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Abstract

Persistent and anti-persistent time series processes show what is called hyperbolic decay. Such
series play an important role in the study of many diverse areas such as geophysics and fi-
nancial economics. They are also of theoretical interest. Fractional Gaussian noise (FGN)
and fractionally-differenced white noise are two widely known examples of time series mod-
els with hyperbolic decay. New closed form expressions are obtained for the spectral density
functions of these models. Two lesser known time series models exhibiting hyperbolic decay
are introduced and their basic properties are derived. A new algorithm for approximate like-
lihood estimation of the models using frequency domain methods is derived and implemented
in R. The issue of mean estimation and multimodality in time series, particularly in the simple
case of one short memory component and one hyperbolic component is discussed. Methods
for visualizing bimodal surfaces are discussed. The exact prediction variance is derived for any
model that admits an autocovariance function and integrated (inverse-differenced) by integer
d. A new software package in R, arfima, for exact simulation, estimation, and forecasting of
mixed short-memory and hyperbolic decay time series. This package has a wider functionality
and increased reliability over other software that is available in R and elsewhere.

Keywords: Time series analysis, long-memory, anti-persistence, R, hyperbolic decay, multi-
modal log-likelihood in time series.
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Chapter 1

Introduction

Persistent and anti-persistent time series are the two types of processes that exhibit what is
called hyperbolic decay (hd). This is in terms of autocovariance structure: the autocovariances
decay hyperbolically. Persistent processes, also called strongly-persistent or long-memory,
show a positive long-range dependence between the observations, while anti-persistent ones
reverse direction very often: they have strong negative autocorrelations. While it is possible
to simply integrate (i.e. inverse difference) some anti-persistent time series to give them long
memory, we believe most anti-persistent time series come about from differencing a process
that is integrated not quite to unity. These processes need to be differenced for the sake of
stationarity. Anti-persistent processes have some place in physics and economics, as well as in
the study of random walks.

In this thesis, theory on persistent and anti-persistent processes is presented, as well as two R
packages. The first, called FGN as in McLeod and Veenstra [2012], is updated to use all types
of pure hyperbolic decay processes, which will be discussed in Chapter 2. A new package
called arfima is presented, in which arima models with various types of hd noise are used.
This package uses exact maximum likelihood and we demonstrate that it improves on the
existing fracdiff package which only provides approximate maximum likelihood when there
is also an autoregressive-moving average (arma) component present. Chapter 5 discusses this
package.

1.1 Notation and Conventions in this Thesis

Let the mean of the covariance stationary processw be µw. Then the kth lag theoretical autoco-
variance of w is equal to

γw(k) = E[wtwt−k] − E[wt]E[wt−k] (1.1)

= E[wtwt−k] − µ2
w (1.2)

= E[wtwt+k] − µ2
w (1.3)

= γw(−k) (1.4)

1



2 Chapter 1. Introduction

Most often the convention used is that µw = 0. The theoretical autocovariance function will be
called the TACVF. The theoretical autocorrelation function, given as

ρw(k) = γw(k)/γw(0), ∀k ∈ Z (1.5)

will be known as the TACF. When there is no possibility of confusion, we will let γ(·) = γw(·)
and similarly with ρ.

The TACVF and TACF can be used for simulating, fitting, and forecasting of time series data
through the Durbin-Levinson and Trench algorithms as in McLeod et al. [2007b]. This will be
outlined in §5.4.1.

If n is the length of the process, then γk will be defined as

γ′k = (γw(k), . . . , γw(n + k − 1)) . (1.6)

We note here that the dependence on n is implicit, since n is fixed: therefore we index via k.
The covariance matrix of n successive observations, Γn, is

Γn =
[
γw(i − j)

]
i, j=1,...,n . (1.7)

This is the symmetric Toeplitz matrix of the lag 0 through lag n − 1 autocovariances.

Two types of expectation operators are spoken of in this dissertation: the unconditional expec-
tation, and the conditional expectation up to time t. The former will be denoted as E and the
latter as Et. For example Et[wt+k] means E[wt+k|wt, wt−1, . . .].

1.1.1 Naming Conventions

The naming conventions of this thesis should be mentioned. While they are introduced in the
chapters in which they are described and some are well known, they are briefly gone over here.

The autoregressive operator of order p is denoted ar(p), and the moving average operator of
order q is denotedma(q). Similarly, the autoregressive (integrated) moving average of orders p,
q and d, the last parameter being for integration, are denoted by arma(p, q) and arima(p, d, q).
The class of hyperbolic decay processes that are discussed in this thesis are denoted hd: the
actual models are fractionally differenced white noise (fd), fractional Gaussian noise (fgn),
power law spectrum (pls), and the newly derived power law autocovariance (pla). For the
most part, the mixture of arma and hd processes are called arma-hd, with the process symbol
instead of hd when a specific process is desired. The exception is fd: processes are called
autoregressive fractionally integrated moving average processes, arfima(p, d∗, q), where d∗ =

d + d f . Most commonly, d f ∈ (−1, 0.5) is the fractional part, and d ∈ Z≥0 always is the integer
part. Also to be introduced are the arfi and fima models: these are the arfima(1, d f , 0) and
arfima(0, d f , 1) models, respectively.
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1.2 Hyperbolic Decay in Time Series

Letw be a covariance stationary time series with autocovariance function γw(k) = Cov (wt, wt−k).
Then w has hyperbolic or power-law decay if

lim
k→∞

γw(k)/k−α = cα, (1.8)

where α > 0, and cα > 0 for α < 1 and negative otherwise. With suitable parameters, the
stationary arfima time series model (Beran [1994], Palma [2007]) is a notable example of
this class of models. In general, as required for any covariance stationary time series, the
autocovariance function is assumed to be symmetric and to satisfy the non-negative-definite
condition [Brockwell and Davis, 1991, Theorem 1.5.1] and hence the spectral density function
exists and may be written,

fα(λ) =
1

2π

∞∑
k=−∞

γw(k)eikλ (1.9)

=
1

2π

γw(0) + 2
∞∑

k=1

γw(k) cos(λk)

 . (1.10)

When γw(k)’s in (1.9) and (1.10) are replaced by the autocorrelations, ρ(k) = γ(k)/γ(0), fα(λ)
is referred to as the normalized spectral density function [Priestley, 1981, Equation 4.8.15].

If the spectral density function is specified, another sufficient condition for the existence of the
time series may be given. Assuming that fα(λ) is defined by (1.9), Wold’s Theorem [Priestley,
1981, §4.8.3] implies that if the area under the normalized spectral density function over (−π, π)
is one and fα(λ) ≥ 0 for λ ∈ (−π, π), the time series exists and the autocovariances determined
by γ(k) =

∫ π

−π
e−iλk fα(λ)dλ.

A time series is said to have (strong) persistence or long memory [Hipel and McLeod, 1994,
§2.5.3] if

∞∑
k=−∞

γw(k) = ∞. (1.11)

Hence α ∈ (0, 1) corresponds to long memory or persistence. When the sum in (1.11) is
finite, the process is said to be weakly or short-range dependent. A special type of short-range
dependence occurs when α > 1 and the time series is said to be anti-persistent. In the anti-
persistent case,

∞∑
k=−∞

γw(k) = 0. (1.12)

When α = 1, we set cα = 0. Short-range dependent models such as arma are included the
α = 1 case.

Many time series show observed spectra that appear governed by a power law, fα(λ) ∝ |λ|α−1

where 0 < α < 1 and λ is typically in the low frequency range (Granger [1966], Wolfram [2002,
p.969]). This provides another characterization of persistence and anti-persistence. More gen-
erally, for all α > 0, let

lim
λ→0

fα(λ)/λα−1 = Cα, (1.13)
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where Cα > 0. This implies that as λ → 0, fα → ∞ or fα → 0 according as the process
is persistent or anti-persistent respectively. The conditions specified in (1.8) and (1.13) are
equivalent [McLeod, 1998, Theorem 2] but it should be noted this equivalence of the power-
law decay for the autocovariance function and spectral density functions as specified in (1.8)
and (1.13) does not hold under more general assumptions [Yong, 1971, 1972].

As shown in [McLeod, 1998, Theorem 1], the time series may be written as a linear time series,

wt = ψ(B)at, (1.14)

where at is white noise with variance σ2
a, ψ(B) = 1 + ψ1B + ψ2B2 + . . ., B is the backshift

operator on t, and ψk = O(k−(1+α)/2). This linear time series is sometimes called a generalized
linear process [Hannan, 1970, p. 210]. Then as in Box et al. [2008b, A3.1.14], the spectral
density function may be written,

fα(λ) =
σ2

a

2π
|ψ(e−iλ)|2. (1.15)

Theorem 1.1. A hyperbolic Gaussian time series process with mean zero is ergodic, that is,
the sample autocovariance at lag k, ck, converges almost surely to γ(k) as the series length n
increases, where

ck =
1
n

n∑
t=k+1

wtwt−k. (1.16)

The proof follows directly from the generalized linear process representation and Hannan
[1970, §IV, Theorem 6].

1.3 The Layout of the Dissertation

Chapter 2 discusses properties of hd models and explores their use through the FGN package,
while Chapter 3, is about extension of arma processes driven by hd noise. Chapter 4 speaks
of minimum mean square error prediction for any time series model that can be written in
operator notation, which is extended to any model that admits an autocovariance function. Said
chapter also introduces a new exact method for calculation of the prediction error variances of
an integrated series. Chapter 5 is devoted to the arfima package and our comparisons with
fracdiff. Chapter 6 lays out reasons for mulitmodality on a log-likelihood surface of time
series data, as well as addressing technical issues with visualizations of such surfaces. It also
presents a simple Mathematica package for viewing such surfaces with two parameter models
called simpleVis. Finally Chapter 7 summarizes the thesis.



Chapter 2

Hyperbolic Decay Time Series Models

2.1 Introduction

The four types of hyperbolic decay time series are discussed in this chapter. The processes are
introduced and properties are derived. Note that the appendix to this chapter has derivations
in Mathematica along with other information that will be referred to in this chapter. It is
Appendix A.

2.2 Four Different Types of Hyperbolic Decay Time Series

2.2.1 Fractionally Differenced White Noise (fd)

The fractionally differenced white noise model and its arfima extension is currently one of
the most widely used hyperbolic decay time series models [Box et al., 2008b, §10.3]. The fd
model [Granger and Joyeux, 1980, Hosking, 1981] is derived from the model equation,

∇d fwt = at (2.1)

where ∇ = (1−B), at is a white noise sequence with varianceσ2
a, and d f ∈ (−∞, 0.5) (Dȩbowski

[2011]). Usually the range d f ∈ (−1, 0.5) is used and that the process does not exist with d f

on the negative integers. The autocovariance function is given by (Hosking [1981], Dȩbowski
[2011]), with Γ(z) =

∫ ∞
0

tz−1e−tdt being the Gamma function,

γ(k) = σ2
w

Γ(k + d f )Γ(1 − d f )
Γ(k − d f + 1)Γ(d f )

(2.2)

= σ2
w

∏
0<h≤k

h − 1 + d f

h − d f
(2.3)

5
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where σ2
w = γ(0) = σ2

aΓ(1 − 2d f )/Γ(1 − d f )2. The spectral density function may be written,

fd f (λ) =
σ2

a

2π

(
sin

(
λ

2

))−2d f

(2.4)

and the fd model is hyperbolic with α = 1 − 2d f and cα = (−d f )!/(d f − 1)! [Hosking, 1981,
Palma, 2007]. This model is useful in modelling financial/econometric series [Baillie, 1996,
Baillie et al., 1996, Bhardwaj and Swanson, 2006, Tsay, 2010] and other differenced time series
such as annual temperature changes Kärner [2001, 2002]. As a further illustration, Li and Li
[2008], obtained d̂∗ = d + d̂ f = 0.71 for a nonstationary arfimamodel with d = 1 for absolute
returns of the Dow Jones Industrial Average Index. This corresponds to a value of d̂ f = −0.29
fit to the first differences of the series.

2.2.2 Fractional Gaussian Noise (fgn)

The first widely used hyperbolic time series model was fgn. It is defined by the discrete-time
increments, wt = BH(t)−BH(t−1), in fractional Brownian motion, BH(t). This process was orig-
inally suggested by Kolmogoroff for modeling turbulence [Molchan, 2003] and subsequently
for time series modeling by Mandelbrot and Van Ness [1968]. fgn has been used extensively
in hydrology for modeling persistence and the Hurst effect [McLeod and Hipel, 1978, Hipel
and McLeod, 1994] as well as many other areas Doukhan et al. [2003]. Fractional Brownian
motion [Beran, 1994] may be defined

BH(t) = s
∫

wH(t, u)dB(u), (2.5)

where s > 0 is a positive scaling factor, B(u) Brownian motion and

wH(t, u) =


0, if t < u,

(t − u)H−1/2, 0 ≤ u < t,
(t − u)H−1/2 − (−u)H−1/2, u < 0.

(2.6)

The definition and properties of BH(t) are discussed in more detail by Beran [1994], Taqqu
[2003]. For fgn with parameter H,

γw(k) = σ2
w

(
(k + 1)2H − 2k2H + (k − 1)2H

)
/2 (2.7)

for k > 0 and 0 < H < 1 [Beran, 1994, Taqqu, 2003]. When H = 0.5, fgn reduces to Gaussian
white noise. For large k, [Beran, 1994, p.52], fgn is hyperbolic with ρ(k) ≈ H(2H − 1)k2H−2

so α = 2(1 − H) and we see that fgn is persistence or anti-persistent according as H ∈ (0.5, 1)
or H ∈ (0, 0.5). Unlike fd, fgn is only defined for α ∈ (0, 2). Figure 2.1 below compares
the spectral density functions for fgn and fd for typical persistent and anti-persistent cases. In
general, the spectral density function for fgn with parameter H is similar to the corresponding
spectral density of fd with parameter d f = H − 0.5. But as discussed Cleveland [1994], it is
difficult to judge accurately the difference between two steep curves as shown in the top panels
in Figure 2.1. The bottom panels reveal that while the difference is not large, it is rapidly
increasing in the strong long-memory case when λ is near zero. In the anti-persistent case, the
difference between the curves is larger at the high frequencies. The spectral density function
for fgn is computed using a new closed form expression given in Theorem 2.1.
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Figure 2.1: Comparison of the spectral density functions of the fgn (solid curve) and fd
(dashed curve) models. In the left panel corresponds to strong long-memory with decay pa-
rameter α = 0.4 and the right panel shows the anti-persistent case with α = 1.6. Note that
when α = 0.4, H = 0.8 for fgn and d = 0.3 for fd while α = 1.6 corresponds to H = 0.2 and
d = −0.3 respectively.

Theorem 2.1. For λ ∈ (0, π),

fH(λ) =
1

4π
(A1 + A2 − 2A3) (2.8)

where A1 = e−iλ
(
Φ

(
e−iλ,−2H, 0

)
+ Φ

(
e−iλ,−2H, 2

))
, A2 = eiλ

(
Φ

(
eiλ,−2H, 0

)
+ Φ

(
eiλ,−2H, 2

))
,

A3 = 2
(
Li−2H

(
e−iλ

)
+ Li−2H

(
eiλ

)
− 1

)
, Φ(z, s, a) is the Lerch zeta function,

Φ(z, s, a) =

∞∑
k=0

zk

(a + k)s (2.9)

and Liα denotes the polylogarithm,

Liα(z) =

∞∑
k=1

zk

kα
. (2.10)

The derivation of this result using Mathematica is discussed in Appendix A. The spectral
density may also be computed using a formula given in Beran [1994, Equation (2.17)],

fH(λ) =
σ2
w

π
sin(πH)Γ(2H + 1)

∞∑
j=−∞

|2π j + λ|−2H−1, (2.11)
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where λ ∈ (−π, π). It is verified in Appendix A, that (2.8) and (2.11) produce equivalent results.
For small λ, Beran [1994, p. 52] derived the result,

fH(λ) ≈ σ2
w/(2π) sin(πH)Γ(2H + 1)|λ|1−2H. (2.12)

The Lerch zeta and polylogarithm are special functions associated with the Riemann zeta
function. An introduction to the extensive literature on these functions is available online
[Wikipedia, 2012d,b] in more detail in the book by Srivastava and Junesang [2001]. Algo-
rithms are available for computing the special functions in (2.9) and (2.10) in Mathematica
and other widely used computing environments as well as in the GNU Scientific Library.1 Our
Mathematica demonstration on power-law decay time series computes fH(λ) [Veenstra and
McLeod, 2012b]. We also provide an R library for the efficient computation of fH(λ) [McLeod
and Veenstra, 2012]. The closed form expression in Theorem 2.1 is also useful for symbolic
algebraic computation.

2.2.3 Power Law Spectrum (pls)

Percival and Walden [2000, §7.6] suggested a time series model for which the spectral density
function is proportional to |λ|p−1 for λ ∈ (−π, π). In this model, the model parameter p equals
the decay, α, in (1.13).

Theorem 2.2. The pls model has spectral density function

fp(λ) =
pσ2

z

2πp |λ|
p−1, (2.13)

where p > 0 and autocorrelation function, k > 0,

ρ(k) = 1F2

(
p
2

;
1
2
,

p
2

+ 1;−
1
4

k2π2
)

(2.14)

where qFp is the generalized hypergeometric function,

qFp(a1, . . . , ap; b1, . . . , bq, z) =

∞∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
. (2.15)

The large-lag formula when p ∈ (0, 1) is

ρ(k) =
2p−1π

1
2−p pΓ(p/2)

Γ ((1 − p)/2))
k−p + o(1) (2.16)

The derivation of Theorem 2.2 is included in Appendix A.

1http://www.gnu.org/software/gsl/

http://www.gnu.org/software/gsl/
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2.2.4 Power Law Autocovariance (pla)

The pla model, first presented here, specifies that the autocovariance function at lag k is pro-
portional to k−a, where 0 < a < 3 is the model parameter and a = α. More precisely in terms
of the autocorrelation function, the pla model is defined by, for |k| > 0,

ρ(k) = ca|k|−a, (2.17)

with

ca =

{
− (2ζ(a))−1 , a , 1,

0, a = 1, (2.18)

and ζ(a) is the Riemann zeta function [Titchmarsh and Heath-Brown, 1987],

ζ(a) =

{
(1 − 21−a)−1 ∑∞

k=1(−1)k−1k−a, 0 < a < 1,∑∞
k=1 k−a, a > 1. (2.19)

where the two expressions in (2.19) are equivalent for a > 1. It may be shown algebraically or
using Mathematica symbolics that ca and ρ(k) are continuous functions of a; see Appendix A
This property is illustrated in Figure 2.2 below.

0.0 0.5 1.0 1.5 2.0 2.5
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

a

c a

Figure 2.2: The term ca.

Theorem 2.3. The covariance stationary Gaussian time series defined by (2.17) exists.

Proof. Let σ2
w = 1 and as such γw = ρw. We have that from Wold’s theorem [Priestley, 1981]

that γw as defined by (2.17) is an autocovariance function of a stationary process if and only if

γw(h) =

∫ π

−π

eiνhdFw(ν) (2.20)
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for all h ∈ Z where Fw is a non-decreasing function on [−π, π] with Fw(−π) = 0 and Fw(π) =

σ2
w = 1.

We follow the regular definition of the spectral density function to find if there is some Fw that
satisfies this. We have that

fw(λ) =
1

2π

∞∑
k=−∞

γw(k)e−ikλ (2.21)

=
1

2π

1 − (2ζ(a))−1
∞∑

k=−∞,k,0

k−ae−ikλ

 (2.22)

=
1

2π

1 − ζ(a)−1
∞∑

k=1

k−a cos(kλ)

 (2.23)

=
1

2π

(
1 − ζ(a)−1(Lia(eiλ) + Lia(e−iλ))

)
(2.24)

as in Theorem 2.4.

Clearly if Fw(λ) exists, we have

γw(h) =

∫ π

−π

eiνhdFw(ν) (2.25)

since, following (2.21) we have

(2π)−1
∫ π

−π

eiνh
∞∑

k=−∞

e−iνkγw(k)dν = (2π)−1 2π
∞∑

k=−∞

I(k = h)γw(k) (2.26)

= γw(h) (2.27)

as required, with I being the indicator function and h, k ∈ Z.

We can verify the requirements on Fw through the above. We have that Fw(−π) = 0 by defini-
tion. Since ∫ π

−π

cos (kν) dν = 2 sin (kπ) k−1 (2.28)

= 0 for k ∈ Z>0 (2.29)

⇒

∫ π

−π

fw(ν)dν = (2π)−1
(∫ π

−π

1 − 0
)

(2.30)

= 1 (2.31)

and as such Fw(π) = 1.

Now we must show that Fw is non-decreasing: that is, that fw(λ) ≥ 0 for λ ∈ (−π, π). We
note that this is equivalent, due to the nature of the trigonometric functions, to fw(λ) ≥ 0 for
λ ∈ (0, 2π).
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We must show that

1 − ζ(a)−1
∞∑

k=1

k−a cos(kλ) ≥ 0 for a > 0, a , 1 (2.32)

Recalling that ζ(a) =
∑∞

k=1 k−a > 0 for a ∈ (1,∞), we have that we must show

ζ(a) ≥
∞∑

k=1

k−a cos(kλ) (2.33)

which follows since cos(ν) ≤ 1 ∀ν.

For a ∈ (0, 1) we have that ζ(a) < 0 and we must show ζ(a) ≤
∑∞

k=1 k−a cos(kλ) = g(a, λ). First,
setting λ = π, through Mathematica we find

∞∑
k=1

k−a cos(kπ) = 21−aζ(a) − ζ(a) (2.34)

and as a ∈ (0, 1) we have g(a, π) ≥ ζ(a). Now we must show λ = π is a minimum for g.

We note that, if a ∈ (0, 1) is fixed, as is logical, g(a, λ) = ga(λ)

dga(λ)
dλ

=
1
2

(
iLia−1

(
eiλ

)
− iLia−1

(
e−iλ

))
(2.35)

which is equal zero if and only if

Lia−1

(
eiλ

)
= Lia−1

(
e−iλ

)
(2.36)

Then

Lia−1

(
eiλ

)
− Lia−1

(
e−iλ

)
= 0 (2.37)

⇔

∞∑
k=1

k1−a (cos(kλ) + i sin(kλ) − (cos(kλ) − i sin(kλ))) = 0 (2.38)

by a straightforward application of de Moivre’s theorem, which means that, for all k,

sin(kλ) = − sin(kλ) (2.39)
⇔

λ = hπ, ∀h ∈ Z (2.40)

On λ ∈ (0, 2π) and recalling a ∈ (0, 1) is fixed, we have that

lim
λ→0

ga(λ) = lim
λ→2π

ga(λ) (2.41)

= ∞ (2.42)
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since limλ→0 cos(kλ) = 1 and similarly for λ → 2π as k ∈ Z. As such these are global maxima
at the boundaries of the support of the function. Then since λ = π is the only other extrema on
the support of ga, it must be a global minima.

As such, the minimum of ga is ζ(a), and so we have that fw(λ) ≥ 0 for λ ∈ (−π, π). Indeed, due
to the periodicity of trigonometric functions, we have fw(λ) ≥ 0 for λ ∈ R.

�

Theorem 2.4. The spectral density function for the pla time series model may be written,

fa(λ) = γ(0)
(
1 −

Lia(e−iλ) + Lia(eiλ)
2ζ(a)

)
, (2.43)

For λ small, fa(λ) ≈ Caλ
a−1 where Ca = 1 for a = 1 and otherwise,

Ca = −
sin

(
πa
2

)
Γ(1 − a)

2πζ(a)
(2.44)

Theorem 2.4 is derived in Appendix A.

2.3 Model Estimation

Statistical efficient model estimation is based on the method of maximum likelihood. For
hyperbolic decay time series models and more general long-memory time series models, this
method has been shown to be asymptotically efficient Fox and Taqqu [1986], Dahlhaus [1989].
In the case of arma models, maximum likelihood estimates (MLE) have been shown to be
second-order efficient [Taniguchi, 1983] and it seems likely that this well-known advantage
[Efron, 1975] of the maximum likelihood method is also shared with hyperbolic decay models
although this has not been proved yet.

2.3.1 Exact Likelihood

Let w′ = (w1, . . . , wn)′ denote a series of n successive observations from a hyperbolic decay
model with mean µ, variance σ2

w and decay parameter α. We choose α to be the canonical
parameter for the models in §2.2. The natural parameter in the respective models in §2.2 is
given by d = (1− α)/2, H = 1− α/2, p = α or a = α respectively. The sample mean w̄n can be
used in the place of µw under most circumstances, as in Chapter 6. Alternatively, an iterative
algorithm as described in [McLeod and Zhang, 2008] can be used to obtain the exact MLE for
µw.

Recall the exact Gaussian log-likelihood function may be written, after dropping constant
terms,

`(α, σ2
w) = −

1
2

(log det(Γn) +w′Γ−1
n w

′) (2.45)
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Let Ωn denote the correlation matrix so that Γn = σ2
wΩn and let gn = log det(Ωn); then

`(α, σ2
w) = −

1
2

(n logσ2
w +w′Ω−1

n w
′ + gn). (2.46)

Maximizing over σ2
w and dropping the additive constant, the concentrated log-likelihood can

be written,
`c(α) = (−n/2) log S/n − (1/2)gn (2.47)

where S = w′Ω−1
n w

′ and σ2
w = S/n. A similar expression for the concentrated log-likelihood

may be derived in the arma case using Γn = σ2
aMn and optimizing over σ2

a (McLeod [1977]).
As pointed out by Li [1981], `c may be evaluated using the Durbin-Levinson algorithm. Al-
though said algorithm has complexity O(n2), it is feasible provided n is not too large. Our R
package [McLeod and Veenstra, 2012] uses this method to optimize `(α) and obtain the exact
maximum likelihood estimates (MLE).

In the arma case, an approximate log-likelihood algorithm (McLeod and Zhang [2008]) based
on using a high-order ar(P) approximation has complexity O(P2) in repeated likelihood eval-
uations after an initial setup. However an adequate approximation to long-memory hyperbolic
models requires a large P and so this method is not very useful. As we will show, for large n
the Whittle approximation is useful.

2.3.2 Whittle Likelihood

Whittle [1963] derived the likelihood approximation

`w(α, σ2
a) =

1
2π

∫ π

−π

(
log 2π f (λ) +

I(λ)
f (λ)

)
dλ, (2.48)

where f (λ) is the spectral density function and the periodogram,

I(λ) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

wteitλ

∣∣∣∣∣∣∣
2

. (2.49)

He showed that with Gaussian short-range dependent time series maximizing `w produces
asymptotically efficient estimates. Walker [1964] extended this asymptotic theory to the non-
Gaussian case. Fox and Taqqu [1986], Dahlhaus [1989] further generalized and extended this
asymptotic theory to long-memory time series.

Several algorithms for computing estimates based on the Whittle approximation have been
discussed by [Priestley, 1981, §5.4.3] and [Hannan, 1970, §VI.5]. Beran [1994, Ch. 6] dis-
cusses Whittle approximate maximum likelihood method for long-memory time series and this
method is implemented in R [Beran, 2011] for the fgn and fd models. In this section a new
method is derived that we have implemented in our package [McLeod and Veenstra, 2012].

