits; delayed activation of the DNA damage 

response in gliomas 
54

) and MDC1 (NM_014641.2:c.2129-8G>C; 6.4  4.7 bits; 

mediator of the DNA damage checkpoint and underexpressed in many cancers 
55

) were 

found in the U251 cells.  

4.4 Characterization of defective pathways 

Potential driver mutations affecting protein coding of genes from the A431, U2OS, and 

U251 cell lines have recently been reported 
40

. Functionally significant driver mutations 

affecting splicing are expected to comprise many of the same pathways implicated by 

protein coding mutations that are predicted to be damaging. The gene set with combined 

driver point and copy number alteration was examined using Reactome 
56

. Shannon 

pipeline results, supported by RNA-seq data, were added to gene sets proposed by 
40

 and 

the expanded gene set was examined with the overrepresentation analysis tool in 

Reactome. Of the genes containing transcript-validated splicing mutations, both datasets 

were consistent in 2 of 5 pathways in A431 (interferon signaling and cytokine signaling 

in immune system), 8 of 8 pathways in U2OS (cell cycle mitotic, cell cycle, DNA 

replication, mitotic M-M/G1 phases, M phase, kinetochore capture of astral microtubules, 
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mitotic prometaphase and apoptosis) and 0 of 2 pathways in U251. Affected pathways 

and relevant genes can be found in Table 4. The gene set including all inactivating and 

leaky variants (regardless of verification status) were found in 5 of 7 of the same 

pathways in A431 (additionally, a variant was found in the semaphorin interaction 

pathway), 8 of 12 of the same pathways in U2OS and 0 of 11 pathways in U251. In A431 

and U2OS, these splicing mutation predictions enhance and strengthen the pathway 

analysis based on protein coding mutations alone.  
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Table 4. Enriched pathways containing genes predicted by the Shannon pipeline 

Cell line Genes from  
40

 in pathway 
Additional gene in 

pathway predicted by 
the Shannon pipeline 

Pathway name 

A431 RANBP2, EIF4A2, NUP98 PIAS1 Interferon signaling 

 RANBP2, EIF4A2, NUP98 PIAS1 
Cytokine signaling in 

immune system 

U2OS 

RRM2, ZWINT, PLK1, PSMC3, 
AURKB, PKMYT1, TYMS, POLD2, 
CCNB2, MCM3, MCM5, UBE2C, 
CCNE2, KIF23, NEDD1, PRIM2, 

PSMD13, TUBA3D, MCM7, ERCC6L 

CENPN Cell cycle 

 RRM2, ZWINT, PLK1, PSMC3, 
AURKB, PKMYT1, TYMS, POLD2, 
CCNB2, MCM3, MCM5, UBE2C, 
CCNE2, KIF23, NEDD1, PRIM2, 

PSMD13, TUBA3D, MCM7, ERCC6L 

CENPN Cell cycle, mitotic 

 POLD2, MCM3, CCNB2, ZWINT, 
MCM5, PSMD13, PRIM2, PLK1, 

KIF23, TUBA3D, PSMC3, AURKB, 
MCM7, ERCC6L 

CENPN DNA replication 

 MCM3, CCNB2, ZWINT, MCM5, 
PSMD13, PRIM2, PLK1, KIF23, 

TUBA3D, PSMC3, AURKB, MCM7, 
ERCC6L 

CENPN Mitotic M-M/G1 phases 

 CCNB2, ZWINT, PLK1, KIF23, 
ERCC6L, TUBA3D, AURKB 

CENPN M phase 

 ZWINT, PLK1, ERCC6L, TUBA3D, 
AURKB 

CENPN 
Kinetochore capture of 

astral microtubules 
 ZWINT, PLK1, ERCC6L, TUBA3D, 

AURKB 
CENPN Mitotic prometaphase 

 CAD, PSMD13, PSMC3 CTNNB1 Apoptosis 
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5 Discussion 

