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ABSTRACT

Recently there has been tremendous interest in the development of tools for joint anal-

ysis of longitudinal data and time-to-event data. This has gained emphasis particularly

in clinical studies, where longitudinal measurements on a response may be recorded along

with a time-to-event outcome. Joint analysis of multiple outcomes beyond longitudinal and

survival have also been considered, for example, joint analysis of a variety of generalized

linear models including continuous and count data, or continuous and binomial data. With

joint analysis of multiple outcomes, the interest may be analysis of one outcome condi-

tional on the others, or, more typically, analysis of all outcomes jointly using latent random

effects to link the outcomes. In this project, we study joint-outcome models with the par-

ticular application being streamflow at two stations on the prairies. Here, streamflow at the

two stations is linked via an annual random effect. Smoothers are used to flexibly account

for temporal trends in the model. An important aspect is determining the amount of infor-

mation required in order to estimate the link parameter which connects the two processes,

and we investigate this via simulation in the context of the streamflow analysis.

Key words: Joint outcome modeling; Laplace approximation; Marginal likelihood; Ran-

dom effect; Longitudinal data
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CHAPTER 1

INTRODUCTION

Joint modeling is a term used to reflect a modeling approach whereby two response pro-

cesses are linked via a common set of latent variables. It can be used to model two related

outcomes such as a count and a binomial variable, two count outcomes, or two binomial

outcomes, both of which have some shared effect; or to model a survival and recurrent

event process; or, to model a survival and longitudinal variable. Under the joint modeling

framework, we may, for example, use one process to inform the second, with the main

emphasis being on analysis of one of the processes; alternatively, we may be interested

in analyzing both outcomes jointly and using the shared latent structure to better inform

both processes. Basically, the broad objective of joint modeling is to provide a framework

for analyzing the systematic relationship among multiple outcomes while appropriately

accounting for the correlation among these outcomes.

In practice, it is not uncommon that multiple outcomes, collected simutanenously, are

measured repeatedly for each subject over time. In clinical settings, for example, longi-

tudinal measurements on a response may be recorded along with a time-to-event outcome.

When jointly modeling a survival and longitudinal variable, inference might focus on the

time-to-event process while the longitudinal variable represents a time dependent covari-

ate measured with error. A well-known illustration of this situation from HIV studies, is
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where measures of CD4 T-cell, a bio-marker of immunological status, are recorded longi-

tudinally along with a time-to-event outcome, which is the progress to AIDS or death (eg.

Faucet and Thomas (1996)). In another example, Fieuws et al. (2008) modeled the relation-

ship between measures of serum creatinine and time to graft loss jointly. Wu and Carroll

(1988) modeled longitudinal data and a censoring outcome simultaneously, because cen-

soring was deemed to be informative of survival. They revealed that analyzing longitudinal

data without incorporating the informative censoring (e.g. outcome-dependent drop-out)

may lead to biased results. Faucet and Thomas (1996) and Wulfsohn and Tsiatis (1997)

modeled time-to-event data and a longitudinal outcome including a time-varying covariate

with measurement error, with a focus on differences resulting from joint analysis and a

usual single-outcome survival analysis. They demonstrated that such differences may be

large and advised that it is essential to model the longitudinal process and time-to-event

process jointly when they are so related, since the longitudinal process may be highly in-

formative for survival. Tsiatis and Davidian (2004) provided a comprehensive overview of

the motivation and relevant literature on joint modeling of longitudinal and time-to-event

data. More recently, Fitzmaurice et al. (2008) provided a thorough review of the litera-

ture, providing an update of the Tsiatis and Davidian (2004) review. In 2012, Wu et al.

(2012) outlined commonly used methods, including the likelihood method and two-stage

methods, and issues in joint modeling.

Dunson (2003) made popular the concept of joint modeling of several generalized linear

outcomes. McCulloch (2008) quantified the construction of the correlation between mixed

outcomes through theoretical and numerical calculations and also illustrated the efficiency

and reduction in bias when utilizing a joint outcome approach.

The common approach of constructing a likelihood for a binary and continuous outcome

by factorizing the joint distribution into a marginal component and a conditional compo-

nent was considered much earlier by Krzanowski (1988), and Cox and Wermuth (1992).
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Either of the outcomes may be conditioned upon, depending on the focus of the analy-

sis. Another approach to model a binary outcome and a continuous outcome jointly is to

assume that there exists an unobservable variable underlying the connection between the

two outcomes, whereby the binary outcome may be assumed to occur if a latent variable

exceeds a threshold. Catalano and Ryan (1992) considered this special case and indicated

that the latent variable model provided a useful way to formalize the distribution of the

discrete variable in the setting considered.

The factorization approach is particularly useful when additional hierarchies are included

in a study, for example, cluster effects or repeated measurements. This was the case for

Catalano (1997), who employed a latent variable to incorporate clustering. Fitzmaurice

et al. (2008) constructed the joint density as the product of a marginal distribution for the

binary outcome and conditional distribution for the continuous response given the binary

outcome while accounting for clustering using a generalized estimating equation (GEE)

approach.

For the joint analysis of continuous outcomes, some multivariate methods were introduced

(Johnson and Wichern (2002)). Though multivariate analysis is a well developed field,

when there is a clustering hierarchy involved in the outcomes, it may be useful to consider

a joint modeling framework where shared random effects provide the link across outcomes.

The aim of this project is to explore the use of latent variables in a joint analysis of longitu-

dinal data arising from two hierarchies, as an alternative to a typical multivariate analysis.

Our interest is to accurately quantify the shared latent effect in such joint analyses. Our

application models streamflow at two stations within the same general drainage area. Im-

portantly, we explore here the sample size required to estimate the latent link parameter

with reasonable power.

This project is organized as follows. In Chapter 2, we describe the motivating data and
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present an exploratory analysis of the streamflow data. In Chapter 3, we derive likelihood

inference using a Laplace approximation, as this can be utilized for broad application of

joint outcome analyses. Here we present the Laplace approximation for the case consid-

ered as well as employ the usual marginal density approach for the analysis of the joint

streamflow outcomes. We present and discuss the results of our analysis in Chapter 4.

In Chapter 5, we demonstrate, via simulation, the relationship between sample size and

power to detect the link between the outcomes under different scenarios. We summarize

and discuss future work in the final chapter.
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CHAPTER 2

THE CONTEXT OF JOINT OUTCOME MODELING

AND OF THE APPLICATION

We begin by discussing joint outcome modeling broadly to illustrate its utility. Because

considerable work has been done in the context of survival analysis, our background dis-

cussion considers this area of application.

