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Abstract 

Speckle Reducing Anisotropic Diffusion, SRAD, is a multiplicative speckle noise reduction 

method. In highly speckled environment, SRAD occasionally produces over-smoothed, 

dislocated/broadened edge lines and inadequate de-noising on homogeneous image regions 

where the speckles are well developed. Moreover, the performance of SRAD is highly 

dependent on the initial selection of a good homogeneous area. To overcome these 

weaknesses, we propose two different ratio-based edge detection inspired extensions to 

SRAD. One of the proposed extensions incorporates an edge-sensitive boosting factor to 

guide the gradient and Laplacian operator based edge detector of SRAD. The edge-sensitive 

boosting factor is defined by the global edge information provided by a ratio based edge 

detector. The other proposed extension introduces a weighted diffusion function in the 

original diffusion model of SRAD. The proposed diffusion function is a weighted sum of two 

components – (1) a global ratio-based edge detection inspired component and (2) the original 

diffusion function of SRAD. A common scaling function selection strategy for both 

extensions and the use of a larger window size for gathering local statistics have also been 

proposed. The proposed filters show significant improvement in speckle de-noising and edge 

preservation.   

 

Keywords: speckle, speckle reduction, multiplicative noise reduction, anisotropic diffusion, 

ratio-based edge detection, edge preservation, SRAD. 
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Chapter 1  

Introduction 

Noise in digital images can be defined as random variation of brightness or color 

information. It reduces image quality and makes object recognition, segmentation, and 

classification difficult. The principal sources of noise in digital images arise during image 

acquisition and/or transmission. The quality of sensing elements and environmental 

conditions are the two key sources of noise in the image acquisition or digitization 

process. Image noise can also result from the interference in the channel used for 

transmission. According to the noise-model, noise created in image acquisition and/or 

transmission process can be grouped into two major categories— additive and 

multiplicative noise.  

Noise reduction is an active research area of digital image processing. A good number of 

recent image de-noising research-works focus on the reduction of a special form of 

multiplicative noise named speckle. Speckle commonly occurs in SAR (Synthetic 

Aperture Radar), SAS (Synthetic Aperture Sonar) and ultrasound images. The ultimate 

goal of speckle reducing filters is to reduce the speckle noise level with minimal 

distortion of image details. But, this form of multiplicative noise is locally correlated 

which makes speckle reduction quite challenging. This thesis work proposes two filtering 

techniques for speckle reduction with a major focus on the preservation of image details. 

In this chapter, we will present a brief introduction to the nature of speckle, various 

approaches to speckle reduction as well as the motivations and contributions of this 

thesis.
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1.1 Speckle  

A well known characteristic of coherent imaging is the presence of speckle. Speckle is 

simply a form of locally correlated multiplicative noise that inherently exists in and 

degrades the quality of various kinds of images including synthetic aperture radar (SAR), 

synthetic aperture sonar (SAS) and ultrasound images. Speckle normally occurs in these 

types of images in the image acquisition process.  A distinctive property of speckle noise 

is local correlation. This local correlation property of speckle pattern makes it difficult to 

define a model of speckle. 

The reason behind the local correlation in speckle pattern can be explained by the image 

acquisition processes of SAR, SAS and ultrasound images. For example, speckle noise in 

SAR system results from random fluctuations in the electromagnetic return signals (radio 

and microwave, specifically) from the underlying objects. Reflected signals returned 

from different objects have different fluctuation patterns. The speckles in a sub-region of 

the SAR image representing a specific object exhibit local correlation since they resulted 

from the same fluctuation pattern. Similarly, in case of SAS and ultrasound images, the 

local brightness of the speckle pattern, reflects the local echogenicity (the extent to which 

a structure/object gives rise to reflections of ultrasonic waves) of the underlying 

backscatter.  

The goal of enhancement of speckled imaging is to reduce speckle without destroying 

significant edge details. Speckle filters first originated in the SAR community. Later, it 

became popular in SAS and ultrasound imaging. In each of these fields, speckle reduction 

is the pre-processing step of region-based detection, segmentation and classification. 

1.2 Various approaches to speckle reduction 

Standard additive noise filtering techniques are not effective in speckle reduction. It is 

already mentioned that pixels of speckled images are locally correlated. This property of 

speckled image limits the use of additive noise filters in SAR, SAS and ultrasound 

imaging.  
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Speckle reducing techniques can be grouped into two major categories— homomorphic 

and adaptive filtering.  Homomorphic filters do not account for the local correlation 

property of speckled image. The key idea of homomorphic filtering is to transform 

multiplicative speckle noise into additive noise by applying some nonlinear memoryless 

operator and then applying standard additive noise filters for noise reduction. Then, an 

inverse nonlinear operator is applied to the de-noised image to produce the final output 

image. In the homomorphic filtering approach, the model of speckle noise is over-

simplified since it doesn‘t account for an image transfer function involved in the image 

acquisition process (will be described in details in Chapter 2). This type of filters is 

inefficient in speckle reduction and quite outdated. 

As the name implies, adaptive filters adapt with the change in underlying image sub-

region and/or time. Unlike homomorphic filters, most of the successful adaptive filters 

account for the local correlation property of speckled images. Adaptive filters gather 

local statistics from image sub-regions and exploit this information to ensure better 

speckle reduction performance. Lee [1][2][3], Frost [4], Kuan [5] filters were the first few 

adaptive filters that showed appreciable speckle reducing performance. Later, anisotropic 

diffusion based adaptive filters like Speckle Reducing Anisotropic Diffusion (SRAD) [6] 

and various extensions to SRAD [7][8][9][10] showed significant improvement over the 

predecessors. Another family of speckle reducing adaptive filters uses wavelet techniques 

[11][13][14][15]. The main trend in wavelet based filters is to generate a set of wavelet 

coefficients corresponding to different scales of the input image and apply soft or hard 

thresholding on the coefficients to reduce the speckle. Then inverse wavelet transform is 

performed to produce the de-noised output image. Currently, anisotropic diffusion and 

wavelet based filtering techniques are the two most active research topics in the image 

de-noising research community.    

1.3 Motivations 

Diffusion based filters like SRAD are more successful in speckle reduction compared to 

other speckle reducing filters. However, in highly speckled environment, performance of 

SRAD suffers both in terms of noise reduction and edge preservation. Sometimes, 

speckles are misinterpreted as edge details and at the same time, finer edges details are 
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misinterpreted as speckles. Such misinterpretations result in the preservation of speckles 

and smoothing of finer edge details. Moreover, edges in the SRAD output are not so 

sharp. Over-smoothing of edges also results in the dislocation/broadening of edge lines.  

The main goal of this thesis work is to propose a speckle reducing technique to ensure a 

fine balance between edge preservation and noise reduction. Obviously, we want to de-

noise more. At the same time, we want to keep the finer edge details. We also expect to 

keep the sharpness of the preserved edges by ensuring appropriate level of smoothing. 

Moreover, edge dislocation/broadening can be avoided if we can manage to prevent over-

smoothing of edges.     

The performance of SRAD highly depends on a gradient/Laplacian operator based edge 

detector. According to the guidance of this edge detector, SRAD decides the level of 

smoothing required to be applied at various image sub-regions. Minimal smoothing 

should be applied on the image areas detected as edges since edge preservation is crucial. 

The level of smoothing should be adjusted based on the homogeneity of an image sub 

region. Maximal smoothing should be applied on an image sub-region which is 

completely homogeneous; edge preservation in such a sub-region is not an issue since we 

do not have edge details to preserve.  

The main reason behind the shortcomings of SRAD is the inefficiency of the gradient and 

Laplacian based edge detector. It is well established that in highly speckled environment, 

gradient and Laplacian based methods are not efficient in terms of edge detection. As a 

result, the edge detector of SRAD often misinterprets speckles as edges and finer edge 

details as speckles which results in insufficient noise reduction and smoothing of edges, 

respectively. Moreover, SRAD uses a scaling factor to control the level of diffusion 

which is computed over an initially selected small homogenous region. If the initially 

selected region is not homogeneous enough, SRAD ends up producing a highly diffused 

image where the speckles as well as a great deal of finer edge details are removed due to 

over-smoothing.   
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1.4 Thesis contributions 

To guide the gradient/Laplacian based edge detector of SRAD for the sake of better edge 

detection and de-noising in highly speckled environment, we propose the use of a ratio 

based edge detection technique. In speckled environment, ratio based edged detectors are 

known to perform better than the gradient and Laplacian based edge detectors. To 

incorporate ratio based edge detection guidance in the diffusion model of SRAD, we 

propose two different extensions. One of the proposed extensions calculates an edge 

sensitive boosting factor based on the edge information gathered by a ratio based edge 

detector. Then, this boosting factor is used to guide the edge decisions of the original 

edge detector of SRAD. The other proposed extension uses an edge sensitive global 

diffusion function which is defined by the edge information provided by an inherent ratio 

based edge detector. Instead of directly guiding the edge detector of SRAD, this global 

diffusion function is used to guide the original diffusion function of SRAD to ensure 

appropriate level of smoothing in different image sub-regions. 

A hybrid scaling factor calculation strategy is also proposed to prevent over-smoothed or 

highly diffused image output. Our approach is to determine the homogeneity of the 

initially selected image-region and then, depending on how homogeneous the region is 

we select a scaling factor from two available options— the originally defined scaling 

factor of SRAD and a median based scaling factor (will be described in details in Chapter 

3). Our work also promotes the use of a bigger window size for gathering local statistics 

from the input image. Local statistics gathered from a larger sample space should help to 

deal with the local correlation property of the speckled image.  

1.5 Thesis outline 

This thesis is divided into five chapters including this introductory discussion, Chapter 1. 

Chapter 2 presents a relevant background of existing speckle reduction methods as well 

as the ratio based edge detection techniques for speckled environment. In Chapter 3, the 

proposed methods are thoroughly described. Experimental results and relevant analysis 

are presented in Chapter 4. Chapter 5 offers the concluding remarks and future directions 

of the presented research work. 
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Chapter 2  

Background 

The main objectives of this chapter are to introduce the model of multiplicative speckle 

noise, and elaborate major previous works on speckle reduction and ratio-based edge 

detection. Section 2.1 presents the model of speckle noise. Section 2.2 summarizes 

common noise filtering techniques and previous significant works on speckle reduction. 

Relevant backgrounds of ratio-based edge detection techniques are presented at the 

beginning of Section 2.3. Finally, Section 2.3 ends with a comparison based discussion to 

validate the superiority of ratio-based edge detection methods over the gradient/Laplacian 

based techniques in speckled environment.    

2.1 Model of speckle noise 

It is a common practice to model additive noise by a Gaussian variable of zero mean and 

a given standard deviation. The model is given by 

 𝐼𝑛 = 𝐼𝑜𝑟𝑔 + 𝑁𝑎 , (2.1) 

where  𝐼𝑛  is the observed signal corrupted by additive noise, 𝐼𝑜𝑟𝑔  is the original signal 

without  noise and 𝑁𝑎  is the noise itself introduced by the acquisition and/or transmission 

processes.  

We cannot express synthetic aperture radar (SAR) or ultrasound images by this simple 

Gaussian additive model. The acquisition processes of SAR and ultrasound images 

introduce a specific type of noise commonly known as speckle. Speckle is a locally 

correlated multiplicative noise that inherently exists in and degrades the quality of SAR 
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and ultrasound images. The local brightness of speckle pattern reflects the local 

echogenicity (the ability to bounce the sound as an echo) of the underlying backscatter. 

This local correlation makes it difficult to define a model for speckle.  

A. K. Jain [16] considered the effects of both multiplicative and additive noise in his 

simple speckle model. According to his model, the speckled image can be expressed as  

 𝐼𝑛 = 𝐼𝑜𝑟𝑔 𝑁𝑚 + 𝑁𝑎 , (2.2) 

where 𝑁𝑚  and 𝑁𝑎  are the multiplicative and additive noise components, respectively. The 

effect of the additive noise component is considered to be very small compared to the 

multiplicative one. By neglecting the insignificant additive noise part, the speckle-model 

can be simplified to  

 𝐼𝑛 = 𝐼𝑜𝑟𝑔 𝑁𝑚 . (2.3) 

In practice, the model is not as simple as equation (2.3). Frost [4] proposed a model for 

speckled SAR image where he took into account the spatial correlation introduced by the 

image acquisition process. He pointed out that there are several components of a SAR 

system like antenna and receiver which introduce a spatial correlation. Ultrasound image 

acquisition processes share similar characteristics though the components are different. 

Harger [17] represented such SAR system components by a linear spatially invariant 

transfer function. Using this transfer function, speckled image is modeled by  

 𝐼𝑛 𝑥, 𝑦 =  𝐼𝑜𝑟𝑔  𝑥, 𝑦 ⋅ 𝑁𝑚 𝑥, 𝑦  ∗ 𝑕 𝑥, 𝑦 , (2.4) 

where (𝑥, 𝑦) is the spatial coordinate in 2D, 𝑕(𝑥, 𝑦) is the system impulse response 

representing the transfer function and ∗ denotes the convolution. A crucial goal of 

enhancement of speckled imaging is to generate an estimate of the original/ideal image 

𝐼𝑜𝑟𝑔 (𝑥, 𝑦) from the corrupted observed image 𝐼𝑛 (𝑥, 𝑦).  

In the speckle model described above, the multiplicative noise component, 𝑁𝑚 , is not 

enough to define the speckle. Rather we need both the transfer function and the 
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multiplicative noise component to model the speckle noise. In some research works on 

ultrasound imaging, it has been modeled as a Rayleigh distribution [18] [19] which is 

used in communication theory to model scattered signals that reach a receiver by multiple 

paths. If the components of a vector are given by independent normal distributions with 

zero means and equal variances, then the vector magnitude is characterized by a Rayleigh 

distribution. However, in practice, none of the proposed distributions effectively models 

speckle noise and as a result, filters based on such distributions cannot directly account 

for the local correlation property of speckle. In the absence of a proper model, the 

multiplicative noise component 𝑁𝑚 (𝑥, 𝑦) of Equation (2.4) is treated as stationary in 

most of the de-speckling filters. The local correlation property of speckled image is 

handled by exploiting local statistics based information. This strategy, employed by 

different filters, will be described elaborately in the next section.   

2.2 Model of speckle noise 

Linear spatially invariant filters [20][21] are primitive and inefficient in multiplicative 

speckle reduction. The non-stationarity of the speckled images is not accounted for in 

most of these techniques. These spatially invariant filters are more suitable for additive 

noise reduction. In terms of effectiveness, only two families of filters are relevant for 

speckle reduction: homomorphic and adaptive. Homomorphic filters use conventional 

additive noise filters augmented by a pre-processing stage. The adaptive filters exploit the 

local statistics to account for the non-stationarity of the speckled image. Based on noise 

reduction strategy, adaptive filters can be grouped into three major categories: minimum 

mean square error (MMSE) based non-iterative filters, anisotropic diffusion filters and 

wavelet based filters.   

2.2.1 Homomorphic filters 

Homomorphic filtering refers to a technique of preprocessing the observed image to 

transform non-additive noise into additive noise using a nonlinear memoryless operator. 

Then standard additive noise filtering is applied for noise reduction. The enhanced image 

is formed by applying the inverse nonlinear operator. For speckle-like multiplicative 

noise (i.e., assuming that the model of the noise is defined as Equation (2.3)), logarithmic 
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and exponential operators are required for forward and inverse transformations, 

respectively. Arsenault et al. [22] proposed such a homomorphic filter which applies the 

additive version of Lee [1] filtering (see Section 2.2.2) on the logarithm of the observed 

image. 

A speckled image represents the observed data as being multiplicative noise operated on 

by a linear system [4] as defined by Equation (2.4). In such a case, a logarithmic 

operation will not properly separate the signal from the noise. As a result, homomorphic 

filters are not efficient in speckle reduction. 

2.2.2 MMSE based non-iterative adaptive filters 

Lee [1][2][3], Kuan [5], Frost [4] separately proposed local statistics based non-iterative 

adaptive speckle filters. These filters, originally tailored to SAR image de-noising, 

significantly exploited the local statistics of speckled images. They de-noise the input 

image in a single pass which makes them efficient in terms of execution time. 

The basic approach followed by these filters was to derive the functional form of a 

minimum mean square error (MMSE) filter to estimate the original image 𝐼𝑜𝑟𝑔 (𝑥, 𝑦) from 

the observed image 𝐼(𝑥, 𝑦) under the assumption of stationary image data. The non-

stationary property that defines the local correlation of real SAR image is considered and 

handled exploiting some local statistics.  