 

Complete genome and exome sequencing detects numerous rare, non-recurrent mutations 

in different individuals with the same disease diagnosis. Making sense of genetically 

heterogeneous results requires detection and interpretation of mutations in many 

genomes. The identification of significant mutations in different driver genes, followed 

by a gene set or pathway analysis can reveal common, essential pathways in otherwise 

genetically heterogeneous diseases, such as cancer. Incomplete detection or 

reclassification of coding mutations will most likely impact the sensitivity of these 

analyses. Most existing methods to predict the effects of splice site variation lack 

scalability, transparency or portability, with respect to their scoring systems. Information 

content can be applied to any region of any adequately annotated genome. Change in 

information (Ri) is a portable measure and its thermodynamic basis meaningfully 

estimates the effects of splicing variation. By contrast, other systems (e.g., 
57

) are not 

suited for genome scale analysis and produce results that are not directly related to splice 

site strength.  

A recent study reported the genomic, transcriptomic and protein sequences in the cell 

lines that were the source of the data that I analyzed 
40

. It described the same single 

splicing mutation in the APIP gene identified in the present study, but none of the others 

that predicted by the Shannon pipeline. Further, there was no overlap between the genes 

containing predicted protein coding mutations in 
40

 and those indicated from the current 

study. This was somewhat surprising, it was anticipated that some loss of function 

mutations in tumor suppressor genes would arise from compound heterozygosity. Instead, 

mutant genes from both studies tended to occur in the same pathways (for U2OS and 

A431).  

Many of the predictions made by the Shannon pipeline were supported by the same 

RNA-seq data that identified only APIP 
40

. Conventional splice junction mutation 

analysis of NGS data, which tends to emphasize only the significance of changes in 
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conserved splice junction, intronic dinucleotides does not appear to be as sensitive or 

comprehensive as the information-based Shannon pipeline 
7
. Assuming the cell line 

genotypes faithfully reflect the tumor genetics, likely driver mutations in the tumors were 

missed. These genes contribute to the tumor signatures and in most instances, belong to 

major pathways that are dysfunctional in the tumor. A caveat is that many of these 

cancer-associated genes have been uncovered in other tumor types, rather than the tumors 

that gave rise to the cell lines studied here. 

Many of the predicted mutations that are supported by expression data make sense in 

light of independent studies, which have suggested the same driver genes and pathways 

that are defective in these tumor types 
51,58-60

. Note that the recommended filtering 

procedures eliminate and/or minimize inclusion of mutations in gene classes with no 

known connection to cancer disease etiology. The sensitivity and specificity of these 

predictions support use of the Shannon pipeline in other somatic genomic analyses, and 

possibly for a wider spectrum of heritable genetic disorders. 

The interpretation of potential splicing mutations in complete genome data is also 

challenging because the source of annotations, Ensembl, contains many accurate but 

apparently irrelevant genomic features. These comprise exons called on the basis of a 

single or a few ESTs with deep intronic locations (relative to constitutive exons) 
61,62

, and 

predicted mutant ESTs that are in fact present in non- or low expression genes (due to 

tissue specificity of the gene). Such cases indicate that the predicted mutation acts only 

upon these alternative splice forms, rather than the major transcript produced by the gene 

containing this gene. Where the RNA-seq data are either insufficient or irrelevant, 

pseudogenes (or genes which are members of families containing pseudogenes) may 

contain mismapped reads for the non-functional copies that can produce false positive 

mutation calls. Automatic filtering of genes from the RNA-seq data prior to validating 

information-based predictions would significantly simplify post-hoc processing of the 

Shannon pipeline. Until such a workflow is available, individual predicted mutations 

have to be assessed manually, because cryptic sites that alter the strength of a “decoy” 

exon, while a technically legitimate result, is probably irrelevant as a potential disease-

causing mutation.    
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6 Conclusion and future development 

 

