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Abstract 

Mapping invasive plant species is important to establish an invasion baseline, monitor 

plant propagation, and to implement an effective plan to deal with the invasion. In this 

thesis, methods are proposed to map invasive Phragmites australis in a Great Lakes 

coastal wetland. Chapter 2 presents an object-based Phragmites extraction method using 

Worldview-2 high-spatial-resolution satellite imagery.  For the 4024 ha study area at 

Walpole Island, Ontario, 94% overall accuracy was achieved. 

Chapter 3 uses CHRIS PROBA hyperspectral satellite imagery for mapping the pixel 

abundance of Phragmites using a spectral mixture analysis method. An evaluation 

method was developed to assess the accuracy of the spectral mixture analysis fractions 

using the classification from Chapter 2. A Phragmites invasion classification identifying 

pixels where Phragmites was non-dominant, potentially dominant, and dominant was 

85.2% accurate.  The overall accuracy for a Phragmites, native vegetation and water 

classification based on the dominant fraction in each pixel was 82.8%. 

 

Keywords 
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Chapter 1  

1 Introduction 

1.1 Research Context 

Healthy wetlands provide many environmentally valuable functions. Wetlands are 

capable of recharging groundwater resources and providing storage of flood waters. 

Wetland vegetation provides pollution control by trapping and reducing sediments in the 

water column and by acting as sinks for nutrients and toxic substances.  Vegetation also 

acts as a buffer for coastal protection from erosion by waves. Wetland vegetation also 

provides habitat and resources for fish, birds, mammals, reptiles and amphibians. 

Wetlands have high economic value providing many natural products and recreational 

opportunities (Jaworski, 1978, cited by Herdendorf, 1992).  

Despite these beneficial functions, wetlands continue to be drained, filled, and converted 

to other uses such as agricultural land and urban areas.  Prior to European settlement, 

southern Ontario contained an estimated 2.4 million hectares of wetlands, of which less 

than 39% remained by 1982 (Snell, 1987). Projected future population increases in 

Ontario (Ontario Ministry of Finance, 2012), will put even more pressure on these 

remaining wetland areas. 

Additional pressure is put on wetland vegetation by non-native plant species.  Non-native 

species are recognized as a serious threat to vegetation communities in Canada. This has 

led to the recent development of an invasive species strategy for Ontario (Ontario 

Ministry of Natural Resources, 2012), and Canada (Canadian Food Inspection Agency, 

2004). Identified in 2005 by Agriculture and Agri-Food Canada as the nation’s worst 

invasive plant species (Ontario Ministry of Natural Resources, 2011), Phragmites 

australis (Cavenilles) Trinius ex. Steudel subsp. australis (common reed) presents an 

immediate threat to native wetland vegetation. The invasive Phragmites is a superior 

competitor compared with native North American species of Phragmites, Phragmites 

australis subsp. americanus Saltonstall, P.M. Peterson & Soreng (Saltonstall et al., 2004) 

having a higher root and stem density, higher aboveground biomass, longer growing 
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season, and is tolerant of a wider range of salinities (Chambers et al., 1999; League et al., 

2006). These traits also give invasive Phragmites an advantage over native wetland 

plants that cannot compete for nutrients, light and space resources, allowing Phragmites 

monocultures to develop quickly (Meyerson et al., 2009). These traits have allowed 

invasive Phragmites to spread throughout fresh, brackish, and salt water marsh systems 

in the United States and Canada (Mal & Narine, 2004).  Phragmites is now well 

established along the Atlantic coast (Chambers et al., 1999), and in the Great Lakes 

region, where expansion has been noted in Lake Erie (Wilcox et al., 2003; Ghioca-

Robrecht et al., 2008), Lake St. Clair (Arzandeh & Wang 2003), and Lake Michigan 

(Pengra et al., 2007; Tulbure et al., 2007). It is hypothesized that recent climatic changes, 

have allowed for rapid growth of this species in Lake Erie coastal wetlands (Wilcox et 

al., 2003). With the forecasted rise in atmospheric CO2 levels in the future, Phragmites 

growth is expected to increase (Farnsworth & Meyerson, 2003). 

To deal with this invasion effectively, it is crucial that methods are developed to monitor 

the distribution and abundance of invasive and native vegetation species over time (Adam 

et al., 2010).  These methods should be capable of establishing an invasion baseline, and 

allow for monitoring the invasive plant propagation with the goal of providing 

information needed to implement an effective plan to deal with the invasion.  Collection 

of this type of information has traditionally been acquired by labour intensive, costly, and 

time-consuming field work (Lee & Lunetta, 1996). The characteristics of the wetland 

environment make the amount of field work needed to monitor a rapidly propagating 

species like Phragmites impractical.   

Remote sensing provides an alternative method for the production of this important 

information which reduces costs, labour, and saves time relative to field work.  The 

design of remote sensing systems allows for repeat coverage of large areas providing up-

to-date information and an archive of images that can be used for detecting change. 

Assessment of the remote sensing results still requires field work, but at a greatly reduced 

effort.  The information collected and extracted from imagery is already in digital format 

which allows for integration and further analysis in a Geographic Information System 

(GIS) (Ozesmi & Bauer, 2002). 
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Two types of remote sensing sensors have typically been used for Phragmites mapping.  

High-spatial-resolution satellite imagery provides the ability to detect very small patches 

of vegetation, which is important for early detection and removal of the invader. One 

disadvantage of these sensors is their poor spectral resolution which can lead to confusion 

between Phragmites and other vegetation species if their spectral properties are similar 

(e.g. Laba et al., 2008). A method commonly used to overcome this shortfall, is to 

incorporate additional information into the mapping process to increase separation of 

vegetation at the species level.  Additional information has included obtaining multiple 

images over the growing season (e.g. Ghioca-Robrecht et al., 2008) to take advantage of 

the changes in spectral signature of the Phragmites and native vegetation throughout the 

year.  Gilmore et al. (2008) used several QuickBird-2 images collected over multiple 

years and height information from Light Detection and Ranging (LiDAR) data to classify 

Phragmites in an Eastern North American coastal estuary and obtained high accuracy for 

the Phragmites class. Adding this additional information to the classification increases 

cost and may not be available for large areas, making accurate monitoring of Phragmites 

at regular time intervals and over large areas less likely to be successful. 