The spectral density function for the models in §2.2 may be expressed in the form,

fα(λ) =

{
σ2

a(2π)−1gα(λ), fd case,
σ2
w(2π)−1gα(λ), fgn, pls, pla cases,

(2.50)
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In the fd case, the Whittle log-likelihood may be simplified using Kolmogoroff’s formula
[Brockwell and Davis, 1991]. After simplifying and defining the deviance, D, to be the negative
of twice the log-likelihood,

D(α, σ2
a) = n logσ2

a +
1

2πσ2
a

∫ π

−π

I(λ)
g(λ)

dλ. (2.51)

Approximating the integral using a Riemann sum at the Fourier frequencies,

D(α, σ2
a) = n logσ2

a +
2
σ2

a

m∑
j=1

I j

g j
, (2.52)

where I j = I(λ j), g j = g(λ j), λ j = 2π j/n, j = 1, . . . ,m, m = [n/2]. Maximizing over σ2
a and

dropping the additive constant,

D(α) = n log

2
n

m∑
j=1

I j

g j

 , (2.53)

and σ̂2
a = m−1 ∑

j I j/g j. For the fgn and related cases, approximating (2.48) using a Riemann
sum,

D(α, σ2
w) = 2

m∑
j=1

log(2πσ2
wg j) +

2
σ2
w

m∑
j=1

I j

g j
. (2.54)

Setting ∂D/∂σ2
w = 0 and solving, the MLE for σ2

w is obtained, σ̂2
w = m−1 ∑

j I j/g j. Substituting
for σ2

w, simplifying and dropping the additive constant,

D(α) = 2
m∑

j=1

log

2π
m
g j

m∑
i=1

Ii

gi

 . (2.55)

Approximate MLE are obtained by minimizing the appropriate deviance (2.53) or (2.55). Min-
imizing (2.55) produces a numerically different but asymptotically equivalent estimate as com-
pared with the previous method [Beran, 1994, 2011].

2.3.3 Statistical Inference

Asymptotically we have
√

n(α̂−α) converges to a normal distribution with mean zero and vari-
ance σ2

α, with σ2
α = I(α)−1 and I(α) the Fisher large-sample information per observation. For

the fd case, using a linear process approximation, Li [1981], Li and McLeod [1986] obtained,
I(α) = π2/6 ≈ 1.64. Using the Whittle approximation [Whittle, 1963],

I(α) =
1

2π

∫ π

−π

(
∂ log fα(λ)

∂α

)2

dλ. (2.56)

For the pls model, a closed form expression can be obtained as in Appendix A however due
to the singularity it is difficult to evaluate (2.56) for the fgn and pla models. Figure 2.3
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compares I(α) in the fd and pls models. For the fgn model, the value of I(α) was estimated
by simulation and is also shown for selected values of α. It is interesting that I(α) differs so
much between the different models.

Rather than using the expected information I(α), the observed information is often preferred
[Cox, 2006, §6.6],

Î(α) =

(
∂`(α)
∂α

) ∣∣∣∣∣
α=α̂

. (2.57)

Bootstrapping is another alternative both to estimate the standard error as well as to estimate
more accurately the confidence interval [Efron and Tibshirani, 1993, Davison and Hinkley,
1997]. Although it is computationally intensive, it is quite feasible in many cases especially if
a modern multi-core PC is used.
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Figure 2.3: Comparing the expected Fisher information I(α) in the fd, pls, and fgn models.
The horizontal line at about 1.64 corresponds to the fd case, the curve shows I(α) for the pls
model and the plotted points show the estimated information for α based on 105 simulations of
the fgn model.

The likelihood ratio test may also be used to obtain confidence intervals for the parameter and
as a general rule, this method is often more accurate than methods based on estimating the
standard error [Cox, 2006, §6.6]. The validity of this method for the models discussed in §2.2
follows from the established asymptotic theory [Fox and Taqqu, 1986, Dahlhaus, 1989].

An alternative to confidence intervals, likelihood inference provides an exact statistical infer-
ence method that was recommended by Barnard et al. [1962] for time series analysis. The
general principles of this approach are described in the books by Royall [1997] and Sprott
[2000]. This approach can also provide a graphical supplement to the likelihood-ratio approach
to confidence intervals. The relative likelihood function, R(α), describes the plausibility of the
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parameter value α,

R(α) =
L(α)
L(α̂)

, (2.58)

or equivalently in terms of deviance,

R(α) = exp {(D(α̂) − D(α)) /2} . (2.59)

In the likelihood inference approach values of the parameter α for which R(α) < 0.05 are
relatively implausible and similarly R(α) < 0.01 corresponds to even more implausible values.
A plot of R(α) may used to access the range of plausible values of α. A (1 − η)% confidence
interval based on the likelihood-ratio test corresponds to the interval R(α) ≥ exp χ2

1(η), where
χ2

1(η) denotes the upper η quantile from a χ2-distribution on 1 df. Thus a 95% confidence
interval for α corresponds to R(α) ≥ 0.1465. Our R package [McLeod and Veenstra, 2012]
plots R(α) and obtains the 95% confidence interval using likelihood-ratio test method.

Box et al. [2008b], Li [2004] discuss the importance of model diagnostic checking and suggest
the Ljung-Box portmanteau diagnostic check based on the residual autocorrelations,

r̂(k) =

n∑
t=k+1

âtât−k/

n∑
t=1

â2
t k = 1, 2, · · · , (2.60)

where ât denotes residual or estimated innovation in (1.14).

For the fd model, Li and McLeod [1986] showed that the Ljung-Box statistic

Qm = n(n + 2)
m∑

k=1

(n − k)−1r̂(k)2, (2.61)

is approximately χ2
m−1 distributed under the assumption of model adequacy. Another portman-

teau diagnostic test [Peňa and Rodriguez, 2002, Mahdi and McLeod, 2012] may be written,

Dm = −n log det(R̂m), (2.62)

where R̂m is the m × m matrix (r̂i− j). A Monte-Carlo testing approach was used to show that
Dm provides a more powerful diagnostic check for detecting model inadequacy due to long-
memory with fd alternatives [Lin and McLeod, 2006]. We are unaware of portmanteau tests
for other hd models.

For convenience we summarize the steps in the Monte-Carlo procedure making minor changes
in the method given in Mahdi and McLeod [2012] for vector arma case. For the models
discussed in this paper, we may use the standardized prediction residuals, ât, t = 1, . . . , n.
These residuals are discussed in [McLeod et al., 2007a, §2.8] and may be computed in R using
the function DLResiduals() [McLeod et al., 2012].

1. Fit the model using exact or Whittle MLE. Compute the residuals, ât, t = 1, . . . , n and
the residual autocorrelations (2.60) and the portmanteau test statistic, where S m = Qm or
Dm. Denote the observed value of this statistic by S obs.
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2. Select the number of Monte-Carlo simulations, N. Typically 100 ≤ N ≤ 1000.

3. Simulate the model using the estimated parameters obtained in Step 1. Refit the simu-
lated model using maximum likelihood to estimate the parameters, residuals and obtain
the test statistic S m.

4. Perform N replications of Step 3. Count the number of times, k, that the value of S m is
greater than or equal to S obs.

5. The p-value for the test is (k + 1)/(N + 1).

2.3.4 Illustrative Example

The Nile river flow minima, 660-1320, comprising n = 663 observations is a famous ex-
ample of a time series that is well-fit by a long-memory time series model. This series was
originally used by Hurst [1951] and some discussion of the data is given in Percival and
Walden [2000, §5.9] and Beran [1994, §1.4]. The Hurst K statistic [Hipel and McLeod, 1994],
K = s−1(maxt Rt/mint Rt) = 0.825, where Rt, t = 1, . . . , n is the cumulative range and s is the
sample standard deviation, provides a simple, fast, and consistent estimate of H in the fgn
model [Mandelbrot and Van Ness, 1968, Corollary 3.6].

In the Table 2.1, we compare the fits to this series using the four models in §2.2. Each model
is fit using exact and Whittle MLE. For comparison purposes, the exact log-likelihood is com-
puted for each of the fit model and the relative likelihood of the best fit vs each of the other fits
is shown in the column with heading R. The computer time required for fitting is also shown.
The best fit is given with fgn and then from better to worst are pls, pla, and fd. But even fd
with the lowest value, R = 61%, has high plausibility, so all the models fit about equally well
in terms of likelihood. As expected the fit, in terms of exact likelihood, is only slightly less
good when the Whittle MLE is used in each case. The timings indicate the feasibility of exact
MLE for series of moderate length. The timings for the exact MLE were generally faster than
for the approximate Whittle algorithm largely due to programming details. In the exact case,
an interface to a C function was used. The R script for reproducing is provided in Appendix
A. The R package longmemo [Beran, 2011] uses the Whittle method and produced estimates
Ĥ = 0.837 and d̂ = 0.399 for the fgn and fd models respectively. The estimates for α, 0.326
and 0.202 respectively, agree very closely. The R function fracdiff() [Fraley, 2012] uses
exact MLE for the fd model and produces d̂ = 0.393.

Our R package also computes a 95% confidence interval and produces plots of the relative
likelihood function for α. Table 2.2 compares the confidence intervals computed by solving
the equation R(α) = 0.1465. When the Whittle method is used, R(α) is computed using the
deviance defined in (2.53) or (2.55). Using the expected information [Li and McLeod, 1986],
σα̂ ≈ 0.0605 which implies the 95% confidence (0.091, 0.329) for α in the fdmodel with exact
MLE and this agrees precisely with the likelihood-ratio 95% confidence interval in Table 2.2.

Figure 2.4 compares the relative likelihood functions. We see that the likelihood functions
are well behaved and approximately quadratic around the maximum and in such a case all the
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Exact MLE Whittle MLE
α̂ R time α̂ R time

fd 0.21 0.61 0.08 0.20 0.59 0.01
fgn 0.34 1.00 0.01 0.32 0.97 0.32
pls 0.25 0.88 0.03 0.21 0.66 3.40
pla 0.23 0.80 0.02 0.21 0.73 2.77

Table 2.1: Exact and Whittle MLE estimates α̂, relative likelihood, R, and computer time
required.

Exact Whittle

fd (0.09, 0.33) (0.08, 0.32)
fgn (0.24, 0.43) (0.25, 0.39)
pls (0.14, 0.36) (0.13, 0.29)
pla (0.12, 0.34) (0.13, 0.29)

Table 2.2: 95% confidence intervals for α based on the likelihood-ratio test.

confidence interval methods discussed in §2.3.3 should agree.
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Figure 2.4: Comparison of the relative likelihood functions for the different models estimated
with exact MLE and using the Whittle approximate MLE.
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2.3.5 Extensions

A two-parameter version of each of the models in §2.2 can be obtained using the parameter τ
defined in Theorem 2.5 below.

Theorem 2.5. Let ρ(k) denote the autocorrelation function at lag k ≥ 1 for a stationary time
series. Then the time series with variance γ(0) = τσ2

w > 0 and autocovariance function
γ(k) = σ2

wτρ(k), k , 0 exists and is stationary.

Proof. The result follows from the definition of the spectral density function in 1.10 since the
resulting spectral density must be positive and integrate to σ2

z �

Using the parameter τ allows more flexibility in fitting and a simple method of including short-
range autocorrelation. A more flexible family of models generated by convolving the autoco-
variance function for the models in §2.2 with a short-range dependent model such arma or the
exponential spectrum model (Bloomfield [1973]). When the fdmodel is used, convolving with
the arma, the arfimamodel is obtained. Similarly convolving with the exponential spectrum
model the fexp model is obtained (Beran [1994, 1992], Craigmile and Guttorp [2011]). Con-
volution of the autocovariance function corresponds to multiplication of the spectral densities.

Time series models that exhibit strong seasonal or periodic persistence have been used in di-
verse applications [Gray et al., 1989, Porter-Hudak, 1990, Ray, 1993, Montanari et al., 2000].
A model with long-memory periodic autocorrelation with period s may be defined using any
of the models in §2.2,

γs(k) =

{
0, if mod (k, s) , 0,

γ(k/s), if mod (k, s) = 0. (2.63)

In the case of fd models, the sarfima models are obtained [Porter-Hudak, 1990]. We will
discuss this in more detail in Chapter 3.

2.4 Conclusions

In choosing which type of hdmodel to use to fit a series, we recommend using information cri-
teria such as suggested by Akaike [1974] (AIC) and Schwarz [1978] (BIC) or variants thereof.
We have noticed each model has advantages in certain situations.

A Mathematica demonstration Veenstra and McLeod [2012b] is provided that allows one to
further explore properties of the models discussed in §2.2. This demonstration provides visu-
alization of simulated time series as well as the sample and theoretical autocorrelations, partial
autocorrelations, spectral density function and its estimates using the periodogram and the au-
toregressive spectral density estimator.

The Appendix [Veenstra and McLeod, 2012a], in non-interactive form in Appendix A provides
detailed derivations, interactive displays comparing the autocorrelations and spectral density
functions.
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Li and Li [2008] and references therein discuss the estimation of long-memory models with
heteroscedastic innovations.

Very long time series occur occasionally and for such time series wavelet analysis (Percival
and Walden [2000], Moulines et al. [2006]) provides a useful approach. Also for very long
time series, the Hurst K provides a simple and fast estimate.

The pla may be useful in introducing students to the subject of long-memory time series in an
introductory time series course along other simple one parameter models such as the first-order
autoregression and exponentially smoothing. Similarly, when introducing frequency domain
analysis, the pls provides a simple illustration of a power-law spectrum.



Chapter 3

On the Combination of arma and hd
Processes

3.1 Introduction

We now will look at the combination of arma structure with hd structure. By this we mean
having an arma model being driven by noise that is hd. To do this, we must somehow mean-
ingfully compute the TACVFs of these combined processes, which we discuss in §3.2.

3.2 Computing the TACVFs

We consider the various hyperbolic decay processes, and would like to have short term memory
structure mixed with the long memory or anti-persistent processes for a richer class of models.

We could integrate these processes arima-type processes as well, but we will not consider
that for now. While the form of the arfima process TACVF has a known structure (see, e.g.
Sowell [1992]), it can be very complicated. Also, the combination of an arma structure with
fgn or pla noise has no known closed form, since those forms of noise cannot be written in
operator notation.

3.2.1 A Solution via Convolution

We suppose that the general form of the arma-hd processes exist in the world and we wish to
estimate them. This is not an unreasonable assumption, as we know, for example, the arfima
class of processes exists and are important. When we ask how the processes are to be estimated
or simulated, it seems we can go no further if we prefer not to use Sowell’s formulae or want
to use the other types of hd processes. However, we have a proposition from Brockwell and
Davis [1991] (Proposition 3.1.2) that comes to our aid which we will state without proof.

22
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Proposition 3.1. If x is a stationary process with theoretical autocovariance function γx and∑∞
j=−∞ |ψ j| < ∞, then the series

wt = ψ(B)xt (3.1)

is stationary and converges almost surely and in mean square to the same limit. Also, wt has
the TACVF

γw(h) =

∞∑
j,k=−∞

ψ jψkγx(h − j + k) (3.2)

In particular, we can have the ψ js defined by a stationary invertible arma process. In that case,
we have

ψ(c) =

∞∑
j=0

ψ jc j (3.3)

=
θ(c)
φ(c)

, (3.4)

which is convergent for c ∈ C, |c| ≤ 1. We let yt be this arma process, having without loss of
generality zero mean. Then yt can be written in random shock form yt = σa

∑∞
j=0 ψ jat− j. Note

that we have ψ− j = 0 for j > 0. We let, once again without loss of generality, σa = 1. We note
that γy(k) =

∑∞
j=0 ψ jψ j+k for k ≥ 0 and since we are dealing with weakly stationary processes

we have γy(−k) = γy(k). Then we note that the definition of the autocovariance function for wt

has

γw(h) =

∞∑
j=0

∞∑
k=0

ψ jψkγx(h − j + k) (3.5)

=

∞∑
k=−∞

∞∑
j=0

ψ jψ j+kγx(h − k) (3.6)

=

∞∑
k=−∞

γy(k)γx(h − k) (3.7)

where (3.7) is sometimes called the splitting method: see, eg. Palma [2007].

We now define convolution in the discrete case.

Definition 3.1 (Discrete Convolution). The convolution of two discrete sequences f and g,
called h, is defined ∀n = Z as

h(n) =

∞∑
m=−∞

f (m)g(n − m) (3.8)

=

∞∑
m=−∞

f (n − m)g(m) (3.9)
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and as such we see that the autocovariance function of wt is a discrete convolution of the
autocovariance functions of yt and xt.

We introduce the following notation: call the symmetrized TACVF of up to lag m

S(γw(0), . . . , γw(m)) = (γw(m − 1), γw(m − 2), . . . , γw(0), γw(1), . . . , γw(m)) (3.10)
= (γw(−m + 1), γw(−m + 2), . . . , γw(0), γw(1), . . . , γw(m)) (3.11)

where (3.11) holds if the process is covariance stationary.

Then we have the following corollary to Proposition 3.1.

Corollary 3.1. We can compute the first m + 1 autocovariances of any arma-hd process
arbitrarily exactly through the convolution of the respective symmetrized arma TACVF and
symmetrized hd TACVF, both computed up to lag L ≥ 2m.

Proof. We recall that the autocovariances of an arma process decay geometrically: that is,
γy(k) = O(rk) for r ∈ (0, 1). Also by definition the autocovariances of a hd process decay
hyperbolically: γx(k) = O(k−α) ⊂ O(1) for α ∈ (0, 3).

We know the (3.7) holds. Thus we have that

γw(h) =

∞∑
k=−∞

γy(k)γx(h − k) (3.12)

=

L∑
k=−L+1

γy(k)γx(h − k) +

−L∑
k=−∞

γy(k)γx(h − k) +

∞∑
k=L+1

γy(k)γx(h − k) (3.13)

=

L∑
k=−L+1

γy(k)γx(h − k) + O(rL) (3.14)

for h = 0, . . . ,m, where (3.14) is by the decay of the autocovariances.

Therefore, choosing L sufficiently large, we can have an arbitrarily close approximation to the
TACVF of wt (up to some function of machine epsilon) via symmetrizing and convolving the
TACVFs of yt and xt. �

We note that we most often perform the convolution via the fast Fourier transform (FFT) and
inverse FFT. Since said operations are most efficient on sizes of power of 2, we let the minimum
value of L be such that L = 2c ≥ 2m, where c is the smallest integer for which the relation
holds. We have L + 1 terms in each TACVF: then the symmetrized TACVFs have length
2(L + 1) − 2 = 2c+1.

We also have the following corollary about TACVFs and TACFs.

Corollary 3.2. Any scalar multiplication by a ∈ R,0 of the TACVFs in Corollary 3.1 before
convolution can be undone via a scalar division by a. In particular, it does not matter whether
we convolve TACVFs or TACFs or a combination thereof, as long as we multiply by the correct
value to obtain the convolved TACF or TACVF.
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Proof. If we have a ∈ R and nonzero, it is easy to see that multiplying it to one of the TACVFs
has all operations involving the multiplied values. Therefore we can just as easily divide by a
at the end.

Secondly, suppose we have the TACVF of one process, and the TACF of the other. Then we can
convolve the two and obtain something that seems nonsensical. However, if we remember that
any TACF has 1 at lag 0, we must simply divide all lags of the convolved operator by the lag
0 term to obtain the TACF of the process defined by the convolution. Additionally, if we know
the true value of γw(0) of the convolved process, we can multiply it to obtain the TACVF. �

We note that we have only dealt with nonseasonal processes. We have the following corollary
that lets us deal with seasonal processes.

Corollary 3.3. Suppose we have the TACVFs of two processes, one of which should be sea-
sonal. Then we have the following results:

1. We can “shift” the seasonal TACVF by its period, s, to obtain the seasonal TACVF with
period s

2. We can then convolve the two TACVFs to make a multiplicative seasonal TACVF.

Proof. By shifting we mean ∀s ∈ Z>1 letting the autocovariances of the seasonal process have
γs(ks) = γw(k) for k ∈ Z, with γw being the TACVF of the associated nonseasonal process.
We also have γs(t) = 0 for t not a multiple of s. Then the claim in 1 follows. Since the
process defines the TACVF, with Bk 7→ Bsk in the process, we have that the γs is the theoretical
autocovariance function of the seasonal process.

To prove 2, we note that a straightforward application of the methods applied in Corollary 3.1
gives convergence to the true TACVF with (as is done in our arfima package) O

(
tL?rL∗

)
with

r, t ∈ (0, 1). Note that L? and L∗ in our package are both linear transformations of L that are
greater than or equal L. �

We note that mixing seasonal and nonseasonal pure hd processes is not recommended. While
it can be shown that the convolution of the TACVFs of said processes gives rise to the true
TACVF, the size of L∗ and L? may become prohibitive. There are also identifiability issues.
Naturally, the mixture of two or more hd processes with the same period (including the non-
seasonal case) is not recommended for these reasons.

3.2.1.1 The Moving Average Case

A theorem of the calculation of the convolution of ma(q)-hd models is given.

Theorem 3.1. We have that withma(q)-hd models, as long as L > q+1, the convolved TACVF
is equal to the exact up to numerical errors.
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Proof. Since L > q + 1, we have that

γ̃z(h) =

L∑
j=−L+1

γy( j)γw(h − j) (3.15)

=

q∑
j=−q

γy( j)γw(h − j) (3.16)

= γz(h) (3.17)

where (3.16) holds since the ma(q) only has autocovariances up to lag q. �

3.2.2 On the Kullback-Liebler Divergence Between Distributions

The Kullback-Liebler (KL) divergence is an information-theoretic measure of discrepancy be-
tween two probability distributions. It measures the expected number of extra nats (or bits if
we use the logarithm base 2) when trying to code samples from a probability distribution P
rather using the distribution Q rather than P. That is, it is a measure of information lost when
Q is used to approximate P. It is non-symmetric and does not satisfy the triangle inequality,
and as such is not a metric. However, it is a way to measure the difference between the true
distribution P and the approximate distribution Q.

Definition 3.2 (Kullback-Liebler Divergence). The KL divergence for P and Q two continuous
distributions with p.d.f.s p(x) and q(x) respectively on Rn is given by

DKL(P||Q) =

∫
Rn

p(x) log
(

p(x)
q(x)

)
dx (3.18)

= EP

[
log

(
p(x)
q(x)

)]
(3.19)

We have the following lemmas.

Lemma 3.1. For x, y ∈ R with x > 0 and y ≥ 0 we have

y − y log y ≤ x − y log x (3.20)

Proof. Using the convention that 0 log 0 ≡ 0, this is clear when y = 0. Therefore choose y > 0.
We have that Equation (3.20) is equivalent to

log
(

x
y

)
≤

x
y
− 1 (3.21)

⇒ log t ≤ t − 1, t > 0 (3.22)

with equality holding if and only if t = 1: that is, x = y. �
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Lemma 3.2. For any p.d.f.s p(x) ≥ 0 and q(x) > 0 on Rn, we have that

−

∫
Rn

p(x) log p(x)dx ≤ −
∫
Rn

p(x) log q(x)dx (3.23)

with equality if and only if p(x) = q(x) almost everywhere.

Proof. By Lemma 3.1, for any x ∈ Rn, we have

p(x) − p(x) log p(x) ≤ q(x) − p(x) log q(x) (3.24)

⇒ −

∫
Rn

p(x) log p(x)dx ≤ −
∫
Rn

p(x) log q(x)dx (3.25)

If there is equality, then∫
Rn

(
p(x) − p(x) log p(x) − q(x) + p(x) log q(x)

)
dx = 0 (3.26)

⇒ p(x) − p(x) log p(x) − q(x) + p(x) log q(x) = 0 (3.27)

⇒ p(x) a.e.
= q(x) (3.28)

�

The following proposition holds. See, e.g. Cesa-Bianchi and Lugosi [2006].

Proposition 3.2. DKL(P||Q) ≥ 0 with equality if and only if P = Q almost everywhere.

Proof. First we note that

DKL(P||Q) =

∫
Rn

p(x) log p(x)dx −
∫
Rn

p(x) log q(x)dx (3.29)

≥ 0 (3.30)

where (3.30) holds by Lemma 3.2. Then we have that (3.28) completes the proof. �

3.2.2.1 The KL divergence between two normal distributions

We note that any Gaussian process can be thought of as a draw from a multivariate normal dis-
tribution with a given mean and covariance matrix equal to the Toeplitz matrix of its theoretical
autocovariances.

We have the following proposition, which we derived for this thesis, although the result is not
new (see, e.g. Wikipedia [2013].)

Proposition 3.3. Let P = mvn(µ1,Σ1) be a multivariate normal distribution of size n. Simi-
larly, let Q = mvn(µ2,Σ2) be another multivariate normal distribution of size n. Then the KL
divergence between P and Q is

DKL(P||Q) =
1
2

(
tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)′ Σ−1

2 (µ2 − µ1) − log
(
det

(
Σ−1

2 Σ1

))
− n

)
(3.31)
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Proof. We have that

DKL(P‖Q) = EP
[
log p(x) − log q(x)

]
(3.32)

=
1
2

EP

[
− log (det (Σ1)) − (x − µ1)′Σ−1

1 (x − µ1) + log (det (Σ2)) + (x − µ2)′Σ−1
2 (x − µ2)

]
(3.33)

= −
1
2

log
(
det

(
Σ−1

2 Σ1

))
−

1
2

EP

[
(x − µ1)′Σ−1

1 (x − µ1) − (x − µ2)′Σ−1
2 (x − µ2)

]
(3.34)

= −
1
2

log
(
det

(
Σ−1

2 Σ1

))
−

1
2

EP

[
tr

(
Σ−1

1 (x − µ1)(x − µ1)′
)
− tr

(
Σ−1

2 (x − µ2)(x − µ2)′
)]

(3.35)

= −
1
2

log
(
det

(
Σ−1

2 Σ1

))
−

1
2

tr
(
Σ−1

1 Σ1

)
+

1
2

EP

[
tr

(
Σ−1

2
(
xx′ − 2xµ′2 + µ2µ

′
2
))]

(3.36)

= −
1
2

log
(
det

(
Σ−1

2 Σ1

))
−

n
2

+
1
2

tr
(
Σ−1

2
(
Σ1 + µ1µ

′
1 − 2µ1µ

′
2 + µ2µ

′
2
))

(3.37)

= −
1
2

log
(
det

(
Σ−1

2 Σ1

))
−

n
2

+
1
2

tr
(
Σ−1

2 Σ1

)
+

1
2

tr
(
µ′1Σ

−1
2 µ1 − 2µ′1Σ

−1
2 µ2 + µ′2Σ

−1
2 µ2

)
(3.38)

=
1
2

(
tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)′ Σ−1

2 (µ2 − µ1) − log
(
det

(
Σ−1

2 Σ1

))
− n

)
(3.39)

�

3.2.2.2 A Limit Theorem

We note that the KL divergence is not a metric. Although it satisfies non-negativity and the
equality constraint, it is not symmetric in its arguments nor does it satisfy the triangle inequal-
ity. Thus we introduce the total variation on the space F of continuous distribution functions
with support D ⊆ Rn. Note that other definitions of distribution function spaces F are relatively
easy extensions.

Definition 3.3 (Total Variation). The total variation between any two distribution functions
P,Q ∈ F with densities p(x), q(x) : D 7→ R respectively is defined as

dTV(P,Q) =
1
2

∫
D
|p(x) − q(x)|dx (3.40)

We have the following proposition, which is a relatively standard result (see, e.g. Cesa-Bianchi
and Lugosi [2006]):

Proposition 3.4. dTV is a metric on F.

Proof. We have that, more formally, F is equivalent to (Ω,F ,M), where Ω is a set of events, F
is a σ-algebra on Ω, and M is a probability measure on F . The equivalence holds since while
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F is a space of distribution functions, they are defined by their densities. That is, any operation
on this space is defined by the density p(x) of P ∈ F. In particular we have, Ω = D, F is Borel
on D and M is the Lebesgue measure.