2.1 Background and Motivating Examples

Research on the relationship between longitudinal and time-to-event outcomes are most

popular in the context of research on surrogates and biomarkers in medicine. As mentioned

earlier, the most familiar example relates to HIV studies, where immunological and viro-

logical status, such as obtained by CD4 T-cell and viral RNA copy number, are collected

on each patient, along with the time to progression to AIDS or death (see Wu and Ding

(1999); Taylor and Wang (2002)). The objective of joint analysis is to model the mecha-

nism underlying the evolution of the biomarkers and the event process in the presence of

the treatment and to more efficiently estimate the treatment effect.

Let the event-time for individual i be denoted as Ti with censoring time Ci, so the observed
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event time is Ui = min(Ti,Ci) and δi = I(Ui = Ci), the censoring indicator. The random

variable Yi(t) represents the longitudinal response at time t; X1i(t) and X2i(t) are possibly

time-dependent variables which affect both the longitudinal variable Yi(t) and time to event

Ti. Assume that conditioning on a latent process, Y and U are independent. In this setting, Y

is the longitudinally measured biomarker, CD4 cell count, and U is the time to progression

to AIDs or death. The latent process could be considered as a patient’s underlying health

status.

Depending on the different causal paths of the relationship between the latent process and

the random variables Y and U , the joint density function can be expressed as

fY,U(y,u) = fY (y) fU |Y (u|y)

= fY (y)
∫

fU |Y,B(u|y,b) fB(b)db

where b represents the latent variable, or perhaps

fY,U(y,u) =
∫

fY,U |B(y,u|b) fB(b)db

=
∫

fY |B(y|b) fU |B(u|b) fB(b)db

given b, Y and U are independent.

To be specific, we consider the joint model utilizing a linear mixed model for the longitu-
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dinal data and a proportional hazard model for the time-to-event data:

Y (ti j) = µ(ti j)+B1i(ti j)+ εi j

λ (ti j) = λ0(ti j)exp[βX2i +B2i(ti j)]

where µ(ti j) is the mean function depending on covariates, X1i; εi j ∼ N(0,σ2) denotes the

measurement error; X2i are covariates which may or may not be the same as X1i affect-

ing survival directly, and B1i(ti j) and B2i(ti j) random effects at the individual level which

influence the longitudinal process and survival process respectively.

These two processes B1i and B2i are the factors which induce the correlation between Y

and U ; the correlation structure may be, for example, a multivariate Gaussian process.

However the dimension of the random effects and also the hierarchy of the models in-

crease the complexity of computation of the correlation structure. As an alternative and

also because of specific useful motivating contexts which drive these linkages, shared-

parameter models have become more prominent. In shared-parameter models, B2i(t) is

assumed a function of some or all components of B1i(t). For example, B2i(t) = ρB1i(t),

or B1i = b1i +b2it,B2i(t) = ρ1b1i +ρ2b2it. Such shared-parameter models have been very

frequently utilized in the medical field.

Another example is the common spatial factor model for joint modeling of spatial count

outcomes. In public health and ecological studies, variables measured at the same spatial

locations may be correlated. It is important then to consider the outcomes jointly, whereby

they are characterized by a common spatial factor. In Feng and Dean (2012), an analysis

of Ontario lung cancer for men and women is conducted by using common spatial factor

models. The incidence and expected counts of lung cancer in 37 public health units over

1995-2002 in Ontario were considered jointly for men and women. Let yim denote the lung
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cancer count in region i for men, yim ∼ Poisson(µim), and let Eim be the expected count of

lung cancer in region i for men. Correspondingly let yi f denote the lung cancer count in

region i for women, yi f ∼ Poisson(µi f ) with Ei f being the expected count of lung cancer

for women. Expected counts are calculated based on age-gender-distribution and some

standardized values of rates for each age-gender distribution.

The model is specified as:

log(µim) = αm + log(Eim)+bi +him

log(µi f ) = α f + log(Ei f )+ γbi +hi f

where bi represents a spatially correlated regional risk; him and hi f are independent ran-

dom effects representing variation over and above the spatial effects. The common spa-

tial structure b = (b1, ...bn)T ∼MV N (0,∑b), hm = (h1m, ...,hnm)T ∼MV N(0,σ2
hmI), hm =

(h1 f , ...,hn f )T ∼ MV N(0,σ2
h f I), b, hm and h f are independent, and γ is termed the factor

loading for the the shared spatial random effect. In the lung cancer setting, for example, γ

is expected to be unity.

More complex models involving more than two outcomes and several layers in a hierarchy

may also be considered. Consider, for example, the developmental toxicity study of ethy-

lene glucol in mice conducted by the National Toxicology Program (Price et al. (1985)).

In these experiments, the outcomes are litter size; the malformation status of a live fe-

tus, a binary outcome; and birth weight. Such data were explored by Catalano and Ryan

(1992), Molenberghs and Ryan (2002) and Gueorguieva and Agresti (2001) and Dunson

et al. (2003) among others. In Dunson et al. (2003), each litter is treated as a cluster, and

the two outcomes of fetal weight and malformation status are analyzed jointly. Let yi j1

denote the fetal weight for the jth pup in the litter i and yi j2 be the malformation status;
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y∗i j2 denotes a normal variable underlying yi j2 such that yi j2 = I(y∗i j2 > 0). Let si be the size

of litter i, which can take values from 1 to T , where T is the maximum number of pups in

a litter. The covariate xi is the dose of ethylene glycol administered, ξi ∼ N(0,1) is a latent

variable for the ith litter, which is hence operating at the cluster level; ηi j is an individual

level latent variable for the jth pup in the ith litter.

The model is specified as:

yi j1 = µ1 +α1xi +λ1ξi + γ1ηi j + ε1i j1,

y∗i j2 = µ2 +α2xi +λ2ξi + γ2ηi j + ε1i j2,

Pr(si = j|xi,ξi) = Φ
(
δ j−βxi−λ3ξi

) j−1

∏
h=1

{1−Φ
(
δh−βxi−λ3ξi

)
}

Here µ1 and µ2 are intercepts in the weight and malformation model, while ε1i j1 ∼N(0,σ2)

and ε1i j2 ∼N(0,1) are the error terms in two models respectively; Φ is the standard normal

distribution function; δ = (δ1, ...,δT−1)′ are parameters characterizing the baseline litter

size distribution among dams given xi = 0.