Accurate genome-scale mutation analysis of bulk sequencing data in a timeframe suitable 

for integration with prediction tools for other types of mutations will be needed to 

discover disease-related genes and pathways in large-scale genomic studies of many 

patients. The need to distinguish probable pathogenic from benign sequence changes has 

become acute 
63

. Computing efficiency is essential for concurrent analysis of large sets of 

genome sequences 
64

. As the volume of whole-genome next-generation sequencing data 

continues to increase, variants of unknown significance are also likely to become more 

common. The processing speed attained by the Shannon pipeline has distinct advantages 

over existing software for identifying functional non-coding variants detected in large 

multi-genomic analyses. The Shannon pipeline is not intended to replace laboratory 

examination of variants, rather it is meant to reduce time and money spent examining 

variants unlikely to be deleterious. In this way, researchers can use the pipeline to 

pinpoint those variants most likely to be deleterious for further examination in the 

laboratory. Thus far, the Shannon pipeline has been downloaded under an evaluation 

license by more than 200 researchers and has been purchased by the US National Cancer 

Institute. Some feedback has been received by researchers, in one case prompting me to 

fix a bug in the VCF import class which caused the import to fail if a ‘?’ was present in 

the VCF header. 

There are many opportunities for future improvements to the Shannon pipeline, some of 

which are already in the early stages of development: 1) I have begun converting Perl 

code to C++. This transition will improve performance, allow Windows compatibility 

without requiring specific versions of Perl (or any version of Perl), and facilitate the 

ability to distribute compiled code. This offers many advantages including increased code 

security and the removal of the requirement to download GCC or GCC equivalent on a 

Mac or Windows. 2) CLC-Bio has recently implemented their own VCF importer and 

exporter classes. This alleviates the need for the VCF importer I have developed and the 

Shannon pipeline must be modified to become compatible with the new classes. 3) I have 
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begun work on implementing a version of the Shannon pipeline used to analyze variants 

in the mouse genome. Since the pipeline was built generically, theoretically the pipeline 

can work on any sufficiently annotated genome with minor modifications. Work required 

to examine different genomes using the pipeline requires modifications to Ensembl Gene 

databases to make them compatible with the pipeline. 4) Implementation of indel 

analysis. C libraries exist which perform this analysis, however new code must be 

implemented to use those libraries and existing annotation code must be modified to 

properly annotate indels. 5) Automatic integration of pathway analysis would alleviate 

the need to manually use Reactome or other pathway analysis tools to examine pipeline 

results. 6) A weight matrix exists for an intronic sequence necessary for splicing called 

the branch point. The contribution of these sites are not observed in the current software, 

but functionality to do so may be included in a future release. 7) The ability for the user 

to submit a genome to act as the reference genome during calculation. In particular, this 

upgrade would be important for cancer genome analysis which involves comparison of 

variants present in a tumour against the reference sequence from normal DNA from the 

same individual.   
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Appendices 

Appendix A: Shannon pipeline output for the U2OS, A431, and U251 cell lines.  

Table S1  Splicing mutations in cell line U2OS predicted by Shannon pipeline 

Leaky  R
i,i

n
it

ia
l 

R
i,f

in
al

 

Δ
R
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Si
te

 

G
e

n
e

 

rs
ID

 

A
v.

 H
at
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V
al

id
a

te
d

*
 

Novel Variants 

        chr5:148630982G>A 10.04 7.03 -3.01 D ABLIM3 

  

Y 

chr9:140507906C>G 9.45 6.83 -2.62 A ARRDC1 

  

LF 

chr12:46355654A>C 7.66 5.61 -2.06 A SCAF11 

  

P 

chr10:115470783A>C 8.72 6.80 -1.93 A RP11-211N11.5.1 

 

NE 

chr16:81060105T>G 3.99 2.87 -1.12 A CENPN 

  

Y 

Known Variants < 1% Av. Het. 

