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as zb (iL.e. zb-o or Zb-l). The value of Zb (0 or 1) is determined
by inspecting the analytical sclution, as given by expression
(10.b.2), and the value of T, is then found by solving the equa-
tion Z(T.Pl,.zl)szb numerically, by bisection.
We know that Z(7) is continuous at rafb, whereas P(7) changes
its sign there. For 7y (sufficiently close to Tb) the soclution
is still given by expression (10.b.1), but with Z1 and P, repla-
ced by Z2 and P2 respectively. Z2 and P2 are found from the '
matching of the two solutions at f:fb, and they are thus given by
thé expression
Zz-zl-Z(§b,P2,O) . P2=P1—2P('b.P1). (10.b.3)
which s obtained from expression (10.b.1), when the above men-
tioned matching rules for Z and P are applied. First P2 is found,
and then, using Pz, Z2 is found.
22 and P2 now become the new Z1 and P1 in exéression {10.b.1) .
%nd this is now the solution, as long as Z remains within the
range [(0,1)j. This process is repeated again and again, until '=‘l
1s reached, unless ¢the particle becomes 1onised first . see
below) . .
In the case'of ’lg'g'f we obtain the expressions
- v = /r\2 - S T
Z( ,FI,ZI)-(X/. )cos(2n;)+(P1,;A1) +Z1 .
P(T,P1 =—(271A1/ﬁ)sin(2wr)+91. f10.b.4)
Zl.and Pl are initially given by
Z =2 —(1/'2)cos(2w? )-(P_, /A )} ‘ ) <
1- %0 ‘ 1 177"y f/*’




PI’PO+(2WXAI/H)31n(2WT1{: (10.b.5)

where Z0 and Po are the values of Z(t) and P(71) at =Ty, which

have been found in the previous step.

These solutions, with the initial values of Z1 and Pl' can be

used, as long as Z remains within the range {0,1]. Then 22 and
P2, which become the new Z1 and Pl' are calculated as before,
using expression (10.b.3). This process is repeated until T=Tt is

réached, unless the particle becomes ionisedvtirst (see below).

In the case of rf<r(ro'we obtain the expressions

Z(r,Pl,zl)=-¢v2\exp[—r(r—rf)][(r2-4n2)cos(2nr)—

41Tsin(277) /2 (r2ean?

2
) +(Pl/nA1)T+Z1

P(T,Pl)zlﬁzlAlexp[—F(r—rf)][Fcos(2nr)-2ﬂsin(2ﬂr)]/n(F2+4W2)+P1-

- (10.b.6)
Z1 and Pl are initially given by
'

s 2 2,2 i, , 2, .2 2,2_ :
ZI—ZO+4n Al 4 )cos(zvrf) 4WA51n(2"rf)]/n (T +4n") (Pl/nAl)rf
P.=P_-47%iA, [ "cos(27r,)-27s1n(271,.)]/n(F2+4n?) (30 b.7)

1770 ! f f ! TR
where Z  and P, are the. values of Z(t1) and P(T1) at i=Tg, which
have been found i1n the previous step.

These solutions. with the initial values of Z1 and Pl, can be

/
used. as long as Z remains within the range [0,1]. Then Z1 and P1
are recalculated as before, using expression (10.b.3). This pro-
cess s repeated until T=T, is reached, unless the particle

becomes jonised first.

ro

) . i
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With Z(71) and P(T) known, we can also calculate the dimension-
less compensated energy EC(T) (expression (10.a.11)). Its average
value over a cycle of the oscillating laser field is checked. If
it becomes ggreater than the dimensionless well dep%h, namely
Nzﬂz, this neans'thaé the particle becomes ionised. It does not
bounce back then, when Z=0 or Z=1 is reach;d, but rather. moves
on, ‘away from the well.

As we are mainly interested in finding the time, where ionisa-

tion takes place, we are not interested in the evolution of Z(T)

aﬁa P(t) beyond the ionisation point. Practically all the partic-
b

les get ionised in the'period Ti<T¢T¢, 1i.e. when the laser field

has its maximum anplitude.‘The average conpensited energy remains
constant after ionisation in that case, and therefore the partic-
le' is not expected to return into the well after it had become
lonised.

We have seen thus how the equations of motion can be solved in
a semi-analytical way. The oq%y numerical procedure involved is
the determination of Tb by bisection. Thus the error introduced

in the computation of Z(t1) and P{(71) is minimal.

f
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10.c. The ionisation.rate and its dependenc¢e on the laser jinten-

sity and frequency N

'We are now’ready to make use of our results, and carry out tHe
study of the ionisation rate as a function of the laser field
strength (the parameter )\) and the laser frequency (the parameter
n). We shall do that by means of a "numerical experiment", as had
been éone by other workers in this field,» for similar problems
(Leopold and Percival 1979, Galvao et al 1984).

We use for this purpose a large ensemble of par;lcles&’(loo
particles in our case). All ihe particles are given the same
initial energy El‘ equal to the ground guantum leve% in the vwell.
Thus, in our units thé initial 9nerg; is Alz (see .section 7.4),

and the initjal momentum is thus P,=A,. Each particle is given an

0
initial position located at random between the turning points,

i.e. between x=0 and x=4. }his means that in our units the ini-
tial position, ZO’ is given a random value between 0 and 1.

For each particle we solve now the equations of motion, wusing
the semi-analytical proé@dure outlined in the previous section,
and.check tA; compenéated energy during the process, as well, in
order to see whether the particle becqmes ionised, and if it
does, at what time this happens. This way we qbtain, for the
ensemble~ as a whole, the percentage (or probability) of ionisa-
tion as a funétion of time (the latter in units of the period of

the oscillating laser field). - ’

We-have studied this way the square wells with 4, 8, 10, and

12 quantum energy levels. 1In each case we have chosen several
values of the laser frequency parameter n, and for each value we
”
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v

have varied the ;aseg field strength parameter )\, in order to see
when 1onisation~sets in; and when it does, to see how the ionisa-
tion rate, i.e. the time derivative of the ionisation probabi-
i&ty. in the regiqn where it is ne;rly constant, varies as a
function of A\. Tpis way we have obtained the fdnisation_rate as a
function of both A and n.

