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ABSTRACT

A time series often contains various systematic effects such as trends and season-

ality. These different components can be determined and separated by decomposition

methods. In this thesis, we discuss time series decomposition process using non-

parametric regression. A method based on both loess and harmonic regression is

suggested and an optimal model selection method is discussed. We then compare the

process with seasonal-trend decomposition by loess STL (Cleveland, 1979). While

STL works well when that proper parameters are used, the method we introduce is

also competitive: it makes parameter choice more automatic and less complex.

The decomposition process often requires that time series be evenly spaced; any

missing value is therefore necessarily estimated. For time series with seasonality, it

is preferable to use the seasonal information to estimate missing observations. The

seasonal adjustment algorithm (McLeod et al., 1983) can be used for monthly time

series. In this thesis, we examine the algorithm and revise it to cover daily data cases.

KEY WORDS: Time series decomposition, Loess, Harmonic regression, Model

selection, Missing data estimation.
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Introduction

Chapter 1

Introduction

When one analyzes a time series, it often shows different systematic patterns. These

patterns include trends and seasonality and are the results of various causes. Gen-

erally, a trend component represents the long-term effects of a time series, while a

seasonal component logically explains effects that results from the changing seasons in

a year. Regarding a time series as a combined output of different components, we can

build a statistical model for each component and decompose the series into different

parts. In this thesis, we introduce time series decomposition methods using nonpara-

metric estimations where a proper model form is determined by the model selection

process. Decomposition of time series into long term trends, cyclical components in-

cluding stochastic cyclical components as with business cycles or deterministic cyclical

components due to seasonality, has a long history in economic time series. Klein (1997,

Ch. 9) provides a review of some of these time series decompositions methods. The

focus in this thesis is on environmental time series. Useful research monographs on

existing methods for such time series include Mudelsee (2010); Chandler and Scott

(2011). The objective of this thesis is to extend the seasonal decomposition methods

discussed by Hipel and McLeod (1994); McLeod et al. (1983) to the case of daily time

series and allowing for irregular spacing and missing values.

In Chapter Two, we introduce locally weighted scatterplot smoothing or loess

(Cleveland, 1979) and harmonic regression, including their features. Loess, a widely

used nonparametric regression method, has sufficient flexibility to be useful to fit a
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model for either a long-term or a seasonal effect. However, for a seasonal pattern that

has a one-year period, we can also use harmonic regression where the predictors consist

of sinusoids. Using sinusoids as predictors highlights several important characteristics

of harmonic regression, including aliasing, orthogonality and Fourier frequency. We

introduce these features because they are essential for building a proper model.

In nonparametric model estimation, we compare various model structures and

use one that balances both conformity to data and the parsimony principle. This

approach can be formulated by analogy with mathematical programming, viz. the

model with the fewest parameters that adequately fits the data is preferred (McLeod,

1993). We can achieve the work based on model selection criteria, such as AIC and

BIC. In Chapter Three, we present Akaike information criterion AIC (Akaike, 1974)

and Bayesian information criterion BIC (Schwarz, 1978). Using these criteria, we can

determine suitable models for fitting time series components.

In Chapter Four, we consider time series where a seasonal pattern exists. Using

graphical methods such as a seasonal subseries plot (Cleveland, 1993) and multiple

boxplots, we visually confirm the existence of a seasonality. Then loess or harmonic

regression can be employed to model the component. If the variations are seasonal,

scaling is preferred for variance correction.

Chapter Five presents the time series decomposition assuming an additive or mul-

tiplicative model. Since a multiplicative model can be transformed into an additive

model by taking logarithms, we can only consider additive model situations. For

decomposition, we introduce the seasonal-trend decomposition process by loess STL

(Cleveland et al., 1990), which uses loess to fit any component present in a time se-

ries. We then present another method, where loess and harmonic regression are used

for long-term and seasonal components, respectively. By the backfitting algorithm

(Friedman and Stuetzle, 1981), the components are separated without having effects

2



from any other components.

When we build models for seasonal patterns in a time series using loess or harmonic

regression, we are often required to accommodate a condition for the time series to

be evenly spaced. In reality, however, we commonly encounter situations where some

observations are missing. In Chapter Six, we specify the missing data problem in a

seasonal time series. For an unevenly spaced time series where a seasonal pattern is

present, we can measure the seasonal effects that repeat and use them to estimate of

missing observations. As a measuring tool, we consequently introduce the seasonal

adjustment algorithm (McLeod et al., 1983). Using this algorithm, missing values in

a seasonal time series can be estimated, which makes an unevenly spaced time series

an evenly spaced one. The algorithm can be used not only on monthly data but also

on daily time series.

3



Smoothing Methods

Chapter 2

Smoothing Methods

2.1 Introduction

Various regression methods are used for analyzing time series. Our decision to employ

a particular method generally depends on our assumptions and the nature of the data.

One of the popular methods is linear regression because it is simple to use and easy

to model. However, it is not an appropriate choice if the underlying pattern of data

is not linear. An underlying critical assumption is also that the parametric form

of the true model is known. These features are often considered unrealistic and a

better strategy may be to let the data choose a proper model. In other words we may

prefer nonparametric models such as loess (Cleveland, 1979) and spline regression.

In particular, if a seasonal component is present in a time series, loess or harmonic

regression may be useful for estimating the component. Loess has sufficient flexibility

that it may provide a good fit for cyclical fluctuation of the series. On the other hand,

because a seasonal pattern repeats with a one year period, harmonic regression, where

the predictors consist of sinusoids may also be employed.

In Section 2.1, we start with the local regression principle and introduce the robust

loess method. Although this is a nonparametric regression method, both smoothing

and the polynomial degree parameters must be given.

In Section 2.2, we present harmonic regression and its properties. We consider

a few fundamental features of harmonic regression such as aliasing, orthogonality

and Fourier frequency (Bloomfield, 1976). These properties are essential for building

4



proper harmonic models and for deriving simple formulas for least square estimates

of parameters.

2.2 Loess

2.2.1 The Model

Loess (Cleveland, 1979), also known as local regression, is a nonparametric smooth-

ing method of a dependent variable y given covariates x. Although the number of

observation is finite, the smoothing curve can be defined everywhere as well as at the

observed points xi, i=0,1,...,n, where n is the sample size.

We assume a model of the form

y = g(x) + ε

where g is an unknown regression function and ε is an error term. The errors are

IID with mean 0 and a constant variance.

In order to fit a loess model, we must choose the smoothing parameter (also known

as bandwidth parameter) and polynomial degree, denoted as α and p, respectively.

Usually, p has a value of 1 or 2, where p = 1 corresponds to local linear fits and p

= 2 to local quadratic polynomials. α indicates the proportion of the data used for

local regression and thus should be a positive value between 0 and 1. α is called

the smoothing parameter because it controls the smoothness of a regression fit. For

example, if α = 0.2, only twenty percent of the data is used for local regression and,

in effect, the resulting model reflects drastic variations and is less smooth. On the

other hand, if α = 0.7, seventy percent of the data is used for a local fit, giving a much

smoother model. That is, a large α makes the model less sensitive to data variations.
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The first step for fitting a loess model at any point x is to select nα number of

observations whose explanatory variable outcomes are closest to x. If nα is not an

integer, it would be rounded to the next largest integer. Let q be nα truncated to be

an integer and x(k) be the kth closest point (k=1,2,...,q).