The other commonly employed sensor for mapping Phragmites has been airborne 

hyperspectral imagery. This sensing platform has the ability to collect many narrow and 

contiguous spectral bands at high spatial resolution, allowing for detailed Phragmites 

mapping.  Artigas and Yang (2005) used an Airborne Imaging Spectrometer for 

Applications (AISA) image with 2.5m spectral resolution and 34 spectral bands to map 

Phragmites vigour gradients in an Eastern North American coastal estuary with high 

accuracy. Artigas and Pechmann (2010) used AISA imagery for Phragmites mapping and 

were able to map the fractional abundance of Phragmites in mixed land cover type pixels 

with 75% or more coverage with 96% accuracy.  However, classification accuracy 

dropped substantially when Phragmites coverage was 50% or less.  Airborne 

hyperspectral sensors are capable of monitoring Phragmites spread, however, the data is 

more expensive than satellite imagery, and the revisit time depends on aircraft 

availability and tasking (Adam et al., 2010). 
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A recently launched high-resolution satellite sensor, Worldview-2, has expanded spectral 

capabilities compared to traditional high-resolution sensors such as QuickBird-2 or 

IKONOS-2, and may provide the spectral information needed to discriminate accurately 

between invasive Phragmites and native marsh vegetation.  Additional spectral bands 

include a second blue band, a yellow band, a red-edge band, and a second near-infrared 

band. Worldview-2 has not been used previously to map Phragmites in Great Lakes 

coastal wetlands. The combination of high-spatial and spectral-resolution data may allow 

for more accurate mapping of Phragmites in this environment. 

The Compact High Resolution Imaging Spectrometer on the Project for On-Board 

Autonomy – 1 (CHRIS PROBA) platform, a hyperspectral satellite, capable of acquiring 

37 spectral bands at 17m resolution, may provide another source of data for monitoring 

Phragmites. Pengra et al. (2007) used 30m Hyperion hyperspectral satellite imagery and 

the Spectral Correlation Mapper algorithm to map Phragmites on Green Bay, Lake 

Michigan, and it is the only other known study to use satellite hyperspectral imagery for 

Phragmites mapping in the Great Lakes.  CHRIS PROBA imagery has not been used 

previously to map Phragmites and will be evaluated for this purpose in a Great Lakes 

coastal wetland. 
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1.2 Research Objectives 

The objective of this research is to evaluate two imagery sources, Worldview-2 high-

spatial resolution multispectral imagery and CHRIS PROBA hyperspectral satellite 

imagery, for mapping Phragmites cover in a Great Lakes coastal wetland.  Imagery from 

neither satellite has been used for this purpose before. The expanded spectral capability 

of Worldview-2 may allow for more accurate mapping of Phragmites from a single 

image.  CHRIS PROBA has high spectral resolution and the highest spatial resolution 

available from any hyperspectral satellite sensor. A single date of imagery may provide 

highly accurate sub-pixel abundance estimates of Phragmites cover that can be used to 

monitor the spread of this species in Great Lakes coastal wetlands. 

The research in this thesis will seek to provide the answers to these questions: 

1. How accurately can Phragmites cover be classified from Worldview-2 high-

resolution satellite imagery? 

2. How do the four additional bands acquired by the Worldview-2 sensor, not 

captured by traditional high-resolution satellites (e.g. QuickBird-2, IKONOS-2), 

affect the accuracy of the Phragmites classification? 

3. How accurate are the fraction estimates for the three land cover classes derived 

from CHRIS PROBA hyperspectral satellite imagery using spectral mixture 

analysis? 

4. Can the classified Worldview-2 image from be used as ground truth to evaluate 

the fraction estimates derived by spectral mixture analysis methods from CHRIS 

PROBA? 

5. Can the Phragmites fraction layer provide accurate information about the state of 

Phragmites invasion in a marsh? 

6. Can the individual fraction layers be combined to provide accurate information 

about the distribution of dominant land covers in a marsh? 
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The studies presented in Chapter 2 and Chapter 3 answer these research questions by 

addressing these research objectives: 

1. a) To develop an object-based method for Phragmites cover extraction from a 

single date high-spatial-resolution Worldview-2 image. b) To evaluate the 

differences in classification accuracy when four and eight spectral band datasets 

are used for object-based classification of Phragmites.  

2. a) To assess the capability of CHRIS PROBA hyperspectral satellite imagery to 

produce highly accurate sub-pixel abundance estimates of Phragmites cover 

using a linear spectral mixture analysis method. b) To assess the ability of the 

classified Worldview-2 image from to be used as ground truth to determine the 

accuracy of the abundance estimates from spectral mixture analysis. c) To 

evaluate the capability of the abundance layers to provide information about the 

state of Phragmites invasion and the distribution of dominant land covers in the 

marsh. 

1.3 Study Area 

Walpole Island First Nation (WIFN) (82° 30’ W and 42° 33’ N) is the study area for this 

research (Figure 1.1). It is located at the north end of Lake St. Clair in Lambton County, 

Ontario, Canada.  Walpole Island is a delta, formed as the sediments carried by the St. 

Clair River are deposited as the river slows to meet Lake St. Clair (Environment Canada, 

2003). The six islands of WIFN cover 24,000 ha (Woodliffe, 1989) and of this area, the 

coastal wetlands cover approximately 10,360 ha. They represent one of the largest 

remaining coastal wetlands in the Great Lakes (Environment Canada, 2003).  About half 

of the wetlands in the St. Clair delta have been diked and pumps manipulate water levels 

for marsh management related to the production of waterfowl (Bookhout et al., 1989). 

The delta coastal marshes provide habitat for many plants and animals, some of which 

are provincially, nationally, and even globally rare (Environment Canada, 2003). Typha 

spp. (Cattail spp.) are the dominant native vegetation while Zizania palustris (Wild Rice), 

Scirpus spp. (Bulrush spp.), Pontederia cordata (Pickerelweed), Nuphar variegatum 

(Yellow Pond Lily), and Nymphaea odorata (Fragrant White Water Lily) are sparsely 



7 

 

distributed. Phragmites australis subsp. australis, is of concern at Walpole as it is 

expanding at the expense of native species (Arzandeh & Wang, 2003). Based on 

herbarium samples, the first occurrence of non-native Phragmites in southwestern 

Ontario was at Walpole Island in 1948 (Catling & Mitrow, 2012).  

Figure 1.1 shows the study area for this research.  Chapter 2 will utilize a 40km
2
 high-

resolution Worldview-2 image covering portions of Bassett, Squirrel, and Walpole 

Islands (Figure 1.2), to extract Phragmites cover using an object-based method. Chapter 

3 will focus on a small area on Squirrel Island to allow a detailed accuracy assessment of 

the fraction layers extracted from CHRIS PROBA imagery (Figure 1.3) using a linear 

spectral unmixing method. Detailed descriptions of the respective study areas are given in 

each chapter. 

 

Figure 1.1 The Walpole Island study area. Chapter 2 uses the entire Worldview-2 image for wetland 
classification while Chapter 3 focuses on a small area on Squirrel Island. 
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Figure 1.2 Worldview-2 imagery acquired October 17, 2010, shown in true colour (Red: Band 5, Green: 
Band 3, Blue: Band 2). 
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Figure 1.3 CHRIS PROBA image acquired September 14, 2011, shown in true colour (Red: Band 7, Green: 
Band 4, Blue: Band 1). 
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1.4 Background 

The two main methods used in the analysis of the imagery in this research are discussed 

below.  Chapter 2 uses an object-based classification method to extract the wetland land 

cover classes. Chapter 3 uses a spectral mixture analysis method to extract sub-pixel 

abundances of Phragmites, native marsh vegetation, and water. 