We have used for our laser pulée a switching on/off time of “20
periods of ;he laser field., whereas the pulse duration (;t maxi-
mum strength, .i.e. hetween fi and rf) was 100 periods of the
laser field. The parameter [ (see expression (19.:.7)) was 0.23,
corres ding to €=0.01 as the.relativelstrength of the laser

- fleld before switching on and after switching off.
In Figures 54 and 55 we see the dimensionless compensated
. i.gngrqy FC(T)'as a. function oﬁ the dinensionlegs time T, for the

;ggﬁ;ge well with N=12 levels, with m=19.0 and *=4.5. In Pigure 54

.
.

see c¢.(T) in the case of a particle which does not lonise. In

4

thfignre 55 we sed EC(T) in the case of a particle which does

A

Ve

,1onise“(droﬁnd 7=80). The initial energy (in our units) is appro-

Ximately 8.90. The well depth,. i.e. the ionisation energy, is

1}4w2, i.e. approximately 1420, and it is indicated b? the hori-

< .‘ .
zontal line in these figures.

hd v

In Figures 56 and 57 we sée the ionisation preobability (shown
"as ionisation bercentage) as a function'of the dimensionless time

I,‘agaid‘for.the‘well with N=12 levels, with n=19.0. In Figure 56

-t . .

® [ R -
A=4.5, and ih Figure 57 A=6.5. From 71=0 to 1=20 the laser field

is being switched on, and thus no ionisétion occurs there. Ioni--

.

SN pgtiqh starts only at some value of T above 20: closer to 20 if *

. 1s higher. First we see a linear increase, from which the ionisa-
' . ' ' :

v

-
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Figure 54

The compensated energy (in units of ﬁ2/2Md2) as a function of
time (in units of the period of the osc;ilating'laser field) for®
a particlg which does not ionise, in the case of the N=12 level
well with n=19.0 and A=4.5. The horizontal line at 1447 denotes
the ionisation threshold EC-VO. "

239



4

T

Figure 55

The compensated‘,energy (in units of ﬁ2’2Md2) as a function of
time (in units of the period of the osgillatin; laser field) for
a particle which does ionise, in the case of the N=]2 level well
with N=19.0 and »>=4.5. The horizontal line at 144*2 denotes the
ionisation threshold BC-VO.
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' . Figure %7

N
The ionisation probability P (in percents) as a function of time

{in units of the period of the oscillating laser field) for an

ensemble of 100 particles in the N=12 level well with n=19.0 and

A=6.5,
A= .



tion rate W (in our units, simply the slope) is found, Then the

increase in the ionisation probability gradually declines, ;né it
the lgser pulse is lbng enough, as it is here in the 1=6.5 case
{Figure 57), saturation is eventually reached, {.e. the ionisa-
tion“probabillty reache; a nearly constant value (seen in Figure
57 to occur arcund T=105). At 1=120, the laser field is switched
off. Thus no ionisation occurs there any more, 'as well. This lis
not -to be confused, with the saturation mentioned above. This
behaviour s typiéil to the ionisation process in all the cases
we have studiéd. ’ '
For each’ square well potential, we have studied the behaviour
of the iohisation rate ‘W as a function ;t the laser field
strength parameter ‘- for several value& of the laser frequency
para-etef ". We have seen, in Jach case, that,ienisatioﬁ starts
té take place only when * exceeds sonme thresholg value, which we

g

denote by ‘e and then increases with increasing 4. IB Pigure 58

we see W as 3 function of » for the N=12 level square well. ’;pr

two values of -, ~=9.5 and "=30.0. We see that the behaviour of
log. W as a funciion of log.* is distinctiy [ 1inear This means,
that if we dencte the slope as 2., then W s proportional to L2

We have observed this power law behaviocur 2f W as a function of

in all the cases we have stud1ed..

We can thus summarise our results so far by stating. that for

any of the sguare wells we have studied. we observe ionisation

[y

only when the laser field strength parameter exceeds sonme
]
threshold value S which -depends on the laser frequency. para-

-«

meter - and vhat for values of : above this threshold value we
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" Figure 58
The ionisation rate W as a funnction of the Jaser field strength
paraneier J for a N=12 level well. The straight lines indica
2V .
Wal behaviour. For n=9.5 the value of v is 2.2, and for N=R0%0
it is 1.2, ’
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have W asz, where , depends on the laser frequency parameter -.

As the laser intensity I_ is proportional to 12, we can state our

L
result also as e
» J
a°
Wa'l, (10.c.1)
This kind of behaviour. with an integer ., is typical to

multiphoton prbcesae-; the ionisation probability is equal to the
product of the . transition probabilities involved, each of those
being, in turn, proportional to the photon density, i|.e. propor-
tional to \é (or to ILb. ’

Por each of the four sguare wells we have studied, we have
looked now at the behaviour of the coefficient . as a function of
the laser frequency parameter -. For high frequencies, i.e. largé

values of -, we find that . is approximately inversely propartio-

nal to n, i.e. we have

.=A/n, {10.c.2)
»

where A 1s a constant. We have observed this kind of behaviour
for all the square wells we have studied
If we look at the most basic quantum picture for the 1ionisa-

tion of an electron from the ground level of the quantum'well by

a laser field with frequency ., then the number of photons re-

quired for the ionisation to occur 1s the first integer above

~

.‘Q:

where

,Q=(vo-al)/hﬂ, {10.c.3)

where VO and E1 have the same meanings as before. In our units

expression (10.c.3) becomes

PN

k(



JomB/n B-(Nng—Alz)/tﬂAi. (10.c”4)

Q

The results of our study of v as a function of n can be seen
in Figures 59, 60, 61, and 62, which are for the square wells
with 4, 8, 10, and 12 levels respectively. The e;;or bars repre-
sent th; statistical error in our results, and the bold lines

represent V the gquantum mechanical estimate for v, as given by

Q
expression (10.c.4). We can clearly see in each case, that at the
high frequency range, i.e. for high values of n, our results fall

~ ’ A)
rather ;lose to the values expected from the quantum mechanical

picture, especially in the 12 level case.

