
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-16-2013 12:00 AM 

NFA reduction via hypergraph vertex cover approximation NFA reduction via hypergraph vertex cover approximation 

Timothy Ng, The University of Western Ontario 

Supervisor: Dr. Roberto Solis-Oba, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Computer Science 

© Timothy Ng 2013 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Ng, Timothy, "NFA reduction via hypergraph vertex cover approximation" (2013). Electronic Thesis and 
Dissertation Repository. 1224. 
https://ir.lib.uwo.ca/etd/1224 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1224?utm_source=ir.lib.uwo.ca%2Fetd%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


NFA REDUCTION VIA HYPERGRAPH VERTEX COVER
APPROXIMATION

(Thesis format: Monograph)

by

Timothy Ng

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Timothy Ng 2013



Abstract

In this thesis, we study the minimum vertex cover problem on the class of k-partite k-

uniform hypergraphs. This problem arises when reducing the size of nondeterministic

finite automata (NFA) using preorders, as suggested by Champarnaud and Coulon. It

has been shown that reducing NFAs using preorders is at least as hard as computing a

minimal vertex cover on 3-partite 3-uniform hypergraphs, which is NP-hard. We present

several classes of regular languages for which NFAs that recognize them can be optimally

reduced via preorders. We introduce an algorithm for approximating vertex cover on

k-partite k-uniform hypergraphs based on a theorem by Lovász and explore the use of

fractional cover algorithms to improve the running time at the expense of a small increase

in the approximation ratio.

Keywords: regular languages, vertex cover, approximation algorithms, nondeterministic
finite automata, approximate fractional covering, NFA reduction

ii



Acknowledgements

I would like to thank Roberto Solis-Oba for his supervision, for encouraging me to work

on what I was interested in, and for his advice and guidance, which helped shape this

work.

I would like to thank my initial advisor, Sheng Yu, who sadly passed away, for en-

thusiastically guiding me through the early part of my graduate studies.

And finally, I would like to thank my family for the support they have given me

throughout my studies.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Regular Languages 4
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Finite automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Converting regular expressions to finite automata . . . . . . . . . . . . . 10

3 The Vertex Cover Problem 13
3.1 Complexity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The minimal vertex cover problem . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 The NFA reduction problem 21
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Reducing NFAs based on equivalences . . . . . . . . . . . . . . . 22
4.1.2 Reducing NFAs based on preorders . . . . . . . . . . . . . . . . . 24

4.2 Complexity of computing pre-reduced NFAs . . . . . . . . . . . . . . . . 28

5 An approximation algorithm based on Lovász’s theorem 34
5.1 Lovász’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Applying Lovász’s theorem to graphs . . . . . . . . . . . . . . . . . . . . 41

6 Using Approximate Fractional Covers 47
6.1 Approximate fractional covering algorithms . . . . . . . . . . . . . . . . . 47
6.2 Approximate fractional vertex covers . . . . . . . . . . . . . . . . . . . . 48

7 Conclusions 52

iv



Bibliography 54

Curriculum Vitae 58

v



List of Figures

2.1 The DFA A, which recognizes 0,1-strings encoding even numbers . . . . . 8
2.2 The NFA M accepting L3 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The DFA M ′ accepting L3 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 The position automaton for α = aa(ba)∗(b+ ba) . . . . . . . . . . . . . . 11

3.1 The hypergraph H = (V,E) . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 The NFA N and the set cover instance (Q,ΠR ∪ ΠL) . . . . . . . . . . . 24
4.2 eq-reduced NFAs for the NFA N . . . . . . . . . . . . . . . . . . . . . . 25
4.3 The partial order ⪯ over Q . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 The NFA N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 The hypergraph for the set cover instance (Q, πR ∪ πL ∪ πP ) . . . . . . . 27
4.6 The pre-reduced NFA for N . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 NFAs which accept the language {a, b}2 . . . . . . . . . . . . . . . . . . . 28
4.8 NFAs which accept the language ({a, b}2)∗ . . . . . . . . . . . . . . . . . 28
4.9 NFAs which accept L(b+ aa∗b) and L((b+ aa∗b)∗) . . . . . . . . . . . . . 30
4.10 A 1-cycle-free-path automaton which accepts the language L(α) . . . . . 33

5.1 The hypergraph H = (V,E) . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 The complete graph K3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



List of Tables

2.1 Table for transition function δ′ . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The table for follow(α, i) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



Chapter 1

Introduction

Regular expressions describe regular languages and are recognized by one of the simplest
theoretical models of computing, finite automata. Regular expressions are important
tools in computer science which are used in many applications. The most well known
uses include lexical analysis [2], pattern matching [45], computational linguistics [53],
and circuit design [7]. However, over the last two decades that list has grown to include
less obvious applications, including image compression [12], type theory [59], parallel
processing [65], and software testing [18].

They are also of interest in more theoretical work. Automatic sequences [3] are integer
sequences generated by finite automata and have applications in number theory and
physics. Wolfram [67] studied the relationship between cellular automata and regular
languages. Rubinstein [63] and Linster [47] use finite automata in the study of the
prisoner’s dilemma. Culik and Harju [11] and Head [27] use regular languages in DNA
computing.

And of course, regular expressions are a fundamental topic of study in theoretical
computer science. Regular languages and finite automata together comprise some of the
oldest and well-studied topics in automata and formal language theory. For some time,
it was believed that regular languages were exhausted as a topic of interest. However, in
the early 90s, the study of regular languages was revived as regular languages gained use
outside of their traditional applications as computing power became more plentiful and
accessible [19].

The correspondence between regular expressions and finite automata allows us to take
advantage of the strengths of both representations. Regular expressions are convenient
for humans to specify and manipulate but are difficult for computers to process. On the
other hand, finite automata are quite simple to implement in software, but are difficult
for humans to use. This correspondence allows users to define regular languages using

1



2 Chapter 1. Introduction

regular expressions and we can transform those regular expressions into finite automata
for processing on computers.

Typically, such a transformation involves transforming regular expressions into equiv-
alent nondeterministic finite automata (NFA). There are many efficient algorithms for
doing so [35]. These NFAs can then converted into the equivalent minimal determin-
istic finite automata (DFA) for implementation as a simple and efficient structure for
recognizing the language defined by the regular expression.

The main problem with this process is the size of DFAs, measured in the number
of states. The size of a DFA can be exponential in the size of the equivalent NFA. As
NFAs have at most the same number of states as the length of a regular expression, this
means that DFAs are potentially exponential in the size of the input, which is the regular
expression. This poses a challenge in terms of the memory required to store a DFA.

One way to mitigate the exponential blowup of states in the determinization process
is to reduce the size of the NFA that is created from the regular expression before the
determinization process. Unfortunately, the problem of minimizing a nondeterministic
finite automaton is extremely difficult, specifically, it is PSPACE-complete [37]. In fact,
given an n-state NFA, the problem is inapproximable to within a factor of o(n) unless
P = PSPACE [23]. That is, there are no efficient approximation algorithms which can
provide a solution within a factor linear in the number of states of the NFA.

Our work is based on a method to reduce NFAs by merging states based on a preorder
relation defined on the set of states of the NFA [8]. It is shown in [34] that optimally
reducing an NFA using preorders is at least as computationally hard as computing a
minimal vertex cover on 3-partite 3-uniform hypergraphs, which is a problem known to
be intractable. The vertex cover problem is an important and well-known combinatorial
optimization problem, which can be extended to hypergraphs, in which hyperedges can
contain more than two vertices. We are interested in efficient methods for finding good
approximate solutions for the problem on the class of k-partite k-uniform hypergraphs
for optimally reducing NFAs using preorders.

In this thesis, we present our approximation algorithm for the minimum vertex cover
problem for k-partite k-uniform hypergraphs based on Lovász’s theorem which computes
vertex covers of size no greater than k

2
times the optimal solution. We also show how to

use approximate fractional covers to improve the running time of our algorithm. We also
examine whether there are classes of regular languages for which a pre-reduced NFA is
easy to compute or approximate. We give a partial answer to that question by presenting
some examples of such classes.

In Chapter 2, we introduce regular languages and finite automata and some defini-



3

tions and basic properties. In particular, we discuss the correspondence between regular
languages and finite automata and in doing so, lay out the motivation for the NFA re-
duction problem. We introduce the NFA reduction problem and summarize prior work in
approximating the problem as well as results demonstrating the hardness of the problem.

In Chapter 3, we introduce the minimum vertex cover problem and basic computa-
tional complexity definitions. We discuss why some problems are hard to compute and
how we can work around those limits. We summarize how these ideas have been applied
to the minimum vertex cover problem in prior work.

In Chapter 4, we introduce methods for reducing the size of NFAs. We present
some results relating properties of regular languages with hardness of the NFA reduction
problem. We examine hardness of approximation for certain families of regular languages
and we give examples of families of regular languages for which optimal NFA reduction
using preorders is computable in polynomial time.

In Chapter 5, we present our approximation algorithm kPartHypVC for the vertex
cover problem on k-partite k-uniform hypergraphs, which is based on Lovász’s theorem.
We introduce Lovász’s theorem, describe our algorithm, and discuss its complexity.

In Chapter 6, we explore the use of approximate fractional covers in place of exact
fractional covers in our algorithm to improve the running time the algorithm. While
linear programs are solvable in polynomial time, the time complexity of the algorithms are
dependent on the number of variables to relatively high degree. By using an approximate
fractional covering algorithm, the time complexity becomes dependent on the number of
constraints and a small increase in the factor of approximation.

We conclude in Chapter 7 and we summarize our findings and discuss possible future
work.



Chapter 2

Regular Languages

2.1 Preliminaries

An alphabet is a finite non-empty set of symbols. A word over an alphabet Σ is a finite
sequence of symbols from Σ. The length of a word w is the number of symbols contained
in w and is denoted |w|. The empty word is the word of length 0 and is denoted by ϵ.

The concatenation operation is an important operation on words, formed by jux-
taposing two words together. The concatenation of two words w = a1a2 · · · am and
x = b1b2 · · · bn is the word wx = a1a2 · · · amb1b2 · · · bn. Note that concatenation is not
commutative in general, i.e. wx does not necessarily equal xw. For any integer n ≥ 0

and word w over Σ, we define wn by w0 = ϵ and wn = wwn−1.
The set of all words, including ϵ, over the alphabet Σ is denoted Σ∗. A language L

over Σ is a set of words over Σ and is a subset of Σ∗. The empty language is the language
containing no words and is denoted ∅. As with words, we define the concatenation
operation on languages. The concatenation of two languages L1 and L2 over Σ is defined
by

L1L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2}.

For any integer n ≥ 0 and language L over Σ, we define Ln by L0 = {ϵ} and Ln = LLn−1.
The star, or Kleene closure, of a language L is denoted L∗ and is defined by

L∗ =
∞∪
i=0

Li

We denote the positive closure of L by L+ and define by LL∗.

Example 2.1.1. Let Σ = {a, b, c} be an alphabet. Then L = {a, bc, cba} is a language

4



2.2. Regular expressions 5

over Σ and

L∗ = {ϵ, a, bc, cba, aa, abc, acba, bca, bcbc, bccba, cbaa, cbabc, cbacba, ...}

is the Kleene closure of L.

2.2 Regular expressions
A regular expression over the base alphabet Σ is a word α over the alphabet Σ ∪
{ϵ, ∅, (, ),+, ·, ∗}. We denote by L(α) the language described by α. A regular expres-
sion α is defined recursively as follows:

• α = ∅ is a regular expression for the language L(α) = ∅.

• α = ϵ is a regular expression for the language L(α) = {ϵ}.

• α = a for a ∈ Σ is a regular expression for the language L(α) = {a}.

Let β and γ be regular expressions. Then,

• α = β + γ is a regular expression for the language L(α) = L(β) ∪ L(γ).

• α = β · γ is a regular expression for the language L(α) = L(β)L(γ).

• α = β∗ is a regular expression for the language L(α) = (L(β))∗.

The Kleene star, ∗, has the highest precedence, followed by ·, the concatenation operation,
followed by +, the union operation. Parentheses are used to group terms and explicitly
define the intended order of operations. We say that two regular expressions α and β are
equivalent if L(α) = L(β). For convenience, we often omit · when writing α ·β and write
αβ instead.

Example 2.2.1. Let α denote the regular expression (0 + 1)∗0 over Σ = {0, 1}. This
regular expression describes all 0,1-strings that end in 0. If we take 0,1-strings to represent
numbers written in base 2, we can say that this regular expression describes all nonempty
0,1-strings which encode even numbers in base 2.

We say that a language L is regular if L = L(α) for some regular expression α. The
class of formal languages which can be described by a regular expression is called the
class of regular languages. A class of languages is closed under an operation if when
applying the operation to languages which belong to the class, the resultant language



6 Chapter 2. Regular Languages

also belongs to the class. Here, we give some closure properties for operations that we
will later use. This is helpful for guaranteeing that new languages that we define based
on languages that we know to be regular are also regular.

Theorem 2.2.1. The class of regular languages is closed under union, intersection,
concatenation, and the Kleene star.

2.3 Finite automata

A finite automaton is a theoretical machine which reads input in the form of words one
symbol at a time. It contains a set of internal states and depending on the machine’s
current state and the input symbol being read, it can change to another state and read
the next character. The machine either accepts or rejects the input. The machine accepts
the input when upon reaching the end of the input word, the machine’s internal state is
in an accepting state.

Formally, a deterministic finite automata (DFA) is a 5-tuple M = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q is a transition
function, q0 is the initial state, and F is the set of accepting states. We can extend the
transition function δ for words instead of symbols to the function δ̂ : Q×Σ∗ → Q defined
by

δ̂(q, xa) = δ(δ̂(q, x), a)

where x ∈ Σ∗ and a ∈ Σ. For convenience, we use δ for δ̂. The language accepted by the
DFA M , denoted L(M), is defined

L(M) = {w ∈ Σ∗ : δ(q0, w) ∈ F}.

We say that two DFAs M1 and M2 are equivalent if L(M1) = L(M2).
In a DFA, the next state is uniquely determined by the current state and input sym-

bol being read. A natural generalization is to allow more than one possible transition for
a given state and input symbol. This generalization leads to the notion of a nondeter-
ministic finite automata.