Before we fit a local polynomial with degree p using the subset observations,

we must give a weight to each subset point based on its horizontal distance to x.

Generally, we use the tricube weight function W (x) written as

W (x) =

 (1− |x|3)3 |x|≤1

0 otherwise.

Then, for any x, the weight given to an observed point (xi, yi) is determined as

W (
xi−x
x(q)−x

). Note that the weight at x(k) (k = 1, 2, ..., q) is maximized when k=1

and decreases as k increases. In other words, according to the weight function, points

have large weights if their explanatory variable value outcomes are near to x, while

small weights are given to observations that are far from x. Zero weights are assigned

to observations whose horizontal distances are equal to or further than the distance

between x and xq. Using the weighted subset data, we build a local fit at any x. The

value on the polynomial is the loess fit.

At any point x, a local polynomial with degree p is fitted by minimizing the

weighted sum of squares

n∑
i=1

(yi − β0 − β1xi − ...− βpx
p
i )

2W (
xi − x
x(q) − x

)

with respect to β0, β1, ..., βp. The loess fit at x is then

ĝ(x) = β̂0 + β̂1x+ ...+ β̂px
p.

6



2.2.2 Robust Loess Method

If there appears to be outliers in the data, it may be preferable to use a robust

version of loess to reduce model sensitivity to the outliers. The robust loess method

(Cleveland, 1979) starts with calculating the residuals from a loess model. Let ei be

the residual at xi. That is,

ei = yi − ĝ(xi)

where ĝ(xi) is the loess fit at xi. Using the bisquare weight function which is

defined as

B(x) =

 (1− |x|2)2, |x|≤1

0 otherwise
,

the robustness weight δi is determined by

δi = B(
ei

6M
)

where M is the median of absolute values of the residuals.

With the robustness weights, the local regression model is revised by minimizing

n∑
i=1

(yi − β0 − β1xi − ...− βpx
p
i )

2δiW (
xi − x
x(q) − x

).

Then new loess fits are obtained and so are new residuals. We repeat the procedure

several times until it results in the final robust estimate.

7



2.3 Harmonic Regression

2.3.1 The Model

The harmonic regression uses harmonics as its explanatory variables. The model is

especially useful when analyzing a time series where the seasonality exists. For a

periodic time series zt, a simple model with a single sinusoid may be written as

zt = µ+R cos 2π(ft+ φ) + εt (1)

where µ, R, f , φ and εt are the constant, amplitude, frequency, phase and white

noise, respectively. Since frequency is known and is a fixed number, the model has

three parameters - the constant, amplitude and phase. The least square method may

be used for estimating the parameters. Computation is complicated, however, in this

equation form, so instead the following version is preferable.

zt = µ+R cos 2π(ft+ φ) + εt

= µ+R(cos 2πφ cos 2πft− sin 2πφ sin 2πft) + εt

= µ+R cos 2πφ cos 2πft−R sin 2πφ sin 2πft+ εt

= µ+ A cos 2πft+B sin 2πft+ εt

where A is R cos 2πφ and B is −R sin 2πφ. Now µ, A and B are model parameters

and estimating these parameters is equivalent to estimating the parameters in (1).

A time series often shows a complicated periodic pattern. In this case, building

a proper model is barely possible using a single sinusoid because the residuals of the

model would still exhibit parts of seasonality. This problem may be solved by adding

other harmonic terms with different frequencies. That is, the modeling strategy is to

8



keep adding new sinusoids until the residuals no longer show periodic behaviour. For

instance, a harmonic model with two sinusoids may be described as

zt = µ+R1 cos 2π(f1t+ φ1) +R2 cos 2π(f2t+ φ2) + εt

= µ+ A1 cos 2πf1t+B1 sin 2πf1t+ A2 cos 2πf2t+B2 sin 2πf2t+ εt

2.3.2 Aliasing

The use of harmonic regression requires that the frequency f be within the range

0 < f ≤ 1
2∆ , where ∆ is the sampling interval. If 1/2∆ < f < 1/∆, there exists an

’alias’, denoted as λ, such that λ = 1/∆− f and thus 0 < λ ≤ 1/2∆. Then,

zt = µ+ A cos 2πft+B sin 2πft+ εt

= µ+ A cos 2π(1/∆− λ)t+B sin 2π(1/∆− λ)t+ εt

= µ+ A cos (2πt/∆− 2πλt) +B sin (2πt/∆− 2πλt) + εt

= µ+ A cos 2πλt−B sin 2πλt+ εt

Thus, f and λ are indistinguishable in a harmonic model. As a solution of this

indeterminacy, the range of f is restricted to be between 0 and 1/2∆. In this paper,

we assume that ∆ = 1.

2.3.3 Fourier frequency

A frequency f is a Fourier frequency if the corresponding sinusoid executes an integer

number of cycles in the span of the series. In other words, a Fourier frequency fj is

9



defined as

fj =
j

n
j = 1, 2, ...,

n

2

where n is the length of the time series. For instance, a sinusoid with frequency

f3 = 3/n completes exact 3 cycles in the span of the series. Note that fn
2

= 1
2 and

this is the highest Fourier frequency due to the aliasing property.

Fourier frequency is crucial to hold the orthogonality between predictor variables,

as will be introduced in the next section.

2.3.4 Orthogonality

Our focus is to evaluate the orthogonality between predictor variables (i.e. harmonic

terms) at Fourier frequencies. In order to do so, we use the Euler relation

eix = cosx+ i sinx

and its inverse forms

cosx =
1

2
(eix + e−ix) sinx =

1

2i
(eix − e−ix).

First,

n∑
t=1

cos 2πft =
1

2

n∑
t=1

(e2πift + e−2πift).

n∑
t=1

e2πift =
e2πif (e2πifn − 1)

e2πif − 1

=
e2πifeπifn(eπifn − e−πifn)

eπif (eπif − e−πif )

10



= eπif(n+1)(
eπifn − e−πifn

eπif − e−πif
)

= (cos πf(n+ 1) + i sin πf(n+ 1))
2i sin πfn

2i sin πf

= (cos πf(n+ 1) + i sin πf(n+ 1))
sin πfn

sin πf

and similarly,

n∑
t=1

e−2πift = (cosπf(n+ 1)− i sin πf(n+ 1))
sinπfn

sin πf
.

n∑
t=1

cos 2πft =
1

2

n∑
t=1

(e2πift + e−2πift)

=
1

2
((cosπf(n+ 1) + i sinπf(n+ 1))

sin πfn

sin πf

+ (cos πf(n+ 1)− i sin πf(n+ 1))
sin πfn

sinπf
)

= cos πf(n+ 1)
sinπfn

sin πf

and similarly,

n∑
t=1

sin 2πft = sinπf(n+ 1)
sinπfn

sin πf
.