We also represent our results in the form of a table (Table
4). For each of the four wells we have studied, we list the
values of - we have examined, and for each value of 1 we list Xt;

the threshold value of : for the onset of ionisation, our numeri-
¢cally obtained value for ., and the corresponding quantums mecha-
nical estimate Q (as defined in expression (10.c.4)) for multi-
photon ionisation.
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Pigure 59

The power law exponent V as a function of the frequen&? parameter
n for the N=4 level well. The straight solid line corresponds .to

the guantum expression for v as a function of n.




- 248

4+
lle
-
L 3
L.
'-

| i o
o
N

Figure 60

The power law exponent - as a function of the frequency parameter
n for the N=8 level well. The straight solid line corresponds to

the quantum expression for v as a function of n.



2473

-
L 3
-
L 2
T
'-b
L J
-
-
[ ] *
10 I w
-
. -
-
]
- )
-
-
-
4
.
-
‘ A e 4 VN S | A A A A e A A
B T T vy 4 - » SER gm Sun u

102

[ )
o

[ ]
b
oOT

Figuré 61

The power law exponent v as a function of the frequency parameter
n for the N=10 level well. The straight solid line corresponds to

' .
. thy quantum expression for v as a function of ns
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The power law exXponent V gqjatggbcﬁion bf:fhe fféduency parameter -

N for the N=12 level well. The gffaiﬁﬁk‘sol d line corresponds to

the quantum expression for v as a function n.
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Table 4

°

Summary of the resalts of the numerical experiments on the ioni-
sation rate for electrons in the square wells with 4, 8, 10, and
12 energy levels. PFor each well several values of n (the laser
frequency parameter) are presented. For each value of n the
corresponding values of xt (the threshold value of X for the
onset of ionisatioe&, the numerically obtained v (for the power
law dependence Wa 1“"), and the corresponding quantum mechanical
estimate vq are shown. ‘ ’ .

e — — s — Ty —— —— - ———— — ——— — ——

| ) ot I
I I | [ I
4 | 0.15 | 0.40 | 6.2 | 29.5 |
: 0.25 : 0.34 : 4.4 : 17.7 :
: 0.5 : 0.25 : 4.8 : 8.85 :
: 0.8 : 0.20 : 5.0 : 5.53 : -
: 1.0 : 0.16 : 3.7 : 4.43 :
: 1.5 : 0.07 : 2.1 : 2.95 ; .
: 2.0 : 0.10 : r Y { 2.21 : "
: 2.5 : 0.17 : 2.3 : 1.77 :
: 3.0 : 0.24 : 2.0 : 1.48 :
] ) | | [ |
| { f [ |
8 | 3.0 | 0.24 | 2.0 | 5.68 |
; 4.0 : 0.40 |I 2.6 : 4.26 :
: 6.0 : “0.80 : 1.9 : 2.84 :
: 80 : 1.0 : 1.9 : 2.1'3:
: 10.0 : 0.95 : 1.5 : 1.70 :
: 12.0 : 1.2 : 1.4 : 1.42 : )
:,17.0 : 1.8 i 1.4 : '1.00 |'
J | - |
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‘10.d. Discussion of the numerical results for the ionisation rate

in the high freguency region

The numerical results for the ionisation rate, that we have
obtained by means of our classical model, bear the characteris-

tics of a multiphoton process, when we are at the high frequency
n .
range. We have seen that our classical ionisation rate W' is

proportional to ILv, where IL is th; laser intensity, and that v,

in the high frequency range, is quite close to vé,

obtained from the basic quantum model (expression (10.c.3)).

'

From the quantum mechanical point of view, ion}sation'fron a

the estimate

potential well, in the presence of an oscillating electric field,
can occur either through tunnelling or through a multiphoton
proc;?s. The type of ionisation process that actually occﬁrs
depends on the raéio qf the mean énergy of the bound electron and
the 'averaqc energy of osc;llation of the free electron in the
oscilla%ing field'(Keldysh'1965, Geltman 1977). This ratio can be

expressed in the form of the "adiabaticity parameter" y, given by

1/2

'Y=w[2M(VO—El)] /eE (10.4.1)

L
- ' .
When Y<<1, tunnelling ls dominant, and when Y>>1, multiphoton
prpcessés are dominant. Generally speaking, this means, that
multiphoton processes can be expected to be dominant in the "high
frequencyfrange.

In our units the expression for the parameter Y becomes

-

st(Nznz'-Alz’)/zmAl. ! (10.d.2)

dsing this expression we have verified, that in our‘high frequen-

1]
a
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cy range, in each case, multiphoton processes areareally éxpected
to be dominant. ) . .

Our results, whicP show a multiphoton-like behaviour of the
ionisation rate as a function of the laser intensity in the high
frequency range, may be puzzling. Our calculation of the ionisa-
tion rate was purely classjical, and it is a common understandidg
that lultiphpton processes are gquantum mechanical ?k nature. This

. . ;
apparent contradiction may be resovlved by explaining these re-u
sults in &etus of higher harmonics of the effect the oscillating
laser field has on the squaré well pote?tiaf.

We use as our starting poin{ the usual Hamiltonian in momen-

tum-position space (without the switching function t(t)),' given
by (cf. expression (10.a.2)) .-
H(p,x,t)=p2/2M+V(x)+eELx,cos(wt). - {10.4.3)

The only change we introduce here is in the reference points for
measuring the position and ehergy. Thus V(xX) is now given by

! —VO if |xi<d/2
V(x)={

0 if |x|>d/2. ’ ' (10.d4.4)

1 -

The term (1/2)eE d cos(wt), implicitly added this way to the
Hamiltonian, does not cause any change in the equations of mo-
tion, and thus is of no consequence in this case.

