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Abstract 

Applications are shifting into large scale, virtualized data centres that provide resources 

on a pay-per-usage basis. With power consumption representing a major operational cost, 

data centres must prioritize efficiency while still providing enough resources to meet 

application requirements. To meet variable application demands, a dynamic approach to 

virtual machine (VM) management is required. This requires: (i) placing newly arrived 

VMs, (ii) migrating VMs from highly utilized machines to avoid performance 

degradation, and (iii) migrating VMs from underutilized machines so that they may be 

deactivated to save power. Here, a management strategy is considered to be a policy-set 

that guides these three operations. To achieve the conflicting goals of performance and 

efficiency, I propose and evaluate a system of dynamically switching between two 

management strategies, each with a single goal, based on trends in data centre workload. 

Experimentation over a simulated data centre demonstrates the superiority of this 

approach over single-strategy techniques. 
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1 Introduction 

1.1 Background 

Computing today is shifting into large-scale data centres that provide access to computing 

resources for client applications on a pay-per-usage basis. [1]  This affords businesses and 

other organizations the opportunity to simplify their computing needs by offloading the 

hosting of their systems onto these off-site data centres.  Outsourcing their computing 

requirements means that businesses no longer have to invest in internal IT solutions with 

all the costs that come along with that in the form of hardware acquisition and 

maintenance, staffing and concerns over hosting stability and uptime. These applications 

may range in type from computationally intensive research applications, or simply 

web/mail servers.  Regardless of the type of application, data centres allow clients to rent 

out their computing resources and pay only for what they need. [1] 

However, as data centres grow, they may simultaneously be hosting a wide variety of 

client applications across many machines.  The significant operating costs associated with 

these large-scale data centres in the form of hardware acquisition and power consumption 

means that there is great motivation to organize these client applications onto as few, and 

as efficient machines as possible, while still ensuring that each application receives an 

adequate amount of computational power.  Additionally, the functionality of each 

application must not be affected by the actions of neighbouring applications as this may 

result in an error in one application bring down one or more others.  To address this and 

aid in resource management during application hosting, the technique of virtualization is 

used as it provides a number of features to aid in data centre management [2]. 

Virtualization involves a piece of software that wraps around an application, behaving, 

from the point of view of the hosted application, as a standalone physical machine.  The 

virtual machine will have an operating system and mimic the behaviour of the hardware 

components of a physical machine.  In this way, each application may be isolated within 

a virtual machine, and requests for physical resources (ex. CPU, memory, network, disk 

space) are handled by the virtual machine, which may in turn translate these requests into 
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operations run by the true hosting machine.  By placing each hosted application within a 

virtual machine (VM), the functionality of each application can be effectively isolated 

from collocated VMs and the applications they house, so the behaviour and actions of 

one application do not interfere with the functionality of others.  Additionally, 

virtualization allows for the precise division of host resources among hosted VMs.  In 

this way virtualization greatly simplifies the problem of allocating client applications to 

host machines; however the problem remains of determining an effective allocation that 

balances the desire to conserve power, while ensuring applications have adequate 

resources. 

1.2 Research In Resource Allocation 

One approach to resource allocation is to statically allocate enough resources to meet the 

peak demand of an application. However, the computing resources needed by an 

application often have high variability [3]. This can lead to a significant over-

provisioning, resulting in underutilized resources.  Virtualization allows for smaller units 

of resource to be allocated by using a single physical machine to host multiple VMs, each 

hosting a client application. If resources are still allocated for peak demand, however, 

then the physical machine may still be highly underutilized. Utilization can be increased 

by allocating only enough resources to meet average demand. This, however, can result 

in VMs being forced to compete for resources when demand increases. Since the overall 

utilization of a host is high, an increase in demand for an application can result in the VM 

requiring resources that are already in use by another co-located VM, thus leading to a 

degradation in application performance. 

If the VMs are hosting applications with known demands, then a static allocation 

(placement) of VMs may be applicable. Static allocation, for example, can be modelled 

as a vector bin packing problem [4], [5] and can typically be solved using linear 

programming techniques. This solution can accommodate changes in long term workload 

distribution of the applications being hosted by VMs. However, many applications have 

highly variable demands and there may be frequent changes in the set of VMs [6], thus 

necessitating a more dynamic approach. There is work that considers variable demand by 

periodically re-calculating the mapping of VMs to hosts using linear programming 
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techniques. However, these approaches generally do not scale well [7] or are not 

responsive enough. For dynamic management, Stillwell et al. [5] have shown that 

variants of First Fit heuristics for vector bin packing work best for large-scale systems. 

Dynamic management can address the utilization problem by taking advantage of the 

ability to migrate (move) a running VM from one physical host to another (live 

migration). More generally, dynamic management of VMs entails a coordinated use of 

three operations: (i) VM Placement (Allocation): the placement of a VM on a host 

machine in response to a VM creation request; (ii) VM Relocation: the migration of VMs 

from a host when the combined requirements of co-located VMs exceed the resources 

available on the host (stress situation); and (iii) VM Consolidation: the migration of VMs 

from an under-utilized host, so that the machine may be powered off to reduce costs. 

These operations make use of metrics characterizing the utilization of resources and the 

behaviour of applications. VM Relocation and VM Consolidation are triggered on regular 

time intervals. Decisions on when to invoke these operations are based on conditions on 

one or more metrics, e.g., when a certain threshold is exceeded. The specific conditions, 

metrics and threshold values vary and can be represented as a policy. 

A dynamic management strategy is considered to consist of a set of policies, such that 

there is a policy that governs each of the defined management operations (i.e., a VM 

Placement policy, a VM Relocation policy, and a VM Consolidation policy). This work 

will focus on two of the most commonly studied goals in the area: (i) minimizing power 

consumption; and (ii) minimizing Service Level Agreement (SLA) violations. A SLA is 

considered to be a set of nonfunctional requirements, such as a promised condition on a 

metric (e.g., response time below a given threshold). Failure to meet the terms of the SLA 

is termed an SLA violation and is typically associated with some monetary cost to the 

data centre and so it follows that along with the minimization of power costs, 

minimization of such SLA violations is a major goal of data centre management. 

However, the goals of power consumption minimization and SLA violation minimization 

are often in conflict. Minimizing power consumption is usually approached by reducing 

the number of hosts in use (and thus powered on). This is achieved by placing as many 
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VMs on a single host as possible. However, sudden increases in workload are more likely 

to result in a shortage of resources and therefore lead to a high number of SLA violations. 

Conversely, minimizing SLA violations typically requires VMs to be spread across more 

hosts, often each having a significant amount of unused resources available to handle 

spikes in demand. This, however, results in higher power consumption. Designing a 

management strategy to achieve both of these goals is therefore difficult, as improving 

performance towards one goal typically results in degradation of performance towards 

the other. Design of management strategies often focuses on achieving a single goal, or 

on prioritizing goals such that a single goal is considered the primary goal and others are 

considered secondary, e.g., [8], [3], [9], [10]. 

1.3 Thesis Focus 

Within a dynamic environment there may be times when one management strategy is 

more appropriate than another. For example, when overall data centre workload is 

increasing, this trend would likely cause application resource requirements to potentially 

grow beyond their current allotments, causing a shortage of resources and, in turn, an 

SLA violation.  During these times, this work proposes that extra care should be taken in 

managing VMs to guard against this.  Conversely, when data centre utilization is stable or 

decreasing, the probability of SLA violations is likely smaller, and so less caution is 

required in this regard and the goal of conserving power should take precedence.  This 

work proposes an approach to dynamically switch between two management strategies 

where each has a primary focus on a single goal; in this case, one strategy to minimize 

SLA violations and another to minimize power consumption and selectively applies each 

strategy according to changing data centre conditions.  By doing so, better performance 

in attaining both goals may be produced. 

The remainder of this paper is organized as follows. Section 2 reviews recent, relevant 

work in the area.  Section 3 outlines the management strategies used in this work as well 

as the strategy switching meta-strategy which is the main contribution of this work.  

Section 4 explains the experiments that were run, including the functionality of the 

simulator, how workloads were simulated, and the method by which performance was 

evaluated.  Section 5 outlines the results of these experiments.  Section 6 analyses these 
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results and explores potential limitations of the experiments.  Finally Section 7 concludes 

the work and outlines avenues of future work that may warrant exploration. 
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2. Related Work 

Solving the problem of efficiently allocating VMs to host machines while ensuring each 

application has access to adequate computing resources (termed Quality of Service, or 

QoS) has been the subject of much research.  This work may generally be categorized as 

falling into two categories.  Static allocations generally involve determining an allocation 

of VMs to host machines that attempts to balance the goals of utilization efficiency and 

high QoS based on the specified resource requirements of each application.  These 

allocations are, in practice, performed once and attempt to consolidate workloads 

efficiently while reducing the likelihood of SLA violations occurring due to insufficient 

host resources.  Dynamic allocations are similar in that they balance these same two 

driving forces of power efficiency and high QoS; however dynamic resource 

management involves periodic monitoring of VMs and hosts during operation and 

responding to changes in application workload by either migrating VMs from one host to 

another to alleviate resource contention in an over-utilized, or stressed host, or migrating 

all VMs away from an under-utilized host so that it may be placed in a low power state to 

reduce power consumption. 

This section is an overview of the major contributions to each allocation category.  In 

general, research into static resource management largely predates research in dynamic 

resource management and so, this area will be focused on first.  Additionally, within each 

section, work in the area will be presented in a roughly chronological fashion so as to 

reflect the progress in the field.  Section 2.1 will focus on research into static resource 

management, Section 2.2 will briefly describe what is termed here as semi-static resource 

management and finally Section 2.3 will centre around recent work in dynamic resource 

management. 

