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Abstract 

Since the emergence of electrospray ionization (ESI) mass spectrometry (MS) as a tool 

for protein structural studies, this area has experienced tremendous growth.  ESI-MS is 

highly sensitive, and it allows the analysis of biological systems ranging in size from a 

few atoms to large multi-protein complexes. This work aims to solve questions in protein 

structural biology by using ESI-MS in conjunction with other techniques.  

          We initially apply ESI-MS for studying the monomeric protein cytochrome c 

(Chapter 2). The physical reasons underlying the irreversible thermal denaturation of this 

protein remain controversial. By utilizing deconvoluted charge state distributions, 

oxidative modifications were found to be the major reason underlying the observed 

behavior. The positions of individual oxidation sites were identified by LC-MS/MS-based 

tryptic peptide mapping.  

           Chapter 3 and 4 focus on noncovalent protein complexes. ESI allows the transfer 

of multi-protein complexes into the gas phase, thereby providing a simple approach for 

monitoring the stoichiometry of these assemblies by MS. It remains somewhat unclear, 

however, in how far this approach is suitable for measuring binding affinities. We 

demonstrate that the settings used for rf-only quadrupoles in the ion path are a key factor 

for ensuring uniform transmission behavior, which is a prerequisite for meaningful Kd 

measurements. Overall, our data support the viability of the direct ESI-MS approach for 

determining binding affinities of protein–protein complexes in solution. 
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             Having established suitable conditions for the analysis of noncovalent protein 

complexes, ESI-MS is applied for monitoring the folding and assembly of hemoglobin 

(Hb). The native structure of this protein comprises four heme-bound subunits. Hb 

represents an important model system for exploring coupled folding/binding reactions, an 

area that remains difficult to tackle experimentally. We demonstrate that efficient Hb 

refolding depends on the heme ligation status. Only under properly optimized conditions 

is it possible to return denatured Hb to its tetrameric native state with high yield. ESI-MS 

allows the observation of on-pathway and off-pathway intermediates that become 

populated during this highly complex self-assembly process. In summary, this work 

demonstrates that ESI-MS is a highly versatile tool for addressing questions at the 

interface of chemistry and structural biology. 

 

Keywords: electrospray ionization mass spectrometry, thermal denaturation, noncovalent 

complexes, protein folding and assembly, cytochrome c, beta lactoglobulin, hemoglobin. 
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Chapter 1-Introduction 

In all organisms, there are several types of polymeric macromolecules that perform 

almost all essential activities.   The genetic information of each organism is stored in 

DNA molecules. Through the transcription process this genetic information is transferred 

to messenger RNA. Both DNA and RNA are poly-nucleotides. Messenger RNA directs 

the ribosome-mediated synthesis of polypeptides, which are long chains of amino acids. 

These polypeptide chains represent the “proteins” that fold into unique structures and 

constitute much of the cellular machinery. Proteins are responsible for structural support, 

transport, signaling, catalysis, host defense and many other functions. When proteins 

misfold, or when they fail to remain in appropriate conformations due to mutations or 

other defects, various types of diseases can ensue. A wide range of biophysical methods is 

available to probe aspects of protein behavior in vivo and in vitro. These methods provide 

a unified description of biological processes, thereby facilitating the development of 

novel therapeutic strategies.  

 

1.1 Hierarchical Structures of Proteins 

Protein structures can be divided into four levels, termed primary, secondary, tertiary and 

quanternary structures (Figure 1-1). Primary structure refers to the atomic compositions 

of the polypeptide chain, i.e., the amino acid sequence. Twenty naturally occurring L-

amino acids represent the building blocks used during protein biosynthesis [1]. All amino 

acids are connected into a polypeptide chain via amide bonds. In Figure 1-1a, three 

adjacent amino acids in a peptide chain are shown, depicting the special structural  
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a. b. 

Primary structure Secondary structure 

c. 

Tertiary structure 

d. 

Quaternary structure 

-biologically active form  

  

Figure 1-1. Schematic representation of four hierarchical levels of protein structure. a. 

Primary sequence. b. Secondary structural elements: α helix and β sheet. c. Tertiary 

structure of bovine cyt c (pdb 2b4z). d. Quanternary structure of bovine hemoglobin 

(pdb 2qss). 
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features around an α-carbon, which is the chiral center of each amino acid (except for 

glycine). “R” is the amino acid side chain. The R groups provide unique chemical 

properties to each amino acid, such as acidic, basic, polar, or hydrophobic. Conformations 

of polypeptide main chains are defined by the dihedral Ψ and Φ angles on both sides of 

each α carbon (Figure 1-1a). Due to steric restrictions, only a limited range of backbone 

conformations are allowed.  The spatial arrangement of the protein sequence in terms of 

allowed main chain conformations gives rise to the secondary structure (Figure 1-1b). 

Linus Pauling first recognized the  formation of α-helical conformations for the 

polypeptide chain via intra-chain hydrogen bonds [2]. For this contribution he was 

awarded the 1954 Chemistry Nobel Prize. In addition to α-helices, β-sheets represent a 

common type of secondary structure. These are formed by extended chain segmeents via 

intramolecular hydrogen bonds, in either parallel or anti-parallel fashion. The spatial 

arrangement of secondary motifs is called tertiary structure, representing highest 

structural level for monomeric proteins. Quaternary structure is formed via intermolecular 

interactions of two or more proteins.  

 

1.2 Factors that Stabilize Native Protein Structures  

 Electrostatic Interactions 

If two charges q1 and q2 are separated by a distance r, the potential between them can be 

described as: 

                                                             
    

      
                   (1) 
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where εₒ is the permittivity of vacuum (8.85×10
-12

 C
2
/N•m) and ε is dielectric constant of 

the medium. The dielectric constant is a measure of electrostatic interaction screening of 

the medium.  Nonpolar liquid hydrocarbons have a dielectric constant around 2; ε of 

liquid water is about 80 [3]. Inside the hydrophobic core of a protein, the dielectric 

constant is around 2 to 4 [4]. The interaction of a positively and a negatively charged 

residue inside a protein molecule gives rise to a salt bridges. Acidic and basic residues, as 

well as the two chain termini can participate in salt bridge formation.  

         Because of their 1/r dependence, electrostatics give rise to long range interactions. 

Once electrostatics were thought to be the main driving force for protein folding.  Today 

it is known that electrostatic interactions provide an enthalpic contribution of about 10kJ 

mol
-1 

per ion pair to the stability of folded protein structures [5].  

 

Van der Waals Interactions 

In addition to salt bridges (see above), electrostatic attraction can also originate from 

permanent dipoles and induced dipoles. The later kind of interaction, which is due to local 

fluctuations in electron distribution, gives rise to attractive London dispersion forces. Van 

der Waals interactions are relatively weak. They act at short range and are proportional to 

1/r
6
 [3]. Based on Pauli’s exclusion principle, when the distance between two atoms is 

close to their Van der Waal’s radii, a strong repulsion arises. The combination of 

attractive and repulsive components yields a so-called Lennard-Jones potential: 

                                                           (
 

 
)
  

 (
 

 
)
 
           (2) 
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where σ and ε are constants depend on the interacting atoms [6]. Inside the protein 

hydrophobic core, these Lennard-Jones interactions are important for native protein 

stabilization [7]. 

 

Hydrogen Bonds 

When hydrogen donor groups (e.g., OH, NH3) and hydrogen acceptor atoms with lone 

electron pairs are in close proximity, hydrogen bonds can be formed, as two electron 

negative atom compete for the same hydrogen (e.g., R=O•••H-NR2).  As mentioned in 

section 1.1, hydrogen bonds are a major stabilizing factor for α-helices and β-sheets. 

Hydrogen bonds can also be formed between protein and water, and among solvent 

molecules.  

 

Hydrophobic Effect  

The hydrophobic effect refers to the tendency of non-polar solutes to cluster together in 

an aqueous enviornment. For native protein structures, the hydrophobic effect is reflected 

in the spatial arrangement of side chains. Nonpolar residues are usually buried in the 

interior, sequestered from water by hydrophilic residues on the exterior of the protein. 

This phenomenon may be explained on the basis of thermodynamic arguments.  

Enthalpically, exterior hydrophilic residues can be solvated by forming hydrogen bonds 

with water. Usually, hydrophobic residues are neither good hydrogen bond donors nor 

acceptors. Collapsing hydrophobic residues into protein core also avoids high entropic 
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penalties, as envisioned by the “iceberg model” [8]. In bulk water, there is a dynamic 

hydrogen bonded network, characterized by a relative high entropy. Placing hydrophobic 

molecules in water causes the formation of a partially immobilized “iceberg” shell around 

them.  Iceberg formation decreases the entropy of the solvent in the vicinity of the 

exposed nonpolar site, which is unfavorable. Isolation of hydrophobic residues from 

water avoids this high entropic price. It is widely accepted that the hydrophobic effect 

plays a major role during protein folding [9-11]. 

 

1.3 Thermodynamic Aspects of Protein Stability    

For many applications it is convenient to consider the two-state equilibrium between the 

native conformation (N) and the unfolded state (U) of a protein 

                                                                                                         (3)  

The difference in Gibb’s free energy (ΔG°) controls this equilibrium according to 

                                                     
[ ]  

[ ]  
                        (4) 

When N is stable, Keq ˂˂ 1, and ΔG° is a large positive number. Based on the Second 

Law of Thermodynamics, ΔG⁰ N→U   can also be expressed as: 

                                                                                           (5) 

Both enthalpy (ΔH) and entropy (ΔS) of the protein itself and the surrounding solvent 

contribute to ΔG°. Factors that have to be considered include the entropy of solvent and 
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polypeptide chain, interactions between protein and solvent, and interactions within the 

protein. N is only marginally stable, slightly lower in free energy than U.  

 

1.4 Protein Folding  

1.4.1 Why is Protein Folding Important? 

Protein folding refers to a process, which includes a series of structural changes leading 

from random coil state U to the native conformation N. This unique behavior 

distinguishes proteins from synthetic polymers. Synthetic polymers are usually composed 

of repeated monomeric units, and they do not fold into a specific three-dimensional 

structure. Most proteins can fold spontaneously in vitro in the absence of the cellular 

machinery. This suggests that protein folding is directed by the primary structure. 

Deciphering the protein folding code will provide us with the key to understand 

biological processes, such as metabolism, host defense and signaling. Understanding 

protein folding also facilitates the development of novel therapeutic approach and the 

treatment of diseases. 

            Only by understanding the protein folding process, scientists will be able to 

engineer proteins with desired functions. For example, a binding site can be optimized 

computationally, and this is the start of protein therapeutic drug production. 

Subsequently, this designed binding site has to be engineered into a protein sequence. 

Without knowing the role of each individual residue during folding, formation of the 

designed binding site cannot be achieved. Also, many enzymes catalyze biological 



8 

 

 

reactions with extreme specificity and efficiency. Metabolic reactions in our body have 

lower energy barriers in the presence of enzymes. One example is catalase, which 

catalyzes the decomposition of hydrogen peroxide and lowers the activation energy from 

76 kJ mol
-1

 to 30 kJ mol
-1

 [12].  The protein sequence, which directs folding and hence 

biological function, has been evolutionary optimized over millions of years.  Designing 

proteins with novel catalytic capabilities requires deciphering the evolutionary mysteries 

of folding.  

           Protein misfolding can happen due to cellular defects triggered by oxidative stress 

or aging [13]. Several diseases including Alzheimer’s, Parkinson’s and Huhtington’s are 

related to protein misfolding and aggregation [14-18]. Typically, if monomeric proteins 

misfold, cytotoxic quaternary structures can be formed by self-aggregation of the 

misfolded monomers.  As amyloid plaques are formed within the cell by these misfolded 

proteins, diseases can arise. 

         Another goal of protein folding research is to predict native structures based on 

sequence information.  Fundamental knowledge of protein folding provides the 

foundation of computer-based structure predictions. There is a competition known as 

Critical Assessment of Techniques for protein Structure Prediction (CASP), where 

computational scientists predict protein structures based on known but unpublished 

sequences. The performance of structure prediction algorithms has improved in each 

round of the competition [19]. Generally, smaller proteins are easier to predict than larger 

ones due to the greater structural complexity of the latter.   
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1.4.2 Brief History of Protein Folding 

After Linus Pauling and his colleagues predicted the existence of α helices in 1954 [2], 

the existence of secondary structure type was confirmed by the resolved X-ray crystal 

structures of myoglobin and hemoglobin in 1960’s [20]. Anfinsen’s work on the folding 

of ribonuclease in vitro provided further insights, and this work brought him the 1972 

Chemistry Nobel prize [21]. Anfinsen’s work consists of two major contributions: (1) For 

the first time, he showed that the native protein structure is thermodynamically stable, and 

that it is determined by intramolecular interactions of amino acids and solvent-solute 

interactions. (2) In the absence of ribosomes and chaperones, it is still possible for a 

protein to refold from its denatured state by restoring physiological conditions in vitro. 

From then on, the research field of protein folding has been expanding steadily until 

today.  

           Based on Anfinsen’s findings, it is clear that protein folding must be directed by a 

‘folding code’ embedded in the amino acid sequence. However, there is an apparent 

mismatch between possible conformations of protein chains and actual protein folding 

time scale, as pointed out by Levinthal [22]. Let’s consider a hypothetical protein chain 

with 95 amino acid residues. The conformation of each amino acid is controlled by its Φ 

and Ψ angles. If each of these two angles can adapt only three conformations, there are 

3
190

 possible conformations in total.  The time required for a conformational search that 

leads to the native structure can be estimated using the Eyring equation  

                                                            
   

 
  

    

  
 
                 (6) 
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where k is the rate constant, kB is Boltzmann’s constant, h is Planck’s constant, T is the 

absolute temperature, ΔG
ǂ 
is the Gibb’s energy of activation, and R is the gas constant.  

The fastest possible rate of any conformational switch is around 10
12 

s
-1

 for ΔG
ǂ
 = 0. 

Thus,  if the number of possible conformations is 3
190

, the total time for an unbiased 

conformational search would be ~10
71

 years. Strikingly, experiments reveal that protein 

folding typically only requires seconds to go to completion. This mismatch of several tens 

of orders of magnitude is known as “Levinthal’s paradox”. It indicates that protein 

folding cannot possibly be achieved by an unbiased conformational search [23].  

 

1.4.3 Folding Energy Landscape: The “New View” of Protein Folding  

To resolve Levinthal’s paradox it must be concluded that folding is not a pure random 

process but a biased conformational search [24]. In the “hydrophobic collapse” model, 

nonpolar residues initially interact nonspecifically to avoid unfavorable solvent exposure, 

and the native structure is formed by subsequent rearrangement.  Another folding model 

called “nucleation” proposes that native structure is formed through condensation on a 

template of some transient secondary structures from short sequence regions. There is no 

clear-cut evidence that protein folding has to follow either one or the other mechanism. In 

fact, folding might contain elements of both theories. 

         Because folding of many small single-domain proteins can be described as an 

apparent two-state process [25-27], we will first discuss these reactions using transition 

state theory. In this classical chemical reaction theory, protein folding is a process  
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ΔG
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ǂ
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Reaction Coordinate 

Figure 1-2. One-dimensional free-energy diagram for two-state protein folding 

(U→N) via a TS barrier. The standard Gibb’s free energies (G⁰ ) are plotted against 

reaction coordinates. The change of standaed Gibb’s free energy (ΔG⁰ ) of protein 

folding reaction is indicated. The differences in Gibb’s free energy of folding (U→N) 

and unfolding (N→U) through TS barrier are also labeled.  
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between unfolded and folded protein populations in a macroscopic sense. If the reaction 

rate of folding is kf, the rate of native protein formation is given by 

                               
   

  
               with                      (7) 

where PN and PU are native protein and unfolded protein fractions, and where kf can be 

expressed using eq. 6. This whole process can be depicted in an Arrhenius diagram 

(Figure 1-2). In this diagram, unfolded proteins fold into native protein structure through 

an unfavored transition state (TS) structure. An empirical estimate of this energy barrier 

yields values larger than 3kBT [28]. Even though this theory explains the two state 

processes, it omits any detailed conformational aspects of proteins. For small molecules, 

entropic contributions to the TS barrier are not very significant.  In contrast, entropic 

factors even small proteins experience significant entropic changes during folding [29].  

           Based on advances in both experiments and theory a “new view” of protein folding 

theory has been developed. This framework envisions protein folding using a funnel-like 

concept that allows parallel folding trajectories. Cartoon representations of protein 

folding energy landscape are shown in Figure 1-3. These diagrams plot the intrinsic free 

energy of the protein as a function of two conformational dimensions [23]. The intrinsic 

free energy includes everything except the conformational entropy of the protein. The 

latter is represented by the width of the funnel. The unfolded state is highly heterogeous 

and populates the funnel “rim”. As protein chains approach the native structure from 

these unfolded states, the conformational freedom decreases. In Figure 1-3a, a flat 

folding funnel represents the random conformational search envisioned by Levinthal, 

which would result in unreasonably slow folding. In Figure 1-3b, a rugged protein 
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Figure 1-3. a. Levinthal energy landscape and b. Rugged energy landscape 

representing multi-pathways of protein folding. Different protein conformations could 

have same intrinsic free energy, and different protein folding routes could be evolved 

from these different conformations [23]. N stands for the native conformation. U 

represents the structurally heterogeneous unfolded state. 
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 folding landscape is shown. This later picture more resembles a real protein folding 

process. Upon restoration of folding conditions, proteins at different positions of funnel 

edge will take different routes to fold to the native state. Due to the steep slopes of the 

funnel side, proteins undergo rapid collapse to form compact structures. Another 

important result of the funnel ruggedness is the existence of local minima that can give 

rise to the accumulation of transient intermediates or misfolded conformers. To escape 

from such local energy traps, misfolded proteins have to undergo thermally activated 

uphill steps by reconfiguring nonnative contacts into native interactions such that 

successful folding can commence.  