We note then that L1(Ω,F ,M) is a normed vector space with norm

|| f || =
∫

D
| f |dx (3.41)

for all f ∈ (Ω,F ,M), and dx is with respect to M. Then the induced metric on this space is
d( f , g) = || f − g|| = 2dTV(F,G). As such we have that (Ω,F ,M) is a metric space under dTV .
Since F is equivalent to (Ω,F ,M), we have that F is a metric space under dTV . �

We have the following theorem due to Pinsker (see, e.g. Cover and Thomas [1991]):

Theorem 3.2 (Pinsker’s Inequality). We have that for all P,Q ∈ F

d2
TV(P,Q) ≤

1
2

DKL(P||Q) (3.42)

Proof. We note that

u log(u) − u + 1 ≥ 0 (3.43)

for all u ∈ R>0 is easy to show. Then define g(u) = 3(u − 1)2 − (2u + 4)(u log(u) − u + 1). We
have that g(1) = g′(1) = 0 and that by (3.43) that g′′(u) = −4u−1(u log(u)−u + 1) ≤ 0 for u > 0.
As such g(u) ≤ 0 for u > 0. Thus

3(u − 1)2 ≤ (2u + 4)(u log(u) − u + 1) (3.44)

Let u(x) = p(x)/q(x), where we must restrict q to be strictly positive on D. This also ensures
that the KL divergence is defined. Then

d2
TV(P,Q) =

1
4

[∫
D
|p(x) − q(x)|dx

]2

(3.45)

=
1
4

[∫
D

q(x)|u(x) − 1|dx
]2

(3.46)

≤
1

12

[∫
D

q(x)
√

2u(x) + 4
√

u(x) log u(x) − u(x) + 1dx
]2

(3.47)

≤
1

12

(∫
D

q(x)(2u(x) + 4)
) (∫

D
q(x)(u(x) log u(x) − u(x) + 1)dx

)
(3.48)

=
1

12

(
2
∫

D
p(x)dx + 4

) (∫
D

p(x) log u(x)dx −
∫

D
p(x)dx + 1

)
(3.49)

=
6

12

∫
D

p(x) log u(x)dx −
6

12
+

6
12

(3.50)

=
1
2

DKL(P||Q) (3.51)

where we have (3.47) by (3.44) and (3.48) by the Cauchy-Schwartz Inequality. �
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Then we have

Proposition 3.5. If DKL(P||Qn) → 0 as n → ∞ with X ∼ P and Xn ∼ Qn for each n, then

Xn
D
→ X. That is, Xn converges in distribution to X.

Proof. We have that DKL(P||Qn) → 0 ⇒ dTV(P,Qn) → 0 as n → ∞. Since F is a metric space
under dTV , the standard notions of convergence apply. That is, for any x ∈ D and

DKL(P||Qn)→ 0 as n→ ∞ (3.52)
⇒

dTV(P,Qn) =
1
2

∫
D
|p(x) − qn(x)|dx (3.53)

→ 0 as n→ ∞ (3.54)
⇔

qn(x)→ p(x) as n→ ∞ (3.55)
⇔

Pr(Xn ≤ x)→ Pr(X ≤ x) as n→ ∞ (3.56)

i.e. Xn
D
→ X

�

Note that DKL induces a topology on F and as such we could have used a topological argument
for convergence instead. However, this is less intuitive.

We will let the theoretical mean the exact and approximate distributions be the same. Then we
have the following theorem:

Theorem 3.3. Any stationary Gaussian series w generated by a given arma-hd process can
have its covariance matrix estimated arbitrarily accurately (up to machine epsilon, the model,
and the series itself) through Toeplitz matrix of the convolution of the correct an arma and hd
processes. Thus we can approximate the distribution of wt arbitrarily accurately, given that we
know the parameters.

Proof. We let Σ1 = Γn =
[
γw(i − j)

]n
i, j=1 be the Toeplitz matrix for P, and Σ2 = Γ̃n,L =[

γ̃w,L(i − j)
]n
i, j=1 be the Toeplitz matrix for QL. Since γw = γ̃w,L + O(rL), we have that Σ1 =

Σ2 +O(rL), where O(rL) denotes a matrix of terms that are O(rL). We let the means of the exact
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and approximate distributions be equal. Then, with In being the n × n identity matrix,

D(P||QL) =
1
2

(
tr

(
Σ−1

2 Σ1

)
+ (µ2 − µ1)′ Σ−1

2 (µ2 − µ1) − log
(
det

(
Σ−1

2 Σ1

))
− n

)
(3.57)

=
1
2

(
tr

(
Σ−1

2

(
Σ2 + O(rL)

))
− log

(
det

(
Σ−1

2

(
Σ2 + O(rL)

)))
− n

)
(3.58)

=
1
2

(
tr

(
In + O(rL)

)
− log

(
det

(
In + O(rL)

))
− n

)
(3.59)

=
1
2

(
n + O(rL) − log

(
1 + O(rL)

)
− n

)
(3.60)

= O(rL) (3.61)

Since 0 < r < 1, we have that we can make the KL divergence between the approximate and
the exact normal distributions arbitrarily small. Therefore we can say that the distributions are
arbitrarily close: in fact, that as L→ ∞, the approximate converges to the exact (up to machine
epsilon and the model). We note that rate of convergence is O

(
rL/2

)
under the L1 metric. �

We now let P be a non-normal process with mean µ and (auto-)covariance matrix Σ. We want
to approximate it with the Q, a normal process. We have the following theorem.

Theorem 3.4. The normal process that is “closest” to P in terms of KL divergence is Q =

mvn(µ,Σ).

Proof. Let µ1 be the mean of Q and Σ1 be the covariance matrix of Q. Then we must show
µ1 = µ and Σ1 = Σ. Let n be the sample size.

D(P||Q) = EP
[
log p(x) − log q(x)

]
(3.62)

= EP
[
log p(x)

]
− EP

[
log q(x)

]
(3.63)

= EP
[
log p(x)

]
−

1
2

EP

[
−(x − µ1)T Σ−1

1 (x − µ1) − log |Σ1| − n log 2π
]

(3.64)

= EP
[
log p(x)

]
+

1
2

(
log |Σ1| + n log 2π + EP

[
(x − µ1)T Σ−1

1 (x − µ1)
])

(3.65)

Now

EP

[
(x − µ1)T Σ−1

1 (x − µ1)
]

= EP

[
(x − EP[x])T Σ−1

1 (x − EP[x])
]

+ (EP[x] − µ1)T Σ−1
1 (EP[x] − µ1)

(3.66)

so the minimum for µ1 is indeed reached when µ1 = EP[x] = µ.

Similarly, minimizing

log |Σ1| + EP

[
(x − EP[x])T Σ−1

1 (x − EP[x])
]

= log |Σ1| + EP

[
tr

(
(x − EP[x])T Σ−1

1 (x − EP[x])
)]

(3.67)

= log |Σ1| + tr
(
Σ−1

1 EP

[
(x − EP[x])(x − EP[x])T

])
(3.68)

= log |Σ1| + tr
(
Σ−1

1 Σ
)

(3.69)

gives a minimum for Σ1 as Σ. �
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The above theorem allows us to use the same mean and covariance matrix when we approxi-
mate the true distribution, whatever it may be, with a Gaussian distribution.

3.3 On Properties of arma-hd Processes

We have Theorem 4.4.1 from Brockwell and Davis [1991], which we will state without proof.

Theorem 3.5. If y is any zero mean stationary process with spectral distribution Fy, andw is
the process

wt =

∞∑
j=−∞

ψ jyt− j, where
∞∑

j=−∞

|ψ j| < ∞ (3.70)

then x is stationary with spectral distribution function

Fw(λ) =

∫
(−π,λ]

∣∣∣∣∣∣∣
∞∑

j=−∞

ψ je−i jν

∣∣∣∣∣∣∣
2

dFy(ν), −π ≤ λ ≤ π (3.71)

In particular, the spectral density of any nonseasonal arma-hd process is of the form

fw(λ) ∼

∣∣∣∣θ (e−iλ
)∣∣∣∣2

|φ (e−iλ)|2
λα−1 (3.72)

with λ near 0.

We then note it is an easy consequence of (3.72) that any arma-hd model is itself hd, and is
persistent or anti-persistent dependent on the underlying hd process.

3.3.1 Laws of Large Numbers

We note that we will have a guarantee that the sample mean w̄n converges in mean square and
thus in probability to µw regardless of whether the process w is short memory, long memory,
or anti-persistent. They will, of course, converge to µw at different rates. We need the results of
this section for §5.5.1.
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First note we have that, for any sequence of random variables w,

Var(w̄n) =
1
n2 Var(w1 + w2 + · · · + wn)

=
1
n2

n∑
s=1

n∑
t=1

Cov(ws, wt)

=
1
n2

n−1∑
s−t=−n+1

(n − |s − t|)γw(s − t)

=
1
n

n−1∑
r=−n+1

(
1 −
|r|
n

)
γw(r)

=
1
n

γw(0) + 2
n−1∑
r=1

(
1 −

r
n

)
γw(r)


so that when the wts are uncorrelated, we have that Var(w̄n) = σ2/n.

Recall the following: if a process has short memory (arma), we have that γw(k) ∼ O(mk) for
0 < m < 1. If a process has hyperbolic decay with parameter 0 < α < 3, α , 1, we have that
γw(k) ∼ k−α.

Then we have the following propositions.

Proposition 3.6. If a process w ∼ arma, we have that Var(w̄n) = O(n−1).

Proof. We have that

nVar(w̄n) =

γw(0) + 2
n∑

r=1

(
1 −

r
n

)
γw(r)


∼ γw(0) +

2m (mn + n − mn − 1)
(m − 1)2n

(3.73)

= γw(0) +
2m (n(1 − m))

(1 − m)2n
+

2m (mn − 1)
(m − 1)2n

(3.74)

∼ γw(0) +
2m

1 − m
(3.75)

where (3.73) was found using Mathematica and (3.75) has n large. Then dividing by n, we
obtain our result. �

Proposition 3.7. If a processw is persistent, we have that Var(w̄n) = O(n−α), recalling that for
such a series we have 0 < α < 1.
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Proof. We have

Var(w̄n) ∼
γw(0)

n
+

c
n

n∑
r=1

(
1 −

r
n

)
r−α

n−α

n−α
(3.76)

=
γw(0)

n
+

c
n

n−α
n∑

r=1

(
1 −

r
n

) ( r
n

)−α
(3.77)

=
γw(0)

n
+ cn−α

1
n

n∑
r=1

(
1 −

r
n

) ( r
n

)−α (3.78)

∼
γw(0)

n
+ cn−α

∫ 1

0
(1 − x)x−αdx (3.79)

=
γw(0)

n
+ n−α

c
2 − 3α + α2 (3.80)

where in (3.76), we use Landau notation and c > 0 is a constant. The expression in (3.79) has
the definition of the Riemann sum, and since n−α > n−1, we have our result. Note that (3.79)
only converges for α < 1. �

Proposition 3.8. If a process w is anti-persistent, we have that Var(w̄n) = O(n−α).

Proof. We first note that for a hd process, we have that

lim
λ→0

fα(λ)λ1−α ∼ Cα (3.81)

⇒ lim
n→∞

fα(1/n)nα−1 ∼ Cα (3.82)

Therefore in the following, we will let n→ ∞ as λ−1.

We have from Brockwell and Davis [1991], Theorem 7.1.1 that if the process is stationary and∑∞
h=−∞ |γw(h)| < ∞, we have that

nVar(w̄n)→
∞∑

h=−∞

γw(h) (3.83)
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Since we have
∑∞

h=−∞ |γw(h)| = 2γw(0) for an anti-persistent process, we have

nVar(w̄n)→
∞∑

h=−∞

γw(h) (3.84)

=

∞∑
h=−∞

∫ π

−π

eihλ fα(λ)dλ (3.85)

⇒ Var(w̄n) ∼
∞∑

h=−∞

∫ π

−π

eih/n fα(λ)dλn−1 (3.86)

=

∞∑
h=−∞

∫ π

−π

eih/n fα(λ)nα−1dλn−α (3.87)

∼ n−αCα

∫ π

−π

eihλdλ (3.88)

= n−αCα2π (3.89)
∼ n−α (3.90)

where (3.85) is by the definition of an autocovariance at lag h and (3.88) comes from letting
n = O

(
λ−1

)
. �

Then, since we know that α = 1 corresponds to short memory, we have Var(w̄n) = O(n−α) for
0 < α < 3.

Then the following theorem holds.

Theorem 3.6. Suppose we have a stationary invertible series w that is either arma(p, q) or
hyperbolic decay. Then the sample mean w̄n converges in mean square and in probability to
µx. Thus the Weak Law of Large Numbers holds for these type of processes.

Proof. The definition of mean square convergence to µw has Var(w̄n) → 0 as n → ∞. Then by
Propositions 3.6, 3.7 and 3.8, both hyperbolic decay and exponential decay processes are mean
square convergent to µw. Then such processes also converge in probability to µw and the Weak
Law holds. �

We will discuss the estimation of µw in Chapter 5 and examine the convergence of means in
Chapter 6.

We will now show how subtracting off the mean of the series (or any value) changes the log-
likelihood structure of the model associated with the series.

Lemma 3.3. The log-likelihood structure of any stationary series changes when we subtract
off any value from the series.

Proof. We have that the log-likelihood for any stationary series w with µw = 0 is

`(Φ|w) = −
1
2

log (|Γn|) −
1
2
w′Γ−1

n w (3.91)



36 Chapter 3. On the Combination of arma and hd Processes

where Γn is the Toeplitz matrix of the (theoretical) autocovariances of the process as defined by
the parameters Φ. Then if we subtract any value a from all points of our series, we have that

`(Φ|w) = −
1
2

log (|Γn|) −
1
2

(w − a1n)′ Γ−1
n (w − a1n) (3.92)

= −
1
2

log (|Γn|) −
1
2

(
w′Γ−1

n w
)
−

1
2

(
2aw′Γ−1

n 1n − a21nΓ
−1
n 1n

)
(3.93)

So the log-likelihood changes in structure or “shape.”

�

Proposition 3.9. Suppose we have a seriesw with theoretical but unknown mean µw. Then the
difference of log-likelihoods between the true log-likelihood (where we subtract off µw) and the
sample mean subtracted log-likelihood is

1
2

(
2(µw − w̄n)w′Γ−1

n 1n − (µw − w̄n)21nΓ
−1
n 1n

)
(3.94)

Proof. This is follows from Lemma 3.3. �

Corollary 3.4. As n→ ∞, the difference between the concentrated log-likelihoods as in Propo-
sition 3.9 tends to zero.

Proof. This follows from the guarantee that the sample mean tends to the true mean in mean
square. �

3.3.2 The Convergence of Means

As we noted in §3.3.1, as we alter d f , the convergence of the means changes. We have sim-
ulated 500 series of an arfima(0.8, d f ,−0.4) process for each d f ∈ (−0.9,−0.8, . . . , 0.4). We
had the size of the series as 2000, and took n as 250, 500, 1000 and 2000. That is, if n = 250,
we took the first 250 elements of the series. For each d f , the seeds used were exactly the same.

Figure 3.1 shows that on average the absolute distance from zero with anti-persistent d f de-
crease with increasing n. As n increases, the sample mean converges faster and so tends to be
closer to its true value of zero. However, as the processes become more persistent, however,
the effect of n on the differences diminishes. In other words, Figure 3.1 shows the effect of
different d f and n on the variability of the absolute mean of the series when the true mean is
zero.
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Figure 3.1: Boxplots of the differences in absolute mean from zero on the log10 scale for 500
series generated with the same seeds, but with different n and d f . The facet label is the value of
n, the horizontal axis is the value of d f , and absolute difference from zero is the vertical axis.



Chapter 4

Predictions and Their Error Variances

4.1 Introduction

This chapter discusses the minimum mean square error (MMSE) prediction and the error vari-
ances as discussed in, for example, Box et al. [2008b] and McLeod et al. [2007a], for stationary
series. We will call the former the limiting form and the latter the exact form of said predic-
tions and error variances for reasons that will become clear. This chapter also will discuss the
extension of the predictions and their error variances to non-stationary series, specifically those
with a stochastic trend, deriving a new expression for the exact non-stationary error variances.

We will derive the limiting and exact form of the stationary and non-stationary predictions
and prediction error variances in §4.2. We will show in §4.3.2 and §4.3.3 that the exact form
of the variances are equivalent to the limiting form of the variances under some assumptions:
specifically, that the processes are ar(p) processes integrated by d∗ ∈ (−1,∞) with d∗ in the
exact formula, and the length of the series, n, has n > p.

We will discuss when it is inappropriate to use the exact form in §4.4.3 and the convergence of
the exact form to the limiting form for all processes that can be written in operator notation in
§4.4.

4.1.1 The Models Considered in this Chapter

For the limiting form of the prediction, and its error variances, we require the model to be able
to be written in operator form: specifically as an ma(∞). Thus the class of arfima(p, d∗, q)
processes, with d∗ = d + d f , is the largest class of models available. These are of the form

φ(B)∇d fwt = θ(B)at (4.1)

with wt = ∇dzt. We have that w is the stationary series, a is white noise, and z is the possibly
integrated series with d ∈ Z≥0. Then φ(B), θ(B) and d f are the ar,ma, and fractional integration
parameters respectively, constrained to be stationary and invertible. Specifically we have d f ∈

38
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(−1, 1/2). Then the ma(∞) parameters take the form of

wt = ψ(B)at (4.2)

=
(
ψ0 + ψ1B + ψ2B2 + · · ·

)
at (4.3)

⇒ ψ(B) =
θ(B)

φ(B)∇d f
(4.4)

where ψ0 ≡ 1. We note that, for example, Box et al. [2008b], have the ψ js written in a recursive
form for arma and arima models: however, we believe that our form is more natural and
easier to understand. Also, fractional differencing cannot be incorporated into the model in
said recursive form.

We have that from, e.g., Cryer and Chan [2008], that since processes zt = ∇d∗wt with d∗ > 1/2
are not in statistical equilibrium, we cannot have an infinite past for this class of processes.
This most often occurs, in the arfima case, when d f ∈ (−1/2, 0) and d = 1 (that is, a fraction-
ally integrated process needs to be differenced once to obtain an anti-persistent but stationary
process), or in general, when we have any process differenced by d ∈ Z>0 to obtain stationarity.
We note that with d∗ > 1/2 we can still write the form of the process in terms of an ma(∞) by
way of (4.4) even though we do not have an infinite past.

We note that the exact form of the prediction and its error variances are usable by any model that
admits an autocovariance function. These include the hd class of processes we mentioned in
Chapter 2 as well as the arima-hd processes discussed in Chapter 3. The processes containing
pls, pla and fgn terms cannot be written in operator form, and thus have no limiting form.

4.1.2 Results Used in the Chapter

In this section, we will introduce some of the results used in the chapter, with brief proofs. First
we introduce the Yule-Walker equations, extended slightly to use Γn rather than Γp.

Proposition 4.1 (Yule-Walker Equations). For an ar(p) process, we have, withφ =
(
φ1, . . . , φp, 0, · · · , 0

)′
,

a vector of length n,

Γnφ = γ1 (4.5)

σ2
a = γw(0) − φ′γ1 (4.6)

Proof. We have that for n = p

wt =

p∑
i=1

φiwt−i + at (4.7)

upon multiplying by wt+ j for j = 0, . . . , p and taking expectations that

γw( j) =

p∑
i=1

φiγw( j − i) + I( j = 0)σ2
a (4.8)
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where I(·) is the indicator function. This leads to the regular Yule-Walker equations.

For n > p, we note that as long as we remember that φk = 0 for k > p, we have that the same
set of operations give the result. �

Then we have the following corollary.

Corollary 4.1. For an ar(p) process, we have that

ψ j =

p∑
i=1

φiψ| j−i| (4.9)

Proof. Since we know

γw( j) =

∞∑
k=0

ψkψk+ j (4.10)

(4.11)

and
p∑

i=1

φiγw( j − i) =

p∑
i=1

φiγw(| j − i|) (4.12)

=

∞∑
k=0

ψkψk+| j−i| (4.13)

this follows very easily from Proposition 4.1. �

We recall the following:

An inner product space V , is a vector space equipped with an inner product < ·, · >: V → R, and
a Hilbert space H is an inner product space that is complete (that is, every Cauchy sequence
in H converges to an element of H). A linear subspace of a Hilbert space is any M ⊆ H

such that for all elements inM, every linear combination of these elements is also inM. We
say M is closed if all limit points of all sequences in M are in M. We have M⊥ is called
the orthogonal complement of M if ∀x ∈ M and ∀y ∈ M⊥, we have that < x, y >= 0. We
note that the orthogonal complement of a subset of a Hilbert space H is a closed subspace of
H . Finally, we note that the norm of any x ∈ H is ||x|| =

√
< x, x > and that a necessary and

sufficient condition for ||x − xn|| → 0 is ||x − xn||
2 → 0 for any sequence xn and any point x

in H . In our particular Hilbert space, then, norm convergence is equivalent to convergence in
mean square.

With these recollections in mind, we will now state the Projection Theorem (cf. Brockwell and
Davis [1991], page 51) without proof.

Theorem 4.1 (The Projection Theorem). IfM is a closed subspace of the Hilbert spaceH and
x ∈ H , then
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1. there exists a unique element x̂ ∈ M, the orthogonal projection of x ontoM, such that

||x − x̂|| = inf
y∈M
||x − y|| (4.14)

2. x̂ ∈ M and ||x − x̂|| = infy∈M ||x − y|| if and only if x̂ ∈ M and (x − x̂) ∈ M⊥

The Hilbert space we will be discussing in this chapter is the space L2(Ω,F , P), where (Ω,F , P)
is a probability space with Ω a set of random variables, F a σ-algebra on Ω, and P the prob-
ability measure on F . Under the inner product defined by < X,Y > = E(XY), this is a set of
equivalence classes with

Cτ =

{
X : E[X2] =

∫
Ω

X(ω)2P(dω) < ∞
}

(4.15)

for τ ∈ Θ and Θ an index set such that

P(X = Y) = 1, ∀X,Y ∈ Cτ (4.16)

defines all random variables in Cτ as equivalent. That is, the equivalence classes define the
space in that

L2(Ω,F , P) ≡
⋃
τ∈Θ

Cτ (4.17)

where the union is disjoint. We note that for time series random variables we will be using
lower case letters instead of the usual upper case.

In H = L2(Ω,F , P), we have, letting Mn be the closed linear subspace of H spanning w =

{wn, . . . , w1}, n ≥ 1, that Projn is the projection operator onto Mn. We will see in §4.2 that
Projnwn+k = En[wn+k].

4.2 Derivations of Predictors and Their Error Variances

First we must prove the following proposition.

Proposition 4.2. We have that withH , w, andMn as in §4.1.2 that

wn(k) = Projnwn+k (4.18)
= En[wn+k] (4.19)

Proof. We note that we must have En[wn(k)] = wn(k) by definition of the projection ontoMn.
As well, we have 〈

wn+k − wn(k), w j

〉
= E

[
(wn+k − wn(k))w j

]
(4.20)

= 0, j = 1, . . . , n (4.21)

⇒ E
[
w j (En[wn+k − wn(k)])

]
= 0, j = 1, . . . , n (4.22)

⇒ En[wn+k − wn(k)] = 0 (4.23)
⇒ wn(k) = En[wn+k] (4.24)
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as required. We have that (4.22) holds by the Law of Iterated Expectations and that (4.23)
holds since the case where P(w j = 0) = 1, ∀ j is excluded. �

4.2.1 The Case of Non-Integrated Series

4.2.1.1 The Predictors

We will now introduce exact k-step-ahead predictors, k ≥ 1, for any process admitting an
autocovariance function, with d = 0. That is, the process is stationary without differencing.
This result is found in, e.g. Hipel and McLeod [1994].

Proposition 4.3 (Best linear k-step ahead predictor for a finite past). With the definitions as
in Proposition 4.2, and with µw = 0 without loss of generality, we have that the best linear
predictor of wn+k based on w (in the MMSE sense) will have the form

wn(k) = Projnwn+k (4.25)

= φ(k)′
n w (4.26)

=

n∑
i=1

φ(k)
ni wn−i+1 (4.27)

where

φ(k)
n = Γ−1γk (4.28)

Proof. We would like E
[
(wn+k − w̃n(k))2

]
to be minimized with w̃n(k) being some linear com-

bination of w. In particular, we must have, by Theorem 4.1 and Proposition 4.2, that w̃n(k) =

wn(k). Thus we note again that

E
[
(wn+k − wn(k))w j

]
= 0, j = 1, . . . , n (4.29)

which implies, by the linearity of the inner product,

E
[
wn+kw j

]
= E

[
wn(k)w j

]
(4.30)

= E

 n∑
i=0

φ(k)
ni wn+1−iw j

 (4.31)

That is, since j = 1, . . . , n, we have n equations resulting in

γ′k = φ(k)′
n Γn (4.32)

as required. �
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Letting φ(1)
n = φn, we note that in the ar(p) case with p < n that we have φn ≡ φ.

Also, when µw , 0, we have the exact form as

wn(k) = µw + γ′kΓ
−1
n (w − 1nµw) (4.33)

To see this note that

En[wn+k] − µw = En[wn+k − µw] (4.34)
= En[w̃nk] (4.35)

= γ′kΓ
−1
n w̃ (4.36)

= γ′kΓ
−1
n (w − 1nµw) (4.37)

We note that this method of exact prediction is at its most efficient using the Durbin-Levinson
Algorithm. Another way to write the prediction is by using the Innovations Algorithm. For
derivations and the properties of these algorithms, one can see, for example, Brockwell and
Davis [1991], Chapter 5.

We now will present the MMSE best linear k-step-ahead predictor for any process that can be
written in ma(∞) form, from an infinite past, as given in, e.g. Box et al. [2008a].

Proposition 4.4 (Best linear k-step-ahead predictor from an infinite past). With w ∼ arfima
being zero-mean, having an infinite past and the ma(∞) parameters as defined by (4.4), we
have that the MMSE best linear predictor is, for any t,

wt(k) =

∞∑
j=0

ψk+ jat− j (4.38)

Proof. Suppose the best forecast given the infinite past is

wt(k) =

∞∑
j=0

νk+ jat− j (4.39)

For this to be an MMSE forecast, we have to minimize

E
[
(wt+k − wt(k))2

]
= E


 k−1∑

i=0

ψiat−i

2 + E


 ∞∑

i=k

(ψi − νi)at−i

2 (4.40)

= σ2
a

k−1∑
i=0

ψ2
i + σ2

a

∞∑
i=k

(ψi − νi)2 (4.41)

which is obviously minimized by taking νi = ψi, i ∈ Z≥k. We note that this definition also has
wt(k) = Et[wt+k], where Et is with respect to the infinite past up to time t. This can be easily
seen, since

wt+k =

k−1∑
i=0

ψiat+k−i +

∞∑
i=k

ψiat+k−i (4.42)

⇒ Et[wt+k] =

∞∑
i=k

ψiat+k−i (4.43)
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since Et[at+ j] = 0, ∀ j > 0 and Et[at− j] = at− j, ∀ j ≥ 0. �

It may seem obvious that the finite sample predictor is often more useful, and that there is an-
other form of Proposition 4.4 that allows for a finite past: however, the infinite form expansion
is quite often used to calculate prediction error variances, which we will talk about next.

4.2.1.2 The Prediction Error Variances

We will let en(k) = wn+k − wn(k). Note that en(k) is an unbiased estimate of 0 (whether the
process has an finite or infinite past) and thus the variance is the mean squared error.

For the finite past prediction case, we have, as in McLeod et al. [2007a] and Brockwell and
Davis [1991],

Proposition 4.5. Under the conditions in Proposition 4.3, that

Var (en(k)) = γw(0) − γ′kΓ
−1
n γk (4.44)

Proof. The exact form of the variance of en(k) is:

Var(en(k)) = E
[
(wn+k − wn(k))2

]
(4.45)

= E
[
w2

n+k

]
− 2E [wn+kwn(k)] + E

[
w2

n(k)
]

(4.46)

= γw(0) − 2γ′kΓ
−1
n E

 wnwn+k

. . .
w1wn+k

 + γ′kΓ
−1
n E

[
ww′

]
Γ−1

n γk (4.47)

= γw(0) − 2γ′kΓ
−1
n γk + γ′kΓ

−1
n γk (4.48)

= γw(0) − γ′kΓ
−1
n γk (4.49)

�

For the infinite past, we have, once again from Box et al. [2008a]:

Proposition 4.6. Under the conditions in Proposition 4.4, that

Var` (en(k)) = σ2
a

k−1∑
i=0

ψ2
i (4.50)

Proof. This is follows from the arguments presented in the proof of Proposition 4.4, specifi-
cally by (4.41). �
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4.2.2 The Case of Integrated Series

4.2.2.1 The Predictors

Since we cannot have an infinite past for non-stationary integrated series, we will examine an
algorithm to predict from this type of process. It is as follows.

Algorithm 4.1. To predict from a non-stationary integrated series, z, we perform the following
steps:

• Difference and seasonally difference the series the appropriate number of times, say d
and ds. Call this series w.