It is not uncommon to collect several types of outcomes simultaneously in some studies

such as social science surveys where questionnaires collect responses on several behaviors.

2.2 Streamflow Data and Exploratory Analysis

The example considered in this project relates to streamflow on the prairies. Streamflow is

of vital importance in semi-arid regions from the perspective of both human and wildlife

activities. Accurately predicting streamflow not only helps detect change due to landuse

or climate variation but also facilitates government regulation. We consider two stations
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in the same general spatial location. Generally, streamflow on the prairies is dominated by

snowmelt and spring rains; there is likely some similarity in flow at the stations, and this

depends on the soil and drainage features surrounding the stations. In particular, annual

effects are likely similar; these are of interest to predict return rates of flood and drought

years. Our joint modeling technique is used in an exploratory way for this streamflow

analysis. The joint model for streamflow we propose in this project permits handling the

seasonality by using smoothers and also accounts for the correlation rooted in common

random effects.

The streamflow data is obtained from Environment Canada. After exploring a few sta-

tions in the Canadian Reference Hydrologic Basin Network (RHBN), station 05ND007

and 05NF012 were determined for joint analysis in this project, considering data quality

and sample size for a meaningful illustration. The data are extracted from the flood risk

period of March 1 to May 31 1964-2003. Station 05ND007 is the Souris river at Sherwood;

station 05NF012 is the Souris River at Westhope.

The Souris River or Mouse River (as it is alternatively known in the U.S.) is a river in

central North America. The two stations are both located in North Dakota. Table 1 lists the

basic geographical information about two stations. For simplicity, station 05ND007 and

05NF012 are denoted as site A and site B respectively.

Though these two stations are from the same river, there are different characteristics, for

example, the presence of impoundments and dams, which will strongly affect flows, as the

management of these activities modifies streamflow patterns.
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Figure 2.1 is a time series plot of daily streamflow at the two stations. Though the temporal

patterns are somewhat similar, there are differences in flow magnitude. High flows were

evident between 1969 and 1979, then later on, through 1994 and 2002, another series of

flood periods is observed in our study window. The daily flow of both stations reaches a

maximum in 1976. Figure 2.2 is a three-dimensional plot of streamflow values by day and

year, while Figure 2.3 is a heatmap of daily streamflow by day and year. The colors vary

from grey, representing the lowest flow rate, to red, representing the highest flow rate.
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Figure 2.2: Three-dimensional plot of daily streamflow at two stations by day of year
(1=March 1) and year (1=1964)
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Figure 2.3: Plot of daily streamflow at two stations by day of year (1=March 1) and year
(1=1964); grey represents the lowest flow values; yellow, moderate flows; orange and red
represent the highest flow values
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To examine the relationship between the magnitude and frequency of daily flow for the

two stations, Flow Duration Curves (FDCs) are provided in Figure 2.4. Flow Duration

Curves (FDCs) are hydrological curves showing the percentage of time that the flow in

a stream equals or exceeds some specified values of interest over the study period. An

FDC cuve can visually illustrate the variability in stream flow. Statistically, an FDC is the

complement of the cumulative distribution function (cdf) of daily flow, Q. The FDC plots

Qp, the pth quantile of daily flow. It is calculated as p = 1−P(Q≤Qp), where P(A) refers

to the probability of the event A. The sharp decline on the left of the flow duration curves

as observed in Figure 2.4 reflects extreme events. Also we notice that station B’s flow

equalled or exceeded between 30 and 160 m3/s more often than station A’s flow, reflecting

larger seasonal daily flow at station B versus station A.
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Figure 2.4: Flow duration curves for station A and B
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Figure 2.5 provides box plots of streamflow over 40 years. Years with large flows tend to

be the same and are 1969, 1975, 1976, 1977 and 1980.
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Maximum and median daily flow over 40 years are plotted in Figure 2.6. It is seen that the

two stations tend to experience similar annual maxima.
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two stations considered in this study
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To investigate patterns in extremes, we present a correspondence table for the presence of

extremes at the two stations. Let yA
i and yB

i be the mean daily flow at station A and B in the

ith year. Let Zi be an indicator function defining extreme flow defined as

Zi =


1 if yi > L

0 if yi ≤ L

The cutpoint L is station specific and is selected at the 75th percentile, 80th percentile, 90th

percentile and 95th percentile of the mean daily flow each year at each station. Table 2 lists

the correspondence in extremes at these stations for these four different cutpoints. As seen

from Table 2, the two stations exhibit some similarity in extremes.

Table 2.2: The correspondece table for different values of the quantile cutpoints

cutoff point ZA
i = 1,ZB

i = 1 ZA
i = 0,ZB

i = 0 ZA
i = 1,ZB

i = 0 ZA
i = 0,ZB

i = 1
95% 0.025 0.925 0.025 0.025
90% 0.050 0.850 0.050 0.050
80% 0.175 0.775 0.025 0.025
75% 0.200 0.700 0.050 0.050

The average daily flow for each year at station A is plotted against that of station B in

Figure 2.7. Strong correlation is evident in the annual flows for the two stations.
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Figure 2.7: Plot of average daily flow at station A versus average daily flow at station B
over 40 years

Based on all these exploratory analyses, we hypothesize that these two stations share sim-

ilar annual effects and that the annual effect plays an important role in explaining the lon-

gitudinal outcomes. We will explore this in the subsequent section.
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CHAPTER 3

LIKELIHOOD INFERENCE

Let yA
i j and yB

i j denote the stream flow at station A and B, respectively, on the jth day of

the ith year, i = 1,2, ...,k and j = 1,2, ...,n, where yA
i j|bi ∼ lognormal

(
µA

i j,σ
2
A

)
, yB

i j|bi ∼

lognormal
(

µB
i j,σ

2
B

)
, and bi is an annual effect, bi ∼ N

(
0,σ2

b

)
, influencing the means as:

µ
A
i j = XA

i jβ
A +bi

µ
B
i j = XB

i jβ
B +ρbi.

Here the means µA
i j and µB

i j are modeled as smoothing splines modulated by the annual

effect bi. Hence Xi j represents the i jth row in a matrix representing spline basis functions

modeling the overall seasonality term.

Smoothing splines flexibly capture the seasonal pattern existing in data using a spline func-

tion. Wood (2006) describes several smoothers including regression splines, P-splines and

thin plate splines. For univariate smoothers, these smooth functions may be piecewise

polynomial functions such as cubic regression splines. A cubic regression spline is a curve
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constructed from segments of cubic polynomials joined together so that the curve is con-

tinuous in values at both first and second derivatives. The points at which the segments are

joined are termed the knots of the spline.