 

1.4.4 Equilibrium and Kinetic Experiments 

Protein folding can be studied using two types of experiments, i.e., equilibrium and 

kinetic studies. In equilibrium experiments, protein conformation is studied as a function 

of denaturant concentrations, typically in the unfolding direction. The concentration of 

denaturants is gradually increased in small steps, and after each step equilibration 

proceeds until the newly formed protein conformers adapt to the altered environment. 

Such experiments do not require a fast detection technique. High resolution with slow 

detection speed, such as NMR spectroscopy and optical methods are suitable for such 

experiments [30,31].  

            In kinetic experiments, protein conformational changes are studied as a function 

of time, following a rapid trigger event. Initiation of folding can be achieved by change in 

temperature, pH, or denaturant concentration [32,33]. Both unfolding and folding can be 
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studied in kinetic experiments. Because experimental data are acquired as a function of 

time, fast detection methods are needed. In section 1.6, some commonly used techniques 

for protein structural studies are reviewed in terms of mechanism and current 

development.  

 

1.5 Protein Conformational Dynamics 

To execute function, rigid tertiary and quaternary structures are not sufficient.  The ability 

to undergo conformational changes or having flexibility is an important prerequisite that 

allows proteins to accomplish their tasks.  Proteins in solution are highly dynamic with 

motions that take place on time scales that range from picoseconds to seconds [34-37].  

These motions include ring-flipping [38] and thermal fluctuations of side chains and of 

the backbone,  and large scale fluctuations involving distinct domains (“foldons”) also 

take place  [39-43].  

           Another important type of protein motions are conformational transitions between 

two equilibrium structures, typically induced by ligand binding or other external stimuli. 

Both types of protein motions are important for function [44-48]. Random thermal 

motions may represent a “molecular lubricant”, allowing proteins to switch rapidly 

between different conformations. Large conformational changes induced by substrate 

binding or covalent modifications are required for many biological tasks. Examples 

include ATP synthase [49], signal transduction across cellular membrane [50] and 

enzyme catalysis [51].  
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1.6 Methods for Studying Protein Structure 

1.6.1 Optical Spectroscopy 

 Optical techniques are widely used for examining protein conformations. Due to their 

high sensitivity and ease of use, they are quite popular in bio-analytical labs. Examples 

include UV-Visible (UV-Vis) absorption spectroscopy, circular dichroism (CD) and 

fluorescence spectroscopy. Signals obtained from these techniques report on the average 

properties of a protein sample. One advantage of these techniques is that proteins can be 

studied directly under physiological conditions without any chemical modifications.  

           In UV-Visible absorption spectroscopy, an electron in the highest occupied 

molecular orbital (HOMO) is excited into the lowest unoccupied molecular orbital 

(LUMO). Allowed HOMO LUMO transitions include σ → σ*, π → π*, n → σ* and n → 

π*. In proteins, the constituent amino acids and binding cofactors usually have conjugated 

π systems that can absorb light.  Absorbance (A) is defined as 

                                                               
 o

 
                 (8) 

where A is absorbance, Io is the incoming light intensity, and I is the transmitted light 

intensity [52]. Protein concentrations can be calculated based on the Beer-Lambert Law  

                                                                                               (9) 

where ε(λ) is the molar absorption coefficient as a function of wavelength lambda, l is the 

light path length, and c is concentration.  In addition to concentration measurements, this 
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technique can be applied to probe conformational aspects of proteins, especially where 

prosthetic group are present. Heme-bound proteins represent a particularly important 

case.  The heme has strong electronic absorbance bands that depend on its metal 

oxidation state, ligation, and chromphore environment [53]. Subtle conformational 

changes can be reflected in the UV-Vis spectra as absorption band shifts. The main 

disadvantage of UV-Vis spectroscopy is that conformational changes of proteins without 

suitable chromophores cannot be detected with this method.  

         Circular Dichroism (CD) spectroscopy is an absorption-based technique for probing 

secondary and tertiary structure. CD is a phenomenon that is caused by the fact that chiral 

molecules absorb left and right circular polarized light differently. A CD spectrum is 

basically a plot of (εL – εR) versus λ. Different secondary structures give rise to distinct 

CD signals in the far-UV (190-250 nm) region. In an α-helical environment, n – π* 

transitions of amide groups are associated with CD bands around 222nm, and π – π* 

transitions of amide groups are associated with CD bands around 208 nm for positive 

values and around 190 nm for negative values. The CD signal at 222nm is roughly 

proportional to the percentage of amino acids in an α-helical environment. In CD spectra 

of β-sheets there is a broad negative band around 215 nm, and random coil-like elements 

of proteins have their minimum at 202 nm [54]. Tertiary structure analysis can be made 

by near UV CD measurements in the range of 250-350 nm [55,56].  In this wavelength 

region protein absorption spectra are dominated by side chains of aromatic residues (Phe, 

Tyr and Trp). Within the protein structures unique three dimensional arrangements of 

these CD chromophores give rise to CD signals, and the intensity of such signals depends 

on the number of aromatic residues. Because of poor signal to noise ratio of typical CD 
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measurements, long integration time is often required. Consequently, CD is usually used 

under equilibrium conditions to monitor conformational changes. 

          Fluorescence is the emission of light when molecules return from the electronically 

excited singlet state (S1) to the ground state (S0). Among the natural amino acids 

tryptophan (Trp) is by far the most intense fluorophore [52]. Trp absorbs around 280 nm, 

and it emits around 350 nm. Fluorescence is highly sensitive to the environment; its 

efficiency depends on temperature, solvent ionic strength, and on the presence of 

quenchers. Generally, the fluorescence efficiency is higher in non-polar solvents because  

a hydrophobic environment can cause much less thermal deactivation of the excited state. 

By utilizing this characteristic, rapid hydrophobic core formation during protein folding 

can be monitored [57,58]. Another useful fluorescence technique is based on Fӧrster 

resonance energy transfer (FRET).  FRET was first demonstrated by Theodor Fӧrster in 

the 1940s. He showed that excitation energy can transfer from one molecule to another. 

The FRET efficiency is defined as 

                                                       
   

       
                    (10) 

where R is distance between donor and acceptor, and R0 is the Fӧrster radius where E = 

0.5. FRET represents a “molecular ruler” in both kinetic and equilibrium experiments.  

Sometimes covalent modification of proteins are required to perform such FRET 

experiments [59,60].   FRET can also lead to fluorescence quenching [61,62]. For 

example, proteins with heme groups can be studied using this phenomenon because heme 

acts as Trp quencher [63,64]. 
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1.6.2 X-ray Crystallography 

Protein molecules cannot be directly viewed by optical microscopy due to the long 

wavelength of visible light. X-ray crystallography, however, provides a way to locate the 

exact positions of individual atoms, since the X-ray wavelength is comparable to 

chemical bond lengths (~ 1 Å). Within an ordered protein crystal, unit cells, which are the 

smallest structural entity representing the entire crystal, are repeatedly arranged in a few 

ways along defined axes. Crystal planes of atoms are formed within such arrangements, 

and diffraction patterns can be obtained by X-ray radiation [65]. Protein crystal structure 

can be obtained from these diffraction patterns using Fourier transform methods.  

          Ferdinard and Kendrew solved the first protein crystal structures (hemoglobin and 

myoglobin) in the 1950’s [66] and won the 1962 Nobel Prize for this contribution. Today 

there are roughly 70,000 protein crystal structures deposited in the Protein Data Bank 

(www.pdb.org).  X-ray crystallography provides time-averaged static protein 

conformations, and has greatly enhanced our understanding of protein structures and 

functions.  However, dynamic aspects of protein structure can usually not be captured 

using crystallographic methods. Also, the growth of protein crystals can be a challenging 

task.   

         Protein crystals contain a significant amount of water. These solvent molecules 

allow diffusion and binding of small substrates to take place. In recent years, researchers 

also developed X-ray crystallography-based techniques to study small-scale protein 

dynamic events, e.g., transient intermediates on enzymatic pathways. Such transient 

http://www.pdb.org/


20 

 

 

species can be studied by either low temperature trapping or by time resolved methods 

[42,67].    

 

1.6.3 NMR  

Nuclear Magnetic Resonance (NMR) spectroscopy represents another standard technique 

to characterize protein structure.  There are roughly 8000 NMR structures in the PDB 

(corresponding to 11% of all entries). NMR monitors how magnetic nuclei absorb energy 

at particular resonance frequencies within an external magnetic field. This resonanance 

frequency depends on the type of element and on its chemical environment. Only nuclei 

with an odd number of protons and/or neutrons have a non-zero spin, and their chemical 

environment can be probed by NMR. For proteins, this includes 
1
H, 

13
C and 

15
N. 

Heteronuclear NMR can be used to trace backbone assignment for better biomolecule 

structural refinement.   

          Unlike X-ray crystallography, NMR spectroscopy can be readily used for both the 

structural and dynamic characterization of proteins, because the relaxation of nuclei 

following an rf pulse is also affected by intramolecular motions [68]. 
15

N and 
13

C in the 

amide bonds of proteins can be probed in relaxation experiments for dynamic studies. 

Such studies can provide dynamic information on the ps-ns time scale [40]. 

         NMR spectroscopy can also be combined with hydrogen deuterium exchange 

(HDX) (see section 1.6.4) to study protein dynamics in the millisecond range.  If 

NH→ND exchange events happen in heavy water (D2O), the disappearance of the 

corresponding proton signals can be monitored as a function of time. In this way residue-
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specific dynamic information is obtained [69,70].  The free energy of unfolding can also 

be measured upon varying temperatures and pH [71,72].  During protein folding some 

amides form stable structures that are protected against deuterium labeling earlier than 

others. By probing the protection sequence of amides along protein sequences by HDX 

NMR, protein folding can be monitored in time-resolved experiments [73,74].  The upper 

size limit for protein structure determination by NMR is around 40 kDa, due to resonance 

overlap and relaxation time issues [75].  NMR spectroscopy requires mM protein 

concentration. Aggregation phenomena are often encountered in this concentration range.  

 

1.6.4 Hydrogen Deuterium Exchange (HDX) 

HDX was pioneered by Linderstrom-Lang and coworkers at the Carlsberg Laboratories in 

Copenhagen in the 1950s [76]. Linderstrom-Lang exposed proteins to D2O labeling 

solution and measured deuteration using density gradient tubes. In the early 1990s the 

first protein conformational studies using HDX MS was published by Chait et al. [77].   

          As proteins are incubated in D2O, labile hydrogens those in -NH, -SH and –OH 

bonds can exchange with deuterium. Typically only the HDX behavior of backbone 

amides are of interest for three major reasons: (1) Hydrogens involved in stable H-bonds 

(e.g. in α-helices or β-sheets) are largely protected from exchange. (2) Amide hydrogens 

are present along entire protein sequence. Except for proline residues HDX data can 

accurately reflect protein properties in terms of flexibity and solvent accessibility.   (3) 

Deuterated side chain hydrogens undergo rapid back-exchange (e.g., during HPLC) [78].  



22 

 

 

  

Figure 1-4. Schematic representation of HDX of (a) native protein and (b) denatured 

protein resulting in different labeling extents. Hydrogen (dots in cyan) Deuterium 

(dots in red) 
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 As proteins undergo thermal motions, hydrogen bonds can be disrupted and  buried 

amide hydrogens can transiently become exposed, such that slow HDX can take place. 

Amide hydrogens in disordered structures undergo much faster HDX than those in folded 

regions. As a result, HDX provides information on protein structure and dynamics. For 

example, native proteins are readily labeled only in flexible loops (Figure 1-4a). 

Denatured proteins are labeled by deuteriums to much higher extent due to their random 

coil structures (Figure 1-4 b).  

         HDX experiments are typically used to study conformational dynamics of proteins 

at equilibrium. Amide hydrogens are either in protected non-exchangeable states (Hclosed) 

or transient unprotected states (Hopen) due to protein motions. HDX reaction can be 

expressed as in equation 11 

 

                                                          (11)  

where kop, kcl and kch are rate constants of opening, closing and chemical exchange at 

unprotected sites respectively. This chemical reaction equation indicates that HDX can be 

divided into two regimes referred to as “EX1” and “EX2” [79,80]. Under EX1 conditions, 

kch >> kcl , HDX of amide hydrogens happen immediately once the protein opens up, and 

the HDX rate constant is equal to kop. In the EX2 case, kcl >> kch , the HDX rate constant 

depends on both protein motions and chemical exchange rate according to 

                                                                                                      (12) 

where Kop  = (kop/kcl) [80,81].   

kop 

kcl 

kch 

D2O 
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1.7 Mass Spectrometry 

Although MS has been a well-known analytical tool for quite some time, intact 

biomolecular analysis by MS only become possible in the late 1980s due to the invention 

of two soft ionization techniques, namely Matrix-Assisted Laser Desorption/Ionization 

(MALDI) and Electrospray Ionization (ESI). In 2002 the Chemistry Nobel Prize was 

shared by Tanaka [82] and Fenn [83] for their contributions in these areas. With ESI and 

MALDI fragile macromolecules such as proteins can be transferred into the gas-phase 

without fragmentation. Because ESI is exclusively used throughout this work, the 

following sections will discuss the mechanisms of this process. MALDI will only be 

discussed very briefly. MALDI was developed by Karas and Hillenkamp in 1985 [84]. 

For MALDI, proteins are initially embedded in a crystalline matrix consisting of small 

ultraviolet–absorbing molecules. This matrix is then irradiated with a short laser pulse to 

induce desorption of proteins together with matrix molecules. One or more protons can be 

attached or removed from a protein thus generating gas-phase ions that can be detected by 

MS. MALDI is highly sensitive, and it is tolerant to salts and impurities [85]. The charges 

of proteins ionized by MALDI are generally low, and a high m/z range detector (such as a 

TOF analyzer) is necessary to observe protein ions.   

 

1.7.1 Ionization of Proteins by ESI 

Electrospray has been used as a painting method in the automobile industry for many 

years. Fenn used this idea to develop an MS ionization technique [83]. ESI is a versatile 

and soft ionization technique allowing proteins to be transferred into the gas phase as 



25 

 

 

intact ions (Figure 1-5). The analyte solution is pumped through a metal capillary, to 

which a positive high voltage (3-5 kV) applied (negative voltages are less commonly 

used). Positive ions are enriched at the tip of the capillary, causing the solution to form a 

Taylor cone. Charge-balancing redox processes at the metal/liquid interface of the ESI 

capillary include the following: 

       Solvent oxidation               H2O → 2H
+
 + 2e

-
 +1/2 O2 

           Metal Oxidation                  Fe → Fe
n+

 + ne
- 

          
Analytes Oxidation             M → M•+ + e-  

Positively charged droplets are emitted from the Taylor cone. Solvent continuously 

evaporates from these droplets. At the Rayleigh limit where charge repulsion is equal to 

surface tension forces [86], fission of the original droplet occurs, and droplets with much 

smaller sizes are produced via jet fission. After this process repeats itself several times, 

the radius of the droplets is close to the size of a single protein molecule.  Multiply 

charged protein ions are produced from  nanodroplets. The mechanism of this last ion 

production step is still not clear. Two general models have been proposed for this step, 

the Charged Residue Model (CRM) and the Ion Evaporation Model (IEM). In the IEM 

model, analytes are ejected out of the droplet due to high electric field at the droplet 

surface for droplet radii less than 100 Å [87-89].  Natively folded proteins are believed to 

follow the charge residue model (CRM),  where protein ions are formed as the droplet 

evaporates to dryness, while all leftover charge is absorbed by the protein [87].  
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Figure 1-5. Schematic depiction of the positive ion mode ESI process. Protein solution 

(red) is sprayed from a metal capillary (blue), and a Taylor cone is formed as a result 

of the applied high voltage. Multiply charged protein ions are formed via multiple 

droplet shrinkage and fission processes. 
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          Protein ions produced by ESI are not all carrying the same charge, instead these 

ions appear in charge state distributions (CSD). Individual peaks appear at m/z values that 

are given by 

                                                   
                     (13)               

where R is observed mass-to-charge ratio, M is mass of analyte, z is number of charges 

and m is the mass of the adduct ion, typically H
+
.  The charge states of native proteins are 

close to [M+zRH]
 zR+

, where zR is the number of charges at the Rayleigh limit 

                                               
                      

 
        (14)    

where εo is the vacuum permittivity, γ is the surface tension, and rdroplet represents the 

droplet radius. Formation of protein ions close to ZR provides strong support for the 

notion that native protein ionization follows the CRM. Protein unfolding can be induced 

by adding volatile acids or organic solvents to the solution. The resulting mass spectra 

show very wide CSDs at values much higher than ZR. The CRM does not apply to the ESI 

process of unfolded proteins. Recent simulation studies have shown that unfolded 

proteins ionize via ejection from nanodroplets, which is a type of IEM mechanism [90]. 