2.1 Static Resource Management 

Initial work in this area [11] focused on leveraging the information available in the 

definition of each client application in addition to recent developments of the 

virtualization technology itself.  Assumed to be known about each application during 
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placement is some measure of its expected workload.  This allows the specification of a 

min and max value for each VM which will represent the minimum amount of resources 

that must be allocated to this application to allow an acceptable level of performance and 

the maximum expected amount of resources this application will ever request.  This work 

assumes a revenue model for the data centre by which increased levels of application 

performance produce additional revenue from the client.  Under this assumption, each 

application can be said to have a specific profitability, or utility function associated with 

it, whereby the revenue generated by an application depends on its level of performance.  

In this way, the allocation of additional resources to the application beyond the minimum, 

can be associated with additional revenue from the client.  The level of profitability seen 

at different application performance levels was assumed to be specified in the business 

agreement with the client and potentially different for every application.  To facilitate the 

sharing of resources in their simulation, the CPU is assumed to be capable of being 

arbitrarily divided among VMs using a ‘shares’ approach.  Furthermore, a data centre 

composed of a heterogeneous collection of host machines is assumed with machines 

having potentially different resource capacities and different levels of power efficiency, 

measured as power consumption per unit of CPU. 

Given this information several works [11], [4], [5], have suggested candidate algorithms 

to generate allocations: 

2.1.1 GreedyMax 

The GreedyMax (GM) algorithm [11] allocates each VM enough resources to satisfy its 

max allocation level.  In this way the maximum level of revenue is derived from each 

client application.  VMs are then assigned to hosts in order of the power efficiency of the 

specific host machine. 

2.1.2 GreedyMinMax 

The GreedyMinMax (GMM) algorithm [11] allows for the possibility that the 

profitability of each VM relative to the cost it incurs may be greater at the VM’s min 

level than its max level depending on the particulars of that application.  To address this, 

the algorithm generates a list of VMs to be allocated, with each VM being given two 
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entries, one with its resource requirements specified at its min value and one at its max 

value.  This list is then sorted according to each VM’s profitability at the specified 

resource level from high to low.  VMs are allocated from this list to host machines in a 

first fit manner in this order with the caveat that when a VM is allocated from the list at 

either its min or max level, the corresponding entry representing its other resource level is 

also removed from the list, ensuring that each VM is placed only once. 

2.1.3 ExpandMinMax 

The ExpandMinMax (EMM) algorithm [11] seeks to take advantage of a key situation 

which GMM fails to address.  When placing VMs using the GMM algorithm above, it 

may be the case that after each VM has been assigned to a node at either its min or max 

capacity, there may be capacity remaining on a number of hosts.  This negatively impacts 

the data centre’s operation as maximising utilization should be  a constant goal, and it 

may be the case that incrementally increasing the resource allocation beyond the min 

level for a particular VM may increase its profitability as well. 

To address this, when placing a VM, EMM first calculates the estimated profitability of 

each host if the current VM were to be placed there.  Profitability is calculated by first 

setting all VMs located on the host to require their min level of resources, and then 

increasing the resource allotment incrementally to those VMs that would provide the 

greatest profit, per unit of capacity.  This incremental increase in resource allotment 

continues until either the host’s capacity is reached or each VM is at its max level.  

Replacing the first-fit method of placement in GMM with this method would allow the 

selection of resource allocation levels between the min and max levels for each VM. 

2.1.4 PowerExpandMinMax 

The PowerExpandMinMax (PEMM) algorithm [11] further builds on the EMM algorithm 

above by considering the cost of additional host activations in the determination of VM 

placement.  This is designed to address a problem whereby EMM would tend to use all 

the host machines available during its placement process.  For example, when placing a 

new VM, EMM would tend to place it on an entirely vacant host machine whenever 

possible as it would be able to expand the new VMs resource allocation without 



 

9 

decreasing that of collocated VMs as would be necessary were it to place the new VM on 

a partially utilized host.  This “server sprawl” has a negative impact on power costs and 

generally leads to low average host utilization. 

To address this problem, PEMM performs VM placement in a similar manner to EMM 

with the exception that when calculating the profitability of placing  the VM on a 

particular host, there is an additional penalty incurred when the placement would require 

the activation of an otherwise unoccupied host.  This penalty reflects the power costs 

incurred by supporting an additional host.  This power cost is then scaled down to the 

size of the VM and considered to be the proportional power cost for the VM.  Note that 

even when the expected profitability of placing the VM on a new host is negative, the 

placement may still take place if the profitability of placing the VM on a different, 

partially utilized host is even lower (more negative), as may be the case in the situation 

where more profitable VMs need to be compressed to make room for the new VM. 

2.1.5 Genetic Algorithm 

A genetic algorithm (GA) [5] was also suggested as a means of producing a high-

performing VM placement allocation.  The idea here is to have each “chromosome” or 

candidate represent a simple mapping of VMs to hosts.  In support of GA, they suggest a 

mutation operator, which swaps the host assignment of two randomly selected VMs 

within the chromosome, and a crossover operator where two chromosomes are split at an 

identical random location and the pieces concatenated together to form two new VM 

allocation candidates.  If an allocation is produced by either of these operations that is not 

feasible (ie. the combined resource requirements of collocated VMs exceed the 

capabilities of the host machine), a greedy algorithm is used to pass through the 

allocation in an arbitrary order and for each overloaded host, simply move VMs to less 

loaded machines. 

To evaluate this technique, the authors of this algorithm suggest a slightly different 

performance metric than the min/max algorithms listed above.  These authors do not 

consider that different VMs may have different profitabilities at different levels of 

utilization.  Instead, they seek to maximize the minimum resource allocation to each 



 

10 

application, informally referred to as the application’s level of happiness. and in so doing, 

maximize the average happiness of the client applications as a whole while ensuring that 

no VM trails significantly behind in terms of performance.  Happiness here is calculated 

as the provided resources divided by the requested resources of each VM. 

2.1.6 Results 

Experimentation of the genetic algorithm above showed it to be generally less effective 

than other greedy algorithms the authors implemented [5].  These greedy algorithms are 

very similar to the greedy algorithms listed above by [11].  They found that their greedy 

algorithm outperformed the genetic algorithm in over 90% of trials, and among these 

trials, the average happiness of client applications was 32% higher than the average 

among GA allocations.  Although they note that when the number of generations allowed 

in GA is increased from 100 to 2000, marginal improvements in allocation performance 

are seen, the execution time of the algorithm increases to be an order of magnitude larger 

than the greedy policies and so increasing the number of generations further is not 

feasible.  Note that increasing the population size of GA produced no significant 

improvements. 

In general within these works, evaluation between algorithms is performed by comparing 

the results of experimentation against a theoretical upper bound, common in evaluation of 

allocations ([11], [4], [5]).  This upper bound represents the theoretical best performance 

attainable by removing the constraint that each client application must be entirely 

contained within a single server.  Essentially, removing this constraint would allow all 

client VMs to be placed “end-to-end” in each host with any portion of a VM not fitting 

on a host “spilling over” into the next host.  Hosts are filled in order of efficiency and the 

theoretical upper bound in terms of VM allocation performance is produced. 

Among the algorithms suggested by [11], when evaluated in this way, PEMM was shown 

to be the most effective at approaching this theoretical upper bound.  High performance 

was theorized to have been produced by the algorithm’s ability to intelligently balance 

the profitability of allowing a greater resource allotment to each VM against the costs of 

requiring a large number of active hosts. 
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2.2 Semi-static Resource Management 
2.2.1 Variable Workloads 

Later work in this area, noted that consideration must be given to the fact that different 

types of client applications may exhibit dramatically different patterns of resource 

demand over time.  In fact, this often unpredictable variability represents a key challenge 

in determining an effective VM allocation and has been the subject of much research 

[12], [13], [14], [15]. For example, a hosted intra-office scheduling application may 

experience significantly higher levels of activity during regular business hours, followed 

by comparatively lower levels of activity outside of these times.  Therefore, it was 

proposed that cyclic patterns in workload could be leveraged by attempting, where 

possible, to assign complementary workloads to each host.  This would mean that ideally, 

when one application can be expected to be requiring additional resources due to its high 

demand, the requirements of a complementary application would be expected to 

diminish, freeing up additional requirements. 

Indeed, with regard to the these complementary workloads, the authors of a work 

investigating a periodic recalculation of the allocation [12] demonstrate that even when 

consideration of daily variations in resource requirements are measured using a 

granularity of one hour, their placement algorithm yields a 31% reduction the the number 

of host machines required to support a given workload, as compared to their naive 

placement algorithm.  This reduction in required servers translates to a large reduction in 

power consumption and cooling requirements, two of the largest operational costs of a 

data centre. 

In addition to cyclic variations in workload, the authors also point out that over a larger 

time scale, variations in resource requirements of client applications are likely to change.  

These changes are likely to disrupt the overall performance of a given static placement 

and so they suggest that it may be the case that some form of “periodic reoptimization” 

be necessary to deal with these changes.  They suggest, perhaps as somewhat of a 

precursor to dynamic management, that there may be need for some form of automated 

controller to provide adaptive, self-organizing data centre management. 
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2.2.2  Semi-static Resource Management 

Semi-static resource management was an area briefly explored as a means of dealing with 

variations in workload that may take place over time [12].  Essentially, semi-static 

resource management would repeat the static allocation process as described above on 

some regular time interval.  Ideally, this interval would be at least as small as the period 

over which significant variations in application workload could be observed.  Such an 

algorithm would work by first analyzing historical workload data from each application.  