• Predict from w, for k-step-ahead, from wn(1) to wn(k).

• Integrate the wn(h) for h = 1, . . . , k, using the previous wn( j)s and zs.

We note if, with ∇s = (1 − Bs) and s the seasonality, wt = ∇d∇
ds
s zt is the form of w, with

d, ds ∈ Z≥0 being the amount of nonseasonal and seasonal differencing, respectively, we have,
for example,

zn+k =

d∑
j=1

(
d
j

)
(−1) j+1B jzn+k +

ds∑
h=1

(
ds

h

)
(−1)h+1Bhszn+k +

d∑
j=1

ds∑
h=1

(
d
j

) (
ds

h

)
(−1) j+h+1B j+hszn+k + wn+k

(4.51)

= fk(z, w̃n+k) (4.52)

is an expression in for zn+k in terms of z and w̃n+k = {wn+k−1, . . . , wn+1}. If we knew exactly
w̃n+k as well as z, we could obtain zn+k for k = 1, 2, . . .. In the same way, we can have, with
zn(−k) = zn−k for k ≥ 0 and Bizn(k) = zn(k − i)

zn(k) = fk(z, w̃n(k)) (4.53)

and as such we can use fk recursively to determine the values c j and c∗j such that

zn(k) =

k−1∑
j=0

c jwn(k − j) +

k∗∑
j=0

c∗jzn− j (4.54)

and note that there is a similar expression for zn+k.

We have the following results about zn(k).

Proposition 4.7. We have that zn(k) = En [zn+k]. Moreover, zn(k) is an MMSE predictor.
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Proof. We note that, if εn(k) = zn+k − zn(k),

εn(k) = zn+k − zn(k) (4.55)

=

k−1∑
j=0

c jwn+k− j +

k∗∑
j=0

c∗jzn− j −

 k−1∑
j=0

c jwn(k − j) +

k∗∑
j=0

c∗jzn− j

 (4.56)

=

k−1∑
j=0

c j

(
wn+k− j − wn(k − j)

)
(4.57)

⇒ En[εn(k)] =

k−1∑
j=0

c j

(
En[wn+k− j] − En[wn(k − j)]

)
(4.58)

= 0 (4.59)

where (4.59) holds since the past of z necessarily includes the past of w. Therefore we have
that εn(k) is an unbiased estimate of zero and as such zn(k) = En [zn+k].

To show zn(k) is an MMSE predictor, we first have

En

[
z j (zn+k − zn(k))

]
= En

[
z jεn(k)

]
, ∀ j = 1, . . . , n (4.60)

= En

[
z jEn [εn(k)]

]
(4.61)

= 0 (4.62)

where En [εn(k)] = 0 by (4.59) and (4.61) holds by the Law of Iterated Expectations.

Thus each z j is orthogonal to zn+k − zn(k). This means that zn(k) = Projnzn+k and as such the
linear combination of z js, j = 1, . . . n, that make up zn(k) give a minimum mean square error.

�

We present an algorithm, called Z, in the programming language and environment R for com-
puting the c js, in Listing 4.1. It returns the c js in reversed order in the vector val. We could
adapt this relatively easily to produce the c∗js as well, but at the moment we will not do so.
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Z <− f u n c t i o n ( k , d , ds , s ) {

i f ( ( d==0)&&( ds ==0) ) re turn ( numeric ( 0 ) )
i f ( ds > 0 && s ==0) s top ( "No p e r i o d s u p p l i e d " )
worker1 <− f u n c t i o n (m, va lue , v a l ) {

i f (m > 0) {
v a l [m] <− v a l [m] + v a l u e
i f ( d > 0) {

f o r ( i i n 1 : d ) {
v a l <− worker1 (m− i , v a l u e * choose ( d , i ) * ( −1) ^ ( i +1) , v a l )

}
}
i f ( ds > 0) {

f o r ( j i n 1 : ds ) {
v a l <− worker1 (m− j * s , v a l u e * choose ( ds , j ) * ( −1) ^ ( j +1) , v a l )

}
}
i f ( d > 0 && ds > 0) {

f o r ( i i n 1 : d ) {
f o r ( j i n 1 : ds ) {

v a l <− worker1 (m− i − j * s , v a l u e * choose ( d , i )
* choose ( ds , j ) * ( −1) ^ ( i + j +1) , v a l )

}
}

}
}
v a l

}

v a l <− numeric ( k )
v a l <− worker1 ( k , 1 , v a l )

v a l
}

Listing 4.1: Our Algorithm for Computing the c js in R

4.2.2.2 The Prediction Error Variances

We presented only the algorithm that produces the c js in Listing 4.1 since they are all that
is needed for the prediction error variances. We note that we can construct another, infinite,
expansion of the c js, even though we only have a finite past to work with. We see that since
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wt = ∇d∇
ds
s zt, we have

wt = ∇−d∇−ds
s yt (4.63)

=

∞∑
j=0

(
−d

j

)
(−1) jB j

∞∑
i=0

(
−ds

i

)
(−1)iBsizt (4.64)

=

∞∑
h=0

chBhzt (4.65)

which would quickly get us into trouble, since we have a finite past. However, we note that
not only are c0, . . . , ck−1 equal to the c js given by the algorithm Z by construction, we have that
since we use these values for the prediction errors, the zt with t ≤ n subtract out. That is,

εn(k) =

k−1∑
j=0

c j(wn+k− j − wn(k − j)) +

n+k∑
j=k

c j0 +

∞∑
j=n+k+1

B j∅ (4.66)

=

k−1∑
j=0

c j(wn+k− j − wn(k − j)) (4.67)

We note that this form is faster to compute, although there may be slight numerical errors. We
also have that ck+ j = c∗j for j = 0, . . . , k∗, and all we have to do is determine the correct k∗ to
integrate the series.

Then the values of Var(εn(k)) and Var`(εn(k)) can be written as in the following propositions.

Proposition 4.8. The exact form of the error variances is

Var(εn(k)) =

k−1∑
j=0

k−1∑
l=0

c jcl

(
γw(| j − l|) − γ′k− jΓ

−1
n γk−l

)
(4.68)

Proof. It is easily seen that

Var(εn(k)) = E


 k−1∑

i=0

ci (wn+k−i − wn(k − i))

2 (4.69)

=

k−1∑
j=0

k−1∑
l=0

c jcl

(
E[wn+k− jwn+k−l] − E[wn(k − j)wn+k−l] − E[wn(k − l)wn+k− j] + E[wn(k − j)wn(k − l)]

)
(4.70)

=

k−1∑
j=0

k−1∑
l=0

c jcl

(
γw(| j − l|) − γ′k− jΓ

−1
n γk−l − γ

′
k−lΓ

−1
n γk− j + γ′k− jΓ

−1
n γk−l

)
(4.71)

=

k−1∑
j=0

k−1∑
l=0

c jcl

(
γw(| j − l|) − γ′k− jΓ

−1
n γk−l

)
(4.72)
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where (4.71) is a consequence of (4.33) through

E[wn(k − j)wn+k−l] = γ′k− jΓ
−1
n E [wwn+k−l] (4.73)

= γ′k− jΓ
−1
n E

 wnwn+k−l

. . .
w1wn+k−l

 (4.74)

= γ′k− jΓ
−1
n γk−l (4.75)

and

E
[
wn(k − j)wn(k − l)

]
= γ′k− jΓ

−1
n E[ww′]Γ−1

n γk−l (4.76)

= γ′k− jΓ
−1
n ΓnΓ

−1
n γk−l (4.77)

= γ′k− jΓ
−1
n γk−l (4.78)

�

Proposition 4.9. The limiting form of the integrated error variances is

Var`(εn(k)) =

k−1∑
j=0

 j∑
i=0

j∑
h=0

cichψ j−iψ j−h

 (4.79)

Proof. Although we do not have an infinite past, we can construct an infinite expansion

ψ∗(B) =
ψ(B)

∇d∇
ds
s

(4.80)

=

∞∑
i=0

ψiBi
∞∑

h=0

(
−d
h

)
Bh

∞∑
g=0

(
−ds

g

)
Bgs (4.81)

=

∞∑
i=0

∞∑
l=0

Bi+lclψi (4.82)

=

∞∑
j=0

B j
∞∑

l=0

clψ j−l (4.83)

=

∞∑
j=0

B j
j∑

l=0

chψ j−l (4.84)

where Equation (4.84) holds since ψi = 0 for i < 0.

Also,

Var`(εn(k)) =

k−1∑
j=0

(
ψ∗j

)2
(4.85)

=

k−1∑
j=0

 j∑
i=0

ciψ j−i


2

(4.86)

=

k−1∑
j=0

 j∑
i=0

j∑
h=0

cichψ j−iψ j−h

 (4.87)
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�

4.2.2.3 On the Value of d∗

We note that none of the above requires d to be a non-negative integer. The formulae above
all apply if we have fractional d∗ instead of d: that is, if d∗ = d + d f , where d f ∈ (−1, 1/2)
and d ∈ Z≥0. Therefore the above derivation of the exact form and the equivalence proof for
the integrated series both hold for d∗ ∈ (−1,∞). Note that we require that d∗ > −1 for the
process to be invertible, so we can forecast from it. There is a caveat, however: while it may
be tempting to forecast with, say, an ar(p) and use the “exact” formula with d f , rather than
forecast with an arfi(p, d f ), this is in fact incorrect and not the exact forecast at all. We will
discuss this in §4.4.3.

4.3 The Proof of Equivalence of the Prediction Error Vari-
ances for the ar Case

4.3.1 Three Useful Lemmas

These lemmas are useful in the equivalence proof.

Lemma 4.1. We have that, ∀r, s ∈ Z≥0,

γrΓ
−1
n γs = γsΓ

−1
n γr (4.88)

Proof. We have that from Siddiqui [1958], the inverse of any covariance matrix is bisymmetric.
Then (4.88) follows from symmetry. �

Lemma 4.2. We have that for an ar(p) model that with n > p

γw(m) −
p∑

h=1

φhγw(m + h) = ψm (4.89)

for all m ≥ 0.

Proof. We proceed by complete induction. The base case is k = 0: we have it holds by
Proposition 4.1.

The induction hypotheses are that (4.89) hold for all m, 0 ≤ m ≤ k. The induction step is then
to show that

γw(k + 1) −
p∑

h=1

φhγw(h + 1 + k) = ψk+1 (4.90)
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We have

γw(k + 1) −
p∑

h=1

φhγw(h + 1 + k) =

∞∑
j=0

ψ j

ψ j+k+1 −

p∑
h=1

φhψ j+h+k+1

 (4.91)

and thus an equivalent form of our induction hypothesis in (4.89) is

∞∑
j=0

ψ j

ψ j+m −

p∑
h=1

φhψ j+m+h

 = ψm (4.92)

Let, for any integer r ≥ 0,

a(r)
j = ψ j+r −

p∑
h=1

φkψ j+r+h (4.93)

=

p∑
i=1

φi

ψ| j+r−i| −

p∑
h=1

φhψ| j+r+h−i|

 (4.94)

Then (4.92) has

∞∑
j=0

ψ ja
(m)
j = ψm (4.95)

for 0 ≤ m ≤ k. Thus

∞∑
j=0

ψ ja
(k+1)
j =

∞∑
j=0

ψ j

 p∑
i=1

φi

ψ| j+k+1−i| −

p∑
h=1

φhψ| j+h+1+k−i|

 (4.96)

=

p∑
i=1

φi

 ∞∑
j=0

ψ j

ψ| j+k+1−i| −

p∑
h=1

φhψ| j+h+1+k−i|


 (4.97)

=

p∑
i=1

φi

 ∞∑
j=0

ψ ja
(|k+1−i|)
j

 (4.98)

=

p∑
i=1

φiψ|k+1−i| (4.99)

= ψk+1 (4.100)

where (4.99) comes from (4.95), and (4.100) is from Corollary 4.1. �

Lemma 4.3. We have that, for an ar(p) process,

γ′rΓ
−1
n γs − γ

′
r+1Γ

−1
n γs+1 = ψrψs (4.101)

Proof. We proceed by two-dimensional complete induction on r and s. Without loss of gener-
ality, we have σ2

a = 1 and we recall we have ψ0 = 1 by definition.
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Our base case is r = s = 0. We must show that

γ′0Γ
−1
n γ0 − γ

′
1Γ
−1
n γ1 = ψ0ψ0 (4.102)

This is, by Lemma 4.1,

γ0Γ
−1
n γ0 − γ

′
1Γ
−1
n γ1 = γ′0Γ

−1
n γ0 − γ

′
1Γ
−1
n γ1 (4.103)

= γw(0) − φ′γ1 (4.104)
= 1 (4.105)

where (4.105) is by Proposition 4.1 and so we have our base case.

We must show (4.101) holds for all r, s ∈ Z≥0.

We begin by letting s = 0 and proceeding with the induction on r. Then the base case for r is
done by the above.

We have that, for 0 ≤ m ≤ k

γ′mΓ−1
n γ0 − γ

′
m+1Γ

−1
n γ1 = ψmψ0 (4.106)

and we must show the relation holds for m = k + 1.

Then we have that, since we are dealing with an autoregressive process, φ = φ(0)
n = φ(1)

n . As
such

γ′k+1Γ
−1
n γ0 − γ

′
k+2Γ

−1
n γ1 = γ′k+1φ − γ

′
k+2φ (4.107)

=

p∑
i=1

φi (γw(k + i) − γw(k + i + 1)) (4.108)

=

∞∑
j=0

ψ j

p∑
i=1

φi

(
ψ j+k+i − ψ j+k+i+1

)
(4.109)

=

∞∑
j=0

ψ jb
(k+1)
j (4.110)

where

b(k+1)
j =

p∑
i=1

φi

(
ψ j+k+i − ψ j+k+i+1

)
(4.111)

=

p∑
l=1

φl

p∑
i=1

φi

(
ψ| j+k+i−l| − ψ| j+k+i+1−l|

)
(4.112)

and we know that
∑∞

j=0 ψ jb
(m)
j = ψm = ψmψ0 for 0 ≤ m ≤ k from our induction hypotheses.
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Then
∞∑
j=0

ψ jb
(k+1)
j =

∞∑
j=0

ψ j

p∑
l=1

φl

p∑
i=1

φi

(
ψ| j+k+i−l| − ψ| j+k+i+1−l|

)
(4.113)

=

p∑
l=1

φl

 ∞∑
j=0

ψ j

p∑
i=1

φi

(
ψ j+k+i−l − ψ j+k+i+1−l

) (4.114)

=

p∑
l=1

φl

 ∞∑
j=0

ψ jb
(|k+1−l|)
j

 (4.115)

=

p∑
l=1

φlψ|k+1−l| (4.116)

= ψk+1 (4.117)
= ψk+1ψ0 (4.118)

Now we let s ∈ Z≥0 be arbitrary and proceed with induction on r. The base case is complete by
the above complete induction with s = 0, since r and s can be switched by Lemma 4.1.

Then we have as our induction hypotheses that for 0 ≤ m ≤ k,

γ′mΓ−1
n γs − γ

′
m+1Γ

−1
n γs+1 = ψmψs (4.119)

and we must show the relation holds for m = k + 1.

Then,

γ′k+1Γ
−1
n γs − γ

′
k+2Γ

−1
n γs+1 = γ′k+1φ

(s)
− γ′k+2φ

(s+1) (4.120)

=

p∑
i=1

φ(s)
ni γw(k + i) −

p∑
i=1

φ(s+1)
ni γw(k + i + 1) (4.121)

=

∞∑
j=1

ψ j

 p∑
i=1

φ(s)
ni ψ j+k+i −

p∑
i=1

φ(s+1)
ni ψ j+k+i+1

 (4.122)

=

∞∑
j=1

ψ jd
(s,k+1)
j (4.123)

where

d(s,k+1)
j =

 p∑
i=1

φ(s)
ni ψ j+k+i −

p∑
i=1

φ(s+1)
ni ψ j+k+i+1

 (4.124)

=

p∑
l=1

φl

 p∑
i=1

φ(s)
ni ψ| j+k+i−l| −

p∑
i=1

φ(s+1)
ni ψ| j+k+i+1−l|

 (4.125)

and we know by our induction hypotheses that
∑∞

j=1 ψ jd
(s,m)
j = ψmψs, with s ∈ Z≥0 arbitrary and

0 ≤ m ≤ k.
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Therefore,

∞∑
j=1

ψ jd
(s,k+1)
j =

∞∑
j=1

ψ j

 p∑
l=1

φl

 p∑
i=1

φ(s)
ni ψ| j+k+i−l| −

p∑
i=1

φ(s+1)
ni ψ| j+k+i+1−l|

 (4.126)

=

p∑
l=1

φl

 ∞∑
j=1

ψ j

 p∑
i=1

φ(s)
ni ψ| j+k+i−l| −

p∑
i=1

φ(s+1)
ni ψ| j+k+i+1−l|


 (4.127)

=

p∑
l=1

φl

∞∑
j=1

ψ jd(s,|k+1−l|) (4.128)

=

p∑
l=1

φlψsψ|k+1−l| (4.129)

= ψs

p∑
l=1

φlψ|k+1−l| (4.130)

= ψsψk+1 (4.131)

and thus we have our result.

�

4.3.2 Proof of Equivalence in the AR(p) Case

We have the following theorem:

Theorem 4.2. We have that (4.50) and (4.49) are equivalent in the ar(p) case. This includes
the seasonal case when p∗ = p + pss.

Proof. We first note that γw(0) =
∑∞

j=0 ψ
2
j . Then we must show that

γ′kΓ
−1
n γk =

∞∑
j=k

ψ2
j (4.132)

which is true if and only if

γ′kΓ
−1
n γk − γ

′
k+1Γ

−1
n γk+1 = ψ2

k (4.133)

which follows from Lemma 4.3. �

For example, Brockwell and Dahlhaus [2004], Equation (54) has

v(h+1)
n = v(h)

n − φ
(h)
n+1,n+1v

(1)
n (4.134)

where v(k)
n is the k-step-ahead prediction error variance of the given series of length n. We must

have φ(h)
n+1,n+1 = 0 for any h ∈ Z≥0 with n > p. This is a consequence of Proposition 4.10.
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4.3.3 Proof of Equivalence in the ARIMA(p, d, 0) Case

We note that the nonintegrated case (d = 0) is a special case of this. Then we have the following
theorem:

Theorem 4.3. We have that the exact and limiting prediction error variances are the same for
arima(p, d, 0) processes for all d ∈ Z≥0.

Proof. Let Yk be the kth step ahead exact prediction error variance, and let Xk be the kth step
ahead limiting prediction error variance. That is,

Yk =

k−1∑
i=0

k−1∑
l=0

cicl

(
γw(|i − l|) − γ′k−iΓ

−1
n γk−l

)
(4.135)

Xk =

k−1∑
j=0

 j∑
i=0

j∑
l=0

ciclψ j−iψ j−l

 (4.136)

We also let

S k = Yk+1 − Yk (4.137)

=

k∑
i=0

k∑
l=0

cicl

(
γw(|i − l|) − γ′k+1−iΓ

−1
n γk+1−l

)
−

k−1∑
i=0

k−1∑
l=0

cicl

(
γw(|i − l|) − γ′k−iΓ

−1
n γk−l

)
(4.138)

=

k−1∑
i=0

k−1∑
l=0

cicl

(
γ′k−iΓ

−1
n γk−l − γ

′
k−i+1Γ

−1
n γk−l+1

)
+ 2ck

k∑
i=0

ci

(
γw(k − i) − γ′1Γ

−1
n γk+1−i

)
(4.139)

= Mk + 2ckAk (4.140)

through some careful algebra, and

Tk = Xk+1 − Xk (4.141)

=

k∑
j=0

 j∑
i=0

j∑
l=0

ciclψ j−iψ j−l

 − k−1∑
j=0

 j∑
i=0

j∑
l=0

ciclψ j−iψ j−l

 (4.142)

=

k∑
i=0

k∑
l=0

ciclψk−iψk−l (4.143)

=

k−1∑
i=0

k−1∑
l=0

ciclψk−iψk−l + 2ck

k∑
i=0

ciψk−i (4.144)

= Nk + 2ckBk (4.145)

Note that we have (by construction) that Y0 = X0 = 0 and that for any d, the arima(p, d, 0) has
Y1 = X1 = 1. Therefore for any k ∈ Z>0 an equivalent statement to Yk = Xk is that S k = Tk.
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For arbitrary k > 0,

Ak =

k∑
i=0

ci

(
γw(k − i) − γ′1Γ

−1
n γk+1−i

)
(4.146)

=

k∑
i=0

ciψk−i (4.147)

= Bk (4.148)

where (4.147) is from Lemma 4.2.

For arbitrary k > 0,

Mk =

k−1∑
i=0

k−1∑
l=0

cicl

(
γ′k−iΓ

−1
n γk−l − γ

′
k−i+1Γ

−1
n γk−l+1

)
(4.149)

=

k−1∑
i=0

k−1∑
l=0

ciclψk−iψk−l (4.150)

= Nk (4.151)

where (4.150) is by Lemma 4.3. Then we have our result. �

We note that Equation (54) in Brockwell and Dahlhaus [2004] does not apply, since the results
of said paper are restricted to stationary series. We will see that the application of the exact
formula to fractional d∗ as was mentioned in §4.2.2.3 is incorrect: we will see this in §4.4.3.

4.4 On the Comparison of the Exact Form and the Limiting
Form as n Increases

We have the following proposition.

Proposition 4.10. For an ar(p) process, we have that for all k ≥ 1 and with n > p that φ(k)
ns = 0

for s > p.

Proof. We proceed by complete induction. We note that k = 1 is true. Then our induction
hypotheses are that the above holds for 1 ≤ m ≤ k, and we must show it holds for m = k + 1.

By properties of linear projection, we have that Projn = ProjnProjn+g for g ≥ 0, since necessarily
we have thatHn ⊆ Hn+g with equality if and only if either g = 0 or wn+1, . . . , wn+g ∈ Hn.
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Therefore,

wn(k + 1) = φ(k+1)′w (4.152)
= Projnwn+k+1 (4.153)
= ProjnProjn+kwn+k+1 (4.154)
= Projnwn+k(1) (4.155)

= Projn

p∑
i=1

φiwn+k+1−i (4.156)

=

p∑
i=1

φiProjnwn+k+1−i (4.157)

=

p∑
i=1

φi

p∑
j=1

φ(k+1−i)
n j wn+1− j (4.158)

where (4.156) is by the base case, and (4.158) is by the induction hypotheses. Thus since only
wn−p+1, . . . , wn are used by the predictor, we must have that φ(k+1)

ns = 0 for s > p. �

4.4.1 On the Predictions

4.4.1.1 On Stationary Models

We note we should have increasing agreement between the limiting form and the exact form as
our finite past gets larger. Indeed we will show this is the case.

Theorem 4.4. As n → ∞, we have that the exact form of the prediction will give rise to the
limiting form.

Proof. Let us write wn+k in terms of φ(k)
n andw as if it were an ar(n + k − 1) process. If we let

the form of the expected value of wn+k, which is wn(k), be our guide, we would write it as

wn+k − φ
(k)
n1wn − . . . φ

(k)
nnw1 = an+k (4.159)

so we would get the same result as Proposition 4.3 if we were to take expected values with
respect to w.

We note that unless the process is ar(p) with n > p, as n increases, we get a better fit in
our autoregressive approximation to whatever process we are considering. This is a standard
result. It should also be clear that when we take expected values up to time n to obtain the kth-
step-ahead prediction, the prediction should become more accurate: not in the MMSE sense,
since the predictor is already the MMSE predictor, but in that we have a longer series to predict
from. Another way to see this is that Hn becomes a larger space. Note that this does not
change anything for pure autoregressive processes of finite order, since as a consequence of
Proposition 4.10 we only project onto the last p values of w.
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As n→ ∞, we have that the autoregressive approximation becomes exact: that is, for any t,

wt+k −

∞∑
j=k

π jwt+k− j = at+k (4.160)

⇒ πk(B)wt+k = at+k (4.161)

for πk(B) = 1 −
∑∞

j=k π jB j. We have ψk(B) = 1 +
∑∞

j=k ψ jB j being defined by ψk(B) = π−1
k (B).

Note that the usual definitions have π(B) = π1(B) and ψ(B) = ψ1(B).

Therefore we are left with

wt+k = ψk(B)at+k (4.162)

= at+k +

∞∑
j=k

ψ jat+k− j (4.163)

and, upon taking expected values with respect up to time t, we obtain

wt(k) =

∞∑
j=k

ψ jat+k− j (4.164)

which is exactly the result of Proposition 4.4. �

Thus the limiting form and the exact form will become closer as n→ ∞: that is, their difference
will tend to zero.

A consequence of this theorem and Proposition 4.10 is that only in the ar(p) case (and integer
integrations thereof) do we need only a finite number past to predict the series “perfectly” by
projection. For all other processes, as n gets larger, the prediction improves in the sense that
the predictions will become more accurate due to a longer past. We note that only in the ar(p)
case and its integer integrated forms does the prediction not change at all as n increases. For
all other processes, the main idea to take hold of is that the predictions change as n increases.

The fact that the arima(p, d, 0) forecast for any integer d ≥ 0 does not change as n increases
as long as n > p + d underlies the proof of Theorem 4.3.

4.4.1.2 On Non-stationary Models

Since we cannot have an infinite past for non-stationary models, we seem to be stuck. However,
we note that as the past gets larger, even though it cannot tend to infinity, the autoregressive
approximation gets better. Thus we see that the exact form of the predictions becomes more
comparable to the limiting form: the difference between these forms will get closer to zero.

4.4.2 On the Prediction Error Variances

Since we note that the difference of the forms of the predictions tends to zero when n increases,
we must have that the prediction error variances differences tend to zero in the same way.
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We note that an ar process prediction error variances will be close (equal up to numerical
errors) to its limiting form, and an ma process will be farther away. An arma process will
have errors somewhere in between: that is, it will usually be smaller than the variance of an
associated ma process even if the magnitude of φ = φ1 is small, when comparing a ma(q)
to an arma(1, q) process. Note that fractional integration (correctly applied: that is, in the
autocovariance function) will make the differences between the exact and the limiting variances
larger.

4.4.3 The Incorrect Application of the Exact Form

We first note that in the limiting form the incorrect application is equivalent to the correct
application, as is shown in (4.85).

We have shown that the exact form of the prediction variance is equal to the limiting form of the
prediction variance in the arfi(p, d∗) case, where d∗ ∈ (−1,∞). However, having d∗ = d f + d,
with d f nonzero, the exact form is no longer exact if we put d∗ in the exact formula (4.72).
We may argue that since the arfi(p, d f ) is stationary and invertible and as such we should use
its autocovariance function. However, we also note that in the arfi(p, d f ) case, the incorrect
application of the exact form gives the limiting form. We note that from Proposition 4.10 and
Theorem 4.4, especially from the consequences of the latter, that the exact prediction, and thus
the error variances, will be different from the limiting one. The same arguments follow for
other processes.

4.4.4 On Running Time

For long series, the exact formulae take time. The Durbin-Levinson algorithm takes O(n2)
floating point operations (flops) to invert the matrix Γn, while the fastest way to compute the
prediction error variances for k steps ahead in the non-integrated case takes O(kn2), since it
involves one matrix multiplication and no other computation contains said multiplication. For
the integrated series, the fastest way to compute the prediction error variances involves two
matrix multiplications. While this takes the same asymptotic number of flops, since the matrix
computations can be separated, the increase in time spent is substantial.