Formally, a nondeterministic finite automata (NFA) is a 5-tuple N = (Q,Σ, δ, q0, F ),
where Q, Σ, q0, and F are defined in the same way as DFAs, and δ : Q× Σ→ 2Q is the
transition function. Here, 2Q denotes the power set, or the set of all subsets, of Q. Just



2.3. Finite automata 7

as in DFA, we can extend the transition function to δ̂ : Q× Σ∗ → 2Q, defined by

δ̂(q, xa) =
∪

p∈δ̂(q,x)

δ(p, a)

where x ∈ Σ∗ and a ∈ Σ. Then the language accepted by the NFA N is defined by

L(N) = {w ∈ Σ∗ : δ(q0, w) ∩ F ̸= ∅}.

We say that two NFAs N1 and N2 are equivalent if L(N1) = L(N2).
We may also extend the definition of the transition function to include transitions

on the empty string ϵ, which we call ϵ-transitions. NFAs which allow ϵ-transitions are
known as ϵNFAs. ϵNFAs can recognize exactly the same class of languages as NFAs,
and an ϵNFA can be easily transformed into an equivalent NFA [33]. Without loss of
generality, we do not consider NFAs with ϵ-transitions.

A state q ∈ Q of an NFA or DFA is unreachable if there is no path in the transition
graph starting at q0 and ending in q. A state q ∈ Q is dead if there is no path from q to
a final state. An NFA or DFA is trim if it contains no unreachable or dead states. We
assume without loss of generality that NFAs are trim.

There are a few different ways to represent a finite automaton. We can represent
them visually by drawing a directed graph called a transition diagram. We represent
states as circles and accepting states are denoted by double-outlined circles. Transitions
are drawn as arrows from a state to another state and the initial state is denoted by a
headless arrow pointing to the initial state. For more complicated finite automata, it
may be more helpful to describe it by its transition function in a table.

Example 2.3.1. We define a DFA A = (Q,Σ, δ, q0, F ) which accepts all 0,1-strings which
encode even numbers in binary with Q = {q0, q1}, Σ = {0, 1}, F = {q1}, and δ is defined
for every q ∈ Q by

δ(q, a) =

q1 if a = 0

q0 if a = 1

The transition diagram for A is given in Figure 2.1.

One might assume that the addition of nondeterminism in NFAs gives more compu-
tational power and allows the acceptance of more languages. This is not the case. The
class of languages accepted by DFAs and the class of languages accepted by NFAs is
exactly the same. Clearly, every DFA is an NFA, so all that needs to be shown is that
every NFA can be transformed into an equivalent DFA.



8 Chapter 2. Regular Languages

..q0.start . q1.
0

.

1

.

0

.

1

Figure 2.1: The DFA A, which recognizes 0,1-strings encoding even numbers

Theorem 2.3.1. If M is a NFA, there exists an DFA M ′ such that L(M) = L(M ′).

We can construct the DFA M ′ from the NFA M by using a process called the subset
construction. The idea behind the construction is to let the state set of M ′ be exactly
the subsets of the states of M . This way, the state transitions are uniquely determined
by the state and input symbol. The set of accepting states of M ′ is simply all of those
subsets containing an accepting state of M .

Example 2.3.2. Figure 2.2 shows an NFA M = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q3}) which
accepts the language of words over Σ = {a, b} with a in the third position from the right,
or formally, L3 = {w ∈ {a, b}∗ : w = xay, x ∈ {a.b}∗, y ∈ {a, b}2}, is shown.

..q0.start . q1. q2. q3.

a, b

. a. a, b. a, b

Figure 2.2: The NFA M accepting L3

We perform the subset construction to build an equivalent DFA M ′ = (Q′,Σ, δ′, {q0}, F ′).
The transition function δ′ is given in Table 2.1. Note that only states that are reachable
are listed.

From the transitions given for δ′, we can see that Q′ ⊆ 2Q consists of eight states:
{q0}, {q0, q1}, {q0, q2}, {q0, q3}, {q0, q1, q2}, {q0, q1, q3}, {q0, q2, q3}, and {q0, q1, q2, q3}. The
set of accepting states F ′ consists of states that contain any of the accepting states in
M . Since F = {q3}, we have F ′ = {{q0, q3}, {q0, q1, q3}, {q0, q2, q3}, {q0, q1, q2, q3}}. The
transition diagram for M ′ is given in Figure 2.3.



2.3. Finite automata 9

q δ(q, a)
{q0} {q0, q1}
{q0, q1} {q0, q1, q2}
{q0, q2} {q0, q1, q3}
{q0, q3} {q0, q1}
{q0, q1, q2} {q0, q1, q2, q3}
{q0, q1, q3} {q0, q1, q2}
{q0, q2, q3} {q0, q1, q3}
{q0, q1, q2, q3} {q0, q1, q2, q3}

q δ(q, b)
{q0} {q0}
{q0, q1} {q0, q2}
{q0, q2} {q0, q3}
{q0, q3} {q0}
{q0, q1, q2} {q0, q2, q3}
{q0, q1, q3} {q0, q2}
{q0, q2, q3} {q0, q3}
{q0, q1, q2, q3} {q0, q2, q3}

Table 2.1: Table for transition function δ′

..{q0}.start . {q0, q1}. {q0, q2}. {q0, q3}.

{q0, q1, q2}

.

{q0, q1, q3}

.

{q0, q2, q3}

.

{q0, q1, q2, q3}

. a.

b

.

a

. b.

a

. b.

a

.

b

.

a

.

b

.

a

.

b

.

a

.

b

.

a

.

b

Figure 2.3: The DFA M ′ accepting L3



10 Chapter 2. Regular Languages

2.4 Converting regular expressions to finite automata
The following theorem by Kleene [44] establishes the correspondence between regular
expressions and finite automata.

Theorem 2.4.1. A language is regular if and only if it is accepted by a finite automaton.

Regular expressions and finite automata are two different tools that we use in differ-
ent ways to describe regular languages. We use regular expressions to specify patterns
to be matched, while finite automata are used to recognize whether a given input string
belongs to a language. As we already mentioned, regular expressions are more convenient
for human users to describe regular languages and are easier to write and manipulate
than finite automata. On the other hand, finite automata are easier to implement in com-
puter programs using structures like switch-case statements or adjacency matrices. The
equivalence between languages described by regular expressions and languages accepted
by finite automata means that we don’t need to choose between the two.

The first step in implementing regular expressions is to transform the regular expres-
sion into an NFA. The simplest method to do this is to construct an automaton known
as the position or Glushkov automaton [21, 51]. For a regular expression α, the position
automaton has exactly |α| + 1 states. There are other ways to construct an NFA for a
regular expression with fewer states and transitions, such as partial derivative automata
or follow automata, but these automata can be derived from the position automaton
[9, 36].

For a regular expression α, let pos(α) = {1, 2, ..., |α|}. We mark each letter of α with
its position. Let α denote the marked regular expression over Σ = {ai : a ∈ Σ, i ∈
pos(α)}. For example, if α = aa(ba)∗(b + ba), then α = a1a2(b3a4)

∗(b5 + b6a7). We use
the same notation to remove markings by letting α = α. For ai ∈ Σ with i ∈ pos(α) and
u, v, w ∈ Σ

∗, we define the following sets:

first(α) = {i : aiw ∈ L(α)}

last(α) = {i : wai ∈ L(α)}

follow(α, i) = {j : uaiajv ∈ L(α)}

The position automaton for α is Npos(α) = (pos(α) ∪ {0},Σ, δpos, 0, last(α) ∪ {0}) with
δpos defined by

δpos(i, a) =

{j ∈ follow(α, i) : a = aj} if i ̸= 0

{j ∈ first(α) : a = aj} if i = 0
.



2.4. Converting regular expressions to finite automata 11

Example 2.4.1. Let α = aa(ba)∗(b+ba). Then α = a1a2(b3a4)
∗(b5+b6a7) and first(α) =

{1} and last(α) = {5, 7}. We define follow(α, i) for 1 ≤ i ≤ 7 in Table 2.2. The position
automaton Apos(α) is given in Figure 2.4.

i follow(α, i)
1 {2}
2 {3, 5, 6}
3 {4}
4 {3, 5, 6}
5 ∅
6 {7}
7 ∅

Table 2.2: The table for follow(α, i)

..0.start . 1. 2.

3

.

4

. 5.

6

.

7

. a. a.

b

. b.

b

.

a

.

b

.
b

.

b

.

a

Figure 2.4: The position automaton for α = aa(ba)∗(b+ ba)

After we construct an NFA, we can transform it into a DFA using the subset con-
struction. As we will see shortly, NFAs are much more succinct than DFAs. However,
there are some tasks for which DFAs are more well-suited. For instance, membership
testing is much more straightforward for a DFA since nondeterminism does not need to
be modeled in implementation. Testing for equality is also much simpler since DFAs
have a canonical form, the minimal DFA, which we will also introduce shortly.

Note that the DFA that results from the subset construction is not necessarily the
minimal equivalent DFA. We would like these DFAs to be as small as possible. This is
the problem of DFA minimization. The minimal DFA M for a language L is simply the
DFA with the minimal number of states which accepts L. We have the following property
as a result of theorems by Myhill [54] and Nerode [58]:

Theorem 2.4.2. Every regular language is described by minimal DFA which is unique,
up to isomorphism.



12 Chapter 2. Regular Languages

For an NFA with n states, the number of states in an equivalent DFA can be up to
2n. In other words, a DFA can be exponentially larger than the regular expression that
we started out with. This is a problem for implementation because of the memory re-
quirements for storing such large structures. While DFAs can be minimized in O(n logn)
time via Hopcroft’s algorithm [30], this still requires the possibly costly transformation
from NFA to DFA.

One method to mitigate the large size of DFAs is to try to reduce the size of the NFA
before the conversion to a DFA. What would be helpful is an efficient method to reduce
the size of NFAs. Unfortunately, this problem is not as simple as it is for DFAs and will
be discussed in further detail in Chapter 4.



Chapter 3

The Vertex Cover Problem

3.1 Complexity theory
We measure the time complexity of an algorithm by the number of operations that are
performed as a function f(n) of the length n of the input. We say that an algorithm
runs in O(g(n)) time if there exists a constant c > 0 such that for every sufficiently large
n, f(n) ≤ c · g(n). We say that f(n) is o(g(n)) if for every constant c > 0, we have
f(n) < c · g(n) for all sufficiently large n. Similarly, we say that f(n) is Ω(g(n)) if there
exists a constant c > 0 such that for every sufficiently large n, f(n) ≥ c · g(n).

A decision problem is a problem which has an answer of either YES or NO. An
optimization problem is a problem which attempts to minimize or maximize some value.
When discussing the complexity of a problem, we are concerned with decision problems.
However, an optimization problem can be easily reformulated as a decision problem which
is no harder than the original optimization problem. In other words, the optimization
problem can be solved in time that is at most a polynomial factor larger than that for
the decision problem.

For instance, given a DFA, the DFA minimization problem asks for an equivalent
DFA with the minimal number of states. The answer to the problem is a DFA. We
can reformulate the problem as a decision problem by asking whether there exists an
equivalent DFA of size at most k, for some integer k. The answer to this problem is
either YES or NO. To find a minimal DFA equivalent to a given n-state DFA, we ask
whether there is an equivalent DFA of size 1, 2, ..., n−1, which means asking the decision
problem at most n− 1 times.

A problem is solvable in polynomial time if there exists an algorithm that solves it in
O(nk) time for constant k. We define P to be the class of decision problems which are
solvable in polynomial time. We consider an algorithm to be efficient if it has polynomial

13



14 Chapter 3. The Vertex Cover Problem

running time and we consider problems to be computationally feasible if they are in
solvable in polynomial time.

We define NP to be the class of decision problems that have solutions which can
be verified in polynomial time. That is, we can check whether a given solution for an
instance of the problem is correct or not in polynomial time. Formally, a verifier V for a
problem A is an algorithm that takes as input an instance I of A and a polynomial-size
certificate C. V returns YES if C verifies that the answer to I is YES and NO otherwise.
A can be verified in polynomial time if the time complexity of its verifier is polynomial
in the size of I.

A problem is NP-hard if every problem in NP can be reduced in polynomial time
to the problem. A problem is NP-complete if the problem is NP-hard and is also in
NP. A problem A reduces to a problem B if there is a polynomial-time function f that
transforms an instance I of A to an instance f(I) of B such that I is an instance of A
for which the answer is YES if and only if f(I) is an instance of B for which the answer
is YES.

By definition, any problem which is in P is clearly in NP, since a problem which
is computable in polynomial time will have a solution which is verifiable in polynomial
time. Thus, we have the inclusion P ⊆ NP. However, it is currently not known whether
P = NP. Since every NP-complete problem reduces to every other NP-complete problem,
if there is a polynomial time algorithm for any one NP-complete problem, then there
is a polynomial-time algorithm for every problem in NP. And if there is no polynomial-
time algorithm for any problem in NP, then no problem in NP has a polynomial-time
algorithm. Showing either of these would resolve the P = NP question.

In this thesis, we assume that P ̸= NP and thus, we consider problems which are
NP-hard to be intractable.

3.2 The minimal vertex cover problem
A graph G = (V,E) is a pair consisting of a finite nonempty set V of vertices and a
collection E of pairs of V , called edges. A hypergraph H = (V,E) is a generalization of
a graph and is a pair consisting of a finite nonempty set V of vertices and a collection
E of subsets of V , called hyperedges. H is k-uniform if |e| = k for every hyperedge
e ∈ E(H). A hypergraph is weighted if it is equipped with a weight function w : V → Z.
For convenience, we will refer to hyperedges as edges. We say a vertex v is incident to
an edge e if v ∈ e. We define the degree of a vertex v to be the number of edges it is
incident to. The degree of a hypergraph is the maximum degree of the vertices of the



3.2. The minimal vertex cover problem 15

..........
1

.2 .

3

.
4

.

5

.
6

.

7

.

8

Figure 3.1: The hypergraph H = (V,E)

hypergraph.
A k-colouring of a hypergraph H = (V,E) is a partition (V1, ..., Vk) of V into k

colour classes such that each edge contains vertices from at least two colour classes. A
hypergraph is k-colourable if it admits a k-colouring. A strong k-colouring is a partition
(V1, ..., Vk) of V such that each edge contains at most one vertex of each colour. A
hypergraph is k-strongly-colourable if it admits a strong k-colouring. A hypergraph is
k-partite if the vertex set can be partitioned into k sets and every hyperedge contains at
most one vertex from each partition.