Now we apply the canonical transformation : .«

T=p-eA (t) :; £=x, (10.4.5)

which is obtained from the generating function

¢ v

n

I




P(’,x,t)=[’+eAL(t)]x, ) (10.4.6)
where b - '
. . »>
. 4 .
A (t)=-E_ - cos(wt')dt'=-(E, "uisin{wt). (10.4.7)
L Ld L

.
oY

When p and x are replaced by = and

9?/3té-eBLx cos(wt) 1s added, we obtain the new Hamiltonian

Him, £, t)=(rved, (t)]2/2M3V(z) . (10.4.8)

We have obtained thusithe Hamiltonian in terms of the magnetic
vector potential, from the criginal Hamiltonian, which was in
terms of the electric potential. v o

Now we intréQuce a second canonical transformation, given by
P=1 ; X=£+4(t), ) (10.d.9)

which is obtained from the generating function

F(P,E,€)=P[£+6(t) +e(t), (10.d.10)
whe;? '
.t ¢ 2

S{t)=—-(e/M) [AL(t')dt'=—(eEL/Mm Jcos(wt)=-a cos(wt) (10.d4.11)

* . /2w ’ . S .

and ' - %

2 3 2. . ‘ 2. 2 3 b .

E(t)=-(e‘/2M) fAL (t')dt'=-(e“E, “/8Mw) [2ut-sin(2wt)]. (10.d.12)

. 0 . ‘ .

H .

Here aF/at=—cep/M)AL<t)-(e?/zu)ALz(t)=92/2ﬁ-[p+eAL(t)]2/2M; and -

thus the Hamiltonian betomes

L

H(P,x.t)=92/2M+V(x-6(t))=?2/2M+V(X+a cos(wt)). (10.d4.13)

- ¢

.,

. respectively, and the term

o
U



a, which is defined by expression (10.d.11). is the amplitude of

the electron's oscillation in the electric field ELcos(wt).

We have thus switched to a frame of reference which oscillates
with the electron. In this new frame of reference the square well
potential ié seen as oscillating back and forth. In the high

frequency range the electron sees the square well potential

-

distorted, due to the average effect of these oscillations. AMe
canonical transformation we have used here is the classical

equivalent of the ugitary transformation (Gerck and Miranda 1984,

3

Mayer et al 1985), which is used in the guantum mechanical }reat- .

i)

ment of the Hamiltonian for the same purpose.

The PFourier transform of V(x) (expression (10.d.4)) is given
bY N * -
" a/2 A
Vik)= fv(x)exp(-ikx)éx:—vo [exp(—ikx)dx: , .
- -d/2
-(2V,/k)sin(kd/2), (10.d.14)

and thus, using thé inverse Fourier transform, we have

~ ®

V(X+a cos(wt))=(1/27m) fV(k)exp(ikX)exp[ika cos(wt)]ldk. (10.4.15)
oy, ‘. ° *
By qaking use of the expansion (Gradshteyn and Ryzhik 1980) -
exp[ika cos(wt)]= I inJA(ka)exp(—inmt), : : (10.4.16)
: n=-« .

wﬁere Jn(x) denotes ‘the Bessel function of the first. kind. we can,

rewrite‘expression (10.4.15) as

V(X+a cos(wt))=(1/2m) £ 17 fV(k)Jn(ka)exp(ikxidk]exp(—inwt).

n=-« -0

“(16.4.17)

a is a function of E and thus also a functioﬁ of our dimension-

>~
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less parameter ). Therefore we define
vntx;X)=(1/2w)1" fV(k)Jn(ka)exp(ikX)dk, (10.d.18)

and, using this definition, our Hamiltonian becomes
. AL
2 > - ¢
H(P,.X,t)=P“/2M+ [ vn(x;X)exp(-inmt). , (10.4.19)
n=-

.

Using (10.d4.14), expression (10.d.18) can be rewritten as

-(2V0/w)in f(1/k)sin(kd/2)Jn(ka)cos(kX)dk if n is even
v (x;A)a{ 0 = . .
? -(2V /m1™*1 [ (1/k)81n(kdA/2)J (ka)sin(kX)dk if n is odd

B O -
(10.d.20)

We define now new variables:
§=2a/d ; s=2x/4 ; t=kds2. . (10.4.21)

Using these, the last expression becomes
-(Vo/w)inf (J_(ot)/t){sin[(1+s)t]+sin((1-s)t]}dt
v (x;)\)={ =P .
o bavgmia® 1 [ 13 _(ati/t](cos[(1-s)t]-cos[(1+s)t])dt.
0 .

(10.d.22)

’

The top expression on the right hand side is for even n§ and the

a

bottom expression is fd}\odd n.

Now we int%oduce the iritegration formulae (Gradshteyn and

. ; ) /

Ryzhik 1880 for a general v) '
E

o sin(varcsﬁn[(lts)/oJ)/v‘

A {1 (0t)/t]sin[(1ts)t]dt={
o Vv oVsin(vr/2) /u{1ss+[{128)2-g211/2)V

/ t

) }

{(10.4d.23) -



D

<

all

and

-

[[Jv(ct)/f]cos[(lts)t)dt= {
0

cos{varcsin[(1*s)/3]}/v
3lcos(vv/Z)/v(lts+((ltslzfdzll/z)v-

. ©(10.d.24)
~ . ! )
™~ . -
The top &xpression on the right hand side, in each case, is for-
|1+8|€£0, and the bottom expression is for |1%s|37.
Using these we have (for 0<1)
1 4
' (—VO It |sig1-0
Vo (X:h)= 1—(vo/v)(n/2+arcsin[(1-|s|)/0]) if 1-0¢[s|1+0
0 : if |s|zl+0. (10.d.25)
‘If the laser field is not too strong, i.e. o is small enough,
then VO(X;X) is approximately given by.expression (10.d.4) for
V(x). We denote this approximation tof;Vo(x;A) as VO(X).
‘QWe'also have, for non-zero even n,
—(Vo/nn)(-l)nlzsin(n arcsin{ (1-{s|)/0])
Vn(x;k)?{ )
—_— 0, . ~ (10-d.26)
and, for odd n, g;
'—(Vo/hn)(—1)(n+1)/zsgn(s)cos(n arcsin{(1-|s|)/a0]}
v (X;A)={' - .
n 0. ' " (10.4. 3ake
The top expreséion on the right hand side, . in each case, is for

[

and the bottom expregéion is for |s|g1-0g or |s|3l1+0.

-

1-0¢|s{<l+o,
We note, from the aboye expressions, that v_n(x;x)=vn(x;X) for

n, and thus we can rewrite the Hamiltonian (expression

[N

(10.4.19)), for small enough values of o, as

' co .
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H(P,X,t)=H (P,X)+2 [ V_(X;))cos(nut), (10.d.28)
. n=1 O

where HO(P{X) is the hnperturbed Hamiltonian for the square well,

given by .