1.4.1 Object-Based Classification 

In object-based classification, image objects form the basic unit which is used to classify 

the image.  This is much different from traditional image classification methods where 

the pixel forms the basic unit.  These image objects are created in a process called image 

segmentation.  The multiresolution segmentation algorithm is a commonly used method 

for grouping pixels into image objects and is used in Chapter 2.  With this algorithm, 

image objects start out as individual pixels, and are merged with neighbouring pixels or 

other image objects until a threshold describing the image objects homogeneity is 

exceeded (Definiens, 2010). The homogeneity criterion is controlled by adjusting the 

weight assigned to spectral homogeneity and shape homogeneity.  More weight given to 

the spectral criterion results in grouping of pixels into objects that are more spectrally 

similar. More weight given to the shape criterion optimizes objects according to object 

compactness or border smoothness. A scale parameter is also specified which controls the 

size of the resulting objects.  Higher scale values result in larger objects, while lower 

scale values result in smaller objects (Definiens, 2010).  Segmentation can be applied to 

original image layers, or existing object layers can be segmented again.  This creates 

multiple levels of objects and allows for image objects to be classified in a hierarchical 

structure (Definiens, 2010). For example, objects at the first object level, can be separated 

into vegetation and water objects, and a second level of objects could be separated into 

wetland and non-wetland vegetation. 

Once the user is satisfied with the resulting image object layer, the image objects can be 

classified by their attributes.  Object attributes include their colour, shape, texture, or 

context within the image.  One option is to classify objects using rules. For example, a 

rule can specify that all image objects with a value less than 20 in the red band are 
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assigned to the class “Water”.  A second option is to use a semi-automated supervised 

classification to classify objects.  The user selects training sample objects for each class 

and specifies object features which the classifier will use to assign objects to each class.  

Example objects features could include mean value of blue band, standard deviation of 

NDVI, length-to-width ratio, etc.  In Chapter 2, both rules and a supervised classification 

are used to map land cover types in the Worldview-2 image.  

1.4.2 Spectral Mixture Analysis 

The spectral mixture analysis model used in this research is described in detail in Chapter 

3, however, a brief overview will be given here. The spatial resolution of the CHRIS 

PROBA imagery is relatively large at 17m and this creates a problem when assigning 

each pixel to a land cover class.  If the average size of marsh vegetation patches is larger 

than the image pixel resolution, the number of pixels containing multiple classes is 

reduced.  However, smaller patches increase the likelihood that multiple land covers will 

be represented by a single pixel (Artigas & Yang, 2005). A traditional classifier such as 

maximum likelihood, would misrepresent or oversimplify mixed pixels (Rosso et al., 

2005) by assigning them to the class with the highest probability based on training data 

(Jensen, 2005).  To overcome the mixed pixel problem, the spectral mixture analysis 

method decomposes the pixel spectrum to extract the land cover type contained within it.  

If there is minimal scattering of the energy between different surface components before 

the signal is measured by the sensor, the mixing within a single pixel is assumed to be 

linear (Adams et al., 1993). This means that the pixel spectrum is a linear sum of the 

reflectance received from each land cover contained within it (Roberts et al., 1998). The 

land cover types present in the image are referred to as endmembers.  When the spectral 

signatures of all pure endmember pixels are known, the signal of a mixed pixel is equal to 

the area or abundance of each endmember within that pixel.  By using the linear spectral 

mixture analysis model, every pixel in the image can be broken down into its fraction 

abundance for each endmember. The fractional abundance for each endmember is output 

to a separate fraction layer so that the distribution and relative abundance of each 

endmember in the image can be known (Jensen, 2005). 
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1.5 Thesis Format 

This research is presented in an integrated-article format. Chapter 1 provides background 

on the research problem, the objectives of the research, the study area, and the methods 

used to address the research problem.   

A version of Chapter 2 was presented at the 33
rd

 Canadian Symposium on Remote 

Sensing (CSRS), in Ottawa, Ontario in June, 2012. A version of Chapter 2 was submitted 

for publication in the Special Issue of the Canadian Journal of Remote Sensing for the 

33
rd

 CSRS.  

The focus of both studies is to extract Phragmites cover as accurately as possible.  The 

chapters work toward this goal using different imagery sources and image processing 

methods.  The focus of Chapter 2 is on extracting Phragmites cover from a single date 

high-resolution multispectral Worldview-2 image using an object-based method.  Chapter 

3 uses hyperspectral satellite imagery and a linear spectral mixture analysis method to 

extract the sub-pixel abundance of Phragmites in each pixel.  The classification results 

from Chapter 2 are used as ground truth in Chapter 3 to assess the accuracy of the 

spectral mixture analysis derived fraction layers. The fraction layers are classified to 

produce important information about the state of Phragmites invasion and distribution of 

dominant land covers within the marsh.   
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Chapter 2  

2 Object-Based Classification of Worldview-2 Imagery for 
Mapping Invasive Phragmites australis 

2.1 Introduction 

Wetlands provide important habitat for plants and animals such as nesting sites for 

waterfowl and spawning grounds for fish. Wetland vegetation protects shorelines from 

erosion and traps sediment before it enters water bodies. The quality of water passing 

through wetlands can be improved because wetlands filter contaminants and nutrients. 

Wetlands also renew groundwater supplies, and help to control flooding which in turn 

reduces damage caused by flooding. Finally, wetlands are an important economic 

resource as they provide natural products and provide recreational opportunities such as 

hunting, fishing, and bird watching (Jaworski, 1978, as cited by Herdendorf, 1992).  