Example 3.2.1. A hypergraph H = (V,E) is drawn in Figure 3.1. H has vertex set
V = {1, 2, 3, 4, 5, 6, 7, 8} and hyperedge set E = {{1, 6, 7}, {1, 4, 8}, {2, 6, 8}, {3, 5, 7}}.
The vertices are represented as dots and each hyperedge is represented as a curve. Vertices
contained in a curve belong to the hyperedge represented by the curve. Since each
hyperedge of H has size exactly 3, H is 3-uniform. We can partition the vertex set of
H into three colour classes: {1, 2, 3}, {4, 5, 6}, and {7, 8}. Thus, H is also 3-strongly-
colourable.

The vertex cover problem is a fundamental combinatorial optimization problem. A
vertex cover on a hypergraph H = (V,E) is a subset of vertices C ⊆ V such that every
hyperedge in E contains at least one vertex from C. That is, for every e ∈ E(H), we
have e∩C ̸= ∅. We say a vertex v ∈ C covers an edge e if v ∈ e and we say that an edge
e is covered with respect to a cover C if it is covered by a vertex in C. The minimum
vertex cover problem is given a hypergraph H = (V,E), find a vertex cover with minimal
cardinality. For the weighted version of the problem, a weight function w : V → Z on H

is also given and we wish to find a vertex cover with minimal total weight.



16 Chapter 3. The Vertex Cover Problem

Example 3.2.2. A vertex cover on the hypergraph H in Figure 3.1 would be the set
{4, 5, 6}; this vertex cover is not the smallest one. The set {7, 8} is also a vertex cover
for H and is also a minimal vertex cover. We know that a minimal vertex cover has size
at least 2, since there is no single vertex which covers all four edges of H.

The minimum vertex cover problem was one of the first problems shown to be NP-
complete by Karp in [40]. For hypergraphs, this problem is equivalent to the set cover
problem and we can always reformulate a minimum vertex cover problem on hypergraphs
as a minimum set cover problem. The minimum set cover problem asks, for an instance
I = (U, S), where U is the set of ground elements and S ⊆ 2U is a collection of subsets
of U , to find a subcollection C ⊆ S such that

∪
X∈C X = U of minimal cardinality.

To formulate the instance I as an instance J = (V,E) minimum hypergraph vertex
cover problem, we map elements of U to edges in E and subsets from S to vertices in V .
Let f : U ∪S → V ∪E by such a map with V = {f(x) : x ∈ S} and E = {f(x) : x ∈ U}.
Then for x ∈ U and s ∈ S, we have x ∈ X if and only if f(s) ∈ f(x).

We are interested in the minimum vertex cover problem for k-uniform k-partite hy-
pergraphs. This problem has applications in many areas, among others, NFA reduction,
distributed data mining [16] and database schema mapping discovery [22]. When k = 2,
or when the graph is bipartite, the problem is solvable in polynomial time, since by
König’s theorem, the problem is equivalent to finding a maximum matching. However,
for k ≥ 3, the problem is NP-complete.

Like many combinatorial optimization problems, we can formulate the vertex cover
problem as an integer program. The following is the integer program for the vertex cover
problem.

minimize
∑
v∈V

w(v)g(v) (3.1)

subject to
∑
v∈e

g(v) ≥ 1,∀e ∈ E

g(v) ∈ {0, 1},∀v ∈ V

For each vertex v ∈ V , we assign a variable g(v) which takes on a value of 1 if it is in
the vertex cover and 0 otherwise. For each edge, at least one of its vertices must be in
the vertex cover. This translates into the condition that the sum of the values of the
variables for each vertex in an edge must be at least 1. We wish to find a vertex cover
with the minimal total weight.

Note that solving an integer program is NP-hard, so reformulating the problem as an
integer program does not change the hardness of the problem. However, we can relax



3.3. Approximation Algorithms 17

the condition that variables take on integer values and allow the variables to be real-
valued. This is the linear programming relaxation of the integer program. While it may
initially seem strange to allow including, say, 1

3
of a vertex in a vertex cover, the linear

programming relaxation has the advantage of being able to be solved in polynomial time.
The following linear programming relaxation defines the fractional vertex cover problem.

minimize
∑
v∈V

w(v)g(v) (3.2)

subject to
∑
v∈e

g(v) ≥ 1, ∀e ∈ E

g(v) ≥ 0,∀v ∈ V

A feasible solution g for Problem (3.2) is a fractional vertex cover of H. We denote the
value of g by |g| =

∑
v∈V g(v). We define the covering number τ(H) of H to be the size

of the minimal vertex cover of H. Similarly, we let τ ∗(H), the fractional covering number
of H, denote the minimum value of g across all fractional covers of H.

We can use the fractional vertex cover to approximate the minimum vertex cover by
rounding the values g(v) to integer values. The integrality gap of the problem is the ratio
of the value of the optimal solution of the linear programming relaxation to the value of
the optimal solution for the integer program. For the minimum vertex cover problem,
this is the ratio τ(H)

τ∗(H)
.

3.3 Approximation Algorithms

While finding the optimal solution for many problems is intractable, approximate solu-
tions can often be computed efficiently. We can measure the quality of an approximation
algorithm by its approximation ratio. Given an optimization problem γ, let the cost or
value of an optimal solution for γ be denoted by C∗ and let C denote the value of a
solution produced by an approximation algorithm A. Then the approximation ratio of
A on input of size n is ρ(n), defined in [10] by

max
{

C

C∗ ,
C∗

C

}
≤ ρ(n)

and we say A a ρ-approximation algorithm and we call a solution computed by A a
ρ-approximation.

Example 3.3.1. The simplest approximation algorithm for the minimal vertex cover



18 Chapter 3. The Vertex Cover Problem

problem on graphs is a greedy algorithm that selects vertices based on a maximal match-
ing, giving a 2-approximation. A matching M of a graph G = (V,E) is a subset of edges
such that no two edges in M are adjacent to a common vertex. A maximal matching is
a matching M of G such that M is no longer a matching if any edge not in M is added
to it. A maximal matching M can be found simply by examining every edge and adding
it to M if it is not adjacent to any edge already in M . This can be done in polynomial
time.

For a graph G = (V,E), given a maximal matching M , let C be the subset of vertices
which are adjacent to the edges in M . C is a vertex cover of G, since C covers every
edge in E. If there was an edge e ∈ E that was left uncovered by C, then e would be an
edge which could be added to M , contradicting the maximality of M .

Since each edge in M must be covered by one of the vertices it is incident to and
the edges of M do not share any vertices, any cover must be at least as large as |M |.
Therefore, for any optimal vertex cover C∗,

|M | ≤ |C∗| ≤ |C| = 2|M | ≤ 2|C∗|.

Thus, this algorithm has an approximation ratio of |C|
|C∗| ≤ 2.

The best approximation algorithm for the minimal vertex cover problem on hyper-
graphs achieves an approximation ratio of O(log d), where d is the maximum degree of
the hypergraph [49]. When we restrict the size of the edges to at most k vertices, we
can apply the same greedy algorithm as in Example 3.3.1 to achieve an approximation
ratio of k. Many algorithms achieve approximation ratios slightly better than this simple
k-approximation.

Lovász gives an upper bound of k
2

for the integrality gap for the minimum vertex
cover problem on k-partite k-uniform hypergraphs [48]. In [1], Aharoni et. al give an
example showing that this bound is tight. If we generalize further and consider k-partite
r-uniform hypergraphs (or, equivalently, k-strongly-colourable r-uniform hypergraphs)
with r ̸= k, Aharoni et. al show an upper bound of

τ(H)

τ ∗(H)
≤ k − r + 1

k
r

for k ≥ (r − 1)r. For r ≤ k ≤ (r − 1)r, they show an upper bound of

τ(H)

τ ∗(H)
≤ kr

k + r
+ min

{
k − r

2k
{u}, r

k
(1− {u})

}
,



3.3. Approximation Algorithms 19

where u = k2

k+r
and {u} = u − ⌊u⌋. If we consider k-colourable r-uniform hypergraphs,

Krivelevich [46] shows an upper bound of max
{

k+1
k
r, r − 1

}
and gives two algorithms

that compute approximate solutions that achieve the above approximation ratio.
A natural question to ask is whether we can approximate the optimal solution of a

problem to within an arbitrary factor in polynomial time. Solving a problem exactly
may be difficult, but if we can compute a solution that is within, say, 1% of an optimal
solution, in many cases, we would be quite pleased with the result. For some problems,
like the knapsack problem [31], it is possible to design an ρ-approximation algorithm for
every ρ > 1.

However, it has been shown that problems like minimum set cover and minimum
vertex cover cannot be ρ-approximated for every ρ > 1. A problem is said to be inap-
proximable to within a factor of ρ if there is no ρ-approximation algorithm for it that runs
in polynomial time, unless P = NP. If such an algorithm existed, then it would imply
that P = NP. This means that for the set cover and vertex cover problems, there is a
limit to how good approximate solutions can be computed in polynomial time, assuming
P ̸= NP.

Arora showed an integrality gap of 2 − ϵ, for some small ϵ > 0, for the vertex cover
problem on graphs [4], which matches the best known approximation ratio for algorithms
based on a linear programming relaxation of the problem; Håstad [26] showed that the
problem is inapproximable to within a factor of 7

6
− ϵ, for certain small ϵ > 0, and Dinur

and Safra improved this bound to 1.36 [15].
For general hypergraphs with unbounded edge size, the problem is inapproximable

to within a factor of (1 − o(1)) lnn, where n is the number of hyperedges [17]. A num-
ber of inapproximability results were shown by using the PCP theorem, which relates
proof checking with approximability [42]. The earliest inapproximability result for k-
uniform hypergraphs was presented by Trevisan in [66] showing inapproximability to
within Ω(k

1
19 ). Holmerin improved this to Ω(k1−ϵ) in [28]. Dinur et. al show inapprox-

imability to within k − 3 − ϵ in [13] shortly before improving the result to k − 1 − ϵ in
[14].

In [1], Aharoni et. al constructed an instance which matched the k
2

upper bound on
the integrality gap given by Lovász. A recent result by Guruswami and Saket [25] shows
that vertex cover on k-partite k-uniform hypergraphs is inapproximable to within a factor
of k

4
− ϵ for k ≥ 16. This result is based on a reduction from k-uniform hypergraphs and

uses the inapproximability result from [14]. The result is improved further by Sachdeva
and Saket [64] to k

2
− 1 + 1

2k
− ϵ for k ≥ 4 who combine Dinur’s multilayered PCP with

the integrality gap instance from [1].



20 Chapter 3. The Vertex Cover Problem

Improved inapproximability results can be achieved using the Unique Games Con-
jecture of Khot [41]. The UGC provides a convenient reduction for certain classes of
problems for which using the PCP theorem may be challenging. Assuming that the UGC
holds, Khot and Regev [43] show inapproximability of vertex cover on graphs within a
factor of 2− ϵ. They also show inapproximability within k− ϵ for k-uniform hypergraphs
under this assumption. In [25], Guruswami and Saket also include a UGC-based inap-
proximability result of k

2
− ϵ for k-uniform k-partite hypergraphs. This result matches

the bound achieved by Lovász.



Chapter 4

The NFA reduction problem

4.1 Preliminaries
While DFA minimization is computable in polynomial time, NFA minimization is known
to be PSPACE-complete [37] and, therefore, is much more computationally difficult,
assuming P ̸= PSPACE. PSPACE is the class of problems which can be solved with a
polynomial amount of space and a problem A is PSPACE-complete if every other problem
in PSPACE can be reduced into A in polynomial time. This means that if a PSPACE-
complete problem could be solved in polynomial time, then all problems in PSPACE
could also be solved in polynomial time. While it is clear that P ⊆ NP ⊆ PSPACE, it
is not known whether P = PSPACE. Not only is the problem extremely difficult, but
even approximating it is hard. Given an n-state NFA, computing an equivalent minimal
NFA is inapproximable to within a factor of o(n) unless P = PSPACE [23]. This means
that any polynomial time algorithm that reduces the size of an NFA cannot give any
guarantees on the size of the reduction that is sub-linear in the size of the given NFA
unless P = PSPACE.

Because of the computational hardness of the problem, there have been a variety of
approaches to try to make the problem feasible. There are exact minimization algorithms
from Kameda and Weiner [38] and Melnikov [52] which are infeasible in practice. Ilie and
Yu introduce a method which involves merging states based on equivalence relations [35].
Champarnaud and Coulon extend that idea by using preorder relations [8]. Geldenhuys,
van der Merwe, and van Zijl propose a technique which transforms instances of NFA
reduction into instances of SAT and using SAT solvers to compute reduced NFAs [20].

While NFA minimization is hard in general, a natural question is whether there are
any families of languages or restrictions on automata for which the problem is feasible.
Gruber and Holzer study the problem restricted to unary and finite languages [24]. They

21



22 Chapter 4. The NFA reduction problem

find that given an n-state DFA which accepts a finite language, finding an equivalent
minimal NFA is DP-hard. DP is the class of problems which are the intersection of a
problem in NP and a problem in co-NP, where co-NP is the class of problems whose
complements are in NP [61]. For unary languages, if an n-state DFA is given, the
problem has an O(

√
n)-approximation, while the problem remains inapproximable to

within a factor of o(n) given an n-state NFA, unless P = NP.
Gramlich and Schnitger show in [23] that, given an n-state DFA, finding an equiva-

lent minimal NFA is inapproximable to within a factor of
√
n

poly(logn)
. They also show that

for an n-state NFA accepting a unary language, finding an equivalent minimal NFA is
inapproximable to within a factor of n1−δ for all δ > 0. In [5], Björklund and Martens
attempt to resolve a question posed by Malcher in [50], which asks whether there are
any useful extensions of DFAs with limited amounts of nondeterminism for which mini-
mization is tractable. They find that for δNFAs, a class of NFAs which have at most two
computations for every input string, minimization remains NP-hard.