The flop count for the limiting form is a polynomial in k, the form of which can be quite
complicated. However, since most often k << n, the limiting form is much faster, while the
limiting form as defined in (4.85) is faster still. For large n, using the limiting form (4.87) or
(4.85) may be preferable.
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4.5 Examples

4.5.1 Simple Symbolic Examples

Let us begin with a very simple example of an ma(1), with n = 3. Then γ′0 = (1 + θ2,−θ, 0) and
Γ3 is the Toeplitz matrix defined by γ0. It can be shown (easily in an algebraic programming
language such as Mathematica) that

Γ−1
3 =

1
1 + θ2 + θ4 + θ6

 1 + θ2 + θ4 θ + θ3 θ2

θ + θ3 1 + θ2 + θ4 θ + θ3

θ2 θ + θ3 1 + θ2 + θ4

 (4.165)

Then for the one-step-ahead predictor, we have γ′1 = (−θ, 0, 0) and that

Var(e3(1)) = γw(0) − γ′1Γ
−1
3 γ1 (4.166)

=
1 + θ2 + θ4 + θ6 + θ8

1 + θ2 + θ4 + θ6 (4.167)

again assuming (without loss of generality) thatσ2
a = 1. Recalling that the ψ-weights expansion

always has the one-step ahead predictor has a variance of σ2
a, we note that Equation (4.167)

is only equal to one when θ = 0. Recall we will have as our h-step-ahead prediction error
variance 1 + θ2 for all h > 1.

However, we note that with n = m ∈ Z≥3 that we will have that the 1-step ahead prediction
variance can be shown to be

Var(em(1)) = γw(0) − γ′1Γ
−1
m γ1 (4.168)

=
1 + θ2 + · · · + θ2(m+1)

1 + θ2 + · · · + θ2m (4.169)

and as such when m→ ∞, we will have that Var(em(1))→ 1.

When we integrate the ma(1) process d ∈ Z>0 times, the difference between the exact and the
approximate 1- to 4-step-ahead prediction error variances for an ma(1) with d symbolic are,
for n = 15, and a =

∑15
i=0 θ

2i

k difference
1 θ32/a
2 d2θ32/a
3 d2(1 + d)2θ32/4a
4 d2(1 + d)2(2 + d)2θ32/36a

Table 4.1: The ma(1) prediction error variance differences with symbolic θ and d, n = 15

We note a similar pattern occurs with different k and n. The differences between the exact and
approximate kth-step-ahead (k ≥ 2) ma(1) with size n then is postulated to be

θ2n+2 ∏k
j=2( j − 2 + d)2∏k

j=2(k − 1)2 ∑n
i=0 θ

2i
(4.170)
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We note that when we write the ma(1) as an ar(∞), we have φ j = −θ j for j ≥ 1. Using
Mathematica we have computed the ar(n) TACVFs for several n.

• n = 3 {
1 + θ2

1 − θ6 ,
−θ

1 − θ6 ,
−θ4

1 − θ6

}
(4.171)

• n = 5 {
1 + θ2

1 − θ10 ,
−θ

1 − θ10 , 0, 0,
−θ6

1 − θ10

}
(4.172)

• n = 21 {
1 + θ2

1 − θ42 ,
−θ

1 − θ42 , 0, . . . , 0,
−θ22

1 − θ42

}
(4.173)

where there are 15 zeroes in the ellipsis of (4.173). We note that the TACVF an ar(n) for even
relatively small n becomes close to the true ma(1) TACVF.

4.5.2 Some Numerical Examples

We present the following tables, with prediction error variances of an arfima(1, 0.45, 1) and
an arfima(1, 1 + 0.45, 1) process, with φ = 0.9 and θ = −0.9. We note that under certain
circumstances in the real world, we may try to fit these as arfima(1, 1− 0.55, 1) (that is, d = 1
and d f = −0.55) and arfima(1, 2−0.55, 1) processes respectively. We note that d∗ is the same
regardless of how we formulate the problem. However, the prediction error variances are not.
This leads to the question of which to fit, as it is possible we do not know the “true” value of
d. In real world data analysis, it may make more sense to choose the simpler model, however.

The limiting columns in the tables are the values where (4.85) was used. When we have d
equal to a value, we are applying the exact formula with that d. For example, when d = 0.45,
we are applying the exact formula incorrectly. When we have d f equal to a value, it is used in
the autocovariance function.

We note that always the limiting form has the smallest error variances, as is expected. The
incorrect application of the formula for fractional d is close to the limiting for n = 10 and the
same when n = 50. We also note that the arfima(1, d + 0.45, 1) has a smaller variance than
the arfima(1, (d + 1) − 0.55, 1) for d = 0, 1 for all lags. This is to be expected: even though
the autocovariances worked with will be smaller for d f = −0.55, with d = 1 or 2, the use of the
exact integrated formula will tend to make the variances larger.
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n = 10 n = 50
k Limiting d = 0.45 d = 1, d f = −0.55 d f = 0.45 d = 0.45 d = 1, d f = −0.55 d f = 0.45
1 1 1.1 1.097 1.123 1 1.004 1.003
2 6.063 6.245 6.335 6.346 6.063 6.108 6.093
3 13.66 13.9 14.25 14.18 13.66 13.81 13.76
4 22.91 23.18 24.01 23.77 22.91 23.25 23.14
5 33.19 33.48 35.02 34.52 33.19 33.82 33.62

Table 4.2: The arfima(1, 0.45, 1) prediction error variances

n = 10 n = 50
k Limiting d = 1.45 d = 2, d f = −0.55 d = 1, d f = 0.45 d = 1.45 d = 1, d f = −0.55 d = 1, d f = 0.45
1 1 1.1 1.097 1.123 1 1.004 1.003
2 11.56 12.11 12.24 12.33 11.56 11.64 11.62
3 47.64 49.15 50.09 50.1 47.64 48.09 47.94
4 129.5 132.6 136.2 135.5 129.5 131.1 130.6
5 279.6 284.9 294.9 292.3 279.6 283.9 282.5

Table 4.3: The arfima(1, 1 + 0.45, 1) prediction error variances

4.6 Conclusions

We have discussed predictions and prediction error variances for stationary and non-stationary
processes with stochastic trend. We have given proofs of equivalence for the limiting form
and the exact form of the variances under the assumption that the underlying process is strictly
autoregressive.



Chapter 5

The arfima Package

5.1 Introduction

In this chapter the arfima R package is formally presented, which fits arma-hdmodels via ex-
act maximum likelihood. This package also performs exact simulation and prediction. It seems
to be the only R package that performs time series analysis with the Box-Jenkins transfer-
function noise model and we generalize the noise to include ARFIMA. It is the first of its kind
to look at multimodality in time series. The merits of the package will be discussed further
in §5.4. While the arfima package can mix any of fd, fgn, and pla noise with arma struc-
ture, note that all other R packages only use arfima as their mixed models, and as such those
models will be the focus of this chapter.

5.2 The Need for Exact Maximum Likelihood

In this section, the need for exact maximum likelihood in software is discussed. We have done
many experiments with approximate likelihood methods, and found them to be very good in
some ways and very bad in others. There are, of course, things to be desired in exact maximum
likelihood, most notably speed of computations. There is also the problem of near-singular
matrices at extreme points of a log-likelihood surface, which we will address next.

5.2.1 Near Singular Matrices

Beran [1994], page 108, notes that besides a large amount of computing time, exact maximum
likelihood can be burdened by ill-conditioned matrices that are almost singular. The use of
increasingly powerful (and precise) computers and the use of specialized algorithms mitigate
these effects. As part of his example, Beran states that the correlation matrix for an fgn process
with H = 0.9 for n = 100 (call this matrix D) has a determinant of approximately 5 × 10−39;
also, the largest eigenvalue divided by the smallest eigenvalue was approximately 222. We
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calculated the same results.

In Beran [1994], the ratio of eigenvalues was used to calculate the condition number of the
matrix. Recall the condition number of a matrix is with respect to a norm: we use the `2-norm,
as was done implicitly in Beran. Trefethen and Bau [1997] note that for this norm, the ratio of
the largest and smallest singular values of a matrix give the condition number: in the case of
Toeplitz matrices, these are the same ratios. It should also be noted that one generally looks at
the condition number of the matrix relative to the size of the matrix: however, this point will
be ignored. If the condition number of a matrix A is τ, one can expect to “lose” approximately
log10(τ) significant digits by the inversion of the matrix - see, e.g. Cheney and Kincaid [2007].
For example, a perfectly well-conditioned matrix has τ = 1 and loses no digits. For most
machines today, the approximate machine precision is ε ≈ 2.22 × 10−16. For the example
in Beran, τ = 222 and log10(τ) = 2.35. The matrix D was inverted with the ltsa function
TrenchInverse to get E ≈ D−1. The maximum absolute difference of DE − I200 was about
2.11 × 10−15, and so it is noted that the rule of thumb is overestimating the number of digits
lost, up to the machine precision in subtracting the elements of the matrices.

As a test, the correlation matrix of an fgn process with H = 0.99 and n = 5000, call this F,
was computed. The determinant reported by R was 0, with τ = 245908.3 ⇒ log10(τ) ' 5.39.
The inverse of said matrix was computed using the ltsa function TrenchInverse; when this
was multiplied by the original matrix, the maximum absolute value of the product minus the
identity matrix was within 2.58 × 10−13. Notice that F is much larger than D and that it has a
value of H much closer to the stationarity boundary, and yet loses only about three more digits
in estimated precision and about two more in actual precision.

The covariance and correlation matrices for the fd case with n = 5000 and d = 0.49 were
also calculated. The determinant of the covariance matrix was approximately 143. The de-
terminant of the correlation matrix was presented as 0. Both matrices were inverted using the
TrenchInverse algorithm of ltsa. With the correct scaling factor to account for the division
of the theoretical autocovariance function by its first element, the two matrices had maximum
difference reported as 0. However, this test is misleading, as the covariance and correlation ma-
trices have the same condition number, with log10(τ) ' 5.13. This again overestimates the loss
in significant digits, since when both matrices are multiplied by their inverses and subtracted
from the identity, the maximum absolute error is about 2.6 × 10−13 for the correlation matrix
and 1.46 × 10−13 for the covariance matrix. The differences here are likely due to underflow.

The inverse and determinant for the log-likelihood are computed relatively efficiently using
the Durbin-Levinson or Trench algorithm, withstanding for the most part poorly-conditioned
matrices. However, not all likelihood values are necessarily computable: for example as above
with and a fd series was generated with d f set to 0.49, the log-likelihood was not computable
for either of the ltsa functions DLLoglikelihood and TrenchLoglikelihood for one test
series with the generating d f . This particular series will be called M. However, the effect of
this is sufficiently small. The exact algorithm had no problem finding the MLE for the data:
we believe that for any given data set, the non-computable regions are very small. We have
experimented with grids around this and a few other non-computable points, and found this to
be true.
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All of this addresses ill-conditioned matrices. However, while exact maximum likelihood may
lose a few digits, it is as exact as it can be up to machine precision, while approximate max-
imum likelihood is by definition not exact. It is our belief that it is better to lose a few digits
of precision than not be exact. Thus the only advantage that approximate ML has over ex-
act is speed. While advantage can be considerable, we will show that approximate maximum
likelihood may be seriously flawed.

5.3 On Other R Packages that Deal with arfimaModels

There are three R packages that deal with arfima models we are currently aware of: long-
memo and its extension, afmtools; and the fracdiff package. The former two maximize the
Whittle log-likelihood, while the latter approximates exact maximum likelihood, except in the
case of fd, where it can be exact. Since the arfima deals with exact maximum likelihood,
fracdiff will be the focus of the comparisons in this chapter. Note also that fracdiff seems to
be the most popular R package for arfima models.

5.3.1 The Haslett-Raftery Method and the fracdiff R Package

The fracdiff package is widely used. It is very fast, one of the major things it has in its favour.
However, its speed depends on two things: the first is that it is coded almost entirely in C
generated from Fortran. While it has been cleaned up by the maintainer of the package, this
makes it hard to see what is truly being done, and thus hard to alter or extend. The second
is that fracdiff uses several approximations and heuristics. While one major approximation is
controllable through the fracdiff command, the others are not.

Note that the fracdiff approximations were first used by Haslett and Raftery [1989] for what
was certainly a long memory time series with n = 6574 at each of 11 spatially correlated
stations in a time of minimal computing power. These approximations usually serve well when
considering long memory: using M = 100 in the below often yields a fairly good fit for strongly
persistent processes, but not anti-persistent ones. Even when this particular approximation is
removed, the fracdiff package often approximates the log-likelihood surface poorly.

5.3.2 The Approximations Used

The package fracdiff uses several approximations: as listed in the original Haslett and Raftery
paper, and some further approximations and heuristics implemented in the C code that is inter-
faced to R. These are the approximations used for the fitting function, and do not include such
issues as simulation. The simulation done by fracdiff can also be poor: this is not addressed
in this thesis.
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5.3.2.1 The Approximations Listed in the Paper

The procedure outlined in Haslett and Raftery [1989] is as follows, noting that said paper has
been paraphrased: first, the approximate conditional mean and variance are calculated. In
the paper, a weighted mean is used, since not only temporally but also spatially correlated
sequences are discussed. The effect of this can be ignored, as both arfima and fracdiff only
deal with temporal data. After some initial heuristics to identify p, q, and the estimated values
of θ(B), φ(B), and d are found by methods that will not be detailed, the approximate conditional
mean for each t is:

x̂t = φ(B)θ(B)−1
t−1∑
j=1

φt jxt− j (5.1)

where φt j are as in Chapter 4, from the fd process. The approximate conditional variance is

vt = σ2
xκ

t−1∏
j=1

(
1 − φ2

j j

)
where κ is the ratio of the innovations variance to the variance of the associated arma(p, q)
process. The approximate concentrated log-likelihood is then given by

`c(β) = c −
1
2

n log
(
σ̂2(η)

)
− log

 n∑
t=1

vt

 (5.2)

with c being a constant, η being all parameters of the model, and

σ̂2(η) =
1
n

n∑
t=1

(xt − x̂t)2

vt

Note the last term on the right of (5.2) is not mentioned in Haslett and Raftery [1989]: it was
put here because it is in the code. This is once again an approximation, since the vts are defined
by the fd process only.

Another approximation that Haslett and Raftery use is the restriction of the number of φt js
used. To avoid a large number of calculations of the φt j, a value M, usually set to 100, is given
such that

t−1∑
j=1

φt jxt− j '

M∑
j=1

φt jxt− j −

t−1∑
j=M+1

π jxt− j (5.3)

since φt j ∼ −π j for large j, and π j is the jth term in the infinite autoregressive representation
of the fd process. Then another approximation is used: rather than calculate all π js, the given
algorithm uses

t−1∑
j=M+1

π jxt− j ' MπM

(
1 −

(M
t

)d)
x̄M+1,t−1−M (5.4)

where x̄M+1,t−1−M = 1
t−1−2M

∑t−1−M
M+1 x j.
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5.3.2.2 The Code’s Heuristics

All of the approximations mentioned in the paper are implemented in the code. There are,
however, some further heuristics. First, however, the approximation in (5.4) based on (5.3) is
addressed. The only approximation that can be changed with a call to fracdiff is the value of
M. In all the tests run in preparation for this thesis, the package throws an error when n > 100
when fitting anti-persistent models. However, since M is changeable, when M is set to the
length of the series, this ceases to be an issue. When this is done, note that (5.1) has the exact
likelihood for a fd process.

The code uses as an heuristic a multistep optimization that is very fast. It first estimates the
ARMA parameters with d = 0 as well as filtering out the mean, and then estimates the optimal
d using the output. All optimizations of d are done using the fmin algorithm of Brent [1973].
All long memory or anti-persistent effects from the given d are filtered out, and then estimates
the ARMA parameters again. This is repeated until convergence.

While there can be a great deal more to be said about fracdiff, the discussion of the package’s
inner workings will be left as it stands. Most of fracdiff’s speed comes from approximations
and heuristics, which gives rise to a problem that will be mentioned in §5.4.

5.4 What the arfima Package Can Do

In this section, the many uses of the arfima R package will be outlined, including what it can
do that other packages cannot.

As has been mentioned previously, fracdiff, as well as other comparable R packages, is ap-
proximate. One of the larger hindrances of this is that approximate methods do not reflect the
loglikelihood surface precisely. This is a problem when there is multimodality, as well as nor-
mal parameter estimation. While fracdiff is certainly capable of estimating parameters well in
certain conditions, there are other conditions under which fracdiff does very poorly.

In the arfima package, the data are passes to the DLLoglikelihood function from ltsa with
the TACVF of the process generated by whatever point we are at: this is driven by the optim
function in R. This ensures exact maximum likelihood up to numerical errors.

5.4.1 Calculating the Log-Likelihood, Simulating, and Forecasting

Two algorithms that are used (via ltsa) in our package for calculating the likelihood, simulat-
ing, and forecasting will be mentioned. The first is the Durbin-Levinson algorithm, while the
second is the Trench algorithm.

Recall from Chapter 4 that the best linear one-step ahead predictions are of the form wn(1) =

ŵn+1 = φn1wn + . . .+φnnw1, with mean squared errors of the prediction as vn = E[(wn+1− ŵn+1)2].
The Durbin-Levinson algorithm is an efficient way of computing the φn and vn in O(n2) time.
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See, e.g., Brockwell and Davis [1991] for a derivation.

The Trench algorithm is an efficient way to calculate the inverse and determinant of a Toeplitz
matrix. It also requires O(n2) flops. The algorithm is in, e.g., Golub and Van Loan [1996].

The unrestricted likelihood for a series w can be written, up to constant terms,

L(Φ∗|w) ∝ |Γn|
−1/2 exp

(
−

1
2

(w − µw1)′ Γ−1
n (w − µw1)

)
(5.5)

Now suppose µw = 0 without loss of generality. Then the unrestricted log-likelihood function
is

`(Φ∗|w) = c −
1
2
|Γn| −

1
2
w′Γ−1

n w (5.6)

= c −
1
2

log(σ2
a) −

1
2

log(gn) −
1

2σ2
a

n∑
j=1

(w j − ŵ j)2

v j−1
(5.7)

= c −
1
2

log(σ2
a) −

1
2

log(gn) −
1

2σ2
a
S (Φ) (5.8)

where gn =
∏n−1

t=0 vt and (5.7) is by application of the ideas in Chapter 4.

Maximizing (5.8) with respect to σ2
a we obtain σ̂2

a = S (Φ)/n as in Chapter 2. The concentrated
likelihood function is then

`c(Φ|w) = c −
1
2

log(S (Φ)/n) −
1
2

log(gn) (5.9)

Note the similarity of (5.2) to (5.9). Recall, however, the x̂’s in the Haslett-Raftery paper were
computed using only the fd autocorrelations rather than the full model. The minimum mean
squared error linear one-step-ahead predictors correspond to Haslett and Raftery’s conditional
means. Also recall that the likelihood of one set of parameter values Φ is always up to an
additive constant.

In simulation, the Durbin-Levinson algorithm (for finding the best linear predictors) comes to
our aid once more. Using the TACVF of the process and said algorithm, let

w1 ∼WN(0, γw(0)) (5.10)
wt = φt−1,1wt−1 + · · · + φt−1,t−1w1 + et (5.11)

with

et ∼WN(0, vt−1) (5.12)

where the white noise is usually, although not always, Gaussian. If a non-zero mean for the
series is desired, it is added to the series at the end.

For forecasting, recall (4.33)

wn(k) = µw + γ′kΓ
−1
n (w − 1µw) (5.13)

for which the Trench algorithm can be to obtain the inverse autocovariance matrix.
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5.4.2 More on the arfima Package

As was mentioned earlier, the arfima package is capable of exact maximum likelihood estima-
tion, simulation, and forecasting. As was noted in the introduction to this chapter, it is capable
of transfer function modelling as in Box et al. [2008b]. Unlike other packages and due to its
use of the TACVF, arfima can have mixed arima-hd models for three of the four hd mod-
els. Since the pls model autocovariance structure is difficult at best to evaluate exactly and
efficiently, said model was left out.

The arfima package also deals with integer differencing, both seasonal and non-seasonal. It is
the first package that deals with exact prediction when there is integer differencing required in
the model - see Chapter 4.

Seasonal arima-hd noise can be included in the models. Since the non-seasonal and seasonal
can mix as in Chapter 3 we can have two different types of noise, from white noise to the hd
noises available.

The arfima package is also the only package that we are aware of that performs multiple starts
for an analysis of time series. Note that there can be more than one mode for certain time
series models. We have also introduced a new visual diagnostic tool that allows us to check for
spurious modes, which we will mention in §5.5.4.

5.5 Package Details

First we note that in the arfima package, the main fitting function, as well as all of the utility
functions associated with it, are based on the assumption that there will be multiple modes.
That is, unless the parameters are specified exactly to only have one starting point, the main
fitting function of the package, arfima, will start the optimizations at multiple starting points.
Every other function, aside from the simulation function, arfima.sim, is meant to deal with a
possibly multimodal loglikelihood surface and thus multiple fits.

This was done as in certain circumstances, discussed in Chapter 6, multimodality of the loglike-
lihood surface tends to occur. We have several hypotheses about the nature of log-likelihood
surfaces of data that are bimodal. While the inclusion of hd parameters in the model may make
the surface multimodal, there are arma processes that are also multimodal. We stress that the
appearance of multimodality on a loglikelihood surface is highly dependant on both the data
and the model. This will be discussed in Chapter 6.

5.5.1 Dealing with the Estimation of µw

In some way the estimation of µw must be dealt with. This must be done since if the true mean
of the series is non-zero, the estimates will often be far from the true parameters - of course,
assuming an underlying structure. There are multiple ways to do this: the first is to simply
use w̄ (once w is stationary) as the estimate. This is certainly the simplest method, and in fact
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one option in arfima. There is a guarantee that w̄ → µw in mean square and probability for
all arma-hd models by Theorem 3.6. It should be noted that the fracdiff package filters out
the mean of the series in estimation, and thus it doesn’t matter whether the mean is subtracted
out or not during the fit. The arfima function of the package dynamically estimates the mean
as the default. There is also the option of iteratively estimating the mean, which is done with
itmean = TRUE in the arfima function. This method is laid out in McLeod et al. [2007a].
The fourth was of fitting a mean is to set it to a specific value.

5.5.2 The Partial Autocorrelation Space for AR and MA Coefficients

When considering ARMA parameters, it is important to note that if p and/or q are greater than
1, the admissible space for the stationarity and/or invertibililty of the parameters becomes com-
plex. Monahan [1984] introduced a formulation (and its inverse) for autoregressive coefficients
such that all stationary transformed coefficients occur within the open p-cube (−1, 1)p. This
is based on Barndorff-Nielsen and Schou [1973]. Due to duality (see, eg. McLeod [1984]),
the ma parameters are invertible if under the parametrization if they are in the open q-cube
(−1, 1)q.

We sometimes call this space the transformed space or “PACF” space. It is called this in refer-
ence to that it transforms the ar coefficients to their partial autocorrelation function coefficients
via a transformation equivalent to the Yule-Walker equations. Note that it is in this space that
is checked whether the ar or ma parameters are close to the stationarity and/or invertibility
boundaries. This is also how the multistart procedures are performed: a grid of parameter val-
ues in the ar and ma transformed spaces are generated, as well as in the hd space if fitting
an arima-hd model. Then the ar and ma parameters are transformed back into their normal
spaces to start the optimizations.

5.5.3 Functions in the Package

We will list the primary functions in the package, as well as what they are used for.

• arfima.sim - The simulation function. This function only simulates univariate time
series, and regressions, transfer function data, and the like, have to be added manually.
These capabilities may be added to a later version of the package.

• arfima - The fitting function. Can fit arima-hdmodels to data, by default in multi-start.
The type of hd process, as well as fitting only short-memory processes, are options. The
number of starts is also an option. The default is to have fd as the hd process as well
as 2 starting points for each variable, in a grid. This function can fit regression data and
transfer functions (see, e.g. Box et al. [2008b]). Allows the mean to be fit dynamically,
by the mean of the data or by a user provided theoretical mean. This function also
allows a choice of optimizers (to use in optim), although generally the default, BFGS, is
recommended, although this may cause some problems. A numeach option is available
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to allow the user how many starts the arma parameters get each, and how many starts
the hd parameters get. The default is numeach = c(2, 2) for considerations of speed:
the user may want to change this depending on the nature of the problem. Note also that
multiple cores of the computer can be used if available, through the cpus command.

• weed - While the arfima function has (as default) automatic ‘weeding’ out of modes that
are too close to each other (autoweed = TRUE), one may wish to call weed after the fit to
get rid of modes that seem too close to each other. That is, if we set autoweed = FALSE
since we want to see all modes, or if we believe there are too many modes, we can use
the weed function to eliminate modes. The parameters for the weed function are listed in
the documentation of the package: they can specify how far apart the modes have to be
to be weeded, which space the distance is calculated in (either the untransformed space,
the transformed PACF space, or both), and what p-norm to use (default is Euclidean with
p = 2).

• removeMode - Allows the user to manually remove modes.

• predict.arfima - For each mode found by arfima, predicts from the data using
MMSE forecasting and prediction standard errors (including with integer d and ds), as
well as (by default) a bootstrap forecast and prediction intervals based on the residuals
of that particular mode’s fit. Limiting standard deviations are also included if available:
this occurs when the model is writable in operator format, in particular the arfima class
of models.

• distance - Calculates the distance between modes with respect to a p−norm (default
has p = 2, Euclidean distance) in both the normal operator space and the transformed
“PACF” space, as well as the hd parameter.

• tacvf - Extracts the TACVFs of the fitted object

• tacfplot - Plots the TACFs of different fits to the same data

• Utility functions such as plot, print, fitted, residuals, and summary are available
for those objects that they make sense for

• Currently there are two data sets in the package: Series J from Box et al. [2008b] to
illustrate the use of transfer functions, and tmpyr, Central England temperature data from
1659 to 1976, as given by Manley [1974] and Parker et al. [1992].

• ARToPacf and PacfToAR - The former transforms ar/ma parameters into the PACF
space, while the latter transforms them back

Note that standard errors reported by the arfima function are calculated using the inverse of the
Hessian matrix, as is often done. Also, when there is only arfima or arma present, including
the seasonal cases, we have derived and implemented the expected information matrix to allow
for theoretical standard errors, seen in the summary.arfima function. The derivation of the
information matrix takes the form of the one in Li and McLeod [1986].
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The four ways of fitting the mean are as follows: dmean = TRUE, the default, dynamically fits
the mean, where dmean = FALSE fits the mean with the sample mean. Having dmean = b,
with b a number, fits the mean with that number, and having itmean = TRUE iteratively fits
the mean. Note that having dmean = TRUE and itmean = TRUE will produce a warning, and
the mean will be fit iteratively.

5.5.3.1 The Choice of Optimizer

The choice of optimizer can have a large impact on the modes that are found. We have as the
default the BroydenŰFletcherŰGoldfarbŰShanno optimizer, otherwise known as BFGS. It is a
quasi-Newton method - see, e.g. Wikipedia [2012a]. This method is generally recommended,
as the modes found by said optimizer are generally more accurate according to visualizations
we have performed. The one problem with BFGS is that the optimizer may become “trapped”
on a boundary of the space that is optimized over (and corresponding to a boundary of the
transformed space). The Nelder-Mead optimizer (see, e.g. Wikipedia [2012c]) does not usually
have this problem, but as it is an approximate simplex method, the results of the optimization
may not be exact. We have seen the Nelder-Mead optimizer find modes that are not apparent
in visualization, as well as not finding true modes.

5.5.4 Considering the Critique of a Mode

Before the tacfplot function and visualization of surfaces was implemented, we suspected
most, if not all, modes on boundaries of being spurious. One can now look at the now look at
TACF plots to partially critique how well a certain mode fits the data. The usefulness of this
will be seen especially in Chapter 6: similarities and differences in the modes can be seen by
looking at the TACF plots. It can also be seen under certain conditions that some modes of a
certain fit are spurious. There may also be confirmation that a mode is not spurious in a TACF
plot, even though the mode is on a boundary.

Of course there are other things to consider when trying to classify a mode as spurious. Often
one can try to visualize the surface in some manner as well, when this is possible: our routines
for two-dimensional viewing of each mode by each variable and log-likelihood are not well
developed and currently not part of the package.