For a nanodroplet containing an unfolded protein ion, unfavorable charge repulsion on 

droplet surface can be minimized through ejection of the unfolded protein. Due to this 

different ionization mechanism, CSDs can be used to probe protein solution phase 

structures. Even though some other factors may affect protein CSDs, it is clear that 

solution phase conformation is the major determinant [91]. High charge states are seen for 
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proteins after denaturation in acid, base, heat, disulfide bond cleavage, and for 

intrinsically disordered proteins [92-95]. During protein folding and unfolding there can 

be numerous intermediates that can be studied by ESI-MS through analysis of their CSDs.  

A more detailed discussion of protein ESI mechanisms is provided in section 1.8. 

 

1.7.2 Mass Analyzers 

Following ESI, gaseous protein ions follow a trajectory along “downhill” electric 

potential gradients, and finally they reach a suitable detector. Gas phase ions can be 

separated according to m/z while they transverse the mass spectrometer.   Such separation 

can be achieved by application of electric or magnetic fields [96,97]. Quadrupole and 

Time of Flight (TOF) analyzers are most commonly used for research, and they provide 

the basis for this thesis. 

 

1.7.2.1 Quadrupole Mass Analyzer    

        A quadrupole is composed of two pairs of cylindrical rods. DC and RF voltages with 

opposite polarity are applied to each pair of rods (Figure 1-6a). With fixed ratio, DC and 

RF voltage amplitudes are scanned at constant frequency from several volts to ~ 1 kV. At 

each DC/RF ratio only ions with one specific m/z value have a stable trajectory and can 

be transmitted through the quadrupole, while other ions all collide with the rods (Figure 

1-6b).  Ion trajectories can be predicted using Newton’s Laws [98]. The ion behavior can 

be explained using a stability diagram in a,q Cartesian coordinates (Figure 1-7). The area 

under blue curve represents the stabe region. Ions with a and q values within the stable  
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Figure 1-6a. Schematic representation of a quadrupole mass analyzer.  
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Figure 1-6b. Examples of stable and unstable ion trajectories at certain DC/RF 

voltages which allow ions with m/z 200 transmitted through the quadrupole. Lower 

and higher mass ions collide with the rods because they have unstable trajectories. 
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Figure 1-7. Schematic depiction of a quadrupole stability diagram, together with the 

scan line (red line), and ions with stable (m2) and unstable (m1 and m3) trajectories.  
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region are transmitted (top picture in Figure 1-6b). Ions in unstable regions will hit the 

cylindrical rods and be neutralized (middle and bottom, in Figure 1-6b).  

            A quadrupole can be used as “mass filter” by choosing a combination of DC/RF 

values to selectively transfer certain ions. To obtain mass spectra for certain mass range, 

the DC/RF voltages are changed along the scan line (red curve in Figure 1-7) with fixed 

ratio of DC/RF voltages. At each DC/RF value, ions with a specific m/z value are located 

at the tip of the stability diagram (solid green dot, Figure 1-7), and detected after 

transmission. Ions with m/z values outside the stability region (open green circles, Figure 

1-7) will collide with the quadrupole. By changing the slope of the scan line, the 

resolution can be optimized. The transmission decreases as resolution increases.       

                  

1.7.2.2 Time of Flight (TOF) Mass Analyzer   

      For TOF mass analysis the injected ions are accelerated towards the detector by a 

suitable voltage pulse. Potential energy is converted to kinetic energy, and the time 

required for ions taken to reach the detector can be calculated as follows: 

                                                  

                                  
and

          
 

           
(15) 

                                                     √
 

 

 

    
              (16) 



33 

 

 

where ΔU is the acceleration voltage and l is the length of time of flight tube. Based on 

equation 16, ions with different m/z can be separated by their different flight time. Ions 

with the same m/z might result in slightly different velocities due to imperfictions in the 

pusher region, resulting in peak broadening [99]. To compensate for this effect, a 

reflectron is coupled to the TOF mass analyzer (Figure 1-8). Using a reflectron, the TOF 

resolution can be increased from 4000 to 20,000. Again with increased resolution, lower 

sensitivity is a sacrifice due to lower ion transmission.  Based on these considerations a 

resolution of 10,000 is usually optimal for TOF instruments. Quadrupole-time-of-flight 

(Q-TOF) mass spectrometers (Figure 1-8) are hybrid instruments that work analogously 

to a triple quadrupole mass spectrometer, except that the third quadrupole has been 

replaced with a TOF. 

 

1.7.2.3 Other Mass Analyzers 

There are also several other types of mass analyzers, some of which are briefly described 

in this section. Fourier Transform Ion Cyclotron Resonance (FT-ICR) MS has evolved to 

be the highest resolution mass analysis method [100,101] since it is invented by Melvin 

B. Comisarow and Alan G. Marshall in 1974 [102]. In FT-ICR ions are forced into 

periodic motions in a magnetic field generated by a large superconducting magnet. The 

ion cyclotron frequency depends on m/z according to 

                                                                
   

 
                                  (17) 



34 

 

 

For the entire generated ions, time domain signals are transferred into corresponding 

peaks in frequency domain through a Fourier Transform (FT) process, and in turn mass 

spectra are obtained through equation 17 by calculating m/z values for peaks in frequency 

domain. Mass resolution of FT-ICR MS is actually frequency resolution and can be 

improved by longer acquisition time or larger magnetic strength [103]. Typically the 

resolution is larger than 10
6
. Ion motions induce image current and are detected in a pair 

of receiver plates. Unlike other mass analyzers, FT-ICR is non-destructive and the same 

bunch of ions can be measured repeatedly.   

          The orbitrap mass analyzer was developed around 2000 [104]. Many aspects of  

orbitrap operation resemble FT-ICR. As ions are pulsed into orbitrap mass analyzer these 

ions are circulating around a central electrode and oscillate with distinct axial frequencies. 

Axial oscillations are harmonic and generate an image current on the two outer electrodes 

where the signal is measured. Frequency of this harmonic motion is also m/z dependent, 

and mass spectrum is obtained via FT [105]. The resolution of orbitrap mass analyzer is 

usually around 10
5
.   

            Ion mobility spectrometry (IMS) is an analytical technique which separates ions in 

a buffer gas as they are exposed to a weak electric field. IMS coupled with MS is a 

powerful technique to study gas phase ion structures. One widely used commercial IMS 

MS system is the Synapt HDMS, which is a hybrid quadrupole/travelling wave IMS/oa-

ToF instrument [106].  By applying a travelling voltage to a stacked-lens RF ion guide, 

gas phase ions can be separated based on their mobilities. With proper gas pressure high 

mobility ions can keep up with the travelling voltage waves, and low mobility ions 

gradually fall behind. By employing proper calibration it is possible to obtain collision 
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cross sections (CCSs) of the ions [107]. Computer algorithms have been developed to 

calculate CCSs [108]. These approaches have been successfully applied to gain insights 

into structural features of gas phase protein ion complexes [109-111].                 

 

1.8 ESI Process for Native and Unfolded Proteins     

Since ESI-MS can be used as a tool to distinguished solution-phase protein 

conformations, it is important to understand the ionization mechanism for different 

protein conformers. Even though CRM and IEM are classically considered to be the 

major ionization mechanisms, recent studies have found another ionization mechanism 

called Chain Ejection Model (CEM) which applies to unfolded proteins [90,112].  

          Native proteins typically have compact folded globular structures with numerous 

polar and charged residues, which surround the hydrophobic core. For example, horse 

myoglobin pocesses numerous charged residues, including 2 Arg, 19 Lys, 13 Glu, 2 Asp, 

2 heme propionates, and the carboxyl terminus. X-ray data show that these 46 charged  
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Figure 1-8. Schematic depiction of a Q-TOF mass spectrometer equipped with 

hexapole collision cell for collision induced dissociation (CID). The red line indicates 

the ion trajectory. 
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moieties are all exposed to the solvent, where as a large number of hydrophobic residues 

are buried [113].   Thus, the native protein is hydrophilic and can be nicely solvated in 

water. MD simulations revealed that such hydrophilic structures will remain inside the 

nanometer sized charged water droplets [112].  Mass spectra of native proteins show 

experimental charge states that match the charges calculated by the Rayleigh equation 

[87,114] (eq.14). Therefore, ESI process of native folded proteins proceeds via the CRM.  

          In contrast, ESI mass spectra of unfolded protein show much wider charge state 

distributions centered at higher protonation states. MD simulations indicate that these 

unfolded proteins are gradually ejected from charged nanometer-sized water droplet 

during ESI [112].  However, this Chain Ejection Model (CEM) mechanism is different 

from the classical small ion IEM scenario. Small ions are ejected from the droplet surface 

via field emission in a single step [87,115-118]. In contrast, unfolded proteins are ejected 

in a sequential manner, one residue at a time. Such ejection is driven by Coulomb 

repulsion between positively charged side chains and charges on the droplet. Because 

unfolded proteins expose non-polar residues in the hydrophobic core, the CEM is also 

facilitated by unfavorable interactions between water and hydrophobic residues. Charge 

partitioning during ESI of unfolded proteins resembles the dissociation of gaseous multi-

subunit proteins [90].  

 

 

 



38 

 

 

1.9 Studying Noncovalent Protein Complexes by ESI-MS  

In a cell most proteins do not exist as single entities. Instead, many proteins 

noncovalently interact with various binding partners to carry out biological activities 

[119]. Such noncovalent interactions can occur with proteins, nucleic acids, metal ions 

and cofactors. ESI-MS allows the transfer of intact noncovalent protein complexes into 

the gas phase within a reasonable m/z range [120-122]. ESI-MS data can reflect solution 

phase structural information by providing m/z ratios of protein complexes. Additionally,  

coupled with gas phase or solution phase dissociation methods, the constituent masses 

and binding stoichiometry can also be determined. As a result, ESI-MS is now well 

established as a tool for studying structural aspects of noncovalent protein complexes 

[123-125]. Nonetheless, analysis of noncovalent complexes by ESI MS is challenging due 

to several reasons: (1) interactions between protein subunits are easily disrupted under 

typical analysis condition; (2) analyzer capable of detecting high m/z ions are required 

during data acquisition; (3) peaks in the mass spectra can be extensively broadened due to 

adduct formation. 
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1.10 Scope of Thesis 

In this thesis, ESI-MS is used in conjuction with optical spectroscopy to explore protein 

structure and interactions.  

           In chapter 2, the physical reasons underlying irreversible thermal denaturation of 

cytochrome c (cyt c) was investigated. Covalent oxidative modifications induced by 

heating are shown to be responsible for the observed behavior. By using optical tools and 

HDX together with ESI-MS, differences in conformational dynamics of cyt c between 

acid denaturation and thermal denaturation have been confirmed.  LC-MS/MS was used 

to locate oxidative modification sites after tryptic digestion.   

           In chapter 3, solution phase binding affinities of noncovalent complexes are 

studied ESI-MS. We established experimental procedures to ensure that ESI-MS data 

properly reflect solution-phase binding addinities. Different ESI sources and various 

experimental conditions are tested and compared.  

         In chapter 4, formation of a noncovalent protein complexes, hemoglobin, was 

studied by using ESI-MS together with optical spectroscopy. We examine the effects of 

off-pathway intermediates and protein aggregation. Refolding intermediates were 

assigned based on their m/z values.  In this way it is demonstrated that ESI-MS can be 

used for studying a highly complex biomolecular self-assembly process. 
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Chapter 2 — Irreversible Thermal Denaturation of 

Cytochrome c Studied by Electrospray Mass Spectrometry 

 

2.1 Introduction 

Studies on the structure and dynamics of proteins continue to be a focal area of 

biochemical research. A number of well established tools are available for experiments of 

this kind, including X-ray crystallography, NMR, calorimetry, and various spectroscopic 

techniques. Electrospray ionization (ESI) mass spectrometry (MS) has become another 

widely used approach for exploring the properties of proteins in solution, providing 

information complementary to that obtained by traditional methods [1]. The ESI process 

generates intact gas phase ions from proteins in solution. In the commonly used positive 

ion mode these [M + nH]
n+

 species are multiply charged due to proton attachment. 

 ESI of natively folded proteins results in protonation states n similar to those 

predicted for water droplets of the same size that are charged to the Rayleigh limit. This 

finding supports the idea that ionization follows the charged residue model [2-6], 

although alternative scenarios have been proposed as well [7-9]. Much higher protonation 

states and wider charge state distributions are generally seen for proteins that are unfolded 

in solution. Based on this empirical relationship ESI-MS is now routinely being used for 

monitoring structural transitions in response to changes in pH, temperature, organic co-

solvents, or covalent modifications [1,10-16]. The physical basis for the striking 

dependence of ESI charge states on the solution-phase protein conformation continues to 

be a matter of debate. Various explanations have been put forward, including differences 

in the steric accessibility of protonation sites, and changes of the corresponding pKa 
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values [10,17]. It has also been argued that more extended conformations reduce the 

extent of Coulombic repulsion in multiply protonated ions [18]. In addition, the enhanced 

structural flexibility of unfolded proteins can favor intramolecular solvation of charged 

sites [19,20]. Other proposals invoke differences in gas phase basicity between protein 

and solvent [21]. Mechanisms involving conformation-dependent charge neutralization 

[22] or combinations of electrostatic and steric shielding [23] have been put forward, as 

well as proposals that ESI charge states reflect the protein surface area [24], and that they 

specifically monitor changes in tertiary (not secondary) structure [11]. 

 Using ESI charge state distributions for protein structural studies offers a number 

of unique advantages. Differentiating co-existing conformers can be challenging when 

using traditional spectroscopic techniques, whereas multimodal ESI charge state 

distributions permit the direct visualization of individual species [25,26]. The gentle 

nature of the ESI process allows the transfer of intact protein-ligand and protein-protein 

complexes into the gas phase [6,27-29]. Thus, insights into conformations and 

interactions are obtained in a single experiment [17,30-36]. A further dimension can be 

added to these studies by incorporating ion mobility spectrometry [37,38]. 

 A very interesting approach is to monitor the charge state distribution of a protein, 

while simultaneously measuring its hydrogen/deuterium exchange (HDX) behavior [39-

42]. The two probes complement each other, since ESI charge states report on the 

"compactness" of a protein in solution [20], whereas HDX is governed largely by the 

hydrogen bonding behavior along the amide backbone. HDX at sites that are involved in 

stable hydrogen bonds or that are sterically shielded is mediated by conformational 
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fluctuations. Thus, proteins that are disordered and highly mobile undergo much faster 

isotope exchange than tightly folded conformers [43]. 

 Because the individual components of bi- or multimodal ESI charge state 

distributions represent distinct solution-phase conformers, it is not surprising that 

different charge states in a single mass spectrum can be associated with different HDX 

properties [41,44-48]. However, not all cases show this behavior. Several studies have 

found that charge states representing very different coexisting protein structures can 

exhibit isotope exchange kinetics that are indistinguishable [49-51]. This conundrum is 

resolved when it is considered that coexisting conformers may interconvert in solution 

[52]. All species will exhibit the same HDX kinetics if interconversion is rapid on the 

HDX time scale. This relationship was first proposed in a seminal study by Wagner and 

Anderegg [53]. In that work it was reported that cytochrome c (cyt c) under mildly acidic 

conditions exhibits a bimodal charge state distribution, representing the presence of 

unfolded proteins in addition to the native conformers. The two forms showed very 

similar isotope exchange kinetics. The experiment was then repeated on samples that had 

been partially denatured in an irreversible manner by heat exposure. When the heated 

samples were transferred back to a native solvent environment at room temperature a 

bimodal charge state distribution was found to persist, corresponding to a mix of 

permanently unfolded protein and natively folded polypeptide chains. With 

interconversion being blocked, it was reported that high charge states showed more 

extensive HDX than low charge states. Those widely cited results [53] were instrumental 

for establishing ESI charge states as a well accepted probe for protein conformational 

studies. 
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 Most unfolded proteins will spontaneously refold to the native state once placed in 

a non-denaturing solvent environment, i.e., ambient temperature, neutral pH, and in the 

absence of chemical denaturants [54]. A key question that was not explicitly addressed in 

Wagner and Anderegg's study [53] and in related previous work [55] is why heat 

exposure of cyt c results in the formation of conformers that are irreversibly unfolded. 

The reasons underlying the apparently different HDX characteristics for high and low 

charge states, therefore, remain unclear. Irreversible thermal denaturation has also been 

observed using other techniques for a number of different proteins. It was proposed that 

this phenomenon may be caused by a combination of factors, including partial 

aggregation and various covalent modifications [56-61]. The current study revisits the 

experiments of Wagner and Anderegg [53], with the aim of providing additional insights 

into the ESI-MS and HDX characteristics of cyt c after heat exposure. It is found that the 

formation of irreversibly denatured protein is linked to oxidative damage. Partial 

aggregation may play a role as well. Covalent oxygen adduction interferes with the 

analysis of HDX experiments, necessitating a re-examination of the question whether or 

not high and low charge states of heat-exposed cyt c exhibit distinct isotope exchange 

properties. 

 

 

2.2 Experimental 
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2.2.1 Materials 

Bovine heart cyt c (12230 Da [62]) was purchased from Sigma. Ammonium acetate and 

formic acid were from Fluka. Ammonia was obtained from Caledon Laboratory, and D2O 

was from Cambridge Isotope Laboratories. Thermally denatured protein was generated 

using procedures very similar to those of ref. [53]. 25 mL aliquots containing 1 µM cyt c 

were heated in double distilled water (pH 6.5) for 1 or 2 hours at 90 °C in a water bath. 