Unfortunately, wetlands are being lost at a fast rate due to drainage, conversion, 

pollution, and over-exploitation of their resources. In southern Ontario prior to European 

settlement, it is estimated that there were 2.4 million ha of wetlands. Roughly 933,000 ha 

or 61% of this wetland area had been lost to development by 1982 (Snell, 1987). As of 

2011, southern Ontario was home to 13.4 million people and the population is expected 

to increase to 17.7 million by 2036 (Ontario Ministry of Finance, 2012), which will 

increase the level of pressure on the existing wetland areas. Another problem facing 

wetlands is the detrimental effects of the introduction of invasive species. Invasive plant 

species can decrease plant diversity, threaten rare and endangered native species, and 

decrease habitat quality for birds and animals (Laba et al., 2008). Of particular concern in 

North American wetlands is the introduction of Phragmites australis (Cavenilles) Trinius 

ex. Steudel subsp. australis (common reed)  (Saltonstall, 2002, Mal and Narine, 2004), 

hereafter referred to as Phragmites. This invasive subspecies has been displacing native 

Phragmites (Saltonstall, 2002) as well as other wetland vegetation species (Lavoie, 

2008). The effects of the invasion by Phragmites on fish, birds, and mammals is mixed 

and not well studied in freshwater wetlands (Lavoie, 2008).   
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An important tool for the management of invasive wetland vegetation is accurate and up-

to-date vegetation maps (Parker Williams and Hunt, 2002). If the location and abundance 

of the species of interest is known, then an effective plan for controlling the spread can be 

implemented. Traditionally on-ground field surveys have provided information about 

wetland vegetation species distribution and abundance. However, this method is time 

consuming and labour intensive (Laba et al., 2008), especially when conducted over large 

areas. Also, field surveys may not be feasible due to restrictions on accessibility posed by 

the wetland environment. Remote sensing provides an alternative to on-ground field 

surveys.  Imagery from aerial or satellite platforms can be captured over large areas, and 

can make repeat observations of the same area (Ozesmi and Bauer, 2002). This makes 

remote sensing imagery an ideal source for mapping wetlands for widespread 

management of invasive plant species such as Phragmites (Adam et al., 2010).  

Mapping of Phragmites using satellite remote sensing in North American freshwater 

coastal wetlands and estuarine marshes has been limited. Laba et al. (2008) used a single-

date QuickBird-2 image from August and the maximum likelihood classifier to map 

Phragmites in an estuarine marsh. User’s and producer’s accuracy of Phragmites was 

76% and 100% respectively. Ghioca-Robrecht et al. (2008) conducted an unsupervised 

classification using multi-date QuickBird-2 multispectral imagery (April and September) 

of Erie Marsh, one of the largest marshes in Lake Erie. Phragmites was mapped with a 

user’s and producer’s accuracy of 76% and 53% respectively. Separation of Phragmites 

and other wetland plant species from multi-date imagery alone was not good. Individual 

plant species can be mapped from multi-date high resolution multispectral imagery with 

high accuracy if additional data are included. Gilmore et al. (2008) used LiDAR along 

with multi-temporal QuickBird-2 high spatial resolution imagery to map three wetland 

vegetation species Phragmites, Typha spp., and Spartina patens in a brackish tidal marsh. 

Based on a fuzzy accuracy assessment, Phragmites was mapped with 97% accuracy.  

However, LiDAR data is expensive for use in widespread wetland vegetation mapping on 

an annual basis. Also, multiple images increase the cost and may not be available due to 

weather conditions or satellite tasking restrictions.   
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Therefore, there is some room for improvement for mapping Phragmites using single-

date satellite imagery. Individual land managers are limited in resources and expertise, 

therefore obtaining data gathered from multiple satellites, from multiple seasons, or non-

optical data such as LiDAR may not be possible. An accurate method of mapping 

Phragmites from single-date imagery is a more attractive mapping solution. 

Worldview-2 (WV-2) is a recently launched, high resolution satellite with eight 2 metre 

spatial resolution multispectral bands and a 0.5 metre Panchromatic band. WV-2 contains 

a Coastal Blue, Yellow, Red-Edge, and a second Near Infrared band (NIR2) in addition 

to the Blue, Green, Red, and Near Infrared (NIR1) bands of other high resolution 

multispectral satellites such as IKONOS-2 and QuickBird-2. Despite the increased spatial 

and spectral resolution, the WV-2 satellite has similar imaging capabilities as QuickBird-

2 and IKONOS-2 including image acquisition size, large area and long strip collection, as 

well as stereo imaging abilities (refer to eoPortal Directory, 2012). With the launch of 

Worldview-3 in 2014, the Worldview constellation will be able to image a location on the 

earth’s surface every two days (eoPortal Directory 2012).  

WV-2 imagery has not been previously used for mapping individual wetland species. The 

goal of this research was to evaluate the use of WV-2 for mapping the invasive emergent 

species Phragmites in a Great Lakes coastal wetland. It was hypothesized that the eight 

multispectral bands possessed by Worldview-2 would increase classification results 

compared with other multispectral sensors (such as IKONOS-2, QuickBird-2) containing 

only four bands. Object-based methods were developed for both four and eight band 

imagery and the results compared. This comparison showed the advantage of using the 

full eight bands provided by the Worldview-2 sensor.  
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2.2 Study Area 

Walpole Island First Nation (WIFN) was chosen as the study area for this investigation 

(Figure 2.1). It is located at the delta of the St. Clair River (82° 30’ W and 42° 33’ N) in 

Lambton County, Ontario, Canada. Two dominant wetland vegetation cover types are 

present in these extensive (greater than 10,000 ha) coastal freshwater marshes.  Typha 

spp. are the dominant vegetation found in the marshes. Other native vegetation that are 

sparsely distributed included Wild Rice (Zizania palustris), Bulrush (Scirpus spp.), 

Pickerelweed (Pontederia cordata), Yellow Pond Lily (Nuphar variegatum), and 

Fragrant White Water Lily (Nymphaea odorata). An invasive wetland plant, Phragmites, 

is also present and it forms dense monotypic stands and displaces native vegetation. 

Phragmites is found within the diked marsh, in roadside ditches, directly beside road 

edges, and on the banks of rivers and streams (personal observation). WIFN marshes are 

the second most important staging area for waterfowl in southern Ontario (McCullough, 

1985). Phragmites invasion of native vegetation species represents a loss of habitat for 

waterfowl and other wildlife.   

Phragmites colonization has been a problem in North America and the Great Lakes 

region. Wilcox et al. (2003) noted an expansion of Phragmites at Long Point, Canada on 

Lake Erie. Digital mapping of aerial photographs revealed an exponential increase in 

non-native Phragmites from 1995 to 1999, with 33% of this change coming at the 

expense of Typha spp. (Wilcox et al. 2003). The marshes of WIFN have also been 

colonized by Phragmites. A previous study by Arzandeh and Wang (2003) detected a 

change of 1000 ha from Typha spp. to Phragmites between 1992 and 1998.   
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Figure 2.14 The study site of Walpole Island. The St. Clair River empties into Lake St. Clair here and is the 
site of one of the largest remaining coastal marshes in the southern Great Lakes region. 

2.3 Imagery 

The WV-2 satellite is a promising new source of imagery to test for this application due 

to its expanded spectral capabilities in the near infrared region. The WV-2 satellite 

collects three bands in the near infrared: Red-Edge, NIR1, and NIR2. Gilmore et al. 

(2008) found that Phragmites has a high NIR response late in the autumn and suggest 

that a single date of imagery captured during this time could be used to map this species. 