As conventional, knots are evenly spaced here through the range of observed x values.

Given knot locations at z∗ : i = 1,2, ...,q−2, we use a cubic spline basis (see Wood (2006))

with basis functions expressed as: s1(x) = 1, s2(x) = x and si+2 = f (x,z∗) for i = 1,2, ...,q,

where

f (x,z∗) =
[
(z∗− 1

2
)2− 1

12

][
(x− 1

2
)2− 1

12

]
/4−

[
(|x− z∗|− 1

2
)4− 1

2
(|x− z|− 1

2
)2 +

7
240

]
/24.

Using this cubic spline basis for the variable day of year means that X is a kn× q matrix

with Xi j, the i jthrow of the basis matrix written as

Xi j = [1,xi j, f (xi j,z∗1), f (xi j,z∗2), ..., f (xi j,z∗q−2)].

3.1 Laplace Approximation

For the broader context of joint outcome modeling, inference commonly proceeds via a

Laplace approximation (see, for example, Vonesh et al. (2002) and Lee et al. (2006)). It

has been established that the Laplace approximation works quite well in a wide variety

of joint outcome models (see Skaug and Fournierb (2006); and Rue et al. (2009)). The

main advantage of this approach is that it avoids complex numerical integration and is

computationally efficient (see Millar (2011)). For a simple illustration, let b be a random

effect, y be the response variable, and θ be all the parameters to be estimated in the model.

Assume b is one dimensional, b∈R. Let g(b) = f (y,b;θ), the probability density function
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of y and b. The likelihood function can be written

L(θ ;y) =
∫

R
g(b)db =

∫
R

elogg(b) db.

Let b̂ denote the value which maximizes g(b), and hence also logg(b). Then logg(b) can

be expanded around b̂ as below using a second-order Taylor expansion,

logg(b)≈ logg(b̂)− c(b− b̂)2

2
,

where c is given by

c =−∂ 2logg(b)
∂b2 |b=b̂,

Thus the likelihood function can be written as:

L(θ ;y)≈ g(b̂)
∫

R
exp

{
−c(b− b̂)2

2

}
db.

The second term on the right-hand side of the equation can be seen as the density function

of a normal random variable with mean b̂ and variance c−1. Therefore, the Laplace ap-

proximation of the likelihood function can be obtained by integrating the normal density

function, i.e.:

L(θ ;y) ≈ g(b̂)
∫

R
exp

{
−(b− b̂)2

2/c

}
db

= g(b̂)

√
2π

c

= f (y, b̂;θ)

√
2π

c
.
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In the multi-dimension case where u ∈ Rq, the Laplace approximation can be extended as

L(θ ;y) =
∫

R
g(b)db

≈ g(b̂)(2π)
q
2 det(−H(b̂))−

1
2

= f (y, b̂;θ)(2π)
q
2 det(−H(b̂))−

1
2 , (3.1)

where det(−H(b̂)) is the determinant of the negative of the q×q Hessian matrix of g(b),

given b = b̂, which is defined as:

H(b̂) =−∂ 2logg(b)
∂b2 |b=b̂.

The term f (y,b;θ) can be viewed as a “complete data” likelihood element, while

f (y, b̂;θ)(2π)
q
2 det(−H(b̂))−

1
2 (see equation 3.1) is termed the“observed data” likelihood.

For the joint model proposed earlier, the likelihood function can be written:

L(θ ;y) =
k

∏
i=1

f
(

yA
i |bi

)
f
(

yB
i |bi

)
f (bi) ,

where θ = (β A,β B,ρ,σA,σB,σb).

Then the “complete data” log-likelihood function can be expressed as:

lc(θ ;y,b) =
k

∑
i=1

[
log f

(
yA

i |bi

)
+ log f

(
yB

i |bi

)
+ log f (bi)

]
.
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Since the probability density function of yi and bi are

f
(
yi j|bi

)
=

1√
2πσyi j

exp

{
−

(logyi j−Xi jβ −bi)2

2σ2

}

f (bi) =
1√

2πσb
exp

{
−(bi−0)2

2σ2
b

}
,

the “complete data” likelihood function may be rearranged as

lc(θ ;y,b) =
k

∑
i=1

n log

(
1√

2πσA

)
−

n

∑
j=1

logyA
i j−

1
2

n

∑
j=1

(
logyA

i j− (Xi jβ
A +bi)

σA

)2


+
k

∑
i=1

n log
(

1√
2πσB

)
−

n

∑
j=1

logyB
i j−

1
2

n

∑
j=1

(
logyB

i j− (Xi jβ
B +ρbi)

σB

)2


+
k

∑
i=1

log

(
1√

2πσb

)
− 1

2

(
bi

σb

)2
 ,

The Laplace approximation to the log likelihood is

l̃o(θ ;y, b̃) = lc(θ ;y, b̃)− 1
2

log

∣∣∣∣∣− 1
2π

∂ 2lc
∂b2

∣∣∣∣∣
b=b̃

.

Since ∂ 2lc/∂b2 is an a k× k matrix:

−



n
σ2

A
+ nρ2

σ2
B

+ 1
σ2

b
0 · · · 0

0 n
σ2

A
+ nρ2

σ2
B

+ 1
σ2

b
· · · 0

· · · · · · . . . · · ·

0 0 · · · n
σ2

A
+ nρ2

σ2
B

+ 1
σ2

b


k×k

,
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we have

l̃o(θ ;y, b̃) = lc(θ ;y, b̃)− 1
2

log

( 1
2π

)k
(

n
σ2

A
+

nρ2

σ2
B

+
1

σ2
b

)k
,

where b̃ = bi, i = 1,2, ...,k is the solution to

∂ l(i)c (θ ;y,bi)
∂bi

= 0, i = 1,2, ...,k

⇒
∑

n
j=1(Xi jβ

A− logyA
i j)+nbi

σ2
A

+
∑

n
j=1(ρXi jβ

B−ρ logyB
i j)+nρ2bi

σ2
B

+
bi

σ2
b

= 0

⇒ b̃i =

[
∑

n
j=1(Xi jβ

A− logyA
i j)

σ2
A

+
∑

n
j=1(ρXi jβ

B−ρ logyB
i j)

σ2
B

]
/

(
n

σ2
A

+
nρ2

σ2
B

+
1

σ2
b

)
.