Ho(P,X)=P%/2M4V (X), _ (10.d.29)
and the vn(x;x) are given by expressions (10.4.26) and (10.d4.27).

th

vn(x;x) is the contribution of the n harmonic of the laser

" frequency  to the distortion of €he squa}e well potential, as

.

seen by fhe‘electron.
Now we perform the usual transformation to action and angle
variable;. Usin& expre;sion (9.a.3) we have
. d/2 ' ' | .
1(z)=(1/n1;>gzn(z+vo)]1/2dx=(g/n)[2u(vo+z)]1/2, (10.d.30)

and thus we have

+

Ho(1)=n212/2naz-vo,- (10.d.31)
and, using expression (9.a.4), we alpo haQq
2 2 ' .
Q,(I)=r"1/Mda". (10.4.32)
Using expression (9.a.5), we have now
X -1/2
8(L1,X)=MO,(I) [ (2M[H (I)+V ]} ") “dX'=
- X
0
t(ﬂ/d)(x—xo)=t(ﬂ/2)(s—so) , * (10.d.33)

-

"In order to have g(s) uniquely defined, we choose the signs and

. $ »
.‘section 9.a)

w»

.

xo, so that we .have (cf
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((7/2)s it P>0 and s$>0 /
3(s)=1{ (7/2)(2-8) 1f P<O

\(7/2)(s+4) if P>0 and s<0, . (10.4d.

and thus we have

(2/7)9 if 0€Bg/2
s(9)=4"({2/m)(7=-0) if T/246K37/2

L(2/m)(8-27) if 3m/240¢2T. ' ' (10.4.

The Fourier series expansion of vn(x;x) is giv;n by (ct.

pressions (9.a.16) and (9.a.17))

V_(X;\)= £ v®(A)exp(im8), (10.4.
n pe-w 1
“wher'e ‘ ‘
2m ' E R
V:(A)=(1/2n) fvn(x;x)exp(—ine)de.~ - (10.d.

0

Using .expressions (10.d.34) and (10.d.35) we can rewrite this

/

34)

35)

36)

37)

1 ' ' 1 : : :
VR(A)=(1/4)[ [V (X;Ayexp(~imns/2)ds+(-1)" [V_(X:})exp(imns/2)ds+
o n - : ‘

-1
0 . . ‘ ’
[V 1%:\)exp(~-im1s/2)ds]), : (10.4.
A T - , '
and thus Qé hq&.ﬁ‘ ' ;
e .
- T (1/2) an(X;A)cos(mﬂs/Z)ds' if m is even .
vﬁ(x)={ “11 . . -
-{1/2) an(X;X)sin(mns/Z)ds if m is odd. (10.4.
-1 ‘

38)

4

39)

Using eipressions {10.d.26) and ,(10.4.27) we have thus, for non-

Zzero even n'

- A toA
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. .
2} -
—(vo/nv)(—l)n/ [sin(n’arcsin[(l-s)/:]doa(m"s/Z)ds
v:u)-{ t-o "

o, . S/) (10.d.40)

and, for odd n,.

"o . M
VB (A= { t .

n i(Vo/nn)(.—l)(n”)/2 fcos(n arcsin{(1-s)/1])sin(mns/2)ds.
. 1-7

(10.d.41)

The stop expression on the right hand side, in each case, is for

~

*
even m, and the bottom expression is for odd =m.

By using the change of variables ¢f=(1-s8)/5 (1.e. s=1-77), we
- N L4

[
obtain now

aw

1 ‘
" —(VOO/nﬁ)(-l)(n+m)/2 [ sin(n arcsin¢)cos(mmo£/2)dE
e
n ;l(voo/mr)(—l)(“*"")/2 [ cos(n arcsing)cos(mng£/2)dE.
Mo, 0 - .
* {10.d.42)

The 'top expression on the right hand side is for even m and n,

and the botfom expression is for odd n and n. If m+n is odd; then

- A
VR (x)=0. .
nr

Now we -are ready to apply the Chirikov criterion to our re-

sults. Fér\a blben value of n, the mth‘resonance occurs at the
. \ . .

value of the action I:, given by (cf. expression (9.b.3))

”’

pd

- m 10 4
_Aw=mQ (17 . ) . (10.d.43)
Using"expressiay (10.4.32) we obtain
\» \/ - - .
§ﬁ=Md2wn/n2m.' . ) : (10.d" 44)

We have Q' (I1)=n2/Md%, and thus me have



.

(A1) ®=(2d/ 1) 124V (1) 1 2/ 2= 20/ m) (2MV 3/mm) 2/ 2 P (n.my 12

(10.d4.45)
where'gfn,n) is given by
S s
/sin(n arcsinf)cos(mnc&s/2)dE if m,n are even
F(n,m)= {01 s
} [ cos(n arcsinf)cos(mmof/2)dE if m,n are odd. (10.d4.46)
0 ‘ .
, AN
The Chirikov criterion (for a given value of n) is given by -{cf.
expression (9.b.14)) . -
. m+2 m_ .m+2
(AT)  +(8T) I -T 74 ’ (10.4.47)
N which becomes here . *
(2MV o/nmy /201 E(n,m) 1 2+ F(n,m+2) 1 /2 )oMdun/ma(me2) . (10.d.48)
»
Now we‘;witch to our dimensionless parameters (see section 9.c),
and obtain
. (z/nW)l/Z[(F(n,m)|1’2+|p(n,m¥2)|1/2];2nA1n/Nnm(m+z) (10.d. 49)
\ ’ . A
! and - -
s=2)/n%. g ' ' (10.4.50)
From expression (10.4.30) we see, that I is limited to the
» , range
I<(d/w)(2kvo)1/2. N . (10.d.51) " .
, ? - . - .
Using our dimensionless parameters and expression (10.d.44) we
T obtain thus, for a given n, the requirémemtz— -- Lo N
‘mp2nA n/NT, ‘ . (10.d.52)




vt

’