5.6 Numerical Results

A number of numerical results, mostly comparing the arfima and fracdiff packages, are pre-
sented. We ran a function called fracdiffMM, based on the arfima package Note that fracdiff
was not changed in any way: it was simply called from the script.
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5.6.1 The fracdiffMM Script

The fracdiffMM script was written so the fitting function in fracdiff could be compared to the
fitting function in arfima. It uses fracdiff function with multiple starting values. We cannot
claim parity between the functions, since in the fracdiff function, only the arma parameters
can be set. However, generally in our numerical studies we have set the number of starts for
the arma parameters higher than we have for the arfima based fits.

We will now describe the script in more detail. It allows the user to set the values of p and q
for the arma structure, and a value we will call m for the number of starts in each dimension.
Note that in the code, m is called numeach as in arfima. If m = 1, fracdiff is called with
no starting values: that is, a regular fracdiff fit. If m > 1, there were mp+q + 1 starts for
the fracdiff function. The mp+q are the fits for the arma parameters: note that the starting
points were a grid on the PACF space and transformed into the operator space, as in arfima.
The additional 1 was a regular fracdiff fit, with no given starting parameters. This was done
in case the regular fracdiff call gave a better fit. After some experimentation, we realized
that sometimes this was the case. More often, however, at least one of the fracdiff fits with
a given starting parameter would be the same, if not better, in terms of likelihood.

Recall that fracdiff does not report a mean in its fitting function, since the mean is filtered out.
Since fracdiff fits always gave a lower log-likelihood when the sample mean was subtracted,
the fracdiffMM script took the parameters from fracdiff and optimized the mean with respect
to it.

The script was equipped with a weeding function, similar to the one in arfima. This was done
so as to better see what the fits were doing.

5.6.2 River Flow Data

There are seven data sets from Hipel and McLeod [1994]. They are all river flow data. They
were analyzed by arfima as well as the fracdiffMM script, for the highest AIC. The data sets
are mentioned by the code from Hipel and McLeod [1994] only.

Note that many of the starting points in fracdiffMM with higher p and q led to the fracdiff
optimizer failing. There were some cases where all starts failed for certain p and q combina-
tions. These optimization errors are especially important to note, in that fracdiff gave some
of these failed optimizations a higher log-likelihood than the ones that did not fail. Also, many
of these gave non-stationary parameter estimates.

The ar f as a subscript denotes values chosen by the arfima package. The f d is for the
fracdiffMM fits, although the AICs are with respect to arfima’s log-likelihood calculated
with optimal mean subtracted. Finally, the values in the f d? columns are those chosen by the
AIC built into package fracdiff; that is, with the log-likelihood as calculated by fracdiff. The
exact AICs were then calculated for these chosen parameters.

Except for the MSTOUIS and NEUMENAS data sets, there is a difference in order selected
between the three models. What is more important is that the GOTA, OGDEN, and RHINE
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Data set (p, q)ar f AICar f (p, q) f d AIC f d (p, q) f d? AIC f d?

DANUBE (1, 0) 1666.99 (0, 0) 1668.86 (0, 0) 1668.86
GOTA (0, 2) 1334.16 (0, 2) 1334.28 (2, 0) 1335.00

MINIMUM (3, 2) -531.73 (0, 0) -528.41 (0, 0) -528.41
MSTOUIS (1, 0) 1397.43 (1, 0) 1397.49 (1, 0) 1397.49

NEUMUNAS (1, 0) 1207.22 (1, 0) 1207.23 (1, 0) 1207.23
OGDEN (2, 3) 1177.74 (1, 0) 1178.71 (1, 2) 1180.33
RHINE (2, 2) 1532.67 (0, 1) 1532.96 (0, 0) 1533.78

Table 5.1: The AICs and order of the arma parameters chosen by the arfima function, the
fracdiffMM script as chosen by exact arfima AIC, and the fracdiffMM script as chosen by
the fracdiff AIC for seven riverflow data sets found in Hipel and McLeod [1994]

data sets, where the AIC chosen by fracdiff’s log-likelihood is different than the exact AIC for
fracdiff. This highlights our point that the fracdiff package does not follow the loglikelihood
surface closely, and is not likely to find multiple modes well. As an aside we note that arfima
performed at least slightly better than fracdiff in all cases.

It should be noted that when we subtract the sample mean from the series before evaluating the
fracdiff log-likelihoods, usually the arfima fits with dmean = FALSE have lower AICs by
a fair margin. The arfima AICs from the fits with no dynamic mean were fairly close to the
arfima ones in Table 5.1.

5.6.3 Temperature Data

The temperature data are from Manley [1974] and Parker et al. [1992]. The data are from cen-
tral England and best described by in http://www.metoffice.gov.uk/hadobs/hadcet/.
We will examine the data from 1659 to 1976 (n = 318): these are the years analyzed by
Hosking [1984] and Bhansali and Koboszka [2003].

Hosking [1984] suggested an ARFIMA(1, d f , 0) to fit these data, although the ARFIMA(1, d f , 1)
gives a lower AIC. Hosking also notes that an ARMA(1, 1) may be suitable. The data were
fit to the ARFIMA(1, d f , 1) for the purposes of this chapter, using the arfima package and the
fracdifMM script.

> library(arfima)
> library(fracdiff)
> source("MMfdandweed.R")
> data(tmpyr)
> fit.a <- arfima(tmpyr, order = c(1, 0, 1), numeach = c(3, 4), quiet = TRUE)
> fit.a

Number of modes: 3

http://www.metoffice.gov.uk/hadobs/hadcet/
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Call:
arfima(z = tmpyr, order = c(1, 0, 1), numeach = c(3, 4), quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2: SE.2: Coef.3:

phi(1) -0.748239 0.147232 0.987573 0.0186077 0.868822
theta(1) -0.646645 0.172729 0.18729 0.12563 0.646297
d.f 0.277833 0.050068 -0.626011 0.126001 -0.0322342
Fitted mean 9.15695 0.158699 9.15326 0.070261 9.151
logl 174.879 173.842 173.011
sigma^2 0.335358 0.337585 0.3398

SE.3:
phi(1) 0.0795705
theta(1) 0.194114
d.f 0.254969
Fitted mean 0.07298
logl
sigma^2
Starred fits are close to invertibility/stationarity boundaries

The arfima fit gives a trimodal log-likelihood surface. We note that the first (that is, the one
with the highest log-likelihood), corresponds roughly to the result found by Hosking [1984]
and Bhansali and Koboszka [2003]. The second mode is quite strongly anti-persistent in terms
of the fractional differencing parameter, and the third corresponds closely to the arma(1, 1)
found by Hosking.

Now we will look at a fracdiffMM fit.

> fit.fd.a <- fracdiffMM(tmpyr, p = 1, q = 1, numeach = 8)

Beginning fracdiff fits with 65 starting values.

> fit.fd.a <- weedfd(fit.fd.a)
> fit.fd.a

Number of modes: 1

Call:
fracdiffMM(z = tmpyr, p = 1, q = 1, numeach = 8)

Coefficients for fracdiff fits:
Coef.1: SE.1:

phi(1) 0.982476 NA
theta(1) 0.196839 NA
df -0.614804 NA
muHat 9.15083 0.0575599
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zbar 9.14346
logl.muHat 173.793
logl.zbar 173.785
sigma^2 0.334709
Starred fits are close to invertibility/stationarity boundaries
NAs occur when fracdiff cannot compute the correlation matrix

The fracdiffMM function on the full range of d f finds only the second mode. It also had some
sort of optimization difficulties, as the standard errors produced by fracdiff are all NAs. Note
the number of starting points: 65.

Therefore we decide to use the fracdiffMM script with only the long-memory range for d f .

> fit.fd.b <- fracdiffMM(tmpyr, p = 1, q = 1, numeach = 8, drange = c(0, 0.5))

Beginning fracdiff fits with 65 starting values.

> fit.fd.b <- weedfd(fit.fd.b)
> fit.fd.b

Number of modes: 2

Call:
fracdiffMM(z = tmpyr, p = 1, q = 1, numeach = 8, drange = c(0, 0.5))

Coefficients for fracdiff fits:
Coef.1: SE.1: Coef.2: SE.2:

phi(1) -0.778109 0.149456 0.96781 0.0456132
theta(1) -0.683728 0.125397 0.962403 0.0265489
df 0.27446 0.0480751 0.19541 0.0742388
muHat 9.15675 0.155862 9.1533 0.115241
zbar 9.14346 9.14346
logl.muHat 174.854 171.976
logl.zbar 174.85 171.972
sigma^2 0.33394 0.337928
Starred fits are close to invertibility/stationarity boundaries

When the range is restricted to long memory only, fracdiffMM finds the highest mode, as well
as a long memory mode that has almost redundant φ and θ. While it is possible that this is an
actual mode, our tests so far have yet to confirm this; we have tried the arfima function with
more starts, but no similar modes.

Once again note the importance of exact methods in computing the maximum likelihood esti-
mator. The surface of the log-likelihood seems to have completely changed when we restricted
the fractional differencing parameter to be long memory. One would hope that the full param-
eter range would be enough to find all modes on a surface. With approximate methods such as
fracdiff, this seems not to be the case.
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5.6.4 Simulation Studies

We ran nine different models with 25 simulations each and n = 1000. We then compared
parameter estimates as well as a variant of the relative likelihood (2.58) between fracdiff and
arfima. From the arfima package, we computed the fits with both dynamic mean estimation
and sample mean to compare the results.

To compare the parameter estimates, we computed both the root mean squared error (RMSE)
for each parameter. Recall the RMSE is defined as, for a given parameter η, with estimates η̂s,
s = 1, . . . , S = 25

RMS Eη =

√√ S∑
s=1

(η − η̂s)2

 ÷ S (5.14)

The variant of the relative likelihood that was used was the difference in log-likelihoods. This is
simply DLL(α) = D(α)/2 in terms of the deviance, or the log relative likelihood. We used this
as a measure for the reason that it is easier to visualize. We chose to do a slight alteration of the
ideas in Chapter 2 in this chapter: rather than observe the log relative likelihood at some true
or optimal value, we chose, for each data set, to subtract the the log-likelihood of the arfima
fit where the sample mean was used from the arfima dynamic mean fit and the fracdiffMM
fit.

That is, suppose `w̄ is the arfima highest log-likelihood for a particular fit with no dynamic
mean. Also, ` is the highest log-likelihood from either the dynamic mean arfima fit or a
fracdiffMM fit. Then we calculated DLL = ` − `w̄ for each data set, and plotted the results in
Figure 5.1.

Below is a table specifying the models.

Model φ θ d f

1 ∅ 0.94 0.42
2 (0.8, 0.19) 0.94 0.42
3 (0.8,−0.2) ∅ 0.3
4 (0.7, 0.29) (0.9, 0.09) 0
5 (0.7,−0.3) (0.4,−0.2) 0
6 (0.8,−0.2) ∅ -0.4
7 0.96 ∅ -0.6
8 0.96 0.4 -0.6
9 (0.96, 0.03) ∅ -0.6

Table 5.2: Model Specifications for the Simulation Studies

The models were chosen for specific reasons. Models 1, 4 and 7 were chosen as series gener-
ated from them were likely to be multimodal from our previous experience. Models 2, 8, and
9 were chosen as they were similar to said models (2 is similar to 1, while 8 and 9 are similar
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to 7). It was expected that the addition of extra parameters would either create modes or make
modes more difficult to find.

Models 3, 5, and 6 were chosen as they were very likely to have one mode; thus the fits from
arfima and fracdiff could also compete on a unimodal surface.

The simulations were performed in the following way: the 25 seeds were chosen randomly
(subject to an overriding seed, 4563, and sampled from the numbers 1 to 10000 by R), so
that each model had the same seeds generating the data. Then the arfima function and
fracdiffMM function from our script were run on the data.

The RMSEs from the mode with the highest log-likelihood were computed. Also, since we
knew the models, we did a search of all modes from each fit to see which mode was closest to
the true generating parameters. These are the rows that are starred.

The starred rows are the only way we can really tell if one of the modes found is close to the
generating parameters. We note that in a multimodal surface it is possible that the mode cor-
responding to the generative parameters is not the highest mode. This also leads to a criterion
for seeing if multiple modes are found by each package without looking at the individual fits:
if the unstarred RMSE is higher than the starred RMSE, then there are modes found with a
higher log-likelihood than the mode closest to the generative parameters. The only way for this
criterion to fail is for all of the series generated, the log-likelihood of the mode closest to the
generative parameters is always the higher one. This, while possible, is extremely unlikely.

The arfima fits had numeach = c(3, 4), while the fracdiffMM fits had 6 starts for the
arma parameters: we recall there is no way to select the number of starts for the fractional
differencing parameter without changing the fracdiff package itself. Note that the mean had
no difference on the fracdiffMM fits parameter estimation that we could control.

Method θ = 0.94 d f = 0.42
arfima(3,4), µ̂? 0.02 0.036
arfima(3,4), µ̂ 0.198 0.205
arfima(3,4), w̄? 0.033 0.036
arfima(3,4), w̄ 0.135 0.138
fracdiffMM?(6,1) 0.48 0.486
fracdiffMM(6,1) 0.48 0.486

Table 5.3: Model 1 RMSEs: it would seem that fracdiff is only finding one mode of this often
bimodal surface, while the arfima fits are finding both. While this shows that arfima does
much better, recall that we only have one parameter that fracdiff has multiple starts in.
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Method φ1 = 0.8 φ2 = 0.19 θ = 0.94 d f = 0.42
arfima(3,4), µ̂? 0.053 0.047 0.027 0.064
arfima(3,4), µ̂ 0.097 0.097 0.156 0.239
arfima(3,4), w̄? 0.078 0.047 0.093 0.056
arfima(3,4), w̄ 0.096 0.096 0.155 0.237
fracdiffMM?(6,1) 0.178 0.175 0.331 0.474
fracdiffMM(6,1) 0.178 0.175 0.331 0.474

Table 5.4: Model 2 RMSEs: another case where fracdiff has trouble finding multiple modes
when they exist; the arfima starred modes do very well

Method φ1 = 0.8 φ2 = −0.3 d f = 0.3
arfima(3,4), µ̂? 0.054 0.028 0.053
arfima(3,4), µ̂ 0.054 0.028 0.053
arfima(3,4), w̄? 0.054 0.028 0.053
arfima(3,4), w̄ 0.054 0.028 0.053
fracdiffMM?(6,1) 0.057 0.029 0.054
fracdiffMM(6,1) 0.057 0.029 0.054

Table 5.5: Model 3 RMSEs: we were sure that this surface was unimodal, which it seems to be
from this table. arfima has a slight advantage, but the results are comparable.

Method φ1 = 0.7 φ2 = 0.29 θ1 = 0.9 θ2 = 0.09 d f = 0
arfima(3,4), µ̂? 0.134 0.119 0.136 0.108 0.075
arfima(3,4), µ̂ 1.366 0.69 1.608 0.447 0.627
arfima(3,4), w̄? 0.197 0.158 0.199 0.176 0.16
arfima(3,4), w̄ 1.377 0.732 1.55 0.489 0.585
fracdiffMM?(6,1) 0.642 0.415 0.778 0.322 0.25
fracdiffMM(6,1) 0.967 0.462 1.062 0.326 0.253

Table 5.6: Model 4 RMSEs: fracdiff finally seems to find multple modes: however, as we see
from Figure 5.1 that the high modes found by arfima are superior; we also see superiority in
the starred fits
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Method φ1 = 0.7 φ2 = −0.3 θ1 = 0.4 θ2 = −0.2 d f = 0
arfima(3,4), µ̂? 0.245 0.115 0.269 0.134 0.213
arfima(3,4), µ̂ 0.623 0.434 0.797 0.141 0.605
arfima(3,4), w̄? 0.291 0.145 0.238 0.132 0.212
arfima(3,4), w̄ 0.637 0.438 0.793 0.142 0.545
fracdiffMM?(6,1) 0.478 0.195 0.392 0.176 0.201
fracdiffMM(6,1) 0.631 0.217 0.533 0.15 0.231

Table 5.7: Model 5 RMSEs: we see the same pattern as Table 5.6; arfima does better on the
whole, although not by as much. We had thought this set of parameters to be unimodal; either
we were wrong, or the overfitting with d f induced modes: see the text.

Method φ1 = 0.8 φ2 = −0.2 d f = −0.4
arfima(3,4), µ̂? 0.053 0.028 0.052
arfima(3,4), µ̂ 0.053 0.028 0.052
arfima(3,4), w̄? 0.052 0.028 0.051
arfima(3,4), w̄ 0.052 0.028 0.051
fracdiffMM?(6,1) 0.052 0.028 0.052
fracdiffMM(6,1) 0.052 0.028 0.052

Table 5.8: Model 6 RMSEs: we were sure that this surface was unimodal, which it seems to be
from this table. The results are comparable.

Method φ = 0.96 d f = -0.6
arfima(3,4), µ̂? 0.685 0.698
arfima(3,4), µ̂ 0.699 0.715
arfima(3,4), w̄? 0.009 0.024
arfima(3,4), w̄ 0.14 0.155
fracdiffMM?(6,1) 0.218 0.224
fracdiffMM(6,1) 0.218 0.224

Table 5.9: Model 7 RMSEs: this set of parameters was known to us to generally give a bimodal
surface. We note that dynamic mean estimation did very poorly here, which we will discuss in
Chapter 6. The mean subtracted version did much better. fracdiff seemingly only found one
mode.
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Method φ = 0.96 θ = 0.4 d f = −0.6
arfima(3,4), µ̂? 0.153 0.095 0.191
arfima(3,4), µ̂ 0.153 0.095 0.191
arfima(3,4), w̄? 0.017 0.106 0.127
arfima(3,4), w̄ 0.026 0.108 0.141
fracdiffMM?(6,1) 0.029 0.12 0.155
fracdiffMM(6,1) 0.029 0.12 0.155

Table 5.10: Model 8 RMSEs: this set of parameters, thought to possibly lead to bimodal
surfaces, seems to lead to unimodal surfaces. We checked each fit for this particular case. The
changes in the arfima estimates come from spurious modes on boundaries, which is sometimes
a problem, especially when a task is automated. Surprisingly, the modes were only induced by
subtracting the sample mean rather than dynamically estimating it. The latter did a poor job,
while the former did a comparable job to fracdiff. See Chapter 6 for more on mode induction.

Method φ1 = 0.96 φ2 = 0.03 d f = −0.6
arfima(3,4), µ̂? 0.052 0.049 0.046
arfima(3,4), µ̂ 0.06 0.056 0.049
arfima(3,4), w̄? 0.056 0.052 0.051
arfima(3,4), w̄ 0.06 0.056 0.049
fracdiffMM?(6,1) 0.171 0.053 0.172
fracdiffMM(6,1) 0.171 0.053 0.172

Table 5.11: Model 9 RMSEs: a set of parameters leading to a unimodal surface we thought
was possibly bimodal; once again, arfima has a small amount of mode induction, although this
time it does much better than fracdiff



82 Chapter 5. The arfima Package

When considering all models, we see that arfima most often does better than fracdiff, although
there are a few models where they are comparable. These particular models are Models 3,
6, and 8 in Tables 5.5, 5.8, and 5.10 respectively. In Models 3 and 6, all fitting methods
performed about the same, which was actually what we expected: we did not see much chance
for multimodality in these models. In Model 8 we note that arfima dynamic mean estimation
fits were much worse than anything fracdiff produced. The sample mean fits were comparable,
however.

There are multiple modes found by the fits based on package fracdiff, although only in Models
4 and 5, in Tables 5.6 and 5.7. However, the modes found are invariably inferior in that their
starred RMSEs do not compare with the RMSEs found by those from arfima, as well as from
the differences in log-likelihoods shown in Figure 5.1. In these two models, there can be quite
a few optimization failures on fracdiff’s part. We note that since these models are overfit by
arfima(2, d f , 2) models rather than the arma fits that they are, we could have used the option
lmodel = “n” in arfima to model these. The whole point of these two models was to see
how the two packages compared when overfitting, however.

We were surprised by the apparent multimodality in Model 5, as it was unexpected. While
there were a fair number of modes “trapped” on the boundaries, and some modes that would
have been eliminated with a call to weed with a larger radius, as it turned out, there was some
real multimodality there. We suspect that at least part of this was the inclusion of the fractional
differencing parameter in the fit. Note that the highest mode, even if on a boundary, is unlikely
to be spurious, while the mode closest to the true parameters will usually only be close to a
boundary if the true values are.

It is also certain that arfima sometimes got caught on the boundary. However, this is not
likely to give a higher likelihood. Note that this is a completely different problem than the
optimization failures associated with fracdiff: those can sometimes have a higher reported
log-likelihood as computed by the package than those optimizations that do not fail.

There are three take away messages from the RMSEs. One is that on most, but not all, fairly
simple log-likelihood surfaces, fracdiff is fairly comparable to arfima. Recall how poorly
fracdiff did on model 1 in Table 5.3. The second is that dynamic mean estimation in arfima
should be used with caution: for example, in models 7 and 8, dynamic mean estimation caused
the “hiding” of one mode from the arfima function. It is also possible we did not do these
fits with enough starting points. We note again that in some cases, dynamic mean estimation
induces multimodality where there should be none. The third is that approximate maximum
likelihood, such as is done by fracdiff, can be very misleading. A multimodal surface may not
be recognized, and the mode or modes found by such methods may be completely incorrect.

Looking at Table 5.12, we see that, especially for complicated models, the multistart fits can
be very slow. This is true for fracdiffMM fits as well as arfima fits. It is a given that any fit
based on fracdiff is going to be faster than a fit based on arfima. However, we note that the
cpus option in the arfima command will mitigate this. We also note that unfortunately, due to
the curse of dimensionality, that usually more complex model require higher numeach options
to find all modes of a loglikelihood surface.

Looking at Figure 5.1, we see that while arfima optimized with w̄n subtracted first may do
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Figure 5.1: The differences in log-likelihoods with respect to arfima w̄; this figure shows that
for the most part arfima with sample mean subtracted does better in terms of exact likelihood
than fracdiff and sometime itself with dynamic mean estimation. Note that either one or the
other does as well or better than fracdiff.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
arfima(3,4), µ̂ 64.31 1.1e+04 744.2 1.6e+05 1.4e+05 770.1 63.51 744.5 710.5
arfima(3,4), w̄ 46.43 7574 502.9 1e+05 9.5e+04 452.8 42.98 480.9 480.5
arfima(3,4), 0 52.07 7240 482.8 1e+05 9.6e+04 451.8 43.99 480.4 481.4

fracdiffMM(6,1) 0.612 892.4 24.57 3.5e+04 3.5e+04 16.66 0.572 20.54 19.94

Table 5.12: A Timings Table for the Different Fitting Methods by Model. Note that fracdiff
does dominate

much better than the mean being dynamically estimated (although once again, we may need
more starting points), both of the arfima fits do better than the fracdiffMM fits on the whole.
Note that we have also looked at regular fracdiff fits, which tend to do worse than the
fracdiffMM fits in terms of log-likelihood.

5.7 Other Examples of Using arfima

We leave comparisons of fracdiff and arfima now, and look at other things that the arfima
package can do. To give an example of everything would be superfluous, so we limit ourselves
to three examples. We will look to the TACVF plot, Series J from Box et al. [2008b], and
a prediction example. We note we could extract residuals and regression residuals from the
Series J example; however, we will keep to simple examples.

5.7.1 Looking at Plots of the TACVF

As was mentioned in §5.5.4, a TACVF or TACF plot can show different things about a fit.
Suppose, for example, we have a data set called M. We would like to fit it with an arfi model.

> M <- as.ts(read.csv('M.csv', header = FALSE))
> fitM <- arfima(M, order = c(1, 0, 0), numeach = c(4, 3), dmean = FALSE, quiet = TRUE)
> fitM

Number of modes: 2

Call:
arfima(z = M, order = c(1, 0, 0), numeach = c(4, 3), dmean = FALSE, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2: SE.2:

phi(1) 0.932142 0.0656451 0.250765 0.21206
d.f -0.639208 0.14273 0.0890651 0.173688
zbar 0.0045379 0.0045379
logl 5.42952 5.20584
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Figure 5.2: The TACVF plot of the toy data set M, fit as arfi, where one mode (mode 1) is
anti-persistent with φ ' 0.93 and d f ' −0.64, and the other (mode 2) is persistent with φ ' 0.25
and d f ' 0.09

sigma^2 0.908822 0.917966
Starred fits are close to invertibility/stationarity boundaries

The mode with the higher log-likelihood is anti-persistent, while the mode with the higher log-
likelihood is persistent. This will be explained in Chapter 6: however, lacking that knowledge,
we may want to see what is going on.

> plot(tacf(fitM), maxlag = 50)

Since the TACVFs in Figure 5.2 do not look very dissimilar, it does not look like the modes
are incorrect. This will be discussed in more detail in Chapter 6.

Suppose also that there were data called N that we thought might be bimodal under arfi. We
check with
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> N <- as.ts(read.csv('N.csv', header = FALSE))
> fitN <- arfima(N, order = c(1, 0, 0), dmean = FALSE, quiet = TRUE)
> fitN

Number of modes: 2

Call:
arfima(z = N, order = c(1, 0, 0), dmean = FALSE, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2*: SE.2*:

phi(1) 0.982523 0.00704204 0.924918 0.00782083
d.f 0.44569 0.0286124 0.499981 6.32458e-07
zbar -185.181 -185.181
logl 4.49635 -22.028
sigma^2 0.983474 1.0311
Starred fits are close to invertibility/stationarity boundaries

The second mode is very close to the boundary for d f . Therefore, we investigate the TACVF
plot.

> plot(tacvf(fitN), maxlag = 50)

In Figure 5.3 we can see for certain that mode 2 is spurious. Once again we will address this
issue in Chapter 6.

We simulated both M and N as arfi. M had n = 100, φ = 0.98 and d f = −0.69. N had
n = 1000, φ = 0.98, and d f = 0.45.

5.7.2 Series J

We will look at Series J, one of the data sets in the package, taken from Box et al. [2008b].
It is analysed using transfer functions (also known as dynamic regression), and as such no
function in fracdiff can fit the two series. We will compare our results to those found in Box
et al. [2008b]. We note that the arfima package does allow differencing in transfer function
modelling, as well as in ordinary regression; however, we will not pursue such notions here.

First, however, we must present the model. A transfer function is a model of the form

Yt =

k∑
i=1

δ−1
i (B)ωi(B)Bbi Xi,t (5.15)

where B is the backshift operator, δi(z) = 1−δi,1z− . . .−δi,riz
ri , ωi(z) = ωi,0−ωi,1z− . . .−ωi,siz

si ,
and bi ∈ Z≥0. We note that this is somewhat similar to regular regression. There is no error
term, but if δi(z) = 1, ωi(z) = βi, and bi = 0 for all i, we would have something akin to
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Figure 5.3: The TACVF plot of the toy data set N, fit as arfi with two very persistent modes:
the first having φ ' 0.98 and d f ' 0.45, and the second having φ ' 0.92 and d f ' 0.5. It is
obvious that mode 2 is spurious, as it hardly decays; we note that this “mode” has the optimizer
trapped on the upper boundary for d f .



88 Chapter 5. The arfima Package

a regression problem. Note that the Xis have to be zero-mean, and so we must subtract the
sample mean before the fit.

If we let k = 1 for ease of notation, we have

Yt = δ−1(B) (µ + ω(B)Xt) (5.16)
⇒ δ(B)Yt = µ + ω(B)Xt (5.17)

looks somewhat like an arma equation. We note that this is deterministic, which does not
often reflect reality. We allow arma-hd noise to be present also, so that

Yt = δ−1(B)ω(B)Xt + Nt (5.18)

with usually Nt ∼ arma, although in our package it is possible to have Nt be any type of
process it can estimate. If wt is white noise or hyperbolic decay, we have that

φ(B)Nt = θ(B)wt (5.19)

as usual.

Therefore, to evaluate the log-likelihood of a transfer function at a given set of parameters, we
have a general procedure to follow: for each t, calculate Yt:

δ(B)Yt = ω(B)Xt (5.20)

and set Nt = Yt − Yt. Then we use, for example, the Durbin-Levinson recursion to evaluate
the log-likelihood of (5.19). To fit a transfer function, assuming we know the order of the
parameters, we pass this process to the optimizer. Note that the mean of the Xts must be zero,
and thus the mean of the Nt is zero by definition.