A. Lee Filter 

Lee filter [1][2][3] is designed to eliminate speckle noise while preserving edges and 

point features in radar images. The filter produces the enhanced data by  

 𝐼 𝑠 = 𝐼𝑠 ∙ 𝑊𝑠 + 𝐼 𝑠 ∙  1 − 𝑊𝑠 , (2.5) 

where 𝐼 𝑠 is the filtered image intensity data,  𝐼  𝑠  is the mean value of the intensity of the 

observed image within a filter window 𝜂𝑠, 𝑊𝑠 is a weighting function and 𝑠 denotes the 

spatial coordinate, used as subscript. The weighting function is given by 
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 𝑊𝑠 = 1 −
𝐶𝑢

2

𝐶𝑠
2

. (2.6) 

Here, 𝐶𝑠 is the coefficient of variation and is the core component of Lee filter which 

accounts for the local statistics of input image data. The coefficient of variation 𝐶𝑠 is 

defined as  

  𝐶𝑠
2 =  

1

 𝜂𝑠 
   𝐼𝑝 − 𝐼 𝑠 

2

𝑝∈𝜂𝑠

/ 𝐼  𝑠 
2, (2.7) 

where  𝜂𝑠  is the size of filter window, 𝑝 denotes a pixel in the window 𝜂𝑠  , 𝐼𝑝  is the 

image intensity of pixel 𝑝.  𝐶𝑢  is an image specific constant which is determined by  

where 𝑣𝑎𝑟(𝑧 ′) and  𝑧 ′ are the intensity variance and mean over a small homogeneous 

area 𝑧 of the image, respectively.  

The coefficient of variation 𝐶𝑠 plays the most crucial role in controlling the filter. If 

𝐶𝑠 → 𝐶𝑢 , then 𝑊𝑠 → 0 and if 𝐶𝑠 ≫ 𝐶𝑢 , then 𝑊𝑠 → 1. In the homogeneous regions, the 

value of 𝐶𝑠 should take a lower value as the variance goes low there and ideally, we 

expect 𝐶𝑠 → 𝐶𝑢  in a perfectly homogeneous region. So, in the homogeneous region the 

𝑊𝑠 is expected to take the value 0 which leads to a mean filter. On the contrary, in the 

heterogeneous regions the value of 𝐶𝑠 should be higher than 𝐶𝑢 . Ideally, it is expected 

that at the center of an edge  𝐶𝑠 ≫ 𝐶𝑢  and 𝑊𝑠  approaches unity. That makes the Lee filter 

to act like an identity filter. As a result, edges are kept in the heterogeneous regions.  

B. Kuan Filter 

Kuan filter [5] operates in a similar way to the Lee filter. The enhanced data is produced 

by the Equation (2.5). Unlike Lee, Kuan defined the weighting function 𝑊𝑠 by 

 𝐶𝑢
2 =

𝑣𝑎𝑟 𝑧 ′ 

 𝑧 ′  
2 , (2.8)  
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Both 𝐶𝑠 and 𝐶𝑢  are similarly defined as in Lee filter (see Equation (2.7) and (2.8)). 

However, in Kuan filter, 𝐶𝑢  plays a more important role as 𝑊𝑠 is more directly scaled by 

𝐶𝑢  in Equation (2.9). The local statistic 𝐶𝑠 still plays the crucial role in controlling the 

filter though. In Kuan filter 𝑊𝑠 never goes to 1, so the update Equation (2.2) always 

produces a weighted combination of averaging and all pass filtering. As a result, the 

Kuan filter is expected to perform well in terms of smoothing and to perform a bit poor in 

terms of edge preservation.  

C. Frost Filter 

The Frost filter [4] uses an exponentially damped convolution kernel instead of the 

weighting function 𝑊𝑠 of the Lee and Kuan filters. The kernel adapts to regions 

containing edges by exploiting local statistics. Though the approach to data enhancement 

is a bit different, the Frost filter uses the same local statistic, 𝐶𝑠, used in the Lee and Kuan 

filters. By using the exponential kernel, Frost eliminated the use of the constant scaling 

factor 𝐶𝑢 . Frost filter produces the enhanced data by  

where  

where 𝑚𝑝  is the weight assigned to pixel 𝑝 in window 𝜂𝑠,  K is the damping constant, 

(𝑖, 𝑗) are the grid coordinates of pixel 𝑠, and (𝑖𝑝 , 𝑗𝑝) are those of pixel 𝑝. The Euclidian 

distance between the pixels (𝑖, 𝑗) and (𝑖𝑝 , 𝑗𝑝) is given by 𝑑𝑠.𝑝 .  

 
𝑊𝑠 =

1 −
𝐶𝑢

2

𝐶𝑠
2

1 + 𝐶𝑢
2

 . 
(2.9) 

 𝐼 𝑠 =  𝑚𝑝𝐼𝑝
𝑝∈𝜂𝑠

, (2.10)  

 𝑚𝑝 = 𝑒−𝐾𝐶𝑠
2𝑑𝑠.𝑝 /  𝑒−𝐾𝐶𝑠

2𝑑𝑠.𝑝

𝑝∈𝜂𝑠

 (2.11)  

 𝑑𝑠.𝑝 =   𝑖 − 𝑖𝑝 
2

+  𝑗 − 𝑗𝑝 
2

, (2.12)  
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The selection of the damping constant 𝐾 is really important for Frost filter. 

Unfortunately, it is hardwired and need to be supplied by the user. The value of 𝐾 is 

carefully chosen such that in homogeneous regions 𝐾𝐶𝑠
2 approaches zero, resulting a 

mean filter output. At the same time, on the edges 𝐾𝐶𝑠
2 goes so large that filtering is 

almost inhibited, yielding an all pass filter approximation.  

2.2.3 Anisotropic diffusion based adaptive filters 

A. Perona-Malik filter 

Perona and Malik [23] used the concept of diffusion phenomena of physics to define a 

scale-space model for digital images. By using a gradient-sensitive diffusion coefficient 

they made the scale-space model space-variant and thereby, the ‗diffusion‘ becomes 

anisotropic. The property of intra-region smoothing in preference to inter-region 

smoothing [23], made the Perona-Malik model an excellent additive noise filtering 

technique. However, as their model didn‘t account for the local correlation property of 

speckled images, the Peron-Malik filter is not efficient in speckle reduction. It enhances 

speckle noise instead of reducing as it misinterprets speckles as edges. Though the 

Perona-Malik anisotropic diffusion filter is not a good choice for speckle reduction, it is 

the basic building block of modern diffusion based speckle reducing filters [6][9][7]. It is 

important to understand the working principal of Perona-Malik anisotropic diffusion filter 

before going to the details of modern improvements tailored to speckle reduction. 

Perona and Malik defined a nonlinear partial differential equation (PDE) for smoothing 

image on a continuous domain. The PDE is given by  

where 𝐼0 is the initial image, 𝑡 is the time, ∇ is the gradient operator, 𝑑𝑖𝑣 is the 

divergence operator, | | denotes the magnitude and 𝑐(⋅) is the diffusion coefficient 

function. A discrete form of Equation (2.11) can be written as  

  

∂I

∂t
= div[c  ∇I  . ∇I]

𝐼 𝑡 = 0 = 𝐼0 ,            

   (2.13)  
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where 𝐼𝑠
𝑡  is the discretely sampled image, 𝑠 denotes the pixel position in 2D grid, Δ𝑡 is 

the time step size, |𝜂𝑠| is the size of the window 𝜂𝑠 surrounding the pixel 𝑠 and ∇𝐼𝑠,𝑝
𝑡  is 

given by  

The authors proposed two alternative diffusion coefficients  

and 

where the edge magnitude parameter, 𝑘, is a constant. In fact, Equation (2.17) is the 

Taylor series approximation of Equation (2.16).  

In the Perona-Malik anisotropic diffusion method, the gradient magnitude is used to 

detect any edge which is a step discontinuity in the intensity on its continuous form. The 

constant 𝑘 of the diffusion function acts as the edge threshold. If  ∇𝐼 ≫ 𝑘, then 

𝑐  ∇𝐼  → 0, and we have an all-pass filter. If  ∇𝐼 ≪ 𝑘, then 𝑐  ∇𝐼  → 1, and Perona-

Malik filter acts like a Gaussian filter. The value of 𝑐 varies within the closed interval 

[0,1] with the magnitude of the gradient. That makes the filter anisotropic, i.e., space-

variant.  

For images corrupted by additive noise, a single predefined threshold and gradient based 

edge detection is quite effective. The Perona-Malik filter excels in such a scenario. 

However, for a speckled image, the diffusion function of Perona-Malik filter detects the 

speckle noise as an edge if the corresponding gradient value happens to be greater than 

the edge magnitude parameter 𝑘. The problem lies in the idea of using a predefined 

 𝐼𝑠
𝑡+Δ𝑡 = 𝐼𝑠

𝑡 +
Δ𝑡

 η
s
 
 𝑐 |∇𝐼𝑠,𝑝

𝑡 | ∇𝐼𝑠,𝑝
𝑡

𝑝∈𝜂𝑠

 , (2.14)  

 ∇𝐼𝑠,𝑝
𝑡 = 𝐼𝑝

𝑡 − 𝐼𝑠
𝑡 , ∀ 𝑝 ∈ 𝜂𝑠 . (2.15)  

 𝑐 𝑥 = 𝑒− 
𝑥
𝑘
 

2

 (2.16)  

 𝑐 𝑥 =
1

1 +  
𝑥
𝑘
 

2  , (2.17)  
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constant threshold. For a given speckled image, it is impossible to define a single 

threshold of gradient magnitude. Due to the local correlation property of speckled image, 

we need multiple thresholds for multiple sub-regions to compare against the gradient 

values. Moreover, the use of the gradient magnitude for edge detection in speckled 

images is not effective [24].  

B. Speckle reducing anisotropic diffusion filter 

Yu and Acton [6] modified the anisotropic diffusion filter of Perona and Malik [23] using 

the local statistics based coefficient of variation concept of Lee [1], Kuan [5] and Frost 

[4]. They proposed Speckle Reducing Anisotropic Diffusion, SRAD, which uses both 

gradient magnitude and Laplacian for edge detection unlike Perona-Malik filter.  

As we have said earlier, SRAD is highly inspired by the anisotropic diffusion filter of 

Perona and Malik. The update function of SRAD has a great resemblance with Equation 

(2.14). The discrete form of the update function SRAD is given by  

where 𝑐(. ) is the diffusion function of anisotropic diffusion model. 𝐶𝑖,𝑗
𝑡  is the local 

statistics based coefficient of variation in time 𝑡. To create a fusion of PDE based 

classical anisotropic diffusion with the local statistics based Lee and Kuan filters, Yu and 

Acton used the coefficient of variation parameter as the edge detector instead of gradient 

and then the diffusion function has been defined in terms of the coefficient of variation.  

Yu and Acton provided a discretized version of the coefficient of variation which is 

applicable to the classical PDE evolution. Considering a window of four neighboring 

pixels, they came up with the following discretized version of coefficient of variation.  

 𝐼𝑖,𝑗
𝑡+Δ𝑡 = 𝐼𝑖,𝑗

𝑡 +
Δ𝑡

 η
s
 
𝑑𝑖𝑣 𝑐 𝐶𝑖,𝑗

𝑡  ∇𝐼𝑖,𝑗
𝑡  , (2.18)  

 (𝐶𝑖,𝑗
𝑡 )2   =

1
2  ∇𝐼𝑖,𝑗

𝑡  
2

−
1

42  ∇2𝐼𝑖,𝑗
𝑡  

2

 𝐼𝑖,𝑗
𝑡 +

1
4 ∇2𝐼𝑖,𝑗

𝑡  
2

 

, (2.19)  
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where (𝑖, 𝑗) represents the position in 2D image matrix, 𝐶𝑖,𝑗
𝑡  is the coefficient of variation 

at (𝑖, 𝑗) in time 𝑡, ∇ denotes the gradient and ∇2 denotes the Laplacian. This coefficient of 

variation is the inherent edge detector of SRAD which is apparently a combination of the 

gradient magnitude and Laplacian. High relative gradient magnitude and low relative 

Laplacian tend to indicate an edge. At the center of the edge, the relative value of 𝐶𝑖,𝑗
𝑡  is 

maximum as the Laplacian goes to zero and gradient reaches its peak. Assuming that the 

image intensity function has no zero point over its support, Yu and Action defined an 

Instantaneous Coefficient of Variation, ICOV, which is given by  

where 𝑞𝑖,𝑗
𝑡  and 𝐼𝑖,𝑗

𝑡  are the ICOV and image intensity of pixel (𝑖, 𝑗) in 2D image grid in 

time t, respectively. Finally, the update function of SRAD takes the form  

Being inspired by Lee [1] and Kuan [5], Yu and Acton used a scaling factor while 

defining the diffusion function. The diffusion function, 𝑐 𝑞𝑖,𝑗
𝑡  , is given by  

where 𝑞0
𝑡  is the speckle scaling factor. 𝑞0

𝑡  is equivalent to the constant term 𝐶𝑢  of Lee and 

Kuan filters (see Section 2.2.2) and given by the Equation (2.8).  

The ICOV exhibits high values at edges or on high-contrast features and produces low 

values in homogeneous regions. As a result, according to Equation (2.22), 𝑐 𝑞𝑖,𝑗
𝑡   takes 

small values at edges and larger values at homogeneous regions. That ensures less 

smoothing on edge or detail containing regions and more smoothing on homogeneous 

 𝑞𝑖,𝑗
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2 , (2.20)  

 𝐼𝑖,𝑗
𝑡+Δ𝑡 = 𝐼𝑖,𝑗

𝑡 +
Δ𝑡

 η
s
 
𝑑𝑖𝑣 𝑐 𝑞𝑖,𝑗

𝑡  ∇𝐼𝑖,𝑗
𝑡  , (2.21)  
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areas. The diffusion becomes isotropic when  𝑞𝑖,𝑗
𝑡 ≈ 𝑞0

𝑡 . In a sense, the speckle scale 

function, 𝑞0
𝑡 , controls the amount of smoothing applied to the image by SRAD.  

SRAD avoids the use of a threshold on the norm of gradient in the diffusion function. 

This independent threshold parameter of Perona-Malik‘s diffusion has been replaced by 

an estimation of the standard deviation of the noise (𝑞0
𝑡 ), at each iteration. This scheme 

introduces less dependence on the norm of the gradient which can vary across a speckled 

image. At the same time, SRAD benefits by the natural decrease of diffusion as the 

estimated standard deviation of the noise decreases with time which leads to a 

convergence without smoothing out interesting features of the image. 

C. Deconvolutional speckle reducing anisotropic diffusion 

Acton introduced the Deconvolutional Speckle Reducing Anisotropic Diffusion [8], 

DeSpeRADo, to compensate the detail distortion effect of SRAD. The PDE of 

DeSpeRADo has two main components: the diffusion component and the deconvolution 

component. The diffusion component is nothing but the earlier SRAD which takes care of 

the speckle reduction by space-variant smoothing. The deconvolution component 

reverses the blurring that occurs due to the transfer/point-spread function of ultrasound 

image acquisition (see Equation (2.4)) and balances the smoothing effect of the diffusion 

component by discouraging blurring of image features. Acton proposed that the point-

spread function need to be deconvoluted as a two dimensional Gaussian function. 

D. Detail preserving anisotropic diffusion  

Aja-Fernández et al. [9] proposed modifications to the coefficient of variation and scaling 

factor calculation strategy of SRAD. They called their proposed filter Detail Preserving 

Anisotropic Diffusion, DPAD. Aja-Fernández et al. pointed out that the coefficient of 

variation, CV, of SRAD (see equation (2.19)) can be written as  

 𝐶𝑖,𝑗
𝑡 =  

1
|𝜂𝑖,𝑗 |

  𝐼𝑝
𝑡 − 𝐼𝑖,𝑗

𝑡     
2

𝑝∈𝜂 𝑖,𝑗

 𝐼𝑖,𝑗
𝑡     

2 , (2.23)  
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where |𝜂𝑖,𝑗 | is the size of the window 𝜂𝑖,𝑗  surrounding the pixel at location (𝑖, 𝑗), 𝑝 is any 

pixel in the window, 𝐼𝑝
𝑡  is the intensity of pixel 𝑝 in time 𝑡 and 𝐼  𝑖,𝑗  is the mean intensity 

value of the pixels in the window in time 𝑡. They proposed a 3 × 3 window where the 

pixel (𝑖, 𝑗) lies at the center being surrounded by eight neighboring pixels. Then the 

unbiased version of the CV is given by  

where   𝜂𝑖,𝑗  𝑈
 is the window of size 3 × 3 and  𝐶𝑖,𝑗

𝑡  
𝑈

 is the unbiased CV.   

In lieu of the original speckle scaling factor calculation strategy of SRAD, Aja-Fernández 

et al. proposed some alternatives. First, they propose to take the minimum value of all 

CVs in the input image as the value of scaling factor 𝑞0, i.e.,  

where 𝐶𝑖,𝑗  is the coefficient of variation of pixel  (𝑖, 𝑗) in 2D image grid. But the presence 

of outliers makes the minimum to be biased towards zero [25]. So, the minimum should 

be considered as the lower bound for  𝑞0.  Another alternative estimator of the speckle 

scaling factor is the average  

where 𝑁 is the total number of pixels in the image. Then Aja-Fernández et al. marked it 

as an over-estimator of 𝑞0 and claimed that it should be the upper bound of the speckle 

scaling factor. Finally, due to the robustness to outliers, they proposed the median of CVs 

as the speckle scaling factor.  That is,  

 
 𝐶𝑖,𝑗

𝑡  
𝑈

=
 

1

  𝜂𝑖,𝑗  𝑈
 − 1

  𝐼𝑝
𝑡 − 𝐼𝑖,𝑗

𝑡    
2

𝑝∈ 𝜂 𝑖,𝑗  𝑈

 𝐼𝑖,𝑗
𝑡    

2 , 
(2.24)  

 𝑞0
2 = Min

𝑖,𝑗
(𝐶𝑖,𝑗

2 ), (2.25)  

 𝑞0
2 =

1

𝑁
 𝐶𝑖,𝑗

2

𝑖,𝑗

, (2.26)  

 𝑞0
2 = 𝑀𝑒𝑑𝑖𝑎𝑛𝑖,𝑗  𝐶𝑖,𝑗

2  . (2.27)  
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In practice, the median based estimation of the scaling factor helps to preserve edge 

details.  