The nth harmonic is thus expected to become fully stochastic,w

when the Chirikov criterion (express;on,(losd.tg)) is satisfied
for the smallest possible value of m fof this value of n (expres-

sion (10.d4.52)). N *

@

For a given square we¥l potential (4 given value of N) and a

given value of n, we can thus check,'using expressions (10.d.49)

and (10.d.50),“for what value of ) the nth harmonic becomes fully
stochastic. We have found out, that for all the square wells we
have studied, for high frequencies (high values of n); if our

numerical experiments vyielded the relation W 122V (see section
10.c}), then the value of ) for whieh the nth harmonic, with n
being the integer closest to v, becomes fully stochastic, |is

quite close to the threshold Xt for the onset of 1onisation1/ as
- L

.. found from the numerical experiments. The results for the 4 level

and 12 .level wells are sghnarised in Table 5.
The results of this study show, that the multiphoton-1like

behaviour, which we have observed in our classical results, 1is

-
.

due to theé higher order harmonics of the oscillating laser field,

'thgough their contribution to the distortion of the square well

potential, as seen by th? electron 1n the high frequency range.

The similarity between these results and.multiphoton transition

@

probabilities‘ probably ihplies, that multiphoton processes are

important in laser induced ionisation, as expected from .quantum
v
ymechanical ideas. A full quantum mechanical study of this system,
. ) . \
however, has not been performed yet.



parameter)

ionisation,

as found from the numerical experi

Table 5

anpdfibon Between ), the value of ) (the laser field
for the &nset of full stochasticity in the n
. nic .of the oscillating potential,

trength
harmo-

, as seen by the electron in the
high frequency range; and the threshold value )

for the N=4 and N=12 level wells are shown here.

19.
24.
30.

|

|

l

|

3
] 13,

| N

[

:

|

[

l

| 38.

|.

.07

.10

.17

.24

for the onset of -
ﬁents. The results

26

43
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- Chapter 11

Prospects for further study of the problem

11.a. The preasons for carrying out the classical study and the

difficulties in carrying out the guantum mechanical 'study

v

+
.

"of the problem

The study of the square well potential in the Abcillating
laser field, that we have carried out in this work,” was purely
classical. Strictly speaking, a quantum mechaniéal treatﬁent.
based upon the so&gtion of the time dependent Scﬁrédinger egua-—-
tion, should be carried out he;e. However, on one hand, there afe
justifications for carrying out the classical ;alculat4bn, and on
the other hand, the qﬁantum caculation is very difficult to,
perform, Ss we shall see Selowx

As a general rule, the more guantum energy-leveis we-bave in
the well, and the closer togethe{ they are, the more reliable a
classical treatmeni.of the problem will be. We cgh obtain a kind
of rough estimate for the-validity of the classicai treatment, by

comparing. the quantum energy levels with the semiclassical ones,

obtained by using the Sommerfeld gquantisation rule .

X . . .
(1/7) f%ZM[En*V(x)])l/zdx=nﬁ, (11.a.1)

R . .
) -
where X, and X, are the values of x which satisfy_V(x1)=V(x2)=En.
In our case-V(x) is given by expressioﬁ (7.4.2), x1=0, ahd
X,=d, and thus we obtain ‘ .
E =n’i%h%/2Ma® ; n=1,2,....N, ‘ © (11.a.2)

where N is the same as for the quantum case (defined by expres—’

-
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sioh (7.4.10)). The value of q’*i ﬂeternined hy tpp width - and
;depth of the well. - 3 u‘ -

We can no& coﬂﬁﬁre the\quaniun levels (expression \(T.d.lt))
with the senic{aapiéal ones (expression (11.a.2)). The comparison
shows that in the case of the.l leYel well (N=4)- the difference
varies between %53 (for the ground levé}) and 41% (for the top
level). In the case of the B level well the difference\\ztijes

’ only betweerni 17% and ;1:, and for the 12 level well it is déwn ta
- the range between 11X and 14X. We can therefore expect that, with

-the possibfi exception of the 4 level case, od; clasgical treat-
ment of this system (with 4, 8, 10, and 12 levels) should be
. reasonable.

As we have seen in section 8.c, similar classical studies of
stochasticity. and ;onisation have been car;ied put for other
physical systems in the past, with th; 'rbsults ‘showing géod

- agreeﬁent wiéh the experimental data. The success of the classi-
cal apﬁroach in éhis previoué wori suggests, that iY has a good
chance of vyielding reisonable resylts in~our.case as well.

L]

the problem. The full time dependent Schrodinger egquation is

.
o

given by the expression

1

- 2 2 2
“The/2M) (3¢ /3K ) +V () V+eEB_x
: ‘ L

S

where Y=y (x,t) is the time dépendent wave function. All the other
/(’ symbols and notationé have the same‘meaning as in the previous
sections. ' Carrying out the kt}aight numerical. solution of this

equatiop turns out to be unpractical due to numerical instability

-

We now direct our attention to the quantum mechanical study of

f(t)cos({wt)v=ih(3y/3t),6 = (11.a.3)




v,

\

_ problems and unfeasible computation times. Such a calculation has

besn carried oug’ only for the consfﬁerably silﬁlgr case of .a
delta-function potential (Geltman 1977). Therefore so-;_kind of
an aﬁproxllate method has to be used instead.

The ’tirst gbproxinate method, which we have looked into, is
the usual perturbation theory. Th;\ionisation rate for a multi-
phdton process involving n photgpa is given, : to first approxlna:

th order per-

tion, by an expression which 1s’d§;1ved from the n
turbatio; theory (Bunkin and\Tugov 1973, Gontier et al 1975). The
evaluation of this expression in our Cl;; can be -;arried out
Analytically, and th&s does not present a problem for itself.