       chr16:78312497C>A 10.24 6.67 -3.57 A WWOX rs8050128 0 Y 

chr2:98177124T>G 7.96 4.70 -3.26 D ANKRD36B rs11681640 0 PS 

chr5:78076488A>T 9.60 7.14 -2.45 A ARSB rs183651028 0 

 chr22:36657628T>G 8.94 6.88 -2.06 A APOL1 rs41368549 0 N 

chr2:32961745T>A 8.99 7.14 -1.85 A TTC27 rs10200333 0 P 

chr15:68445912T>A 16.57 14.72 -1.85 A PIAS1 rs11633620  0.005  Y
H 

chr1:33318561T>C 5.86 4.55 -1.32 D S100PBP rs702836 0 N 

chr17:73698557C>T 9.81 8.70 -1.12 A SAP30BP rs820232 0.009  Y 
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i,i

n
it
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i,f
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Δ
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e
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al
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a
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d

 

Novel Variants 

        chrX:91518144T>G 9.64 -8.99 -18.62 D PCDH11X 

  

NE 

chr17:47286205A>C 9.57 -9.06 -18.62 D GNGT2 

  

Y 

chr3:41277214G>A 8.87 -2.02 -10.88 A CTNNB1 

  

Y 
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chr12:120613944A>C 8.78 -9.85 -18.62 D GCN1L1 

  

Y 

chr3:52181002A>C 7.88 -10.75 -18.62 D POC1A 

  

Y 

chr9:131133696T>G 7.88 -10.75 -18.62 D URM1 

  

P 

chrX:49689926T>G 7.72 -10.90 -18.62 D CLCN5 

  

Y 

chr2:118743543A>C 7.08 -11.54 -18.62 D CCDC93 

  

Y 

chr12:31242087T>G 6.89 -11.73 -18.62 D DDX11 

  

Y 

chr2:165600195A>C 6.36 -12.26 -18.62 D COBLL1 

  

Y 

chr6:33256579A>C 5.79 -12.83 -18.62 D WDR46 

  

P 

chr12:131487849T>G 5.32 -13.31 -18.62 D GPR133 

  

NE 

chr11:20142118A>C 4.52 -14.11 -18.62 D NAV2-AS1 

  

N 

chrX:153627303T>G 3.80 -14.82 -18.62 D RPL10 

  

N 

chr3:119222366T>A 3.75 1.35 -2.40 A TIMMDC1 

  

Y 

chr10:116698300T>G 3.21 -15.41 -18.62 D TRUB1 

  

N 

chr13:111932609T>G 0.83 -1.52 -2.35 A ARHGEF7 

  

Y 

Known Variants < 1% Av. Het. 

       chr17:71229465G>A 7.82 -10.81 -18.63 D C17orf80 rs113825288 0.007 Y 

chr8:86131463A>T 7.07 -11.55 -18.62 D C8orf59 rs67573812 0 NE 

chr11:65624562A>C 5.84 -12.78 -18.62 D CFL1 rs667555 0 N 

chr11:20529886G>A 4.71 -13.92 -18.63 D PRMT3 rs6483700 0.007 NE 

chr6:88224673A>C 4.59 -14.04 -18.62 D RARS2 rs77773960 0 Y 

chr16:66547767T>C 2.15 -12.56 -14.71 A RP11-403P17.5.1 rs2241619 0 Y 

 

Cryptic Splicing R
i,i

n
it
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i,f
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d

 

Novel Variants 

         chr9:94870122C>A 8.60 9.73 1.12 A SPTLC1 EXON 

  

N 

chr3:39448804G>T 4.87 7.10 2.23 A RPSA INTRON 

  

N 
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chr11:1782979A>C 4.07 5.19 1.11 A AC068580.6.1 EXON 

  

PS 

chr15:75190136G>A -10.80 3.92 14.71 A MPI EXON 

  