E. Oriented SRAD 

Krissian et al. [7] extended the diffusion mechanism of SRAD to a matrix anisotropic 

diffusion. They added a non-scalar component to the SRAD filter to perform directional 

filtering of speckled image. First, they presented the matrix version of SRAD PDE. The 

2D version of the equation is given by  

where c(q) is the diffusion function of SRAD. As the diffusion matrix of SRAD is a 

scalar, it can be written as 𝐷 = 𝑐 𝑞 𝐼𝑚   where 𝐼𝑚  is the identity matrix. The idea of 

Krissian et al. was to change the scalar diffusion matrix to a non-scalar one so that 

diffusion can be performed in the edge direction. To do so, they proposed a new diffusion 

matrix  

where 𝑐𝑡𝑎𝑛𝑔  is a constant weighting the diffusion applied along the edge direction. They 

named their proposed filter-- Oriented Speckle Reducing Anisotropic Diffusion, OSRAD.  

E. More anisotropic diffusion based speckle filters 

Kim et al. [26] proposed a speckle reducing anisotropic diffusion filter for ultrasound 

images based on direction of gradients. In the case of edge pixels, the weight of diffusion 

is selected adaptively according to the direction of gradient. For the non-edge pixels, 

diffusion is performed in eight directions (north, south, east, west, north-left, north-right, 

south-left, south-right).   

 
𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣 𝑐 𝑞 ∇𝐼    

       = 𝑑𝑖𝑣   
𝑐 𝑞 0

0 𝑐 𝑞 
 ∇𝐼 , (2.28)  

 𝐷 =  
𝑐(𝑞) 0

0 𝑐𝑡𝑎𝑛𝑔
 , (2.29)  
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R. Srivastava et al [27] proposed a diffusion filter based on the Schrödinger wave 

equation. Being inspired by the free particle Schrodinger wave equation [28], they 

realized the diffusion process as a complex diffusion with an imaginary diffusion 

coefficient. Their proposed filter operates on log-compressed images.  

A diffusion filter based on the separability of images has been introduced by S. Liu et al.  

[29].They modified the diffusion coefficient of SRAD by separability to enhance the 

precision of detecting edges and control the amount of smoothing.  

An overview of the related diffusion based works makes it clear that most of the 

anisotropic diffusion based speckle filters are based on the original SRAD filter of Yu 

and Acton  [6]. The deconvolutional version (DeSpeRADo) [8] of Acton was not so 

successful due to the simplistic assumption of point-spread function (PSF) based on 

Gaussian model. Extensive calculations due to deconvolution also limit its application in 

real data. Aja-Fernández et al. [9] specifically focused on detail-preservation in their 

DPAD work.  Their contributions were an unbiased ICOV and a modified scaling factor 

calculation strategy. Though DPAD showed some improvement in detail preservation, its 

de-noising performance is questionable. Some extensions of SRAD exploited the 

direction of gradient. The OSRAD by Krissian et al. [7] is a prominent inclusion in this 

category. It shows impressive de-noising performance in highly speckled environment. 

However, OSRAD has a tendency to over-smooth which limits its application in SAR 

image de-noising where preserving finer edge details is crucial. Very recent works like 

the use of Schrödinger wave equation [27] in the diffusion model seems promising and 

may lead to a new research path.  

2.2.4 Wavelet based adaptive filters 

The fundamental idea of wavelet analysis is to analyze a signal in different scales. 

Wavelets are functions that satisfy certain mathematical requirements and are used to 

represent data or other functions [30]. The basic idea is same as the Fourier transform 

[31]— approximation by superposition of functions. In Fourier transform, we superpose 

sine and cosine functions to represent other signals. Though wavelet technique shares the 
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basic principal, it varies in two important aspects. First, it doesn‘t use sine and cosine 

functions for superposing. Sine and cosine functions are non-local and they stretch out to 

infinity. As a result, they do a poor job at approximating sharp spikes or edges [30]. 

Wavelet analysis uses some functions that are contained neatly in finite-domain like 

Daubechies‘ family of wavelets, Coiflets wavelets, M-band wavelets, etc. [32]. Second, 

the wavelet technique processes data at different scales or resolutions [30]. If we analyze 

a signal at higher scale, we notice gross features. If we analyze it at lower scale, we get 

the fine or detailed features. Wavelet based techniques try to make the best out of both of 

the scenarios.     

Wavelet analysis of an input signal (digital image, in our case) returns multiple sets of 

weights or wavelet coefficients each representing a specific scale or resolution. The most 

popular technique employed in wavelet based speckle filters is the thresholding of these 

wavelet coefficients and then performing inverse wavelet transform. Thresholding can be 

soft or hard. Soft thresholding of wavelet coefficients is also known as wavelet shrinkage. 

Guo et al. [13] proposed a wavelet based filter which proposes both soft and hard 

thresholding, separately. They used length-4 Daubechies‘ wavelet and performed the 

wavelet transformation for five different levels of resolutions. Then they performed 

thresholding only on the first level of wavelet coefficients which contains most of the 

speckles. Their simple hard thresholding approach is given by  

where 𝑤 is the original wavelet coefficient, 𝑤  is the output wavelet coefficient and 𝑡 is 

the threshold. As an alternative, they also proposed the similar kind of soft thresholding 

adopted by Donoho et al. [11]. Donoho‘s soft thresholding can be presented as the 

following weight adjusting equation:  

where the function 𝑠𝑖𝑔𝑛 returns the sign of the argument 𝑤 and 𝑡 is the threshold.   

 𝑤 =  
𝑤,  𝑤 > 𝑡
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒,

  (2.30)  

 𝑤 = 𝑠𝑖𝑔𝑛 𝑤   𝑤 − 𝑡 , (2.31)  
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Hao et al. [15] introduced a multiscale nonlinear thresholding method for speckle 

reduction of ultrasound images. They used adaptive weighted median filtering, AWMF, 

[33][34] as the pre-processing stage. The input image 𝑖  is decomposed into two images 𝑖 1 

and 𝑖 2. 𝑖 1 is the output of the AWMF and 𝑖 2 is obtained by subtracting 𝑖 1 from 𝑖 . The 𝑖 1 

part contains most of the signal and 𝑖 2 contains most of the noise. These two images are 

decomposed into different level of resolutions 𝑖 1𝑗 , 𝑖 2𝑗  (𝑗 = 1,2, … . . , 𝑘) by a two-

dimensional wavelet transform. Hao et. al. proposed a modified version of Donho‘s soft-

thresholding to generate the output wavelet coefficients 𝑊𝑖 1𝑗
 and 𝑊𝑖 2𝑗

. After soft 

thresholding, coefficients of the two parts are inversely transformed to space domain and 

then, summed up to produce the output image.  Mellet et al. [35]  proposed a similar type 

of wavelet-coefficient thresholding based fitlers.  

Rabbani et al. [14] proposed several multiscale nonlinear thresholding methods for 

ultrasound speckle suppression .The wavelet coefficients of the logarithm of image were 

modeled as the sum of a noise-free component plus an independent noise. Assuming that 

the noise-free component has some local mixture distribution (MD), and the noise is 

either Gaussian or Rayleigh, they derived the minimum mean squared error (MMSE) and 

the averaged maximum estimators for noise reduction. The authors used Gaussian and 

Laplacian MD for each noise-free wavelet coefficient to characterize their heavy-tailed 

property. 

Bhuiyan et al. [36] proposed a spatially adaptive wavelet-based method in order to reduce 

the speckle noise from ultrasound images. A spatially adaptive threshold was introduced 

for denoising the wavelet coefficients of log-transformed ultrasound images. The 

threshold was obtained from a Bayesian maximum a posteriori estimator that was 

developed using a symmetric normal inverse Gaussian probability density function 

(PDF). 

The main trend in wavelet based speckle filtering is to generate different sets of wavelet 

coefficients corresponding to different level of resolutions and then thresholding these 

coefficients to reduce the speckle. It is noticeable that this approach does not account for 
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the local correlation property of multiplicative speckle noise. As a result, anisotropic 

diffusion based speckle filters are more successful compared to the wavelet based ones. 

2.3 Edge detection in speckled image 

2.3.1 Ratio-based edge detection methods 

Ratio-based edge detectors estimate the edge strength on any pixel of interest in an image 

by calculating the ratio between neighboring pixel values. The estimated ratio may be 

improved by calculating the averages of pixel values in two adjacent and non-overlapping 

regions, selected on opposite sides of pixel of interest. These two regions, 𝑃 and 𝑄, may 

be selected from any orientation around the pixel of interest.  

The idea of a ratio-based edge detection method, named Ratio of Averages, RoA, was 

introduced by Bovik [37]. Zaman and Moloney modified Bovik‘s RoA and proposed 

Modified Ratio of Averages, MRoA, [38][39] method. In MRoA, a window of size 

𝑤 × 𝑤 centered on the pixel of interest is split into two adjacent and non-overlapping 

neighboring regions for each of the four usual direction (horizontal, vertical, left-slanted 

and right-slanted) as shown in Figure 2.1. The edge strength for a particular pixel for 𝑖𝑡𝑕  

pair of regions is defined as 

where 𝑃𝑖  and 𝑄𝑖  are the averages of the pixel values in 𝑖𝑡𝑕  pair of regions on opposite 

sides of the current pixel and 𝑖 represents the orientation. The overall edge strength 𝑅 is 

obtained by  

The MRoA determines edge pixel location if  𝑅 < 𝑅𝑡 , where 𝑅𝑡  is a predefined ratio 

threshold.  

 

 

 𝑅𝑖 = 𝑀𝑖𝑛  
𝑃𝑖

𝑄𝑖
,
𝑄𝑖

𝑃𝑖
 , 𝑖 = 1,2,3,4  , (2.32)  

 𝑅 = 𝑀𝑖𝑛 𝑅1, 𝑅2, 𝑅3, 𝑅4 . (2.33)  
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MROA has been extended to Ratio and Gradient of Averages, RGoA, by combining 

gradient edge information with ratio measure [38][39]. The gradient magnitude is 

computed as follows:  

with 

where the subscript 𝑖 denotes orientation.  For RGoA, the ratio threshold 𝑅𝑡  and a 

gradient threshold 𝐺𝑡  are predefined for ratio magnitude 𝑅 and gradient magnitude 𝐺, 

respectively. Edges are detected if either   𝑅 ≤ 𝑅𝑡  or 𝐺 ≥ 𝐺𝑡 . Bai et al. [40] modified 

RGoA by changing the edge detection condition to 𝑅 ≤ 𝑅𝑡  and 𝐺 ≥ 𝐺𝑡 . They also 

proposed a scheme for dynamic threshold calculation.   

Moloney et al. [41] proposed the Maximum Strength Edge Pruned Ratio of Averages, 

MSP-RoA, another ratio-based edge detection method. Unlike previous methods, it takes 

into account the edge direction while deciding whether a pixel is an edge-pixel or not. A 

 𝐺𝑖 =  𝑃𝑖 − 𝑄𝑖 , 𝑖 = 1,2,3,4 (2.34)  

 𝐺 = Max 𝐺1, 𝐺2, 𝐺3 , 𝐺4 , (2.35)  

  
                                 (a) Horizontal          (b) Vertical 

  
                            (c) Left slanted        (d) Right slanted 

Figure 2.1 Four usual directions (black bars) to partition a W×W window into two adjacent and non-

overlapping regions 𝐏𝐢 and 𝐐𝐢 for 𝐢 = 𝟏, 𝟐, 𝟑, 𝟒 representing horizontal, vertical, left slanted and right 

slanted directions, respectively. 
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vector (𝑅, 𝑂) is calculated at a pixel of interest which stores both the estimated minimal 

ratio strength 𝑅 and and orientation 𝑂 of a possible edge at the pixel. The ratio strength 𝑅 

is calculated by MRoA method. The direction corresponding to the minimum 𝑅𝑖  value is 

noted as 𝑂. The pixels which satisfy the condition 𝑅 ≤ 𝑅𝑡 , where 𝑅𝑡  is a predefined ratio 

threshold, are considered as candidate edge pixels. Then MSP-RoA starts a pruning 

process which runs on a small window along the direction perpendicular to the minimal 

ratio producing direction as shown in Figure 2.2. If the ratio value of the candidate pixel 

is the smallest one in the pruning window, the pixel is accepted as edge. Otherwise, it is 

rejected and pruning process continues with other candidate edge pixels. This method 

produces thinner edges compared to the other methods since false-positive edge 

candidates near edges are rejected by pruning. 

The choice of window size is crucial for all ratio-based edge detection methods. A larger 

window enables better edge detection in presence of higher speckles whereas a smaller 

window avoids the risk of missing fine edge details. So, the window size should be 

carefully chosen.  

  
                                 (a) Horizontal          (b) Vertical 

  
                            (c) Left slanted        (d) Right slanted 

Figure 2.2 Pruning directions (gray bars) perpendicular to four window-partitioning directions (black 

bars). 
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2.3.2 Gradient/Laplacian-based Vs ratio-based edge detection 

Detecting intensity changes across the object boundaries in speckled images is a highly 

complicated process due to the nature of speckle. If a conventional gradient or Laplacian 

based edge detector is used, the edge detector will respond to the artifacts as well as 

objects [37]. As the speckle intensity is multiplicative with underlying image intensity, 

the statistics of the image gradient is bound to vary with the underlying intensity. Figure 

2.3 provides a simple demonstration of how the multiplicatively corrupted output varies 

with the underlying input intensity. For a simplistic one-dimensional demonstration, a 

random input data-set  (intensity values) {3,5,10,10,6,20,20,3}  has been corrupted by a 

set of random noise values {1,3,5,2,1,3,5,2} , both additively and multiplicatively. It is 

readily visible that the multiplicative noise output (red line) is highly dependent on the 

input intensity values which is not true for the additive noise output (blue line). Gradient 

and Laplcian based edge detectors perform poorly in this type of scenario [42]. 

Gradient based edge detectors use a gradient threshold to determine edges. Laplacian 

based edge detectors also use a similar type of threshold to filter out spurious zero 

 

Figure 2.3 The trend of the additive noise output (blue line) follows the random noise (black line) and 

less dependent on input intensity (green line). On the other hand, the multiplicative noise output (red 

line) is highly dependent on the underlying input intensity values. 
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crossings [43].  As the variance of the speckle gradient increases with the underlying 

intensity, in regions of higher intensity a greater number of spurious edges (like the edge 

from data point 6 to 7, in Figure 2.3) will be found unless the detector threshold is also 

varied in some manner. Bovik [37] showed that even if the threshold is made to vary 

adaptively, there is no guarantee that the resulting adaptive edge detector will perform 

adequately near the edges.  

Generally, image gradient magnitude is approximated using the absolute difference 

between intensity of two image regions. But, ratio-based estimations are calculated based 

on the ratio of average intensities of two image regions. As a result, the statistics of edge-

magnitude estimate do not depend on the underlying local intensity [12]. This property of 

ratio-based edge detection techniques made them more suitable for locally correlated 

speckled images. Ratio-based edge detection avoids the use of an un-acceptable static 

gradient-threshold and at the same time, it manages to avoid a complicated and uncertain 

adaptive threshold-adjusting approach which produces different thresholds for different 

image regions.  

To demonstrate the superiority of ratio based edge detection methods over the gradient 

based edge detectors, we present two distinct edge maps of the same speckled version of 

Lena (speckled by multiplicative Gaussian noise with standard deviation 0.50 and mean 

   
(a) (b) (c) 

Figure 2.4 Edge maps of the speckled version of the standard image Lena generated by gradient and 

ratio-based methods. (a) The standard grayscale image Lena (𝟓𝟏𝟐 × 𝟓𝟏𝟐) speckled by multiplicative 

Gaussian noise with standard deviation 0.5 and mean 0, (b) Edge map generated by gradient based 

optimal Canny edge detector with dynamic threshold and standard deviation 1 for inherent Gaussian 

filtering, (c) Edge map generated by ratio-based edge detector MSP-RoA with a 𝟓 × 𝟓 window for ratio 

calculation and pruning window of size 𝟐 × 𝟏. 
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0) generated by the optimal Canny edge detector [44] (which is gradient based) and ratio-

based MSP-RoA edge detector [41]. Figure 2.4(a) shows the speckled input image.  