Once b̃i is derived, then the “observed data” likelihood function lo is updated using the

current estimates b̃i. Subsequently, estimates of the parameters β A,β B,σA,σB,ρ,σb can

be obtained by solving the equation

∂ l̃o(θ ;y, b̃)
∂β A = 0

∂ l̃o(θ ;y, b̃)
∂β B = 0

∂ l̃o(θ ;y, b̃)
∂σA

= 0

∂ l̃o(θ ;y, b̃)
∂σB

= 0

∂ l̃o(θ ;y, b̃)
∂ρ

= 0

∂ l̃o(θ ;y, b̃)
∂σb

= 0.

The above procedures is iterated to convergence, given the starting the value β A(0), β B(0),

σ
(0)
A , σ

(0)
B , ρ(0), σ

(0)
b and b(0). This yields the estimates β̂ A, β̂ B, σ̂A, σ̂B, ρ̂ and σ̂b of the
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MLE.

The variance of the estimated parameters can be estimated using the diagonal elements of

the variance-covariance matrix

Cov(θ̂) =−

[
∂ 2l0(θ |b∗)

∂θ∂θ T

]−1

θ=θ̂

.

The elements of this matrix are provided in the appendix.

3.2 Inference Using the Marginal Likelihood

Inference using a marginal likelihood approach is not typically trivial for joint modeling.

However, in our situation, it is straightforward because it can be equivalently written in a

linear model form.

In this situation, we rearrange the proposed model to the equivalent joint linear models:

zA
i j = XA

i jβ
A +bi + ε

A
i j

zB
i j = XB

i jβ
B +ρbi + ε

B
i j,

where zi j = log(yi j), the logarithm of daily flow yi j.

Let zA
i and zA

i be the logarithm of daily flow in year i for station A and station B, respec-

tively. Based on the linear models, the marginal joint density in our case can be easily

derived as:
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L(θ ;zA
i ,zB

i )

= f (zA
i ,zB

i ;θ)

=
∫

f (zA
i ,zB

i ,bi;θ)dbi

=
∫

f (zA
i |bi;θ) f (zB

i |bi;θ) f (bi)dbi

=
∫ n

∏
j=1

 1√
2πσA

exp

{
−

(zA
i j−Xβ A−bi)2

2σ2
A

}
 1√

2πσB
exp

{
−

(zB
i j−Xi jβ

B−ρbi)2

2σ2
B

} 1√
2πσb

exp

{
− b2

i

2σ2
b

}dbi

=
∫ ( 1√

2π

)2n+1 1
σn

Aσn
Bσb

exp

{
−

∑
n
j=1 (zA

i j−Xi jβ
A−bi)2

2σ2
A

−
∑

n
j=1 (zB

i j−Xi jβ
B−ρbi)2

2σ2
B

−
b2

i j

2σ2
b

}
dbi

=
(

1√
2π

)2n+1 1
σn

Aσn
Bσb

exp

{
−

∑
n
j=1 (yA

i j−Xi jβ
A)2

2σ2
A

−
∑

n
j=1 (yB

i j−Xβ B)2

2σ2
B

}
∫

exp

−
[

n
2σ2

A
+

nρ2

2σ2
B

+
1

2σ2
b

]
b2

i

+

[
∑

n
j=1 (zA

i j−Xi jβ
A)

σ2
A

+
∑

n
j=1 ρ(zB

i j−Xi jβ
B)

σ2
B

]
bi

dbi.

Let

σ
∗2 =

(
n

σ2
A

+
nρ2

σ2
B

+
1

σ2
b

)−1

µ
∗
i =

[
∑

n
j=1 (zA

i j−Xi jβ
A)

σ2
A

+
∑

n
j=1 ρ(zB

i j−Xi jβ
B)

σ2
B

]
σ
∗2.
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Therefore,

L(θ ;zA
i ,zB

i )

= (
1√
2π

)2n+1 1
σn

Aσn
Bσb

exp

{
−

∑
n
j=1 (zA

i j−Xi jβ
A)2

2σ∗2
A

−
∑

n
j=1 (zB

i j−Xi jβ
B)2

2σ2
B

+
µ∗2

i
2σ∗2

}
√

2πσ
∗
∫ 1√

2πσ∗ exp

{
−(bi−µ∗

i )2

2σ∗2

}
dbi

=
(

1√
2π

)2n
σ∗

σn
Aσn

Bσb
exp

{
−

∑
n
j=1 (zA

i j−Xi jβ
A)2

2σ2
A

−
∑

n
j=1 (zB

i j−Xi jβ
B)2

2σ2
B

+
µ∗2

i
2σ∗2

}
.

The log likelihood function over all observations zA
i and zB

i , i = 1,2, ...,k becomes:

k

∑
i=1

[
2n log

√
2π + logσ

∗−n logσA−n logσB− logσb

]
−

k

∑
i=1

[
∑

n
j=1 (zA

i j−Xi jβ
A)2

2σ2
A

+
∑

n
j=1 (zB

i j−Xi jβ
B)2

2σ2
B

+
µ∗2

i
2σ∗2

]
.
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CHAPTER 4

STREAMFLOW ANALYSIS

We apply the shared parameter model to the analysis of the streamflow data. Table 2

provides estimates of the parameters from fitting the joint model. The estimates of σA

and σB are very close, indicating hydrological connection in variation of flows for the two

stations. We note that the link parameter ρ is significant. Though not shown here, we note

that bootstrap estimates of the parameters show the normal approximation to be valid.

Table 4.1: Estimates and standard errors of parameters in the joint model

Parameter Laplace approximation Marginal Density
Estimate SE Estimate SE

σA 1.831 0.021 1.835 0.022
σB 1.696 0.020 1.690 0.021
ρ 2.000 0.021 2.190 0.060
σb 1.379 0.155 1.261 0.144
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Figure 4.1 displays the posterior estimated value of log flow against day of year, overlaid

on the mean observed log daily value averaged over 40 years. The seasonal smoothers use

8 interior knots and seem to capture the seasonality for both stations reasonably well. As

shown in Figure 4.1, the mean flow for station A seems to peak around the 50th day in the

study window while mean flow for station B peaks at about day 80. As well, mean flows

have somewhat different shape with flows for station A tending to remain high over the

period. Figure 4.2 plots the posterior estimated values and observed values of log daily

flow averaged over 5-day windows and the 40-year period; this demonstrates very good

correspondence between observed and expected at the 5-day level of grouping.
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The fitted model is also illustrated through the plot of posterior estimates of log daily flow

over 40 years. Note that some very low flows are not well captured by the model. As well

note the lower values of flow for both stations from 1988 to 1993 identified in the Figure

4.3.