A Worldview-2 image collected on October 17, 2010 with 0% cloud cover was used for 

this study. The data were 11-bit radiometric resolution and were geo-referenced to the 

Universal Transverse Mercator (UTM) coordinate system, Zone 17 North, North 

American Datum 1983 (NAD83) by the image provider MacDonald, Dettwiler, and 

Associates Ltd., Richmond, British Columbia. Details of the individual spectral bands are 
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found in Table 2.1. The image is centered on Squirrel Island and includes the east side of 

Bassett Island and the west portion of the main Walpole Island (Figure 2.1).  

Table 2.1 Comparison of the spectral bands captured by high-resolution 

multispectral satellites IKONOS-2 and Worldview-2 

  Band Wavelength Coverage (nm) 

Spectral Band Band Code IKONOS-2* Worldview-2† 

Coastal Blue CB - 400-450 

Blue B 445-516 450-510 

Green G 506-595 510-580 

Yellow Y - 585-625 

Red R 632-698 630-690 

Red-Edge R-E - 705-745 

Near Infrared 1 NIR1 757-853 770-895 

Near Infrared 2 NIR2 - 860-1040 

Panchromatic P 526-928 450-800 

*Satellite Imaging Corporation (2012), †eoPortal (2012) 

2.4 Methods 

An overview of the method is presented here. Pre-processing of the imagery included 

pansharpening, which is an image fusion technique using the panchromatic band to 

increase the spatial information in the coarser multispectral bands.  Band indices such as 

NDVI and NDWI were calculated to add additional information for classification.  An 

object-based classification method was developed to separate the objects into six classes.  

Three classes not associated with marsh vegetation; Agricultural Fields, Built-Up, and 

Water, were extracted first using rules.  The remaining unclassified vegetation was 

separated using the nearest-neighbor classifier into three classes, Native Marsh 

Vegetation, Phragmites, and Tree/Grass.  Finally, rules were created to classify shadow 
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objects correctly, and to reassign obviously misclassified objects.  The detailed method is 

explained below in the following sections. 

2.4.1 Pre-processing 

Image fusion is a commonly used method to increase the information in an image. The 

coarser multispectral bands can be enhanced with the greater spatial information provided 

by the finer resolution panchromatic band. In this study, the Smoothing Filter-based 

Intensity Modulation (SFIM) image fusion technique described by Liu (2000) was used 

to create a new dataset of 0.5 metre spatial resolution. These pansharpened bands and the 

original panchromatic band were used as input layers for classification. 

2.4.2 Indices Calculation 

Vegetation indices calculated from specific image bands are commonly used in 

vegetation classification. The simple ratio (SR) and the normalized vegetation difference 

index (NDVI) are two vegetation indices that are widely used in vegetation classification 

(Jensen, 2005). The vegetation indices used in classification of the Worldview-2 image 

are presented in Table 2.2.   

Table 2.2 Spectral indices used for additional information for image classification. 

 Index 

Method Simple Ratio 
(SR) 

SR = R/NIR 

Normalized Difference 
Vegetation Index (NDVI) 

NDVI = (NIR-R)/(NIR+R) 

Normalized Difference Water 
Index (NDWI) 

NDWI = (B-NIR)/(B+NIR) 

Four Band SR = R/NIR1 NDVI = (NIR1-R)/(NIR1+R) NDWI  = (B-NIR1)/(B+NIR1) 

Eight Band SR= R/NIR2 NDVI = (NIR2-R/(NIR2+R) NDWI = (CB-NIR2)/(CB+NIR2) 
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2.4.3 Worldview-2 Classification 

The overall purpose of the object-based classification of Worldview-2 imagery was to 

extract Phragmites cover. However, the method developed used detailed steps for the 

classification of six main land cover types: Agricultural Fields, Built-Up, Native Marsh 

Vegetation, Phragmites, Tree/Grass, and Water. The extraction of six classes was done 

for two reasons. First, more accurate classification of Phragmites may be possible when 

neighbouring objects are classified accurately, since context, such as class of 

neighbouring objects, within the scene can be used as additional classification 

information. Second, it is important to understand how the invasion of Phragmites 

changes with time.  By developing a method which provides more classes than a simple 

binary Phragmites and Non-Phragmites map, specific changes regarding what land cover 

types are replaced by Phragmites over time will allow for more detailed change 

detection. 

An overview of the object-based method is shown in Figure 2.2. Changes to default shape 

or compactness values (0.1 and 0.5 respectively) did not improve object segmentation of 

any class so these values were left as default for all segmentations. The overall 

classification schemes for the object-based methods were very similar. The order in 

which the classes were extracted from the imagery was important and differed slightly 

between four and eight band methods. 



24 

 

 

Figure 2.25 An overview of the object-based classification method. Using a rules-based classification, all 
objects were assigned to five classes: Agricultural Fields, Water, Built-Up, Shadowed Objects, and Non-
Shadowed Vegetation. The nearest-neighbor classifier further separated Non-Shadowed Vegetation into 
three classes: Native Marsh Vegetation, Phragmites, and Tree/Grass. Rules were developed to assign 
Shadowed Objects to their correct class. 
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2.4.3.1 Classification of Agricultural Fields 

Agricultural Fields had two different appearances in the imagery and required two 

separate sets of rules to extract them.  Bright appearing Agricultural Fields represented 

bare soils or harvested fields. Dark appearing Agricultural Fields had the mature crop still 

present as the fields had not yet been harvested. Because of the spectral differences, the 

fields were extracted using different rules. The first step was to segment the image into 

image objects. To get accurate bright field image objects, the simple ratio (SR) layer was 

utilized for the segmentation. This band was ideal for creating an accurate boundary 

between Agricultural Fields and vegetation surrounding the fields. 

Of concern along the edges of these Agricultural Fields were shadows cast by trees. The 

SR layer reduced the effects of shadows and allowed better delineation of field objects at 

field edges due to strong contrast between fields and surrounding vegetation (Figure 2.3). 

The multiresolution segmentation algorithm was used for creating bright field objects. 

The optimal scale value was determined by gradually decreasing the scale value until the 

edges of fields were outlined accurately. A large scale value results in field objects which 

cross field boundaries. Reducing the scale value further makes objects smaller and more 

difficult to separate from other classes. For example, shadows within bright Agricultural 

Fields become confused with water (Figure 2.3(b)), and small bright field objects become 

confused with roads (Figure 2.3(e)). To classify bright Agricultural Field objects, a 

custom “brightness” criterion was used as well as NDWI values. Brightness was 

calculated as the mean of CB, B, G, Y, and R layer values. Bright Agricultural Fields 

were extracted by thresholding high brightness values. Some areas of water were 

misclassified as bright Agricultural Fields so objects with high NDWI values were 

removed. 
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Figure 2.36 Image segmentation of Agricultural Fields. (a) A subset of the Worldview-2 image focused on 
bright and dark appearing Agricultural Fields outlined in black. (b) When spectral bands in the visible range 
are used for segmentation, a shadow object (black) interferes with the field boundary. (c)  Using NDVI 
results in objects that contain both field classes within the same object (black). (d) Using a large scale value 
misses individual trees within Agricultural Fields. Using too small a scale value leads to confusion between 
bright Agricultural Fields and roads during classification (two objects with black outline) (e). By using the 
correct scale value and the simple ratio layer for segmentation, both bright and dark Agricultural Field 
boundaries are accurately represented by the image objects (f). 
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Although the boundaries of the current objects separate fields from other classes, these 

objects were not suitable for distinguishing dark Agricultural Fields from Native Marsh 

Vegetation objects. Both size and spectral properties of these objects were very similar. 