Figure 2.4(b) and Figure 2.4(c) show the edge maps generated by Canny edge detector 

and MSP-RoA edge detector, respectively. The gradient based Canny edge detector 

misinterpreted the speckles as edges and as a result, the generated edge map hardly 

provides any significant edge information. On the contrary, MSP-RoA generated a 

considerably superior edge map which definitely conveys more edge information than the 

edge map of Canny edge detector. 
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Chapter 3  

Methodology 

Instantaneous coefficient of variation, ICOV, is the core component of SRAD [6]. ICOV 

is supposed to ensure on appropriate amount of smoothing in different sub-regions of the 

input image to establish a nice balance between edge preservation and de-noising. This 

inherent edge detector of SRAD is a combination of gradient and Laplacian operators 

(see Equation (2.18)). Since gradient and Laplacian based methods are not efficient in 

terms of edge detection for speckled imagery [37], edge detection performance of ICOV-

centric edge detector degrades in presence of higher level of speckles. As a result, edge 

preservation and de-noising performances of SRAD are not up to the mark in highly 

speckled environment. Moreover, SRAD produces dislocated edges due to over-

smoothing of object boundaries. This undesirable property of SRAD was described by 

Yu and Acton [6] as ‗broadening of edges‘.  

Figure 3.1 shows an input SAR image and corresponding de-noised output produced by 

SRAD. The de-noised output image demonstrates two major drawbacks of SRAD—(1) 

the edges are un-sharp and dislocated/broadened in most of the sub-regions of the de-

noised image and (2) most of the finer edge details have been entirely lost due to over-

smoothing.  

To overcome these weaknesses, we introduce two different extensions to SRAD that 

utilize global guidance of ratio-based edge detection. Both extensions share a common 

prefix name— Ratio-based Edge Detection Inspired Speckle Reducing Anisotropic 

Diffusion, REDISRAD. One of the two proposed extensions uses an edge-sensitive 

boosting factor to guide the original ICOV and hence named as REDISRAD-EBF 
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(REDISRAD with Edge-sensitive Boosting Factor). The other extension, REDISRAD-

WDF (REDISRAD with Weighted Diffusion Function), defines a weighted diffusion 

function to propagate global edge-sensitive guidance. We also propose modified schemes 

for scaling factor selection and the computation of ICOV. These schemes are shared by 

both proposed extensions.  

 

 
(a) 

 
(b) 

Figure 3.1 A pictorial demonstration of the major weaknesses of SRAD. (a) A SAR image of the city 

of Calcutta, India (courtesy of NASA JPL) (b) De-noised image after 300 iterations of SRAD. Most of 

the edges are un-sharp and at the same time, dislocated or broadened. A great deal of finer edge details 

has been lost completely due to over-smoothing. 
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3.1 Guidance of ratio-based edge detection 

Though ratio-based edge detection techniques are superior to the gradient and Laplacian 

based edge detectors in speckled environment, replacing the original ICOV coefficient by 

a ratio-based edge scoring function is not a good idea for two reasons— (1) ICOV 

coefficient is not just a traditional edge detector; it also accounts for the local correlation 

property of speckled image [6] and (2) anisotropic diffusion is an iterative process and 

calculating the ratio-based edge detection related terms for the entire image at each 

iteration will be computationally expensive. In our proposed extensions, we keep the 

ICOV coefficient and incorporate extra edge-sensitive guidance using the ratio-based 

edge detection technique to guide the diffusion process.  

3.1.1 Generating ratio and direction matrices 

The ratio matrix generation stage is a common process adopted by most of the ratio-based 

edge detection methods. Unlike the conventional ratio-based methods, we smooth the 

speckled input image by a Gaussian kernel of size 𝑊𝐺 × 𝑊𝐺 to improve the edge 

detection performance in the presence of higher level of speckle noise. Then, the ratio 

matrix is computed over the Gaussian-smoothed image. The ratio matrix contains the 

minimal edge ratio or edge-strength value of each pixel of the Guassian-smoothed input 

image. The edge strengths of the image pixels are calculated in a similar fashion 

described in Section 2.3.1, except we use a slightly modified equation given by 

where 𝑅𝑖  is the edge strength for direction 𝑖, 𝑃𝑖  and 𝑄𝑖  are the two non-overlapping 

regions described in Section 2.3.1 and 𝜖 is a small constant to avoid division by zero. The 

conventional edge strength calculation scheme (see Equation (2.31)) is modified by 

assigning the maximal ratio value of 1 to 𝑅𝑖  when the average intensities of both 𝑃𝑖  and 

𝑄𝑖  happen to be zero. The conventional ratio-based edge detection methods assign the 

value 0 in such a case.  

 𝑅𝑖 =  

                         1 ,             𝑖𝑓 𝑃𝑖 = 0 𝑎𝑛𝑑 𝑄𝑖 = 0

   𝑀𝑖𝑛  
𝑃𝑖

𝑄𝑖 + 𝜖
,

𝑄𝑖

𝑃𝑖 + 𝜖
 ,    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒,                

  (3.1) 
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The smaller the value of 𝑅𝑖 , the higher the edge strength of the pixel of interest along the 

direction 𝑖. 𝑅𝑖  is guaranteed to take a value from the closed interval [0,1]. After 

calculating 𝑅𝑖  values for all four directions, the overall minimum edge strength 𝑅 is 

obtained by Equation (2.33). 

Like MSP-RoA (see Section 2.3.1) we also keep track of the direction 𝑖 that produced the 

minimal ratio for the pixel of interest. At the end of this process, we have a pair of 2D 

matrices, 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥 and 𝐷𝑖𝑟, containing the overall ratio strength and the direction 

producing the minimal ratio-value, respectively. While computing the ratio matrix for 

each pixel, we keep track of the maximal ratio value 𝑅𝑀𝑎𝑥𝑔𝑙𝑜𝑏𝑎𝑙  and minimal ratio value 

𝑅𝑀𝑖𝑛𝑔𝑙𝑜𝑏𝑎𝑙  for the entire image matrix. At the end, by applying the technique of Bai et 

al. (see Section 2.3.1) the ratio threshold 𝑇𝑅  is computed as 

 𝑇𝑅 =
𝑅𝑀𝑎𝑥𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑅𝑀𝑖𝑛𝑔𝑙𝑜𝑏𝑎𝑙

2
 . (3.2) 

3.1.2 Acquisition of global edge information 

Both REDISRAD-EBF and REDISRAD-WDF acquire global edge information through a 

pruning process which is directly influenced by MSP-RoA (see Section 2.3.1). The 

pruning starts by comparing the ratio strength of each pixel against the ratio threshold  

𝑇𝑅 . A pixel is considered as a candidate edge pixel if  

where 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  is the  𝑖, 𝑗 𝑡𝑕  entry of the ratio matrix representing ratio strength 

of pixel (𝑖, 𝑗). For each candidate edge pixel, the direction producing the minimal ratio is 

retrieved from the direction matrix 𝐷𝑖𝑟. A small vector sub-window of size 𝑑 × 1 

centered on the edge candidate and perpendicular to the direction 𝐷𝑖𝑟𝑖,𝑗  is taken as the 

pruning window. 𝑑 is a small positive number greater than 1 (e.g., 2 or 3). 

Until this point, REDISRAD-EBF and REDISRAD-WDF operate exactly in the same 

fashion. After selecting the pruning window, they employ different approaches to gather 

 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 < 𝑇𝑅 , (3.3) 
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global edge information. Strategies employed by REDISRAD-EBF and REDISRAD-

WDF are presented in the following Subsections 3.1.2.1 and 3.1.2.2, respectively.  

3.1.2.1 Edge-sensitive boosting factor of REDISRAD-EBF 

The ratio strength of candidate edge pixel (𝑖, 𝑗) (given by 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 ) is compared 

with the ratio strengths of other pixels in the pruning window. If 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  is not 

the minimum in the pruning window, it is rejected or pruned from the edge candidate list 

and the value 1 is assigned to the  𝑖, 𝑗 𝑡𝑕  entry of a 2D matrix, 𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛. If 

𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗   is the minimum ratio-strength in the pruning window, pixel (𝑖, 𝑗) is 

accepted as an edge pixel and the  𝑖, 𝑗 𝑡𝑕  entry of 𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is set to 0. Then, 

REDISRAD-EBF defines an edge-sensitive boosting factor 𝐾𝑖,𝑗  for pixel (𝑖, 𝑗) given by 

where  

Here, 𝐾𝑖,𝑗  is the edge-sensitive boosting factor for pixel (𝑖, 𝑗), 𝑇𝑅  is the ratio threshold, 

𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  is the ratio-strength of pixel (𝑖, 𝑗), 𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖,𝑗  is the  𝑖, 𝑗 𝑡𝑕  

entry of the pruning decision matrix and 𝜖 is a small constant to avoid division by zero.  

For the accepted edge pixels, 𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖,𝑗 = 0 and 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 < 𝑇𝑅. 𝐾𝑖,𝑗  

takes a value greater than 1. The lower the value of 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 , the higher the value 

of the boosting factor. If 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 = 0, 𝐾𝑖,𝑗  takes a large value. For the false-

positive edge candidates rejected by pruning, 𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖,𝑗 = 1 and 

𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 < 𝑇𝑅 . The 𝐾𝑖,𝑗  values for these pixels approach 1. The boosting factor 

can be considered neutral for the false-positive edge candidates. For the non-edge pixels, 

𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖,𝑗 = 0 and 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 ≥ 𝑇𝑅 . The  𝐾𝑖,𝑗  value for such a pixel 

takes value from the open interval (0,1). The higher the value of 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 , the 

lower the value of the boosting factor.  

 𝐾𝑖 ,𝑗 =
𝑇𝑅

𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖 ,𝑗 + 𝑃𝑟𝑢𝑛𝑖𝑛𝑔_𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ,𝑗 × (𝑇𝑅 − 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖 ,𝑗 ) + 𝜖
 , (3.4)  

 PruningDecision i ,j
=  

1, 𝑖𝑓 𝑝𝑖𝑥𝑒𝑙  𝑖, 𝑗  𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡h𝑒 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
0, 𝑜𝑡herwise

 . (3.5)  
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The edge-sensitive boosting factor takes a high value on the edge regions and a low value 

on the uniform or non-edge regions of the speckled input image. How REDISRAD-EBF 

uses this to guide the ICOV-centric edge decisions will be described in Sub-section 

3.1.3.1.  

3.1.2.2 Global diffusion function of REDISRAD-WDF 

Instead of maintaining a pruning decision matrix, REDISRAD-WDF explicitly modifies 

the ratio matrix 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥 at the pruning stage. Let (𝑖, 𝑗) be the pixel of interest in 

the 2D image grid. If the ratio-strength, 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 , is not the minimum in the 

pruning window, then REDISRAD-WDF replaces the original value of 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  

by the ratio threshold value 𝑇𝑅 . At the end of the pruning process, all false-positive 

candidate edge pixels of the input image would have the ratio edge strength equal to the 

ratio threshold 𝑇𝑅 . In a sense, they are forced to reside on the boundary of non-edge 

domain. Other entries of 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥 remain unchanged.  

After updating the ratio matrix through pruning, REDISRAD-WDF introduces a global 

edge-sensitive diffusion function, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 . To ensure edge preservation and smoothing of 

non-edge regions, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  should be chosen in such a way that it increases monotonically 

with the increase in ratio-strength. Higher value of 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  would imply higher level of 

smoothing.  We can satisfy this criterion using  

where 𝜖 is a small constant, 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  is the ratio-strength of pixel (𝑖, 𝑗) and 𝑇𝑅  is 

the dynamically calculated ratio threshold. For a simpler and effective implementation, 

we take the Taylor series approximation of Equation (3.6) up to two terms. So, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  for 

the pixel (𝑖, 𝑗) is defined as  

  𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

= 𝑒
− 

𝑇𝑅
𝑅𝑎𝑡𝑖𝑜 _𝑀𝑎𝑡𝑟𝑖𝑥 𝑖,𝑗 +𝜖

 
2

, (3.6)  

 
 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  

𝑖,𝑗
=

1

1 +  
𝑇𝑅

𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 + 𝜖 
2 . 

(3.7)  
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Figure 3.2 shows the monotonically increasing nature of the functions defined by the 

Equations (3.6) and (3.7).  

If 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 = 0,  𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

→ 0. If  𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 = 1,  𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

→ (
1

1+𝑇𝑅
2). 

It should be noted that the value of the ratio threshold, 𝑇𝑅 , is dynamically computed per 

image (see Equation (3.2)) and it holds the inequality 0 ≤ 𝑇𝑅 ≤ 1. The global diffusion 

function  𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

 takes a value from the open-close interval (0,1], i.e., 0 <

 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

≤ 1. For the strongest edge pixels, 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  values approache 0. So 

 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

 also approaches 0 for these edge pixels. The higher the value of 

𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 , the weaker the pixels are, in terms of edge strength. Higher edge 

strength (i.e., lower 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗 ) generates lower value of  𝑐𝑔𝑙𝑜𝑏𝑎 𝑙 𝑖,𝑗
. For the non-

edge points with high 𝑅𝑎𝑡𝑖𝑜_𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗  values,  𝑐𝑔𝑙𝑜𝑏𝑎𝑙  
𝑖,𝑗

 takes higher values in its valid 

domain. How REDISRAD-WDF uses this edge-sensitive global diffusion function will 

be described in Subsection 3.1.3.2. 

 

Figure 3.2 Curves representing two monotonically increasing functions. The dotted line represents the 

function given by Equation (3.6). The solid line represents the Taylor series approximation of equation 

(3.6), given by Equation (3.7). The ratio threshold 𝐓𝐑 was taken as 0.3 for both functions. 
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3.1.3 Guidance of global edge information 

3.1.3.1 Guidance offered by REDISRAD-EBF 

To propagate the global edge-guidance to the diffusion model, REDISRAD-EBF 

introduces a boosted scaled-ICOV, 𝑋𝑖,𝑗 , for pixel  𝑖, 𝑗  given by 

where 𝐾𝑖,𝑗  is the edge-sensitive boosting factor for pixel (𝑖, 𝑗) (see Subsection 3.1.2), 𝑞𝑖,𝑗
𝑡  

is the ICOV coefficient of original SRAD model at pixel (𝑖, 𝑗) in time/iteration 𝑡 and 𝑞0
𝑡  

is the scaling factor in time/iteration 𝑡, originally computed by Equation (2.6). Finally the 

REDISRAD-EBF PDE is given by  

where  

Here, 𝑡 denotes time, 𝐼0 is the initial input image, 𝑋 is the boosted scaled-ICOV and 𝑐(𝑋) 

is the diffusion function of REDISRAD-EBF.  

For a 2D image grid, the update equation of REDISRAD-EBF takes the form  

which is similar to the equation of SRAD, except for the diffusion function part. Here, 

(𝑖, 𝑗) denotes the position of a pixel in the 2D image grid, 𝐼𝑡  is the discretely sampled 

image at time 𝑡, Δ𝑡 is the step size, |𝜂| is the size of a given window 𝜂, 𝑋𝑖,𝑗  is the boosted 

 𝑋𝑖,𝑗 = 𝐾𝑖,𝑗 ×  
 𝑞𝑖,𝑗

𝑡  
2

−  𝑞0
𝑡 2

 𝑞0
𝑡 2 1 +  𝑞0

𝑡 2 
 , (3.8)  

  

∂I

∂t
= div c X ∇I  

I t = 0 = I0       

  , (3.9)  

 𝑐 𝑋 =
1

1 + 𝑋2
 . (3.10)  

 𝐼𝑖,𝑗
𝑡+Δ𝑡 = 𝐼𝑖,𝑗

𝑡 +
Δ𝑡

 η 
𝑑𝑖𝑣[𝑐 𝑋𝑖,𝑗  ∇𝐼𝑖,𝑗

𝑡 ] (3.11)  
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scaled-ICOV value for the pixel at position (𝑖, 𝑗), ∇ denotes the gradient and 𝑑𝑖𝑣 denotes 

the divergence. The divergence part is approximated by  

where 𝑝 is a pixel in a predefined window 𝜂. 

The edge-sensitive boosting factor, 𝐾𝑖,𝑗 , takes high values for  edge pixels and low values 

for the non-edge pixels. According to Equation (3.4), the boosted scaled-ICOV 

coefficient, 𝑋𝑖,𝑗 , varies proportionally with  𝐾𝑖,𝑗 . Due to the ratio-based technique 

employed, 𝐾𝑖,𝑗  is expected to be more accurate than the gradient and Laplacian based 

ICOV coefficient, 𝑞𝑖,𝑗
𝑡 . If 𝑞𝑖,𝑗

𝑡  miss-interprets an edge point as a non-edge (by taking a low 

value), the boosted scaled-ICOV coefficient still takes a high value as it uses 𝐾𝑖,𝑗  as a 

multiplicative factor. If 𝑞𝑖,𝑗
𝑡  miss-interprets a non-edge pixel as an edge pixel (by taking a 

high value), the boosted scaled-ICOV still manages to take a low value. If the ICOV 𝑞𝑖,𝑗
𝑡  

comes with a right edge-decision, this edge-decision is supposed to be boosted in the 

right way which ensures more aggressive update at each iteration. That is, where it is 

required to restrain from flat smoothing, it will restrain more and where smoothing needs 

to be applied, it will ensure more aggressive smoothing.   