Higher protein concentrations resulted in unacceptable levels of aggregation. After heat 

exposure the samples were flash frozen in liquid nitrogen, lyophilized, and subsequently 

re-dissolved to 500 μL in 5 mM aqueous ammonium acetate. The pH was adjusted to 7 by 

addition of ammonia. UV-Vis measurements (Soret = 1.06 × 10
5
 M

-1
 cm

-1
 [63]) indicate 

the loss of ca. 30% protein during the procedure, yielding a final stock solution of about 

35 µM. Native cyt c samples were prepared in 5 mM ammonium acetate at pH 7, and 

acid-denatured protein was generated by addition of formic acid to pH 2 (both without 

heating). Protein digestion was performed by trypsin spin columns (Sigma). The sequence 

of bovine cyt c (pdb code 2b4z [62]) along with its tryptic cleavage sites (↓) is indicated 

below. 

  

1
GDVEK↓GK↓K↓IF VQK↓CAQCHTV EK↓GGK↓HK↓TGP NLHGLFGR↓K↓T 

41
GQAPGFSYTD ANK↓NK↓GITWG EETLMEYLEN PK↓K↓YIPGTK↓M 

81
IFAGIK↓K↓K↓GE R↓EDLIAYLK↓K↓ ATNE 
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2.2.2 Mass Spectrometry, LC/MS, and Hydrogen/Deuterium Exchange 

All mass spectra were acquired on a Q-TOF Ultima API mass spectrometer (Waters) 

equipped with a Z-spray ESI source that was operated in positive ion mode. The capillary 

and cone voltages were 3 kV and 60 V, and RF lens 1 was set to 20 V unless indicated 

otherwise. Cone and desolvation gas flow rates were 50 L h
-1

 and 500 L h
-1

, respectively. 

The desolvation temperature was set to 120 C and that of the source to 80 C. For 

characterizing protein charge state distributions cyt c was infused directly into the ion 

source at a flow rate of 5 L min
-1

 using a syringe pump (Harvard Apparatus, Boston, 

MA). The protein concentrations used were 5 M for native and acid-denatured cyt c, 

whereas the low signal intensities after heat exposure necessitated a higher protein 

concentration of 35 µM. LC/MS experiments were conducted using a Waters 1525μ 

HPLC pump with a C18 (Symmetry 300) 2.1 mm × 100 mm reversed-phase column at a 

flow rate of 100 L min
-1

 and a water/acetonitrile gradient in the presence of 0.1% formic 

acid. The injection loop volume was 25 μL at a protein concentration of 25 to 35 μM. 

Identities of tryptic peptides were confirmed by MS/MS. These measurements were 

carried out in data-dependent acquisition mode, where the instrument automatically 

switches to tandem MS once a peptide of interest elutes from the column. HDX 

experiments were performed by mixing protein solution with D2O in a 1:2 ratio. The 

mixture was transferred into a syringe and directly infused into the ion source of the mass 

spectrometer. The x-axis was converted from m/z to mass M for individual ionic signals 

according to M = (m/z × n) - (0.667 × 2.014 × n) - (0.333 × 1.008 × n) where n is the 

charge state of the corresponding ion. Bovine cyt c contains a total of 192 exchangeable 
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hydrogens [53]. Hydrogen back exchange in the gas phase is negligible under the 

conditions used here [64]. 

 

2.2.3 Optical Spectroscopy 

UV-Vis absorption spectra were recorded on a Varian Cary 100 spectrophotometer (Palo 

Alto, CA). To facilitate the comparison of spectra obtained under different conditions the 

data were normalized to unity at the Soret maximum. Fluorescence emission spectra were 

acquired on a Fluorolog-3 instrument (Horiba Jobin Yvon, Edison, NJ), using an 

excitation wavelength of 280 nm and protein concentrations that were normalized to 5 

M. Protein-free solutions were used as blanks in all absorption and fluorescence 

experiments. CD spectra were recorded on a Jasco J-810 spectropolarimeter (Easton, 

MD) with a 1 mm path length cuvette. The protein concentration used for CD 

experiments was 35 µM, and the measured spectra were converted to mean residue 

ellipticity [53,65]. HCl was used instead of formic acid for CD measurements on acid-

denatured cyt c in order to avoid complications related to excessive light absorption in the 

far UV.  

 

2.3 Results and Discussion 

 

ESI-MS, optical spectroscopy, and HDX measurements were used to examine the effects 

of heat exposure on the structure of cyt c. Samples that had undergone thermal 

denaturation and subsequent lyophilization were compared to native cyt c, and to samples 
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at pH 2 (1.2% formic acid) where the protein is known to be extensively unfolded [11]. 

Protein that had undergone heat exposure was studied in the same solvent environment as 

native cyt c, i.e., pH 7 in 5 mM ammonium acetate at room temperature (22  1 °C). 

 

2.3.1 ESI Charge State Distributions 

The ESI mass spectrum of native cyt c shows a narrow charge state distribution that 

encompasses only the 7+ and 8+ peaks, representing a tightly folded solution-phase 

conformation (Figure 2-1A). A much wider distribution centered around 15+ and 

extending all the way to 20+ is observed for the acid-denatured protein at pH 2 (Figure 2-

1D). These observations are in line with previous reports [11,25,53]. Protein that had 

been heat exposed for 1 h retains its most intense charge state at 8+, but the relative 

intensity of the 7+ peak is diminished. In addition, higher charge states extending up to at 

least 14+ are observed (Figure 2-1B). The relative intensity of highly charged ions is 

further elevated for a heating period of 2 h (Figure 2-1C). The appearance of these mass 

spectra was found to be stable for days. Extending the heating period to more than 2 

hours resulted in data with increasingly poor signal-to-noise ratio (not shown). The results 

depicted in Figure 2-1B, C are consistent with earlier observations [53,55] that heat 

exposure of cyt c generates a sub-population of proteins that are irreversibly unfolded. In 

the mass spectra of Figure 2-1C, D, these non-native proteins give rise to charge states 

centered around 11+. 

 Compared to the data in Figure 2-1B, C, somewhat higher charge states with 

considerably higher relative intensities were seen in ref. [53] for heat-denatured  
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Figure 2-1. ESI mass spectra of bovine cyt c recorded at room temperature under 

different conditions. (A) Native protein at pH 7; (B) after heat exposure for 1 h (pH 7); 

(C) after heat exposure for 2 h (pH 7); (D) Acid denatured cyt c at pH 2 without prior 

heat exposure. 
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conformers, an effect that is tentatively attributed to differences in instrumentation. 

Quadrupole instruments of the type used in ref. [53] may discriminate against ions with 

high m/z [66], resulting in skewed spectra when compared to the TOF-MS data reported 

here. Other instrument characteristics such as the ion source design could play a role as 

well. 

 

2.3.2 Optical Spectroscopy 

Cyt c represents a convenient model system because it offers several optical probes for 

monitoring the occurrence of structural changes. The UV-Vis absorption spectrum reports 

on the heme environment [11,63]. Coordination of the heme iron with its native His18 

and Met80 ligands leads to a Soret absorption maximum at 409 nm. Displacement of 

these ligands upon acid unfolding induces a blue shift to 394 nm. A much smaller shift to 

407 nm is seen after two hours of heat exposure (Figure 2-2A). A prominent feature in 

the spectrum of the heated protein is a sloped baseline that strongly increases for shorter 

wavelengths. This effect can be attributed to Rayleigh scattering caused by small particles 

that are suspended in solution, representing a hallmark of partial protein aggregation [61]. 

Unfortunately, quantifying the extent of aggregation is not straightforward because 

scattering is affected both by the particle size and number density.  

 The CD spectrum of native cyt c shows minima at 208 and 222 nm, features that 

attest to a largely helical secondary structure (Figure 2-2B). In contrast, the acid-

denatured protein has its main minimum at 202 nm which is consistent with the 

prevalence of random coil-like elements [67]. Also heat exposure induces some 
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secondary structure perturbations, as evidenced by the differences between the solid and 

the dashed spectra in Figure 2-2B. The change in ellipticity at 222 nm between these two 

data sets suggests a 20% loss in helicity after heating, a finding that is consistent with the 

results of Wagner and Anderegg [53]. 

 The single Trp residue (Trp59) in native cyt c is virtually non-fluorescent due to 

efficient Förster resonance energy transfer to the heme, from where the excitation energy 

is dissipated as heat [11,68]. Unfolding disrupts this quenching mechanism by increasing 

the heme-Trp distance. As a result, exposure of the protein to pH 2 leads to a dramatic 

increase in fluorescence intensity. A fluorescence increase is also seen for cyt c after 

heating, but the signal intensity in this case is only ca. 20% of that seen for the acid-

unfolded protein (Figure 2-2C). 

 The data presented so far confirm that heat exposure of cyt c causes irreversible 

unfolding for a sub-population of proteins in the sample. A shift to higher ESI charge 

states indicates a more expanded conformation. Changes in the UV-Vis and fluorescence 

spectra point to tertiary structure alterations, and CD spectroscopy shows a reduced  

helicity. However, the overall magnitude of these heat-induced structural changes is 

moderate when compared to the more dramatic effects seen upon acid-induced unfolding. 

Heat exposed cyt c aggregates to a certain extent, which is consistent with the behavior 

seen for other proteins [61]. Although non-native aggregates can sometimes be observed 

directly by ESI-MS [20,34] this is not the case under the conditions of this work, even 

when extending the mass range for the measurements in Figure 2-1B, C (data not 

shown). 
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at pH 7 (dashed lines), and acid-denatured cyt c at pH 2 (dotted lines). (A) UV-Vis 

spectra, normalized to unity at the Soret maximum; (B) CD spectra, expressed as mean 
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2.3.3 Oxidative Modifications 

A striking feature in the ESI mass spectra of thermally treated cyt c (Figure 2-1B, C) is 

the occurrence of extensive peak broadening and tailing, resulting in data with relatively 

poor signal-to-noise ratio. Close inspection of individual peaks reveals that the heated 

protein has undergone oxidative modifications. All charge states show a signal 

corresponding to the mass of unmodified cyt c, but there are additional satellite peaks 

shifted by +16 Da and multiples thereof (Figure 2-3A, B). Covalent modifications of this 

type may be induced by exposure to H2O2 or OH [69,70], but it has been demonstrated 

that oxidation can also occur during heat exposure in the absence of such reactive 

compounds [61]. The mechanisms of protein oxidation can be quite complex, but many 

reaction pathways result in the incorporation of oxygen atoms into amino acid side 

chains, thereby accounting for the observed +16 Da adducts [69]. Previous ESI-MS 

studies on thermally denatured cyt c [53,55] did not address the possible occurrence of 

protein oxidation, and close-ups of individual peaks were not shown. However, the 

spectra for heated samples in refs. [53,55] had a "noisy" appearance reminiscent of the 

data in Figure 2-1B, C, making it likely that oxidation also took place under the 

conditions of those previous investigations.  

 Thermally-induced oxidation is less pronounced for low charge states than for 

highly charged protein ions. After one hour of heating, for example, the base peak for cyt 

c 7+ and 8+ corresponds to the mass of the unmodified protein. This is followed by 

smaller +16 Da and +32 Da adducts (Figure 2-3A). Residual unmodified cyt c is also 

seen for higher charge states, but the most intense peak in these cases is for singly 

oxidized protein, followed by a progression up to at least five-fold oxidation (Figure 2-
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3B). It is common to report protein oxidation levels as "fraction unmodified", Fu, defined 

as Au/Atot [69]. In this expression Au is the peak area corresponding to the unmodified 

protein, and Atot is the area of the entire mass distribution including unmodified and 

oxidized species. Peak integration for determining Atot in the current work was performed 

over the mass range from zero to five oxidations. Analysis of ESI-MS data after one hour 

of heating (Figure 1B) results in Fu values around 0.35 for charge states 7+ and 8+. Fu 

gradually decreases for higher charge states, down to a value of 0.16 for 14+ (Figure 2-

3C). Depending on their location within the protein, oxidative modifications can severely 

disrupt the native fold [71-73]. This is consistent with the observation that cyt c with 

elevated oxidation levels is preferentially seen in high charge states (Figure 2-3B). These 

data imply that oxidative modifications are a major contributing factor to the formation of 

irreversibly denatured cyt c after heat exposure. 

 Tryptic peptide mapping was used for locating major modification sites within the 

heated protein. Some oxidation was found to occur within the region covered by peptide 

T12 (residues 56-72). Marker fragments b4+16 (m/z 474.2) and y8”+16 (m/z 1039.5) 

reveal oxygen incorporation at both Met65 and Trp59. Also T15 (residues 80-86) carries 

a +16 Da modification. Observation of b2+16 (m/z 261.1, Figure 2-4), along with 

unmodified y6” (m/z 648.4) pinpoints Met80 as the site of oxidation in this segment. 

These results for T12 and T15 are consistent with previous work that found Met and Trp 

to be among the amino acids with the highest intrinsic reactivities [69]. Oxidation was 

also observed for T4-5 (residues 9-22). Unfortunately, the interpretation of MS/MS 

spectra (not shown) for this peptide is complicated by the presence of heme which is 

covalently attached to Cys14 and Cys17 via thioiether bonds. Luckily, some insights can 

be obtained by collisional activation of the intact protein during ESI, leading to the  
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Figure 2-3. ESI-MS data for cyt c after 1 hour of heating. (A) 8+ charge state plotted 
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formation of protonated heme as a major fragmentation product [74]. Collision-induced 

dissociation of non-heated cyt c produces a clean heme signal at m/z 617.2 that is 

accompanied only by its isotope peaks (Figure 2-5A). Analysis of heat exposed protein 

results in additional ions including (heme + 16 Da), and a host of other unidentified 

species (Figure 2-5B). This result strongly suggests that heme itself undergoes covalent 

modifications during heat exposure, an interpretation that is supported by studies on 

myoglobin under oxidizing conditions [75]. In addition to the modifications uncovered 

here, other sites of oxidation likely exist. Based on the known reactivity of sulfur-

containing residues [69], the thioether groups of Cys14 and Cys17 in T4-5 represent 

possible candidates. 

 

2.3.4 Hydrogen/Deuterium Exchange 

Unheated cyt c in 0.33% formic acid shows a bimodal charge state distribution (not 

shown), representing the presence of co-populated unfolded and native proteins. As 

reported previously [53], exposing the protein under these conditions to D2O results in 

HDX kinetics that are very similar for all charge states. As an example, Figure 2-6A 

shows mass distributions for the 7+ and 13+ peaks after 7 minutes of exchange. The peak 

maxima are shifted by 97 and 98 Da, respectively, relative to unlabeled cyt c. This 

corresponds to a relative HDX level around 97 / (0.66 × 192) = 77%. As discussed in the 

Introduction, the observation of virtually the same exchange kinetics for all charge states 

can be attributed to the rapid interconversion of native and non-native conformers under 

the conditions of partial acid-unfolding [49-51,53]. 
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          A key finding of Wagner and Anderegg's work [53] was the observation of 

different HDX mass shifts for high and low charge states of heated cyt c. Also in the 

current work the heat exposed protein shows mass distributions for all 10+ to 15+ peaks 

that are very different from those of the 7+ and 8+ charge states (exemplified for 7+ and 

13+ in Figure 2-6B for t  17.5 min). The accurate determination of HDX levels is 

complicated by peak broadening and by the limited signal-to-noise ratio of the data. From 

the approximate centroids (vertical lines in Figure 2-6B) it is estimated that high charge 

states show a mass shift that is 25 - 30 Da larger than for low charge states. At this 

juncture it is tempting to directly follow the arguments of ref. [53] and conclude that this 

difference is due to vastly different HDX characteristics, caused by non-interconverting 

folded and unfolded polypeptide chains in heat-exposed samples. However, this 

interpretation may be overly simplistic because the observed mass shifts result from a 

combination of HDX and protein oxidation. In other words, it is not immediately clear if 

highly charged ions really show elevated HDX levels. Alternatively, the differences in 

Figure 2-6B might be caused solely by the more extensive oxidation of highly charged 

ions (Figure 2-3A, B), which will shift the mass envelope to the right even if all peaks 

showed the same HDX behavior. To examine if such a "trivial" explanation can account 

for the effects seen in Figure 5B we resort to peak shape simulations. 

 HDX induces centroid mass shifts in addition to peak broadening [76]. The mass 

distribution of a broadened peak p after HDX may be approximated as a convolution of 

the protein's shifted mass profile f with a Gaussian distribution function D [64]. This can 

be expressed as 
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   p(M) = [f * D](M)      (1) 

 

where  

 

    dMDfMDf 



 )()()](*[     (2) 

 

A FORTRAN program was written for the numerical evaluation of eq 2. The procedure is 

illustrated in Figure 2-7, where the mass profile f is modeled as the sum of five Gaussians 

that are spaced by 16 Da. Width and intensity progression were chosen to mimic the 7+ 

and 8+ charge states of heated cyt c (Figure 2-3A). The entire profile f was then shifted 

by 106 Da to account for a mass increase due to HDX. A Gaussian band with an FWHM 

of 50 Da serves as distribution function D. Convolution of f and D according to eq 2 

results in an unstructured peak p. The presence of +16, +32, etc. oxygen adducts in f 

causes p to be slightly asymmetric, with a maximum that is shifted by an additional 10 Da 

relative to the non-oxidized protein (indicated by the arrows in Figure 2-7). We will now 

examine a few hypothetical HDX scenarios based on the known oxidation patterns of 

high and low charge states in heated cyt c. The simulation procedure outlined in Figure 

2-7 does not account for nonspecific solvent adducts that are frequently observed on the 

high mass side of ESI-MS peaks. Comparisons with experimental data will therefore 

focus on the low mass portion of the simulated curves, not far past the peak maxima. To 

emphasize this point the simulated profiles will be displayed as truncated on the high 

mass side. 
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Figure 2-7. Illustration of how the peak shape p is generated as convolution product of 

a mass profile f and a Gaussian distribution function D. Labels 0, +16 and +32 

represent the degree of oxygen adduction as in Figure 3A. Arrows highlight the 

positions of peak maxima. Intensity scaling of the three curves relative to each other is 

arbitrary. Additional information is provided in the text. 
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            (a) We first consider a hypothetical scenario where all oxidation levels in high and 

low charge states show the same HDX behavior, corresponding to the "trivial" case 

outlined above. The parameters used for Figure 6 (HDX mass shift = 106 Da, fwhm of D 

= 50 Da) provide a low mass portion and peak maximum that are in reasonable agreement 

with the experimental 7+ data for the heated protein (solid lines in Figure 2-6B, C). For 

reasons of simplicity, this parameter set will be retained for modeling the low charge state 

behavior in all cases considered here. Using a profile f that mimics the elevated oxidation 

level of the high charge states (Figure 2-3B) under otherwise identical simulation 

conditions results in a peak maximum that is shifted further to the right (dotted profile in 

Figure 2-6C). However, comparison with the experimental 13+ data in Figure 2-6B 

reveals that this simulated mass shift falls short of that seen for the measured 13+ signal. 