To separate these two classes, the objects were modified by the spectral difference 

segmentation algorithm. This algorithm creates a new image object layer by merging 

neighbouring objects based on a maximum spectral difference threshold. If the spectral 

difference is below this threshold, the two image objects are merged, otherwise they 

remain separate objects. Image layers and weights that influence the spectral threshold 

are specified. The spectral difference segmentation was applied to all unclassified objects 

in the existing image object level. The SR layer was given a weight of 1 and the 

maximum spectral difference threshold was set to 0.35. This threshold value allowed 

neighbouring dark field objects to merge without merging with non-field objects. Dark 

Agricultural Field objects were still spectrally similar to Native Vegetation objects. 

Specific rules regarding spectral properties and size were employed to discriminate 

between these classes. Dark Agricultural Field objects were found to have NDVI values 

within a specified range, between 0.16 and 0.25. A size threshold was applied to 

eliminate any remaining Native Vegetation objects. Agricultural Fields were found to 

have characteristic sizes whereas other land cover types were quite large after the spectral 

difference segmentation.  Both bright and dark fields were assigned to the Agricultural 

Fields class. Some Agricultural Fields contained areas of higher NDVI values such as 

weed areas (personal observation). A rule was defined that assigned objects with very 

high relative border to Agricultural Fields and high NDVI values to the Agricultural Field 

class. All unclassified objects were then merged for further processing.   
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2.4.3.2 Classification of Water 

Water objects were created using the multiresolution segmentation algorithm and the 

NIR1, NIR2, R-E, SR, NDVI, and NDWI layers. All layers were given an equal weight 

and a scale value of 50 was used (Figure 2.4). The optimal scale value was found by 

gradually decreasing the scale value until all small patches of water in the marsh were 

separated from vegetation. Smaller scale values increased processing time without any 

visibly noticeable increase in water classification. Confusion occurred between objects of 

the shadow and water classes.  The image was captured in October when the sun angle is 

low in the Northern hemisphere which resulted in tall features such as trees, buildings, 

and Phragmites casting shadows. Shadows were confused with water because they have 

low NDVI values. Also, water objects displayed increased NDVI values and lower 

NDWI values if they contain floating plants or aquatic plants that reach the surface. To 

avoid confusing shadow and water, the value for NDWI was increased slowly until 

shadow objects were unselected and only water objects remained. Not all water objects 

were selected using the NDWI threshold rule. However, objects surrounding classified 

water can be tested to see if they belong to the water class: objects with a high mean 

NDWI value that border existing water objects are water objects and are assigned to the 

water class. This second step was repeated until no changes occurred to ensure all 

connected water was identified. Unclassified objects were merged in preparation for 

further processing. 
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Figure 2.47 Image segmentation of Water. The most suitable scale value for water was determined by 
examining small water features within the marsh (a). Using a large segmentation scale value results in an 
object (black outline) that cannot accurately represent small water areas (b). A scale value of 50 was 
selected for the segmentation of water (c). Using a smaller scale value results in an increased number of 
objects without any visible improvement in water object outlines (d). 
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2.4.3.3 Classification of Built-Up 

The Built-Up class refers mainly to roads and other manmade features such as buildings. 

These features do not cover a large area of the image but detailed steps are needed to 

extract them. The panchromatic layer was chosen as the segmentation layer for Built-Up 

for two reasons. First, roads appear very bright in the panchromatic layer, which makes 

them easily separable from surrounding vegetation on either side which appears darker. 

Secondly, the panchromatic layer was acquired at 0.5 metre resolution which allows for 

very precise road objects to be made at the road/vegetation boundary (Figure 2.5a) and 

b)). Whereas had the multispectral layers been used, they are only simulated 0.5 metre 

resolution and the road/vegetation boundary becomes less defined (Figure 2.5c) and d)). 

The scale value was determined by slowly decreasing the scale value until road objects 

were precisely defined. Built-Up objects were created by using the multiresolution 

segmentation algorithm, and a scale value of 100. A few thresholds and contextual rules 

were applied to extract road objects. The majority of road objects were extracted with a 

threshold of high mean yellow values. Iterating two contextual/threshold rules, objects 

bordering roads with high mean yellow values, and objects bordering roads with high 

mean blue values, identified the remaining road objects. 
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Figure 2.58 Image segmentation of Roads. The panchromatic layer is a true 0.5 metre spatial resolution and 
the road has a smooth edge (a). Therefore, road objects created from the panchromatic layer are more 
representative of the road’s boundary (b). Although the road is highly visible in the pansharpened layers (c), 
the edge appears jagged. This leads to less accurate road object boundaries (d). 

2.4.3.4 Separation of Vegetation and Shadowed Objects 

At this stage, the unclassified areas belonged to the vegetation class. However, shadows 

cast onto vegetation present a problem for classification since the shadowed vegetation 

does not reflect in the same manner as illuminated vegetation. Therefore, shadows on 

vegetation were separated from brightly illuminated vegetation before classifying 

vegetation. Unclassified objects were segmented using the multiresolution segmentation 

algorithm with scale value of 40, and R-E, NIR1, NIR2, NDVI
 
, SR image layers with 

equal weights. These layers were best for creating shadow image objects as the shadow 

outline was well defined. The brightness threshold (average mean of CB, B, G, R) was 

used to separate shadowed and illuminated vegetation. The brightness value was slowly 
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decreased until only illuminated vegetation remained. Extracted shadow objects were 

later assigned to the correct vegetation class using post-processing steps.   

2.4.3.5 Nearest-Neighbor Classification of Phragmites and Other 
Vegetation 

Following the classification of Agricultural Fields, Water, Built-Up, and Shadow on 

Vegetation, only illuminated vegetation remained. Vegetation classes included 

Phragmites, Native Marsh Vegetation, and Tree/Grass. Phragmites occurs along the 

shoreline of lakes and rivers, within the marsh, within drainage ditches and growing right 

up to the edge of roads. Native Marsh Vegetation is restricted to drainage ditches, within 

the marsh, and to the shoreline of lakes and rivers. Trees occur along dikes, roads, on 

residential properties and in a forest in the northeast corner of the image. Grass is 

restricted to residential properties where it is manicured and maintained at a short height. 