The diffusion function, 𝑐, defines the amount of diffusivity need to be incorporated. 

According to Equation (3.10), if the boosted scaled-ICOV coefficient,  𝑋, value is higher, 

the diffusion function 𝑐 takes a smaller value and vice versa. Since 𝑋 takes higher values 

on the edges and lower values on the uniform regions, the values of 𝑐 are low on edges 

and high on uniform regions. Thereby, REDISRAD-EBF ends up ensuring an appropriate 

level of smoothing in different sub-regions of the input image; decreased amount of 

smoothing with the increased strength of edges and increased amount of smoothing with 

the increase in uniformity. 

 

 

 𝑑𝑖𝑣 𝑐 𝑋𝑖,𝑗  ∇𝐼𝑖,𝑗
𝑡  =  𝑐 𝑋𝑖,𝑗  (𝐼𝑝

𝑡 − 𝐼𝑖,𝑗
𝑡 )

𝑝∈𝜂

, (3.12)  
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3.1.3.2 Guidance offered by REDISRAD-WDF 

In Subsection 3.1.2.2, we already described the global diffusion function, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 . To use 

the global edge information provided by 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 , REDISRAD-WDF incorporates a 

weighted diffusion function 𝑓 which is a weighted sum of local and global components. 

The REDISRAD-2 PDE is given by  

where  

Here, 𝑚 is a weight constant, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  and  𝑐𝑙𝑜𝑐𝑎𝑙  are the global and local components of 

the weighted diffusion function 𝑓, respectively. The allowed range for the weight 

constant, 𝑚, is 0.5 < 𝑚 < 1. The global diffusion component, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 , is given by 

Equation (3.7). The original diffusion function of SRAD is taken as the local component 

𝑐𝑙𝑜𝑐𝑎𝑙 , since it relies on the local statistics based ICOV. So, for discrete 2D images, 𝑐𝑙𝑜𝑐𝑎𝑙  

at pixel  𝑖, 𝑗  is given by   

where, in iteration/time 𝑡, 𝑞𝑖,𝑗
𝑡  is the ICOV coefficient at pixel (𝑖, 𝑗) and 𝑞0

𝑡  is the scaling 

factor of the original SRAD model.  

In a 2D image grid, the update equation of REDISRAD-WDF takes the form  

  

∂I

∂t
= div f. ∇I  

I t = 0 = I0 ,   

  (3.13)  

 𝑓 = 𝑚 × 𝑐𝑙𝑜𝑐𝑎𝑙 +  1 − 𝑚 × 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  . (3.14)  

 
 𝑐𝑙𝑜𝑐𝑎𝑙  𝑖,𝑗 =

1

1 +
 𝑞𝑖,𝑗

𝑡  
2

−  𝑞0
𝑡 2

 𝑞0
𝑡 2 1 +  𝑞0

𝑡 2 

, 
(3.15)  

 𝐼𝑖,𝑗
𝑡+Δ𝑡 = 𝐼𝑖,𝑗

𝑡 +
Δ𝑡

 η 
𝑑𝑖𝑣 𝑓𝑖,𝑗∇𝐼𝑖,𝑗

𝑡  , (3.16)  
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where 𝑓𝑖,𝑗  is the weighted diffusion function value for the pixel at location (𝑖, 𝑗). The 

divergence part is approximated by  

 𝑑𝑖𝑣 𝑓𝑖,𝑗∇𝐼𝑖,𝑗
𝑡  =  𝑓𝑖,𝑗 ×  𝐼𝑝

𝑡 − 𝐼𝑖,𝑗
𝑡  ,

𝑝∈𝜂

 (3.17) 

where 𝑝 is a pixel in a predefined window 𝜂.  

According to Equation (3.2), if and only if, all pixels of the input image are edge pixels 

with ratio strength 0, then 𝑇𝑅 = 0. For meaningful images it is highly improbable that the 

ratio threshold, 𝑇𝑅 = 0. Though this type of scenario is theoretically valid, it is quite 

impractical. Thus, the scenario 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 = 1 is quite an unlikely one in practice (see 

Equation (3.7)).  

There is a similarity in the behaviors of 𝑐𝑙𝑜𝑐𝑎𝑙  and 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 . Both are supposed to take 

smaller values for edges and higher values for non-edges. The local diffusion component, 

𝑐𝑙𝑜𝑐𝑎𝑙 , is governed by local statistics based ICOV coefficient, which suffers from its 

reliance on gradient and Laplacian. On the other hand, the global diffusion component, 

𝑐𝑔𝑙𝑜𝑏𝑎𝑙 , is driven by ratio-based edge detection measure. It is worth mentioning that 𝑐𝑙  

changes with time or number of iterations whereas 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  remains static or global 

throughout the iterative process. So, the core idea is to use the global edge-guidance to 

guide the local edge-decisions to ensure appropriate level of smoothing.  

There is an implicit assumption in the formulation of the weighted diffusion function that 

gradient and Laplacian based ICOV coefficient is good enough to detect the strongest of 

edges. For such edges the ratio strength approaches zero and thus 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 → 0. In such a 

case, the global part contributes almost nothing to the weighted diffusion function. Still, 

we are doing less smoothing due to the weight distribution between local and global 

diffusion components in Equation (3.14). The global knowledge allows us to reduce the 

level of smoothing with more confidence. Undoubtedly, the scale of reduction is highly 

biased by the value of the weight, 𝑚. Thus, tuning 𝑚 is crucial.  
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In the ideally uniform regions, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  takes a high value in its valid domain. The value is 

dependent on the dynamic threshold 𝑇𝑅 . The best we can state, in the ideally uniform 

regions, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 → 1/(1 + 𝑇𝑅
2). Due to the high value of 𝑐𝑔𝑙𝑜𝑏𝑎𝑙 , the weighted diffusion 

function 𝑓 takes a higher value which tells REDISRAD-WDF to do more aggressive 

smoothing.  

When the condition is not extreme, that is, the underlying sub-region is neither an 

obvious edge nor an ideally uniform area, 𝑐𝑔𝑙𝑜𝑏𝑎𝑙  should correct the 𝑐𝑙𝑜𝑐𝑎𝑙  decision, if 

wrong, and encourage the 𝑐𝑙𝑜𝑐𝑎𝑙  decision, if right. As 𝑐𝑔𝑙𝑜𝑏 𝑎𝑙  is guided by the ratio-based 

measures, we expect it to take the correct value based on the underlying image region. 

After computing the weighted diffusion function, 𝑓, we saturate the value of 𝑓 so that 

0 ≤ 𝑓 ≤ 1.  

3.2 Modified scaling factor and ICOV coefficient 

3.2.1 Scaling factor selection strategy 

SRAD takes the ratio of standard deviation and mean over a small homogeneous region 

as the scaling factor, 𝑞0
𝑡  (see Equation (2.8)). The homogeneity of the initially selected 

region is crucial for the optimal performance of SRAD filter. This necessity implies that 

SRAD requires an experienced user to select this homogeneous region. Moreover, in 

some cases of SAR images, it is not easy to identify a homogeneous region in the image 

due to the presence of extensive details. If the region is not homogeneous enough 𝑞0
𝑡  may 

take a large value. The diffusion function of SRAD given by Equation (2.22) makes it 

clear that a high value of 𝑞0
𝑡  produces a high value of diffusion function. As a result, 

SRAD produces over-smoothed image and thereby loses important edge details [9][45].  

Aja-Fernández et al. [9] suggested the use of median of ICOV values as the scaling 

factor. It offers a good balance between de-noising and edge preservation. But, it is not 

the best choice in all cases. When the initially selected region is perfectly homogeneous 

or nearly homogeneous, the conventionally scaling factor performs better than the median 

based one. To exploit the best of both choices, we calculate the percentage of edge pixels 

in the initial region as an indicator of homogeneity.  
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To deal with the issue of scaling factor selection, we employ a hybrid strategy. We do not 

take the ratio of the standard deviation and mean as the scaling factor by default. First, we 

perform MSP-RoA [41] ratio-based edge detection with dynamic threshold [40] on the 

initially selected region. The ratio threshold is taken by Equation (3.2).  

Let the dimension of the initially selected region 𝑧 be 𝑢 × 𝑣 (in pixels) and 𝑒 be the 

number of pixels in 𝑧 identified as edge-pixels. We calculate the percentage of edge 

pixels in 𝑧 by  

 𝑝𝑒 =
𝑒

𝑢 × 𝑣
× 100. (3.18) 

Then the the scaling factor  𝑞0
𝑡 𝑕𝑦𝑏𝑟𝑖𝑑  is given by 

 

 𝑞0
𝑡 𝑕𝑦𝑏𝑟𝑖𝑑 =  

𝑠𝑡𝑑𝐷𝑒𝑣 𝑧 

𝑚𝑒𝑎𝑛 𝑧 
, 𝑖𝑓 𝑝𝑒 < 𝑇𝑒

𝑚𝑒𝑑𝑖𝑎𝑛𝑖,𝑗 (𝑞𝑖,𝑗
𝑡 ),  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒.

  (3.19) 

If 𝑝𝑒  is less than a positive threshold  𝑇𝑒 , then we take the conventional  ratio of standard 

deviation and mean over 𝑧 as the scaling factor. If not, the median of all instantaneous 

coefficient of variation (ICOV) values throughout the image is taken as the scaling factor. 

𝑝𝑒  is compared against the pre-defined threshold 𝑇𝑒  to determine if the region 𝑧 is 

homogeneous enough or not. We can substantially eliminate the risk of losing finer edge 

details by using the median based scaling factor when the region is not homogeneous. We 

suggest 𝑇𝑒 ≤ 3 for effective implementation. 

Both proposed extensions use this scaling factor calculation strategy. 

3.2.2 ICOV coefficient calculation using larger window 

SRAD uses the same window size for the calculations of ICOV coefficient and 

divergence which was described in Chapter 2. Proposed variants of SRAD operate 

differently. We promote the use of larger window for ICOV coefficient calculation. The 

window for divergence calculation is kept the same as SRAD (3 × 3). ICOV coefficient 
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accounts for the local statistics of the speckled image and by using a larger window we 

should obtain better local information.  

The gradient and Laplacian based ICOV coefficient of SRAD is directly derived from the 

coefficient of variation of Lee and Kuan which is given by Equation (2.7). Equation (2.7) 

is simply the 2D image grid approximation of the statistical coefficient of variation which 

is given by the ratio of standard deviation and mean over a given window. This ICOV 

coefficient version is used by both of the proposed extensions.  

The choice of the window size is tricky. We want to exploit more local information and 

at the same time, an excessively large window is not preferable since it slows down the 

computation. We will share our experimental finding in Chapter 4 regarding this aspect.   
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Chapter 4  

Experimental Results  

and Analysis 

This chapter provides specific details of our experimental setup and obtained results. A 

brief introduction to the dataset used and performance measures employed are also given. 

All presented results can be easily reproduced using the provided details.  

The performances of our proposed filters, REDISRAD-EBF and REDISRAD-WBF, are 

compared with the performances of the Lee [1], Frost [4], homomorphic, DPAD, SRAD 

and OSRAD filters. The Kuan filter [5] has been excluded from the list since its working 

principal and performance are almost identical to the Lee filter. For homomorphic 

filtering, the Perona-Malik anisotropic diffusion filter [23] is used to operate on the log 

compressed input image. From now on, it will be denoted by homomorphic AD. Among 

the rest, DPAD and OSRAD are two significant extensions of SRAD. Detailed 

descriptions of these filters have already been provided in Chapter 2.    

Matlab was used for all implementations except that of OSRAD. For OSRAD, we used 

the publicly available binary version provided by one of the authors, Karl Krissian [7].  

4.1 Datasets and performance measures 

4.1.1 Datasets used in different experiments 

Our experimental dataset includes three types of images: synthetic, semi-synthetic and 

real images. Synthetic and semi-synthetic images are used to quantify the performances 

of various filters. Real images are used to subjectively evaluate filter performances. 
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Figure 4.1 shows the synthetic dataset used in our experiment. A 300 × 300 grayscale 

image containing some simple geometrical shapes (shown in Figure 4.1(a)) had been 

corrupted by a multiplicative Gaussian noise with zero mean and standard deviations of 

   
(a) (b) (c) 

Figure 4.1 Synthetic dataset for experiments. (a) Noise-free synthetic image containing geometrical 

shapes, (b) and (c) Corrupted by multiplicative Gaussian noise with zero mean  and standard deviation 

of 0.35 and 0.5, respectively. 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.2 Semi-synthetic dataset for experiments. (a) - (b) Noise-free standard images-- Lena and 

Parrots, respectively (c) - (d)  Lena and Parrots, respectively, corrupted by multiplicative Gaussian 

noise with zero mean and standard deviation of 0.5. 
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0.35 and 0.5 to generate two different semi-synthetic images (shown in Figure 4.1 (b) and 

(c)) with different level of synthetic speckle. 

Figure 4.2 shows the semi-synthetic dataset generated using two standard grayscale 

images— Lena and Parrots, of dimensions 512 × 512 and 768 × 512, respectively. 

These two images were artificially corrupted by multiplicative Gaussian noise with zero 

mean and standard deviation of 0.5. Figure 4.2(a) and Figure 4.2(b) show the original 

noise free images— Lena and Parrots, respectively. The artificially corrupted versions of 

these images are shown in Figure 4.2(c) and Figure 4.2(d), in the same order.   

Our real dataset is composed of four real-life speckled images. Two of them are the SAR 

images of two cities captured by SIR-C/X-SAR system of NASA (courtesy of NASA JPL 

[46]). The other two images are ultrasound images of carotid artery (of two different 

persons) in longitudinal section. The ultrasound images are acquired by Sonix OP 

ultrasound scanner (courtesy of SPLab [47]).  

The real dataset is used for the subjective evaluation of the performances of various 

filters. Images of this dataset and their de-noised versions (produced by various filters) 

will be shown at the end of Section 4.4 so that the readers can subjectively compare 

various de-noised outputs with the original images. 

4.1.2 Performance measures 

The performances of the proposed extensions are evaluated in terms of edge preservation, 

structural similarity preservation, mean preservation and variance reduction. We also 

present intensity profiles of the input and filtered output images to check the sharpness of 

edges and quality of de-noising. 

4.1.2.1 Pratt’s Figure of Merit (FOM) 

To compare edge preservation performances of various de-speckling filters we use Pratt‘s 

Figure of Merit (FOM) [48]. Pratt‘s FOM is given by 
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𝐹𝑂𝑀 =
1

𝑚𝑎𝑥{𝑁 , 𝑁𝑖𝑑𝑒𝑎𝑙 }
 

1

1 + 𝑑𝑖
2𝛼

𝑁 

𝑖=1

 , (4.1) 

where 𝑁  and 𝑁𝑖𝑑𝑒𝑎𝑙  are the number of detected and ideal edge pixels, respectively, 𝑑𝑖  is 

the Euclidian distance between the 𝑖𝑡𝑕  detected edge pixel and the nearest ideal edge 

pixel and 𝛼 is a constant typically set to 1/9. FOM ranges between 0 and 1, where 1 

implies the best possible edge detection.  

The FOM largely depends on the edge detection method used to generate binary edge 

maps. We use the Canny edge detector [44] as the edge detector of our FOM 

implementation. The 𝜎 value and the threshold of the edge detector was set to 1 and 0.1, 

respectively.   

4.1.2.2 Mean Structural Similarity Index Measure (MSSIM) 

MSSIM, proposed by Wang et al. [49], is used to evaluate the structural similarity 

preservation performance of various filters. This index is measured based on three 

comparisons: luminance, contrast and structure.   

Let, 𝑥𝑖  and 𝑦𝑖  are two aligned blocks of a reference image 𝑋 and a test image 𝑌 (de-

noised image, in our case). Then, the luminance comparison is given by  

 
𝑙 𝑥𝑖 , 𝑦𝑖 =

2μxμy + C1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 , (4.2) 

where. 𝑙(𝑥𝑖 , 𝑦𝑖) denotes the luminance comparison of 𝑥𝑖  and 𝑦𝑖  and 𝐶1 is a constant given 

by  

 𝐶1 =  𝐾1𝐿 2, (4.3) 

where 𝐿 is the dynamic range of the pixel values and 𝐾1 ≪ 1.  

The contrast comparison, 𝑐 𝑥𝑖 , 𝑦𝑖 , is given by  
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𝑐 𝑥𝑖 , 𝑦𝑖 =

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 , (4.4) 

where 𝜎𝑥  and 𝜎𝑦  denote the standard deviations on image blocks 𝑥𝑖  and 𝑦𝑖 , and 𝐶2 is a 

constant given by  

 𝐶2 =  𝐾2𝐿 2,  (4.5) 

where 𝐾2 ≪ 1. 

The structure comparison function, defined quite similarly, is given by 

 
𝑠 𝑥𝑖 , 𝑦𝑖 =

𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 , (4.6) 

where 𝐶3 = 𝐶2/2  and 𝜎𝑥𝑦  is defined as  

 

𝜎𝑥𝑦 =
1

𝑁 − 1
  𝑥𝑖 − 𝜇𝑥 (𝑦𝑖 − 𝜇𝑦 ) 

𝑁

𝑖=1

, (4.7) 

where 𝑁 is the total number of pixels in an image block.  