It is concluded that the "trivial" case considered here cannot account for the 

experimentally observed difference in mass shift after HDX. 

 (b) The previous scenario is now modified by assuming that the entire peak 

envelope of the 13+ charge state undergoes an additional shift due to more extensive 

HDX. Acceptable agreement with the experimental data is obtained if this additional shift 

is chosen to be 12 Da (dotted lines in Figure 2-6B, D). Under these conditions the 

measured centroids are well reproduced for both 7+ and 13+, as well as the fact that the 

low mass portions (between 12300 and 12350 Da) of both experimental peaks rise almost 

in parallel (Figure 2-6D).  

 (c) As a third possibility we consider a scenario where protein ions exhibit 

different HDX properties depending on whether they are oxidized or not, irrespective of 

their charge state. For example, unoxidized 13+ might show the same isotope exchange 



77 

 

 

properties as unoxidized 7+, whereas all oxidatively modified 13+ species undergo more 

extensive HDX. Such a scenario is tested in Figure 2-6E, where only the oxygen-bearing 

components of 13+ experience an additional HDX mass shift of 9 Da. The peak maxima 

obtained in this way are consistent with the measured data. However, the parallel rise of 

the experimental peaks between 12300 and 12350 Da is not well reproduced by the 

simulation. 

 The simulations of Figure 2-6 confirm that there is a genuine difference in the 

experimentally observed HDX levels of high and low charge states after heat exposure (as 

in scenario b). "Trivial" mass shifts resulting from oxygen adduction (scenario a) are not 

large enough to account for the measured effects. We conclude that a significant sub-

population of protein in the heat-exposed sample is oxidatively damaged in such a way 

that its members can no longer interconvert with conformers that are tightly folded. 

Partial unfolding of the modified proteins makes them appear in higher charge states, 

while at the same time giving rise to more extensive HDX. This interpretation provides a 

straightforward explanation for the ESI-MS and HDX behavior of cyt c after heat 

exposure that was previously reported by Wagner and Anderegg [53]. 

 A more subtle point is that ESI-MS also shows the presence of high charge states 

for unoxidized cyt c after heating, represented by the "0" component in Figure 2-3B. 

Charge states in this range are not observed without prior heating (Figure 2-1A). Thus, 

heat exposure seems to result in conditions that can lock protein chains in a non-native 

structure, even in the absence of oxidative modifications. The inadequacy of simulation 

scenario (c) suggests that rapid interconversion of these species with more compact 

conformers does not take place. It is instructive to examine possible reasons that could 
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cause the irreversible denaturation of unoxidized protein after heat exposure. Cyt c does 

not possess any -S-S- bridges, thus eliminating the possibility of disulfide shuffling [59]. 

A small degree of Asn or Gln deamidation (-NH2  -OH, mass shift = +1 Da per affected 

residue) [77] cannot be excluded, but our data show that the bulk of the protein is 

unaffected by this process. Formation of cis isomers at the protein's four X-Pro peptide 

bonds may slow down the normal sub-second time scale of cyt c folding [78] by several 

orders of magnitude [79]. However, X-Pro cis/trans isomerization is reversible on a time 

scale of seconds to minutes, and would thus not be expected to generate proteins that are 

permanently locked in a non-native structure. An important point to remember is that the 

UV-Vis data of Figure 2-2A demonstrate the occurrence of partial aggregation after 

heating. Previous work has shown that dissociation of protein aggregates during ESI can 

generate highly protonated monomeric ions via asymmetric charge partitioning [20]. It is 

also known that interconversion between aggregated proteins and those that are free in 

solution is minimal [80]. In addition, conformational distortion of polypeptide chains 

within amorphous aggregates may promote rapid HDX. Thus, partial aggregation of the 

heated protein could generate a sub-population of cyt c molecules that (i) remain 

unoxidized, (ii) appear in high charge states, (iii) do not interconvert with the native state, 

and (iv) show a higher level of HDX than coexisting tightly folded conformers. While this 

aggregation mechanism is a plausible scenario, other possibilities cannot be ruled out. 
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2.4 Conclusions 

Heat exposure of cyt c results in a sub-population of irreversibly denatured protein chains, 

i.e., species that cannot attain their native state even when placed under "physiological" 

solvent conditions. The non-native molecules co-exist with tightly folded species, giving 

rise to bimodal ESI charge state distributions and perturbed optical spectra. This work 

demonstrates that the denatured conformers are heavily affected by oxidative 

modifications. Oxidation sites include Met65, Met80, Trp59, and the heme group. 

Modifications of Trp59 and Met80, in particular, are expected to be highly disruptive 

because in the native structure these residues are located within the tightly packed protein 

core [62]. Protein oxidation appears to be the main reason that prevents refolding to the 

native state for a considerable fraction of cyt c molecules after heating. This interpretation 

is supported by previous reports of oxidative damage induced by different means for 

other proteins [71-73,81]. With interconversion being blocked, oxidation-denatured 

protein chains undergo more extensive HDX than native conformers in the same solution. 

Unfortunately, oxygen adducts interfere with the analysis of isotope exchange data. 

Uncovering the presence of HDX differences requires a careful analysis of the measured 

peak shapes through comparisons with simulated mass spectra. Convolution integrals of 

the type used in this work (eq 2) are a useful tool for interpreting HDX data in the 

presence of interfering contributions. In addition to oxidation, partial aggregation appears 

to contribute to the formation of irreversibly denatured protein after heating. These 

findings represent an extension of previous work by Wagner and Anderegg [53] and 

Mirza et al. [55] who first reported on the interesting properties of cyt c after heat 

exposure, without examining the physical reasons for the observed behavior. 
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Chapter 3 – Protein-Protein Binding Affinities In Solution 

Determined by Electrospray Mass Spectrometry 

 

3.1 Introduction  

           Many proteins form noncovalent complexes with ligands such as metal ions, 

prosthetic groups, or other proteins. Multi-protein complexes are of particular interest, 

because they play a central role in numerous biological processes. The architecture of 

these supramolecular assemblies ranges from dimers all the way to MDa systems that 

encompass dozens of subunits [2]. Various experimental methods have been applied for 

studying protein-protein interactions. These include optical and calorimetric assays [4], 

nuclear magnetic resonance spectroscopy [5], surface plasmon resonance[6], micro-array 

chip [7], yeast two-hybrid screen [8], and analytical ultracentrifugation (AUC) [9]. Mass 

spectrometry (MS) offers a number of complementary avenues for characterizing protein-

protein interactions [10]. Hydrogen/deuterium exchange MS monitors changes in 

structure and dynamics upon binding [11-13]. Similarly, alterations in solvent 

accessibility can be probed by covalent labeling in solution, followed by a MS-based 

readout [14,15]. Affinity purification/MS has proven to be highly effective as well 

[16,17].  

 Conceptually the most straightforward technique for monitoring noncovalent 

complexes by MS is the "direct" approach. This method involves the transfer of intact 

solution phase assemblies into the gas phase by electrospray (ESI) or related ionization 

processes, followed by detection in a suitable mass analyzer [18-22]. Attractive features 

of this strategy include its speed, sensitivity, and selectivity. Numerous laboratories have 
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used the direct ESI-MS approach for characterizing protein-protein complexes [18-22], as 

well as other noncovalent assemblies [23-27]. 

 One question that remains somewhat unclear is to what extent the direct ESI-MS 

approach is suitable for determining solution phase binding affinities. This issue has been 

explored in considerable detail for protein-small molecule complexes [28-31]. In 

comparison, affinity measurements for protein-protein interactions have received less 

attention. We will consider the simple example of a homodimer D that is in equilibrium 

with its monomeric form M in solution according to 

  MD 2


     (1) 

The binding affinity of the complex is reflected in the dissociation constant 

  
][

][ 2

D

M
Kd        (2) 

where [M] and [D] denote the equilibrium concentrations of monomer and dimer, 

respectively. Assuming that the concentration ratio  

  
][

][

M

D
Rsol        (3) 

in solution is known, the dissociation constant can be calculated as  

  
)12(

1
][ 0




solsol

d
RR

PK     (4) 
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where [P]0 = [M] + 2[D] is the total protein concentration, expressed on a monomer basis. 

It is important to recognize that ESI-MS does not directly report the value of Rsol. Instead, 

these experiments provide the ion abundance ratio RESI-MS which is given by  

  
M

D
MSESI

I

I
R       (5) 

where ID and IM are the integrated signal intensities of dimeric and monomeric ions. The 

relationship between signal intensity and solution-phase concentration is given by 

  ID = D [D]      (6a) 

  IM = M [M]      (6b) 

The response factors  reflect the extent to which M and D species in bulk solution are 

converted to measurable ESI-MS signals [32]. The magnitude of  depends on several 

factors, including how efficiently the species are (i) transformed into gaseous ions, (ii) 

transmitted from the ESI source into the vacuum and through the mass spectrometer, and 

(iii) converted into electronic signals at the detector. Knowledge of M/D is vital for the 

use of ESI-MS as a tool for binding affinity measurements on the basis of equation (4), 

since 

  MSESI

D

M
sol RR 




     (7) 
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Methods for determining ESI-MS response factors have been proposed [32,33], but those 

approaches are not straightforward and their general applicability remains unclear. Hence, 

it is common to postulate that M/D  1 [34]. 

 In addition to discussing Kd values, a useful quantity that expresses the extent of 

protein interactions in solution is the fraction bound, fsol, defined as 

  
0][

][
2

P

D
f sol        (8) 

ESI-MS provides a related value, fESI-MS, that is based on ion intensities according to 

  
DM

D
MSESI

II

I
f

2
2


     (9) 

Analogous to the discussion above, it is seen that fsol = fESI-MS only if M = D. 

 The assumption that free and bound solution-phase species have the same  value 

is relatively unproblematic in the case of small molecule binding to a large receptor, 

where the free and bound forms generate ions that cover a very similar m/z range 

[25,29,30]. For protein complexes, however, the situation is not as simple. The formation 

of protein-protein interactions may be associated with changes in physicochemical 

properties that can affect the response factors [35,36]. The most obvious of these 

parameters are size and molecular weight. Smaller species tend to produce higher signal 

intensities [37]. Mass (or m/z) discrimination effects of this type can be caused by various 

factors, including insufficient collisional focusing during ion transfer [19,20,38,39]. 
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 Discrimination phenomena can also be related to the ESI mechanism. Formation 

of a protein complex can change the percentage of solvent-exposed hydrophobic residues, 

for example when monomers undergo a folding transition upon binding. Differences 

between M and D would be expected in such a case, because hydrophobicity is closely 

linked to the ESI ionization efficiency [3,40]. Also, solution phase equilibria may shift 

due to acidification caused by redox reactions in the ESI capillary [29,41,42], or as the 

result of concentration changes in the shrinking ESI droplets [43]. Luckily, these 

equilibrium shifts tend to be small under typical operating conditions [37,44]. Of greater 

concern is the possibility that nonspecific complexes can be formed from ESI droplets 

that contain two or more protein molecules. ESI-induced artifacts of this type give rise to 

false-positive results, i.e., the observation of gas-phase complexes that did not exist in 

solution [19,34,37,45]. Conversely, protein complexes may get disrupted during or after 

ESI, for example by collision-induced dissociation (CID) [21,37,46-49]. 

 Whereas regular ESI employs flow rates in the L min
-1

 range, nanoESI sources 

are operated in the nL min
-1

 regime [50,51]. It is often implied that nanoESI methods 

provide a better reflection of solution-phase binding equilibria due to the purported 

greater "softness" of the ionization process [19]. Nano-ESI-MS certainly offers some 

advantages due to its low sample consumption. The notion that it better reflects solution-

phase binding equilibria, however, is not undisputed [28,46]. 

 The preceding considerations show that ESI-MS may provide a distorted view of 

solution phase binding equilibria in certain cases. To examine the applicability of the 

direct ESI-MS approach for protein-protein affinity measurements, the current work 

focuses on two systems, β-lactoglobulin (BLG) [34,52,53]. and hemoglobin (Hb) [54-56]. 
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We test the effects of different ion sources. The extent to which differential protein 

ionization efficiencies, inadvertent fragmentation, and artifactual clustering affect the 

measured data are explored. Dramatically skewed results are obtained when employing 

improper ion transfer settings. Nonetheless, we find that under carefully controlled 

conditions the mass spectra reflect the protein binding behavior in solution remarkably 

well. 

 

3.2 Experimental 

3.2.1 Materials 

            Bovine BLG (monomer mass 18281 Da, pdb code 1BEB) was purchased from 

Sigma (St. Louis, MO, USA). Protein purity was confirmed by SDS gel electrophoresis. 

Hb (pdb code 2QSS) was isolated from fresh cow blood in its oxygenated (ferro) form 

following established procedures [56]. The masses of the Hb  and  subunits (including 

heme, excluding oxygen) are 15669 and 16570 Da, respectively. Prior to ESI-MS, the 

proteins were extensively dialyzed against 10 mM aqueous ammonium acetate. The 

resulting stock solutions were diluted to the desired protein concentrations in 150 mM 

ammonium acetate (pH 6.8). Protein concentrations were verified by UV-Vis absorption 

spectroscopy. BLG concentrations throughout this work are expressed on a monomer 

basis, Hb concentrations are reported on the basis of heterodimeric  complexes. 
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3.2.2 Mass Spectrometry  

All mass spectra were recorded under gentle ESI condition using a quadrupole-time-of-

flight instrument (Q-TOF Ultima, Waters, Milford, MA). The cone voltage and RF1 lens 

DC offset were adjusted to provide the highest relative signals for protein non-covalent 

complexes. Cone voltage values were in the range of 40 V to 70 V, and the RF1 voltage 

was between 50 V and 70 V. The desolvation temperature was set to 40 °C, down from its 

factory-recommended standard value of around 250 °C. The source block temperature 

was adjusted to 80 °C. Cone and desolvation gas flow rates were 100 and 500 L h
-1

, 

respectively. Mass calibration was performed over the range from m/z 600 to 7000 using 

2 μg μL
-1

 CsI in 1:1 (v/v) water/2-propanol. The ion transmission of the quadrupole is 

strongly dependent on the "MS profile" parameters, as discussed in the Results and 

Discussion section. Changing the hexapole RF settings was found to have only minor 

effects, and all spectra were recorded with a gain of 10 and an offset of 0.8. The 

maximum signal intensity in the spectra discussed below was on the order of 100 counts 

per second, roughly one order of magnitude below the saturation level. Increasing the 

pressure in the source region did not significantly affect the measured RESI values, 

revealing that extensive collisional focusing occurs even under standard experimental 

conditions for the Q-TOF employed here. This is in contrast to other instruments 

previously used in our laboratory, where the source pressure has dramatic effects [57]. 

Three different ESI sources were tested, a pulled capillary Waters nanoESI source, an 

automated chip-based nanoESI system (Advion Triversa, Ithaca, NY), and a regular 

Waters Z-spray source. The ESI voltages used for the three sources were 1.5 - 1.8 kV, 1.5 

- 1.7 kV, and 3 kV, respectively. Pulled capillary nanoESI measurements employed 
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borosilicate emitters with a Au/Pd coating (Proxeon, Cambridge MA). Solution flow 

through these capillaries was assisted by gentle nitrogen back pressure of less than 1 psi. 

The nanoESI flow rate under these conditions was estimated gravimetrically to be around 

25 nL min
-1

, consistent with the manufacturer's specifications. The nozzles of the Advion 

nanoESI chips had a diameter of 5 m, and flow rates were in the range of 50 to 100 nL 

min
-1

. Flow rates of the Z-spray source were controlled by a syringe pump (Harvard 22, 

Boston, MA). All spectra were acquired in positive ion mode. Peak area measurements 

for determination of IM and ID was conducted by using integration windows of m/z = 

100 around each peak. 