If f is a Fourier frequency, fn becomes an integer and thus sinπfn = 0, which

results in
∑n
t=1 cos 2πft =

∑n
t=1 sin 2πft = 0. In other words, any cosine or sine

term at a Fourier frequency is orthogonal to the constant term. The relations below

also demonstrate that any cosine or sine term at a Fourier frequency is orthogonal to

another cosine or sine term at another Fourier frequency.
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Let fk and fj be Fourier frequencies and fk > fj . Then both fk + fj and fk − fj

are also Fourier frequencies and thus

n∑
t=1

cos (2πfkt) sin (2πfjt) =
n∑
t=1

1

2
(sin 2π(fk + fj)t+ sin 2π(fk − fj)t)

=
1

2

n∑
t=1

sin 2π(fk + fj)t+
1

2

n∑
t=1

sin 2π(fk − fj)t

= 0 + 0 = 0

n∑
t=1

cos (2πfkt) cos (2πfjt) =
n∑
t=1

1

2
(cos 2π(fk + fj)t+ cos 2π(fk − fj)t)

= 0

n∑
t=1

sin (2πfkt) sin (2πfjt) = −
n∑
t=1

1

2
(cos 2π(fk + fj)t− cos 2π(fk − fj)t)

= 0

2.3.5 Least Square Estimates with orthogonality

Based on the relations introduced in the previous section, we can easily obtain least

square estimators of the model parameters. Consider a general regression model

below. We use cosines and sines with all possible Fourier frequencies as predictors.

12



At this moment we assume that n is even.

zt = µ+
∑

0<j<n
2

(Aj cos 2πfjt+Bj sin 2πfjt) + An
2

cos 2πfn
2
t+ εt

Note that j = n
2 has no sine term, since sin πt = 0, ∀t = 1, 2, ..., n. Let X be the

design matrix; then X is a (n x n) matrix. That is,

X =


1 cos 2πf1t1 sin 2πf1t1 cos 2πf2t1 · · · cos 2πfn

2
t1

...
...

...
...

...
...

1 cos 2πf1tn sin 2πf1tn cos 2πf2tn · · · cos 2πfn
2
tn


By the orthogonal property,

n∑
t=1

cos2 2πfkt =
n∑
t=1

1

2
(cos 4πfkt+ 1)

=

 n k = 0, n2
n
2 otherwise

n∑
t=1

sin2 2πfkt =

 0 k = 0, n2
n
2 otherwise

Then the least square estimates of µ,A1, B1, ..., An
2

are obtained as follows:

XTX =



· · · 1 · · ·
· · · cos 2πf1t · · ·

· · · ... · · ·
· · · cos 2πfn

2
t · · ·




...

...
...

...

1 cos 2πf1t · · · cos 2πfn
2
t

...
...

...
...



13



=



n 0 · · · · · · 0

0 n
2 0 · · · 0

0 0 n
2 · · · 0

...
...

. . .
...

0 0 0 · · · n





µ̂

Â1

B̂1
...

Ân
2


= (XTX)

−1
XT zt

=



1
n 0 · · · · · · 0

0 2
n 0 · · · 0

... 2
n

...
...

. . .

0 · · · · · · · · · 1
n





· · · 1 · · ·
· · · cos 2πf1t · · ·

· · · ... · · ·
· · · cos 2πfn

2
t · · ·




z1
...

zn



=



1
n
∑n
t=1 zt

2
n
∑n
t=1 zt cos 2πf1t

2
n
∑n
t=1 zt sin 2πf1t

...

1
n
∑n
t=1 zt(−1)t


When n is odd, the design matrix X is also a (n x n) matrix. In this case, the

model becomes

zt = µ+
∑

0<j<n
2

(Aj cos 2πfjt+Bj sin 2πfjt) + εt
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and

X =


1 cos 2πf1t1 · · · cos 2πfn−1

2
t1 sin 2πfn−1

2
t1

...
...

...
...

...

1 cos 2πf1tn · · · cos 2πfn−1
2
tn sin 2πfn−1

2
tn

 .

Thus, the least square estimates are computed by



µ̂

Â1

B̂1
...

Ân−1
2

B̂n−1
2


=



1
n
∑n
t=1 zt

2
n
∑n
t=1 zt cos 2πf1t

2
n
∑n
t=1 zt sin 2πf1t

...

2
n
∑n
t=1 zt cos 2πfn−1

2
t

2
n
∑n
t=1 zt sin 2πfn−1

2
t


The results demonstrate that, for a given time series, the coefficient of each cosine

and sine term is determined only by its frequency. It means that, in a harmonic

regression model, neither adding nor omitting predictors affects least square estimates

provided that the Fourier frequency holds for all sinusoid terms.

2.4 Illustrative Examples

2.4.1 Loess Modelling with Lake Huron Data

The built-in R data LakeHuron consists of the annual water levels, in feet, of Lake

Huron. The data were measured from 1875 to 1972. The original time series is

shown in figure 2.1. Loess models are fitted with different combinations of smoothing

parameters and polynomial degrees. Figure 2.2 contains 4 subplots with parameters
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Figure 2.1: Lake Huron Data during 1875 - 1972

(α, p) = (0.1, 1), (0.3, 1), (0.5, 1) and (0.7, 1). Four other subplots with (α, p) =

(0.1, 2), (0.3, 2), (0.5, 2) and (0.7, 2) are drawn in figure 2.3

When α is very small (e.g. 0.1 in our exercise), the resulting model overfits the

data, while the model becomes too smooth with an α close to 1 (e.g. 0.7 in our

exercise). Among the subplots, we may conclude that the model with (α, p) = (0.3,

1) and (0.5, 2) fit reasonably well. Note that this conclusion is fairly subjective

and a better choice may exist. One of the methods for selecting the best smoothing

parameter is cross-validation (CV). We introduce cross validation in later chapters.
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Figure 2.2: Loess models with p = 1 and different smoothing parameters
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Figure 2.3: Loess models with p = 2 and different smoothing parameters
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Figure 2.4: UKDriverDeaths

2.4.2 UKDriverDeaths

We consider the monthly time series UKDriverDeaths. The data contain the monthly

totals from January 1969 to December 1984 for people in the United Kingdom who

were killed or seriously injured while driving.

As seen in figure 2.4, the original series exhibits seasonal patterns; the number of

deaths or serious injures by car accidents in winter is huge compared to the number of

accidents occurred during summer. We employ harmonic regression to fit the seasonal

data.
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As the first step, we try to fit a harmonic model using a single sinusoid. The fitted

model and the residuals are shown in figure 2.5. Since only one sinusoid with frequency

f = 1/12 is used, the fitted model exhibits a monthly seasonal wave. However,

the semi-monthly pattern is still present in the residuals (figure 2.6). The semi-

monthly seasonal pattern can be captured by fitting another model - by adding a new

harmonic term with f = 1/6 to the previous model. The revised fitted curve and

the corresponding residuals are graphed in figure 2.7. No periodic behaviour is now

present in the residuals. Note that the original data show long-term oscillation with

no certain period and that this oscillation still remains in the residuals. This feature

can be captured by a decomposition process that will be introduced in later chapters.
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Figure 2.5: Fitted values of the harmonic model and residuals
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Figure 2.6: Revised fitted values of the harmonic model and residuals

22



Model Selection Criteria

Chapter 3

Model Selection Criteria

3.1 Introduction

Suppose that we consider a nonparametric model defined as

y = g(x) + ε

where g is an unknown regression function and ε is an error term. In nonparametric

regression, we take into account several possible models with different numbers of

parameters. In choosing among our candidate models, our goal is to determine one

that is the closest to the true model g. That is, we let the data choose the best

model. A proper model must not only sufficiently explain the data but must also

have as small a number of parameters as possible. This idea is referred to as the

parsimony principle.

Generally, the goodness of fit of a model increases as new parameters are added.