To assess the goodness of fit for the specified model, posterior estimated values vs observed

values of log flow over 5-day windows averaged over 40 years are examined in Figure 4.4.

The figure shows fair correspondence between observed and fitted values.

Figure 4.5 presents mean and observed annual log flow values, again, illustrating the

drought period in 1988 to 1993.
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Figure 4.6 plots posterior estimates of bi and their 95% confidence intervals. We observe

the largest annual effect in 1976 (year 13), and low values in 1988-1993 (year 25-30); this

is consistent with observations in Figure 4.5, and as well in the exploratory analysis.
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0
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b
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Figure 4.6: Posterior estimates of the annual effect and their 95% confidence intervals.
Some extreme values are highlighted in red
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To further assess goodness of fit for the proposed model, the residuals for both models

are examined. This is mainly illustrated by the density plot of residuals. As we see from

Figure 4.6, the two plots suggests that the normality assumption is reasonably satisfied.

The density plot for the first station shows slight left skewness, which is not surprising. As

we pointed out previously, this is mainly because of some low values for that station.
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Figure 4.7: Density plot of residuals for station A and station B
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The analysis here is based on a cubic spline with eight interior knots. In order to capture the

seasonality adequately while avoiding over-fitting, a small sensitivity analysis is conducted

by varying the number of knots utilized. We explore cubic spline smoothing with 5, 6, 7,

8, 9 and 10 knots. The residual sum of squares (RSS), calculated as

∑
k
i=1 ∑

n
j=1(logyi j−X β̂ − b̂i), here i = 40 and j = 92, is listed below. Eight knots seem

to provide a reasonable fit for both stations; changes in SSE are very small with a larger

number of knots; even seven knots may be sufficient.

Table 4.2: Residual sum of squares by varying the number of knots for both stations

number of knots SSR for station A SSR for station B
5 14597.975 13688.077
6 14595.357 13687.495
7 14575.561 13681.641
8 14569.024 13680.308
9 14572.067 13679.824
10 14573.103 13679.923
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CHAPTER 5

POWER AND SAMPLE SIZE REQUIRED

FOR TESTING THE LINK PARAMETER

It is useful in practice to investigate what sample size should be required in order to achieve

a reasonable power for testing a hypothesis. Therefore, it is important to routinely evaluate

the power of testing procedures. In joint modeling, the emphasis is typically on the shared

parameter and assessment of linkage across outcomes. There has been little discussion on

whether and in what situations that parameter may be estimated well. This section draws

attention to this concern by considering the problem for the streamflow analysis context.

To examine the strength of the evidence of the shared parameter between two sites, or in

general, between two outcomes modeled as in this study, a simulation study is conducted.

We are concerned with a test of

H0 : ρ = 0 versus H1 : ρ 6= 0

Under H0, there is no shared common effect for the two outcomes. In other situations of

joint modeling, testing H0 : ρ = 1 versus H1 : ρ 6= 1 may be of interest.

Keeping the length of the series within annual clusters the same as in the streamflow anal-
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ysis and using the estimated mean values as derived in the analysis, we generate the longi-

tudinal data for our study using a series of values of σA, σB, σb and ρ . To be specific, set

r = 1, then the iterative procedure is described as follows:

1. At the rth replicate, generate b(r) =
(

b(r)
1 ,b(r)

2 , ...,b(r)
k

)
∼ N(0,σb),

yA(r)
i j ∼ N

(
Xβ A +bi,σ

2
A

)
and yB(r)

i j ∼ N
(

Xβ B +ρbi,σ
2
B

)
,

2. Fit the joint model using yA(r)
i j and yB(r)

i j to obtain the estimate of ρ̂(r) and standard

deviance of ρ̂(r), then construct the 95% confidence interval for ρ , which is denoted

as ρ̂
(r)
L and ρ̂

(r)
U

3. Set r to r +1. If r ≤ R, return to step 1; else stop.

Here R is set to 500. Then the power can be calculated as

1−β = 1−
R

∑
r=1

I
(

ρ̂
(r)
L < 0 < ρ̂

(r)
U

)
/R

Where I(A) is the indicator for event A. Our study design considers 3 scenarios:

• S1:σA = σB = 1.8, σb = 1.3, values close to the estimates obtained in the streamflow

analysis; k, the number of years of data, takes values 5, 10, 20 or 40; ρ = 0, 0.05,

0.20, 0.6, 0.8, 1;

• S2: σA = σB = 1.8, σb = 0.5, k = 20, 40, 60 or 80; ρ = 0, 0.05, 0.20, 0.6, 0.8, 1;

• S3: σA = σB = 1, 2, 4, 6, 8, 10, σb = 1; ρ = 0.2, 0.5, 1

Figure 5.1 and 5.2 provide power curves for S1 and S2 respectively. Under S1, with 40

years of data as in our study, power is reasonably high. With 5 years of data, there is

lower power to detect smaller values of ρ . Under S2, with the annual effect having a less
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dominant effect, about 80 years of data is required to achieve reasonable power for values

of ρ greater than 0.2.

This is also seen in Figure 5.3, which compares power curves for the same number of years

of data but with different values of σb (S1 vs S2).

Figure 5.4 provides power curves under S3. We consider the power as a function of σA by

varying σA(= σB) from 1, 2, 4,... to 10 and keeping σb equal to 1. Three different values

of ρ are considered. As shown in the Figure 5.4, as the dominance of σA(= σB) decreases,

the power increases for fixed ρ . Of course, this is modulated by the size of ρ .
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CHAPTER 6

FUTURE WORK

In this project, we developed a joint model for the streamflow data with a cubic spline

smoother for the temporal trend and with an annual shared random effect across the out-

comes. This joint outcome modeling approach provided a fair description of the pattern

of streamflow at two stations. However, there are several extensions required to consider

streamflow well, including smoother selection, incorporation of additional random effects,

handling many zeros and accounting for auto-correlation.

6.1 Penalized Spline Smoothers

To assess the fit of the smoothers we performed sensitivity analysis by altering the num-

ber of knots in our cubic spline. Alternatively, we may fit a model with a large number

of evenly spaced knots and control for overfitting by including a penalty term in the op-

timization. By employing penalized spline smoothing, the likelihood function criteria be-

comes lp(β ) = l(β )− 1/2∑ j λ jβ
T S jβ , where S is a matrix of known coefficients and λ

is a smoothing parameter which controls the trade-off between model fitting and model

smoothness (see Wood (2006)). By doing this, the problem of knot selection is reduced to

estimating the smoothing parameter.
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Multi-dimensional smoothers, for example, tensor product splines, which produce knot

free bases for multiple predictors and are scale invariant, can also be considered. In the

future, we may also extend our model by adding a smoother of year.