 

3.3 Results and Discussion 

3.3.1 Quadrupole Transmission Profile  

          Q-TOF analyzers are one of the most commonly used type of mass spectrometer 

for studies on noncovalent protein complexes [18-22]. Intact mass measurements on Q-

TOF instruments are conducted by operating the quadrupole ("Q") in RF-only mode 

where it serves as an ion guide [58-60]. It is important to note that an RF-only quadrupole 

does not transmit all ions with the same efficiency. Instead, it acts as a broad-band filter 

that does not allow passage of species with m/z values less than ~ 0.8 × M*, where M* 

depends on the RF amplitude. On the high mass side the transmission drops gradually, 

and only ions up to ca. 5 × M* can pass through the device. Commercial Q-TOF 

instruments allow the RF amplitude (and hence M*) to be ramped during data acquisition, 

thereby permitting analysis of a wider m/z window [61]. 
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 The choice of RF-only quadrupole settings has dramatic consequences for the 

relative peak intensities in different m/z regions of a mass spectrum. Figure 1 illustrates 

this effect for Hb. The experiments were conducted under semi-denaturing conditions (pH 

3.6), to ensure that the protein exists in various solution phase binding states that cover a 

wide m/z range (unbound  and  subunits, as well as  and ()2 complexes) [56]. For 

the instrument used here the quadrupole transmission is controlled by seven parameters. 

Dwell1 and dwell2 reflect the fraction of time that the quadrupole is operated at M1* and 

M2*, respectively. Ramp12 is the time fraction during which the device is ramped from 

M1* to M2*. Similarly, ramp23 refers to the ramp time spent between M2* and a third 

value M3*. Figure 3-1 (left hand side panels) depicts transmission profiles that were 

simulated for different quadrupole parameters, while the panels on the right show the 

corresponding mass spectra. Except for modifications of these quadrupole parameters, all 

data in Figure 3-1 were recorded under identical conditions. 

 When trying to ensure uniform transmission over a wide m/z range it is tempting 

to use settings where the RF amplitude is continuously ramped between a minimum value 

M1* and a maximum value M2*. Unfortunately, this strategy leads to an overall 

transmission profile that strongly favors the m/z range around M2*, while discriminating 

against lower values (Figure 3-1A). This behavior is a consequence of the asymmetric 

profile shape at any given M* (see above) [61]. The Hb spectrum recorded under such 

conditions, with M1* = 400 and M2* = 4000, is dominated by  ions, while peak 

intensities for ()2 and unbound subunits are much lower (Figure 3-1B). Figures 3-1C, 

D represent quadrupole settings that were chosen to strongly favor low m/z values. 
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Figure 3-1. Simulated quadrupole transmission profiles (left) and corresponding 

measured ESI mass spectra of Hb (right) at pH 3.6. The data were recorded using a Z-

spray ESI source with a flow rate of 3 L min
-1

 and a () concentration of 100 M. 

Parameters for operation of the RF-only quadrupole (M1*, dwell1, ramp12, M2*, dwell2, 

ramp23, and M3*) were as follows: (a, b) 400, 5%, 95%, 4000, 0%, 0%, 4000; (c, d) 

100, 100%, 0%, 100, 0%, 0%, 100; (e, f) 3800, 100%, 0%, 3800, 0%, 0%, 3800; (g, h) 

1600, 3%, 0%, 400, 37%, 60%, 4000. Binding states of Hb subunits are indicated as  

and , , and ()2. 
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The resulting mass spectrum exclusively shows free  and  species. In contrast, Figure 

3-1E demonstrates the effects of "high mass settings", yielding data that are dominated by 

()2 (Figure 3-1F). By carefully adjusting the quadrupole RF parameters it is possible 

to achieve a transmission profile that is relatively uniform between m/z 300 and 4500 

(Figure 3-1G). Under these conditions unbound subunits and  appear with comparable 

peak intensities, while ()2 signals are much lower (Figure 3-1H). 

 Overall, Figure 3-1 illustrates that ESI mass spectra for samples containing co-

existing protein binding states are strongly dependent on the transmission characteristics 

of the mass analyzer. In fact, the ion intensity ratio of a complex and its unbound 

constituents can have any value between zero and infinity, depending on the choice of 

quadrupole settings (Figure 1D, F). It is surprising that the quadrupole transmission 

properties hardly receive any mention in the pertinent ESI-MS literature, where ion 

intensity ratios (RESI-MS, Equation 5) are used to estimate binding affinities in solution. 

The instrument settings of Figure 3-1G appear to be most suitable for binding affinity 

measurements because they result in fairly uniform transmission characteristics. Hence, 

this profile was used for all subsequent measurements of this work.  

 

3.3.2 Effects of Different ESI Sources  

          The binding behavior of two model proteins, BLG and Hb was studied by ESI-MS 

under native solvent conditions (150 mM ammonium acetate, pH 6.8). BLG forms 

homodimers in solution. X-ray analyses of the binding interface show a number of 

hydrogen bonds between the AB loops of both subunits. Inter-subunit H-bonds also occur 
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between two  strands, in addition to a pair of salt bridges [34,52,53]. Hb is usually 

referred to as a "dimer of dimers", because its solution phase behavior is dominated by 

()2 = 2  equilibration under native conditions [54-56,62]. Subunit interactions in Hb 

are mediated by nonpolar and van der Waals contacts, as well as hydrogen bonds and salt 

bridges [63]. Hb dissociation into unbound  and  only plays a role under non-native 

conditions, as in Figure 3-1 [54-56]. On the basis of these considerations, the dissociation 

behavior of both BLG and Hb can be interpreted within the framework provided by 

Equations 1 - 9. For Hb, this requires  and ()2 to be interpreted as "M" and "D", 

respectively.  

 Mass spectra of both protein systems were acquired under four different ionization 

conditions: (1) nanoESI employing a pulled capillary emitter, (2) an automated chip-

based nanoESI source, and a regular Z-spray ESI source operated at (3) 1 L min
-1

 and 

(4) 50 μL min
-1

. Data acquired for BLG show monomers and homodimers, consistent 

with earlier observations (Figure 3-2) [34,52]. Analysis of these spectra reveals that the 

apparent extent of BLG dimerization under all four ionization conditions is quite similar, 

with fESI-MS values of 0.69, 0.66, 0.79, and 0.72 for Figure 3-2A, C, E, and G, 

respectively. Similar measurements were conducted with Hb, for assessing the abundance 

of  and ()2 ions. Native Hb mass spectra obtained under the four ionization 

conditions resulted in fESI-MS values of 0.70, 0.67, 0.83, and 0.80 (Figure 3-2B, D, F, H, 

respectively). As expected [54-56], unbound  and  are virtually undetectable for the 

solvent conditions of Figure 3-2. 
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Figure 3-2. ESI mass spectra of 10 μM BLG (panels on left), and 34 μM Hb (panels 

on right). The data were acquired with (a, b) pulled capillary nanoESI source, (c, d) 

chip-based nanoESI source, (e, f) Z-spray ESI source at 1 μL min
-1

, and (g, h) Z-spray 

ESI source at 50 μL min
-1

. M and D in the BLG spectra denote monomers and dimers, 

respectively. Binding states of Hb subunits are denoted as  and ()2, with 

protonation states indicated. Except for differences in ESI voltage (see text), all spectra 

were acquired under identical instrument settings. 
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         The data of Figure 3-2 demonstrate that the choice of ion source can affect the 

outcome of binding affinity measurements to a certain extent. However, the differences 

are surprisingly small, as fESI-MS values measured under the four conditions agree within 

25%. Our observations do not support the commonly held notion that nanoESI is "softer" 

and thus better suited for studying noncovalent systems, at least not for the proteins 

studied here. This finding is in line with the results of other protein binding experiments 

[28,46]. Consistent with earlier reports [19,47]. we also found nanoESI-MS 

measurements to be less reproducible than those conducted with a regular ESI source. If 

fESI-MS values are to be used for judging the quality of the spectra in Figure 3-2, one has to 

conclude that a regular ESI source operated at 1 L min
-1

 provides the most favorable 

conditions for the observation of protein complexes (Figure 3-2E, F). 

 

3.3.3 Testing the Fidelity of ESI-MS Data for Affinity Measurements 

           Several potential pitfalls have to be considered when assessing the solution-phase 

binding affinity of protein complexes by ESI-MS (see Introduction). Luckily, the most 

pertinent points are addressable by direct analysis of the measured spectra. 

 Protein binding in solution can be associated with conformational changes. In 

these cases the subunits will be more tightly folded within the complex than in the free 

state [64]. Such a scenario should increase the response factor M relative to D (Equation 

6) because partial unfolding enhances the effective hydrophobicity and thereby increases 

the ionization efficiency [3,40]. Whether or not this case applies to the systems studied 

here can be determined by applying a simple test. The average ESI charge state is linked 
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to the protein surface area in solution. For natively folded proteins a linear relationship 

between ln(surface area) and ln(average ESI charge state) has been demonstrated, with a 

slope of 0.69  0.02 [1]. Figure 3-3 shows a ln-ln plot of this type for BLG monomers 

and dimers, as well as for Hb  and ()2. All data points fall on a straight line with a 

slope of 0.66  0.03, consistent with the results of ref [1]. Solution-phase unfolding 

greatly enhances the degree of protonation during ESI [65-68], and therefore would lead 

to major deviations from linear behavior in Figure 3-3. Thus, we conclude that complex 

formation is not associated with major conformational changes for the proteins studied 

here. In other words, a selective enhancement of free protein signals (M) caused by 

conformational effects can be excluded.  

 Another point that has to be addressed is the possible disruption of noncovalent 

complexes by CID during ion sampling or transport [29,49]. In other words, we have to 

scrutinize whether BLG monomer peaks and Hb  signals in Figure 2 encompass 

significant contributions from inadvertently formed gas phase fragments. Charge 

partitioning during CID can occur in a symmetric or asymmetric fashion, subject to 

conservation of overall charge [69]. On the basis of the very narrow charge state 

distributions for both BLG monomers and Hb  ions (Figure 3-2), CID with 

asymmetric charge partitioning can immediately be excluded. On the other hand, 

symmetric fragmentation of BLG dimers would result in monomeric species with charge 

states centered around 13/2  6 - 7, whereas ()2 would produce  fragments with 

charges in the range of 17/2  8 - 9. The observed charge states for both BLG monomers 

and Hb  ions fall outside these expected ranges (Figure 3-2). This behavior implies 

that the extent of inadvertent gas phase fragmentation is negligible for the conditions used  
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Figure 3-3. Plot of ln(average ESI charge state) vs. ln(surface area, Å
2
), following the 

approach of ref [1]. Average charge states for each protein were calculated as 

described previously [3] on the basis of integrated peak areas, averaged over all 

spectra shown in Figure 2. Solvent accessible surface areas were calculated for BLG 

monomers and dimers from pdb file 1BEB using the program GetArea 

(http://curie.utmb.edu/getarea.html). PDB file 2QSS for used for Hb.  
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here. In the case of Hb, this conclusion is further supported by earlier experiments where 

CID of ()2 was deliberately induced, resulting in spectra that are completely different 

from those depicted in Figure 3-2 [58]. 

 A third potential concern is the formation of nonspecific protein-protein 

complexes during ESI [34,37,45]. Such an effect would lead to an overrepresentation of 

bound protein states in the spectra. Any ESI-mediated clustering artifacts is strongly 

dependent on the size of the initially formed ESI droplets. The volume of these droplets is 

proportional to the solution flow rate [3,70-72]. Larger droplets undergo a greater number 

of evaporation/fission cycles, thereby increasing the protein concentration in the final 

droplets that produce gas phase analyte ions [19,37]. Thus, the formation of nonspecific 

aggregates should be enhanced at higher flow rates. Comparison of mass spectra recorded 

at 1 L min
-1

 (Figure 3-2E, F) and 50 L min
-1

 (Figure 3-2G, H) shows that increasing 

the flow rate does not lead to higher signals for bound species. Therefore, the fESI-MS 

values measured for BLG and Hb are not significantly affected by nonspecific clustering. 

It is interesting to note that abundance of dimeric BLG and Hb ()2 actually decreases 

slightly when the flow rate is raised. This may be due to more favorable desolvation at 1 

L min
-1

 (Figure 3-2E, F). 

 In summary, the mass spectra of Figure 3-2 appear to be free of major ESI-

induced complexation and fragmentation artifacts. Moreover, the linear relationship of 

Figure 3-3 suggests that conformationally-induced differences in the ionization 

efficiency of free and bound proteins are small. The quadrupole transmission has been 

adjusted to ensure that m/z-dependent discrimination effects are at a minimum (Figure 3-
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1G). Only after considering all of these points it is justified to assume that M  D 

(Equation 6). Hence, the value of RESI-MS should closely match the concentration ratio Rsol 

(Equation 7), such that dissociation constants can be determined directly from ESI-MS 

intensity ratios (Equation 4). The validity of these considerations is confirmed by the 

results discussed in the subsequent section. 

 

3.3.4 Concentration-Dependent Measurements 

           For any dissociation equilibrium in solution (Equation 1) the fraction of bound 

protein depends on the total concentration [P]0. Elevated protein concentrations will 

increase the value of fsol. Figure 3-4 depicts the results of comparative ESI measurements 

on BLG and Hb, where [P]0 was altered by two orders of magnitude. The data were 

acquired using a standard Z-spray ESI source at 1 L min
-1

. As expected, the resulting 

spectra show an increased abundance of bound protein at elevated [P]0. Dissociation 

constants were determined from the measured RESI values at different [P]0, assuming that 

M/D = 1 (Equations 4, 7). The resulting Kd values are summarized in Table 1. BLG 

dissociation constants determined in this way at different protein concentrations agree 

within a factor of two. When averaging these data a value of Kd = (2.2  0.7) M is 

obtained. This result is in reasonable agreement with the literature value of 4.9 M, which 

was measured by AUC for BLG [53]. The spread in the ESI-MS-derived Kd values for Hb 

is somewhat larger, between 1.3 and 3.6 M. However, this level of variability is quite 

common when measuring dissociation constants under different conditions [73].  
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Figure 3-4. ESI mass spectra of BLG acquired at a protein concentration of (a) 1 μM 

[fESI-MS = 0.36] and (b) 90 μM [fESI-MS = 0.89]. Panels (c), (d) show data measured for 

3.4 μM and 170 μM Hb, with fESI-MS values of 0.65 and 0.90, respectively. The data 

were recorded using a Z-spray ESI source at 1 μL min
-1

.  
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BLG [P]0 1 10 90 

Kd 2.2 1.2 2.5 

Hb [P]0 3.4 34 170 

Kd 1.3 2.4 3.6 

Table 1. Dissociation constants Kd measured by ESI-MS at different protein 

concentrations [P]0. The data used for these calculations were acquired using a regular 

Z-spray ESI source operated at 1 L min
-1

 (Figures 2, 4). All values are in units of 

M. 
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Most importantly, the average Kd value of (2.4  1) M for Hb is consistent with a the 

results of various solution-phase assays that provided a dissociation constant of 2 M 

[62,74]. 

 The fact that similar Kd values are obtained at different protein concentrations 

confirms that the spectral changes seen in Figure 3-4 indeed reflect equilibrium shifts in 

solution. More importantly, the consistency of ESI-MS-derived Kd values with previous 

solution-phase data provides an a posteriori justification for the supposition that M  D 

under the carefully adjusted conditions of this work. 

 

3.4 Conclusions 

This work demonstrates the feasibility of using the direct ESI-MS approach for 

quantitative measurements of protein-protein binding affinities (Kd values) in solution. In 

contrast to traditional methods for studying biomolecular interactions, ESI-MS relies on 

the detection of biomolecular assemblies in the gas phase. Special care must be taken, 

therefore, to ensure that the data obtained are not affected by artifacts related to the 

ionization or detection processes. In contrast to typical protein-small molecule complexes, 

free and bound forms of protein-protein assemblies cover a much wider m/z range in the 

spectra. This aspect leads to unique challenges. A key aspect that has received little 

attention in previous studies are the parameter settings of RF-only quadrupoles in the ion 

path. These elements are present in Q-TOF instruments, as well as in other types of mass 

analyzers. Only carefully adjusted conditions provide a relatively uniform transmission 
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profile. When studying protein-protein assemblies, practitioners may by tempted to 

employ quadrupole parameters that maximize the relative abundance of bound species. It 

can be very misleading to employ data acquired under such skewed conditions for 

binding affinity measurements (Figure 3-1). In addition, we caution that other ion optics 

such as hexapoles and stacked lenses may also be associated with m/z-dependent 

discrimination effects [58]. Some of these factors are not easily controllable by the user, 

and they are not as well characterized as the quadrupole behavior. A proper test for the 

uniformity of the overall transmission profile are comparisons between ESI-MS-derived 

Kd values and solution-phase measurements for a number of well studied model systems. 

 Except for its lower sample consumption, the use of nanoESI does not offer any 

advantages for the two protein systems studied in this work. In fact, the highest 

abundance of BLG dimers and Hb ()2 complexes (and the best agreement with 

previously measured Kd values) was obtained with a regular ESI source operated at 1 L 

min
-1

 (Figure 3-2). 