However, once the parameter dimension becomes sufficiently large, new parameters

added afterwards may create an overfitting problem. In other words, after the model

achieves enough parameters, adding other parameters may yield models that do not

approach the true function g but approach the observed values y. One way to avoid

this overfitting issue is to penalize the number of parameters in a model. In this

chapter, we introduce several model selection methods most of which are based on the

penalizing principle. Each method assesses how well a model balances both conformity

to the data and parsimony.
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In Section 3.2, we present model selecting criteria such as AIC (Akaike, 1974) and

BIC (Schwarz, 1978). We use these criteria to compare models that have different

parameters and we determine which model is best.

In Section 3.3, we introduce an R package named FitAR (McLeod et al., 2011).

Assuming that an AR(p) model properly fits to a given time series, the package

calculates the values of a specified criterion as p changes. We then select the optimal

AR(p) which minimizes the criterion value.

3.2 Selection Criteria

3.2.1 Akaike Information Criterion AIC

Akaike Information Criterion AIC (Akaike, 1974) is defined as

AIC = −2 logL+ 2p,

where L is the maximized likelihood function and p is the number of effective

parameters. The best model is the one with the smallest AIC. The likelihood function

part reflects the goodness of fit of the model to the data, while 2p is described as a

penalty. Since L generally increases with p, AIC reaches the minimum at a certain

p.

AIC is based on the information theory. The fundamental idea is to measure

information loss by computing Kullback-Leibler information between the true model

and a given candidate model. Although the true model is unknown, AIC makes it

possible to compare estimated information losses from different models. The model

with the minimum AIC also minimizes information loss. AIC is asymptotically

efficient but is not consistent.
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3.2.2 Bayesian Information Criterion BIC

Bayesian Information Criterion BIC (Schwarz, 1978) is defined as

BIC = −2 logL+ p log n,

where L denotes the maximized value of the likelihood function, p represents

the number of parameters and n is the sample size. The model with the minimum

value of BIC is preferred. As indicated, BIC strongly penalizes effective parameters

compared to the AIC where log n > 2.

3.3 R package FitAR

We may determine proper models for a time series using information criterion. An R

package FitAR (McLeod et al., 2011) may be employed to construct the best AR(p)

model for given data. Assuming that a given time series is adequately explained by

an AR(p) model, the package selects the best p in which the information criteria are

minimized. One of the criteria such as AIC and BIC may be used.

3.4 Illustrative Examples

3.4.1 Diagnostic Test of Autoregressive models with Information

Criterion

The aim of this simulation is to test information criterion by comparing the true

model and a model suggested by model selection process. In order to do so, we use

the FitAR package by which the values of a specified information criterion for AR(p)

models are automatically calculated with various p. In each simulation we employ
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either AIC or BIC and the number of parameters p is restricted to be no greater

than 20.

1. AR(1) with φ = 0.8, n = 100

For the first exercise we use an AR(1) model defined as

zt = φ1zt−1 + εt

= 0.8zt−1 + εt

From the model we obtain sample data with size 100. Tables 3.1 and 3.2 display

the two smallest AIC and BIC with corresponding p, respectively.

In the first table, AIC is minimized to -7.68 when the model has one parameter.

Thus, AIC agrees with the true model. Another simulation is made using BIC and

it yields the same conclusion as the first test.

p AIC-Exact AIC-Approx
1 1 -7.6819 -113.2866
2 2 -6.7473 -112.2936

Table 3.1: Optimal number of parameters with AIC when AR(1)

p BIC-Exact BIC-Approx
1 1 -2.4716 -105.4711
2 2 1.0682 -101.8729

Table 3.2: Optimal number of parameters with BIC when AR(1)

2. AR(3) with (φ1,φ2,φ3) = (0.4,0.7,-0.3). n = 1000

An AR(3) model desrcibed as
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zt = φ1zt−1 + φ2zt−2 + φ3zt−3 + εt

= 0.8zt−1 + 0.7zt−2 − 0.3zt−3 + εt

It is used as the true model. In this simulation, AIC disagrees with the true model

by selecting p = 5. On the other hand BIC still works well with p = 3.

p AIC-Exact AIC-Approx
1 5 68.8821 -935.1556
2 3 69.8660 -934.1150

Table 3.3: Optimal number of parameters with AIC when AR(3)

p BIC-Exact BIC-Approx
1 3 89.4970 -909.5762
2 4 96.2828 -907.5547

Table 3.4: Optimal number of parameters with BIC when AR(3)

3. AR(4) with (φ1,φ2,φ3,φ4) = (-0.5,-0.7,0.1,0.2), n = 1000

We test another simulation with the true model AR(4) with (φ1,φ2,φ3,φ4) = (-

0.5,-0.7,0.1,0.2). For this exercise, both AIC and BIC choose the true parameter

space.

p AIC-Exact AIC-Approx
1 4 -15.8468 -1654.1622
2 5 -14.4951 -1653.1081

Table 3.5: Optimal number of parameters with AIC when AR(4)
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p BIC-Exact BIC-Approx
1 4 8.6919 -1624.7157
2 5 14.9515 -1618.7538

Table 3.6: Optimal number of parameters with BIC when AR(4)

3.4.2 Optimal smoothing parameter seletion in loess

We consider the LakeHuron data again. For loess modeling, rather than selecting

parameters based on several graphs, we find the optimal choice of parameters using

the generalized cross validation (Craven and Wahba, 1979). InR, we employ a package

named fANCOV A, which automatically selects the parameters based on GCV . For

the LakeHuron time series, the best smoothing and degree parameters are (α, p) =

(0.25, 1) with the residual standard error 0.494 or (0.50, 2) with the residual standard

error 0.329. Note that the results are somewhat different from those determined in

the previous chapter.
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Deseasonalizaion

Chapter 4

Deseasonalizaion

4.1 Introduction

Many time series exhibit seasonal patterns. We may identify a seasonal effect using

several graphical methods. Since a seasonal pattern repeats over and over again in

the span of the data, we may determine the pattern using statistical methods and use

it for analyzing or forecasting. Generally, nonparametric models such as loess, spline

regression and harmonic regression are used for estimation.

In Section 4.2, we introduce graphical ways to detect a seasonal pattern in a time

series. A seasonal subseries plot gives us much visual information that we cannot

easily obtain from the original data plot. It enables us to identify not only relation-

ships between subseries but also patterns within subseries. Multiple boxplots are also

especially useful for a time series with a large sample size.

In Section 4.3, we present loess to deal with seasonality. This is a part of seasonal-

trend decomposition by loess STL (Cleveland et al., 1990) which will be introduced

in Chapter 5.

A repeating seasonal pattern may be estimated by a model using sinusoids. In

other words, we may use harmonic regression to determine a seasonal pattern. In Sec-

tion 4.4, we introduce deseasonalization by harmonic regression (Hipel and McLeod,

1994). In cases where data variations vary with time, scaling is used for variance

correction.
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Harmonic regression requires specification of the parameter dimension prior to

estimating regression coefficients for seasonal means or standard deviations. In Sec-

tion 4.5, we present how to determine the optimal numbers of harmonics used for

estimating seasonal means and standard deviations.

4.2 Graphical Methods for Detecting Seasonality

4.2.1 Seasonal Subseries Plot

Seasonal patterns in a time series can often be conveniently detected using a seasonal

subseries plot (Cleveland, 1993). Assuming that the period of the seasonality is known

as p, a subseries plot includes p number of season plots, each of which indicates the

seasonal mean. With a subseries plot, one can easily detect different features between

subseries. It also gives visual inferences between or within season plots.