We base our work on research done by Ilie, Solis-Oba, and Yu in [34]. In the paper,
the authors show how to compute optimal reductions by merging states based on the
equivalences introduced in [35] and the preorders from [8]. To help define various language
relations over states of NFAs, we give the following definitions. The language recognized
by an NFA N = (Q,Σ, δ, q0, F ) is L(N) = {w ∈ Σ∗ : δ(q0, w) ∩ F ̸= ∅}. For states
p, q ∈ Q, we define

LL(N, p) = {w ∈ Σ∗ : p ∈ δ(q0, w)}

LR(N, p) = {w ∈ Σ∗ : δ(p, w) ∩ F ̸= ∅}

L(N, p, q) = {w ∈ Σ∗ : q ∈ δ(p, w)}

For simplicity, we write LL(p), LR(p), and L(p, q), respectively when N is understood.

4.1.1 Reducing NFAs based on equivalences

In [35], Ilie and Yu define equivalence relations on the states of an NFA. An equivalence
relation on a set S is a relation ≡⊆ S × S which satisfies the following for all a, b, c ∈ S:

• Reflexivity: a ≡ a

• Symmetry: if a ≡ b, then b ≡ a

• Transitivity: if a ≡ b and b ≡ c, then a ≡ c



4.1. Preliminaries 23

An equivalence relation partitions the set S into equivalence classes. Two elements a, b ∈
S belong to the same equivalence class X if and only if a ≡ b. For a subset T ⊆ S,
T/≡ denotes the quotient set {[a]≡ : a ∈ T}, where [a]≡ denotes the equivalence class
containing a. Let ≡ and ∼= be two equivalence relations over the set S. We say that ∼=
is coarser than ≡ if a ≡ b implies a ∼= b.

An equivalence relation≡ is right-invariant with respect to an NFA N = (Q,Σ, δ, q0, F )

if it satisfies the following:

1. ≡⊆ (Q \ F )2 ∪ F 2

2. for every p, q ∈ Q, a ∈ Σ, if p ≡ q, then δ(p, a)/≡ = δ(q, a)/≡

For an NFA N = (Q,Σ, δ, q0, F ), the equivalence relation ≡R is defined to be the
coarsest right-invariant equivalence relation on a state set Q that satisfies the following:

(P1) ≡R ∩(F × (Q− F )) = ∅

(P2) ∀p, q ∈ Q,∀a ∈ Σ, (p ≡R q =⇒ ∀q′ ∈ δ(q, a),∃p′ ∈ δ(p, a), q′ ≡R p′)

The left equivalence ≡L is defined to satisfy the same axioms on the reversed automaton,
which is constructed by reversing the transitions of N and exchanging the initial and
final states. Ilie, Navarro, and Yu show in [32] that equivalences over the state set
can be computed using a partition refinement algorithm by Tarjan and Paige [60] with
O(m logn) time and O(m + n) space, where n is the number of states and m is the
number of transitions.

Each equivalence class of ≡R and ≡L represents equivalent states that can be merged
into a single state without modifying L(N). We merge a state p with a state q by
replacing all incoming and outgoing transitions of p with q and deleting p. Since ≡R is
right-invariant, it has the property that for some word w = a1a2 · · · an ∈ LR(p), there is
a path pa1p1a2p2 · · · anpn in N with pn ∈ F such that there exists a path qa1q1 · · · anqn
in N with pi ≡R qi for all 1 ≤ i ≤ n and qn ∈ F . This implies that w ∈ LR(q) and, thus,
merging p and q does not change L(N). The same reasoning applies for ≡L.

Denote by ΠR and ΠL the sets of equivalence classes of ≡R and ≡L, respectively. A
reduction is a subset Y ⊆ ΠR ∪ ΠL of the two partitions such that Y contains every
state in Q. In [34], Ilie, Solis-Oba, and Yu show that the problem of finding a minimal
reduction is equivalent to the minimum set cover problem where Q is the set of ground
elements and ΠR ∪ ΠL is the family of subsets. Since ΠR and ΠL are partitions of Q,
each state in Q is guaranteed to belong to exactly two subsets of the family of subsets.
This particular version of the minimum set cover problem is equivalent to the minimal



24 Chapter 4. The NFA reduction problem

vertex cover problem on bipartite graphs, which can be solved in polynomial time [34].
We call the resulting optimally reduced NFA an eq-reduced NFA. We note that this is
not a minimal NFA.

Example 4.1.1. Let N = (Q,Σ, δ, q0, F ) be as in Figure 4.1. The equivalence classes
for ≡R are {q0}, {q1}, {q2, q3}, and {qF} and the equivalence classes for ≡L are {q0},
{q1, q2}, {q3}, and {qF}. The instance of vertex cover constructed from the partitions
of the equivalences is also shown in Figure 4.1. The vertices are subsets of the state
set which are equivalent, either under ΠR or ΠL. Each edge represents a state and is
incident to the vertices which represent the subset which contains the state. Based on
this instance, there are three possible eq-reduced automata for N , which are given in
Figure 4.2.

..q0.start . q2.

q1

.

q3

. qF.

a

. a.

b

.

a

. b.

b

..{q0}. {q1}. {q2, q3}. {qF }.

{q0}

.

{q1, q2}

.

{q3}

.

{qF }

.

ΠL

. ΠR

.....

Figure 4.1: The NFA N and the set cover instance (Q,ΠR ∪ ΠL)

4.1.2 Reducing NFAs based on preorders

In [8], Champarnaud and Coulon extend the idea of merging equivalent states by using
preorder relations defined on the states of an NFA. A preorder on a set S is a relation
≤⊂ S × S which satisfies the following for all a, b ∈ S:

• Reflexivity: a ≤ a

• Transitivity: if a ≤ b and b ≤ c, then a ≤ c

A partial order is a preorder which is also antisymmetric: if a ≤ b and b ≤ a, then a = b.
If the preorder is symmetric, then by definition, it is an equivalence relation. A partially
ordered set, or poset, is a pair consisting of a set and a partial order over the set.

The preorders are defined as follows.

p ≤R q if LR(p) ⊆ LR(q)

p ≤L q if LL(p) ⊆ LL(q)



4.1. Preliminaries 25

..q0.start .

q1

.

{q2, q3}

. qF.

a

.
a, b

.

a

.
b

..q0.start .

{q1, q2}

.

q3

. qF.

a

.

b

.

a, b

.

b

..q0.start .

{q1, q2}

.

{q2, q3}

. qF.

a

.
a, b

.

a, b

.
b

Figure 4.2: eq-reduced NFAs for the NFA N

Ilie, Navarro, and Yu give an algorithm in [32] which computes preorders over the state
set in O(mn) time and O(n2) space, where n is the number of states and m is the number
of transitions.

These preorders induce equivalence relations that are coarser than the equivalence
relations defined above. Specifically, we define the equivalence relation ∼=R if p ≤R q and
q ≤R p and ∼=L if p ≤L q and q ≤L p. These equivalence relations induce a partition
of the state set. We denote by πL and πR the partitions of the state set induced by
the equivalences ∼=L and ∼=R respectively. The preorders also induce a partial order ⪯
on the state set: p ⪯ q iff p ≤R q, p ≤L q, and L(p, p) = {ϵ}. The partial order ⪯
induces a family πP of subsets of Q: let the maximal elements of ⪯ be q̃1, q̃2, ..., q̃m. Then
πP = {Qp1 , ..., Qpm}, where Qpi = {q ∈ Q : q ⪯ q̃i}.

The reduction problem then becomes another instance of the minimum set cover
problem, with Q as the set of ground elements and πR ∪πL∪πP as the family of subsets.
Each state belongs to exactly one subset in πR, exactly one subset in πL, and to at least
one subset in πP , since πP is in general not a partition of the state set. It is shown in [34]
that the optimal reduction using preorders is at least as hard as minimal vertex cover
on 3-partite 3-uniform hypergraphs, which models the restricted case of the problem in
which πP is a partition of the state set. As a result, optimal preorder reduction is NP-
hard. We call the NFA that is computed through an optimal reduction using preorders



26 Chapter 4. The NFA reduction problem

a pre-reduced NFA.

Example 4.1.2. The following example is used by Champarnaud and Coulon [8] to
demonstrate how preorders can capture a wider range of equivalent states than the
equivalences defined in [35]. Let N = (Q,Σ, δ, q0, F ) be as depicted in Figure 4.4. The
preorders on Q are as follows:

≤R = {(q1, q2), (q2, q1), (q3, q4), (q5, q4)}

≤L = {(q3, q4), (q5, q4)}

These preorders give rise to the following equivalence classes for ∼=R and ∼=L, respectively:

πR = {{q0}, {q1, q2}, {q3}, {q4}, {q5}, {qF}}

πL = {{q0}, {q1}, {q2}, {q3}, {q4}, {q5}, {qF}}

The preorders also induce the partial order ⪯, which is given in Figure 4.3 and induces
the following family of subsets:

πP = {{q0}, {q1}, {q2}, {q3, q4, q5}, {qF}}

..q0. q1. q2. q4.

q3

.

q5

. qF..

Figure 4.3: The partial order ⪯ over Q

Note that we have q1 ∼=R q2, since q1 ≤R q2 and q2 ≤R q1. This equivalence would
not have been included in ≡R, since there are no states that are equivalent for q3 or q5

under ≡R. We also have q3, q5 ⪯ q4, which is another relation that would not have been
captured by ≡R and ≡L.

From the hypergraph of the set cover instance (Q, πR ∪ πL ∪ πP ) in Figure 4.5, we
can see a vertex cover {{q0}, {q1, q2}, {q3, q4, q5}, {qF}}. The pre-reduced NFA is shown
in Figure 4.6.

A question that may come to mind is whether for a regular language L, the pre-
reduced automaton for NFAs accepting L all have the same size. We show in the following
example that this is not the case.



4.1. Preliminaries 27

..q0.start .

q1

.

q2

.

q3

. q4.

q5

. qF.

a

.
b

.

a

.

a

.
a

.

a

.

a

. a, b.

b

Figure 4.4: The NFA N

....................πL .

πR

.

πP

.

{q0}

.

{q1, q2}

.

{q3}

.

{q4}

.

{q5}

.

{qF}

.
{q0}

.
{q1}

.
{q2}

.
{q3}

.
{q4}

.
{q5}

.
{qF}

.

{q0}

.

{q1}

.

{q2}

.

{q3, q4, q5}

.

{qF}

Figure 4.5: The hypergraph for the set cover instance (Q, πR ∪ πL ∪ πP )

..q0.start . {q1, q2}. {q3, q4, q5}. qF. a, b. a. a, b

Figure 4.6: The pre-reduced NFA for N



28 Chapter 4. The NFA reduction problem

Example 4.1.3. In Figure 4.7, there are two equivalent NFAs which accept the language
{a, b}2. The NFA on the right is the pre-reduced automaton derived from the NFA on
the left, since q1 ⪯ q2.

..q0.start .

q1

.

q2

. qF.

a

.

a

.

a, b

.

a, b

..q0.start . q2. qF. a, b. a, b

Figure 4.7: NFAs which accept the language {a, b}2

Suppose we use the NFAs from Figure 4.7 to construct NFAs which accept ({a, b}2)∗.
The pre-reduced NFAs derived from those automata are given in Figure 4.8. The au-
tomaton on the left is unable to be reduced further because although q1 ≤R q2 and
q1 ≤L q2, we have L(q2, q2) ̸= {ϵ}.

..q0.start .

q1

.

q2

.

a

.
a

.
a, b

.

a, b
..q0.start . q2.

a, b

.

a, b

Figure 4.8: NFAs which accept the language ({a, b}2)∗

4.2 Complexity of computing pre-reduced NFAs
In [34], it is shown that when πP is a partition of the set of states, the problem is at least
as hard as the minimum vertex cover problem on 3-partite 3-uniform hypergraphs. As
a result, optimal preorder reduction is NP-hard. However, πP is not guaranteed to be
a partition of the state set. While this does not change the hardness of computing the
exact solution, this does affect how well we can approximate the problem. When πP is
not a partition of the state set, the resulting hypergraph instance is no longer guaranteed



4.2. Complexity of computing pre-reduced NFAs 29

be 3-uniform and can possibly have a worst-case approximation ratio of O(log d), where
d is the size of the largest edge. However, there are families of languages for which the
pre-reduced NFAs that recognize them can be computed in polynomial time. We now
give several examples of such families. First, we have the following lemma.

Lemma 4.2.1. Let N be an NFA. Suppose every state of N belongs to a cycle. Then N

can be pre-reduced in polynomial time.

Proof. Let N = (Q,Σ, δ, q0, F ). Consider a state p ∈ Q. Since p belongs to a cycle,
L(p, p) ̸= {ϵ}. Thus, there is no state q ∈ Q such that p ⪯ q. This means that πP

consists of singletons and thus it does not contribute any candidate states to be merged
when pre-reducing N . All possible state merges occur in πL and πR, so the problem
of computing the pre-reduced NFA for N can be reduced to the minimum vertex cover
problem on a bipartite graph [34].

Brzozowski and Cohen define a regular star language in [6] to be a language L ⊆ Σ∗

such that L = R∗ for some regular language R ⊆ Σ∗.

Lemma 4.2.2. Let L = R∗ ⊆ Σ∗ be a regular star language. Then given a trim NFA
N(R) accepting R, a pre-reduced NFA accepting L = R∗ can be computed in time
polynomial in the number of states and transitions of N(R).

Proof. Let N(R) = (Q,Σ, δ, q0, F ) denote an NFA accepting R. Recall that a trim NFA
is an NFA with no unreachable or dead states. We follow the construction from [29] to
construct an NFA N(R∗) which accepts R∗. There are two cases to consider.

The first case is if ϵ ∈ R. Let N(R∗) = (Q,Σ, δ′, q0, F ). Then we define δ′ as follows.
For every q ∈ Q and every a ∈ Σ,

δ′(q, a) =

δ(q, a) if q ̸∈ F

δ(q, a) ∪ δ(q0, a) if q ∈ F

Now consider all states q ̸= q0 in Q. Since each of these states has a path to a final
state and all states are reachable from q0, then every state q ̸= q0 has a path to itself.
Therefore, each of these states belongs to a cycle. If q0 is also contained in a cycle, then
by Lemma 4.2.1, this NFA can be pre-reduced in polynomial time.

If q0 is not contained in a cycle, observe that LL(q0) = {ϵ}. Since q0 is the initial
state and we disallow ϵ-transitions, there are no other states q ∈ Q such that ϵ ∈ LL(q).
Thus, q0 ̸⪯ q for any q ∈ Q. Since every other state is contained in a cycle, πP consists
of singletons and, thus, this NFA can be pre-reduced in polynomial time.