Using this data, a forecast could be made to predict expected future workloads.  Based on 

these predictions a remapping of VMs to host machines would be performed to ensure 

additional resources are available if application workload is expected to increase, or to 

reclaim resources from an application expected to decline for use elsewhere.  This 

process is then regularly repeated over some time interval, t. The authors here 

investigated varying t to different values ranging from fifteen minutes, up to ten hours.  

This periodic recalculation of the static placement yielded significantly better results in 

the authors’ experimentation.  In fact, this approach displayed savings in required host 

activation of up to 50% as compared to static allocation.  However, the author’s note an 

inherent limitation to this approach in that when calculating a new static allocation, 

perhaps after even very little change in application workload, the new allocation may be 

dramatically different than the previous allocation.  Due to the costs in terms of resources 

as well as performance degradation associated with moving, or migrating, a VM from 

one host to another, this dramatic change is not ideal.  The authors suggest that future 

work in this area should address these problems by perhaps searching for a means of 

mitigating the costs associated with relocating VMs from one host to another, or by 

adapting the allocation itself to either minimize change from a previous allocation, or 

generate more robust allocations that would delay the need for reallocation. 

2.3 Dynamic Resource Management 

Dynamic Resource Management addresses many of the limitations of static resource 

management that semi-static allocations were designed to also address.  The idea that 

variable workloads require that static allocations be modified, and that these 

modifications themselves should be based on the nature of the variation by providing 
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more resources to increasing workloads, and reclaiming resources from declining 

workloads.  The benefits of dynamic resource management lie in the fact that it can 

selectively deal with problems as they arise, eliminating the need for a regular, periodic 

reallocation cycle, and that solutions can be applied locally to directly address problem 

areas in the data centre, without interfering with those portions of the allocation that are 

performing well.  These added capabilities create additional challenges such as how these 

problem areas can be identified in a timely manner, and how best to resolve the problem.  

Much work over the past several years has centred around these challenges and will be 

explored here. 

Early work in 2007 [9] introduces a management system named Sandpiper which focuses 

on the detection and resolution of situations where the combined resource requirements 

of collocated VMs exceed the capabilities of the host, which they term hotspots.  This 

automated resolution of hotspots was designed to replace manual resolution and so be 

able to react in a much more timely manner, as well as being tolerant of sudden, short-

lived spikes in resource demand.  For example, it may be the case that a sudden short-

lived increase in demand should be tolerated, causing either a momentary degradation in 

performance, or the dropping of a few requests, rather than go through the potentially 

expensive process of relocating the VM, just to have demand return to its former level.  

To accomplish this, Sandpiper only classifies a host as being stressed if there has been a 

continued lack of available resources for some period of time, and this trend is predicted 

to continue at least one time period into the future where the prediction is provided using 

regression over the past several observed utilization levels.  Upon classification of a 

hotspot in this manner, resolution is performed by the migration of the smallest VM, 

measured in terms of its memory footprint, as this is indicative of how long the migration 

will take [9].  This process of VM migration is iteratively repeated until the hotspot is 

resolved.  In the case that there is no host with capacity to accept the incoming VM, 

Sandpiper relocates the VM on the host which displays the highest volume-to-size ratio 

(VSR), measured as its CPU requirements divided its memory footprint, with a VM on an 

unstressed host with the lowest VSR. 
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While Sandpiper was shown to be an effective way to resolve performance problems and 

therefore ensure consistent QoS, it wasn’t until the following year that power 

considerations were included in dynamic management systems [10].  Motivated by the 

average power consumption of typical data centres of 100W / sq.ft, and the noted 

increase in that figure of 15-20% per year [17], a system was suggested which considered 

several methods of power reduction.  This system, termed pMapper, considered power-

saving techniques of three varieties: 

● soft - hypervisor limits access to hardware of certain VMs to reduce cpu load; 

● hard - dynamic voltage and frequency scaling (DVFS) throttles down the cpu to 

reduce power consumption; 

● consolidation - emptying a lightly-utilized host machine by relocating its VMs to 

other hosts, thereby allowing the emptied host to be placed in a low-power state 

(standby, sleep, etc.); 

Consolidation was additionally motivated by a recent poll showing motivation for 

consolidation split between the desire to control server sprawl, reducing power and 

cooling needs of the data centre and reducing total cost of ownership (TCO) costs 

(hardware acquisition, maintenance, etc.) [18]. 

The architecture of pMapper takes a slightly different approach to evaluating 

performance.  This system defines an SLA as a set of minimum performance 

requirements for an application.  Specifically, an SLA will require that performance be at 

least at a specified minimum level, for at least a specified proportion of the time.  For 

example, an SLA may require that an application be allotted at least 95% of its requested 

resources for at least 98% of the time.  In this sense, application performance can be 

viewed as a constraint rather than as an evaluation metric.  This reformulates the VM 

allocation problem as one of minimizing power consumption subject to the constraint that 

SLAs must be satisfied.  In evaluating pMapper, and employing combinations of the 

three power-saving techniques listed above, the authors were able to produce up to 25% 

savings in power compared to static allocations.  However, they note that power savings 
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diminish as total data centre utilization increases due to the fact that the most significant 

power savings were produced by the consolidation technique, as opposed to the soft and 

hard power-saving measures, and as each host machine approaches its capacity, the 

opportunity for consolidating workload onto fewer machines diminishes.  The reason for 

the high performance of consolidation relative to the hard and soft power-saving 

measures is suggested to be due to the fact that up to 70% of the maximum power 

consumption of a host machine is present even when the host is idle [19] and so the 

primary goal of a power-saving management system should be to have as few host 

machines active as possible at any given time. 

Further work in 2011 [20] refined these ideas by expressing the problem of dynamic 

resource management simply as a combination of VM relocation, as a process to relieve 

stress situations, and VM consolidation, as a means of saving power and preventing 

server sprawl.  VM relocation can be further divided into two components: VM target 

selection to select a VM from a stressed host for relocation, and VM placement, to locate 

a host to receive the VM. 

Additionally, the authors suggest a number of potential improvements to the method by 

which host machines can be identified as being under- or over-stressed.  Up to this point, 

this identification process employed static thresholds, common across all machines, that 

mark upper and lower bounds on the cpu utilization of the host.  For example, if a host’s 

utilization rises above 90% for some period of time, it should be considered stressed and 

in danger of causing SLA violations and VM relocation should be performed, whereas if 

its utilization falls below 50% it should be considered underutilized and marked for 

consolidation.  This technique, the authors suggest, could be improved upon by 

considering the variability in the workload that each host machine is under.  For example, 

if a host’s client applications are relatively stable, experiencing very little fluctuation in 

their workload level, it may be safe to allow a utilization of 95% before considering VM 

relocation, whereas if the variability in workload of the machine is very high, an upper 

threshold of 80% may be appropriate for preventing SLA violations.  To solve the 

problem of determining appropriate upper and lower thresholds for each host, the authors 

suggest the following techniques: 
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● Median Absolute Deviation (MAD) - Setting thresholds that correspond to the 

deviation in the median workload value, allows the thresholds to be tolerant of 

momentary spikes in workload and prevents far outliers from skewing this value 

too greatly. 

● Interquartile Range (IQR) - Setting lower and upper bounds on cpu utilization 

that correspond with the 25th and 75th percentile of observed workload levels 

respectively.  This also provides a tolerance to sudden workload spikes as above. 

● Linear Regression (LR) - Avoiding the use of an upper threshold entirely, linear 

regression can be used to predict whether future utilization levels will exceed the 

capacity of the host machine.  As this technique is more sensitive to shorter term 

trends in workload that the previous techniques ignore, there is less importance on 

providing a buffer between an upper threshold and the full capacity of the 

machine.  By discarding these thresholds, utilization can more closely approach 

the capacity of the machine.  Based on these predictions for high or low 

utilization going forward, the host can be marked for VM relocation or 

consolidation as appropriate. 

To solve the problem of VM target selection when a host has been marked for VM 

relocation, the authors suggest the following algorithms [20]: 

● Minimum Migration Time Policy (MMT) - Selection for migration of the VM 

that will take the least amount of time to migrate, calculated as the size of the 

memory footprint divided by the bandwidth of the network connection. 

● Maximum Correlation Policy (MC) - Based on the idea that VMs with similar 

workload patterns will be more likely to increase in demand together, thereby 

magnifying the impact on the host’s resources, this algorithm seeks to select for 

migration that VM whose workload best correlates with the workloads of other 

collocated VMs, thereby reducing the risk of a simultaneous increase in workload 

between several VMs, which would be more likely to cause a host to become 

stressed. 
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● Random Choice Policy (RC) - Use a uniformly distributed random variable to 

index a VM within the host to be selected for migration. 

Finally, to address the problem of host selection to receive migrating VMs, the authors 

note that the problem can be represented as a bin packing problem with variable bin sizes 

and prices.  In this case, the size of the bins represents the CPU capacity of the host 

machine and the price of the bin represents the host’s power efficiency.  This allows for 

the representation of a heterogeneous collection of host machines as is likely to be the 

case in a commercial setting.  However, the problem of bin packing is NP-hard and so to 

address it, the authors use a modification on the best fit decreasing algorithm (BFD) 

whereby VMs are sorted in decreasing order based on their workload, and placed on 

hosts such that the minimum power consumption increase is produced, essentially 

utilizing the most efficient host machines first. 