As an example, we consider a monthly time series of temperatures in Notting-

ham during 1920-1939. Figures 4.1 and 4.2 show the original series and its seasonal

subseries plot, respectively. The original data plot shows a clear seasonal pattern

repeating over time. However determining how, on average, the temperature changes

over months is not easy. In figure 4.2, the first plot segment consists of January

observations ordered in time. The mean of the January values is marked as a short

horizontal line. The second subseries corresponds to the February data, and so on.

Compared to figure 4.1, figure 4.2 gives much more information regarding seasonality.

First, the temperature in Nottingham obviously reaches its highest value in July and

its lowest in February, on average. The temperature gap between two consecutive

months also tends to be huge in the fall and relatively moderate in the winter season.

Lastly, we see some upwards trends in June, August and November. That is, the data
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Figure 4.1: Nottem : monthly time series of temperatures in Nottingham during 1920
- 1939

indicate that the temperature during these months tends to increase over years, while

the other seasons show no noticeable features.

4.2.2 Multiple Box Plots

When a time series has a large number of observations, we may prefer to use multiple

box plots to obtain any available clues for the existence of seasonality. This consists

of p number of box plots, where p represents the number of seasons in a year. We

create multiple boxplots for the nottem data that are shown in figure 4.3. Similar

31



N
ot

te
m

J F M A M J J A S O N D

30
35

40
45

50
55

60
65

Figure 4.2: Seasonal Subseries Plot for nottem data
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Figure 4.3: Monthly boxplots for nottem data

to a seasonal subseries plot the boxplots exhibit a strong seasonal pattern between

months. Each boxplot gives a specific location and variation information for each

month. However, the boxplots provide no trend or pattern information for each

month.

4.3 Deseasonalization by Loess

One can obtain a deseasonailzed time series by employing loess. Note that two positive

integers, k and p must be chosen to use loess. Let x be any value of the independent
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variable. Then k nearest neighbours of x are selected and the neighbourhood weights

are given to each neighbour. The neighbourhood function is introduced in Chapter

2. After that, a local polynomial with degree p is fitted to the weighted values. The

local polynomial value at x is the loess fit. Once a local regression fits to the data,

a deseasonalized series is easily determined by subtracting the fitted values from the

original data.

4.4 Deseasonalization by Harmonic Regression

For a time series zt, we start with an assumption that the series after removing

seasonal effect is stationary. A deseasonalized series, wt, may be written as

wt =
zt − µt
σt

where µt are the seasonal means and σt represent the seasonal standard devia-

tions. Scaling is used to make a deseasonalized series stationary if σt change over

time. On the other hand, if a reasonable model for seasonal standard deviations is a

constant model, it may be evidence of constant seasonal variance and thus scaling is

unnecessary.

In reality, µt and σt are unknown and thus we need to estimate them using har-

monic regression. For a harmonic model, we may use as many predictors (i.e. sinu-

soids) with different frequencies as we want. Often, however, using too many pre-

dictors is unnecessary and even brings on an overfitting problem. Fortunately, based

on several information criteria such as AIC and BIC, we obtain the best parameter

dimensions for the seasonal mean and standard deviation models. The process is

discussed in section 4.5.

In harmonic regression, the true model for zt is written as
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zt = A
(0)
µ +

Fm∑
i=1

(A
(i)
µ cos(

2πit

s
) +B

(i)
µ sin(

2πit

s
)) + εt

where A
(0)
µ is the overall mean, Fm is the number of sinusoids used, A

(i)
µ , B

(i)
µ

where i = 1, 2, ... , Fm denote the sinusoid parameters, s is the seasonal period with

s = 12 for monthly data and 365.25 for daily data and εt is the error term. Similarly,

we may also define a regression model for e2
t = (zt − µ̂t)2 as

e2
t = A

(0)
σ +

Fs∑
i=1

(A
(i)
σ cos(

2πit

s
) +B

(i)
σ sin(

2πit

s
)) + vt

The numbers of sinusoids, Fm and Fs, must be chosen. A strategy for optimal

Fm and Fs is explained in Section 4.5.

Once Fm and Fs are determined, the parameters of each model may be estimated

by the least square method. Note that the sample mean is used if Fm = 0 and the

sample standard deviation if Fs = 0. After the least square estimates are obtained,

µt, σ
2
t and the deseasonalized series wt may be respectively described as

µ̂t = Â
(0)
µ +

Fm∑
i=1

(Â
(i)
µ cos(

2πit

s
) + B̂

(i)
µ sin(

2πit

s
))

σ̂2
t = Â

(0)
σ +

Fs∑
i=1

(Â
(i)
σ cos(

2πit

s
) + B̂

(i)
σ sin(

2πit

s
))

and

ŵt =
zt − µ̂t
σ̂t

If no scaling is desired, we use ŵt = zt − µ̂t for all t.
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4.5 Selecting the Optimal Model

Assuming that a deseasonalized series is stationary and is adequately explained by

an AR model, then the optimal Fm and Fs can be calculated based on AIC or BIC

(McLeod and Gweon, 2013). As mentioned earlier, Fm and Fs are the numbers

of sinusoids used in harmonic models for estimating seasonal means and standard

deviations, respectively. For each model, the range of Fm and Fs should be restricted.

For a monthly time series, since its frequency is fixed as 12, if we consider harmonics

with Fourier frequencies we have at most 6 sinusoids to avoid aliasing. In other words,

for monthly data 0≤Fm, Fs≤6. For a daily time series, since the seasonal behaviour

is generally not too complicated it is practically reasonable to set 0≤Fm, Fs≤6.

On the other hand, it is convenient to use generalized AIC, denoted as GICα. It

is written as

GICα = −2 logL+ αk

where L is the maximized log-likelihood, α is 2 for the AIC and log (n) for the

BIC and k denotes the number of free parameters. We assume that a deseasonalized

series wt is stationary and there exists an AR(p) that can adequately explain wt. For

each pair of Fm and Fs, where 0≤Fm≤6 and 0≤Fs≤6, wt is obtained by least sqaure

estimation. We then find p that minimizes GICα. Note that each pair of Fm and Fs

gives the p corresponding to the minimum of GICα. Among all the combinations, we

choose the Fm and Fs by which GICα becomes the minimum.

On the other hand, the scales of the deseasonalized series change as Fs varies.

Comparison of GICα requires consideration of the scale effect. The scale effect can

be adjusted by subtracting 2 log J from GICα, where J is the Jacobian of the trans-

formation wt into zt. The Jacobian is obtained as follows.
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For a time series zt, the deseasonalized series wt is written as

ŵt =
zt − µ̂t
σ̂t

.

Thus the corresponding Jacobian matrix is written as



∂w1
∂z1

∂w1
∂z2

. . . ∂w1
∂zn

∂w2
∂z1

∂w2
∂z2

. . . ∂w2
∂zn

...
... . . .

...
∂wn
∂z1

∂wn
∂z2

. . . ∂wn
∂zn


.

From the relationship between zt and wt, the following is easily obtained.

∂wi
∂zj

=

 σ̂−1
j i = j

0 otherwise

The Jacobian J is described as

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂w1
∂z1

∂w1
∂z2

. . . ∂w1
∂zn

∂w2
∂z1

∂w2
∂z2

. . . ∂w2
∂zn

...
... . . .