By multiplying 𝑙(𝑥𝑖 , 𝑦𝑖), 𝑐(𝑥𝑖 , 𝑦𝑖) and 𝑠(𝑥𝑖 , 𝑦𝑖), Wang et al. introduced the SSIM index as   

 
𝑀𝑆𝑆𝐼𝑀 𝑥𝑖 , 𝑦𝑖 =

(2μxμy + C1)(2𝜎𝑥𝑦 + 𝐶2)

 𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1 (𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
. (4.8) 

Finally, the mean SSIM index over the entire image is given by  

 

𝑀𝑆𝑆𝐼𝑀 𝑋, 𝑌 =
1

𝑀
 𝑆𝑆𝐼𝑀(𝑥𝑗 , 𝑦𝑗 )

𝑀

𝑗 =1

, (4.9) 

where 𝑋 and 𝑌 are the reference and test images, respectively. MSSIM index value 

ranges between 0 and 1 , where 1 means perfect similarity.  
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According to the recommendation of the Wang et al., we use a 11 × 11 circular-

symmetric Gaussian weighting function with standard deviation of 1.5. The constants 𝐾1 

and 𝐾2 of equation (4.3) and (4.5) are set to 0.0001 and 0.0003, respectively.  

4.1.2.3 Mean preservation and variance reduction 

A successful speckle reducing filter should not significantly alter the mean intensity 

within a homogeneous region. At the same time, it should reduce the variation or 

fluctuation within a homogeneous region. For a fair comparison, we compute the mean 

and standard deviation over three homogeneous regions in the synthetic and semi-

synthetic images.  

4.2 Parameter adjustment for the proposed filters 

4.2.1 Window size for ICOV calculation 

Window size selection for ICOV calculation is quite tricky. A large window size for 

ICOV may provide more local statistics, but it increases the computation time. We would 

prefer a window size which allows gathering enough statistical information and at the 

same time, not that expensive in terms of computational time. 

We use Pratt‘s FOM and Wang‘s MSSIM to evaluate the performances of REDISRAD-

EBF and REDISRAD-WDF for various window sizes. The semi-synthetic dataset (i.e., 

the corrupted Lena and Parrots of  Figure 4.2) is used as the input.  The step size and 

number of iterations were set to 0.05 and 300, respectively, for both filters. For initial 

Gaussian smoothing of REDISRAD-EBF and REDISRAD-WDF, we selected a square 

window of size of 5 and set the standard deviation to 1.  A 15 × 15 window was chosen 

for global ratio matrix calculation and the size of the pruning window was set to 2 (i.e., 

2 × 1). The hybrid scaling function was not used in this case. The weight constant 𝑚 of 

REDISRAD-WDF was set to 0.7. Then the semi-synthetic images were de-noised by the 

proposed filters with different window sizes used for ICOV calculation. As the standard 

edge detection part of Pratt‘s FOM, we used Canny‘s edge detector [44]. The 𝜎 value and 

threshold of the edge detector was set to 1 and 0.1, respectively. The thresholds of 

Wang‘s SSIM [49] were set to 0.0001 and 0.0003. 
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Table 4.1 and Table 4.2 present the resultant FOM and MSSIM values of REDISRAD-

EBF and REDISRAD-WDF, respectively, for various window sizes. Figure 4.3 shows 

the plots of FOM and MSSIM values against window size for REDISRAD-EBF. Figure 

4.4 does the same for REDISRAD-WDF. Since we considered only square windows, 

window sizes are represented by a single number (e.g., 3 for a 3 × 3 window). 

According to the tables and the graphs, the window size 5 (i.e, a  5 × 5 window) 

produces good FOM values and SSIM indices in all cases. Though larger window sizes 

like 11 or 13 produced slightly better FOM and MSSIM values in some cases, the 

improvement is not that significant. Moreover, such window sizes will increase the cost 

of computation to a great extent. Again, the window size 5 shows considerably better 

performance compared to window sizes 2 and 3. In Figure 4.5 and Figure 4.6, both 

Table 4.1 FOM and MSSIM values of REDISRAD-EBF for various window sizes used in ICOV 

calculation. 

 

Window Size 
FOM MSSIM 

Lena Parrots Lena Parrots 

2 0.535 0.474 0.883 0.915 

3 0.548 0.463 0.894 0.916 

5 0.600 0.491 0.903 0.920 

7 0.592 0.512 0.903 0.921 

9 0.603 0.536 0.902 0.920 

11 0.608 0.519 0.904 0.920 

13 0.618 0.500 0.902 0.919 

 

Table 4.2 FOM and MSSIM values of REDISRAD-WDF for various window sizes used in ICOV 

calculation. 

 

Window Size 
FOM MSSIM 

Lena Parrots Lena Parrots 

2 0.489 0.351 0.882 0.915 

3 0.528 0.391 0.892 0.918 

5 0.559 0.403 0.900 0.920 

7 0.573 0.409 0.903 0.921 

9 0.565 0.411 0.905 0.921 

11 0.578 0.427 0.904 0.921 

13 0.563 0.410 0.905 0.921 
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window size verses FOM value and window size verses MSSIM value curves are almost 

saturated after window size 5. This behavior is more prominent in window size verses 

MSSIM value curves. 

    

 

(a) 

 

(b) 

Figure 4.3 Performances of REDISRAD-EBF for various window sizes used in ICOV calculation. (a) 

Window size verses FOM value curves, (b) Window size verses MSSIM value curves. The green and 

black curves represent REDISRAD-EBF outputs for corrupted semi-synthetic images Lena an Parrots, 

respectively. 
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(a) 

 

(b) 

Figure 4.4 Performances of REDISRAD-WDF for various window sizes used in ICOV calculation. (a) 

Window size verses FOM value curves, (b) Window size verses MSSIM value curves. The green and 

black curves represent REDISRAD-WDF outputs for corrupted semi-synthetic images Lena an Parrots, 

respectively. 
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Analyzing the results, we selected window size 5 for the ICOV calculation REDISRAD-

EBF and REDISRAD-WDF. 

4.2.2 Weight constant 𝒎 of REDISRAD-WDF 

For selecting the weight constant of the diffusion function of REDISRAD-WDF we ran 

an experiment on the same semi-synthetic dataset used in the previous subsection. The 

performance measures and experimental setup are also the same as Subsection 4.2.1 

except only REDISRAD-WDF was used to de-noise the semi-synthetic images 

(corrupted Lena and Parrots). For ICOV calculation, a 5 × 5 windows was used 

according to the finding of the Subsection 4.2.1. REDISRAD-WDF was run for different 

𝑚 values in the range 0.5 ≤ 𝑚 ≤ 1. FOM values and MSSIM indices were calculated for 

all runs to find out the best 𝑚 value.  

Table 4.3 summarizes the performances of REDISRAD-WDF for various values of 𝑚. 

For both synthetically corrupted images (Lena and Parrots), 𝑚 = 0.7 produced the 

highest FOM and MSSIM values. So, to ensure optimal performance, REDISRA-WDF 

will be run with the weight constant  𝑚 = 0.7 in all our further experiments.  

4.3 Experimental settings 

This section gives specific details of our experimental setup including filter-specific 

parameter values and constants. All parameter values and constants are chosen for 

optimal performance and in most of the cases, suggested by the original authors.  

Table 4.3 FOM and MSSIM values of REDISRAD-WDF for different values of the weight constant 

 

Weight Constant, 

𝑚 

FOM MSSIM 

Lena Parrots Lena Parrots 

0.5 0.524 0.367 0.897 0.916 

0.6 0.561 0.389 0.898 0.916 

0.7 0.576 0.404 0.900 0.919 

0.8 0.562 0.39 0.900 0.915 

0.9 0.534 0.369 0.896 0.913 

0.1 0.519 0.364 0.894 0.911 

 



Chapter 4: Experimental Results and Analysis 

52 

For Lee and Frost filters, a 7 × 7 window was used throughout various experiments. The 

𝐾 value for Frost filter was set to 5 for real input images, and 3 for synthetic and semi-

synthetic images. The step size and number of iterations of homomorphic AD filter were 

set to 0.1 and 150, respectively. The threshold value for homomorphic AD was set to 0.5 

for real images, and 0.3 for synthetic and semi-synthetic images.  For DPAD, median of 

ICOV values was chosen as the scaling factor. The number of iterations and the step size 

were set to 300 and 0.05, respectively, for DPAD and SRAD. OSRAD was run with step 

size 0.05. The number of iterations for OSRAD was set to 100 for semi-synthetic images, 

and 200 for synthetic and real images. The number of iterations, step size, initial 

Gaussian smoothing window size, window for ratio matrix calculation, size of the 

pruning window of REDISRAD-EBF and REDISRAD-WDF were set similarly as in 

sub-section 4.2.1. For the scaling factor calculation strategy of the proposed filters, the 

threshold 𝑇𝑒  was set to 3 and a small 3 × 3 window was chosen for ratio-based edge 

detection of the initially selected homogeneous area. According to the finding of Section 

4.2, a 5 × 5 window was chosen for ICOV calculation of both proposed filters and the 𝑚 

value of REDISRAD-WDF was set to 0.7. Parameters for Pratt‘s FOM and Wang‘s 

MSSIM were set as described in Subsection 4.2.1. 

4.4 Experimental results and analysis 

4.4.1 Edge and structural similarity preservation 

In this section, we compare edge and structural similarity preservation performances of 

REDISRAD-EBF and REDISRAD-WDF to other speckle reducing filters. The same 

experiment is run on both synthetic and semi-synthetic images.  

4.4.1.1 Using synthetic dataset 

Figure 4.5 shows three homogeneous regions over the artificially speckled version of the 

synthetic image. These three regions are used for the scaling factor calculation of Lee, 

SRAD, OSRAD, REDISRAD-EBF and REDISRAD-WDF filters.   

Figure 4.6 shows the results of various de-speckling filters applied to the artificially 

corrupted synthetic image with noise of standard deviation 0.35 (shown in Figure 4.6(a)).  
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Figure 4.5 Three different homogeneous regions (marked by rectangles) on the artificially speckled 

synthetic image, denoted by R-1, R-2 and R-3. These initial regions are used for scaling factor 

calculation of Lee, SRAD, OSRAD, REDISRAD-EBF and REDISRAD-WDF filters. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4.6 Results of various filters on an image with multiplicative noise where 𝛔𝐧 = 𝟎. 𝟑𝟓. The 

following filters have been applied: (a) noisy synthetic image with 𝛔𝐧 = 𝟎. 𝟑𝟓, (b) Lee, (c) Frost, (d) 

homomorphic AD, (e) DPAD, (f) SRAD, (g) OSRAD, (h) REDISRAD-EBF and (i) REDISRAD-WDF. 
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Figure 4.7 shows the results of a similar experiment ran on the synthetic image with noise 

of standard deviation 0.5. Figure 4.8 shows a 146% zoomed in view of the top-left 

regions of SRAD, OSRAD, REDISRAD-EBF and REDISRAD-WDF outputs presented 

in Figure 4.7. This zoomed view will be helpful in subjective evaluation. 

The homogeneous regions shown in Figure 4.5 were used for both experiments of Figure 

4.6 and Figure 4.7. The results produced using the initial region R-3 (for scaling factor 

calculation) is presented in Figure 4.6 and Figure 4.7. An initially selected homogeneous 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4.7 Results of various filters on an image with multiplicative noise where 𝛔𝐧 = 𝟎. 𝟓𝟎. The 

following filters have been applied: (a) noisy synthetic image with 𝛔𝐧 = 𝟎. 𝟓𝟎, (b) Lee, (c) Frost, (d) 

homomorphic AD, (e) DPAD, (f) SRAD, (g) OSRAD, (h) REDISRAD-EBF and (i) REDISRAD-WDF. 
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region is irrelevant for Frost, homomorphic AD and DPAD filters since they do not rely 

on such region for scaling factor calculation. 

Table 4.4 summarizes the results of edge and structural similarity preservation 

experiment on synthetic input image, with two different noise levels. The 𝑝𝑒  columns for 

two different noise levels present the percentage of edge pixels in the initially selected 

homogeneous regions (see equation (3.18)) for REDISRAD-EBF and REDISRAD-WDF.  

If we have a subjective look at the filter outputs shown in Figure 4.6, Figure 4.7 and 

Figure 4.8, we will find that SRAD noticeably kept some speckles as edges in presence of 

higher level of speckle noise (𝜎 = 0.5). OSRAD seems to do an excellent job in terms of 

speckle reduction. However, if we look carefully, shapes are diffused and edges are over-

smoothed in OSRAD outputs (see Figure 4.8). The FOM values of OSRAD outputs 

should confirm this observation. Both REDISRAD-EBF and REIDSRAD-WDF did a 

good job in preserving edges and de-noising at the same time. Other filters failed to show 

satisfactory performances.   

According to Table 4.4, both REDISRAD-EBF and REDISRAD-WDF significantly 

outperformed other filters in terms of edge preservation. For noise level with 𝜎 = 0.35,  

FOM values of REDISRAD-EBF (with different initial regions) were slightly better than 

that of REDISRAD-WDF. For noise level 𝜎 = 0.5, REDISRAD-EBF showed 

significantly better performance compared to REDISRAD-WDF. Still, REDISRAD-

WDF managed to outperform other filters except REDISRAD-EBF. Though SRAD 

showed good performance in terms of edge preservation for noise level 𝜎 = 0.35, it 

greatly suffered in presence of higher level of noise (𝜎 = 0.5). Moreover, SRAD showed 

poor edge preservation performances when operated with initial region R-2 (see Figure 

4.5), in case of both noise levels. This validates that performance of SRAD as being 

greatly dependent on the initially selected homogeneous region. Edge preservation 

performance of OSRAD was moderate for both noise levels and the edges are noticeably 

over-smoothed. Lee, Frost, Homo AD and DPAD filters showed poor edge preservation 

performances for higher level of noise.   
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(a) (b) (c) (d) 

Figure 4.8 146% zoomed view of a 138×101 sub-region from the top-left corner of output images 

(presented in Figure 4.7) of -- (a) SRAD, (b) OSRAD, (c) REDISRAD-EBF and (d) REDISRAD-WDF. 

 

 

Table 4.4 Results of edge and structural similarity preservation experiment on synthetic dataset with 

two different noise levels (𝝈 = 𝟎. 𝟑𝟓, 𝟎. 𝟓𝟎) 

  

Filter Initial region  
Noise with 𝜎 = 0.35 Noise with 𝜎 = 0.50 

𝑝𝑒  

value 
FOM MSSIM 𝑝𝑒  

valu

e 

FOM MSSIM 

Lee 

R-1 - 0.842 0.959 - 0.473 0.933 

R-2 - 0.733 0.850 - 0.474 0.820 

R-3 - 0.888 0.959 - 0.492 0.933 

Frost - - 0.674 0.921 - 0.510 0.894 

Homomorphic AD - - 0.455 0.809 - 0.244 0.512 

DPAD - - 0.302 0.492 - 0.279 0.464 

SRAD 

R-1 - 0.937 0.975 - 0.659 0.943 

R-2 - 0.472 0.831 - 0.346 0.792 

R-3 - 0.943 0.978 - 0.709 0.943 

OSRAD 

R-1 - 0.653 0.983 - 0.641 0.960 

R-2 - 0.507 0.953 - 0.518 0.940 

R-3 - 0.653 0.983 - 0.639 0.952 

REDISRAD-EBF 

R-1 0% 0.964 0.979 0.76

% 
0.922 0.965 

R-2 0% 0.874 0.961 0.04

% 
0.761 0.949 

R-3 0% 0.963 0.979 0.81

% 
0.918 0.965 

REDISRAD-WDF 

R-1 0% 0.963 0.967 0.76

% 
0.800 0.953 

R-2 0% 0.852 0.962 0.04

% 
0.658 0.948 

R-3 0% 0.951 0.968 0.81

% 
0.806 0.955 
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Structural similarity preservation performances of OSRAD, REDISRAD-EBF and 

REDISRAD-WDF are the most impressive according to the presented MSSIM values in 

Table 4.4. These three filters showed quite similar performances for both levels of noise. 

Performances of SRAD, Lee and Frost filters were better than homomorphic AD and 

DPAD filters in terms of structural similarity preservation. However, SRAD showed poor 

performance when operated with initial region R-2.   

4.4.1.2 Using semi-synthetic dataset 

Figure 4.9(a) and Figure 4.9(b) show the initially selected small homogeneous areas used 

in scaling factor calculation for corrupted semi-synthetic Lena and Parrots images (see 

Subsection 4.1.1), respectively. Figure 4.10 shows the de-noised outputs of different 

filters operated on the corrupted version of Lena. Similarly, outputs of the same set of 

filters operated on the corrupted version of Parrots are presented in Figure 4.11. Finally, 

Table 4.5 summarizes the results of edge and structural similarity preservation 

experiment on semi-synthetic input dataset.  