N 

chr1:153602415A>C 2.22 3.52 1.30 A S100A1 EXON 

  

N 

chr1:44447781T>G -0.43 3.17 3.59 D B4GALT2 INTRON 

  

N 

Known Variants < 1% Av. Het. 

        chr1:206647742A>G 6.67 9.68 3.01 D IKBKE EXON rs1539242        0.006  Y 

chr10:73039497G>A -7.59 7.13 14.71 A UNC5B INTRON rs41278006        0.006  N 

chr9:131022776G>C -14.10 4.53 18.63 D GOLGA2 EXON rs74686374        0.006  AE 

chr3:12447814C>G 0.26 4.13 3.87 A PPARG EXON rs1797895        0.005  N 

 

* Bolded Gene names are previously established tumor driver genes.  Legend to symbols in Validation column:   Y: 

yes validated; YH: yes validated, based on HapMap Phase II Affymetrix Exon array; P: probable: consistent with 

mutation altering splicing, but not conclusive; N: not validated; NE: not expressed in cell line. Certain RNAseq results 

were not interpretable:  LF: low fidelity splicing – significant intron inclusion; PS: multiple pseudogenes or duplicated 

exons; AE: rare alternate exon – insufficient data. Under site heading, D: donor, A: acceptor. 
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Table S2  Splicing mutations in cell line U251 predicted by Shannon pipeline 

Leaky  R
i,i

n
it

ia
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i,f
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al

 

Δ
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e

 

rs
ID

 

A
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V
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d

 

Novel Variants 

        chr3:10123021T>A 5.95 3.54 -2.41 A FANCD2 

  

N 

Known Variants < 1% Av. Het. 

       chr16:78312497C>A 10.24 6.67 -3.57 A WWOX rs8050128 0 NE 

chr3:123554710C>T 8.47 5.29 -3.18 D MYLK rs144796555 0 NE 

chr7:128117227G>A 5.48 2.47 -3.01 D METTL2B rs76349929 0 Y 

chr6:121767966T>A 14.37 11.77 -2.60 A GJA1 rs56199702 0 N 

chr16:88051014A>G 6.87 4.34 -2.52 D BANP rs6540151 0 NE 

chr7:98533187T>G 9.09 7.16 -1.93 A TRRAP rs62472016 0 Y 

chr15:68445912T>A 16.57 14.72 -1.85 A PIAS1 rs11633620 0.005  AM 

chr2:32961745T>A 8.99 7.14 -1.85 A TTC27 rs10200333 0 P 

chr6:30679289G>C 6.44 4.72 -1.72 A MDC1 rs147822906 0 P 

chr1:65830299T>G 16.58 15.06 -1.52 A DNAJC6 rs2296479 0 P 

chr6:30679289G>C 3.41 1.96 -1.45 A MDC1 rs147822906 0 NE 

chrX:119402264A>C 11.63 10.30 -1.33 A FAM70A rs41300936 0 Y 

chr1:33318561T>C 5.86 4.55 -1.32 D S100PBP rs702836 0 NE 

chr2:37265193A>C 10.76 9.64 -1.12 A HEATR5B rs139662639 0 NE 

chr17:73698557C>T 9.81 8.70 -1.12 A SAP30BP rs820232 0.009  NE 

chr7:74152376T>C 7.73 6.64 -1.09 A GTF2I rs810377 0 N 
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Novel Variants 

        chr14:32142782T>G 10.35 -8.27 -18.62 D NUBPL 

  

NE 
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Cryptic Splicing R
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Novel Variants 

         chr14:75128861G>C -2.43 9.24 11.67 A KIAA0317 EXON 

  

N 

chr21:45539300A>G 4.77 7.77 3.01 D PWP2 EXON 

  

N 

chr19:620369T>G 5.92 7.76 1.84 A POLRMT EXON 

  

N 

chr2:73228685T>G 4.16 6.00 1.84 A SFXN5 EXON 

  