The k > 1 case is a somewhat more complicated, but does follow relatively easily.

Our example follows. Note that the mean is estimated dynamically, and fit an ar(2) model
with r = s = 2 and b = 3.

> data(SeriesJ)
> attach(SeriesJ)
> fitTF.a <- arfima(YJ, order= c(2, 0, 0), xreg = XJ, reglist = list(regpar
+ = c(2, 2, 3)), lmodel = "n", quiet = TRUE)

note: transfer functions do not work with dynamic mean: setting dmean to FALSE

Please note for transfer functions the means of each X variable

must be 0: subtracting mean from each X

> fitTF.a
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Number of modes: 1

Call:
arfima(z = YJ, order = c(2, 0, 0), lmodel = "n", xreg = XJ,

reglist = list(regpar = c(2, 2, 3)), quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1:

phi(1) 1.52835 0.0463078
phi(2) -0.630086 0.0489888
omega(0).X1 -0.532506 0.199447
omega(1).X1 0.370941 0.140933
omega(2).X1 0.509586 0.0736911
delta(1).X1 0.564777 0.145028
delta(2).X1 -0.0110946 0.148634
zbar 53.5091
logl 424.311
sigma^2 0.056657
phi_p(1) 0.93759
phi_p(2) -0.630086
Starred fits are close to invertibility/stationarity boundaries

We note that the result is fairly comparable to Box et al. [2008b]. Dynamic mean estimation
has not been implemented for transfer functions, as it does not make much sense, nor does the
iteratively fitted mean for any type of regression for the same reason.

Making reference to Box et al. [2008b], it is suggested to set r = 1 since δ2 = delta(2).X1 is
much smaller than its standard error. This fit is below. Note that the ar parameters in fitTF.a
and fitTF.b are very close.

> fitTF.b <- arfima(YJ, order= c(2, 0, 0), xreg = XJ, reglist = list(regpar
+ = c(1, 2, 3)), lmodel = "n", dmean = FALSE, quiet = TRUE)

Please note for transfer functions the means of each X variable must be 0: subtracting mean from each X

> fitTF.b

Number of modes: 1

Call:
arfima(z = YJ, order = c(2, 0, 0), dmean = FALSE, lmodel = "n", xreg = XJ, reglist = list(regpar = c(1,

2, 3)), quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1:
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phi(1) 1.52827 0.0462889
phi(2) -0.630126 0.0489617
omega(0).X1 -0.531872 0.0388622
omega(1).X1 0.379109 0.0732022
omega(2).X1 0.517518 0.100915
delta(1).X1 0.549398 0.107704
zbar 53.5091
logl 424.308
sigma^2 0.0566584
phi_p(1) 0.937517
phi_p(2) -0.630126
Starred fits are close to invertibility/stationarity boundaries

> detach(SeriesJ)

When we fit Series J with fd instead of white noise, we find that a multimodal surface is
induced. In particular, modes are only found on the boundaries. This points to the need for
more experimentation with transfer function data and hyperbolic decay noise.

5.7.3 A Prediction Example

There are some functions in our package only touched on in this chapter. However, we thought
it would not be complete without a prediction example. We will illustrate the use of the new
algorithm for prediction variances.

We will have a multimodal integrated series as our example, and show the differences between
the limiting (standard) error variances and the exact error variances. We will see that the last
mode is spurious since it is nearly non- identifiable and close to boundaries, and thus we remove
it. The below is the fit.

> set.seed(34564)
> sim <- arfima.sim(1000, model = list(phi = 0.95, dfrac = -0.8, theta = 0.4, dint = 1))
> fit <- arfima(sim, order = c(1, 1, 1), numeach = c(3, 3), dmean = FALSE, quiet = TRUE)
> fit

Number of modes: 3

Call:
arfima(z = sim, order = c(1, 1, 1), numeach = c(3, 3), dmean = FALSE, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2: SE.2: Coef.3*:

phi(1) 0.914579 0.0321209 0.0539853 0.158067 -0.999049
theta(1) 0.60054 0.135189 0.241601 0.191687 -0.998438
d.f -0.550523 0.173471 -0.0284763 0.0643638 -0.0729256
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zbar -0.0103921 -0.0103921 -0.0103921
logl -25.2126 -29.4844 -40.0282
sigma^2 1.05367 1.06394 1.08659

SE.3*:
phi(1) 6.32457e-07
theta(1) 6.32457e-07
d.f 0.0275752
zbar
logl
sigma^2
Starred fits are close to invertibility/stationarity boundaries

> fit <- removeMode(fit, 3)
> pred <- predict(fit, n.ahead = 10, seed = 3456)
> pred

$`Mode 1`
$`Mode 1`$`Forecasts and SDs`

1 2 3 4 5
Forecasts -11.09469 -11.11273 -11.13722 -11.15676 -11.17034
Exact SD 1.02663 1.29185 1.50636 1.69681 1.87007
Limiting SD 1.02648 1.29147 1.50570 1.69582 1.86870

6 7 8 9 10
Forecasts -11.17861 -11.18253 -11.18296 -11.18068 -11.17632
Exact SD 2.02910 2.17565 2.31102 2.43628 2.55234
Limiting SD 2.02731 2.17341 2.30831 2.43306 2.54859

$`Mode 1`$`Bootstrap Replicates`
[1] 1000

$`Mode 1`$`Bootstrap Predictions and Intervals`
1 2 3 4 5

Upper 95% -9.36462 -8.60604 -8.06558 -7.86305 -7.44342
Prediction (Mean) -11.17990 -11.24376 -11.20989 -11.22769 -11.25877
Lower 95% -13.42202 -13.87088 -14.26490 -14.65213 -15.01275

6 7 8 9 10
Upper 95% -7.06662 -6.65929 -6.40752 -6.3401 -6.20256
Prediction (Mean) -11.23925 -11.23293 -11.23498 -11.2627 -11.20637
Lower 95% -15.33750 -15.68663 -15.97977 -16.1908 -16.38041

$`Mode 2`
$`Mode 2`$`Forecasts and SDs`

1 2 3 4 5
Forecasts -11.07621 -11.06844 -11.07082 -11.07510 -11.08043
Exact SD 1.03148 1.31063 1.52999 1.71844 1.88608
Limiting SD 1.03147 1.31063 1.52999 1.71844 1.88607
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6 7 8 9 10
Forecasts -11.08651 -11.09316 -11.10025 -11.10769 -11.11542
Exact SD 2.03842 2.17891 2.30988 2.43299 2.54947
Limiting SD 2.03841 2.17890 2.30988 2.43298 2.54946

$`Mode 2`$`Bootstrap Replicates`
[1] 1000

$`Mode 2`$`Bootstrap Predictions and Intervals`
1 2 3 4 5

Upper 95% -9.35358 -8.61712 -8.0893 -7.93631 -7.45889
Prediction (Mean) -11.18926 -11.26570 -11.2422 -11.26738 -11.31004
Lower 95% -13.34294 -13.95533 -14.3785 -14.64938 -15.06371

6 7 8 9 10
Upper 95% -6.96989 -6.70237 -6.64643 -6.67434 -6.51856
Prediction (Mean) -11.29711 -11.29943 -11.30841 -11.34946 -11.29920
Lower 95% -15.26453 -15.64839 -15.91643 -16.03681 -16.31518

We see that in this case there is very little difference between exact and approximate standard
deviations in this case. We look at the plots of the different predictions below in Figure 5.4.

> plot(pred)

5.8 On Multimodality in arfimaModels

We have noted that in arfimamodels, there appears to be multimodality. We are certain of this
in the arfi and fima cases: we have visualized these cases in Mathematica, one of the topics
covered in Chapter 6. We are also quite certain of this in the case where the arma structure
is more complex: since we are working with exact maximum likelihood, and the multimodal
structure of the log-likelihood surface is apparent in the output of our package, we can be sure
that multiple modes exist. We have seen this with white noise driving the processes as well:
that is, multimodality seems to occur fairly naturally in complex enough arma models.

For the purposes of this section, we have that we subtract the sample mean off of the series
before we observe the nature of the multimodal surface. As we have displayed in this chapter
and will discuss more in Chapter 6, the dynamic estimation of the mean can induce or mask
modes. In said chapter, we will also note that not subtracting the mean can mask modes as
well, and induce modes on the boundaries.

When we delve deeper into the multimodal structure of an arfima or arma model’s log-
likelihood, we have noticed that the ma(∞) coefficients for each mode are usually similar to
each other. We believe that this is the most apparent cause for multimodality: since the param-
eters are alike at each mode, necessarily we have that the log-likelihood will act in a similar
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Figure 5.4: The plots of the predictions associated with fit, a bimodal log-likelihood; this
figure shows the modes for this particular fit are similar enough to give similar predictions
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way and rise to a maximum at these points. Of course, since the nature of the neighbourhood
at each mode can be quite different, there will be differences.

However, we have also noticed multimodal likelihood surfaces for arma models driven by
the other types of hd noise. Since these models cannot be written in operator notation and
thus cannot have ma(∞) expansions, we note that there is an another underlying cause for
multimodal log-likelihood surfaces. We hypothesize in Chapter 6 that this is similarity between
TACVFs of modes on the surface.

5.9 Conclusions and Future Work

We have demonstrated the efficacy of our arfima package for R. In particular, we have demon-
strated that exact maximum likelihood clearly outperforms approximate maximum likelihood
as is done by fracdiff. Not only are our exact methods easier to extend into seasonal data,
transfer functions, and time series regression to name but a few, we have that the likelihood
surface is very badly approximated in some ways by fracdiff.

For future work, we intend on extending our package to taking into account missing data via
the EM algorithm, as well as looking more deeply into transfer functions and long memory,
likely through simulation. We would possibly like to implement basic visualization in R. We
have a Mathematica package that does do visualizations, which will be presented along with
our suppositions on multimodality, in Chapter 6.



Chapter 6

Visualizations and Multimodality

6.1 Introduction

In Chapter 5, we took the existence of multiple modes on various log-likelihood surfaces as
a matter of course. In this chapter, we discuss and present the visualization of log-likelihood
surfaces of simple models, to show true multimodal surfaces, as well as discussing our sup-
positions on the causes of multimodality. There is a companion Mathematica package, called
simpleVis, to this chapter for visualizations.

The models we will consider for visualizations have either an ar or ma (i.e. short memory)
component, as well as a hd component. When we talk about multimodality, we will discuss
these, as well as a little on more general cases.

It must be made clear that when we talk about mode induction on boundaries later in this
chapter, this is partly a problem with the BFGS optimizer. The Nelder-Mead optimizer in R
does not get caught on the boundaries as often, since it is a simplex-based method. However,
we were unsatisfied with the Nelder-Mead optimizer in most cases, since not only did it miss
modes verified by visualizations, it induced modes in the middle of the surface that were not
there.

6.1.1 A Discussion of Mean Estimation and Visualizations

We restrict ourselves to either letting the surface be defined by the true mean, which we can
talk about if we simulate, or by the mean of the series. We note that in some cases, the surfaces
with the true mean and the mean of the series can be quite different. For visualizations, we
restrict ourselves to no dynamic mean estimation.

We restrict ourselves in this way for multiple reasons. The first is that, as mentioned in §5.5.1,
the likelihood structure of the series changes when we subtract a mean. This is gives rise to two
problems. The first is technical: we would have to visualize two surfaces, for example, if we
had two modes. The second is more serious: since we dynamically estimate the mean, we have

95
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that technically we should be subtracting a different mean for every single point on the surface.
We can see this by noting that for any given set of parameter values that generate the likelihood,
we can optimize to find the best mean for that set of parameter values. This is, in fact what
we do in the fracdiffMM script since fracdiff does not report a mean. We discuss this in
Section 5.6.1. However, the change in mean seems to have no difference on the parameters of
a fit involving the fracdiff package, since it is filtered out. It remains a problem for the arfima
package. We discuss this in more detail in Chapter 5. As we discuss in said chapter and later
in this one, the dynamic estimation of the mean can induce or mask multimodal structure on
a likelihood surface. We have not investigated the iteratively fitted mean, although we suspect
that such estimation has similar problems to dynamic mean estimation.

6.2 Visualizing a Log-Likelihood Surface

There are several reasons we keep the visualizations to one short memory component and one
hd component. The first is that the log-likelihood surfaces with this type of model, combined
with the correct (generating) parameters or data structure, can give rise to a multimodal surface,
usually bimodal. We have seen this in simulations and with real data. While more complex, or
at least less parsimonious, model surfaces also seem to exhibit multimodalilty, they are harder
to visualize. We believe that the only two parameter (excluding the mean) model that is capable
of a multimodal likelihood are models of this sort. This will be discussed in §6.3.

6.2.1 Technical Considerations

There are several technical considerations to viewing the log-likelihood surface of an arma-
hd model fit to data. The first we will discuss is computation time. As the parameter space
becomes larger and invariably more complex, the computation of any grid or surface will take
exponentially more time. This can be slightly mitigated by computing maximum and minimum
value in each dimension and only plotting in the hyperrectangle containing all of the mode’s
points for a given surface. If there were enough modes, we could compute the convex hull
containing all mode points: this space would be smaller still. Another option would be to only
compute the surface local to the modes. In cases of higher dimensionality, this is likely the best
approach.

In a larger space, if we chose the last option, we would also have to compute a lattice of points
around each mode in all dimensions. For viewing purposes, we would have to vary one or two
parameters (for a 2- or 3D plot respectively) and hold all of the others fixed for each mode.
This would be relatively cumbersome. Also, due to the nature of the PACF space as described
in §5.5.2, the surface with untransformed coefficients would be relatively messy to view. It
is true we could view the modes in the PACF space: however, we would have to keep the
transformation in mind.
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6.2.2 Extracting the Fitted Model from R

We have written the R script extractFits to extract the fitted values and the series for relevant
arfima fits. This script checks that the series is the same, as well as extracting information
about which mean was used and what hd-type parameter was estimated.

6.2.3 On the simpleVis Package

We introduce the simpleVis package. It takes output from the arfima package with one com-
mon short memory parameter and any or all of the hd parameters. We do this so we can change
the model type in mid-view to view where the fitted model would be in the other parameter
types with the asymptotic relationships.

Note that the simpleVis package still needs some work. While it is fully functional, the inter-
face is still in its early stages.

We will now briefly outline the functions of the package.

• Importer - Imports information from the file created by the extractFits script. Also
outputs information on the imported fits, such as the means, the number of modes asso-
ciated with each fit, the range of the parameters (φ or θ and the hd parameters in terms
of α), and the index of each fit.

• SelectFit - Allows the user to select the fit used as the underlying model. That is,
which type of hd process is used, which mean is subtracted, and thus which surface will
be plotted.

• AddFit - Allows the user to add fit information from the other fits to see where the modes
of these additional fits would be on the currently selected surface. Will output the colour
used to plot the points of this fit.

• ShowLL - Shows the log-likelihood surface with the fits selected.

• ChangeOffsets - Allows the user to change the offsets, that is the value subtracted from
the lowest mode’s log-likelihood value and the one added to the highest mode’s value to
ease the viewing of the plot

• Replot - Completely replots the log-likelihood with all the fits added and the current
offsets. Warning: this operation takes more time than the ShowLL function and thus it is
recommended that the user make sure they are satisfied with the information currently in
the fit.
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6.3 Suppositions on Multimodal Behaviour

We must stress that the ideas in this section are hypotheses only: they are suppositions based on
tests we have run and empirical evidence we have accumulated. While there is some theoretical
basis for our beliefs, said basis is not complete. More research needs to be done to understand
what is going on.

We will restrict ourselves to the single short memory parameter driven by hd noise for most of
this section. As we have mentioned, these seem to be the most parsimonious models wherein
a multimodal log-likelihood surface occurs. With large enough n these surfaces tend to be
bimodal only; also, with large enough n, we have noticed that one mode has anti-persistent
parameters, while the other has persistent parameters. This is not always the case: with small
enough n, we can have two anti-persistent modes. Since we are simulating, however, we can
keep the same seed and model, but increase n: as we do this, invariably the less anti-persistent
mode (that is, with the smaller α) becomes persistent. Therefore, for the rest of this section,
we will have one mode as persistent and the other as anti-persistent.

However, we have made mention of the fact previously that the TACVFs of the two modes are
often quite similar. This is most apparent in the ma-hd case: we will look at a fima model
below. The TACVFs up to lag 50 are plotted in Figure 6.1.

> library(arfima)
> set.seed(45345)
> seed <- sample(1:3468356, 1)
> n <- 1000
> set.seed(seed)
> sim1 <- arfima.sim(n, model = list(theta = 0.95, dfrac = 0.42))
> fit1 <- arfima(sim1, order= c(0, 0, 1), dmean = FALSE, quiet = TRUE)
> fit1

Number of modes: 2

Call:
arfima(z = sim1, order = c(0, 0, 1), dmean = FALSE, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2: SE.2:

theta(1) 0.958185 0.0119221 0.256312 0.0620499
d.f 0.444102 0.032259 -0.254657 0.0445759
zbar 0.0170442 0.0170442
logl -5.92563 -12.9146
sigma^2 1.0116 1.02747
Starred fits are close to invertibility/stationarity boundaries

> plot(tacvf(fit1), maxlag = 50)

We see that both of the TACVFs in Figure 6.1 look anti-persistent. Meanwhile, if we look at



6.3. Suppositions on Multimodal Behaviour 99

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50

−
0.

5
0.

0
0.

5
1.

0

The tacvfs of fit1

lag

ta
cv

f

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Mode 1
Mode 2

Figure 6.1: The TACVF plot of fit1, a fima model fitted to simulated data, with two modes,
one of which has persistent parameters and one of which has anti-persistent parameters, al-
though the TACVFs look very similar. Mode 1 is the persistent mode, with θ ' 0.96 and
d f ' 0.44 while mode 2 has θ ' 0.26 and d f ' −0.25.
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Chapter 5, in particular at the Figure 5.2, we notice that the two TACVFs look similar also.
This brings us to our supposition on the existence of bimodal surfaces for this type of models:
that of apparent persistence or anti-persistence.

6.3.1 On Apparent Persistence or Anti-persistence in Simple Models

We clarify what we mean by apparent persistence and anti-persistence. We know that for any
truly persistent process, which includes ones induced by the fitted values of a persistent mode,
the sum of the autocovariances will be infinite. Likewise, for any anti-persistent process, we
will have said sum equalling zero: the sum of the lag one to infinity autocovariances will be
equal to negative one half of the lag zero autocovariance. For any finite series and thus for
any corresponding TACVF of the correct length, any persistent process will never have its
autocovariance sum go to infinity as long as the process is stationary. However, there are more
than one way for said sum to become large. In a similar manner, an anti-persistent mode’s
parameters will likely not give rise to an exact zero a for TACVF of the correct length. In this
case as well, there are more than one way for a TACVF to be small.

Since we restrict ourselves to a single short memory parameter for now, we note that we can
write a closed form expression for each of the models driven by any hd noise. The ma case is
simple. With y ∼ ma(1) and x ∼ hd, w ∼ ma-hd has, ∀k ∈ Z

γw(k) =

1∑
i=−1

γy(i)γx(k − i) (6.1)

= (1 + θ2)γx(k) − θ (γx(k − 1) + γx(k + 1)) (6.2)

We note that the autocovariance function of the ar-hd process is much more difficult to derive.
With y ∼ ar(1) and x ∼ hd, w ∼ ar-hd has, ∀k ∈ Z

γw(k) =

∞∑
i=−∞

γy(i)γx(k − i) (6.3)

=

∞∑
i=−∞

φ|i|

1 − φ2γx(k − i) (6.4)

=
1

(1 − φ)(1 + φ)

∞∑
i=−∞

φ|i|γx(k − i) (6.5)

which seems intractable. However, we examine Box et al. [2008b], pages 430-431, to derive
the expression of the autocorrelation function of an arfi model:

ρw(k) =
ρx(k)
1 − φ

2F1

(
1, d f − k; 1 − k − d f ; φ

)
+ 2F1

(
1, k + d f ; 1 + k − d f ; φ

)
− 1

2F1

(
1, d f + 1; 1 − d f ; φ

) (6.6)

where now x ∼ fd only. The 2F1 denotes the hypergeometric function, which is defined in
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Chapter 2. We have the lag 0 autocovariance being

γw(0) =
σ2

aγw(1 − 2d f )
γw(1 − d f )2

2F1

(
1 + d f , 1; 1 − d f ; φ

)
1 + φ

(6.7)

We note that we can get other expressions using Mathematica: specifically, for each lag for a
pla or fgn process. However, there does not seem to be an explicit closed form for any given
lag for either process type.

We note that while for each n there are two sets of ranges for the parameters for a bimodal
surface to occur: one will always be with the short memory parameter close to 1, while the hd
parameter can be in quite a large area, depending on which type of noise drives the process. We
know the autocovariance structures of the hd parameters can be quite different, although the
fitted value autocovariance structures (when mixed with short memory) often appear similar.
The other mode’s parameters, however, can fluctuate wildly.

6.3.1.1 Apparent Anti-persistence and the ma-Based Models

As we have stated, given sufficient n, there is always an anti-persistent mode and a persistent
mode. In the ma-based models with a bimodal log-likelihood surface, the persistent mode
looks anti-persistent, as we saw in Figure 6.1. There is a very specific reason for this: for the n
given, θ is close enough to 1 for the sum of the TACVFs to be small. Recalling (6.2), we have
that

lim
θ→1

∞∑
k=1

γw(k) =

∞∑
k=1

(2γx(k) − γx(k + 1) − γx(k − 1)) (6.8)

= 2γx(1) + 2
∞∑

k=1

γw(k + 1) − γx(0) − γx(1) −
∞∑

k=1

γw(k + 1) −
∞∑

k=1

γw(k + 1) (6.9)

= γx(1) − γx(0) (6.10)

= −
1
2

(2γx(0) − 2γx(1)) (6.11)

= −
1
2

(
lim
θ→1

(
(1 + θ2)γx(0) − 2θγx(1)

))
(6.12)

= −
1
2

(
lim
θ→1

γw(0)
)

(6.13)

(6.14)

and as such, when θ = 1 and regardless of α (as long as 0 < α < 3), we have that the
process is anti-persistent. The model is on the invertibility boundary, however. Still, if θ were
close to 1 and we were to limit the sum to lags 0 to n − 1, we would have an autocovariance
function that sums to something quite small if n is not too large. As n increases, the sum would
get larger. However, this can be mitigated by having θ closer to 1. As n → ∞, we would
require θ → 1 for the log-likelihood surface to remain bimodal. If n → ∞ and θ and the hd
parameter were to remain fixed, we would have that the anti-persistent mode would become
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less and prominent, until it dropped off of the surface. This will occur since the autocovariance
structures become less similar, and the anti-persistent mode is usually our non-generative mode
for ma-hd models. However, due to the fragility of the anti-persistent mode, which we will
see in Section 6.3.4, we have known it to be the one to disappear in the few cases we have seen
where said mode was the generative one.

6.3.1.2 Apparent Persistence and the ar-Based Models

Looking at (6.5) and keeping §6.3.1.1 in mind, we have that we should want to have apparent
persistence by having an anti-persistent α in an ar-hd model and sending φ to ±1. As it turns
out we would in fact only succeed were we to send φ to 1. We note this is likely due to the
complex nature of the structure of any ar-hd process autocovariance. We know that sending
φ to -1 will not create a persistent mode due to experimentation and the spectral density of the
process.

The spectral density of an ar-hd model model has the form, with λ close to 0, as

fw(λ) ∼
∣∣∣1 − φe−iλ

∣∣∣−2
λα−1 (6.15)

where we note that if we take the limit as φ approaches 1 before taking λ → 0, for 0 < α < 3,
we have that this will tend to infinity. As we have already noted in Chapter 3, in particular
(3.88), we have that there is an implicit inverse relationship between λ and n. We do note
that it can be different than the one implied in (3.88): however, it is enough for us to say that
nλ → ∞ as λ → 0 for nλ = 1/h(λ), where h(0) = 0, h(t) > 0 for t > 0 and h(t) is monotone
increasing for t ∈ [0, π). Thus the spectral density at some λ of some fitted value will be close
to the sum of the TACVFs at the same fitted value and some n. As n increases, we have that
the fitted value of φ will have to be closer to 1 for the anti-persistent mode to appear persistent.
If n → ∞ and φ were to remain unchanged, we will have that the persistent mode becomes
less prominent, until it drops off the surface. Once again, the autocovariance structure become
dissimilar, and since the persistent mode is the non-generative mode for most ar-hd models
we have tested, we know that it will disappear as the fit becomes more accurate. Oddly enough,
in the relatively few cases where the generative mode is the persistent one in our experiments,
some of the time it is still the persistent mode that drops off the surface. Loss of modes in
this type of model will usually happen much more slowly than the disappearance of the anti-
persistent mode in the above.

6.3.2 On More Complex Models

We note that the more complex a model is, the more modes it is likely to have. Looking at the
spectral density of an arma-hd model for λ close to 0 (6.16) (which we recall from Chapter
3),

fw(λ) ∼

∣∣∣∣θ (e−iλ
)∣∣∣∣2

|φ (e−iλ)|2
λα−1 (6.16)
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we have that there is likely to be apparent anti-persistence when θ(1)→ 0 and apparent persis-
tence when φ(1)→ 0. Indeed, there are likely to be more modes, depending on the complexity
of the model.

For arma models, multimodal log-likelihood surfaces also occur. However, since there is no
longer anti-persistence or persistence, the number of modes likely changes less drastically with
n, although we have not explored this.

6.3.3 Dynamic Mean Estimation and Modes on the Boundaries

We note that even a small change in mean can cause modes to be hidden, especially an anti-
persisent mode in an ma-hd model. For example, suppose we subtracted the negative of the
mean whose TACVFs are shown in Figure 6.1. Then the fitted surface would only have one
mode, as below:

> fit1a <- arfima(sim1, order= c(0, 0, 1), dmean = -0.170442, numeach = c(4, 3), quiet = TRUE)
> fit1a

Number of modes: 1

Call:
arfima(z = sim1, order = c(0, 0, 1), numeach = c(4, 3), dmean = -0.170442, quiet = TRUE)

Coefficients for fits:
Coef.1*: SE.1*:

theta(1) 0.96615 0.00887356
d.f 0.492493 0.0108477
Set mean -0.170442
logl -8.27005
sigma^2 1.01441
Starred fits are close to invertibility/stationarity boundaries

Just as subtracting a constant mean can hide a mode, dynamically estimating one can hide a
mode. This is logical, in that if the optimizer is started in the wrong place, we can have the
same effect. Since the optimizer will change the mean, it is possible that as far as the other
parameters are concerned, the wrong direction is attempted: changing the value that is sub-
tracted will usually make the other parameters fluctuate, especially making the hd parameter
more persistent, as we will see below in Figure 6.2. As the mean eventually changes, we could
find that we have missed where a mode should be. We have seen this only occasionally, how-
ever. Since there are multiple starts in the arfima package, unless there are very few starting
points, most often any mode found by a set mean of the mean of the series will be found by the
dynamic mean.

On the other end of the spectrum to losing a mode is the possibility that one or modes may be
induced. As the optimizer goes close to the boundary, the mean moves around and can trap
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the optimizer at the boundary. This problem can occur when means are fixed as well, but not
nearly as much as when the mean is estimated dynamically. We believe this occurs only on
boundaries in which the TACVF is persistent, and all of our tests confirm this, as well as the
theory we will present in §6.3.4.

6.3.3.1 The Push To Persistence

We note that in all of our experiments, every time a mean has been taken to be different than
the sample mean, the farther the mean goes from the sample mean, the more persistent or ap-
parently persistent a mode will become. In the ma-based models whose generative parameters
give two modes will almost invariably have their parameters pushed towards the middle of the
square defined by the ma parameter and the hd parameter, and modes will be lost. The exact
opposite happens with ar-based models: every starting point is pushed towards a boundary.
Modes may be lost in this case, but more often, modes are induced. We will give what seems
to be the reason for this in §6.3.4.

This push to persistence is seen clearly in Figure 6.2.