...
∂wn
∂z1

∂wn
∂z2

. . . ∂wn
∂zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

σ̂−1
1 0 · · · 0

0 σ̂−1
2 · · · 0

...
... · · · ...

0 0 · · · σ̂−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
t=1

σ̂−1
t .

Thus the adjusted generalized AIC, denoted as AGICα, can be written as

AGICα = GICα − 2 log J

= GICα − 2 log
n∏
t=1

σ̂−1
t

= GICα + 2
n∑
t=1

log σ̂t

.
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Note that AGICα = GICα if σ̂t=1 for all t, as no scale is applied to the original

series. The optimal pair of Fm and Fs is the one that minimizes AGICα.

4.6 Illustrative Examples

4.6.1 Monthly Saugeen River Flow, 1915 - 1979

We start with monthly Saugeen River flow data (m3/sec) that were measured at

Walkerton from 1915 to 1979. Figure 4.4 shows 744 observations and due to the

large number of observations, we use the cut-and-stack method. Multiple box plots

for monthly subseries are shown in figure 4.5. The graphs clearly show that a sea-

sonal pattern is present in the Saugeen data and many of the monthly distributions

are positively skewed. Generally, positive skewness can be handled by taking a log-

transformation. The time series plot and multiple box plots of log-transformed data

are shown in figure 4.6 and 4.7. Compared to the previous plots, the monthly distri-

butions become more symmetrical.

Fm Fs p AIC

5.000 4.000 3.000 -1171.936

In R, we use a deseasonalize package (McLeod and Gweon, 2012). Using AIC,

the optimal choice of (Fm,Fs) is (5,4) with the lowest AIC = -1171.936. Note that

Fs = 4 indicates that the monthly standard deviations are not constant.

With the suggested parameter dimensions, the regression model for µt is described

as

µ̂t = Â
(0)
µ +

5∑
i=1

(Â
(i)
µ cos(

πit

6
) + B̂

(i)
µ sin(

πit

6
))

where
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Figure 4.4: Monthly Saugeen River Flow during 1915 - 1979
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Figure 4.5: Boxplots of monthly subseries of Saugeen
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Figure 4.6: log(Saugeen) during 1915 - 1979
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Figure 4.7: Boxplots of log(Saugeen)
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A0 A1 B1 A2 B2 A3

3.04178556 0.78534867 -0.02395692 -0.34463950 -0.03273296 -0.10124492

B3 A4 B4 A5 B5

0.19832998 0.10235134 0.01009820 -0.01381673 -0.04652837

Similarly, the harmonic model for σt is

σ̂2
t = Â

(0)
σ +

4∑
i=1

(Â
(i)
σ cos(

πit

6
) + B̂

(i)
σ sin(

πit

6
))

where

A0 A1 B1 A2 B2

0.279625538 0.028551266 0.097286343 -0.011296493 0.025479986

A3 B3 A4 B4

-0.033501226 -0.022538696 0.033870862 -0.006264534

Finally, the deseasonalized series is determined by

ŵt =
zt − µ̂t
σ̂t

.

For the our example, the deseasonalized series is shown in figure 4.8. No seasonal

pattern is evident.

4.6.2 Daily maximum temperatures in Melbourne, Australia, 1981-1990

We try another example with daily time series. The data consist of minimum tem-

peratures in Melbourne during 1981-1990 and are shown in figure 4.9. The series has

a seasonal pattern that repeats 10 times for 10 years. Based on BIC criteria, the

optimal numbers of parameters for seasonal means and standard deviations are deter-

mined as 2 and 0. Fs = 0 is an evidence of a constant standard deviation and thus no
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Figure 4.8: Deseasonalized series
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Figure 4.9: Daily maximum temperatures in Melbourne during 1981-1990

scaling is needed. In this case the deseasonalized series is simply obtained by subtract-

ing seasonal means from the original series. Figure 4.10 displays the deseasonalized

series. No pattern or variation change is present.

Fm Fs p BIC

2.000 0.000 2.000 6328.215
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Figure 4.10: Deseasonalized maximum temperature series
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Decomposition

Chapter 5

Decomposition

5.1 Introduction

A time series will often show systematic patterns that results from the nature of the

data. Generally, several components, such as trend and seasonal terms, may be un-

derlying in a time series. Knowing the underlying components is useful for analyzing

and forecasting. Fortunately these components may be determinable under certain

conditions. The decomposition process is a method used to determine systematic

components separately.

For a time series decomposition, we generally assume either an additive or multi-

plicative model. For example, under the additive model assumption a time series zt

may be described as zt = Tt +St + It, where Tt is long-term trend and St and It rep-

resent seasonal and irregular components, respectively. If we employ a multiplicative

model, then zt = TtStIt. Fortunately, a multiplicative model is easily transformed

into an additive model by taking logarithms on both sides of the model. In Sec-

tion 5.2, we start by introducing the concept of additive models. The additive effect

assumption is fairly strong.

Generally, a component is determined after the other systematic terms are removed

from the original time series. For instance, a model for seasonality is fitted to a

detrended series. Similarly, we determine a trend component using a deseasonalized

series. Thus, the decomposition process is basically an iterative process. For additive

models, we use the backfitting algorithm, which is introduced in Section 5.3.
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In Section 5.4, we review the STL that is widely used for decomposition. Each

seasonal and trend component must have a smoothing parameter and polynomial

degree provided. Proper parameters may be suggested by cross validation.

In Section 5.5, we propose another decomposition method that uses both loess

and harmonic regression. We employ loess for long-term components and harmonic

regression for seasonality.

When we use an additive model zt = Tt + St + It, the irregular term It is defined

as zt−Tt−St. That is, it represents remainder effects that neither the trend nor the

seasonal component can explain. It is desired that an irregular component exhibits

no pattern. Occasionally, however, It illustrates a cyclical pattern that is evidence of

the existence of another systematic component. In that case, the cyclical information

may also be determined (Cleveland, 1993). In Section 5.6, we introduce an algorithm

for the additional cyclical component case.

5.2 Additive Models

For a response variable Y and covariates X1, ... , Xp, the general nonparametric

model may be written as

Y = f(X1, X2, ..., Xp) + ε

where ε is IID error term with zero mean and a constant variance. If we assume

an additive model then

f(X1, X2, ..., Xp) = f1(X1) + f2(X2) + ...+ fp(Xp).
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That is, the additive model with p number of smooths is a special case of the

smooth function with p covariates. In an additive model, the impact of each covariate

is additive.

5.3 Backfitting Algorithm

The backfitting algorithm (Friedman and Stuetzle, 1981) is an iterative approximation

process used in order to fit a generalized additive model (GAM). When X1, ..., Xp are

predictor variables and Y is the dependent variable, a GAM may be described as

E(Y |X1, X2, ..., Xp) = f0 +
p∑
j=1

fj(Xj)

where fj , j = 1, 2, ...p are smoothing functions. First the mean of the whole data

is subtracted from each observation and a regression is fitted to the deviations. The

regression surface is then also removed from the data and we fit another regression

to the deviations, and so on until all p functions are estimated.

For the next iteration, we update each coefficient of the regression model using

the adjusted data in which the global mean and all other recently-updated-regression

surfaces are subtracted. This process continues until all coefficients do not change

substantially. The following explains the algorithm.