Howéver,'gqrturb‘$1on theory turns out to be invalid in our case,

as tﬁe\etteci of the oséillatlnq laser potential is much larger

than the separation between the unperturbed energy -levels near

the boYto-J of éhe square well. This is especially true in the
casées w;th\\ﬁ or more levels in the well, where the clasaieal
treatment is expected to be rather reliable, and which were of
main ;hterest in our>gtudy.

lnother-approxinate method, which we have looked into, is the

" S-matrix method (Keldysh 1965, Reiss 1971). The S-matrix gives

P , .
the transition probabilities from initial states to final states,

and . the transition rate (}onisation rate) can be caiculated from
- . -

?

it. The S-matrix element S

£4 is given bY-
- . » -
'Sf'i=5f'i-(ﬁi/ﬁ)-fm<.wt(x,t)|H'lwi(x't)>dt, _ (11.a.4)
where H' is the interaction causing term (perturbation term) in
4
the - Hamiltonian (eE; x f(t)cos(wt) in our case), ¢,(x,t) is the

B

initial stafe-ot the unperturbed Hamiltonian, * and wt(x,t) is the

267.
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R . .
,
’ ' . \
- , -

final state of the perturbed Hamiltonian. Sr i is the transition

probability from the initial state { to the final state f. So tar.

~

‘everything #e exact. The approximation is introduced in the

choice . of sone apprgxinate expréésion for wt(x,t), which |is
usually ﬁnknbwn, <as in"our case. Making the proper choice of the
approximate expreaaion' for wt(x,t) is of &ritical importance

here. When we ha&e followed the choice made by Keldysh (using EES

.

expression for a free electron in the oscillating eléctric
. ' ta

s

field), we got a zero ioﬁisation rate, which indicates that this

choice is inadequate in our case. Another choice for the approxi--

mate wr(x.t) ({an expression derived from the final state for the

square well potential, when the oscillating electric field is not

present) yielded results for the ionisagtion rate, which were too
- 7

small to be reasonable. This indicates, that the S-matrix lethgd
is not reliable 'in our case, due to the lack of an adequate
approxinatio? for the tfnal state wt(x,t).

As the perturbation term in our case is periodic .in time (if

the switching gpncfion f(t) is omitted), we also looked into the
’r

- useé of the Floquet theorem for dealing with the perturbed Hamil-

tonian (Shirley 1965). However, the use of this method becomes

- practical only when the physical system in question can be appro-

ximated by a two level system (plus the continuun), 1:g: 3 system
witg a single quasi—reqonant intermediate state. In our case this
is generally nok the case. In order to deal wiéh the continuum a
perturbation theory based treatmgnt negda to be used (Maquet ‘et
al 1983, Holt et al’1983),.and, as mentipned aSoveﬁﬂberturbaxion

theory is not valid in our case.



There are other availabdble -Qghods, " 1ike the resolvent method
(Beers and Arl;trong .1975), and rate.equafion based lcﬁgodo
{de Moij;rc ‘and Eberly 1978, Eberly ind qu}l 71979). However,
abiin. these methods are mainly useful Yor systems which can be
reduced %o éwo,lovcls, with a pcrtu;b;tion'thcory based treatment
of the continuum, and th;s~are not suitable for our: case.

In the spirit of the previous work in this ticld{ w; suggest

an experimental study of the ionisation from square potential

wells in semiconductors, driven by a laser field. As the ionisa-

tion rate is an experimentally measurable quantity, such a study’

will be able to check our somewhat unusual clnisica} predictions
for it, and especially its -ulflphoton-liko character in the ﬂhgh
frequency range. The experimental study is discussed in the fol-

lowing two sections.

S

‘I
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11.5. The experlmental study of ionisation from a sguare well

L " potential in an’gscillating laser field

; L :

As we have seen in section 7.b, present day tcchnoiﬁgY makes -
»

.

it possible to fabrichte potential well structures, of desired
N .

shape and dimensions, in semiconductors, and square well poten-

tials in/Q-rticular. Thus the effectively one dimensional square

well potentials we have discussed in this work can b¢~fabr1cgted

.

in practice, and made available tbr experimental study.
The experimental study of the square well potential in an

oscillating laser field is of special interest, as it serves as a -
' ] . :
test for the extent of validity of our classical study of the

onset of ionisation and tite ionisation rate. As we shall see
\ - ’ -

below,' both the threshold value of the laser field strength for
the onset of ionisation, and the ionisation rate itself, can be

experimentally measured, and conpgred with the classical predic-

%
tions. R

3

The tunable laser system, as hiscussed in chtion :7.C.‘ éan
serve as the basic system for the experimental study. By proper
choice of the dimensions of the square well poteﬁtial, the desi-
red numbé? of levels can be obtained. The frequency'qgl}he laser
can be varjed by using different laser sources, to correspohd to

the several different values of thé frequency parameter n, used -
in the theoretical study of eaéﬁqsquare well potential. Finally,

. -

the laser intensity can be variea,iwthus varying the )ase} field

strength, to correspond to the ti?ﬂd’strength parameter X in ‘the

theoretical study. PP ’

. - The study itself basically consists of’the application of a




pulse of the driving laser, and the measurement of the resulting
8
“Monisation. The duration of the pulse is chosen 8o that it cor-

responds to the duratilﬂ&u.ed in the theoretical study (see

section 11.c for further discussion of “this point). The intensity

is chosen as outlined above.

The presence of ionla;tion can be ‘experimentally dgtegteh in .

two‘ ways. The first method is based upon the measurement of the

'{ntcnsity of the tunable laser output. The laoinq'qr the tunable
. . LI 3

laser itself, as we have seen in section 7.c, occurs due to Ehe
- . -

recombination of electrons in the ‘sgquare well with holes in the

valence band. When ionisation occurs.. the number of electrons,

[N

’-which are left in the potential well, and are thus available tor\v

recombination, decreases iccordinq‘to the extent of the ionisa-
“tion, aﬁd'éhis results in a coeriponding decrease: in the inten-
si}y of the tunable laser beanp wpich can be nea-ufeq. ' ’
The , second method is based Qbon the leasureiin;”bf the elec-
tric conductivity of the conduction band.‘?hen ioﬁlgation occurs,
electrons leave the square wéll and move into the conduction
"band. Their number Qaries ;ccorq1ng to the e;tent of the 1§nisa-
tion. This increase in the ngnber of electrons in the conduction
hand’ results in a corresponding increase ‘in the elegtrical con-
ductivity of the latter, which i3 the quantity that is experi-
,ientally mgisured'in this case. =
Ua}pg tpis experimental system, VAnd fither one 6t:}tho -two
measurement methods, the exp;rinental study can now be carried
out. By varying the driving laser intenslty,'and iookinq for the
g - .