Evaluating the overall performance of an experiment using the metrics of frequency of 

SLA violations and gross power consumption can be difficult as each is measured in 

different units and vary over different ranges of values.  Additionally, they are often 

considered to be in conflict with one another as improving performance in one area for a 

given workload can usually correlate with diminished performance in the other.  

Therefore, to evaluate their proposed algorithms the authors measure simulation 

performance against a combined energy - SLA metric termed, Energy-SLA Violation 

(ESV).  This metric is calculated simply as the product of the energy consumption of the 

data centre and the number of SLA violations.  In this way, slight increases in frequency 

of SLA violations can be considered acceptable if accompanied by significant savings in 

terms of energy consumption and vice versa. To solve the problem of balancing the 

priority of each metric, the authors additionally suggest a weight value, through which 

the relative importance of each metric can be adjusted. 

From the authors’ experimentation, linear regression (LR) proved the most effective way 

of marking a host machine as stressed, significantly outperforming both MAD and IQR.  

This suggests that it is more important to react to sudden changes in workload, as LR is 

able to do, rather than smoothing out the workload pattern as is done by MAD and IQR.  
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Additionally, MMT was shown to outperform RC and MC suggesting that migration time 

was a more important factor to minimize than correlation of workloads between VMs. 

In a later 2012 work [16], these authors further refine the subject area of dynamic 

resource management by suggesting several more VM selection algorithms for 

evaluation.  Note that VM placement was performed in these experiments in a similar 

manner to the authors’ previous work, [20], using their modified best fit decreasing 

algorithm.  Their proposed VM selection algorithms are as follows: 

● Minimization of Migrations (MM) - Select the minimum number of migrations 

necessary to relieve a stress situation on host.  That is, the algorithm selects for 

migration the VM with the smallest workload big enough to entirely relieve the 

stress situation.  If no single VM has a large enough utilization to relieve the 

stress situation itself, the largest VM is selected for migration and the algorithm 

repeats. 

● Highest Potential Growth (HPG) - Select for migration that VM which is 

experiencing the lowest current utilization, relative to its expected utilization 

level.  This VM is therefore considered to have the highest potential growth in 

workload and is removed so as to decrease the likelihood of total host workload 

increasing in the future. 

● Random Choice (RC) - As above, use a uniformly distributed random variable to 

index a VM on the stressed host and select it for migration 

Experimentation on a simulated data centre [21] of the above algorithms yielded no 

significant difference in energy savings between the three proposed algorithms.  

However, in terms of frequency of SLA violations, MM and RC were found to produce 

significantly fewer violations than HPG, indicating that potential for future increase in 

workload should not be an immediate factor in the event of a stressed host being 

identified.  Additionally, when comparing MM against RC, RC was found to require up 

to 10x more migrations throughout the simulation, leading the authors to suggest MM as 



 

19 

their best-performing selection algorithm.  However, although fewer in number, the size 

of each migration is not addressed. 

A 2012 work identified a further difficulty of optimizing VM placement in terms of host 

utilization and power consumption in that these goals can be considered to be somewhat 

conflicting. [14]  That is to say that actions taken to improve performance in one area 

often come at the cost of decreased performance in the other.  This was seen in the 

evaluation of a number of different VM relocation policies investigated in this work.  

These algorithms are all based around the first-fit heuristic, used to approximate a 

solution to the NP-hard vector bin-packing problem to which VM allocation is related.  

Variations of this heuristic are widely used to aid in VM placement [20], [16], however 

sorting techniques vary.  In this work, the authors investigate sorting techniques that 

differ simply in that under a stress situation VMs are either sorted for migration in an 

increasing or decreasing manner by their CPU workload, and for host selection, host 

machines are sorted by their CPU availability in either an increasing, decreasing or mixed 

manner, where mixed refers to sorting partially utilized machines in an increasing 

manner, and underutilized machines in a decreasing manner.  This method of sorting 

VMs and hosts is a well established technique and is utilized in the above dynamic 

resource management works [20], [16]. 

The comparison of the six algorithms produced from the permutations of these sorting 

methods reveals the conflicting nature of the goals of high performance, and low power 

consumption.  A comparison of two of these algorithms is summarized in Table 1.  The 

algorithms were named according to how they sort both VMs on stressed hosts and target 

machines. Note the First Fit Increasing-Decreasing (FFID) algorithm, in which VMs on 

stressed machines are sorted in an increasing manner by CPU and target host machines 

are sorted in a decreasing manner by CPU utilization, demonstrates a high host 

utilization, corresponding to high power efficiency, coinciding with a relatively poor 

request drop rate.   However, the First Fit Decreasing-Increasing (FFDI) algorithm, in 

which VMs are sorted in a decreasing manner and target host machines in an increasing 

manner by CPU utilization, demonstrates the opposite, a lower host utilization, 

corresponding to a lower power efficiency rating, with much higher performance, seen in 
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a 65% lower request drop rate.  This highlights the idea that these primary operational 

goals of a data centre are often at odds with one another and that further research is 

warranted to investigate the possibility of optimizing VM allocations for both these goals 

.  

Table 1:  A comparison of two of the VM relocation policies [14] 

2.4  Conclusion 

With the advent of virtualization technology, the opportunities for numerous large-scale 

data centres to provide effective solutions to the IT requirements of their consumers have 

increased dramatically.  As a consequence of this proliferation, data centre operators have 

had to balance the complex and often conflicting goals of providing a high QoS to their 

clientele, and ensuring efficient utilization of their resources in order to achieve 

maximum capacity with minimal operating costs.  Initially, work in this area focused on 

solving the problem of safely assigning client applications to host machines in a single, 

stable, allocation.  This was designed to be a robust allocation that would require few 

manual adjustments in the future.  However, in the past several years, developments in 

the ability to monitor and update an allocation on-the-fly without significant degradation 

to QoS, combined with increasing energy pressures and costs have enabled the 

development of more complex dynamic resource management techniques.  These 

techniques enable allocation of VMs that will more fully utilize each host machine 

relying on the assurance that any situation in which the requirements of client 

applications exceeds the host’s capabilities can be automatically detected and mitigated 

in a timely manner.  Due to the complex nature of dynamic resource management and 

mounting pressures as applications of this technology become more popular, research in 
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this area continues to pursue techniques to improve QoS while minimizing power 

consumption. 
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3. Management Strategies 

The term management strategy here is defined to represent an instantiation of policies to 

perform the placement, relocation and consolidation of VMs on host machines.  This 

section presents three management strategies: (i) Power, which is designed to emphasize 

the reduction of power consumption (Section 3.3), (ii) SLA, which is designed to 

emphasize the minimization of SLA violations (Section 3.3), and (iii) Hybrid, which is 

designed to pursue both goals simultaneously (Section 3.4).  Finally, this section will 

introduce a meta-strategy called Utilization-Based Dynamic Strategy Switching, Util-

DSS.  This meta-strategy dynamically switches between the Power and SLA strategies at 

runtime based on the monitoring of changing data centre conditions (Section 3.5). 

3.1 Terminology 

This section presents the terms and metrics used in the description of management 

strategies.  These terms are also defined in Appendix A. 

SLA Violation: An SLA violation occurs when resources required by a VM are not 

available to it, as this situation leads to a degradation in performance. The percentage of 

required CPU not available in the SLA violation is denoted by s. 

Data Centre Utilization: The overall utilization of the data centre is calculated as the 

percentage of total CPU capacity in the data centre that is currently in use. 

CPU Shares: The capacity of a CPU is quantified using CPU shares, where each CPU 

core has a specific number of shares which represents its computing power. In this work, 

the number of shares assigned to each core is based on its frequency, with 1GHz = 1000 

shares. 

Power Efficiency: For a host, h, the power efficiency, ph, is the amount of processing 

being performed per watt of power. This is measured in CPU-shares-per-watt (cpu/watt). 

The calculation of the power efficiency of a single host is presented in Equation 1: 
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€ 

ph =
cpuInUseh

powerConsumptionh  

Equation 1 - Power efficiency of a single host 

where cpuInUseh is the number of CPU shares currently in use across all cores in the 

host, and powerConsumptionh is the current power consumption in watts of the host. As 

an active host machine consumes a significant amount of power even when under little or 

no CPU load (i.e. very low power efficiency) increased host utilization corresponds to 

increased power efficiency for that host. This metric is used to calculate the power 

efficiency for the entire data centre, pdc, calculated as in Equation 2. 

€ 

pdc =

cpuInUseh
h∈hosts
∑

powerConsumptionh
h∈hosts
∑  

Equation 2 - Data centre power efficiency 

such that hosts is the collection of all hosts in the data centre. 

Maximum Power Efficiency: This metric represents the best power efficiency a given 

host can achieve, calculated as the power efficiency of the host at maximum CPU 

utilization. 

Optimal Power Efficiency: Optimal Power Efficiency, pdcopt, represents the best 

possible power efficiency achievable at the data centre level, given the current workload 

and set of host machines available. This theoretical upper bound is similar to that 

proposed in past works [11], [4], [5].  Although unattainable in reality, this value serves 

as a useful bound against which to measure observed data centre power efficiency. The 

best power efficiency would be achieved by placing VMs in such a way that each host is 

100% utilized, with the most power efficient hosts being filled first. First, the total CPU-

in-use across the data centre is calculated. Then the available hosts are ordered by 

maximum power efficiency, and the CPU-in-use is allocated to the hosts such that each 
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host is allocated 100% of its CPU capacity. The optimal power efficiency, pdcopt, is 

calculated as the power efficiency of the data centre given this allocation. 