1. Initializing: f0 = n−1∑n
i=1 yi and fj≡0, j = 1, 2, ..., p

2. At each iteration, fj is updated as follows from j=1 to p.

Y (j) = Y − f0 −
∑
k 6=j

fk(Xk)

fj = E(Y (j)|Xj)
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3. Repeat step 2 until fj converges for all j.

5.4 Seasonal Trend Decomposition by Loess

Seasonal trend decomposition by loess (Cleveland, 1979) is a decomposition method

widely used to determine the trend, seasonal and remainder components. Since loess

models are fitted for both trend and seasonal terms, two smoothing parameters (αt,

αs) and two polynomial degrees (pt, ps) must be chosen.

In stl, we assume an additive model. That is, the original time series , zt, can be

written as

zt = Tt + St + It

where Tt, St and It represent the trend, seasonal and irregular components, re-

spectively. We decompose the series by applying the backfitting algorithm. At the

first stage, a trend component Tt,1 is first determined by fitting loess to zt with αt

and pt. A seasonality St,1 is then fitted to the residuals with αs and ps. The irregular

term It,1 is obtained by subtracting both the trend and seasonality from the original

series.

During the second iteration, we update the trend component Tt,1 to Tt,2 by fitting

loess to zt − St,1. Similarly, we replace the seasonal term to St,2, which is computed

using zt − Tt,2. The irregular component at the second iteration is then written as

It,2 = zt − Tt,2 − St,2.

We continue the iterative process until all parts converge. This beckfitting process

results in a trend term that contains no seasonal effects and no long-term impact is

present in the seasonal component after decomposition.
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5.5 Decomposition using Loess and Harmonic Regression

In the previous section only local regression is used for decomposition. However,

harmonic regression is also useful to explain seasonal patterns of time series. Where

Tt represent the trend component, we assume that the detrended series zt − Tt is

described as

zt − Tt = A(0) +
Fm∑
i=1

(A(i) cos(
2πit

s
) +B(i) sin(

2πit

s
)) + εt

where A(0) is the overall mean, Fm is the number of sinusoids used, A(i) and

B(i), i=1,2,...,Fm denote the sinusoid parameters, s is the seasonal period with s=12

for monthly data and 365.25 for daily data and εt is the error term. Using the least

square estimation, we obtain the seasonal component estimates Ŝt. That is,

Ŝt = Â(0) +
Fm∑
i=1

(Â(i) cos(
2πit

s
) + B̂(i) sin(

2πit

s
)).

Instead of zt−Tt, we use zt− T̂t where T̂t is obtained by loess, as the actual trend

term is unknown. After T̂t and Ŝt are determined, It is estimated as Ît = zt− T̂t− Ŝt.

Assuming an additive model, the components are updated during the backfitting

process until they converge.

5.6 More than one trend component case

It is desirable that the irregular component remaining after decomposition shows

no oscillatory movements. Often, however, the remainder series exhibits an cyclical

behaviour even after the trend and seasonality are removed from the original series.

Actually the underlying behaviour should also be captured and extracted from the

irregular component.
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In the previous sections, zt is described as an additive model zt = Tt + St +

It. It is desirable that the irregular component It shows no oscillatory movements.

Often, however, the condition may be violated if there is another underlying pattern

apart from the trend and seasonal components. Generally, we want to determine all

components separately that underlie a time series and thus any pattern present in

It should also be captured and extracted. One simple way is to revise the original

additive model by adding an oscillatory component, denoted as Ot, to the model.

That is, if a cyclical component is present in It, then a revised model is written as

zt = Tt + St +Ot + It

so that It shows no systematic movements. We may use loess to fit a model for

the movements (Cleveland,1993?). To determine Ot, we use the backfitting algorithm

with the deseasonalized series zt−St where St is obtained assuming zt = Tt+St+ It.

That is, Tt and Ot are revised in each iteration and the remainder term It is written

as

It = zt − St − Tt −Ot.

The iteration repeats until the components become stable.

5.7 Illustrative Examples

5.7.1 Monthly CO2 from Mauna Loa

The time series consists of 468 observations of monthly atmospheric concentrations

of carbon dioxide values from Mauna Loa. Each is expressed in parts per million

(ppm). The data are displayed in figure 5.1. The time series zt exhibits an upward
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linear trend and seasonal cycles that repeat with a 12-month period. We assume an

additive model and try the two different methods introduced in the previous section.

For STL decomposition, there is a default function in R named stl. Use of the

function requires that two smoothing parameters and two degrees of polynomials

be given. For this exercise, we choose smoothing parameters 0.215 and 0.075 for

the trend and seasonality respectively. Local linear models are used for both terms.

The decomposition result is shown in figure 5.2. The CO2 time series is now sepa-

rated into trend, seasonal and remainder components. As expected, the trend term

exhibits a linear-like curve and the seasonal component shows periodic fluctuations

with slightly increasing peak amplitude over time. The remainder term is determined

by subtracting both the trend and seasonal terms from the original series. It also

exhibits systematic cycles even though there is no certain period. Note that a de-

composition result depends on parameter selection. Had the model used different

parameters for components, the process might have given different results.

We compare stl with the method that uses both loess and harmonic regression by

decompose CO2 data once again (figure 5.3). The result is not very different from

that of stl; a clear upward trend, stable seasonal cycles and a remainder term with

oscillations. One difference is that the peak amplitude of the seasonal component is

fixed, while it may vary in stl.

We now consider finding the cyclical pattern present in the remainder component.

The oscillation repeats 9 times through the span of the series. We revise the model

to zt = Tt + St + Ot + It and estimate the components. We fit the oscillatory term

by using local quadratic curves with smoothing parameter 0.075. As shown in figure

5.4, the oscillatory term is removed and the remainder component has no systematic

behaviours.
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Figure 5.2: Decomposition of the CO2 series using stl
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Figure 5.3: Decomposition of the CO2 series using sltl
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Figure 5.4: Decomposition of the CO2 series including the oscillatory component
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Missing Data Problem

Chapter 6

Missing Data Problem

6.1 Introduction

When we analyze time series data, the data should be carefully collected and evenly

spaced. In reality, however, such conditions rarely occur. A common issue that we

may encounter when analyzing time series is missing observations.

There are many causes of data observation failure: for example, results of non-

response. In some fields, it is possible that data are systematically missing. For

instance, daily stock price data of a company are measured only during weekdays

in many countries. In this case, all values for annual holidays will be missing.

Based on the nature of missing data, we may create three categories of problems:

MCAR(Missing Completely At Random), MAR (Missing At Random) and MNAR

(Missing Not At Random).

Data elements are classified as MCAR if the probability that an observation is

missing is unrelated to the observed or missing values. If the probability depends

on observed variables but not on values of the missing variable, then that data are

classified as MAR. On the other hand, data are classified as MNAR if they are neither

MCAR nor MAR. Generally, missing data are ignorable if they are MCAR or MAR.

Otherwise, missing data are non-ignorable.

To handle missing data problems, we may use strategies such as deletion, direct

analysis and multiple imputation. For time series analysis, it is often desired that

missing observations be estimated using a proper methodology. In particular, if the
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series exhibits seasonal cycles repeating over time, we may measure the seasonal

information and use it for an estimation of the missing data. In Section 6.2, we

discuss the missing data problem in seasonal time series.

In Section 6.3, we introduce a useful algorithm (McLeod et al., 1983), by which we

can measure the seasonality or trends of unevenly spaced time series. The algorithm

may be used not only on monthly data but also daily time series.