To segment vegetation into objects, the eight multispectral layers, and NDVI layer were 

used as image layers. This allowed the multiresolution segmentation algorithm to be 

guided by all the spectral information available from the Worldview-2 imagery. The scale 

value was determined by slowly decreasing the value until objects contained one 

vegetation type only. Next a nearest neighbor classification was performed on the 

vegetation objects. The nearest neighbor classifier works in three steps. First, samples 

were chosen for each class by visually interpreting the imagery. Since Phragmites had 

high spectral variation, multiple training classes were needed to map its cover accurately. 

Alternatively, Trees, Grass, and Native Marsh Vegetation remained spectrally consistent 

throughout the image and only one training class was needed for each of these respective 

classes.  Second, image layers used by the classifier to separate these classes are 

specified. The mean value of all image layers was considered for the eight band imagery 

classification. The optimal combination of input layers to maximize class separability 

was determined by the Feature Space Optimization feature in eCognition (Trimble 

GeoSpatial, Munich, Germany). Feature space optimization uses the class training 

samples to determine the optimal layer combination which maximizes class separability. 

Training samples were adjusted and the nearest neighbor classification repeated until the 

classification results agreed best with the visual interpretation of the imagery. 
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2.4.3.6 Post-Processing 

After classification of the six classes, obvious errors could be corrected. For example, 

Native Marsh Vegetation objects that bordered an Agricultural Field were reassigned to 

Agricultural Field. Tree objects with a high length-to-width ratio were Phragmites 

objects that occurred along linear features such as roads, drainage channels, etc. and were 

reassigned to the Phragmites class. Trees with a high relative border to Phragmites were 

assigned to Phragmites. This correctly reassigned tree objects that were misclassified 

within the marsh area.  Now that all six classes were separated, shadows could be 

assigned to their appropriate classes. For example, shadows with a high relative border to 

trees most likely represented shadows in the forest area and were assigned to the tree 

class. The remaining shadow on vegetation was assigned to the Phragmites class.  

2.4.4 Accuracy Assessment 

Ideally, a large number of points would be visited in the field and the land cover surveyed 

prior to image classification. However, Great Lakes coastal freshwater wetlands provide 

a unique challenge for conducting field work since water levels do not fluctuate in the 

short term. This is a major difference between Great Lakes coastal wetlands and coastal 

estuarine environments where field work is possible during low tide (e.g. Gilmore et al., 

2008). It was not possible to visit a large number of points in the field due to time and 

equipment (e.g. shallow bottom boats) constraints. 

Instead, an accuracy assessment was completed by visually interpreting randomly 

selected points from imagery sources. The number of random sample points was 

determined by an equation based on the multinomial distribution (Jensen, 2005).  The 

required number of sample points was calculated as follows: 

N = BΠi(1-Πi)/bi
2          

  (1) 

Where Πi is the proportion of a population in the ith class out of k classes that has the 

proportion closest to 50%, bi is the desired precision (α = 0.05, in this study) for this 

class, B is the upper (α/k)  100
th

 percentile of the chi square (χ
2
) distribution with 1 

degree of freedom, and k is the number of classes (Jensen, 2005). Phragmites covers the 
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proportion of the image closest to 50% (roughly 40%) therefore this area percentage was 

used. A minimum of 677 points were required, so 707 random sample points were chosen 

to fulfill this criteria. Individual sample points were interpreted by visual inspection as 

belonging to one of the six land cover classes. Sample points were assigned their class 

from experience gained from fieldwork completed in mid-August and early October 

2011, and Southwestern Ontario Orthophotography Project (SWOOP) 20cm aerial true 

colour imagery from April 2010. To increase the objectivity of the accuracy assessment, 

a majority vote of the sample points was conducted (Lehrbass and Wang, 2010). Each 

sample point was interpreted separately by three people. The sample point was assigned 

to the class for which the majority of the interpreters had assigned it. The sample point 

was assigned to a class if at least two out of three interpreters had agreed in their 

interpretation. Sample points that were assigned to a different class by all three 

interpreters were discarded. In the end, 700 sample points remained for the accuracy 

assessment. A confusion matrix and accuracy statistics were used to compare the 

accuracy of the classifications. Statistics produced included the Kappa statistic, overall, 

user’s and producer’s accuracy for the six classes. 

2.5 Results and Discussion 

2.5.1 Land Cover Estimates and Distribution 

The overall area covered by the six classes mapped by the proposed eight band object-

based method is shown in Table 2.3. The invasive wetland plant species Phragmites was 

the dominant vegetation present, covering approximately 43% of the total study area. 

Native Marsh Vegetation only accounted for approximately 22.2% of the area. Of the 

area occupied by wetland vegetation (not Agricultural Fields, Built-Up, Tree/Grass, or 

Water), Phragmites and Native Marsh Vegetation occupy 64%, and 36% respectively. 

This translates to approximately 1.8 times more Phragmites than Native Marsh 

Vegetation. In a study of expansion of Phragmites at Long Point, Lake Erie, Wilcox et al. 

(2003) found Phragmites expansion occurred at an exponential rate between 1995 and 

1999. One of the most frequent plant communities replaced by Phragmites was Typha 

spp. A previous study of Walpole Island by Arzandeh and Wang (2003) also found that 

Phragmites increased at the expense of Typha spp. In 1992, Typha spp. were the more 
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abundant wetland vegetation type covering approximately 89% of the total area 

compared with 11% for Phragmites. By 1998, Phragmites had more than doubled its 

area, and Typha spp. covered only 73% of the wetland area. In this study that focused on 

a subset area of WIFN coastal marshes, the proportion of Phragmites to Typha was found 

to be 64 to 36. This may show that Phragmites has continued to expand over the past 14 

years. 

Table 2.3 Land cover class areas mapped using method 2: eight band imagery and 

object-based method. 

Class Area (ha) Percent of study area 

Agricultural Fields 252.2 6.3 

Built-Up 1.3 0.0 

Native Marsh Vegetation 894.1 22.2 

Phragmites 1729.7 43.0 

Tree/Grass 81.9 2.0 

Water 1065.7 26.5 

By visually comparing the map from Arzandeh and Wang (2003) with the map generated 

by the eight band object-based method, the areas of expansion are very noticeable. Native 

Marsh Vegetation has almost completely been replaced by Phragmites along the 

shorelines of the Bassett and Chematogan channels, and the shoreline of Goose Lake. 

The abundance of Phragmites and Native Marsh Vegetation cover for the three islands is 

presented in Table 2.4. On Bassett Island, a large area of Native Marsh Vegetation still 

remains within the diked marsh. However, Phragmites is present the full length of the 

edge of the dike, along the Bassett Channel. Smaller patches of Phragmites are also 

spread throughout large areas of Native Marsh Vegetation. Overall, Native Marsh 

Vegetation covers 49.5% of the marsh area on Bassett Island while the rest is Phragmites. 