In open eyes, OSRAD again did great in terms of noise reduction. However it over-

smoothed the edges. As a result, the edges are not sharp and some finer edge details (e.g., 

wig and lips of Lena) are almost lost. Both REDISRAD-EBF and REDISRAD-WDF did 

better than SRAD in speckle reduction. At the same time, they kept the finer edge details.  

According to Table 4.5, DPAD produced the highest FOM value for input image Lena 

though its MSSIM index is highly disappointing. For Parrots image, the FOM value of 

DPAD reduced drastically and the MSSIM index is also very low. So, the performance of 

DPAD is quite unstable. REDISRAD-EBF and REDISRAD-WDF produced the second 

and third best FOM values for Lena, respectively. In case of Parrots image, the FOM 

value of REDISRAD-EBF is the highest in the table and REDISRAD-WDF produced the 

second highest FOM value. The MSSIM values of both proposed filters are impressive 

for Parrots, though OSRAD produced the highest MSSIM index.  

For both input images (Lena and Parrots), SRAD produced good FOM and MSSIM 

values, but couldn‘t manage to bit the REDISRAD-EBF and REDISRAD-WDF versions.  
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(a) (b) 

Figure 4.9 (a) Lena and (b) Parrots-- both corrupted by a multiplicative Gaussian noise with zero mean 

and standard deviation (𝛔) of 0.50. The area marked by a rectangle (black for Lena, gray for Parrots) is 

taken as the initial homogeneous region. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4.10 Results of various filters on an image (Lena) corrupted by a multiplicative noise with zero 

mean and 𝛔𝐧 = 𝟎. 𝟓𝟎. The following filters have been applied: (a) noisy synthetic image with 𝛔𝐧 =
𝟎. 𝟓𝟎, (b) Lee, (c) Frost, (d) homomorphic AD, (e) DPAD, (f) SRAD, (g) OSRAD, (h) REDISRAD-

EBF and (i) REDISRAD-WDF. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 4.11 Results of various filters on an image (Parrots) corrupted by a multiplicative noise with 

zero mean and 𝛔𝐧 = 𝟎. 𝟓𝟎. The following filters have been applied: (a) noisy synthetic image with 

𝛔𝐧 = 𝟎. 𝟓𝟎, (b) Lee, (c) Frost, (d) homomorphic AD, (e) DPAD, (f) SRAD, (g) OSRAD, (h) 

REDISRAD-EBF and (i) REDISRAD-WDF. 

 

Table 4.5 Results of edge and structural similarity preservation experiment on semi-synthetic dataset 

 

Filter Lena Parrots 

𝑝𝑒  value FOM MSSIM 𝑝𝑒  value FOM MSSIM 

Lee - 0.443 0.869 - 0.310 0.892 

Frost - 0.413 0.851 - 0.266 0.864 

Homomorphic AD - 0.392 0.639 - 0.251 0.663 

DPAD - 0.642 0.528 - 0.323 0.382 

SRAD - 0.515 0.888 - 0.403 0.906 

OSRAD - 0.417 0.882 - 0.283 0.998 

REDISRAD-EBF 1.08% 0.582 0.899 1.24% 0.501 0.920 

REDISRAD-WDF 1.08% 0.576 0.900 1.24% 0.404 0.919 
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Though OSRAD produced high MSSIM values for both input images, its edge 

preservation performances (FOM values) were poor due to over-smoothing. 

On average, REDISRAD-EBF stands out as the most successful one closely followed by 

REDISRAD-WDF in terms of edge and structural similarity preservations. 

4.4.2 Mean preservation and variance reduction 

We ran this experiment on the same synthetic and semi-synthetic input datasets used in 

the earlier edge and structural similarity preservation experiment.  

4.4.2.1 Using synthetic dataset 

Figure 4.12 shows another three homogeneous regions (R1, R2 and R3) in the synthetic 

image used in this experiment. We computed the means and standard deviations over 

these regions in the noisy synthetic image and de-noised outputs produced by different 

filters. The same experiment was run on input images corrupted by noise with standard 

deviations 0.35 and 0.50 (already shown in Figure 4.6(a) and Figure 4.7(a)). Table 4.6 

and Table 4.7 present the results of the mean preservation and variance reduction 

experiment for noise levels of 0.35 and 0.50, respectively.  

For the noisy input with standard deviation 0.35, the mean preservation and variance 

reduction performance of SRAD, REDISRAD-EBF and REDISRAD-WDF are quite 

similar. They showed good balance between mean preservation and variance reduction. 

OSRAD showed the best variance reduction performance, but did a poor job in 

preserving the means over the homogeneous regions. The over-smoothing nature of 

OSRAD is responsible for that.  

For the noisy input with standard deviation 0.50, REDISRAD-EBF showed the best mean 

preservation performances. SRAD and REDISRAD-WDF are also close to REDISRAD-

EBF in terms of mean preservation. OSRAD significantly increased the mean value of all 

three regions and again performed poorly in mean preservation. Both REDISRAD-EBF 

and REDISRAD-WDF outperformed other filters except OSRAD in  terms  of  variance  
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Figure 4.12 Three homogeneous regions R1, R2 and R3 marked by three rectangles. The mean and 

standard deviations over these regions of the noisy synthetic image and the de-noised outputs are 

computed and compared to analyze mean preservation and variance reduction performance. 

 

Table 4.6 Mean preservation and variance reduction results for the synthetic input image corrupted by a 

multiplicative Gaussian noise with zero mean and 𝛔 = 𝟎. 𝟑𝟓 

 

Filters 
Mean Std dev 

R1 R2 R3 R1 R2 R3 

Noisy 214.00 74.37 40.36 51.25 26.34 14.06 

Lee 216.96 74.52 39.90 6.89 4.05 1.97 

Frost 216.84 75.86 39.97 8.25 4.53 2.35 

Homo AD 210.67 71.70 37.75 19.46 15.26 7.39 

DPAD 255.00 254.72 155.40 0.00 2.35 5.29 

SRAD 216.43 75.31 40.12 4.79 2.93 1.87 

OSRAD 232.09 80.50 43.30 1.83 1.43 0.74 

REDISRAD-EBF 217.31 74.49 39.99 5.92 2.80 1.78 

REDISRAD-WDF 215.49 74.27 40.10 5.28 2.77 1.54 

 

Table 4.7 Mean preservation and variance reduction results for the synthetic input image corrupted by a 

multiplicative Gaussian noise with zero mean and 𝛔 = 𝟎. 𝟓𝟎 

 

Filters 
Mean Std dev 

R1 R2 R3 R1 R2 R3 

Noisy 198.70 75.46 39.89 70.26 37.29 20.11 

Lee 200.84 75.61 39.91 9.33 5.22 2.89 

Frost 197.95 74.56 40.50 13.29 7.34 3.57 

Homo AD 197.76 72.68 38.59 59.66 30.65 16.20 

DPAD 255.00 252.59 157.34 0.00 11.46 13.03 

SRAD 198.59 74.86 40.04 7.45 5.91 3.95 

OSRAD 249.84 94.08 50.16 3.79 2.05 1.17 

REDISRAD-EBF 198.83 75.28 39.88 7.04 3.41 2.19 

REDISRAD-WDF 201.06 76.29 40.14 7.41 3.60 2.35 
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reduction. Between the two proposed filters, variance reduction performance of 

REDISRAD-EBF was slightly better than REDISRAD-WDF. 

4.4.2.2 Using semi-synthetic dataset 

Figure 4.13 shows another three homogeneous regions (R1, R2, R3) in the semi-synthetic 

images Lena and Parrots (corrupted by a multiplicative Gaussian noise with zero mean 

and standard deviation of 0.5). Table 4.8 and Table 4.9 summarize the results of the mean 

preservation and variance reduction experiment operated on corrupted Lena and Parrots, 

respectively.  

According to the results presented in Table 4.8 and Table 4.9, Lee, Frost and SRAD 

filters did a good job in terms of mean preservation performane. REDISRAD-EBF and 

REDISRAD-WDF showed the best mean preservation performance though the difference 

with SRAD was marginal. Meanwhile, homomorphic AD, DPAD and OSRAD 

performed poorly in terms of mean preservation. Variance reduction performances of 

Lee, Frost, homomorphic AD and DPAD filters were not satisfactory. DPAD showed 

unstable performance as usually. Both REDISRAD versions and OSRAD performed 

better than SRAD in terms of variance reduction. OSRAD won over REDISRAD-EBF in 

regions R1 and R2, but was significantly outperformed by REDISRAD-EBF in region 

R3, in terms of variance reduction. The variance reduction performance of REDISRAD-

EBF was evenly impressive throughout the all three regions.  

  
(a) (b) 

Figure 4.13 Three homogeneous regions (R1, R2, R3) over semi-synthetic images — (a) Lena and (b) 

Parrots, marked by white and black colored rectangles, respectively. The mean and standard deviations 

over these regions of the noisy semi-synthetic images and the de-noised outputs are computed and 

compared to analyze mean preservation and variance reduction performance. 
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Table 4.8 Mean preservation and variance reduction results for the semi-synthetic input image –Lena, 

corrupted by a multiplicative Gaussian noise with zero mean and 𝛔 = 𝟎. 𝟓𝟎 

 

Filters 
Mean Std dev 

R1 R2 R3 R1 R2 R3 

Noisy 109.96 50.70 152.33 57.11 26.57 75.50 

Lee 108.97 51.41 155.30 12.78 4.83 18.11 

Frost 109.72 50.05 152.85 14.53 6.00 19.48 

Homo AD 99.12 44.98 141.86 29.56 13.57 42.80 

DPAD 232.04 109.10 254.06 23.40 11.97 7.05 

SRAD 110.04 50.95 153.68 13.42 5.13 17.02 

OSRAD 142.89 65.34 198.59 14.33 3.96 19.75 

REDISRAD-EBF 109.68 49.96 152.90 11.74 4.19 16.18 

REDISRAD-WDF 109.96 50.52 152.22 12.12 4.33 16.34 

 

Table 4.9 Mean preservation and variance reduction results for the semi-synthetic input image –Parrots, 

corrupted by multiplicative Gaussian noise with zero mean and 𝛔 = 𝟎. 𝟓𝟎  

 

Filters 
Mean Std dev 

R1 R2 R3 R1 R2 R3 

Noisy 174.78 127.41 76.67 76.51 64.67 38.89 

Lee 174.84 127.01 76.20 11.24 12.08 8.19 

Frost 176.76 126.20 76.65 15.65 16.80 10.27 

Homo AD 163.61 116.66 69.37 42.14 35.36 20.41 

DPAD 255.00 253.12 183.65 0.00 8.55 19.30 

SRAD 175.15 126.94 76.63 9.63 12.06 7.32 

OSRAD 217.77 158.94 95.27 6.05 11.73 6.16 

REDISRAD-EBF 174.92 125.52 77.13 7.70 8.66 7.09 

REDISRAD-WDF 174.69 127.40 76.55 8.29 11.19 6.66 
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4.4.3 Intensity profiles 

In this experiment, we select a horizontal scan line on the input image. Then we plot the 

intensity value of each pixel along the scan line. Similar plots are generated for the noise-

free, noisy and de-noised versions of the same image. This type of intensity profile 

provides some concrete idea about the sharpness of edges in the output image and overall 

de-noising performance of different filters.  

We use only the synthetic input dataset to generate intensity profiles for different filter 

outputs. Our synthetic image contains limited number of simple and strong edges which 

makes it an excellent candidate for the evaluation of edge-sharpness and smoothing 

performances by one dimensional (1D) intensity profile curves.  Images with extensive 

edge-details are not appropriate for this type of experiment.   

In the synthetic image, we select the 100
th

 row as the scan line. This scan line is shown in 

Figure 4.14 as a red straight line. Intensity values are collected from the noise-free, noisy 

and de-noised synthetic images (generated by different filters). For the noisy synthetic 

image, we use the image of Figure 4.7(a), which is corrupted by multiplicative Gaussian 

noise with standard deviation 0.5 and mean 0.   

 

 

Figure 4.14 Row number 100 of the 300×300 synthetic image is chosen as the scan line (presented by a 

red straight line) to generate intensity profiles. Intensity values are collected from the noise-free 

synthetic, corrupted/noisy (𝛔 = 𝟎. 𝟓) synthetic and de-noised images along the same line. 
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Figure 4.15 shows the intensity profiles of the noise-free and noisy synthetic image along 

the scan line. The black line refers to the intensity values of the original noise-free 

synthetic image whereas the red line represents the intensity values of the noisy synthetic 

image. The horizontal and vertical axes represent pixel numbers along the scan line and 

intensity values, respectively. It is noticeable in some image regions that the intensity 

profile of the noisy image is consistently below the noise-free intensity level (e.g., the 

region between the 100
th

 and 200
th

 pixel) which is contradictory with the nature of 

multiplicative Gaussian noise. In fact, these regions represent the white colored areas of 

the synthetic image and in a grayscale image, there is no way we can have intensity 

greater than the white grayscale value (255). Due to thresholding, the noisy intensity 

profile is forced to take intensity values less than or equal to the maximum grayscale 

value.  

Figure 4.16—Figure 4.23, show the intensity profiles along the scan line of the de-noised 

output images generated by Lee, Frost, homomorphic AD, DPAD, SRAD, OSRAD, 

REDISRAD-EBF and REDISRAD-WDF, respectively. Each of these intensity profiles is 

paired with the intensity profile of the noise-free synthetic image so that the edge-

preservation and den-noising performance can be compared.  

 

Figure 4.15 Intensity profiles of the original and noisy synthetic images along the scan line. The black 

and red curves represent the intensity profiles (along the scan line) of the original noise-free synthetic 

image and the noisy synthetic image, respectively. 
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In the intensity profiles of Lee and Frost filters (shown in Figure 4.16 and Figure 4.17, 

respectively) we observe numerous sharp spikes in the homogeneous regions (horizontal 

straight lines in the intensity profile of noise-free image). This observation confirms that 

Lee and Frost filters kept considerable amount of speckles as edge details in the 

homogeneous regions. The intensity profile of homomorphic AD (Figure 4.18) shows 

that Homo AD filter completely failed to reduce the speckles. In fact, it produced strong 

edges (sharp spikes) throughout the entire scan line which validates the fact that 

homomorphic filters are inefficient in multiplicative speckle reduction.  

According to the presented edge profile of DPAD (shown in Figure 4.19), DPAD 

completely missed the two major edges in the middle (two sharp edges between the 100
th

 

and 200
th

 pixel). Again, in the homogeneous regions it completely failed to maintain the 

mean intensity level of the original noise-free image.  

The intensity profile of SRAD (shown in Figure 4.20) is more impressive than the earlier 

profiles. It followed closely the original intensity profile curve of the noise-free image in 

most of the cases. However, it kept some speckles as edges in the homogeneous regions 

although these spurious edges are not as sharp as that of Lee and Frost filters. Moreover, 

the edges produced by SRAD are quite un-sharp or smoothed.  

Analyzing the intensity profile of OSRAD (Figure 4.21) it can be stated that OSRAD 

nicely reduced the speckles throughout the scan line but it failed to maintain the intensity 

level of the original noise-free image in the homogeneous regions. Uncharacteristically, 

OSRAD managed to keep the intensity level of the homogeneous region at the middle 

(the vertical straight line in the original noise-free profile, between the 100
th

 and 200
th

 

pixel). This region represents a white circle in the synthetic image (see Figure 4.14). 

Since white grayscale value (255) is the highest value possible in a grayscale image, the 

mean-increasing tendency (i.e., poor mean preservation) of OSRAD did not matter in that 

case. Due to over-smoothing, edges produced by OSRAD are un-sharp. Whenever 

preserving finer edge details is crucial, this over-smoothing nature of OSRAD may 

introduce major issues.   
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Figure 4.16 Intensity profiles of the original synthetic image and de-noised output image generated by 

Lee filter. The black and green curves represent the intensity profiles of the original noise-free synthetic 

image and the de-noised image, respectively. 

 

 

 

Figure 4.17 Intensity profiles of the original synthetic image and de-noised output image generated by 

Frost filter. The black and green curves represent the intensity profiles of the original noise-free 

synthetic image and the de-noised image, respectively. 
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Figure 4.18 Intensity profiles of the original synthetic image and de-noised output image generated by 

homomorphic AD filter. The black and green curves represent the intensity profiles of the original 

noise-free synthetic image and the de-noised image, respectively. 

 

 

 

Figure 4.19 Intensity profiles of the original synthetic image and de-noised output image generated by 

DPAD filter. The black and green curves represent the intensity profiles of the original noise-free 

synthetic image and the de-noised image, respectively. 
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Figure 4.20 Intensity profiles of the original synthetic image and de-noised output image generated by 

SRAD filter. The black and green curves represent the intensity profiles of the original noise-free 

synthetic image and the de-noised image, respectively. 

 

 

 

Figure 4.21 Intensity profiles of the original synthetic image and de-noised output image generated by 

OSRAD filter. The black and green curves represent the intensity profiles of the original noise-free 

synthetic image and the de-noised image, respectively. 
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Figure 4.22 Intensity profiles of the original synthetic image and de-noised output image generated by 

REDISRAD-EBF filter. The black and green curves represent the intensity profiles of the original 

noise-free synthetic image and the de-noised image, respectively. 