3.2 Host Classification 

Each time a management operation takes place, hosts are classified into categories based 

on their power state: on, suspended or off. Powered on hosts are further classified 

as stressed, partially-utilized or under-utilized, based on their CPU utilization level. Hosts 

may transition between these states based either on changes in workload of the hosted 

VMs, or migrations performed by the management operations. Two threshold values are 

used for categorization: stressCPU and minUsageCPU. Classification is based on the hosts 

average CPU utilization over the last monitoring window (measurements collected every 

2 minutes over a sliding window of size 5). Categories are defined as follows: 

● Stressed: hosts with average CPU utilization in the range [stressCPU;1]; 

● Partially-utilized: hosts with average CPU utilization in the range [minUsageCPU; 

stressCPU]; 

● Under-utilized: hosts with average CPU utilization in the range [0; 

minUsageCPU]; 

● Empty: hosts that do not currently have any VM assigned to them. Hosts in 

suspended or off power state are included in this category. 

It should be noted that different VM Relocation policies may make the determination of 

whether a host is stressed in slightly different manners based on how the most recent 

measurements of host utilization are considered. This stress check differs in its 

determination of a stress level depending on the primary goal of the strategy. An example 

of the different manners in which this stress check is performed are seen in the difference 

in VM Relocation policies seen in the Power and SLA strategies below. 

3.3 Power and SLA Strategies 



 

25 

Power and SLA are single-goal strategies, which means that all management decisions 

are geared towards achieving a single, primary goal. Single-goal strategies may pursue 

secondary goals, but always give them lower priority than the primary goal. In the next 

subsections, the VM Placement, VM Relocation and VM Consolidation policies that 

comprise these two strategies are explained. Much of the existing work on dynamic 

management uses some form of First Fit heuristics. The work described in [5] (for static 

workloads) and [14] (for dynamic workloads) studied variants of First Fit heuristics and 

found that they work best in practice at determining VM allocations. The Power and SLA 

strategies are based on such heuristics and are representative of other work on dynamic 

resource management. 

The strategies use different values for the stressCPU threshold: the Power strategy uses 

95% and the SLA strategy used 85%. The lower threshold for the SLA strategy allows for 

additional resources to be available for workload variations. Both strategies use the 

minUsageCPU threshold of 60%. 

3.3.1 VM Placement 

This management operation runs each time a new VM creation request is received, and 

selects a host in which to instantiate the VM. The VM Placement policy for the Power 

strategy (see Algorithm 1) first classifies hosts in their respective categories (line 3): 

stressed (z), partially-utilized (p), underutilized (u) and empty (e). The policy then sorts 

each host category (lines 4-5): p and u are sorted in decreasing order first by maximum 

power efficiency and then by CPU utilization, and e is sorted in decreasing order first by 

maximum power efficiency and then by power state. This sorting method ensures that the 

placement focuses on power efficiency over any other considerations. The policy then 

builds a list of target hosts by concatenating p’, u’ and e’ (line 6). Finally, following a 

First Fit approach, the policy assigns the VM to the first host in target with enough 

capacity to host the VM (lines 7-12). The method hasCapacity(VM) checks whether the 

host can meet the resource requirements indicated in the VM creation request (line 8) 

without the host becoming stressed. 
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1: Input: VM 
2: Output: - 
3: z,p,u,e = classifyHosts(hosts) 
4: p’, u’ = sortPowerEffThenUtil(p,u) 
5: e’ = sortPowerEffThenState(e) 
6: target = concatenate(p’,u’,e’) 
7: for host in target do 
8:    if host.hasCapacity(VM)then 
9:       host.deploy(VM) 
10:      break 
11:   end if 
12: end for 

  Algorithm 1: Power strategy’s VM Placement policy 

The VM Placement policy for the SLA strategy differs from the Power strategy’s policy 

in the way p and u are sorted: p is sorted in increasing order first by CPU utilization and 

then by maximum power efficiency and u is sorted in decreasing order first by CPU 

utilization and then by maximum power efficiency. This sorting method ensures that the 

placement focuses on spreading load across the hosts, leaving spare resources to handle 

spikes in resource demand, over any other considerations. This change in sorting allows 

the SLA strategy to pursue the primary goal of minimization of SLA violations over the 

secondary goal of maximizing power efficiency. 

3.3.2 VM Relocation 

This management operation runs frequently over short intervals of time, so as to detect 

stress situations quickly.  For both strategies, the interval is set to 10 minutes. This 

operation determines which hosts are experiencing a stress situation and attempts to 

resolve the situations by migrating one VM from each stressed host to a non-stressed 

host. The VM Relocation policy for the Power strategy (see Algorithm 2) first classifies 

hosts in their respective categories (line 1), performing a stress check on all hosts to 

determine whether or not they are stressed. The policy performs its stress check by 

classifying a host as stressed if its CPU utilization has remained above the stressCPU 

threshold all of the time over the last CPU load monitoring window. The resulting host 

categories are: stressed (z), partially-utilized (p), underutilized (u) and empty (e). The 

policy then sorts each host category (line 2-4): z is sorted in decreasing order by CPU 

utilization, p and u are sorted in decreasing order first by maximum power efficiency and 
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then by CPU utilization, and e is sorted in decreasing order first by maximum power 

efficiency and then by power state. The policy then builds a list of target hosts by 

concatenating p’, u’ and e’ (line 6). Following a First Fit heuristic, the policy selects one 

VM from each host h in source and a corresponding host in target to which to migrate the 

VM (lines 7-22). For each host h in source, the policy filters out the VMs with less CPU 

load than the CPU load by which h is stressed and sorts the remaining VMs in increasing 

order by CPU load (line 8). If the list of remaining VMs is empty, all VMs are considered 

and sorted in decreasing order by CPU load. The method migrate(h, VM, host) initiates a 

migration (line 13). 
1:  z,p,u,e = classifyHosts(hosts) 
2:  z’ = sortUtil(z) 
3:  p’,u’ = sortPowerEffThenUtil(p,u) 
4:  e’ = sortPowerEffThenState(e) 
5:  source = z’ 
6:  target = concatenate(p’,u’,e’) 
7:  for h in source do 
8:     vms = filterAndSort(h.vms) 
9:     success = FALSE 
10:    for VM in vms do 
11:       for host in target do 
12:          if host.hasCapacity(VM) then 
13:             migrate(h,VM,host) 
14:             success = TRUE 
15:             break 
16:          end if 
17:       end for 
18:       if success then 
19:          break 
20:       end if 
21:    end for 
22: end for 

  Algorithm 2: Power strategy’s VM Relocation Policy 

The VM Relocation policy for the SLA strategy differs from the Power strategy’s policy 

in the way p and u are sorted: p is sorted in increasing order first by CPU utilization and 

then by maximum power efficiency and u is sorted in decreasing order first by CPU 

utilization and then by maximum power efficiency. In addition, the policy performs a 

different stress check as follows: a host is stressed if its last two monitored CPU load 

values are above the stressCPU threshold or its average CPU utilization over the last CPU 

load monitoring window exceeds stressCPU. 
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3.3.3 VM Consolidation 

This management operation runs less frequently than VM Relocation, given that its 

purpose is to consolidate the load that VM Placement and VM Relocation have spread 

across the data centre. As more frequent consolidation can be considered a more 

aggressive approach to saving power as it may increase the risk of SLA violations, the 

VM Consolidation interval is set to 1 hour for the Power strategy and to 4 hours for the 

SLA strategy. This operation consolidates load in the data centre by migrating VMs away 

from under-utilized hosts (and suspending or powering them off) and into partially-

utilized hosts. The VM Consolidation policy for the Power strategy first classifies hosts 

in their respective categories: stressed (z), partially-utilized (p), underutilized (u), and 

empty (e), and powers off e. The policy then sorts p and u in decreasing order first by 

maximum power efficiency and then by CPU utilization and builds a list of target hosts 

by concatenating p’ and u’. Afterwards, the policy sorts u again, but this time in 

increasing order first by power efficiency and then by CPU utilization, and uses that list 

as source. Following a First Fit heuristic, the policy attempts to vacate every host h in 

source by migrating their VMs into hosts in target. For each host h in source, the policy 

sorts its VMs in decreasing order first by overall resource capacity (memory, number of 

CPU cores, core capacity) and then by CPU load. Given that source and target are not 

disjunct, measures are taken to avoid using a host both as a source and target for 

migrations.  The functionality of the Power strategy’s consolidation algorithm is outlined 

in Algorithm 3. 
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1:  z,p,u,e = classifyHosts(hosts) 
2:  powerOff(e) 
3:  p’,u’ = sortPowerEffThenUtil(p,u) 
4:  target = concatenate(p’,u’) 
5:  source = sortPowerEffThenUtil(u) 
6:  for h in source do 
7:     vms = sort(h.vms) 
8:     for VM in vms do 
9:        for host in target do 
10:          if host.hasCapacity(VM) then 
11:             migrate(h,VM,host) 
12:             break 
13:          end if 
14:       end for 
15:    end for 
16: end for 

  Algorithm 3: Power strategy’s VM Consolidation policy 

The VM Consolidation policy for the SLA strategy differs from the Power strategy’s 

policy in the way p and u are sorted: first, p is sorted in increasing order first by CPU 

utilization and then by maximum power efficiency and u is sorted in decreasing order 

first by CPU utilization and then by maximum power efficiency, and then to generate a 

list of target machines, u is sorted in increasing order by CPU utilization.  The 

functionality of the Power strategy’s consolidation algorithm is outlined in Algorithm 3. 