Dealing with uncertainty in the basis function in joint models was considered by Bigelow

and Dunson (2009). Here, in a Bayesian framework, the number and location of knots

were determined by averaging models of the same class of multivariate linear splines but

with different numbers and locations of knots.

6.2 Station-Specific Random Effects

In our analysis, the models for streamflow data from two stations were joined via the use

of one shared random effect. However, the use of an additional station-specific random

effect can be explored to account for the variability arising from an annual effect at station

B which is not currently explained by the shared common random effect. In this case, the

extended model can be written as:

µ
A
i j = XA

i jβ
A +bi

µ
B
i j = XB

i jβ
B +ρbi +ai,

where ai ∼ N(0,σa) is the additional annual random effect for station B. The “complete

data” likelihood function can then be written as:

Lc(θ ;y,a,b) =
k

∏
i=1

[
f (yA

i |ai,bi) f (yB
i |ai,bi) f (ai) f (bi)

]
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and the “complete data” log-likelihood function can be written as:

lc(θ ;y,a,b) =
k

∑
i=1

n log

(
1√

2πσAyi j

)
− 1

2

n

∑
j=1

(
logyA

i j− (Xi jβ
A +bi)

σA

)2


+
k

∑
i=1

n log

(
1√

2πσByi j

)
− 1

2

n

∑
j=1

(
logyB

i j− (Xi jβ
B +ρbi +ai)

σB

)2


+
k

∑
i=1

log

(
1√

2πσb

)
− 1

2

(
bi

σb

)2


+
k

∑
i=1

log

(
1√

2πσa

)
− 1

2

(
ai

σa

)2
 .

Using the Laplace approximation as derived in Section 3, the “observed data” likelihood

function lo can be derived as:

l̃o(θ ;y, ã, b̃) = lc(θ ;y, ã, b̃)− 1
2

log

∣∣∣∣∣− 1
2π

∂ 2lc
∂ (a,b)2

∣∣∣∣∣
a=ã,b=b̃

,

where θ = (β A,β B,ρ,σA,σB,σa,σb); here ∂ 2lc/∂ (a,b)2 has elements:

∂ 2lc
∂b2

i
= − n

σ2
A
− nρ2

σ2
B
− 1

σ2
b

∂ 2lc
∂a2

i
= − n

σ2
B
− 1

σ2
a

∂ 2lc
∂bi∂ai

=
∂ 2lc

∂ai∂bi
=−nρ

σ2
B

∂ 2lc
∂bi∂a j

= 0 (where i 6= j).
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Thus, ∂ 2lc/∂ (a,b)2 becomes a 2k×2k matrix:

−



n
σ2

A
+ nρ2

σ2
B

+ 1
σ2

b
0 ... 0 nρ

σ2
B

0 ... 0

0 n
σ2

A
+ nρ2

σ2
B

+ 1
σ2

b
... 0 0 nρ

σ2
B

... 0

... ...

0 0 ... n
σ2

A
+ nρ2

σ2
B

+ 1
σ2

b
0 0 ... nρ

σ2
B

nρ

σ2
B

0 ... 0 n
σ2

B
+ 1

σ2
a

0 ... 0

0 nρ

σ2
B

... 0 0 n
σ2

B
+ 1

σ2
a

... 0

... ...

0 0 ... nρ

σ2
B

0 0 ... n
σ2

B
+ 1

σ2
a


2k×2k

The “observed data” log likelihood function is :

l̃o(θ ;y, ã, b̃) = lc(θ ;y, ã, b̃)

−1
2

log


(

1
2π

)2k
( n

σ2
A

+
nρ2

σ2
B

+
1

σ2
b

)(
n

σ2
B

+
1

σ2
a

)
−

(
nρ

σ2
B

)2
k
 .

A similar iteration procedure as described in Chapter 3 is employed to obtain estimates.

The variances of the estimators can be calculated by deriving diagonal terms of the variance-

covariance matrix:

Cov(θ̂) =−

[
∂ 2lo(θ ;y,a∗,b∗)

∂θ∂θ T

]−1

θ=θ̂

.

6.3 Joint Outcome Modeling of Zero Heavy Data

In many intermittent stream flow studies, many zero values of daily flow may be observed

during dry periods in the summer. In this situation, a two-part model which accommodates

zeros is helpful. We utilize a mixture of a log-normal and a zero-heavy component to

account for the zeros. In this case, conditional on the annual random effect bi described
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above, suppose that response variable Yi j, representing streamflow at a specific station, is

distributed as

Yi j|zi j =


0 if zi j = 1

lognormal(µi j,σ
2) if zi j = 0

The variable zi j is a latent Bernoulli indicator for the zero-heavy component with mean

function πi j, whereas lognormal(µi j,σ
2) represents an independent log-normal random

variable with mean µi j and variance component σ2.

The parameters µi j and πi j may depend on random effects bi and di as follows:

µ
A
i j = XA

1i jβ
A +bi, logit(πA

i j) = XA
2i jα

A +di

µ
B
i j = XB

1i jβ
B +ρbi, logit(πB

i j) = XB
2i jα

B + γdi

where ρ and γ are two link parameters for the two components of the models, character-

izing shared common factors in both components; bi is the same annual effect specified

in our previously proposed model, di is another shared annual random effect in the zero-

heavy component. Note that XA
1i j, XB

1i j, XA
2i j, XB

2i j may contain the same covariates. The

probability density function of Yi j is:

f (Yi j = yi j) =


πi j if yi j = 0

(1−πi j) 1
yi jσ

√
2π

exp
{
− (logyi j−µi j)2

2σ2

}
if yi j = 1
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The “complete-data" likelihood function L(θ ;y,bi,di) can then be specified as:

k

∏
i=1

n

∏
j=1

I(zA
i j = 1){π

A
i j}+ I(zA

i j = 0)

(1−π
A
i j)

1

yA
i jσA

√
2πA

exp

{
−

(logyA
i j−µA

i j)
2

2σ2
A

}


I(zB
i j = 1){π

B
i j}+ I(zB

i j = 0)

(1−π
B
i j)

1

yB
i jσB

√
2πB

exp

{
−

(logyB
i j−µB

i j)
2

2σ2
B

}
 f (bi) f (di)