30 Chapter 4. The NFA reduction problem

The second case is if ϵ ̸∈ R. Let N(R∗) = (Q ∪ {q′0},Σ, δ′, q′0, F ∪ {q′0}). Then we
define δ′ as follows. For every q ∈ Q and every a ∈ Σ,

δ′(q, a) =


δ(q, a) if q ̸∈ F ∪ {q′0}

δ(q, a) ∪ δ(q0, a) if q ∈ F

δ(q0, a) if q = q′0

By similar reasoning as the first case, every state q ∈ Q with the exception of q′0

and q0 is guaranteed to be contained in a cycle. Clearly, q′0 is not contained in a cycle.
By a similar argument as above, we can determine that q′0 ̸⪯ q for any q ̸= q′0. If q0 is
contained in a cycle, then the lemma follows.

If q0 is not contained in a cycle, then q0 is unreachable and can be removed. If q0

were not unreachable, then there would be a path from some state p ∈ Q to q0. But this
would imply q0 was contained in a cycle, since we can reach a final state from q0 and
we can reach p from a final state. After removing q0, every state except q′0 is contained
in a cycle and q′0 ̸⪯ q for q ̸= q′0 implies that πP consists of singletons and the lemma
follows.

Example 4.2.1. Let R = L(b+ aa∗b) and let N = (Q,Σ, δ, q0, F ) be the NFA depicted
in Figure 4.9, which accepts R. We build the NFA N ′ which accepts the language
L = R∗ = L((b+ aa∗b)∗), which is also shown in Figure 4.9.

..q0.start . q1. q2. a.

a

. b.

b

..q0. q1. q2.

q′0

.

start

. a.

a

. b.

b

.

a

.

b

.

a

.

b

Figure 4.9: NFAs which accept L(b+ aa∗b) and L((b+ aa∗b)∗)

Lemma 4.2.3. Let L1 = R∗
1 and L2 = R∗

2 be regular star languages with regular languages
R1, R2 ⊆ Σ∗. Then given NFAs N(L1) and N(L2) as in Lemma 4.2.2 that recognize L1

and L2, respectively, pre-reduced NFAs accepting the following languages can be computed
in time polynomial in the number of states and transitions of N(L1) and N(L2).

1. L1 ∪ L2



4.2. Complexity of computing pre-reduced NFAs 31

2. L1 ∩ L2

3. L1L2

Proof. We give an NFA that accepts each of the above languages by following the con-
structions given in [29]. These constructions all create new automata with a minimal
number of states with respect to the size of N(L1) and N(L2). That is, the resultant NFAs
are minimal only if the operand NFAs are also minimal. Let N(Li) = (Qi,Σ, δi, q0,i, Fi)

denote the NFA accepting the language R∗
i , for i = 1, 2. Let N ′ = (Q′,Σ, δ′, q′0, F

′) denote
the new NFA.

1. For N ′ with L(N ′) = L1∪L2, let q′0 be a new initial state. Let Q′ = Q1∪Q2∪{q′0}.
For all q ∈ Q′ and a ∈ Σ, define the transition function

δ′(q, a) =


δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

δ1(q0,1, a) ∪ δ2(q0,2, a) if q = q′0

.

Since both N(L1) and N(L2) are NFAs constructed using the method from Lemma
4.2.2, every state q ̸= q′0 belongs to a cycle. If q0,1 and q0,2 do not belong to a cycle,
then they are unreachable and can be removed. Consider q0,1 and suppose it is
reachable by some state p ∈ Q′. There is a path from q0,1 to a final state in Q1.
But there is a path from any final state in Q1 to p. Thus, q0,1 would be contained
in a cycle. The same reasoning applies to q0,2.

Only the new initial state does not belong to a cycle. Note that LL(q
′
0) = {ϵ} and

since q′0 is the initial state and we disallow ϵ-transitions, there are no other states
q ∈ Q′ such that ϵ ∈ LL(q). Thus, q′0 ̸⪯ q for any q ∈ Q′. Since every other state is
contained in a cycle, πP consists of singletons.

2. Let N ′ recognize L1∩L2. Then N ′ is the cross-product of N(L1) and N(L2), defined
as follows:

Q′ = Q1 ×Q2

F ′ = F1 × F2

δ′(⟨q1, q2⟩, a) = ⟨δ1(q1, a), δ2(q2, a)⟩, where q1 ∈ Q1 and q2 ∈ Q2

q′0 = ⟨q0,1, q0,2⟩



32 Chapter 4. The NFA reduction problem

Every state still belongs to a cycle in the cross-product of the two NFAs since every
state already belonged to a cycle in the original respective NFA, with the possible
exception of the initial states. However, LL(q

′
0) = {ϵ} and since q′0 is the initial

state and we disallow ϵ-transitions, there are no other states q ∈ Q′ such that
ϵ ∈ LL(q). Thus, q′0 ̸⪯ q for any q ∈ Q′. Since every other state is contained in a
cycle, πP consists of singletons.

3. To build N ′ with L(N ′) = L1L2, connect the final states of N(L1) to the states
that follow the initial transitions of N(L2): For all q ∈ F1 and a ∈ Σ, we add the
following transitions

δ′(q, a) = δ2(q0,2, a).

Since the only new transitions are from the final states of N(L1) to states of N(L2),
every state belongs to a cycle with the possible exception of the initial states q0,1

and q0,2. If q0,1 does not belong to a cycle, then LL(q0,1) = {ϵ} and there are no
states q ∈ Q′ with q0,1 ⪯ q since ϵ ̸∈ LL(q) for any q ̸= q0,1. If q0,2 is not contained
in a cycle, then it is unreachable and can be removed. If it were reachable by some
state p ∈ Q′, then there would be a path from q0,2 to a final state and a path from
that final state to p, implying that q0,2 belonged to a cycle. Since every other state
is contained in a cycle, πP consists of singletons.

Since for each of these NFAs, πP consists of singletons, they can all be pre-reduced in
polynomial time.

We can extend this property of NFAs accepting star languages to a special class of
NFAs which accepts exactly the class of union-free regular languages defined by Nagy in
[56]. A union-free regular language is a regular language which is specified by a regular
expression that does not contain the union operator. A 1-cycle-free-path automaton
(1cfpa) is an NFA which has a unique cycle-free accepting path from each of its states.
The shortest word accepted by a 1cfpa is unique and is called its backbone. This word is
accepted by the cycle-free path from the initial state to the final state. The other parts
of the automaton are referred to as loops and subloops.

Example 4.2.2. Let A be the 1-cycle-free-path automaton in Figure 4.10. The automa-
ton A accepts the language described by the regular expression

α = (b(b∗(ab∗a)∗)∗a)∗aa∗bba(bb∗ab)∗b.

The backbone of A is abbab and the cycle-free path is q0q1q2q3q4qF .



4.2. Complexity of computing pre-reduced NFAs 33

..q0.start . q1. q2. q3. q4. qF.

q5

.

q6

.

q7

.

q8

. a.

a

. b. b. a. b.

b

.

a

.

a

.

a

.

b

.

b

.

b

.

b

.

a

.

b

Figure 4.10: A 1-cycle-free-path automaton which accepts the language L(α)

Theorem 4.2.4. Let A be a 1-cycle-free-path automaton. Then a pre-reduced NFA
accepting L(A) can be computed in time polynomial in the number of states and transitions
of A.

Proof. Let A = (Q,Σ, δ, q0, {qF}). A state in A belongs to either the cycle-free path from
q0 to qF or a loop or subloop. If a state belongs to a loop or subloop, it is contained in
a cycle. By Lemma 4.2.1, any state that belongs to a cycle is not the child of any other
state over the partial order ⪯.

Now consider a state q ∈ Q on the cycle-free path from q0 to qF and let w be the
backbone of A and n = |w|. Suppose there exists a state p ∈ Q such that p ⪯ q. Note
that p cannot be in a loop or subloop, since L(p, p) = {ϵ}, and hence, p must be in the
cycle-free path P from q0 to qF . Suppose p appears before q on this path. Then wp,
the subword of the backbone w that takes A from q0 to p by following states of P must
belong to LL(q), since p ⪯ q requires that LL(p) ⊆ LL(q). However, this is impossible as
P has no cycles. A similar argument holds if p appears after q.

Thus no state on the cycle-free path is a child of any other state over the partial order
⪯ and thus, no states of A are related over ⪯. Thus, πP consists of singletons and does
not contribute any candidate states to be merged when pre-reducing N so all possible
state merges occur in πL and πR. Thus the pre-reduced NFA for A can be computed in
polynomial time.



Chapter 5

An approximation algorithm based
on Lovász’s theorem

5.1 Lovász’s theorem
When πP is a partition of the state set, the problem of computing a pre-reduced NFA
reduces to the minimum vertex cover problem on 3-partite 3-uniform hypergraphs. In this
section, we introduce Lovász’s theorem, which tells us it becomes possible to approximate
the pre-reduced NFA to within a constant factor when πP is a partition. Since the
original proof of the theorem is in Hungarian, for completeness, we present Theorem 5.1.1,
which is a slightly more general version of Lovász’s theorem that includes hypergraphs
with weights.

Recall that τ(H) denotes the value of a minimal vertex cover of H and τ ∗(H) denotes
the value of a minimal fractional vertex cover of H. Let Z denote the set of integers, let
Q denote the set of rational numbers, and let R denote the set of real numbers.

Theorem 5.1.1 ([48]). Let H = (V,E) be a weighted k-partite k-uniform hypergraph
with weight function w : V → Z. Then τ(H)

τ∗(H)
≤ k

2
.

Proof. Let H = (V,E) be an k-partite k-uniform hypergraph with partition (V1, ..., Vk)

given. Since τ ∗(H) is the value of an optimal solution for a linear programming problem
with integral coefficients, there exists a minimal fractional cover g for H with respect to
w such that g(v) ∈ Q for every v ∈ V . We can choose d such that g(v) · d is integral for
every v ∈ V .

For all integers k ≥ 2 and m ≥ 0, as shown in Lemma 5.1.2 below, there exists an
k × (m+ 1) matrix A such that

1. every row of A is a permutation of {0, 1, ...,m} and

34



5.1. Lovász’s theorem 35

2. the sum of every column is at most
⌈
km
2

⌉
.

Let m =
⌊
2
k
(d− 1)

⌋
. For every 0 ≤ j ≤ m, we define Tj to be

Tj =
k∪

i=1

{v ∈ Vi : d · g(v) > ai,j}

where ai,j is the (i, j)-th entry of the matrix A.
We now show that every Tj is a vertex cover. Suppose not and that there exists an

edge e = {v1, ..., vk} ∈ E such that e ∩ Tj = ∅. Then that means d · g(vi) ≤ ai,j for every
1 ≤ i ≤ k and hence,

k∑
i=1

g(vi) =
k∑

i=1

d · g(vi)
d

≤
∑k

i=1 ai,j
d

≤
⌈
km
2

⌉
d

=

⌈
k
2

⌊
2
k
(d− 1)

⌋⌉
d

≤ d− 1

d
< 1

which is a contradiction, since g is a fractional cover.
Since each row of A is a permutation of {0, 1, ...,m, }, by the way each cover Tj is

defined, a vertex v ∈ V is contained in at most d · g(v) vertex covers. So for every v ∈ V ,

w(v) · |{0 ≤ j ≤ m : v ∈ Tj}| ≤ w(v)g(v)d.

Then
∑m

j=0 w(Tj) ≤
∑

v∈V w(v)g(v)d = dτ ∗(H). Since τ(H) can be at most the average
of the values of the fractional covers Tj, we have

τ(H) ≤
∑m

j=0w(Tj)

m+ 1
≤ dτ ∗(H)

2(d−1)
k

=
k

2
· d

d− 1
· τ ∗(H)

for all sufficiently large d. Then taking the limit as d→∞, we have τ(H) ≤ k
2
τ ∗(H).

We now give an explicit construction of the matrix A mentioned in the above proof.

Lemma 5.1.2. For all integers k ≥ 2 and m ≥ 0, there exists an k × (m+ 1) matrix A

such that

1. every row of A is a permutation of {0, 1, ...,m} and

2. the sum of every column is at most
⌈
km
2

⌉
.

Proof. Let R be the following 2× (m+ 1) matrix.

R =

[
0 1 · · · m

m m− 1 · · · 0

]



36 Chapter 5. An approximation algorithm based on Lovász’s theorem

Clearly, every row of R is a permutation of {0, 1, ...m}. For the ith column of R, i =
0, 1, ...,m, the sum of its entries is

i+ (m− i) = m =
2m

2
≤

⌈
km

2

⌉
.

For the case when k is even, we define A to be R repeated k
2

times. Then for i = 0, 1, ...,m,
the sum of the entries of the ith column of A is

k

2
· 2m

2
=

km

2
≤

⌈
km

2

⌉
.

Now, consider when k is odd. Let the first k− 3 rows of A be R repeated k−3
2

times. For
i = 0, 1, ...,m, the sum of the entries of the ith column of the first k − 3 rows is (k−3)m

2
.

If m is even, then we define the last three rows of A to be 0 1 · · · m
2

m
2
+ 1 · · · m

m
2

m
2
+ 1 · · · m 0 · · · m

2
− 1

m m− 2 · · · 0 m− 1 · · · 1


For i = 0, 1, ..., m

2
, the sum of the entries of the last three rows of the ith column of A is

i+
(m
2
+ i

)
+ (m− (2i)) =

m

2
+m+ 2i− 2i =

3m

2
.

And for i = m
2
+ 1, ...,m, the sum of the entries of the last three rows of the ith column

of A is

i+
(
i−

(m
2
+ 1

))
+ (2m− 2i+ 1) = 2i− 2i− m

2
+ 2m− 1 + 1 =

3m

2
.

Then the sum for the entries in the entire column is

(k − 3)m

2
+

3m

2
=

km

2
.

Finally, we consider the case when m is odd. The last three rows of A are defined as
follows.  0 1 · · · m−1

2
m+1
2

· · · m− 1 m
m+1
2

m+3
2

· · · m 0 · · · m−3
2

m−1
2

m m− 2 · · · 1 m− 1 · · · 2 0


For i = 0, 1, ..., m−1

2
, the sum of the entries of the last three rows of the ith column of A



5.2. The algorithm 37

is
i+

(
m+ 1

2
+ i

)
+ (m− (2i)) =

m+ 1

2
+m+ 2i− 2i =

3m

2
+

1

2
.