3.4 Hybrid Strategy 

We designed a dual-goal strategy as a combination of the Power and SLA strategies; the 

Hybrid strategy consists of the VM Placement and VM Relocation policies of the SLA 

strategy and the VM Consolidation policy of the Power strategy. Furthermore, the stress 

check performed by the VM Relocation policy represents a compromise between the 

checks of SLA and Power: it determines that a host is stressed only if its average CPU 

utilization over the last monitoring window exceeds the stressCPU threshold. The 

thresholds stressCPU  and minUsageCPU were set to 90% and 60% respectively. 

This Hybrid strategy is intended to serve as a representative example of how a single 

strategy may pursue the goals of reducing power consumption and SLA violations 

simultaneously.  To validate the performance of this strategy so as to establish it as a 
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valid benchmark against which to compare the strategy switching technique (described in 

Section 3.5), the performance of the Hybrid strategy is compared against an 

implementation of the Minimization of Migrations algorithm.  Through the 

experimentation performed in [16], this algorithm was found to produce the best 

compromise among several candidate strategies when trying to pursue both goals 

simultaneously.  The results of this comparison are described in Section 5.1. 

3.5 Utilization-Based Dynamic Strategy Switching 

Through preliminary experimentation, two key situations in which one strategy had an 

advantage over the other became apparent. When overall data centre utilization is 

growing, increasing the stress on host machines, the SLA strategy is generally more 

effective as it places greater emphasis on preventing SLA violations. Conversely, when 

utilization is stable or decreasing, thus decreasing the likelihood of stress situations and 

increasing the likelihood of hosts becoming underutilized, the Power strategy is more 

effective as it can more quickly perform VM Consolidation to conserve power. 

The Utilization-Based Dynamic Strategy Switching (Util-DSS) meta-strategy is designed 

to exploit this pattern. It uses the rate of change of overall data centre utilization, m, to 

determine appropriate times to switch strategies. Measurements of the overall data centre 

utilization are taken at regular intervals. Linear regression over the last n data centre 

utilization measurements provides the rate of change, m, over a window of time. The 

value mSLA defines a threshold for m over which a switch is made to the SLA strategy. 

Similarly, the value mPower defines a threshold for m under which the Power strategy is set 

to be active. The switching algorithm is outlined in Algorithm 4. 
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1:  util = getDCUtilWindow(dc,n) 
2:  m = linearRegression(util) 
3:  if activeStrategy = Power_Strategy then 
4:     if m > mSLA then 
5:        Switch to SLA_Strategy 
6:     end if 
7:  else if activeStrategy = SLA_Strategy then 
8:     if m < mPower then 
9:        Switch to Power_Strategy 
10:    end if 
11: end if 

  Algorithm 4: Util-DSS Switching Conditions 

where getDCUtilWindow(dc) returns the data centre utilization measurements over the 

past n measurements.  No other conditions cause a strategy switch beyond those outlined 

in Algorithm 4.  If the activeStrategy is Power_Strategy, the only event that could cause a 

switch to SLA_Strategy is an increase of m above mSLA and if activeStrategy is 

SLA_Strategy, the only event triggering a switch to Power_Strategy would be a decrease 

of m below mPower. 

 The switching thresholds mSLA and mPower were determined using a brute force 

search across all combinations of threshold values between -0.005 and 0.015 in 

increments of 0.0005.  Threshold values less than -0.005 or greater than 0.015 produced 

great drop-offs in performance due to the switching thresholds being so far from typically 

observed values of m that no thresholds were ever crossed.  In this case, strategy 

switching would either never occur, or in the specific case of an overly low mSLA 

threshold and an overly high mPower threshold, a strategy switch would occur every time 

the switching algorithm was triggered, causing thrashing.  Additionally, at this fine 

granularity of 0.0005 only small changes in performance were seen between adjacent 

threshold values, and so it is assumed that no threshold values produced by smaller 

granularity searches would produce significantly better performance than the results of 

this search.  Due to the feasibility of searching the entire population of candidate 

thresholds down to this fine level of granularity, an exhaustive search over all possible 

candidates was performed instead of some sort of artificial intelligence threshold-learning 

technique.  This was done because, under the assumptions of acceptable threshold ranges, 
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and fine search granularity above, any given learning algorithm could only perform, at 

best, as well as this exhaustive search. 

The search for threshold values used a set of 5 simulations, each of a duration of 

10 simulated days and each using a different random workload (workload generation is 

described in Section 4.2).  Each candidate pair of threshold values was evaluated against 

these 5 simulations and ranked by score (scoring technique described in Section 4.4).  

Threshold candidates generally performed consistently across the 5 simulations.  Due to 

this observed consistency, the selected thresholds, chosen for their high performance 

during this search, are assumed to be high performing in general and can be used across 

all randomized workloads under the conditions of these experiments. 

 Figure 1 below represents the operation of Util-DSS over a segment of simulated 

time.  The blue series represents measured values of overall data centre utilization over 

time.  Red and blue vertical lines represent switches in management strategy to the SLA 

and Power strategies respectively.  Note that when data centre utilization begins to 

increase, the slope of the line-of-best-fit crosses the mSLA threshold and a switch is made 

to the SLA strategy, represented by a vertical red line, and when utilization begins to 

level off or decrease, the slope of the line-of-best-fit falls below mPower and a switch is 

made back to the Power strategy. 
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Figure 1: Util-DSS switching strategies based on data centre utilization 
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4. Experiments 

 This Chapter outlines the setup of DCSim [22], the simulator used to run the 

experiments, as well as the implementation of variable workloads.  Additionally, this 

Chapter outlines a novel evaluation technique whereby the performance of multiple 

strategies can be directly and quantitatively compared using the very different metrics of 

SLA violations and aggregate power efficiency. 

4.1  DCSim 

Experimentation is conducted by simulation using DCSim [22]. The simulated data 

centre consists of 200 host machines, of which there are an equal number of two types: 

small and large. The small host is modelled after the HP ProLiant DL380G5, with 2 dual-

core 3GHz CPUs and 8GB of memory. The large host is modelled after the HP ProLiant 

DL160G5, with 2 quad-core 2.5GHz CPUs and 16GB of memory. Cores in the large host 

have 2500 CPU shares, and cores in the small host have 3000 CPU shares. The power 

consumption of both hosts is calculated using results from the SPECPower benchmark 

[23]. The maximum power efficiency of the large host (85.84 cpu/watt) is roughly double 

that of the small host (46.51 cpu/watt). 

Three VM sizes are created: small requires 1 virtual core with at least 1500 CPU shares 

and 512MB of memory, medium requires 1 virtual core with at least 2500 CPU shares 

and 512MB of memory, and large requires 2 virtual cores with at least 2500 CPU shares 

each and 1GB of memory. 

Hosts are modelled to use a work-conserving CPU scheduler, as available in major 

virtualization technologies. That is, any CPU shares not used by a VM can be used by 

another. No maximum cap on CPU is set for VMs. In the case of CPU contention, VMs 

are assigned shares in a round-robin fashion until all shares have been allocated. No 

dynamic voltage and frequency scaling (DVFS) is considered. Memory is statically 

allocated and not overcommitted. 
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During a VM migration, an SLA violation of 10% of CPU utilization is added to 

migrating VMs, and an additional CPU overhead of 10% of the migrating VMs CPU 

utilization is added to both the source and target host [20]. 

Measurements of metrics used by management policies, such as host CPU utilization and 

SLA violation, are drawn from each host every 2 minutes and evaluated by the policy 

over a sliding window of 5 measurements. 

4.2 Variable Workload 

A data centre experiences a highly dynamic workload, driven by VM arrivals and 

departures, as well as the dynamic workloads and resource requirements of VMs. Here, 

random workload patterns are generated to evaluate our strategies, where a workload 

pattern consists of a set of VMs with specific start and stop times, each with dynamic 

trace-driven resource requirements. As resource allocation is naive of application-type, it 

is likely that hosted VMs in a data centre will embody a wide variety of application types.  

Therefore, in these simulations, a variety of traces, representing a variety of applications 

from different real-world sources were used.  Each VM is driven by one of 5 individual 

traces: the ClarkNet, EPA, and SDSC traces [24], and two different traces from the 

Google Cluster Data trace [25]. The normalized rate of incoming requests, in 100 second 

intervals, is calculated for each trace. The request rates are used to define the current 

workload of each VM, with the CPU resource requirements of the VM calculated as a 

linear function of the current rate. Each VM starts its trace at a randomly selected offset 

time. 

The number of VMs within the data centre is also varied dynamically to simulate the 

arrival and departure of VMs. A base of 600 VMs is created within the first 40 hours and 

remain running throughout the entire experiment, to maintain a reasonable minimum 

level of load. After 2 simulated days, new VMs begin to arrive at a changing rate, and 

terminate after about 1 day. The arrival rates are generated such that on a fixed interval of 

once per day, the total number of VMs in the data centre is equal to a randomly generated 

number uniformly distributed between 600 and 1600. The maximum number of VMs, 

1600, was chosen because beyond that point, the SLA strategy is forced to deny 
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admission of some incoming VMs due to insufficient available resources. This continues 

for 10 simulated days at which point the experiment terminates. Data from the first 2 days 

of simulation are discarded to allow the simulation to stabilize before recording results. 