For Figure 6.2, e ∼ NID(0, I1000) was generated, after which we set at = et − ē for all t. Then
values of from -15 to 15 with increments of 0.1 were subtracted off of e, an fd model was
fit to the data, and the value of d f recorded. The plot is the mean subtracted off by the value
of d f obtained. This illustrates nicely how the fitted values become more persistent with an
increasing absolute value of the mean.

What we believe happens is, especially when the mean changes dynamically, that there will
be no place for the optimizer to go but more and more persistent values. The fit gets more
persistent and the log-likelihood can get larger when the series is not fixed. This can also often
lead to vastly different estimates of the mean.

Even when the series is centered, the likelihood may go up if the fitted values are more persis-
tent. The reason this occurs in our package is that when the optimizer gets to the stationarity
and/or invertibility boundaries, the likelihood drops off sharply as there is a large negative
penalty for meeting those boundaries. Then the optimizer literally gets stuck, as in the above.
This rarely happens with no dynamic mean estimation, although if there are a lot of starting
points, it may occur as the starting point for one or more optimizations may have nowhere else
to go. We have found this type of optimization penalty is usually quite good: much better than,
say, constrained optimization in the PACF space of §5.5.2. As is mentioned in §5.5.4, we can
usually identify a spurious mode by looking at the TACF plot, although this does not always
seem to be the case.

Estimation of anti-persistent modes may change with a small change in mean, as below.

> set.seed(234534)
> seed <- sample(6:22452, 1)
> set.seed(seed)
> sim <- arfima.sim(1000, model = list(theta = 0.98, dfrac = 0.1))
> arfima(sim, order = c(0, 0, 1), numeach = c(4, 3), quiet = TRUE)
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Figure 6.2: White noise modelled as fd with different means; et ∼ NID(0, 1) for t =

1, . . . , 1000 was generated as e, and had a = e − ē to have a mean of exactly zero up to
machine epsilon. For m301

i=1 = (−15,−14.9, . . . , 14.9, 15), e − m[i] was fit as fd with the “true”
mean set to zero, and d f [i] was recorded. The plot is m on the horizontal axis and d f on the
vertical axis.
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Number of modes: 2

Call:
arfima(z = sim, order = c(0, 0, 1), numeach = c(4, 3), quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2: SE.2:

theta(1) 0.976266 0.00814961 0.158567 0.0614347
d.f 0.0944361 0.0308876 -0.733791 0.0444421
Fitted mean -0.000103622 0.00141905 -0.000559015 0.000368124
logl 26.8342 23.0737
sigma^2 0.94734 0.952867
Starred fits are close to invertibility/stationarity boundaries

> arfima(sim, order = c(0, 0, 1), dmean = FALSE, numeach = c(4, 3), quiet=TRUE)

Number of modes: 2

Call:
arfima(z = sim, order = c(0, 0, 1), numeach = c(4, 3), dmean = FALSE, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1: Coef.2: SE.2:

theta(1) 0.973299 0.00848568 0.328282 0.070616
d.f 0.0948949 0.0312415 -0.570908 0.0499456
zbar 0.00176024 0.00176024
logl 26.0864 13.991
sigma^2 0.948849 0.971471
Starred fits are close to invertibility/stationarity boundaries

The above output from the arfima shows how the anti-persistent mode may change with dif-
ferent means as compared to a persistent one. The persistent mode had a change in mean com-
parable to the anti-persistent mean between the dynamic mean and the sample mean, while its
fitted values for θ and d f barely changed. The anti-persistent mode had a large change in its
fitted values. Note that we have seen even more extreme examples of this, such as the loss
of the anti-persistent mode. The persistent mode always remains much closer to where it was
with the change in mean.

For an anti-persitent mode or process, the dynamically fitted mean may be closer to the true
mean than the sample mean. We have noted that it is the anti-persistent modes that are sensitive
to these changes. See the below.

> set.seed(4567)
> seed <- sample(346:365845, 1)
> set.seed(seed)
> sim <- arfima.sim(1000, model = list(dfrac = -0.9))
> arfima(sim, dmean = FALSE, quiet = TRUE)
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Number of modes: 1

Call:
arfima(z = sim, dmean = FALSE, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1:

d.f -0.763203 0.0198202
zbar -0.00206433
logl -1.59719
sigma^2 1.00004
Starred fits are close to invertibility/stationarity boundaries

> arfima(sim, quiet = TRUE)

Number of modes: 1

Call:
arfima(z = sim, quiet = TRUE)

Coefficients for fits:
Coef.1: SE.1:

d.f -0.907423 0.0279488
Fitted mean -4.52612e-05 0.000178066
logl 23.739
sigma^2 0.949108
Starred fits are close to invertibility/stationarity boundaries

From the above, there are three things to notice about the fit with the dynamically estimated
mean as compared to the one where the mean of the series was used. The log-likelhood is
higher, as should be expected; the fitted mean is smaller; and the fitted parameter is much
closer to the true generating parameter.

6.3.3.2 On the Effect of Larger n and Mean Estimation

We have seen cases wherein modes are either hidden or induced when the sample mean is
subtracted, and when the mean is dynamically estimated, the modes were about where we
expected them to be from past observations. This usually happens as n increases. This seems
counterintuitive at first. As we have seen in Figure 3.1, we have that anti-persistent modes
generally have means closer to 0, and that this becomes more pronounced as n increases. We
know that persistent modes can deal much more easily with a change in mean. When the
sample mean is subtracted, since the variance of the sample mean in all hd modes is O(n−α),
difference of the mean from 0 will greatly reduce the log-likelihood of an anti-persistent mode.
While this is true of all modes, the divergence between the variances of two modes where α < 1
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and α > 1 quickly becomes apparent. It should be clear that this will affect ma-based models
much more than ar-based models.

We have observed that mean induction can also happen more in the sample mean subtracted
case than the dynamic mean case as n gets larger. This most often occurs when in an ar-based
model’s apparent persistent, that is, anti-persistent, mode gets pushed towards persistence. This
usually does not happen in terms of the hd parameter, but in terms of φ. As was noted, the
value of φ tending to 1 gives a persistent effect, which tends to send all starts with α > 1 to
become more apparently persistent in terms of φ and less persistent in terms of α.

6.3.4 The Effect of Adding Noise to a Series

We know for a persistent mode on the surface generated by a series w, we have that, if its
TACVF is γw(·), we have

lim
n→∞

n∑
i=−n

γw(i) = ∞ (6.17)

while for an anti-persistent mode, we have

lim
n→∞

n∑
i=−n

γw(i) = 0 (6.18)

Recall also that

Var(w̄n) = O(n−α) (6.19)

for any hd process.

However, suppose we contaminate the true process. Suppose we add independent white noise,
y ∼ WN(1, Inσ

2
y) to w, and as such end up with a contaminated process x, with x = w + y.

Then, if the process w is persistent (ignoring the possibility of a multimodal surface for now),
we have

lim
n→∞

n∑
i=−n

γx(i) = lim
n→∞

n∑
i=−n

γw(i) + σ2
y (6.20)

= ∞ (6.21)

and

Var(x̄n) = Var(w̄n) + Var(ȳn) (6.22)

= O(n−α) + O(n−1) (6.23)
= O(n−α) (6.24)
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If the process w is anti-persistent, however,

lim
n→∞

n∑
i=−n

γx(i) = lim
n→∞

n∑
i=−n

γw(i) + σ2
y (6.25)

= σ2
y (6.26)

and

Var(x̄n) = Var(w̄n) + Var(ȳn) (6.27)

= O(n−α) + O(n−1) (6.28)

= O(n−1) (6.29)

and as such we lose the anti-persistence of the process when we add noise. The effect of this
depends upon the value of σ2

y. If we consider a pure hd process, we note that from (5.11) as σ2
y

increases, the anti-persistent process will be masked by the white noise much more quickly than
a persistent one. Also, an anti-persistent process will be masked more quickly with increasing
n while a persistent process tends to do the reverse.

Since we have finite n, we note that any added white noise with mean 0 will tend to make the
series more like white noise. The effect of this increases with σ2

y. If n does not increase, it
is logical that both modes will become like white noise: however, the effect on the number of
modes seems to differ between the ma- and ar-based models. In the former, the modes will
move towards the middle of the parameter space and a mode will be lost, while the latter will
have modes pushed to persistence and modes may be induced. We will see this in Figures 6.3
and 6.4.

The figures below are fairly typical of what we have seen when a fixed series has added noise.
The first set is a simulated arfi model being fit, with Gaussian mean zero noise and variances
of 0 (no noise), 2, and 4. The second is a simulated fima model being fit, with Gaussian mean
and variances of 0 (no noise), 0.25, and 0.5. Note the large difference in the noise variances:
this shows how much more fragile an anti-persistent mode can be, whether real or apparent.

6.4 Conclusions and Future Work

The basis for the simpleVis package was actually the start of a Mathematica package we
called hdVis. However, we quickly ran into problems that we discussed in §6.2.1. We would
still like to finish the package, although each of the technical considerations we mentioned in
said section have to be addressed. We are also considering adding simple plotting capabilities
to our R package arfima that we mentioned in Chapter 5.

We would like to more closely look at the effect of multimodality on prediction, as well as the
placement of the mean likelihood estimator (MeLE) as in McLeod and Quenneville [2001].
We would also like to look more closely at the asymptotics of the modes for more complex
models, such as the arma and the arma-hd.
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Figure 6.3: A simpleVis representation of an arfi process with NID(0, σ2
y) noise added to the

series, with the top plot having σ2
y = 0, the middle having σ2

y = 2, and the bottom having
σ2
y = 4. The fitted values were found using the arfima package. The bottom plot has 3 points

of the optimization from arfima pushed to the boundaries hidden behind the peak at the back.
We note that this occurs due to a push to persistence.
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Figure 6.4: A simpleVis representation of a fima process with NID(0, σ2
y) noise added to the

series, with the top plot having σ2
y = 0, the middle having σ2

y = 0.25, and the bottom having
σ2
y = 0.5. The fitted values were found using the arfima package. The log-likelihood surface

turns into one that describes zero mean white noise.



Chapter 7

Conclusion

In this thesis, we have discussed theoretical and numerical properties of hyperbolic decay (hd)
time series, both persistent and anti-persistent. We derived the exact for for the spectral den-
sity function (SDF) of fractional Gaussian noise (fgn), the theoretical autocovariance function
of power-law spectrum (pls), and introduced a new hd model we called power-law autoco-
variance (pla). We proved the existence of pla, as well as deriving its SDF. We discussed
inference on pure hd processes, with an example.

Furthermore, we delved into the mixture of arma structure with hd noise. We proved that
a convolution of arma and hd autocovariance functions gives rise to an arma-hd autoco-
variance function within O(rL) and machine epsilon to the true autocovariance function with L
being the length of the autocovariance function. Then we used Kullback-Liebler divergence to
show that if the series was Gaussian, we can approximate the distribution of the series arbitrar-
ily exactly in the same way.

We looked at minimum-mean-square-error (MMSE) predictors in the case of stationary se-
quences and their integration by arbitrary d ∈ Z>0, as well deriving a new, exact formula for
prediction error variances of the integrated series. We also proved that the exact formula and
the often-used limiting formula are equivalent for the arima(p, d∗, 0) case with d∗ ∈ (−1,∞).

Our R arfima package was introduced. Said package is likely one of the more versatile time
series packages for said environment, having many capabilities. These capabilities include
simulation, fitting, and forecasting via exact methods and have multiple starts as the default.
The package can also perform regression with autocorrelated errors, including transfer func-
tions. We compared it to the popular fracdiff package with arfima showing superiority in all
but speed.

Finally, we talked about technical aspects of visualizing a log-likelihood surface. We visualized
simple surfaces to aid in understading of bimodal surfaces that occur with one short memory
parameter and one hd parameter. We hypothesized on the cause of multimodality, which came
to the effect of finite sample sizes and the apparent persistence or anti-persistence of modes on
the log-likelihood surface. We also looked at the effect of mean estimation and added noise to
a log-likelihood surface.

112
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7.1 Future Work

As future work, we would like to speed up the arfima package and add more capabilities to
it, such as inference capabilities like the FGN package. We also would like to add the pls
model to arfima. We would like to investigate further the causes of multimodality, and finish
the hdVis package mentioned in Chapter 6 to do so.
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Appendix A: Chapter 2
This Appendix is also available as an online document that can be used with Mathematica or the freely available
Mathematica Reader. It is intended to provide this appendix as a supplement on the journal website when the
paper from this chapter is published.
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Table of Asymptotically Equivalent Parameters
Given Asymptotic Equivalent

a 9H ® 1 -
a

2
, d ®

1-a

2
=

H 9d ® - 1

2
+ H, a ® 2 - 2 H=

d 9H ® 1

2
+ d, a ® 1 - 2 d=

Note that a is the parameter for PLA, H is for FGN, and d is for FD;  for PLS we have p = a.

Derivation of SDF for FGN
We use radial frequency definition for frequency so the spectral density function (SDF) is defined by the Fourier
transformation,

f HΛL = 1

2Π
â

k=-¥

¥

Γk ã
-i k Λ
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=
1

2Π
Γ0 + 2â

k=1

¥

Γk cosHΛ kL

and the inverse transformation gives the ACVF

Γk = à
-Π

Π

f HΛL ãä k Λ âΛ
� FGN

May be defined by its autocovariance function

Γk =
1

2
Γ0IHk + 1L2 H - 2 k2 H + Hk - 1L2 HM, k > 0

(1)f HΛL = 1

2Π
Γ0 + 2â

k=1

¥

Γk cosHΛ kL

� Theorem

The spectral density function for FGN may be written,

1

4Π
Iã-ä Λ IFIã-ä Λ, -2 H , 0M + FIã-ä Λ, -2 H , 2MM +
ãä Λ IFIãä Λ, -2 H , 0M + FIãä Λ, -2 H , 2MM - 2 ILi-2 HIã-ä ΛM + Li-2 HIãä ΛM - 1MM

� Proof

A1 = SumAH1 + Abs@kDL2 H Cos@k ΛD, 8k, 1, ¥<E;
A2 = SumAk2 H Cos@k ΛD, 8k, 1, ¥<E;
A3 = SumAHAbs@kD - 1L2 H Cos@k ΛD, 8k, 1, ¥<E;
f = 1 � H2 ΠL FullSimplify@1 + HA1 - 2 A2 + A3L, Assumptions ® H > 0 && H < 1 && Λ > 0 && Λ < PiD;
sdfFGN@Λ_, H_D := Evaluate@f �� ReD;
TraditionalForm@sdfFGN@Λ, HDD
1

4Π
ReI
ã-ä Λ IFIã-ä Λ, -2 H , 0M + FIã-ä Λ, -2 H , 2MM + ãä Λ IFIãä Λ, -2 H , 0M + FIãä Λ, -2 H , 2MM - 2 ILi-2 H Iã-ä ΛM + Li-2 H Iãä ΛM - 1MM

Numerical Comparisons with the Previous Method (FGN)
Beran (eqn. 2.17, p.53) the spectral density function is given by,

(2)f HΛL = HΓ0 �ΠL sinHΠH L GH2 H + 1L H1- cosΛL â
k=-¥

¥

 2Π k + Λ¤-2 H-1

� Computing SDF of FGN with Beran’s R package longmemo

The  R  package  (Beran,  2011-06-15)  function  specFGN()  implements  eqn.  (2)  and  returns  the  standardized
version  of  f HΛL,  that  is,  hHΛL = f HΛL �CHH L,  where CHH L = Σa

2�Σz
2.   The following  R script  uses  the  function

specFGN() to compute f HΛL in eqn. (2) with Σz
2 = 1.

 sdfFGNB <- function(H, n){
  ans <- specFGN(H, n)
  (ans$spec)*(ans$theta1)
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  }
> HS <- c(0.05, 0.2,  0.7, 0.9, 0.98)
> m <- 200
> #compute at these test frequencies
> LD <- c(1/m, 33/m, 66/m, 99/m)*2*pi
> tb <- matrix(numeric(length(LD)*length(HS)), ncol=length(HS))
> dimnames(tb)<-list(paste("ld =",round(LD,4)), paste("H =", HS))
>   for (j in 1:length(HS))
+     for (i in 1:length(LD))
+         tb[, j] <- sdfFGNB(HS[j], n=m)[c(1,33,66,99)]
> round(tb,5)

            H = 0.05 H = 0.2 H = 0.7 H = 0.9 H = 0.98
ld = 0.0314  0.00108 0.01044 0.63836 1.31356  0.53401
ld = 1.0367  0.05153 0.11305 0.14977 0.07451  0.01723
ld = 2.0735  0.12192 0.20285 0.10504 0.03750  0.00763
ld = 3.1102  0.15601 0.24266 0.09196 0.02857  0.00549

longmemo: Statistics for Long-Memory Processes (Jan Beran) – Data and Functions. 2011-06-15, Version 1.0-0.
http://cran.r-project.org/web/packages/longmemo/index.html

� Computing SDF of FGN with our Mathematica Function

0.05 0.2 0.7 0.9 0.98

0.0314159 0.00112 0.01045 0.63836 1.31356 0.53401

1.03673 0.08779 0.11678 0.14978 0.07451 0.01723

2.07345 0.23134 0.21411 0.10504 0.03750 0.00763

3.11018 0.30368 0.25786 0.09197 0.02857 0.00549

� Conclusion

For the persistent  case H Î H0.5, 1L, Beran’s method works well.  It is less accurate in the more extreme anti-
persistent cases where H £ 0.2.  Presumably this accuracy could be improved by increasing the number of terms
used in the summation in eqn. (2).

Autocovariance Function of PLS
The autocorrelation function at lag k is given by

IntegrateAã-ä Λ k p � H2 ΠpL Abs@ΛD p-1, 8Λ, -Π, Π<, Assumptions ® p > 0 && k Î IntegersE

HypergeometricPFQB9
p

2
=, 9

1

2
, 1 +

p

2
=, -

1

4
k2 Π2F

� A note of the derivation of the sdf of PLS

IntegrateAΛ p-1, 8Λ, 0, Π<, Assumptions ® p > 0E
Π
p

p

Hence,

sdfPLS@Λ_, p_D := p � H2 ΠpL Λ p-1
TraditionalForm@sdfPLS@Λ, pDD
1

2
p Π-p Λp-1
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� Large-lag formula

AcfPLS@p_, k_D := HypergeometricPFQ@8p � 2<, 81 � 2, 1 + p � 2<, -Hk^2 * Pi^2L � 4D;
For the persistent case, 0< p < 1, we obtain

Limit@Κp AcfPLS@p, ΚD, Κ ® ¥, Assumptions ® 8p > 0 && p < 1<D

2-1+p p Π
1

2
-p GammaA p

2
E

GammaA 1
2
-

p

2
E

For the anti-persistent case, Mathematica obtains:

Limit@Κp AcfPLS@p, ΚD, Κ ® ¥, Assumptions ® 8p > 1 && Κ Î Integers<D

p Π-p CosB
p Π

2
F Gamma@pD

The PLA Process
Let zt, t = 1, 2, … be a covariance stationary Gaussian time series with variance Σz

2 and autocovariance function
Γk = Γ0 Ρk,

where for k > 0, Ρk = ca k-a, where

(3)ca =
H-2 ΖHΑLL-1 a ¹ 1,
0 a = 1,

where a Î H0,¥L is the model parameter, and Ρ-k = Ρk.

Recall ΖHΑL denotes the Reimann zeta function that is defined by

(4)ΖHaL = Úk=1
¥ k-a a Î H1,¥L
I1- 21-aM-1Úk=1

¥ k-aH-1Lk-1 a Î H0, 1L
The autocorrelation of the HD Model with parameter a is defined for k > 0 by Ρk = ca k-a, where

� Lemma:  Continuity of Ρk

We have as a lemma that Ρk = ca k-a is a continuous function for a Î H0, ¥L.  For proof we verify that lim ca® 0
as a® 1.

LimitAH-2 Zeta@aDL-1, a ® 1E
0

LimitAH-2 Zeta@aDL-1, a ® 1, Direction ® 1E
0

LimitAH-2 Zeta@aDL-1, a ® 1, Direction ® -1E
0

� Derivation of the SDF of the PLA Process 

To establish the existence of the PLA process, we must show that the function
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(5)f HΛL = Σw
2

2Π
1+ 2â

k=1

¥

Γk cosHΛ kL

  has f HΛL ³ 0 for Λ Î H-Π, ΠL and  Ù-ΠΠ f HΛL âΛ = Σw
2 .   That is, we must show it is a spectral density function,

which we do in Theorem 2.3 of the main text, based on the following.  First we must derive f HΛL, letting Σw
2  = 1

without loss of generality:

f = H1 + 2 Sum@-H1 � H2 Zeta@aDLL k-a Cos@k ΛD, 8k, 1, ¥<DL � 2 Π
1

2
Π 1 +

-PolyLogAa, ã-ä ΛE - PolyLogAa, ãä ΛE
2 Zeta@aD

TraditionalForm@fD
1

2
Π 1+

-Li aIã-ä ΛM - Li aIãä ΛM
2 ΖHaL

G@a_, Ν_D := IntegrateA 1 +
-PolyLogAa, ã-ä ΛE - PolyLogAa, ãä ΛE

2 Zeta@aD � H2 ΠL, 8Λ, -Π, Ν<E

Then we must show that G[a, -Π] = 0 and G[a, Π] =  1.

G@a, -ΠD
0

G@a, ΠD
1

With the arguments in Theorem 2.3, the PLA process exists.  Then we have that 

f HΛL = 1

2
Π Σw

2 1-
Li aIã-ä ΛM + Li aIãä ΛM

2 ΖHaL
which is Theorem 2.4.

� Asymptotic formula for small Λ

f0 = Series@f, 8Λ, 0, 1<, Assumptions ® Α > 0 && Λ Î 8-Π, Π<D �� Normal;
c = FullSimplifyAf0 � ΛΑ-1, Assumptions ® 8Λ > 0, Α > 0<E

-

I8 + H-2 + ΑL H-1 + ΑL Λ2M Gamma@1 - ΑD SinA Π Α
2
E

8 Zeta@ΑD
Limit@c, Λ ® 0D

-

Gamma@1 - ΑD SinA Π Α
2
E

Zeta@ΑD
% �� TraditionalForm

-

sinI Π Α
2
M GH1- ΑL
ΖHΑL

TraditionalForm@sdfPLASmall@Λ, ΑDD

-

ΛΑ-1 sinI Π Α
2
M GH1- ΑL

2Π ΖHΑL
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f HΛL » - ΛΑ-1 sinJ Π Α
2
N GH1-ΑL

2Π ΖHΑL
sdfPLA@Λ_, Α_D :=

Re@H1 + H-PolyLog@Α, E^HH-IL * ΛLD - PolyLog@Α, E^HI * ΛLDL � H2 * Zeta@ΑDLL � H2 * PiLD;
sdfPLASmall@Λ_, Α_D := -HHGamma@1 - ΑD * Sin@HPi * ΑL � 2DL � Zeta@ΑDL ΛΑ-1 � H2 ΠL;
� Dynamic Table Comparing Exact and Asymptotic SDF

Α

0.332

Λ exact asymptotic

0.0001 51.8946 51.8946

0.001 11.1461 11.1461

0.01 2.39399 2.39399

0.05 0.816981 0.816978

0.1 0.5142 0.514189

0.15 0.392214 0.392187

0.2 0.323666 0.323619

0.5 0.175767 0.175473

1. 0.111632 0.110439

2. 0.0745435 0.069508

3. 0.0655596 0.0530158
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Comparing SDF of Four Types Hyerbolic Decay Time Series Models

Α 1.774

model1 FD FGN PLS PLA

model2 FD FGN PLS PLA

plottype regularplot logplot difference

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

Λ

sd
f

PLA FD
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Comparing the TACF of Four Types Hyperbolic Decay Time Series 
Models
� Interactive Graphical Comparison

Α

0.3

model1 FD FGN PLS PLA

model2 FD FGN PLS PLA

1 5 10

0.0

0.2

0.4

0.6

0.8

1.0

k

ac
f

FGN PLA

� Interactive Tabular Comparison

Α

1.09

Number ofLags

5

FD FGN PPL PLS

1 -0.043 -0.060 -0.051 -0.043

2 -0.020 -0.020 -0.017 -0.020

3 -0.013 -0.013 -0.014 -0.013

4 -0.009 -0.009 -0.009 -0.009

5 -0.007 -0.007 -0.008 -0.007
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Fisher Information 
The Fisher information for the PLS model can be written,

(6)IHpL = 1

2Π
à
-Π

Π â

â p
log f Hp, ΛL

2

âΛ

df = DA LogA p � H2 ΠpL Λ p-1EE �. p ® Α

LogB
1

2
Π
-Α
Α Λ

-1+ΑF

FI = FullSimplify@H1 � ΠL Integrate@df^2, 8Λ, 0, Π<, Assumptions ® p > 0DD

2 + Log@2D2 + Α H-4 + 2 Α + Log@4DL + LogB
1

4 Π2
F + HLog@4D - Α H-4 + 2 Α + Log@4DLL Log@ΠD +

H-1 + ΑL2 Log@ΠD2 + 2 H-1 + ΑL H-1 + Log@ΠDL + LogB
Π
-Α
Α

4
F Log@Π-Α ΑD

In the FD case, IHdL = Π2�6 and since d = 1�2- Α �2, IHΑL = 2Π2�3= 6.58, and we note that Mathematica cannot

compute the Fisher information for the PLA or FGN models.

By computer simulation (McLeod, Yu & Krougly 2007, Table 14) we found that with n = 2000 and using 105

simulations for the FGN model,

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n VarHHL 0.13 0.23 0.31 0.36 0.4 0.42 0.44 0.45 0.45

Since Α = 2- 2 H , VarHΑ` L = 4 VarHH` L, hence IHΑL = I4 n VarHH` LM-1
. 

We have the following plot of the information of the FGN (black), FD (magneta) and PLS (blue) models.
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Comparing the snr for HD Models
The snr defined by, snr= Σz

2�Σa
2, is ratio total variance divided by the variance of the one-step ahead forecast and

so it indicates the predictability of the time series, snr³ 1 and the larger snr is the better the prediction.  Some-
times  the  coefficient  of  determination,  R2,  has  been  used  for  this  purpose  as  well  (Nelson,  1976)  and
R2 = 1- 1�snr.  For the linear time series in , snr= 1�ÚkΨk

2 or equivalently in in terms of the spectral density
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� �Ú
function,

(7)snr=
Ù-ΠΠ f HΛL âΛ

1

2Π Ù-ΠΠ log 2Π f HΛL âΛ
For the FGN, PLS and PLA models, the snr may be obtained using eqn. (7) and for the FD model the snr may be
computed directly from the definition.

The  table  below  compares  the  snr  for  the  four  HD  models  with
Α = 0.1, 0.25, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 2.9.   The  FGN  has  the  largest  snr
while FD and PLA have the lowest (depending on whether the process is persistent  or anti-persistent)  but the
differences become very small provided that Α is not too extreme. When Α = 0.1, there is about a 25% relative
difference, that is, HsnrHFGNL - snrHFDLL �snrHFDL » 0.25.  Note that the PLA model has a larger snr than the FD
model when the process is persistent and a smaller snr when the process is anti-persistent.  The ¥ symbol in the
table is to show the FGN model is not defined for Α ³ 2.  The snr of all models is trivially equal 1 when Α = 1.

Α FD FGN PLS PLA

0.10 3.64 4.55 4.07 3.81

0.25 1.76 2.04 1.89 1.80

0.50 1.18 1.26 1.21 1.19

0.75 1.03 1.05 1.04 1.03

0.90 1.00 1.01 1.01 1.00

1.00 1.00 1.00 1.00 1.00

1.10 1.00 1.01 1.00 1.00

1.25 1.02 1.04 1.03 1.02

1.50 1.08 1.15 1.10 1.07

1.75 1.16 1.37 1.21 1.15

2.00 1.27 ¥ 1.36 1.23

2.25 1.41 ¥ 1.55 1.32

2.50 1.57 ¥ 1.79 1.42

2.75 1.77 ¥ 2.09 1.51

2.90 1.90 ¥ 2.31 1.56
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