And for i = m+1
2

, ...,m, the sum of the entries of the last three rows of the ith column of
A is

i+

(
i− m+ 1

2

)
+ (2m− 2i) = 2i− 2i− m+ 1

2
+ 2m =

3m

2
+

1

2
.

Then the sum for the entries in an entire column is

(k − 3)m

2
+

3m

2
+

1

2
=

km

2
+

1

2
≤

⌈
km

2

⌉
.

5.2 The algorithm

In this section, we design a k
2
-approximation algorithm for the vertex cover problem on

k-partite k-uniform hypergraphs based on Lovász’s theorem. The intuition behind the
algorithm is the idea that each column of the matrix A in the proof of the theorem defines
a vertex cover, with each row representing one partition of the hypergraph. This gives
a total of m + 1 possible vertex covers. However, the number of different vertex covers
in the above set could be much smaller than m+ 1. More specifically, for a hypergraph
H = (V,E) with partition (V1, V2, ..., Vk), the number of different vertex covers defined
by the columns of A is at most |V |+ |Vk|+ 2. We show this in the following lemma.

Lemma 5.2.1. Let H = (V,E) be a k-partite k-uniform hypergraph with partition
(V1, ..., Vk), with |V1| ≥ |V2| ≥ · · · ≥ |Vk|. Then there are at most |V | + |Vk| + 2 dif-
ferent vertex covers given by the matrix A defined in the proof of Theorem 5.1.1.

Proof. Let g : V → R be a minimal fractional cover of H. Choose d such that m =⌊
2
k
(d− 1)

⌋
is odd. Every column aj of A forms a cover Tj as shown by Lovász, where

Tj =
k∪

i=1

{v ∈ Vi : d · g(v) > ai,j}.

To determine the number of different vertex covers defined by A, we scan the columns
of A from left to right and note when a vertex cover changes. Assume that the vertices
of each partition Vi = {vi,1, vi,2, ..., vi,|Vi|} are ordered such that g(vi,l) ≤ g(vi,l+1), 1 ≤
l < |Vi|.



38 Chapter 5. An approximation algorithm based on Lovász’s theorem

We begin with the first vertex cover T0, which is defined by the first column of A.
Observe that while moving along the rows of A from left to right, the cover Tj changes
at a column aj when there is a value ai,j and vertex v ∈ Vi such that d · g(v) = ai,j; thus,
this condition contributes at most

∑k−1
i=1 |Vi|+1 possible different vertex covers, including

the first vertex cover T = T0.
When k is odd, there are two additional cases to consider: the (k − 1)-th row con-

tributes one additional cover at the
(
m
2
+ 1

)
-th column, where the entries in A change

from m to 0. Second, the kth row needs to be handled differently from the other rows
since for j < m

2
, ak,j − 1 = ak,j+m

2
. Thus if we consider all entries ak,j such that

d · g(vk,l) ≤ ak,j < d · g(vk,l+1) for some vk,l ∈ Vk and 1 ≤ l < |Vk|, half of these entries
are in the left half of the matrix and the other half are in the right half of A. Since these
entries are not contiguous in the matrix, the cover T changes twice as many times for
each vertex v ∈ Vk, once in the left half and once in the right half. This defines 2(|Vk|+1)

different covers. However, two of these covers coincide with covers T0 and Tm
2

, which
were already defined for V1 and Vk−1. Thus, the kth row gives at most 2|Vk| additional
covers.

Therefore, there are at most
∑k−1

i=1 |Vi| + 2|Vk| + 2 = |V | + |Vk| + 2 different covers
that can be formed from the columns of A.

Example 5.2.1. Let H = (V,E) be a hypergraph, with the following:

vertices V = {1, 2, 3, 4, 5, 6, 7} with partition ({1, 2, 3}, {4, 5}, {6, 7})

hyperedges E = {{2, 4, 6}, {3, 4, 7}, {1, 5, 7}}

fractional vertex cover gT =
[

1
3

1
3

0 2
3

1
3

0 1
3

]
Choose d = 9 so that m =

⌊
2
3
(d− 1)

⌋
= 5, which gives us d · gT =

[
3 3 0 6 3 0 3

]
.

Let A be the following matrix:  0 1 2 3 4 5

3 4 5 0 1 2

5 3 1 4 2 0


The vertex covers for H derived from this matrix are T0 = T1 = {1, 2, 4}, T2 = {1, 2, 4, 7},
T3 = {4, 5}, T4 = T5 = {4, 5, 7}.

Since the number of different vertex covers can be much lower than m + 1, rather
than building the whole matrix A, we compute only those columns and the corresponding
vertex covers for the different values g(v) in each partition. After constructing every



5.2. The algorithm 39

.........
1

.2 .

3

.
4

.
5

.

6

.

7

Figure 5.1: The hypergraph H = (V,E)

vertex cover, the algorithm selects the cover with the smallest weight. The algorithm is
presented below as Algorithm 1.

Since the algorithm needs to solve the fractional vertex cover problem, the time
complexity of kPartHypVC matches that of a k

2
-approximation algorithm of Krivelevich

for vertex cover on r-uniform k-colourable hypergraphs [46]. This is because computing
the solution to a linear program dominates the time complexity of both algorithms.
However, the number of vertex covers that are computed by our algorithm is |V |+|Vk|+2,
while Krivelevich’s algorithm needs to compute O(k|V |) vertex covers.

Proposition 5.2.2. Algorithm kPartHypVC has time complexity O(n7 log2 T ), where
n = |V | and T = maxv∈V w(v).

Proof. An optimal solution of a linear program with n variables can be computed via
Karmarkar’s algorithm. Karmarkar’s algorithm performs O(n5 logT ∗) arithmetic op-
erations on numbers with O(n2 logT ∗) bits for a total of O(n7 log2 T ∗) bit operations,
where T ∗ is the maximum absolute value of the input numbers [39]. Since the linear
program formulation of the fractional vertex cover problem on a hypergraph H = (V,E)

has n variables and the largest input number is the maximum weight of the vertices,
Karmarkar’s algorithm can compute a fractional vertex cover in O(n7 log2 T ) time.

Choosing d based on g can be done by finding the least common multiple (lcm) of n
numbers. It is well known that lcm(a, b) = ab

gcd(a,b) , where gcd(a, b) is the greatest common
divisor of positive values a and b. We assume a ≤ b without loss of generality. It is well
known that multiplication and division requires O(log2 b) time. The greatest common
divisor of two numbers a, b can be computed using the Euclidean algorithm, which has
time complexity O(log b) [10]. Note that lcm(a, b, c) = lcm(a, lcm(b, c)). Since there are n
numbers to consider, finding the lcm of all n numbers requires finding the lcm n times and
performing n multiplications and divisions. Thus, this requires O(n log2 h) time in total,



40 Chapter 5. An approximation algorithm based on Lovász’s theorem

Algorithm 1 Approximating vertex cover on k-partite k-uniform hypergraphs
1: function kPartHypVC(H = (V,E), k, (V1, V2, ..., Vk))
2: Let (V1, V2, ..., Vk) be the given partition of V
3: Find an optimal fractional cover g : V → R, with g(v) = va

vb
, va, vb ∈ Z for every v ∈ V

4: Find the least common multiple c of the denominators of g(v) = va

vb
for every v ∈ V

5: d← kc
6: m← 2c− 1
7: X ← ∅
8: if k is odd then k′ ← k − 2
9: else k′ ← k ▷ The last two rows of the odd case are handled separately

10: for r ← 1, ..., k′ do
11: for i ∈ {d · g(v) ≤ m : v ∈ Vr} ∪ {0} do
12: if r is odd then i′ ← i
13: else i′ ← m− i

14: for j ← 1, ..., k′ do
15: if j is odd then x[j]← i′

16: else x[j]← m− i′

17: X ← X ∪ {x}
18: if k is odd then
19: for i ∈ {d · g(v) ≤ m : v ∈ Vk−1} ∪ {0} do
20: if i < m

2 then ▷ Handling the row which begins in the middle
21: for j ← 1, ..., k − 2 do
22: if j is odd then x[j]← i+ m+1

2
23: else x[j]← m−1

2 − i

24: else
25: for j ← 1, ..., k − 2 do
26: if j is odd then x[j]← m+1

2 − i
27: else x[j]← i+ m−1

2

28: X ← X ∪ {x}
29: for i ∈ {d · g(v) ≤ m : v ∈ Vk} do
30: i′ ← i− 1 ▷ Handling the split row
31: if i is odd then
32: for j ← 1, ...k − 2 do
33: if j is odd then x[j]← m−i

2 , y[j]← m− i′

2
34: else x[j]← m+1

2 , y[j]← 2i′

35: else
36: for j ← 1, ...k − 2 do
37: if j is odd then x[j]← m− i

2 , y[j]← m−i′

2

38: else x[j]← 2i, y[j]← m+i′

2

39: X ← X ∪ {x, y}
40: for x ∈ X do ▷ The last two entries of each column are computed here
41: i← x[0]
42: if i ≤ m

2 then x[k − 1]← m+1
2 + i, x[k]← m− 2i

43: else x[k − 1]← i− m+1
2 , x[k]← 2(m− i)

44: T ← {T (x) : x ∈ X}, where T (x) =
∪k

j=1{v ∈ Vj : d · g(v) > xj}
45: C ← T ∈ T with minimal weight
46: return C



5.3. Applying Lovász’s theorem to graphs 41

where h = maxv∈V

{
vb : g(v) =

va
vb

}
. By the above discussion on Karmarkar’s algorithm,

logh = logT , the maximum size of the numbers in the linear program. This gives time
complexity O(n logT ) for finding the lcm.

The algorithm goes through each vertex of each partition of the hypergraph. The
computation of the columns for each cover is done in O(k) time, i.e. linear in the length
of the column. In total, the algorithm computes O(n) different columns. Thus, this step
has time complexity O(kn). Building each cover requires O(n) time and there are O(n)

covers, which takes O(n2) time. Finally, choosing the subset T with minimal weight can
be done in time linear in the number of vertex covers, which is O(n). Thus, the time
complexity of the algorithm is O(n7 log2 T ).

5.3 Applying Lovász’s theorem to graphs

We now consider using Lovász’s theorem to approximate vertex covers on graphs. Lovász’s
theorem relies on the number of partitions in the hypergraph to be the same as the size
of the hyperedges. We can prove the same bounds as in [46] by relaxing the conditions
on the columns to be included in the vertex cover. As these results are adapted from
Lovász’s theorem, the proofs will generally follow similar lines of argument as the proof
of Theorem 5.1.1.

Theorem 5.3.1. Let G = (V,E) be a 3-partite graph with weight function w : V → Z.
Then,

τ(G)

τ ∗(G)
≤ 4

3
.

This bound is tight.

Proof. Let G = (V,E) be a 3-partite graph with partition (V1, V2, V3). Since τ ∗(G) is the
value of an optimal solution for a linear programming problem with integral coefficients,
there exists a fractional cover g : V → R such that g(v) ∈ Q for every vertex v ∈ V .
Therefore, we can choose an integer d such that d ·g(v) is integral for every vertex v ∈ V .



42 Chapter 5. An approximation algorithm based on Lovász’s theorem

Let m =
⌊
3
4
(d− 1)

⌋
. Define a 3× (m+ 1) matrix A by

A0, 1
3

A 1
3
, 2
3

A1, 2
3

 =

 0 1 · · ·
⌊
m
3

⌋
− 1

⌊
m
3

⌋⌈
m
3

⌉ ⌈
m
3

⌉
+ 1 · · ·

⌊
2m
3

⌋
− 1

⌊
2m
3

⌋
m m− 1 · · ·

⌈
2m
3

⌉
+ 1

⌈
2m
3

⌉


A =


A0, 1

3
A 1

3
, 2
3

A1, 2
3

A 1
3
, 2
3

A1, 2
3

A0, 1
3

A1, 2
3

A0, 1
3

A 1
3
, 2
3


Each row of A is a permutation of {0, 1, . . . ,m}. Each column of A contains entries which
can be written as i,

⌈
m
3

⌉
+ i, and m− i, with 0 ≤ i ≤

⌊
m
3

⌋
. Then,

i+
⌊m
3

⌋
+ i ≤ 3

⌊m
3

⌋
≤

⌈
4m

3

⌉
⌊m
3

⌋
+ i+m− i ≤

⌊m
3

⌋
+m ≤

⌈
4m

3

⌉
i+m− i ≤ m ≤

⌈
4m

3

⌉
Thus, in each column, the sum of any two entries is at most

⌈
4m
3

⌉
.

For each column j of A, define a set

Tj =
3∪

i=1

{v ∈ Vi : d · g(v) > ai,j}

We claim that every Tj is a cover. Suppose it is not and e = (u, v) is an edge not covered
by Tj. Let u ∈ Vk and v ∈ Vk′ , with 1 ≤ k, k′ ≤ 3 and k ̸= k′. Then,

g(u) + g(v) =
d · g(u) + d · g(v)

d
≤ ak,j + ak′,j

d
≤

⌈
4m
3

⌉
d

=

⌈
4
3

⌊
3
4
(d− 1)

⌋⌉
d

≤ d− 1

d
< 1

which is a contradiction since g is a fractional cover.

Since each row of A is a permutation of {0, 1, . . . ,m}, we have

w(v) · |{0 ≤ j ≤ m : v ∈ Tj}| ≤ w(v)g(v)d

for every vertex v ∈ V . Then
∑m

j=0w(Tj) ≤
∑

v∈V d · g(v) = dτ ∗(G). Since every Tj is a



5.3. Applying Lovász’s theorem to graphs 43

.......

Figure 5.2: The complete graph K3

cover, we have

τ(G) ≤
∑m

j=0w(Tj)

m+ 1
≤ dτ ∗(G)

3
4
(d− 1)

which, if d→∞ gives
τ(G)

τ ∗(G)
≤ 4

3
.