4.3 Util-DSS Parameter Selection 

The switching thresholds mSLA and mPower used for Util-DSS are arrived at using the 

method described in Section 3.5.  They are each selected to be 0.00255 as this 

combination produced the best aggregate performance across the five random workloads 

and are therefore submitted as the best performing switching thresholds.  Note that as the 

value of each threshold is the same, the behaviour of Util-DSS will be simplified to 

switch to the Power strategy if the rate of change in data centre utilization, m, falls below 

0.00255 and switch to the SLA strategy if the rate rises above this value. 

The frequency with which the strategy switching method is evaluated was selected to be 

every one hour following informal, preliminary experimentation over multiple frequency 

values.  Additionally, the monitoring window of Util-DSS, from which measurements of 

utilization are recorded and considered during strategy switching evaluation, is set to a 

size of 2 simulated hours in 6, 20-minute intervals.  This timing was selected during 

preliminary experimentation as a balance between being sensitive to changes in workload 

patterns, but avoiding thrashing between strategies caused by overreacting to minor 

fluctuations in data centre utilization. 

4.4  Strategy Evaluation and Comparison 

In order to evaluate the effectiveness of the strategies, two metrics are used: power 

efficiency (p) and SLA violation (s). However, comparing strategies based only on the 

use of these two metrics is problematic. If one strategy were to perform well with respect 

to SLA violations at the expense of power, and another performed well with respect to 

power at the expense of frequent SLA violations, it is difficult to conclude which strategy 

is preferable. In practice, this decision depends in part upon the relative change in each 

area as well as the importance placed on each metric by the data centre operators based 

on their business objectives, the relative costs of power and SLA violations and the 
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potential for lost revenue due to poor application behaviour.  In the absence of well-

defined business rules governing the relative value of each metric, a method is required to 

evaluate performance based only on the observed values of these metrics. 

In order to determine whether DSS can offer improved results over a single strategy, this 

work proposes a method of evaluating the performance of a strategy relative to other 

strategies’ performance based on the experimental results of each. Using the SLA and 

Power strategies as benchmarks, their SLA violation and power efficiency results can be 

used as baseline measurements with which to evaluate other strategies. The SLA strategy 

provides the bounds for the best SLA violation value (sbest = sSLA) and the worst power 

efficiency (pworst = pSLA), while the Power strategy provides the worst SLA violation 

(sworst = sPower) and best power efficiency (pbest = pPower). Values from a candidate strategy, 

i, are then normalized using these bounds to produce the normalized vector, vi , 

represented by [snorm ; pnorm]. The values snorm and pnorm are defined in Equation 3. 

€ 

snorm =
(si − sbest )
(sworst − sbest )

pnorm =
(pbest − pi)
(pbest − pworst )

vi = (snorm, pnorm )
 

Equation 3: Score Vector Calculation 

where pnorm is the normalized power efficiency and snorm is the normalized SLA 

violation. Note that pbest > pworst , but sbest < sworst , so the normalization equations differ to 

reflect this. Using the normalized vector, vi , it is possible to calculate its L2-norm, |vi | 

(Equation 4), and use this as an overall score (scorei) for the candidate strategy. 
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€ 

scorei = vi = snorm
2 + pnorm

2  
Equation 4: Score Calculation 

where a smaller score is considered better, as it represents a smaller distance to the best 

bounds of each metric (defined by sbest and pbest ). The SLA and Power strategies always 

achieve a score of 1 by definition, as they achieve the best score in one metric and the 

worst in the other. Scores less than 1 indicate that overall performance of the candidate 

strategy is superior to that of the baseline strategies. 

Note that this score is only valid for a single experiment in which all factors except for 

the active management strategy remain constant. In this work, the workload pattern 

experienced by the data centre is varied from one trial to the next. As such, the baselines 

and score must be calculated separately for each workload pattern. The average final 

score across all experiments can then be used to evaluate the strategy. This is the method 

used to evaluate and compare candidate management strategies. 
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5. Results 

This Chapter will outline the results of experiments comparing Minimization of 

Migrations (MM) [16] with the Hybrid strategy, outlined in Section 3.4.  This will 

determine the validity of the Hybrid strategy and in so doing, establish its effectiveness as 

a competitor with Util-DSS.  Following these experiments, this section will outline the 

results of a comparison between Hybrid Strategy and Util-DSS over a much larger 

number of trials.  The results of these experiments will determine the validity of Util-DSS 

as an effective data centre management technique. 

5.1  Validation of Hybrid Strategy 

In order to determine the validity of the Hybrid strategy as an effective management 

strategy against which a fair comparison of the effectiveness of Util-DSS can be made, 

experiments were run comparing Hybrid strategy to an implementation of the 

Minimization of Migrations strategy [16] outlined above.  The experiments were run 

using the same configuration of DCSim outlined above in Sections 4.1 and 4.2.  The 

evaluation was performed with a set of 5 randomly generated workload patterns.  The 

results of this evaluation are presented in Table 2.  Reported metrics were averaged 

across all workload patterns and the standard deviation is presented in square brackets.  

The following metrics are reported: Average Active Host Utilization is the average CPU 

utilization of powered on hosts; # of Migrations is the number of VM migrations 

triggered by the management strategies; Power Consumed is the total power consumed 

by all hosts in kWh; Power Efficiency is pdc over the entire simulation; and SLA 

Violation is s over the entire simulation.  Note that as the purpose of this experiment is to 

determine the validity of the Hybrid strategy, and the components of the Hybrid strategy 

are drawn from the Power and SLA strategies, no calculation of overall score is 

performed as the similarity between Hybrid and the baseline strategies would likely skew 

the results. 
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 Minimization of 
Migrations 

Hybrid Strategy 

Avg Active Host Util. 68.33 [4.28] 80.59 [0.25] 

# of Migrations 503,130 [38,414] 13,150 [1,556] 

Power Consumption 
(kWh) 

4,694 [357] 4,754 [524] 

Power Efficiency 62.53 [3.36] 335.02 [2.14] 

SLA Violation 9.098 [0.120] 0.409 [0.008] 

Table 2: Results of comparison between Minimization of Migrations and Hybrid 

Strategy 

5.2  Util-DSS Results 

The results of the experiments are presented in Table 3. Each management strategy was 

evaluated with the same set of 100 randomly generated workload patterns. Each 

experiment was repeated only once per workload pattern, as the simulation is 

deterministic. Results were averaged across all workload patterns and the standard 

deviation is shown in square brackets. The following metrics were reported: Average 

Active Host Utilization is the average CPU utilization of powered on hosts; # of 

Migrations is the number of VM migrations triggered by the management strategies; 

Power Consumed is the total power consumed by all hosts in kWh; Power Efficiency is 

pdc over the entire simulation; and SLA Violation is s over the entire simulation. Also 

reported was the normalized SLA and power values for each strategy, as well as the 

score. Figure 2 presents a graphical representation of the scores. 
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Analysis of Variance was performed on the score results, as well as paired t-tests for each 

pair of management strategies. The resulting scores for each management strategy were 

found to be significantly different from each other. 

 

 SLA Power Hybrid Util-DSS 

Avg. Active Host 
Util. 

75% [0.4] 88% [0.4] 81% [0.4] 82% [1] 

# of Migrations 15818 [2292] 24378 [3311] 14643 [1930] 19580 [3047] 

Power Consumed 
(kWh) 

5488 [703] 4384 [519] 5049 [679] 4778 [583] 

Power Efficiency 60.6 [2.4] 75.2 [2.0] 65.9 [2.7] 69.8 [2.3] 

SLA Violation 0.033% [0.01] 0.474% [0.05] 0.092% [0.01] 0.220% [0.05] 

snorm 0.0 1.0 0.135 [0.01] 0.425 [0.09] 

pnorm 1.0 0.0 0.636 [0.06] 0.373 [0.08] 

Score 1.0 1.0 0.651 [0.05] 0.576 [0.041] 
Table 3: Experimental results comparing Util-DSS and Hybrid management strategies.  
Result data drawn from previous publication of these experiments by this author and 
others [26]. 
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Figure 2: Graphical representation of results of comparison between Hybrid and Util-
DSS strategies.  SLA and Power strategy results are also displayed for reference, 

however their results, by definition, form the axes of the graph. 
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6. Discussion 

Both Util-DSS and the Hybrid strategy produced better overall performance than either of 

the single-goal Power and SLA strategies with an improvement in score of around 40%.  

Furthermore, when compared against Hybrid, using the scoring method outlined above, 

Util-DSS outperformed the Hybrid strategy by ~11.5%.  This improvement was largely 

seen in a 271 kWh reduction in power consumption.  Although Util-DSS had a higher 

percentage of SLA violations than Hybrid, the savings in power were more than enough 

to make up for this. 

Additionally, the results from Util-DSS display a near-perfect balance between the Power 

and SLA metrics.  However, as these results are calculated relative to the results of the 

Power and SLA strategies, the observed balance of Util-DSS relies on the truth of the 

assumption that Power and SLA strategies are each equally performing strategies that 

differ only in a separate, but equal degree of preference for their primary goals.  In the 

absence of well defined business rules quantifying the value of performance in each 

metric, specific statements of balance between metrics are difficult. 