N 

chr13:73369248A>T 2.91 4.92 2.01 A PIBF1 INTRON 

  

N 

chr17:30303021A>G 1.45 4.63 3.18 D SUZ12 EXON 

  

N 

chr22:50954300T>G -14.18 4.45 18.63 D NCAPH2 INTRON 

  

N 

chr8:144876251G>C 0.15 3.88 3.73 D SCRIB EXON 

  

NE 

chr10:135104007G>A 1.62 2.71 1.09 A TUBGCP2 EXON 

  

NE 

chr10:70661701T>G -16.58 2.06 18.63 D DDX50 INTRON 

  

N 

Known Variants < 1% Av. Het 

        chr2:204150427G>C 4.03 5.50 1.47 A CYP20A1 EXON rs144732080 0.002 N 

chr3:12447814C>G 0.26 4.13 3.87 D PPARG EXON rs1797895 0.005 NE 

chr13:20611221G>A -0.56 2.04 2.61 D ZMYM2 INTRON rs75747995 0.009 N 

chr19:33904479A>C 10.07 -8.55 -18.62 D PEPD 

  

N 

chr11:34905054G>C 9.32 0.54 -8.78 A APIP 

  

Y 

chr1:43308444A>C 9.07 -9.55 -18.62 D RP11-342M1.4.1 

 

NE 

chr12:4700466T>G 6.83 -11.79 -18.62 D DYRK4 

  

P 

chr3:40570938T>G 5.73 -12.90 -18.62 D ZNF621 

  

N 

Known Variants < 1% Av. Het. 

       chr12:122740009C>T 4.77 -6.11 -10.88 A RP11-512M8.6.1 rs10744155 0 NE 

chr6:88224673A>C 4.59 -14.04 -18.62 D RARS2 rs77773960 0 Y 
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* Bolded Gene names are previously established tumor driver genes.  Legend to symbols in Validation column:   Y: 

yes validated; P: probable: consistent with mutation altering splicing, but not conclusive; N: not validated; NE: not 

expressed in cell line. Certain RNAseq results were not interpretable; AM: ambiguous due to significant exon 

skipping/alternative splicing throughout gene. Under site heading, D: donor, A: acceptor. 
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Table S3  Splicing mutations in cell line A431 predicted by Shannon pipeline 

Leaky  R
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n
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in
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Δ
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 H
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V
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d

 

Novel Variants 

        chr18:20529676G>A 6.17 3.16 -3.01 D RBBP8 

  

Y 

chr1:179310449A>G 10.01 7.40 -2.61 D SOAT1 

  

P 

chr1:12318166T>C 11.69 9.97 -1.72 D VPS13D 

  

Y 

chr1:161013165G>T 4.89 3.59 -1.30 D USF1 

  

Y 

chr1:36360707C>A 8.67 7.56 -1.11 A EIF2C1 

  

N 

Known Variants < 1% Av. Het. 

       chr2:136148401A>T 21.77 18.95 -2.82 A ZRANB3 rs75842485 0 P 

chr1:169272451A>T 9.96 8.49 -1.47 A NME7 rs10800427 0 P 

chr2:32961745T>A 8.99 7.14 -1.85 A TTC27 rs10200333 0 Y 

chr22:36657628T>G 8.94 6.88 -2.06 A APOL1 rs41368549 0 Y 

chr7:29700059G>T 9.43 5.83 -3.59 D AC007276.5.1 rs74896403 0 PS 

chr2:98177124T>G 7.96 4.70 -3.26 D ANKRD36B rs11681640 0 PS 

chr1:33318561T>C 5.86 4.55 -1.32 D S100PBP rs702836 0 AE 

chr7:75628461A>T 6.76 4.35 -2.41 A STYXL1 rs4728538 0 AE 

chr15:68445912T>A 16.57 14.72 -1.85 A PIAS1 rs11633620 0.005 Y 

chr17:73698557C>T 9.81 8.70 -1.12 A SAP30BP rs820232 0.009 P 

 