To see that the bound is tight, consider the complete graph K3 in which every vertex
has weight 1, which is shown in Figure 5.2. In the optimal fractional vertex cover g,
g(v) = 1

2
for every v ∈ V (K3) and so τ ∗(K3) = |g| = 3

2
. But a minimal vertex cover must

contain at least two of the three vertices, so τ(K3) = 2. Thus, the approximation ratio
of the fractional cover is

τ(K3)

τ ∗(K3)
=

2
3
2

=
4

3
.

We now describe an algorithm with a slightly better approximation ratio for 3-partite
graphs.

Theorem 5.3.2. Let G = (V,E) be a 3-partite graph. Then,

τ(G)

τ ∗(G)
≤ 4

3
− 1

3
· |C1|
τ ∗(G)

,

where C1 is the set of vertices in the fractional cover with value 1.

Proof. Let G = (V,E) be a 3-partite graph with partition (V1, V2, V3) and let g : V → R
be a fractional cover with value τ ∗(G). Since the solution to the vertex cover problem
on graphs is half-integral [57], we can immediately choose vertices v ∈ V with g(v) = 1

to be included into the cover. Let C1 be the set of these vertices. We can also disregard
any vertices with g(v) = 0. This leaves vertices with g(v) = 1

2
and we let V 1

2
= {v ∈ V :

g(v) = 1
2
}.



44 Chapter 5. An approximation algorithm based on Lovász’s theorem

Let G 1
2
= (V 1

2
, E 1

2
) be the subgraph of G induced by V 1

2
. Then τ ∗(G 1

2
) = 1

2
|V 1

2
|. For

i = 1, 2, 3, we let Vi, 1
2

denote the set of vertices v ∈ Vi with g(v) = 1
2
. Without loss of

generality, let |V1, 1
2
| ≤ |V2, 1

2
| ≤ |V3, 1

2
|. Then τ(G 1

2
) ≤ |V1, 1

2
| + |V2, 1

2
| ≤ 2

3
|V 1

2
|. This gives

us
τ(G 1

2
)

τ ∗(G 1
2
)
≤

2
3
|V 1

2
|

1
2
|V 1

2
|
=

4

3
.

Therefore,

τ(G) ≤ τ(G 1
2
) + |C1| ≤

4

3
τ ∗(G 1

2
) + |C1| ≤

4

3
(τ ∗(G)− |C1|) + |C1| =

4

3
τ ∗(G)− 1

3
|C1|.

Thus,
τ(G)

τ ∗(G)
≤ 4

3
− 1

3
· |C1|
τ ∗(G)

.

Finally, we can generalize the proof of Theorem 5.3.1 to k ≥ 4.

Theorem 5.3.3. Let G = (V,E) be a k-partite graph with weight function w : V → Z.
Then,

τ(G)

τ ∗(G)
≤ 2(k − 1)

k
.

Proof. Let G = (V,E) be a k-partite graph with partition (V1, V2, . . . , Vk). Since τ ∗(G)

is the value of an optimal solution for a linear programming problem with integral co-
efficients, there exists a fractional cover g : V → R such that g(v) ∈ Q for every vertex
v ∈ V . Therefore, we can choose an integer d such that d · g(v) is integral for vertex
v ∈ V . We also include the restriction that 2(k − 1) divides d− 1.

Let m = k
2(k−1)

(d− 1) and for 1 ≤ i < j ≤ k − 1, we define the following:

A [i, j] =
[

im
k

im
k
+ 1 · · · jm

k
− 1 jm

k

]
We then define A[k − 1, k] as follows and note that the values of the row decrease when
moving from left to right, rather than increasing as in A[i, j].

A [k − 1, k] =
[
m m− 1 · · · (k−1)m

k
+ 1 (k−1)m

k

]
.



5.3. Applying Lovász’s theorem to graphs 45

We define a k × (m+ 1) matrix A by

A =



A[0, 1] A[1, 2] · · · A[k − 2, k − 1] A[k − 1, k]

A[1, 2] A[2, 3] · · · A[k − 1, k] A[0, 1]
...
A[k − 2, k − 1] A[k − 1, k] · · · A[k − 4, k − 3] A[k − 3, k − 2]

A[k − 1, k] A[0, 1] · · · A[k − 3, k − 2] A[k − 2, k − 1]


Each row of A is a permutation of {0, 1, . . . ,m}. Each column of A contains entries
which can be written as jm

k
+ i for 0 ≤ j ≤ k − 2 and one entry of the form m− i, with

0 ≤ i ≤ m
k

. When adding any two entries of the column, for each 0 ≤ j < j′ ≤ k − 2, we
have the following:

jm

k
+ i+

j′m

k
+ i ≤ (k − 2)m

k
+

(k − 1)m

k
≤ 2(k − 1)m

k
.

In the case which involves adding the entry of the form m− i, we have the following:

jm

k
+ i+m− i ≤ (k − 2)m

k
+

mk

k
≤ (k − 2)m+mk

k

=
2mk − 2m

k
=

2(k − 1)m

k

Thus, in each column, the sum of any two entries is at most 2(k−1)m
k

.
For each column j of A, define a set

Tj =
k∪

i=1

{v ∈ Vi : d · g(v) > ai,j}

We claim that every Tj is a cover. Suppose it is not and e = (u, v) is an edge not covered
by Tj. Let u ∈ Vi and v ∈ Vi′ with 1 ≤ i, i′ ≤ k and i ̸= i′. Then,

g(u)+g(v) =
d · g(u) + d · g(v)

d
≤ ai,j + ai′,j

d
≤

2(k−1)m
k

d
=

2(k−1)
k

k
2(k−1)

(d− 1)

d
≤ d− 1

d
< 1

which is a contradiction, since g is a fractional cover.
Since each row of A is a permutation of {0, 1, . . . ,m}, we have

w(v) · |{0 ≤ j ≤ m : v ∈ Tj}| ≤ w(v)g(v) · d

for every vertex v ∈ V . Then
∑m

j=0w(Tj) ≤
∑

v∈V w(v)g(v) · d = dτ ∗(G). Since every Tj



46 Chapter 5. An approximation algorithm based on Lovász’s theorem

is a cover, we have

τ(G) ≤
∑m

j=0w(Tj)

m+ 1
≤ dτ ∗(G)

k
2(k−1)

(d− 1)

which, if d→∞ gives
τ(G)

τ ∗(G)
≤ 2(k − 1)

k
.



Chapter 6

Using Approximate Fractional
Covers

6.1 Approximate fractional covering algorithms
As seen earlier, computing the solution of a linear program can be quite costly as n,
the number of variables, grows. Because the solution of a linear program is so expensive
to compute, the time complexity of our vertex cover algorithm is dominated by this
operation. Thus, the largest performance improvement that we can make to our algorithm
kPartHypVC is by finding a less expensive way to compute the solution to the linear
programming relaxation used in Line 3 of kPartHypVC.

One way to do this is to compute an approximate solution for the fractional ver-
tex cover problem. Plotkin, Shmoys, and Tardos [62] give an algorithm that computes
approximate solutions for a class of problems called packing and covering problems.

Definition 6.1.1. Let P ⊆ Rn be a convex set. A set is convex if for every pair of points
in P , the line segment that joins the two points also lies entirely within P . A covering
problem has the following form: given an m×n matrix A, an n-dimensional vector b with
b > 0 such that Ax ≥ 0 for all x ∈ P , find x ∈ P such that Ax ≥ b.

Note that we abuse notation here and in the following and write x ≥ y for vectors x

and y to mean the components of x are greater than the corresponding components of
y. We also use 0 to denote the zero vector with length n.

Instead of solving this problem exactly, which can be done in polynomial time using
linear programming algorithms, the algorithm of Plotkin, Shmoys, and Tardos finds an
x ∈ P such that Ax ≥ (1 − ϵ)b, where ϵ > 0 is the desired approximation factor. The
advantage of this algorithm is that its time complexity is not dependent on the number

47



48 Chapter 6. Using Approximate Fractional Covers

of variables. Rather, the running time is polynomial in the number of constraints m, the
approximation factor ϵ, and the width ρ of the set P relative to the problem Ax ≥ b,
which is defined as follows.

Definition 6.1.2. The width ρ of the set P relative to Ax ≥ b is defined by

ρ = max
i

max
x∈P

aix

bi

where aix is the ith component of Ax and bi is the ith component of b.

The main idea of the algorithm in [62] is to maintain a point x ∈ P that does not
satisfy Ax ≥ b and repeatedly solve an optimization problem over P to find a new point
x′ ∈ P that does not violate as many inequalities as x. Then x′ is taken as the new point
x and the above procedure is repeated until a point x ∈ P satisfying Ax ≥ b is found.
The optimization problem that needs to be solved to compute x′ is the following.

Definition 6.1.3. Given an m-dimensional vector y, find x′ ∈ P such that

cx′ = max{cx : x ∈ P}, c = yTA. (6.1)

Since this subproblem is dependent on the specific covering problem that we wish to
solve, the time complexity of the algorithm in [62] is expressed as the number of iterations
of the subroutine that solves this subproblem.

6.2 Approximate fractional vertex covers

Theorem 6.2.1. Let H = (V,E) be a weighted k-partite k-uniform hypergraph with
weight function w : V → Z and wmax = maxv∈V {w(v)}. An ϵ-approximate frac-
tional vertex cover for H can be computed in O(|V | log |V | log(|V |wmax)(|E|+k log2 |E|+
kϵ−2 log(|E|ϵ−2))) time.

Proof. The approximate fractional cover algorithm of Plotkin, Shmoys, and Tardos re-
quires O(m+ ρ log2 m+ ρϵ−2 log(mϵ−1)) calls to a subroutine that solves the problem in
Definition 6.1.3. The linear programming relaxation of the vertex cover program is given
in (3.2). In this formulation, we have n = |V | variables and m = |E| constraints. To
formulate the vertex cover problem in the form specified by Definition 6.1.1, we use the



6.2. Approximate fractional vertex covers 49

following formulation of (3.2): ∑
v∈V

w(v)g(v) = T (6.2)∑
v∈e

g(v) ≥ 1, ∀e ∈ E

g(v) ≥ 0

where T is the size of a minimum vertex cover. With this formulation of the problem we
can define the convex set P as

P =

{
g ∈ [0,∞)n :

∑
v∈V

w(v)g(v) = T

}
.

The formulation of the subproblem in Definition 6.1.3 is then

maximize
∑
v∈V

c(v)g(v) (6.3)

subject to
∑
v∈V

w(v)g(v) = T

g(v) ≥ 0

where c = yTA, and y is a given m-dimensional vector which is computed during the
execution of the algorithm of Plotkin, Shmoys, and Tardos. Problem (6.3) is the fractional
knapsack problem, where the items v ∈ V have cost c(v) and weight w(v) and the
knapsack has size T . Since g(v) can take on fractional values, this problem is solvable
in O(n logn) time by sorting vertices by the ratio c(v)

w(v)
for each vertex v and greedily

choosing vertices in decreasing order of c(v)
w(v)

value.

Since T is not known, we need to compute it . As T ≤
∑

v∈V w(v), we can use binary
search on the set {1, 2, . . . ,

∑
v∈V w(v)} to find the smallest value T for which problem

(6.2) has a solution, which requires running the entire algorithm O(log
∑

v∈V w(v)) =

O(log(nwmax)) times, where wmax = maxv∈V {w(v)}. To determine the value of ρ, the
width of the problem, note that each constraint in the linear program (3.2) is of the form
aig ≤ bi, where ai is the ith row of A and bi is the ith component of b for 1 ≤ i ≤ m.
The entries of A only take on values 0 or 1 and the entries of b are all 1. Since bi = 1 for
every 1 ≤ i ≤ m, we have ρ = maxi

∑n
j=1 ai,j, which is the size of the largest edge. Thus,

for k-partite k-uniform hypergraphs, we have ρ = k. Then the total time complexity
to find the approximate fractional cover is O(|V | log |V | log(|V |wmax)(|E| + k log2 |E| +



50 Chapter 6. Using Approximate Fractional Covers

kϵ−2 log(|E|ϵ−2))).

Since the algorithm of [62] only computes an approximate fractional cover, if we use
it in our algorithm kPartHypVC to compute a vertex cover for a k-partite k-uniform
hypergraph, the value of the solution will not be as good as indicated in Theorem 5.1.1,
but it will be very close as shown in the following theorem.

Definition 6.2.1. For 0 < ϵ < 1, an ϵ-approximate fractional covering of a hypergraph
H = (V,E) is a function gϵ : V → R such that

∑
v∈e gϵ(v) ≥ 1 − ϵ for every edge

e ∈ E(H). We define |gϵ| to be the value of the cover, given by |gϵ| =
∑

v∈V w(v)gϵ(v).
Let τ ∗ϵ (H) denote the minimum of |gϵ| among all ϵ-approximate fractional covers of H.

Theorem 6.2.2. For every k-partite k-uniform hypergraph H and 0 < ϵ < 1,

τ(H)

τ ∗ϵ (H)
≥ k

2
(1− ϵ)−1.

Proof. Let H = (V,E) be a k-partite k-uniform hypergraph with partition (V1, . . . , Vk)

with weight function w : V → Z. Since τ ∗ϵ (H) is the value of a minimal ϵ-approximate
fractional cover, there exists an ϵ-approximate fractional cover gϵ : V → R such that
gϵ(v) ∈ Q for every vertex v ∈ V . Therefore, we can choose an integer d such that
(d− 1)(1− ϵ) and d · gϵ(v) are integral for every vertex v ∈ V .

Let m =
⌊
2
k
(d− 1)(1− ϵ)

⌋
. By Lemma 5.1.2, there exists a k × (m + 1) matrix A

such that its rows are permutations of {0, 1, . . . ,m} and the sum of the entries in each
of its columns is at most

⌈
km
2

⌉
.

Then for each column j of A, define a set

Tj =
k∪

i=1

{v ∈ Vi : d · gϵ(v) > ai,j} .

We claim that every Tj is a cover. Suppose it is not and e = (e1, . . . , ek) is an edge not
covered by Tj. Then d · gϵ(vi) ≤ ai,j for each vi ∈ e.

Then,

k∑
i=1

gϵ(vi) =
k∑

i=1

d · gϵ(vi)
d

≤
∑k

i=1 ai,j
d

≤
⌈
km
2

⌉
d

=

⌈
k
2

⌊
2
k
(d− 1)(1− ϵ)

⌋⌉
d

≤ d− 1

d
(1−ϵ) < 1−ϵ

which is a contradiction, since gϵ is an ϵ-approximate fractional cover.