A potential drawback of Util-DSS when compared to the Hybrid strategy is the 34% 

increase in number of migrations.  Although the migration count of each strategy falls far 

below the migration count observed in the Minimization of Migrations algorithm 

(evaluated in Table 2), it may be the case that in a situation where network bandwidth is 

highly constrained, this increase in frequency of migrations would deteriorate the 

performance of Util-DSS.  It is likely that this increase in migration count of Util-DSS 

over Hybrid is due to the aggressiveness of the consolidation brought on by switching to, 

and operating under, the Power strategy over the course of Util-DSS’s operation.  This is 

supported by the much larger number of migrations observed when the Power strategy is 

run in isolation (See Table 2). 

Further work may be needed to address the issue of strategy evaluation beyond the 

scoring method suggested here.  This scoring method is inherently relative as it rests on 

normalizing metric values within ranges defined by other strategies.  Although it builds 
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on the Energy-SLA Violation (ESV) suggested in [20] by providing a method of equating 

performance in metrics that range over different values, it is still ignorant of the relative 

value that performance in each metric correlates with in a real-world data centre.  As 

such, it may be that the balanced performance in each metric displayed by Util-DSS is 

not, in fact, desirable. 
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7. Conclusion 

The problem of resource management in virtualized data centres is well researched.  

However, pursuing multiple, conflicting management goals is difficult.  Additionally, 

without any manner of comparing performance between these different metrics, 

evaluation of management strategies is also difficult.  In this work, a technique is 

proposed to leverage the fact that under certain data centre conditions, a strategy focusing 

on just one goal may be appropriate, while under different conditions, a different goal 

should take precedence.  Specifically, by monitoring data centre utilization trends, Util-

DSS is able to focus on maintaining QoS when this metric is likely to be constrained, and 

conversely, when utilization is decreasing, the risk of SLA violations is much lower, 

allowing management to focus more strongly on maximizing power efficiency. 

Additionally, this work proposes a novel method of comparing strategies by normalizing 

the performance in each area between predefined ranges.  In doing so, a comparison can 

be made between strategies that may improve performance in one area while worsening 

performance in another.  In this absence of business rules that define the value in each 

metric in terms of money, this method provides a direct method of quantifying 

performance between independent strategies. 

Using the proposed scoring technique, Util-DSS was shown to perform about 40% better 

than the single-goal strategies, Power and SLA.  Additionally, when compared against 

the Hybrid strategy, designed to compromise between the two goals as well as possible, 

Util-DSS was shown to outperform Hybrid by about 11.5%. 

7.1 Future Work 

In the simulation of data centre activity, this work only considers the CPU capacity of 

simulated machines.  Although CPU is likely to be the most constrained of computing 

resources, future work in this area should consider other resources such as memory and 

bandwidth.  Additionally a future characteristic of large-scale data centres is the division 

of computing resources into a hierarchical structure with racks and clusters of machines.  

This introduces additional challenges in data centre management with constraints that 



 

46 

certain applications must be collocated in the same rack as other applications if they 

depend upon each other, or perhaps that they must not be located in the same rack as they 

serve as backups for one another and should be separated.  These constraints add 

complexity to the problem and must be addressed. 

Furthermore, in proposing that different sets of data centre conditions warrant different 

management strategies, this work proposes that data centre utilization is a good metric to 

determine switching times.  Future work is warranted in investigating other switching 

conditions.  For example, work done by this author and others [26] has investigated 

switching strategies based on the distance the observed level of SLA violations and 

power efficiency are from certain predefined goals, or switching strategies when these 

observed values cross some predefined threshold.  Additional work is warranted in 

evaluating other techniques for strategy switching. 

Although the strategies selected for switching in this work were designed such that there 

was one strategy designed to prioritize each primary management goal.  Future work in 

this area may focus on the selection of either different strategies from those used in this 

work, or perhaps more than two strategies.  Such work would likely require a more 

sophisticated switching technique to accommodate this. 

The switching techniques outlined in this work require the definition of switching 

thresholds be searched for beforehand, and then held static during the simulation.  A 

useful development in this area would be the online searching for switching thresholds.  

Essentially, this would require that threshold values be set to some arbitrary starting value 

and then as the simulation progresses, using some sort of heuristic, a determination is 

made on the effectiveness of the current switching thresholds and they are adjusted 

techniques derived from the field of artificial intelligence.  This difficult problem would 

benefit greatly from future work and greatly increase the performance of likely any sort 

of strategy switching technique. 

In general, further work in the area of dynamic resource management for virtualized data 

centres holds the opportunity to make great advancements in terms of reliability and 

quality of service as well as greatly reducing the power consumption of such systems.  
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Given the increasing popularity and ubiquity of cloud computing, advancements in these 

systems will provide great benefit not just to the academic field, but to the society that 

benefits from it as well. 
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Appendices 

Appendix A - Definition of Terms 

 

VM Virtual Machine.  Software that wraps around client application 
and behaves as a stand-alone machine to provide isolation and 
consistent resource provision to the application. 

SLA Service Level Agreement. Contract between data centre and 
client governing acceptable performance levels of client 
application. 

SLA Violation Violation of the SLA.  This is caused by an under-provisioning of 
a client application producing a measurable degradation of 
application performance.  In this work this is calculated as the 
percentage of cpu shares requested that were not provided. 

QoS Quality of Service. Subjective measurement of the frequency with 
which the SLA is violated.  High QoS corresponds with few SLA 
violations 

t Time interval with which a static allocation would be recreated in 
[12] as a means of dealing with variable workloads.  This was 
termed Semi-static Resource Management 

hotspot Term used in [9] to describe a host machine with insufficient 
resources to meet the demands of its hosted VMs. 

VSR Volume to Size Ratio.  This metric was used in [9] for VM 
selection and is calculated as a VMs CPU requirements divided 
by its memory footprint. 

TCO Total Cost of Ownership.  Figure representing the total cost to the 
data centre of owning and operating hardware (hardware 
acquisition, maintenance, staffing, power consumption, etc.) 

ESV Energy - SLA Violation.  Metric used in [20] as a simple means 
of comparing energy consumption and SLA violations against 
each other 

Data Centre 
Utilization 

The overall utilization of the data centre calculated as the 
percentage of total CPU capacity in the data centre that is 
currently in use. 
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CPU Shares Means of quantifying the capacity of a CPU, representing its 
computing power.  In this work 1GHz = 1000 CPU shares 

ph Power efficiency of a particular host, h, measured as the number 
of CPU shares in use divided by the host’s current power 
consumption 

pdc The sum of all the CPU shares in use across all hosts divided by 
the total power consumption of those hosts 

Maximum Power 
Efficiency 

Metric representing the best power efficiency of a given host 
calculated as the power efficiency of the host at maximum CPU 
utilization 

pdcopt Optimal Power Efficiency of the data centre.  Theoretical upper 
bound calculated as the pdc value when the total workload of the 
data centres is distributed across the host machines filling them in 
decreasing order of power efficiency to 100% utilization.  In 
practice the VMs may not be able to be split this way across hosts 
and so this value is a theoretical maximum 

stressCPU Upper threshold on host utilization beyond which (subject to the 
particular rules governing stress check) the host machine is 
considered stressed 

minUsageCPU Lower threshold on host utilization below which the host machine 
is considered underutilized 

stress check Determination of whether a host should be considered stressed 
based on whether its CPU utilization exceeds stressCPU. Different 
policies may be more or less tolerant of momentary spikes above 
stressCPU when classifying a host as stressed or not 

source In policies performing migrations such as VM Relocation and 
VM Consolidation, source represents the set of host machines 
from which migrations will take place. 

target In the VM Placement policies, as well as policies performing 
migrations such as VM Relocation and VM Consolidation, target 
represents the set of host machines which will receive VMs. 

m The slope of the line of best fit of Data Centre Utilization.  This 
represents the rate of increase or decrease of utilization across the 
data centre and is used in the determination of whether to switch 
strategies in the Util-DSS meta strategy 

mSLA Threshold bounding m above which a switch to the SLA Strategy 
should be made if the currently active strategy is the Power 
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Strategy 

mPower Threshold bounding m below which a switch to the Power 
Strategy should be made if the currently active strategy is the 
SLA Strategy 

n Number of past measurements of Data Centre Utilization that are 
considered by the Util-DSS meta-strategy in the calculation of 
linear regression.  In these experiments, n was set to 6 

workload patterns The pattern of resource requirements over time that the simulated 
data centre is under.  This is determined by the sum of the 
workloads of individual VMs, as determined by their traces. 

p Used when evaluating strategies, p represents the total power 
efficiency of the data centre over the course of the simulation 

s Used when evaluating strategies, s represents the total percentage 
of resources that were not provided to VMs over the course of the 
simulation 

sSLA The observed s value after execution of a simulation using the 
SLA Strategy 

sPower The observed s value after execution of a simulation using the 
Power Strategy 

sbest The better (smaller) value of either sSLA or sPower 

sworst The worse (larger) value of either sSLA or sPower 

si The observed s value after execution of a simulation using a 
given candidate strategy, i 

snorm The si value when normalized between sbest and sworst 

pSLA The observed p value after execution of a simulation using the 
SLA Strategy 

pPower The observed p value after execution of a simulation using the 
Power Strategy 

pbest The better (larger) value of either pSLA or pPower 

pworst The worse (smaller) value of either pSLA or pPower 

pi The observed p value after execution of a simulation using a 
given candidate strategy, i 
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pnorm The pi value when normalized between pbest and pworst 

vi The vector representing the performance of a candidate strategy, 
i, calculated as (snorm, pnorm) 

scorei The L2-norm of vector vi calculated as vi 
This value represents the combined performance of a strategy, 
relative to the Power and SLA strategy.  Strategies with a lower 
score value are considered superior to those with a higher score 
value. 
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