dec}ease in the tunable laser beam intensity, or the increase in

the electric conductivity of the conduction band, the threshold

AN

.
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value for the oﬂ;ot ot ionisation can be found. . ) -
By ;ncro.oing th; driving ll;or intcﬁnity beyond the threshold
valpc’ﬁhd cafz;\nq out a qulnfitntlvc measurement ol the tﬁnnblo
‘laser ﬂPt.nlity, or the conduction band's electric conductivity,
.\n/l:,4g{n;¥bcrilo§tal Qaluc for the iézioatlon rate ?an be obtained.
This ' can be carried out-for several values of the driving laser

_ \\inthgity, ‘and thus the scaling of the ionisation rate with the
. : e ! .

driving’ laser intensity can be experimentally obtained, and cam~

pared with the results of the theoretical study. . :

-




3 e

11.c. Suggested experimental] system for the éengori-nco of the

study

»

As we have seen in the previous section, the ionisation of
electrons from a square well potential in an oscillating laser

fleld
system for the conduction of such a study. The system is the

combination of GaAs and Al;Ga‘_xA- in multilayer hcfbrojunction.

(Dingle et al 1978: see section 7.b for further explanations).

The sjuare well potential is tlbﬁ}tatod by having a layer of
. ¢

-

GaAs between two layers of Aleal_!Ao. By varying the cancontr--

-—%tion x of the Al, the depth &t the square well can -be controlled. .

The width of the square well is equal to the thickness of the

v

GaAs layer. and thus it can be controlled as well. This way

square well potentials can be tlbtlcutig with a width 4 between

o o ' .
100A and BOOA, and a depth Vo between 0.20eV and 0.55eV. This
corresponds to a range of 2 to 28 quantdﬁ levels }n the well, L

the effective mass of the electrons is equal to 0.07-e in this

A}
case.
.

" As an-exalple we dis;uss here in detail the N=4 level case. A
4 leve]l well is obtained, for example, Qﬁen d=130A and
VO-O 505eV. Uaing expros-ion (9.c.4) we find, ghat the bouncing
froqucncy in this case is given by wg =], 66x10 -t
If we usgwin our system a CO2 laser, which haa a trequency of

m-1.78x10 —1, we tind that our frequency parameter is n=1.07 in
this case. From table 4 we see, that the value of A, (the value

of the laser strength parameter for the onset of ionisation) for

‘this frequency should be around . 0.14. By using expfpsnion (9.c.6)

AN

.lf.n be experimentally ofudied. Here we suggest a pbnnibléﬂ
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Cax10'7cm”

and the relation

2,

IL-(I/Z)COC!L . (11.c.1)

we find that the above value of At corresponds to a laser inten-

sity of 53uw/c-2, ‘which is well within the experimentally avail-

‘able range.os A pulse duration of 100 periods of the CO laser”

2
turns out to be about 3.3ps, which is again experimentally avajil-

able.
The rise ln.telper.ture in the semiconductor crystal due to

the laser pulse is given by (Gerck and Miranda 1984)
AT-aILtp/pC, (11.¢c.2)

where a is the ab-orption‘qootticicnt, I. i1s the laser intensity,

L

t  is the laser pulse duration. o is the density, and C is the

- P

-pocltlc heat. For GaAs these paianotorl are given by (Grave

1967, Pankove 1971) a=9cm }

3

(for a carrier density of
)}, 235.329/c131 and g-o.asJ/q°K.vThuo, in our case, the
rise in temperature is only‘lbout 10-3°K,J?nd thus totally negli-
gible. A ‘ | ‘ *

We see thus; that IQ; laser pulse intensity and duration
invglved in the experil‘ntnl ctudy; i; this case, are well within
the current ;xpcrincntal capabilities. The heating of th% sample
is negligible,/- -and thus causes no probl;n here. This is true for
the 8, 10, and 12 level wells as well. .The exn-}le for the 4
level well, «piscus;c¢ hére; as well as similar examples of poi—
sible experimental parameters for the 8,'~é0, and 12 level square

wells, afe summarised on Table 6.

We QFOUIG note that the dimensions given here for the various
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Table 6 A

List of possible values for the physical paraméters for some

selected 19'53 quantum wells driven by co laser
(wel.78x10""'s ) for possible experimental 1nvestigation. The
pulse duration for 100 periods of the oscillating laser field |is
3.5ps.

S S
| | | ! ! | ) | |

N : Vo : ‘: : z::? } n for : A\, for ; IL/A2 : IL(xt; ‘

| (eV) | (A).| (s %) lcozlaser| this n |(GW/cm”) | (MW/cm™) |

| | | | ! J | |

I ! I [ I 1 | | |
| 4 | 0.505| 130 [1.66x1014| 1.07 | o0.14 | 2.7 I 83 |
I | | 15! | o, ! |
| 8 | 0.47 | 270 |4.15x1013| 4.29° | 0.45 | 0.045 | 9.2 |
L | | 13! | ! ! |
| 10 | 0.44 | 350 j2.s51x10*?| 7.11 | 1.3 | 0.010 | 17 |
| i | | { ] | [ {
| 12 | 0.40 | 440 [1.60x1013} 11,1 | 2.2 | 0.0027 | 13 |
| { ! ! | | | I |

- - — e e o A - - -
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square walls are only examples, and the same number of levels can
alsg be obtained with other combinations of width and depth
within the above mentioned rangesﬁ Using the relation (cf. ex-

pression (7.4.10))

V°-N2w252l2nqz, (11.c.3)

we obtain . < .
v a?/N2=537 g 7 ‘(11.c.4)

-]
where Vo is given in eV and 4 in A.

By varying V

0 and d so that Vod2 remains constant, the number

—

of levels.in tq?lwell (N} is not changed. The bouncing frequency

Y

5

w~ changes, however, and thus n changes, even when the d;iving

0
laser frequncy w remains the same. Thus n can be varied this way,
as an alternative to using different types of lasers. For examp-
le, in the 4 level case, n can be varied this way, with the CO2
L]

laser, - between 0.99 and 2.7 - a range similar to the one we have

used in the theoretical study.
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