6.2 The Missing Data Problem in Seasonal Time Series

An unevenly spaced time series makes analysis difficult. In order to make inferences

for the irregularly spaced time series, we must often estimate missing values. There are

many deterministic or stochastic models for doing so. In time series data, the specific

method depends on the nature of the data, as we want to use as much information

for estimation as possible. For example, if a monthly time series exhibits a seasonal

pattern, we may believe that the seasonal effect for each month repeats every year

as a part of the monthly value. In this case, estimating missing values based on the

repeating intra-year pattern determined by a proper algorithm may be a superior

method than estimating using other methods such as least square approximation and

spline interpolation.

6.3 Seasonal Adjustment Algorithm

An equal time interval condition of a time series is essential for any stochastic mod-

eling. Various seasonal adjustment procedures may be used to build evenly spaced

time series. One available procedure is the seasonal adjustment algorithm (McLeod

et al., 1983) which can be used even when a large proportion of data are missing. For
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the original time series zt, we assume an additive seasonal adjustment model defined

as

zt = Ct + St + It = Cy + Sm + It

where t denotes the Julian day number, y is the year and m is either the month

for monthly data or the day for daily data. C is the year-based long-term component,

S is the seasonal factor that is affected not by years but by seasons, and I is the

irregular term that contains the remainder of effects, except for C and S. The seasonal

adjustment algorithm is as follows.

(1) Set the initial estimates of each component. Let k be either 12 for monthly

data or 366 for daily data. The leap year case is taken into account and, thus, the

stable seasonal factor Sm should be considered 366 for the number of seasons for a

daily time series. Let k be 12 for monthly data or 366 for daily data. Then, we

initialize the components as follows:

Cy = C

= median(zt)

Sm = S′m −
1

k

k∑
m=1

S′m

It = zt − C − Sm

where S′m consists of monthly medians of zt − C when k = 12. For a daily time

series, S′m consists of daily medians of zt − C.

(2) For It, calculate the interquantile range (IQR), the distance between the first
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and third quantiles. Let an outer fence be 3 times IQR outside either the first or

third quantile. Values beyond outer fences are then called far-out values. If a far-out

value is present in It, replace it with the nearest outer fence.

(3) Define a deseasonalized series Dt as

Dt = C + It

(4) Let Cy be the mean of Dt in year y. If no Dt values are available during that

year, the mean of Dt for the surrounding years is given to Cy.

(5) Revise the seasonal and irregular terms as

Sm = S”m −
1

k

k∑
m=1

S”m

It = zt − Sm − Cy

where S”m consists of the monthly (or daily) medians of zt − Ct.

(6) Any far-out value of It is replaced by the nearest outer fences.

(7) The trend factor Ct is adjusted by adding the mean of the irregular series for

the whole span of time. Then, the estimated value for the mth month (or day) of

year y, for which no data were given, is computed as
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zy,m = Cy + Sm

where zy,m denotes the estimated monthly (daily) value for the year y and season

m.

After the algorithm is completed, the resulting time series is now evenly spaced.

All missing values are estimated in the last step.

6.4 Illustrative Examples

6.4.1 Water Usage in Ontario, 1966-1988

The following example is a time series that reports monthly water usage in Ontario

between 1966 and 1988. Figure 6.1 illustrates two plots. The upper panel shows the

original time series, and its monthly subseries is shown in the lower panel. From both

graphs, it is clear that the water usage data has an upward trend as well as a seasonal

pattern, which tends to peak during the summer and decline until the winter.

Assuming that missing values are randomly occurring, we can randomly choose

and remove about 10 percent of the observations. The missing values are then esti-

mated by the seasonal adjustment algorithm. In Figure 6.2, the original water usage

data is described by the solid black lines and the dashed red lines represent the es-

timated values. For a closer look, we focus on a certain period between 1969 and

1975 (in the lower panel). The original series is indicated as solid lines. Thin line

sections represent actual values that have been removed at the beginning for simula-

tion, while thick line sections are the remaining observations. The estimated values

are described by dashed lines. As can be seen, the estimated values are reasonably

close to the actual values.
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63



Time

1970 1975 1980 1985

10
0

20
0

Time

1969 1970 1971 1972 1973 1974 1975

90
11

0
13

0

Figure 6.2: Estimation results for Missing data
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6.4.2 Daily Maximum Temperature in Toronto, 2008-2012

We examine the algorithm for a daily case. We use a daily time series that contains

maximum temperatures in Toronto from 2008 to 2012. The data is obtained from the

Environment Canada website. As the first step, about ten percent of observations

are randomly chosen and removed. We then estimate the missing values using the

seasonal adjustment algorithm. Figure 6.3 shows time series revised by the algorithm

(dashed lines) as well as the original observed data overlaid (solid lines). For a closer

look, results of year 2010 are isolated and shown in figure 6.4. As seen from the figure,

estimated values are reasonably close to the observed data.
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Figure 6.3: Daily Maximum Temperature in Toronto, 2008-2012
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Figure 6.4: Daily Maximum Temperature in Toronto, 2010
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Conclusion

Chapter 7

Conclusion

Several systematic patterns, such as trends and seasonal terms, may underlie a time

series. Analyzing the underlying components is often required, and a decomposition

process can be used to do so. In this thesis, we have discussed time series decomposi-

tion with nonparametric regression. A decomposition process using loess (Cleveland,

1979) and harmonic regression has been suggested. Based on model selection crite-

ria, we can determine the optimal harmonic regression form for seasonality. We then

compared the process with STL (Cleveland et al., 1990). Given that the model forms

or parameters for any model that will be used are properly chosen, the method we

introduce works as well as STL. Using harmonic regression for a seasonal component,

however, is more automatic and less complex than using loess when it comes to build-

ing proper model forms. On the other hand, as a solution for an unevenly spaced

time series, we introduced the seasonal adjustment algorithm (McLeod et al., 1983)

and revised the algorithm to handle daily time series data. The revised algorithm

works fairly well .

In Chapter Two, we reviewed loess (Cleveland, 1979) and harmonic regression,

which are widely used in time series analysis. Loess is useful to fit a model for

either a long-term or seasonal effect, while we can employ harmonic regression for a

seasonal pattern that has a one-year period. Since harmonic regression uses sinusoids

as predictors, we have also reviewed several important features, such as aliasing,

orthogonality, and Fourier frequency.
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In considering nonparametric model estimation, model selection is an important

aspect of this. In Chapter Three, we introduced several criteria, such as AIC (Akaike,

1974) and BIC (Schwarz, 1978). Based on these criteria, we can determine suitable

models for fitting time series components.

In Chapter Four, we examined the deseasonalization process using harmonic re-

gression. Scaling is preferred if the variations are seasonal. The optimal model can

be determined using model selection methods. Seasonal subseries plots (Cleveland,

1993) and multiple boxplots are used to visually confirm the existence of a seasonality.

In Chapter Five, we started with the additive model assumption. We then intro-

duced STL as a widely used decomposition method. We tried another method, using

loess and harmonic regression for long-term and seasonal components, respectively.

The backfitting algorithm (Friedman and Stuetzle, 1981) enables the components to

be separated without being affected by any other components.

In Chapter Six, we considered the missing data problem in a seasonal time series.

The main idea was that we would first measure the repeating seasonal effects and

use them to estimate missing observations. We introduced the seasonal adjustment

algorithm, which works well for monthly time series. We then extend the algorithm

to cover daily time series data.
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