As well in intermittent streamflow studies, quite often, the problem of autocorrelation

arises, for example, dry days are often serially correlated. We may extend our model to

account for autocorrelation in each of the components. This section defines important next

steps in model development for streamflow data.
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APPENDIX A

VARIANCE-COVARIANCE MATRICES

FOR THE LAPLACE APPROXIMATION

In section 3.2 in Chapter 3, the variance-covariance matrix is:



∂ 2lo
∂ (β A

1 )2
∂ 2l0

∂β A
1 ∂β A

2
... ∂ 2lo

∂β A
1 ∂β B

10

∂ 2l0
∂β A

1 ∂σA

∂ 2lo
∂β A

1 ∂σB

∂ 2l0
∂β A

1 ∂ρ

∂ 2lo
∂β A

1 ∂σb

... ∂ 2lo
∂ (β A

2 )2 ... ∂ 2lo
∂β A

2 ∂β B
10

∂ 2lo
∂β A

2 ∂σA

∂ 2lo
∂β A

2 ∂σB

∂ 2lo
∂β A

2 ∂ρ

∂ 2l0
∂β A

2 ∂σb

... ... ... ... ... ... ... ...

... ... ... ∂ 2lo
∂ (β B

10)
2

∂ 2lo
∂β B

10∂σA

∂ 2lo
∂β B

10∂σB

∂ 2l0
∂β B

10∂ρ

∂ 2l0
∂β B

10∂σb

... ... ... ... ∂ 2lo
∂σ2

A

∂ 2lo
∂σA∂σB

∂ 2lo
∂σA∂ρ

∂ 2l0
∂σA∂σb

... ... ... ... ... ∂ 2lo
∂σ2

B

∂ 2lo
∂σB∂ρ

∂ 2lo
∂σB∂σb

... ... ... ... ... ... ∂ 2lo
∂ρ2

∂ 2lo
∂ρ∂σb

... ... ... ... ... ... ... ∂ 2lo
∂σ2

b


24×24
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Where

∂ 2lo
∂ (β A

1 )2 = −
k

∑
i=1

n

∑
j=1

(xi j(1))2

σ2
A

∂ 2lo
∂ (β A

2 )2 = −
k

∑
i=1

n

∑
j=1

(xi j(2))2

σ2
A

∂ 2lo
∂β A

1 ∂β A
2

= −
k

∑
i=1

n

∑
j=1

xi j(1)xi j(2)

σ2
A

...

∂ 2lo
∂ (β B

10)2 = −
k

∑
i=1

n

∑
j=1

(xi j(10))2

σ2
B

∂ 2lo
∂β B

1 ∂β B
2

= −
k

∑
i=1

n

∑
j=1

xi j(1)xi j(2)

σ2
B

...

∂ 2lo
∂β A

1 ∂β B
10

= 0

...

∂ 2lo
∂σ2

A
=

k

∑
i=1

n

∑
j=1

[
1

σ2
A
−

3(lnyi j−Xβ −bi)2

σ4
A

]
−

kn[n+(nρ2

σ2
B

+ 1
σ2

b
)3σ2

A]

(nσA +[nρ2

σ2
B

+ 1
σ2

b
)σ3

A]2

∂ 2lo
∂σ2

B
=

k

∑
i=1

n

∑
j=1

[
1

σ2
B
−

3(lnyi j−Xβ −ρbi)2

σ4
B

]
−

knρ2[nρ2 +(nρ2

σ2
A

+ 1
σ2

b
)3σ2

B]

[nρ2σB +( n
σ2

A
+ 1

σ2
b
)σ3

B]2

∂ 2lo
∂σ2

b
=

k

∑
i=1

[
1

σ2
b
− 3b2

i

σ4
b

]
− k

3( n
σ2

A
+ nρ2

σ2
B

)σ2
b +1

[( n
σ2

A
+ nρ2

σ2
B

)σ3
b +σb]2

∂ 2lo
∂ρ2 = −

k

∑
i=1

n

∑
j=1

b2
i

σ2
B

+ kn
nρ2− ( n

σ2
A
+ 1

σ2
b
)σ2

B

[nρ2 +( n
σ2

A
+ 1

σ2
b
)σ2

B]2

...
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∂ 2lo
∂σA∂σB

= kn

2nρ2σ3
A

σ3
B

[nσA +(nρ2

σ2
B

+ 1
σ2

b
)σ3

A]2

∂ 2lo
∂σA∂ρ

= −kn

2nρσ3
A

σ2
B

[nσA +(nρ2

σ2
B

+ 1
σ2

b
)σ3

A]2

∂ 2lo
∂σA∂σb

= kn

2σ3
A

σ3
b

[nσA +(nρ2

σ2
B

+ 1
σ2

b
)σ3

A]2

∂ 2lo
∂σB∂ρ

= −2
k

∑
i=1

n

∑
j=1

(lnyB
i j−Xβ B−ρbi)bi

σ3
B

+ kn
2ρ( n

σ2
A
+ 1

σ2
b
)σ3

B

[nρ2σB +( n
σ2

A
+ 1

σ2
b
)σ3

B]2

∂ 2lo
∂σB∂σb

= kn
2ρ2 σ3

B
σ3

b

[nρ2σB +( n
σ2

A
+ 1

σ2
b
)σ3

B]2

∂ 2lo
∂ρ∂σb

= −kn
2ρ

σ2
B

σ3
b

[nρ2 +( n
σ2

A
+ 1

σ2
b
)σ2

B]2

∂ 2lo
∂σA∂β A

1
= −2

k

∑
i=1

n

∑
j=1

(lnyA
i j−Xβ A−bi)xi j(1)

σ3
A

∂ 2lo
∂σA∂β A

10
= −2

k

∑
i=1

n

∑
j=1

(lnyA
i j−Xβ A−bi)xi j(10)

σ3
A

∂ 2lo
∂σB∂β B

1
= −2

k

∑
i=1

n

∑
j=1

(lnyB
i j−Xβ B−ρbi)xi j(1)

σ3
B

∂ 2lo
∂σB∂β B

10
= −2

k

∑
i=1

n

∑
j=1

(lnyB
i j−Xβ B−ρbi)xi j(10)

σ3
B

∂ 2lo
∂β B

1 ∂ρ
= −

k

∑
i=1

n

∑
j=1

xi j(1)bi

σ2
B

...

∂ 2l0
∂β B

10∂ρ
= −

k

∑
i=1

n

∑
j=1

xi j(10)bi

σ2
B
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all the other terms are zero.
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