 Mass spectra of protein-protein complexes and their free constituents can be 

subjected to a number of simple controls. In cases where formation of a protein complex 

is associated with major conformational changes one would expect the ionization 

efficiencies of free and bound forms to be significantly different. For complexes with 

known X-ray structures, a ln-ln plot of the type depicted in Figure 3-3 is a useful tool for 

determining whether or not such conformational factors are prevalent. Comparison of the 

ESI charge states for free and bound species gives an indication whether the measured 

spectra are affected by CID artifacts. Flow-rate-dependent measurements can reveal the 

extent to which nonspecific aggregates are formed. Another important test for the fidelity 
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of the direct ESI-MS approach are binding affinity measurements conducted at various 

protein concentrations, all of which should provide very similar values of Kd. In future 

work it will be interesting to extend the measurements of this study to a range of 

additional protein complexes. We are hopeful that the direct ESI-MS approach will 

become well established for determining protein-protein binding affinities, similar to the 

case of protein-small molecule interactions where this strategy is already fairly 

commonplace. 
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Chapter 4 –Assembly of Hemoglobin from Denatured 

Monomeric Subunits: Effects of Heme Ligation and Off-

Pathway Intermediates Studied by Electrospray Mass 

Spectrometry 

 

4.1 Introduction 

The mechanisms by which small monomeric proteins fold to their native conformations 

have been explored in great detail [1]. Funneled energy landscapes can account for the 

fact that folding occurs rapidly and with high-yield [2], although misfolding and 

aggregation can also take place [3,4]. While most folding studies have dealt with the 

behavior of isolated proteins in vitro, there are also efforts to decipher cotranslational 

events [5] and chaperone involvement [6] that can be important in vivo.  

 While monomeric proteins have been quite amenable to mechanistic folding 

investigations, the situation is more difficult for multi-subunit systems. Protein complexes 

play a major role in numerous cellular processes [7,8]. Folding of these noncovalent 

assemblies requires the formation of intramolecular contacts, as well as intermolecular 

binding. In addition, many protein complexes incorporate metal ions or other cofactors 

[9-13]. Only relatively few time-resolved studies on the folding/assembly mechanisms of 

protein complexes have appeared in the literature [8,11,14]. Experimental investigations 

in this area are complicated by the fact that commonly used spectroscopic probes cannot 

distinguish between intra- and intermolecular events [15]. Also, the yield of 

folding/binding reactions tends to be low due to off-pathway aggregation [3,16]. On the 

other hand, similar aggregation phenomena can also occur in vivo. Thus, the observation 
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of these off-pathway events in vitro can provide valuable insights into the kinetic 

competition between aberrant aggregation and proper assembly of protein complexes 

[3,12]. 

Hemoglobin (Hb) acts as oxygen transporter in red blood cells [17-19]. The native 

tetrameric Hb structure comprises two α and two β subunits. The eight helices in β-globin 

are termed A – H, whereas helix D is missing in the slightly shorter  subunit. The Hb 

quaternary structure represents a (
h


h
)2 “dimer of dimers”, where the superscript “h” 

indicates the presence of a heme in each subunit. The tetramer is stabilized by 

hydrophobic contacts, hydrogen bonds, van der Waals interactions, and salt bridges. The 

11 (and 22) interfaces are linked by close contacts, whereas 12 (and 21) 

binding is less extensive [20]. The heme is sandwiched between helices E and F. Helix F 

provides the proximal (His87 and βHis91) ligand for the heme iron. Reversible oxygen 

binding to ferrous (Fe
2+

) heme takes place on the distal side. Autooxidation can generate 

metHb (with ferric iron, Fe
3+

) that is incapable of O2 binding [21]. Under physiological 

conditions (
h


h
)2 is in equilibrium with 

h


h
. The tetramer-dimer dissociation constant is 

on the order of 10
-6

 M for oxyHb, whereas much tighter binding with Kd  10
-11

 M is 

observed in the deoxy state [22,23]. 

Numerous investigations have focused on the Hb oxygen binding properties 

[20,24,25], but much less is known about the mechanism of Hb folding and assembly. 

The protein can be refolded in vitro from isolated apo-globin subunits (
a
 and 

a
) and free 

heme [26]. Deciphering the mechanism of this process is complicated by the considerable 

heterogeneity of the reaction mixture which comprises various subunit combinations and 
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heme binding states [27,28]. Also, the refolding yield tends to be low due to precipitation 

of 
a
 and 

a 
[29]. Some earlier studies employed mixing of prefolded 

h
 and 

h 
[30-33]. 

Assembly under these conditions requires the dissociation of non-native (
h
)2 and (

h
)4 

complexes into monomeric species. This is followed by formation of 
h


h
, which then 

generates (
h


h
)2 [28,33]. Other species such as 

h


a
 may be involved as on-pathway or 

off-pathway intermediates [27,31,34,35]. In red blood cell precursors a chaperone termed 

AHSP (-hemoglobin stabilizing protein) can sequester 
h
 and/or 

a
, thereby suppressing 

aggregation, and facilitating binding to -globin [27,36]. 

Native electrospray ionization (ESI) mass spectrometry (MS) provides 

information on protein interactions and conformations. By transferring intact noncovalent 

assemblies into the gas phase it is possible to determine their subunit stoichiometry via 

simple mass measurements [37-40]. Binding affinity estimates may be obtained from ion 

intensity ratios [41-44]. ESI charge state distributions are sensitive to the solution-phase 

conformation, because folded and unfolded proteins follow different ionization 

mechanisms [45]. Compact conformers form low charge states, whereas unfolded 

proteins generate wide distributions of highly protonated ions [46-52]. ESI-MS can 

therefore simultaneously report on the assembly status and the conformation of proteins 

[51]. Also, co-existing species can be monitored individually, whereas traditional 

spectroscopic tools only provide population-averaged data [53]. By analyzing a reaction 

mixture at various time points it is possible to uncover the temporal sequence of events 

during the assembly of noncovalent protein complexes [54-58]. 
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A number of studies have explored Hb subunit interactions by ESI-MS 

[35,42,57,59-63], but a comprehensive view of the Hb folding/assembly mechanism has 

not been obtained yet. The implications of recent unfolding studies for the Hb refolding 

mechanism are not clear [35,63], because denaturation was triggered by acidification 

which induces irreversible heme precipitation [64]. Denaturants such as urea are 

problematic because they are incompatible with on-line ESI-MS. Our group monitored 

the refolding of metHb by ESI-MS, starting from monomeric apo-subunits after 

acetonitrile-induced denaturation at pH 10 [57]. In that work it was possible to return the 

protein to a folded tetrameric state via solvent exchange to an aqueous environment at pH 

8. A convoluted assembly mechanism involving a number of intermediates was observed 

under those conditions [57]. Unfortunately, the refolding experiments of our earlier work 

were conducted using Hb samples that had been obtained commercially as lyophilized 

powder [64]. Subsequent investigations revealed that such commercial Hb samples 

exhibit high levels of oxidative modifications, a factor that significantly affects the 

protein behavior [60,61,63]. 

In the current work we investigate the Hb assembly mechanism, using freshly 

prepared Hb that is virtually free of oxidative modifications. Surprisingly, it is found that 

the refolding procedure developed earlier provides poor results for these higher quality 

samples [57], necessitating the development of an optimized experimental approach. By 

conducting comparative ESI-MS analyses of Hb assembly under “low-yield” “high-yield” 

conditions it is possible to uncover the mechanistic basis of the different outcomes. 
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4.2 Experimental 

4.2.1 Materials  

              Bovine oxyHb was purified as described,[63] from fresh cow blood that had 

been collected over 0.3% (w/v) sodium citrate. Briefly, plasma and buffy coat were 

removed by 30 minutes of centrifugation at 5,500 g. The red blood cell pellet was washed 

with 0.9% (w/v) NaCl and re-centrifuged four times. Red blood cells were then ruptured 

osmotically by exposure to distilled water with 10% (v/v) toluene. Stromal impurities 

were extracted into the organic layer. The resulting hemolysate was centrifuged at 15,000 

g for 30 minutes, and dialyzed against 10 mM ammonium acetate with multiple buffer 

exchanges on ice. Stock solutions obtained in this way were flash frozen in liquid 

nitrogen and stored at -80 C. Mass analyses reveal that oxidative damage of the Hb 

samples obtained in this way is negligible, consistent with earlier results [63]. Cyano-

metHb was prepared by first oxidizing oxyHb to metHb via addition of 1.2-fold molar 

excess (on a heme basis) potassium ferricyanide for 5 minutes at room temperature. CN
-
 

binding was achieved by addition of 1.2 fold molar excess of KCN. The resulting cyano-

metHb was filtered through a 3 × 25 cm G-25 Sephadex column with 10 mM ammonium 

acetate in water (pH 7) as mobile phase. The Hb subunit masses were found to agree with 

those expected based on the amino acid sequence (15,053 Da for 
a
 and 15,954 Da for 

a
) 

to within  1 Da [21]. Heme accounts for an additional 616 Da. As reported previously 

[63], the extent of oxidative damage for protein samples obtained in this way is 

negligible. 
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4.2.2 Dialysis-Mediated Hb Refolding  

Denaturation of oxyHb was achieved by addition of ammonia to pH 10, followed by 

addition of 40% acetonitrile (v/v), for a final Hb concentration of 60 µM (based on 

protein tetramers). Some experiments were  conducted by adding 2 mM KCN to the Hb 

solution, prior to exposure to acetonitrile and basic pH. After seven minutes 1 mL 

samples of denatured protein was transferred into a slide-A-Lyzer dialysis cassette 

(Pierce, Rockford, IL) with a 7 kDa cutoff, followed by dialysis against 1 L aqueous 

ammonium acetate solution at pH 8. The solvent exchange goes to completion within ~40 

minutes [57]. Dialysis experiments were conducted at 22 C or at 4 C. Aliquots were 

taken at various time points during dialysis for ESI-MS and for optical measurements. 

Control experiments on native Hb revealed a slight (27%) decrease in protein 

concentration after 18 h of dialysis. Part of this effect is caused by solution influx into the 

dialysis chamber which leads to a 10% volume increase. The remainder (17%) is 

attributed to protein loss through the membrane. 

 

4.2.3 ESI Mass Spectrometry 

Hb samples were analyzed using a Q-TOF Ultima API instrument (Waters, Manchester, 

UK) equipped with a Z-spray source. Gentle ESI conditions were used that had 

previously been shown to preserve (
h


h
)2 complexes[42] (capillary voltage 3 kV, cone 

voltage 60 V, RF lens 1 voltage 35 V, source temperature 80 °C, and desolvation 

temperature 40 °C). Cone and desolvation gas flow rates were 150 L h
-1

 and 500 L h
-1

, 

respectively. The quadrupole profile was adjusted to ensure uniform transmission across 
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the m/z range of interest [42]. The protein solution was infused into the ESI source at 5 

L min
-1

 using a syringe pump. Each spectrum shown below represents the sum of 

around 100 scans, with an acquisition time of 2 s per scan. All ESI-MS data were 

recorded at a nominal tetramer concentration of 60 µM, i.e., aliquots removed from the 

dialysis cassette were infused directly without further processing or dilution. 

 

4.2.4 UV-Vis Spectroscopy  

Absorption spectra were recorded on a Varian Cary 100 Spectrophotometer (Palo Alto, 

CA). Data were acquired in 1 cm cuvettes, and all samples were diluted to a nominal 

tetramer concentration of 2 µM. Protein concentrations were determined using 541 = 13.8 

mM
-1

 cm
-1

 for oxyHb, 500 = 10.0 mM
-1

 cm
-1

 for metHb, and  540 = 11.5 mM
-1

 cm
-1

 for 

cyano-metHb [17,65]. These numbers are per heme equivalent; for determining the 

absorption coefficient of (
h


h
)2 each value has to be multiplied by four. 

 

4.3 Results and Discussion 

4.3.1 Hb Unfolding and Refolding Monitored by Optical Spectroscopy 

Prior to conducting ESI-MS investigations it is instructive to characterize the protein 

behavior by UV-Vis absorption spectroscopy. The heme absorption spectrum is sensitive 

to the porphyrin environment, iron ligation, and iron oxidation state. UV-Vis 
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measurements have been the primary tool for probing Hb structural changes for many 

years [17]. 

 Hb obtained using the isolation procedure outlined above displays a dominant 

Soret peak at 415 nm, along with maxima at 541 nm and 577 nm. The presence of these 

bands is consistent with oxyHb, where all ferrous heme groups are oxygenated (Figure 4-

1A, black) [17,63]. Hb denaturation was conducted by exposure to 40% acetonitrile at pH 

10 [57]. The resulting spectrum has a greatly reduced Soret absorption with a maximum 

at 400 nm, reflecting major changes in heme environment. At the same time, spectral 

alterations in the 500-600 nm range indicate the occurrence of heme Fe
2+

  Fe
3+

 

autooxidation (Figure 4-1A, red) [17,21]. 

 Hb refolding was triggered by dialysis-mediated acetonitrile removal, in 

combination with a pH decrease from 10 to 8 [57]. Initial experiments were conducted at 

22 C. The UV-Vis spectrum of Hb recorded 18 h after initiation of refolding displays a 

Soret maximum at 406 nm (Figure 4-1B, green), consistent with metHb and distal 

ligation by H2O or OH
- 

[17]. From the known metHb absorption coefficient (see 

Methods) the refolding yield under these conditions can be determined to be ~48%. 

Partial aggregation and/or precipitation is the most likely culprit responsible for this low 

yield. Interestingly, the same procedure results in a yield of almost 100% for 

commercially obtained metHb [57]. Standard commercial samples are characterized by 

high oxidation levels at methionine and other residues, particularly in -globin [63]. 

These oxidation events  
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Figure 4-1. UV-Vis absorption spectra of bovine Hb under different conditions. (A) 

Freshly isolated oxyHb at pH 7 (black), and denatured protein in 40% acetonitrile at 

pH 10. (B) Hb after refolding at room temperature (green), and after refolding at 4 C 

with 2 mM KCN (blue). (C) Comparison of native cyano-metHb (pink) with protein 

that had been refolded at 4 C with 2 mM KCN (blue). 

 



131 

 

 

decrease the overall protein hydrophobicity [66], and reduce the aggregation propensity. 

Figure 4-1B reveals that the procedure of ref.[57] performs poorly for the freshly 

prepared Hb used here, which is virtually free of oxidative modifications. 

To improve the refolding conditions the temperature was lowered to 4 C, 

resulting in an increased yield of ~70% (data not shown). A further improvement to ~85% 

was achieved by supplementing the Hb solution with 2 mM KCN prior to denaturation. 

The UV-Vis spectrum after refolding at 4 C with KCN has a Soret maximum at 419 nm 

(Figure 4-1B, blue), corresponding to cyano-metHb where the distal coordination site is 

occupied by CN
- 
[17]. The absorption properties of KCN-refolded samples are virtually 

indistinguishable from those of freshly prepared cyano-metHb (Figure 4-1C). Control 

experiments conducted with KCl revealed that the enhanced refolding yield is not simply 

an ionic strength effect (data not shown). 

Attempts to increase the refolding yield even further via addition of free heme 

were not successful for any of the conditions employed here (data not shown). This 

behavior indicates that the loss of free heme through the dialysis membrane is not a 

limiting factor, pointing to weak residual heme-protein interactions in the denatured state 

as suggested previously [67]. 

 In summary, the optical data of Figure 4-1 reveal that the Hb refolding behavior 

strongly depends on the conditions used. For investigating the mechanistic basis of the 

observed outcomes we will focus on (i) low-yield conditions (22 C, no KCN); and (ii) 

high-yield conditions (4 C, with KCN). Heme is moderately soluble in aqueous solution 

at pH 8, forming dimers and larger porphyrin aggregates [64]. In contrast, free heme in 
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the presence of KCN gets converted to hemin dicyanide (h(CN)2) that has a much higher 

solubility and does not self-associate [68,69]. 

 

4.3.2 ESI-MS Characterization of Refolded Hb 

          The UV-Vis data of Figure 4-1 only reflect the local heme environment. 

Quaternary structural information can be obtained by ESI-MS. For reference, Figure 4-

2A shows a typical mass spectrum of native oxyHb. Monomeric subunits are virtually 

absent. The data are dominated by the canonical (
h


h
)2 assembly, with some 

contributions from 
h


h
. For the instrument settings used here the ion intensity ratio 

approximately matches the tetramer:dimer ratio in solution [42].  

 Quite a different spectrum is obtained after refolding under low-yield conditions 

(Figure 4-2A). The relative intensities of (
h


h
)2 and 

h


h
 are significantly reduced. 

Instead, the data are dominated by 
h
 in charge states 8+ and 9+, representing folded 

holo--globin monomers [53,57,63]. The mass spectrum also shows 
h
 ions in higher 

charge states that originate from solution-phase conformers that are more unfolded. In 

addition, each of the 
h


h
 peaks exhibits a (

h
)2 satellite signal. 

ESI-MS data obtained after high-yield refolding are dominated by cyanide-bound 

(
h


h
)2 (Figure 4-2C). The tetramer:dimer ratio resembles that of the native protein in 

Figure 4-2A. The contributions of free 
h
 and (

h
)2 in Figure 4-2C are significantly 

reduced relative to Figure 4-2B.                                                                                                           
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            Overall, the ESI-MS data of Figure 4-2 confirm that Hb samples after low-yield 

refolding are strongly perturbed (Figure 4-2B). In contrast, high-yield conditions mainly 

produce native tetramers (Figure 4-2C). Interestingly, the mass spectra of both refolded 

samples reveal an / imbalance, where free 
h
 and (

h
)2 are not matched by any -

globin species. Considering that the initial samples had an : molar ratio of unity, this 

imbalance implies the loss of -globin during refolding due to aggregation and/or 

precipitation. This -globin-deficiency is substantially more pronounced under low-yield 

conditions (Figure 4-2B). 

 

4.3.3 Time-Dependent ESI-MS Measurements  

          The Hb assembly status can be tracked during refolding by ESI-MS analysis of 

aliquots taken at various time points. Under low-yield conditions the t = 0 spectrum  

shows monomeric 
a
, 

h
, 

a
, and 

h
 in a wide range of charge states (Figure 4-3A). 