Inactivating  R
i,i

n
it
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R
i,f

in
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Δ
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A
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V
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d

 

Novel Variants 

        chr1:12064177T>G 9.57 -9.06 -18.62 D MFN2 

  

Y 

chr12:50480538G>C 8.46 -3.21 -11.67 A SMARCD1 

  

Y 

chr11:62341301A>C 7.84 -10.78 -18.62 D EEF1G 

  

P 
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chr2:213886187A>C 7.74 -10.88 -18.62 D AC093865.1.1 

  

PS 

chr2:165600195A>C 6.36 -12.26 -18.62 D COBLL1 

  

N 

chr11:20142118A>C 4.52 -14.11 -18.62 D NAV2-AS1 

  

PS 

chr7:98591160G>C 4.33 -7.34 -11.67 A TRRAP 

  

Y 

chr8:103250667A>C 3.60 -15.02 -18.62 D RRM2B 

  

Y 

chr20:55045807G>A 3.41 0.40 -3.01 D C20orf43 

  

PS 

chr22:36722714G>C 2.90 1.18 -1.72 A MYH9 

  

N 

chr12:107374398C>T 2.11 -16.52 -18.63 D MTERFD3 

  

N 

Known Variants < 1% Av. Het. 

       

 

chr12:122740009C>T 4.77 -6.11 -10.88 A RP11-512M8.6.1 rs10744155 0 PS 

chr11:20529886G>A 4.71 -13.92 -18.63 D PRMT3 rs6483700 0.007  PS 

chr14:64669514T>A 1.89 -0.83 -2.72 A SYNE2 rs189611387 0 Y 
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Novel Variants 

         chr5:177637135C>G 5.83 9.57 3.73 D HNRNPAB EXON 

  

N 

chr16:57180998G>C -0.56 8.22 8.78 A CPNE2 EXON 

  

N 

chr16:27790837G>C -1.56 7.22 8.78 A KIAA0556 EXON 

  

N 

chr19:14000568T>G 5.85 7.15 1.30 A C19orf57 EXON 

  

N 

chr8:133822931G>C 5.02 6.47 1.45 A PHF20L1 EXON 

  

N 

chr1:101437592A>C 4.63 6.36 1.73 A SLC30A7 INTRON 

  

N 

chr10:3191408C>A 5.02 6.35 1.33 D PITRM1 EXON 

  

N 

chr14:103871339A>G -4.68 6.20 10.88 A MARK3 INTRON 

  

N 

chr21:47676584A>G 4.29 5.89 1.60 D MCM3AP EXON 

  

N 

chr16:27790837G>C 3.15 5.77 2.62 A KIAA0556 EXON 

  

N 

chr22:20113022T>G -12.96 5.67 18.63 D RANBP1 EXON 

  

N 
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chr6:7227103T>G -14.30 4.34 18.63 D RREB1 INTRON 

  

N 

chr16:90051055G>A 1.05 3.58 2.52 D AFG3L1P EXON 

  

PS 

Known Variants < 1% Av. Het. 

        

 

chr1:206647742A>G 6.67 9.68 3.01 D IKBKE EXON rs1539242     0.006  N 

chr3:12447814C>G 0.26 4.13 3.87 D PPARG EXON rs1797895     0.005  LF 

chr2:232087474A>G -15.64 3.00 18.63 D ARMC9 EXON rs1626450     0.0004  N 

 

* Bolded Gene names are previously established tumor driver genes.  Legend to symbols in Validation column:   Y: 

yes validated; P: probable: consistent with mutation altering splicing, but not conclusive; N: not validated; LF: low 

fidelity splicing – significant intron inclusion; PS: multiple pseudogenes or duplicated exons; AE: rare alternate exon – 

insufficient data. Under site heading, D: donor, A: acceptor. 
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