6.2. Approximate fractional vertex covers 51

Since each row of A is a permutation of {0, 1 . . . ,m}, for every v ∈ V ,

w(v) · |{0 ≤ j ≤ m : v ∈ Tj}| ≤ w(v)gϵ(v)d.

Then
∑m

j=0w(Tj) ≤
∑

v∈V w(v)gϵ(v)d = dτ ∗ϵ (H). Since every Tj is a cover, we have

τ(H) ≤
∑m

j=0 w(Tj)

m+ 1
≤ dτ ∗ϵ (H)

2
k
(d− 1)(1− ϵ)

which gives
τ(H)

τ ∗ϵ (H)
≤ k

2
(1− ϵ)−1

if d→∞.

Theorem 6.2.3. Let H = (V,E) be a k-partite k-uniform hypergraph. Then a k
2
(1−ϵ)−1

approximate vertex cover can be computed in O(|V | log |V | log(|V |wmax)(|E|+k log2 |E|+
kϵ−2 log(|E|ϵ−2))) time.

Proof. By Theorem 6.2.2, using an ϵ-approximate fractional cover instead of an ex-
act fractional cover gives a solution with approximation ratio k

2
(1 − ϵ)−1. In algo-

rithm kPartHypVC, instead of finding an exact solution, we use the approximate
fractional covering algorithm of Plotkin, Shmoys, and Tardos to find an ϵ-approximate
fractional cover. By Theorem 6.2.1, computing an ϵ-approximate fractional cover requires
O(|V | log |V | log(|V |wmax)(|E|+ k log2 |E|+ kϵ−2 log(|E|ϵ−2))) time.



Chapter 7

Conclusions

In this thesis, we presented some results on approximating reductions of NFAs. Specifi-
cally, we showed some nontrivial families of regular languages for which a pre-reduced
NFA can be computed in polynomial time. In particular, if every state in an NFA be-
longs to a cycle, the pre-reduced NFA can be computed in polynomial time. We show
two examples of families of regular languages with NFAs that have this property: star
languages and union-free languages.

We presented an approximation algorithm for the minimum vertex cover problem
on k-partite k-uniform hypergraphs based on Lovász’s theorem. The algorithm has an
approximation ratio of k

2
, which matches the integrality gap upper bound given by Lovász.

The complexity of our algorithm is dominated by the need to compute a solution for a
linear program. To improve the time complexity of the algorithm, we use approximate
fractional covering algorithms to compute an approximate fractional cover instead of an
exact vertex cover. We show that this improves the time complexity by removing the
dependency on the number of variables of the LP instance at the expense of a small
increase in the approximation ratio.

We would like to be able to identify structural properties of NFAs which determine
whether a pre-reduced NFA can be computed efficiently. For instance, it is known that
every regular language can be written as the union of several union-free regular languages
[55]. Since we know there is an NFA (specifically a 1-cycle-free path automaton) for each
union-free regular language for which an equivalent pre-reduced NFA can be computed
in polynomial time, it may be possible to relate the structure of the partial order ⪯ of
an automaton for the language to its union-free decomposition.

There are currently two best inapproximability results for the minimum vertex cover
problem on k-partite k-uniform hypergraphs, depending on whether we assume that the
Unique Games Conjecture (UGC) is true or false. If we assume that the UGC is true,

52



53

then the problem is inapproximable to within a factor of k
2
− ϵ for all ϵ > 0 and k ≥ 3.

Thus, our algorithm achieves the best possible approximation. However, if we assume
the UGC is false, then the problem has been shown to be inapproximable within a factor
of k

2
− 1 + 1

2k
− ϵ for all ϵ > 0, but only for k ≥ 4. This is the latest in a series of results

that shows inapproximability closer and closer to k
2
. It is believed that the problem is

inapproximable to within a factor of k
2

but this question remains open.



Bibliography

[1] Ron Aharoni, Ron Holzman, and Michael Krivelevich. On a theorem of Lovasz on
covers in r-partite hypergraphs. Combinatorica, 16:149–174, 1996.

[2] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: Prin-
ciples, Techniques and Tools. Number 0 in Series in Computer Science. Addison-
Wesley, 2006.

[3] J P Allouche and J O Shallit. Automatic sequences: theory, applications, general-
izations. Cambridge University Press, 2003.

[4] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving Inte-
grality Gaps without Knowing the Linear Program. Theory of Computing, 2:19–51,
2006.

[5] Henrik Björklund and Wim Martens. The tractability frontier for NFA minimization.
Journal of Computer and System Sciences, 78(1):198–210, January 2012.

[6] Janusz A. Brzozowski and Rina Cohen. On Decompositions of Regular Events.
Journal of the ACM, 16(1):132–144, January 1969.

[7] Janusz A. Brzozowski and Michael Yoeli. Digital Networks. Prentice-Hall, Inc., 1976.

[8] J Champarnaud and F Coulon. NFA reduction algorithms by means of regular
inequalities. Theoretical Computer Science, 327(3):241–253, 2004.

[9] J Champarnaud and D Ziadi. Canonical derivatives , partial derivatives and finite
automaton constructions. Theoretical Computer Science, 289(1):137–163, 2002.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cliffson Stein. In-
troduction to Algorithms. MIT Press, Cambridge, Massachusetts, 2nd edition, 2001.

[11] Karel Culik II and Tero Harju. Splicing semigroups of dominoes and DNA. Discrete
Applied Mathematics, 31(3):261–277, 1991.

[12] Karel Culik II and Jarkko Kari. Image compression using weighted finite automata.
Computers & Graphics, 17(3):305–313, 1994.

[13] Irit Dinur, Venkatesan Guruswami, and Subhash Khot. Vertex Cover on k-Uniform
Hypergraphs is Hard to Approximate within Factor (k-3-ϵ). Technical report, Elec-
tronic Colloquium on Computational Complexity, 2002.

54



BIBLIOGRAPHY 55

[14] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A New Mul-
tilayered PCP and the Hardness of Hypergraph Vertex Cover. SIAM Journal on
Computing, 34(5):1129–1146, January 2005.

[15] Irit Dinur and Shmuel Safra. The importance of being biased. In Symposium on
Theory of Computing, pages 33–42, 2002.

[16] Tomas Feder, Rajeev Motwani, Liadan O’Callaghan, Rina Panigrahy, and Dilys
Thomas. Online Distributed Predicate Evaluation. Technical report, Stanford Uni-
versity, 2003.

[17] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, July 1998.

[18] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and
Abderrazak Ghedamsi. Test selection based on finite state models. IEEE Transac-
tions on Software Engineering, 17(6):591–603, 1991.

[19] Yuan Gao, Kai Salomaa, and Sheng Yu. Transition Complexity of Incomplete DFAs.
Fundamenta Informaticae, 110:143–158, 2011.

[20] Jaco Geldenhuys, Brink Van Der Merwe, and Lynette Van Zijl. Reducing Nondeter-
ministic Finite Automata with SAT Solvers. In Finite-State Methods and Natural
Language Processing, volume 6062, pages 81–92, 2010.

[21] V.M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16:1–53, 1961.

[22] Georg Gottlob and Pierre Senellart. Schema mapping discovery from data instances.
Journal of the ACM, 57(2):1–37, January 2010.

[23] Gregor Gramlich and Georg Schnitger. Minimizing NFA’s and Regular Expressions.
In Symposium on Theoretical Aspects of Computer Science, pages 399–411, 2005.

[24] Hermann Gruber and Markus Holzer. Computational Complexity of NFA Mini-
mization for Finite and Unary Languages. In Proceedings of the 1st International
Conference on Language and Automata Theory and Applications, pages 261–272,
2007.

[25] Venkatesan Guruswami and Rishi Saket. On the Inapproximability of Vertex Cover
on k-Partite k-Uniform Hypergraphs. In International Colloquium on Automata,
Languages and Programming, pages 360–371, 2010.

[26] Johan Hå stad. Some Optimal Inapproximability Results. Journal of the ACM,
48(4):798–859, 2001.

[27] Tom Head. Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759,
1987.



56 BIBLIOGRAPHY

[28] Jonas Holmerin. Improved Inapproximability Results for Vertex Cover on k-Uniform
Hypergraphs. In International Colloquium on Automata, Languages and Program-
ming, volume 2380, pages 1005–1016, 2002.

[29] Markus Holzer and Martin Kutrib. State Complexity of Basic Operations on Non-
deterministic Finite Automata. In International Conference on Implementation and
Application of Automata, volume 2608, pages 148–157, 2003.

[30] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
In Theory of Machines and Computations, pages 189–196, 1971.

[31] Oscar H. Ibarra and Chul E. Kim. Fast Approximation Algorithms for the Knapsack
and Sum of Subset Problems. Journal of the ACM, 22(4):463–468, 1975.

[32] Lucian Ilie, Gonzalo Navarro, and Sheng Yu. On NFA Reductions. In Theory Is
Forever, Essays Dedicated to Arto Salomaa on the Occasion of His 70th Birthday,
pages 112–124, 2004.

[33] Lucian Ilie, Baozhen Shen, and Sheng Yu. Fast Algorithms for Extended Regular
Expression Matching and Searching. In STACS, volume 2607, pages 179–190, 2003.

[34] Lucian Ilie, Roberto Solis-Oba, and Sheng Yu. Reducing the Size of NFAs by Using
Equivalences and Preorders. In Combinatorial Pattern Matching, pages 310–321,
2005.

[35] Lucian Ilie and Sheng Yu. Algorithms for Computing Small NFAs. In International
Symposium on Mathematical Foundations of Computer Science, volume 2420, pages
328–340, 2002.

[36] Lucian Ilie and Sheng Yu. Follow automata. Information and Computation,
186(1):140–162, October 2003.

[37] Tao Jiang and B. Ravikumar. Minimal NFA Problems are Hard. SIAM Journal on
Computing, 22(6):1117–1141, December 1993.

[38] T. Kameda and P. Weiner. On the State Minimization of Nondeterministic Finite
Automata. IEEE Transactions on Computers, C-19(7):617–627, July 1970.

[39] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[40] Richard M Karp. Reducibility among combinatorial problems. In R E Miller and J W
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[41] Subhash Khot. On the power of unique 2-prover 1-round games. In Symposium on
Theory of Computing, pages 767–775, 2002.

[42] Subhash Khot. Guest Column: Inapproximability Results via Long Code based
PCPs. ACM SIGACT News, 36(2):25–42, 2005.



BIBLIOGRAPHY 57

[43] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to
within 2−ϵ. Journal of Computer and System Sciences, 74(3):335–349, May 2008.

[44] S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Technical
report, RAND Corporation (RM704), Santa Monica, CA, 1951.

[45] Donald Knuth, James H Morris, and Vaughan Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[46] Michael Krivelevich. Approximate Set Covering in Uniform Hypergraphs. Journal
of Algorithms, 25(1):118–143, October 1997.

[47] Bruce G Linster. Evolutionary Stability in the Infinitely Repeated Prisoners’
Dilemma Played by Two-state Moore Machines. Southern Economic Journal,
56(4):880–903, 1992.

[48] László Lovász. A kombinatorika minimax tételeiről (On the minimax theorems of
combinatorics). Mathematical Lapok, 26:209–264, 1975.

[49] László Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

[50] Andreas Malcher. Minimizing finite automata is computationally hard. Theoretical
Computer Science, 327(3):375–390, November 2004.

[51] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata.
IEEE Transactions on Electronic Computers, 9(1):39–47, 1960.

[52] B.F. Melnikov. A new algorithm of the state-minimization for the nondeterministic
finite automata. Journal of Applied Mathematics and Computing, 6(2):277–290,
1999.

[53] Mehryar Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23(2):269–311, 1997.

[54] J. Myhill. Finite automata and the representation of events. Technical report,
Wright Patterson AFB (WADD TR-57-624), 1957.

[55] Benedek Nagy. A normal form for regular expressions. Technical report, CDMTCS-
252, supplemental material for DLT 2004, 2004.

[56] Benedict Nagy. Union-free regular languages and 1-cycle-free-path-automata. Publ.
Math. Debrecen, 68(1-2):183–197, 2006.

[57] G. L. Nemhauser and L. E. Trotter. Vertex packings: structural properties and
algorithms. Mathematical Programming, 8(1):232–248, 1975.

[58] A. Nerode. Linear automata transformation. Proceedings of AMS, 9:541–544, 1958.



58 BIBLIOGRAPHY

[59] Oscar Nierstrasz. Regular types for active objects. In Object-oriented programming
systems, languages, and applications, pages 1–15, 1993.

[60] Robert Paige and Robert Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

[61] Christos H Papadimitriou and Mihalis Yannakakis. The complexity of facets (and
some facets of complexity). Journal of Computer and System Sciences, 28(2):244–
259, 1984.

[62] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast Approximation Algo-
rithms for Fractional Packing and Covering Problems. Mathematics of Operations
Research, 20(2):257–301, 1995.

[63] Ariel Rubinstein. Finite Automata Play the Repeated Prisoner’s Dilemma. Journal
of Economic Theory, 39(1):83–96, 1986.

[64] Sushant Sachdeva and Rishi Saket. Nearly Optimal NP-Hardness of Vertex Cover
on k-Uniform k-Partite Hypergraphs. In Approximation, Randomization, and Com-
binatorial Optimzation Algorithms and Techniques, pages 327–338, 2011.

[65] Kai Salomaa and Sheng Yu. Synchronization expressions with extended join opera-
tion. Theoretical Computer Science, 207:73–88, 1998.

[66] Luca Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In Symposium on Theory of Computing, pages 453–461, 2001.

[67] Stephen Wolfram. Computation theory of cellular automata. Communications in
Mathematical Physics, 96(1):15–57, 1984.



Curriculum Vitae

Name: Timothy Ng

Post-Secondary University of Waterloo
Education and Waterloo, ON, Canada
Degrees: 2006 – 2011 BMath

The University of Western Ontario
London, ON, Canada
2011 – 2013 M.Sc.

Honours and Queen Elizabeth II Graduate Scholarship in Science and Technology
Awards: 2012 – 2013

Related Work Teaching Assistant
Experience: The University of Western Ontario

2011 – 2012

59


	NFA reduction via hypergraph vertex cover approximation
	Recommended Citation

	NFA reduction via hypergraph vertex cover approximation