These data confirm that the initial denaturing solvent environment converts native Hb into 

a structurally heterogeneous ensemble of monomers [57]. The presence of apo and holo 

ions for both globins reveals that heme-protein interactions are not completely disrupted. 

The spectrum also shows -globin that is bound to a heme dimer (
2h

) consistent with 

partial heme dimerization under the conditions used here [64]. Starting at t = 3 min 
h 

ions in low charge states become the most abundant species (Figure 4-3B). In addition, 

there are notable contributions from 
h


h
 and (

h
)2. After 12 minutes  

a
 has all but 

vanished, while (
h


h
)2 starts to appear( Figure 4-3C). Figure 3D represents the t = 18 h  
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end point of the reaction. Although the relative contribution of (
h


h
)2 has increased 

further, the spectrum remains dominated by 
h
 in low charge states. 

The data of Figure 4-3 provide interesting clues as to why refolding experiments 

conducted at 22 C without KCN result in a low (
h


h
)2 yield. Inspection of the mass 

spectra reveals that all time points show a -globin deficiency. This imbalance is already 

apparent at t = 0, where the combined total ion count of 
a
 and 

h
 is roughly three times 

higher than that of 
a
 and 

h
 (Figure 4-3A). These observations point to aggregation-

mediated loss of -globin in the denatured state and early during refolding as the main 

reason responsible for the limited yield. 

ESI-MS data recorded under high-yield conditions provide quite a different 

picture (Figure 4-4). Peak tailing results from heterogeneous adduct formation caused by 

the presence of KCN in the reaction mixture. These salt effects are well known in ESI-

MS [70]. For the spectra of Figure 4 the extent of adduct formation decreases as the salt 

concentration drops during dialysis. The denatured state in the presence of KCN displays 

non-native charge state distributions for both globins (Figure 4-4A), similar to those seen 

under low-yield conditions (Figure 4-3A). Strikingly, however, Figure 4-4A shows 

comparable ion intensities for 
a
 and 

a
, as well as for 

h
 and 

h
. In other words, the / 

imbalance at t = 0 is much less pronounced in Figure 4-4A. However, signs of -globin 

deficiency start to appear after 3 minutes (Figure 4-4B). A close match in  and  

intensities as seen at this time point only for highly charged ions. In contrast, the low 

charge state range displays dominant 
h
 signals as well as (

h
)2 without matching -

globin contributions. 
h


h
 dominates the spectrum after 12 minutes (Figure 4-4C). After  
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18 h most of the 
h


h
 has assembled into native Hb tetramers (Figure 4-4D). However, a 

notable contribution of monomeric 
h
 remains. Thus, a deficiency of freely available -

globin limits the (
h


h
)2 assembly process even under the high-yield conditions of Figure 

4-4. 

 

4.3.4 Assembly Mechanism Under High-Yield and Low-Yield Conditions 

           Figure 4-5 allows a direct comparison of the assembly process for the two 

different scenarios. Temporal ESI-MS intensity profiles were generated from the 

measured peak areas, integrated over all charge states for any given species. 

Under both reaction conditions 
a
 gets consumed within a few minutes (Figure 4-

5A, B). Under low yield conditions this rapid 
a
 disappearance is mirrored by an 

accumulation of 
h
, caused by a shortage of suitable binding partners, i.e., -globin. This 

shortage is apparent from the low 
a
 and 

h
 intensities in Figure 4-5C. 

h
 accumulation is 

less pronounced under high-yield conditions (Figure 4-5B) due to a more abundant 

supply of -globin (Figure 4-5D). Low-yield conditions also cause an initial buildup of 

-globin that is bound to heme dimers and trimers (
2h

, 
3h

, Figure 5E). Interestingly, 

these species completely disappear from the reaction mixture at later reaction times. Thus, 

while 
2h

 and 
3h

 represent off-pathway intermediates, they ultimately equilibrate with 

other species and get consumed during the reaction. Neither 
2h

 nor 
3h

 becomes 

significantly populated under high-yield conditions (Figure 4-5F). This behavior is  in 

line with the fact that heme retains a soluble monomeric state in the presence of KCN 

[68,69], whereas partial heme aggregation takes place under low-yield conditions [64]. 

Heme dimer and trimer binding has previously been observed for myoglobin [71]. 
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Figure 4-5. Refolding kinetics of Hb monitored by ESI-MS under low-yield 

conditions (left hand side panels), and under high-yield conditions (panels on the 

right). These data correspond to signal intensities that were integrated over all charge 

states for each individual species. Note the differences in intensity axis scaling for 

some of the panels. 
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         (h
)2 is another off-pathway intermediate that transiently accumulates under low-

yield conditions (Figure 4-5G). In earlier work this species has been detected in -globin-

free solutions [28,33]. Thus, it is not surprising that (
h
)2 formation is suppressed in the 

presence of KCN (Figure 4-5H) where a larger supply of -globin is available. 

There is an ongoing discussion in the literature whether the formation of 
h


h
 

proceeds via association of 
h
 with 

a
, followed by heme binding. Such a scenario would 

involve 
h


a
 as an obligatory intermediate [34,35]. Alternatively, 

h


h
 could be formed 

by 
h
 binding to 

h 
[57,63]. Our data confirm the presence of 

h


a
, albeit with very low 

abundance (< 2%, Figure 4-5G, H). Importantly, the abundance of 
h


h
 reaches much 

higher values, i.e., 12% (Figure 4-5I) and 58% (Figure 5J). The lack of a lag phase 

between formation of 
h


h
 and 

h


a
 suggests that the latter is not an obligatory 

intermediate under the conditions of this work. Nonetheless, we cannot exclude the 

possibility that a fraction of 
h


h
 is indeed formed via heme binding to 

h


a
, as suggested 

earlier [34,35]. Thus, our data are compatible with 
h


a
 as an optional intermediate 

during Hb assembly. However, formation of 
h


h
 as the result of 

h
 binding to 

h
 appears 

to be the dominant pathway. Regardless of these considerations, formation of (
h


h
)2 

from two 
h


h
 units represents the final step of the Hb assembly mechanism (Figure 4-5I, 

J) [28,33]. 

We now turn to the question why conducting the reaction at 4 C with KCN 

provides a higher refolding yield than 22 C without KCN. Elevated temperatures 

generally enhance the Boltzmann population of partially disordered conformers that are 

prone to aggregation [72]. Thus, it is not unexpected that 4 C provides conditions that 
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are more favorable. The second factor responsible for enhancing the refolding yield in our 

studies is the presence of KCN. As noted above, CN
-
 leads to the formation of h(CN)2 

that is highly resistant to self-association [68,69]. The key problem that limits the 

refolding yield in our experiments is the aggregation and/or precipitation of -globin. Our 

data reveal that KCN helps to maintain -globin in a soluble state. It is well known that 

the stability of monomeric apo-globins depends on the presence of heme [27,73]. It is also 

know that heme is a promiscuous binding partner that can weakly interact with various 

proteins even under denaturing conditions [67,74,75]. Considering this background 

information, we propose that residual h(CN)2-protein interactions can stabilize -globin, 

thus counteracting the tendency of the protein to precipitate, and promoting its 

availability as a binding partner during Hb assembly. 

 

4.4 Conclusions 

Studies on the folding/assembly of multi-protein complexes are often plagued by the 

occurrence of nonspecific aggregation phenomena that limit the overall yield [3,16]. The 

present work offers a unique opportunity to explore the kinetic competition between 

precipitation and successful assembly of a protein complex. Time-dependent ESI-MS 

measurements conducted under low-yield and high-yield conditions provide insights into 

the reasons underlying the different outcomes. Our findings can be summarized using a 

simple flowchart (Figure 4-6). Under “ideal” conditions (depicted in black) semi-

denatured 
a
 and 

a
 fold into compact 

h
 and 

h
 conformers. The holo-monomers bind to 

form 
h


h
. Association of heterodimers ultimately results in the native (

h


h
)2 state.  
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Figure 4-6. Cartoon depiction of the Hb assembly process. Unidirectional steps are 

represented by single-headed arrows. Double-headed arrows denote reversible events. 

The main folding/assembly pathway is highlighted in black. Aberrant side reactions 

are shown in red. Under low-yield conditions these side reactions are more prevalent 

than under high-yield conditions. 
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Aberrant side reaction that reduce the refolding yield are highlighted in red. These side 

reactions are prevalent under low-yield conditions, whereas they are less pronounced 

under high-yield conditions. Loss of -globin due to irreversible aggregation represents 

the main problem. Lowering the temperature helps maintain this subunit in solution. In 

addition, residual heme-protein interactions appear to be crucial in preventing -globin 

aggregation. The preservation of these interactions is promoted by KCN, because cyanide 

binding counteracts the tendency of heme to self-associate. Related to the findings of this 

work is the use KCN for high-yield myoglobin reconstitution experiments [68,69]. The 

formation -globin off-pathway intermediates depends on the availability of -globin. 

Dimerization of 
h
 is favored if the -globin supply is limited. In addition, -globin can 

bind to small heme aggregates, thus forming 
2h

 and 
3h

. It is quite possible that 

sequestering heme in this way further promotes the precipitation-mediated loss of -

globin. In support of this idea, previous work has demonstrated that globin folding can be 

limited by slow heme dimer dissociation [76]. 

Overall, this work demonstrates that time-dependent ESI-MS investigations 

provide detailed insights into the assembly mechanisms of protein complexes, the role of 

on- and off-pathway intermediates, as well as the kinetic competition between assembly 

and aggregation. In future studies, the incorporation of ion mobility measurements and 

on-line hydrogen exchange will be promising avenues to obtain an even deeper 

understanding of biomolecular self-assembly processes [71,76]. 
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Chapter 5-Conclusions and Future Outlook 

5.1 Conclusions 

Despite the availability of a vast arsenal of biophysical methods, protein structure and 

functional studies are still facing lots of challenges. Research conducted within this field 

typically covers protein conformational dynamics, protein-protein interactions, and 

protein folding. The ultimate goal of work in this area is to decipher the function of 

intricate biological systems, and to find therapeutic approaches for diseases related to 

misfolded proteins. To achieve this goal, scientists have to choose the proper tools. X-ray 

crystallography remains the gold standard for characterizing static protein structures with 

atomic resolution. However, dynamic information can usually not be obtained in this 

way.  Small-angle X-ray scattering (SAXS) is an alternatice technique that can report on 

protein shape and dynamics with low resolution. NMR represents another standard tool to 

characterize protein structure at the atomic level, and also NMR can also provide dynamic 

information.  Unfortunately, NMR suffers from size limitation caused by overlap of 

resonance peaks. Simple optical spectroscopic methods provide excellent time resolution, 

but they lack the ability to provide structural details. Importantly, all the methods 

mentioned above reflect the average behavior of protein samples without distinguishing 

co-existing sub-populations.  

           ESI-MS offers the unique opportunity to monitor coexisting protein conformers 

individually. Different protein conformers and ligand binding states will result in ESI-MS 

signals with distinct m/z values. Because of these interesting attributes, and considering 
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its high sensitivity and minimal sample consumption, MS represents a complementary 

tool to other biophysical methods.  

          Chapter 2 used ESI-MS in conjunction with HDX and optical spectroscopy for 

characterizing the solution phase properties of cyt c after heat exposure. Previous work 

demonstrated that heating results in irreversible denaturation for a subpopulation of 

proteins in the sample, without investigating the physical reasons underlying this effect. 

We found that the formation of oxidative modifications at elevated temperature plays a 

key role for the observed behavior. Tryptic digestion followed by MS/MS was used to 

identify individual oxidation sites. Trp59 and Met80 are among the modified amino acids. 

In native cyt c both of these residues are buried deep within the protein structure, such 

that covalent modifications will be highly disruptive. ESI-MS analysis after heat exposure 

results in a bimodal charge-state distribution. Oxidized protein appears predominantly in 

charge states around 11+, whereas a considerably lower degree of oxidation is observed 

for the 7+ and 8+ peaks. This finding confirms that different oxidation levels are 

associated with different solution-phase conformations. HDX measurements for different 

charge states are complicated by peak distortion arising from oxygen adduction. 

Nonetheless, comparison with simulated peak shapes clearly shows that the HDX 

properties are different for high- and low-charge states, confirming that interconversion 

between unfolded and folded conformers is blocked in solution. In addition to oxidation, 

partial aggregation upon heat exposure likely contributes to the formation of irreversibly 

denatured protein.  

         While it is well known that ESI allows the transfer of multi-protein complexes into 

the gas phase, it remains unclear whether the measured ion abundance ratios of free and 
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bound species are suitable for determining solution-phase binding affinities (Kd values). 

Many types of mass spectrometers employ rf-only quadrupoles as ion guides. Chapter 3 

demonstrates that the settings used for these devices are a key factor for ensuring uniform 

transmission behavior, which is a prerequisite for meaningful affinity measurements. 

Using bovine β-lactoglobulin and Hb as model systems, it is demonstrated that under 

carefully adjusted conditions the “direct” ESI-MS approach is capable of providing Kd 

values that are in good agreement with previously published solution-phase data. Of the 

several ion sources tested, a regular ESI emitter operated with pressure-driven flow at 1 

μL min
–1

 provided the most favorable results. Potential problems in these experiments 

include conformationally-induced differences in ionization efficiencies, inadvertent 

collision-induced dissociation, and ESI-induced clustering artifacts. A number of simple 

tests can be conducted to assess whether or not these factors are prevalent under the 

conditions used. In addition, the fidelity of the method can be scrutinized by performing 

measurements over a wide concentration range. Overall, our results support the viability 

of the direct ESI-MS approach for determining binding affinities of protein–protein 

complexes in solution. 

 

           By using optimized instrument condition characterized in Chapter 3, formation of 

tetrameric Hb is studied in Chapter 4. Refolding of tetrameric protein hemoglobin (Hb) 

was initiated by denaturant removal. All species present at different time points of 

refolding were carefully assigned based on their m/z values. Hb refolding induced by 

denaturant removal resulted in a low tetramer yield, and the formation of non-canonical 

aggregates. Enhancing the solubility of the Hb chromophore was found to be a successful 
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strategy, leading to tetramers as the major species in the ESI mass spectra. The novel 

aspects of this final chapter are: (i) key intermediates were identified under efficient 

refolding regime, (ii) non-native interactions were identified under conditions where 

proteins misfolded.  
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5.2 Future Outlooks 

5.2.1 Conformation and Dynamics of Biopharmaceuticals Studied by ESI-MS  

             Protein drugs are an important component in of modern medicine [1]. They differ 

from small molecule drugs in the way they function. Typically therapeutic properties of 

small molecule drugs are completely determined by their covalent structures. However 

for protein therapeutics their noncovalent contacts and dynamic motions play a major 

role. The molecular weight of these protein drugs ranges from several kDa to 1 M.  

Improperly folded protein drugs can cause aggregation inside the cell, theregy causing 

undesired side effects [2].  Improper folding of protein therapeutics also decreases their 

efficiency and it may trigger immune response [3].  

           Methods that can quickly and accurately determine the safety and stability of 

protein therapeutics are extremely important for drug design and engineering. ESI-MS is 

likely to become an important biophysical technique for this purpose that will be widely 

used in the biopharmaceutical industry. Protein structural studies by ESI-MS have 

experienced rapid development in recent years. ESI-MS can uniquely distinguish 

different protein confomers by their charge state distributions [4]. In addition, the 

combination of labeling techniques and MS provide detailed conformational information 

by uncovering differences in labeling patterns [5-8]. Some HDX-based MS methods are 

even capable of revealing protein conformational dynamics with single residue resolution 

[9,10]. Because of the above progress made in recent years, ESI-MS possesses enormous 

potential for the characterization of biopharmaceuticals, specifically protein drugs.  
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5.2.2 Protein Protein Binding Affinities Studied by ESI-MS 

         Binding affinities of proteins and small ligands have been extensively studied by 

ESI-MS. However, interactions between subunits of noncovalent protein complexes are 

less commonly studied by this method. Chapter 3 has established ESI-MS as a tool for 

probing the affinity of protein interactions, by using proper ion transmission control. In 

the future it will be interesting to apply the results of Chapter 3 to a range of different 

systems. Actually, our approach has already been successfully applied to study binding 

affinities of multi-subunit protein complex systems related to ubiquitin signaling [11]. 

 

5.2.3 Hb Formation Studied under the Presence of its Chaperone AHSP 

         Hemoglobins are highly abundant within our blood as oxygen carriers, and 

understanding this formation is extremely important. In Chapter 4, Hb formation was 

studied under different solvent conditions. The results have indicated that the presence of 

solubilized heme is extremely important for Hb assembly, and at the same time a series of 

on-pathway and off-pathway intermediates were identified.  Kiml et al. have found a 

chaperone called α-hemoglobin stabilizing protein (AHSP), which specifically interacts 

with α-globin [12]. At the genome level, there are two α-globin genes to every β-globin 

gene. As a result, α-globin may be slightly more abundant than β-globins in the cell, thus 

preventing the formation of Hb H. Hb H (β
h
)4 does not have normal oxygen binding 

behavior. However, α-globin itself can also aggregate and form cytotoxic inclusion bodies 

[13]. AHSP interacts with α-globin to prevent aggregation of this subunit [14]. Studying 

Hb formation in the presence of AHSP using the approach developed in Chapter 4 would 
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help us to understand the mechanism through which our body maximize Hb synthesis, 

and minimizes harmful aggregation formed by either α- or β-subunits.  
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