 

 

 

Figure 4.23 Intensity profiles of the original synthetic image and de-noised output image generated by 

REDISRAD-WDF filter. The black and green curves represent the intensity profiles of the original 

noise-free synthetic image and the de-noised image, respectively. 
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The intensity profiles of REDISRAD-EBF and REDISRAD-WDF (Figure 4.22 and 

Figure 4.23, respectively) follow the intensity profile of original noise-free image more 

closely compared to SRAD or any other filters. The smoothing or noise-reduction 

performances of the proposed filters are good and less spurious edges are present in the 

homogeneous regions. The edges of REDISRAD-EBF output are significantly sharper 

than the edges produced by other filters.  

4.4.4 Effectiveness on real-world speckled images 

We ran various speckle-reducing filters on our real dataset and then, the performances of 

REDISRAD-EBF and REDISRAD-WDF are compared with other filters by subjectively 

analyzing the de-noised output images. Our subjective evaluation is based on speckle 

reduction, edge preservation and sharpness of the preserved edges in the de-noised image.  

The SAR images in our real dataset are shown in Figure 4.24. Figure 4.24(a) is a 

600 × 314 radar image of Calcutta, India, that illustrates different urban land-use 

patterns. Calcutta, the largest city in India, is located on the banks of the Hugli River, 

shown as the thick, dark line in the upper portion of the image. Two small white lines 

crossing the dark line are the two bridges over the Hugli river. The surrounding area is a 

flat swampy region with a subtropical climate. The international airport is in the lower 

right of the image where two parallel thin lines (airstrips) are visible. On the other hand, 

the 800 × 546 image of Figure 4.24(b) shows an ancient ‗city of temples‘ of the 9
th

 

century, Angkor in Cambodia. The adjoining lines are the ancient roads and Angkor‘s 

vast canal system. The dark regions are swamps and water reservoirs.  

Figure 4.26—Figure 4.33 show the de-noised versions of the SAR images of Figure 4.24 

produced by the Lee, Frost, homomorphic AD, DPAD, SRAD, OSRAD, REDISRAD-

EBF and REDISRAD-WDF, respectively. For the filters relying on a small region for 

scaling factor selection, we selected a 150 × 90 rectangular area form the top-left corner 

of each SAR image (shown in Figure 4.25). For REDISRAD-EBF and REDISRAD-

WDF, the threshold 𝑇𝑒  of Equation (3.19) was set to 3 as usual. The percentage of edge 

pixel (𝑝𝑒) values in the initially selected areas of the SAR images of Calcutta and Angkor 

were  4.96%  and  3.68%, respectively. Since  𝑝𝑒 > 𝑇𝑒   for  both  images,  the  median  of  
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(a) 

 

(b) 

Figure 4.24 Real SAR images captured by NASA SIR-C/X-SAR system. (a) An urban area of Calcutta, 

India located on the banks of Hugli river, (b) Temples dating back to the 9
th

 century in the city of 

Angkor, Cambodia. 
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(a) 

 
(b) 

Figure 4.25 A 150×90 rectangular area at the top-left corner of each SAR image (marked by red 

rectangle). This area is used for scaling factor calculation. 

 



Chapter 4: Experimental Results and Analysis 

74 

ICOV coefficients was chosen in the runtime as the scaling factor. In Figure 4.24(a), Lee 

filter performed moderately both in terms of edge preservation and speckle reduction. 

Some of the preserved edges are quite sharp; however, some fine edge details, like the 

two parallel thin lines representing the airstrips are completely lost in Lee filter output. In 

Figure 4.24(b) Lee filter failed to maintain the sharpness of edges. The edges 

representing the roof tops of the temples and the roads and canal system of the city of 

Anchor are diffused in most of the cases.  

The outputs of Frost, homomorphic AD and DPAD filters (Figure 4.26—Figure 4.28, 

respectively) are inferior than that of Lee filter in terms of speckle reduction. The output 

images of the Frost filters are blurry and the preserved edges are not sharp at all. The 

Frost filter also failed to preserve the fine edges. The homomorphic AD filter kept some 

speckled as edges as usual. The DPAD filter managed to keep the edges quite sharp, but 

failed to keep the intensity level at homogeneous regions. Some edges defining the roof 

tops of the temples in Figure 4.28(a) are completely vanished due to over-smoothing. 

The SRAD filter failed to maintain the sharpness of edges. Some important edge details 

are also lost in SRAD output. In Figure 4.29(a), edges representing the river, two bridges 

over the river and the roads passing through the black swampy region in the bottom-

middle area of the image are all smoothed and un-sharp. Over-smoothing made the edges 

dislocated/widened. Two thin parallel lines representing the air strip of the international 

airport of Calcutta (in the lower right of the image) are completely vanished due to over-

smoothing. In Figure 4.29(b), the edges of temple roofs are un-sharp/smoothed in SRAD 

output. The adjoining lines representing the roads and the canal system of Angkor are 

also diffused and edges defining them are dislocated/broadened. Subjectively, even the 

Lee filter performed better than SRAD in terms of edge preservation. However, speckle 

reduction performance of SRAD was better than Lee filter.  

Both output images of OSRAD (Figure 4.31) are highly diffused and the fine edge details 

are completely lost due to over-smoothing. The over-smoothing nature of OSRAD limits 

its use in SAR image de-noising since SAR images normally contain a lot of fine details. 
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According to Figure 4.32, REDISRAD-EBF did an excellent job in preserving finer edge 

details like the airstrips at the lower right corner of  Figure 4.32(a) and the roads and 

canal systems of Figure 4.32(b). Moreover, the edges are sharper than that of any other 

filter outputs. REDISRAD-EBF also greatly de-noised the homogeneous regions. Since it 

avoided over-smoothing of edges, the preserved edges in both outputs are not so dis-

located or broadened like OSRAD or SRAD. The REDISRAD-WDF outputs (shown in 

Figure 4.33) also share similar properties as REDISRAD-EBF. But the edges in 

REDISRAD-EBF are sharper than REDISRAD-WDF. Still, REDISRAD-WDF did better 

than other filters other than REIDSRAD-EBF in terms of sharpness of the preserved 

edges. 
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(a) 

 

(b) 

Figure 4.26 Two SAR images de-noised by the Lee filter. Resultant de-noised version of the SAR 

images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.27 Two SAR images de-noised by the Frost filter. Resultant de-noised version of the SAR 

images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.28 Two SAR images de-noised by the homomorphic AD filter. Resultant de-noised version of 

the SAR images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.29 Two SAR images de-noised by the DPAD filter. Resultant de-noised version of the SAR 

images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.30 Two SAR images de-noised by the SRAD filter. Resultant de-noised version of the SAR 

images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.31 Two SAR images de-noised by the OSRAD filter. Resultant de-noised version of the SAR 

images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.32 Two SAR images de-noised by the REDISRAD-EBF filter. Resultant de-noised version of 

the SAR images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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(a) 

 

(b) 

Figure 4.33 Two SAR images de-noised by the REDISRAD-WDF filter. Resultant de-noised version of 

the SAR images of (a) Calcutta, India and (b) Angkor, Cambodia. 
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The other two images of our real dataset include ultrasound images of the carotid arteries 

of two individuals shown in Figure 4.34(a) and Figure 4.34(b) with dimensions 340 ×

538 and 339 × 446, respectively. A 150 × 90 rectangular area in the lower-middle 

region of each image was selected as the initial homogeneous area for scaling factor 

calculation (shown in Figure 4.35). The threshold, 𝑇𝑒 , for the scaling factor calculation of 

our proposed filters  was set to 3. Then we ran different filters on the ultrasound images 

using the settings defined in Section 4.3. The 𝑝𝑒  values for the initial homogeneous 

regions were 1.61% and 6.78% for the images shown in Figure 4.34(a) and Figure 

4.34(b), respectively. As a result, our proposed filters employed the original scaling 

factor for the image in Figure 4.34(a) according to equation (3.19). For the image in 

Figure 4.34(b), median of ICOV coefficients was chosen as the scaling factor since  

𝑝𝑒 > 𝑇𝑒 . 

Figure 4.36—Figure 4.43 show the de-noised versions of the ultrasound images of Figure 

4.34 generated by Lee, Frost, homomorphic AD, DPAD, SRAD, OSRAD, REDISRAD-

EBF and REDISRAD-WDF filters, respectively. Subjective observation of different filter 

outputs gives the similar impression we got while de-noising SAR images. The edge 

preservation and de-noising performance of Lee and Frost filter was moderate. Though 

the edges are not so sharp, they are not highly diffused like OSRAD outputs either.  The 

homomorphic AD and DPAD filters performed poorly in terms of speckle reduction. 

DPAD failed to maintain the intensity levels in the homogeneous regions as usual.  

Again, the edges in SRAD outputs are diffused and un-sharp due to over-smoothing. 

Edge diffusion resulted in edge dislocation. This over-smoothing and edge 

dislocation/broadening behavior is more severe in case of OSRAD. Except the major 

edges, finer details are entirely lost is OSRAD outputs. REDISRAD-EBF again produced 

the sharpest edge lines and at the same time, did a good job in speckle reduction. It also 

managed to preserve finer edge details compared to OSRAD and SRAD. Since the 

boundaries of contours are not diffused like OSRAD or SRAD, it managed to reduce 

edge dislocation. REDISRAD-WDF outputs show similar properties as REDISRAD-EBF 

outputs. But the edges preserved by REDISRAD-WDF are not as sharp as that of 

REDISRAD-EBF.   
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(a) 

 

(b) 

Figure 4.34 Ultrasound images of carotid artery (of two different persons) in longitudinal section 

acquired by Sonix OP ultrasound scanner. The dimensions of the images of (a) and (b) are 𝟑𝟒𝟎 × 𝟓𝟑𝟖 

and 𝟑𝟑𝟗 × 𝟒𝟒𝟔, respectively.  
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(a) 

 
(b) 

Figure 4.35 A 150×90 rectangular area at the lower-middle part of each ultrasound image (marked by 

red rectangle). This area was used for scaling factor calculation. 
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(a) 

 

(b) 

Figure 4.36 Ultrasound images of carotid arteries of two different persons de-noised by the Lee filter. 

(a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 4.32(b). 
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(a) 

 

(b) 

Figure 4.37 Ultrasound images of carotid arteries of two different persons de-noised by the Frost filter. 

(a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 4.32(b). 
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(a) 

 

(b) 

Figure 4.38 Ultrasound images of carotid arteries of two different persons de-noised by the 

homomorphic AD filter. (a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 

4.32(b). 
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(a) 

 

(b) 

Figure 4.39 Ultrasound images of carotid arteries of two different persons de-noised by the DPAD 

filter. (a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 4.32(b). 
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(a) 

 

(b) 

Figure 4.40 Ultrasound images of carotid arteries of two different persons de-noised by the SRAD 

filter. (a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 4.32(b). 
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(a) 

 

(b) 

Figure 4.41 Ultrasound images of carotid arteries of two different persons de-noised by the OSRAD 

filter. (a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 4.32(b). 
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(a) 

 

(b) 

Figure 4.42 Ultrasound images of carotid arteries of two different persons de-noised by the 

REDISRAD-EBF filter. (a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 

4.32(b). 

 



Chapter 4: Experimental Results and Analysis 

94 

 

 

(a) 

 

(b) 

Figure 4.43 Ultrasound images of carotid arteries of two different persons de-noised by the 

REDISRAD-WDF filter. (a) De-noised version of Figure 4.32(a), (b) De-noised version of Figure 

4.32(b). 
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4.5 Overall results discussion 

Both analytical and subjective experiments confirm the superiority of our proposed 

extensions. Between the two proposed extensions, REDISRAD-EBF was more successful 

compared to REDISRAD-WDF in terms of edge preservation, structural similarity 

preservation, variance reduction, mean preservation and sharpness of edges. The core 

competition lies among SRAD, OSRAD, REDISRAD-EBF and REDISRAD-WDF. 

Throughout the experiments, these four filters convincingly established their superiority 

over the rest.  

In most of the cases of synthetic and semi-synthetic dataset OSRAD showed better 

variance reduction performance compared to the proposed extensions. We hypothesize 

that it resulted due to over-smoothing which also affected OSRAD by limiting its 

capability of mean preservation. The over-smoothing nature of OSRAD is clearly 

noticeable throughout all experiments. Edge dislocation/broadening and diffused contour 

boundaries are the byproduct of the over-smoothing nature of OSRAD. The REDISRAD 

filters showed a superior balance of smoothing and edge-preservation compared to 

OSRAD and thereby, outperformed OSRAD in every other aspect except variance 

reduction.  

Our proposed filters, especially REDISRAD-EBF, consistently outperformed SRAD 

filter in every aspects—edge and structural similarity preservation, mean preservation, 

variance reduction and sharpness of edges. Experiments on real speckled images (SAR 

and ultrasound) also validated the effectiveness of our proposed filters in real-world 

applications.  

We prefer REDISRAD-EBF over REDISRAD-WDF for two specific reasons. First, 

empirical results proved the superiority of REDISRAD-EBF over REDISRAD-WDF. 

Second, performance of REDISRAD-WDF is highly dependent on the tuning of the 

diffusion function weight constant 𝑚. 
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Chapter 5  

Concluding Remarks  

and Future Work 

5.1 Conclusion  

In this research work, two ratio-based edge detection inspired extensions to SRAD were 

introduced. Strategies of using a hybrid scaling factor and larger window size for ICOV 

coefficient calculation were also proposed. One of the proposed extensions, REIDSRAD-

EBF, incorporated an edge sensitive boosting factor using the edge information provided 

by ratio-based edge detection technique. This boosting factor guided the ICOV 

coefficient of original SRAD model towards better edge detection and thereby improved 

the overall performance in terms of edge preservation and noise reduction. Being 

augmented by better edge detection in speckled environment, REDISRAD-EBF also 

managed to keep the edges sharp in the de-noised output image. The other proposed 

extension, REDISRAD-WDF, re-defined the diffusion function of original SRAD model 

as a weighted function of local and global components. The original diffusion function is 

taken as the local component which is controlled by the ICOV coefficient. REDISRAD-

WDF introduced a ratio-based edge detection inspired global diffusion function and used 

it as the global component of the re-defined weighted diffusion function. The 

performance of REDISRAD-WDF was very close to that of REDISRAD-EBF. However, 

edges in the REDISRAD-WDF output are not as sharp as the edges of REDISRAD-EBF 

output. 

Experimental results confirm that both proposed extensions outperformed SRAD in every 

aspects considered. Our REDIRAD variants significantly outperformed OSRAD in every 
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other aspect except variance reduction. In some occasions, variance reduction 

performances of OSRAD were better than the proposed extensions. However, OSRAD 

sacrificed the edge preservation and edge-sharpness performances for this higher level of 

variance reduction. Unlike OSRAD, our proposed filters offered a superior balance 

between variance reduction and edge preservation. Subjective evaluation on some real 

world speckle images validated the usefulness and relative superiority of our proposed 

speckle reducing methods.  

5.2 Future work 

The diffusion process employed in our proposed speckle reduction methods is not 

directional. It will be interesting to verify whether a directional diffusion improves the 

performance or not. We can use the matrix anisotropic diffusion concept of OSRAD to 

guide the smoothing process by gradient direction.  

A dynamic stopping criterion can also be effective for the proposed extensions. The 

proposed filters work in iterative fashion. It is important to know how long we should 

continue de-noising so that the speckled image is sufficiently de-noised and at the same 

time, finer edge details are kept. This parameter is obviously dependent on the input 

images. Hence, it would be a good contribution if we can determine the appropriate 

number of iterations for a specific input image. Some features that can be considered for 

the dynamic computation of this stopping criterion (i.e., total number of iteration need to 

be applied) are the noise level of the speckled input image, a measure of the density of 

edge details in the input image, time step size used etc. Some of these measures can be 

computed over a small Region of Interest (ROI) selected by the user or alternatively, the 

entire image can be considered.  

We used a fixed time step size for the proposed filters. This parameter is crucial as it 

directly effects the final update equation. Smaller time step size results in longer 

processing time and higher accuracy, and vice versa. It will be interesting to see whether 

an adaptive time step size proves effective or not. For example, if, after certain number of 

iterations it can be determined that we are in the process of losing too many edge details, 



Chapter 5: Concluding Remarks and Future Work 

98 

the step size can be decreased to cope with the situation in hand. It is also challenging to 

determine to which extent the time step size needs to be varied.    

REDISRAD-WDF used a pre-defined weight constant in its weighted diffusion function. 

We believe it will be more effective if we can calculate this constant value dynamically. 

For an input image with lower level of speckles, the ICOV coefficient driven local 

component of the weighted diffusion function should contribute more in the final 

diffusion decision (to which extent an image sub-region should be smoothed). In 

presence of higher level of speckles, the ratio-based edge detection guided global 

component should be more pro-active since the gradient and Laplacian based ICOV 

coefficient provides misleading edge decisions in such an environment. If we manage to 

get an estimate of the noise level of the input image and adjust the weight constant 

accordingly, REDISARD-WDF can be more effective.    
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