On Squirrel Island, Phragmites cover is 68% and inhabits almost the entire southern half 

of the marsh. Some small areas of Native Marsh Vegetation remain scattered throughout. 

In the northern half, the diked marsh still contains large areas of Native Marsh Vegetation 
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while the majority of Phragmites is restricted to the perimeter of the diked area. On 

Walpole Island, Phragmites is well established in all areas of the marsh. The proportion 

of Native Marsh Vegetation to Phragmites is 29 to 71% respectively. Most of the Native 

Marsh Vegetation is found in the center of the marsh. 

Table 2.4 Area covered by wetland vegetation for the WIFN study area mapped 

using the eight band imagery and object-based method. 

 Bassett Island Squirrel Island Walpole Island 

Class Area (ha) % Area (ha) % Area (ha) % 

Native Marsh Vegetation 168.6 49.5 441.7 32.0 303.0 29.0 

Phragmites 172.3 50.5 744.9 68.0 743.5 71.0 

2.5.2 Classification Methods 

To evaluate the effectiveness of the eight band object based method, three other methods 

were also tested. Methods 1 and 2 used object-based methods for classification, while 

Methods 3 and 4 used the maximum likelihood classifier (MLC), a pixel-based method. 

Method 1 and 3 used a subset of Worldview-2 layers simulating the four multispectral 

band set (B, G, R, and NIR) acquired by traditional high resolution multispectral 

satellites. Method 2 and 4 used the full eight band capabilities of the Worldview-2 

satellite. The maximum likelihood classifications used the same band set that were 

utilized for the object-based classifications. Training samples for MLC were chosen for 

the six different land classes from knowledge gained from fieldwork. The same training 

samples were used for both four and eight band per-pixel based classifications.    

2.5.2.1 Four Band Object-Based Versus Per-Pixel Classification 

The four band object-based classification had an overall accuracy of 92.7% and a 19.7% 

higher overall accuracy than the four band per-pixel of 73.0% (Table 2.5). Although six 

classes were trained for the four band per-pixel, the majority of pixels were mapped as 

one of four classes: Built-Up, Native Marsh Vegetation, Phragmites, and Water (Figure 

2.6(c)). The majority of errors occurred between classes with similar spectral signatures. 

Bright Agricultural Fields which represented bare soil or harvested fields were confused 
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with Built-Up which mostly represented roads. Dark Agricultural Fields were highly 

confused with Native Marsh Vegetation.  This is expected as both classes had similar 

spectral values and overall appearance. Tree/Grass was highly confused with Phragmites 

most likely due to both classes maintaining high green, NIR and NDVI values at the time 

of image acquisition. Alternatively, the four band object-based classification showed 

much better separation of all six classes (Figure 2.6(a)). The biggest improvement 

occurred in the Agricultural Field classes. Bright Agricultural Fields were correctly 

separated from Built-Up. Dark Agricultural Fields were more accurately separated from 

Native Marsh Vegetation which resulted in higher producer’s and user’s accuracies for 

Agricultural Fields and higher user’s accuracies for Native Marsh Vegetation. The four 

band object-based method was also more accurate in separating Phragmites from 

Tree/Grass. Although object-based methods were successful in reducing the Tree/Grass 

commission error, Tree/Grass omission error was still high due to large areas of trees 

being mapped as Phragmites in the forested area in the northeast corner. Overall, object-

based methods improved classification accuracy of four band imagery. Object-based 

methods are important for classifying imagery when the spectral content available is low. 

The addition of image objects, image object hierarchy, and rules-based classification 

greatly improved image classification. Despite these improvements, object-based 

methods still struggle with classification when two classes, such as Phragmites and 

Tree/Grass in this case, are spectrally similar and rules to separate them are complex. 

Overall, the four band object-based classification was better at separating all six classes 

due to the ability to define very detailed rules to separate spectrally similar classes. 

Increased accuracy is also likely due to classification of larger image objects compared to 

individual pixels which reduced the salt and pepper effect that is a common trait of the 

per-pixel classifier. 

2.5.2.2 Eight Band Object-Based Versus Per-Pixel Classification 

Similar to the four band results, the eight band object-based classification outperformed 

the eight band per-pixel classification. The eight band object-based classification had an 

overall accuracy of 94.0% and a 10.6% higher overall accuracy than the eight band per-

pixel of 83.4% (Table 2.5). Agricultural fields were mapped with high producer’s and 
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user’s accuracies of 78.0% and 86.7%, respectively, however the weedy areas within 

fields were mapped inaccurately as Phragmites for the per-pixel classification. The eight 

band object-based classification handled this problem with some rules to assign objects 

with high NDVI within field objects to the correct Agricultural Field class. There was 

some confusion between Built-Up and Bright Agricultural Fields for the eight band per-

pixel. Despite the increased spectral information provided by the eight bands, there was 

still not enough information to distinguish field soil from the spectrally similar road 

materials. The eight band object-based classification took care of this problem with some 

rules to differentiate objects of these two classes. The Tree/Grass class was well mapped 

in the forest area of the eight band per-pixel however in the marsh area Phragmites was 

sometimes mapped as Tree/Grass (Figure 2.6(d)). For the eight band object-based 

classification, rules could be defined to correct these Phragmites objects misclassified as 

Tree/Grass (Figure 2.6(b)). There was confusion between Native Marsh Vegetation and 

Phragmites in the per-pixel classification.  The maximum likelihood per-pixel classifier 

tended to classify Native Marsh Vegetation as Phragmites. This could be due to mixing 

between these two land covers and misclassification of individual pixels at mixing 

boundaries.  On the other hand, the object-based classification resulted in fewer Native 

Marsh Vegetation objects being confused with Phragmites. This could be due to 

individual image objects being more accurate where these two plant species mix 

compared to classifying individual pixels in these areas.  Again, object-based 

classification was more accurate. Combining increased spectral information and object-

based methods allowed for the overall highest classification accuracy as well as the 

highest classification accuracies for the wetland vegetation classes of interest.  

2.5.2.3 Pixel-Based Classification – Four Versus Eight Band 

The differences between using four and eight spectral bands for per-pixel classification 

were tested with Methods 3 and 4 respectively. Classification of eight bands resulted in 

an overall accuracy 10.4% higher than using only four bands (Table 2.5). This result is 

expected as additional spectral information allows for the separation of spectrally similar 

classes. Most importantly was the increase in separation of the Tree/Grass and 

Phragmites classes when eight bands were used for classification. The red-edge and 
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second near infrared (NIR2) layers likely contributed the most to this separation since 

more information was available in the electromagnetic region where vegetation differs 

spectrally. The extra bands were also important for distinguishing between Native Marsh 

Vegetation and Agricultural Fields where mature crops were still present.  These two 

results highlight the importance of the additional spectral bands provided by the 

Worldview-2 satellite when classifying wetland vegetation in a complex environment 

such as a Great Lakes coastal marsh where humans have changed the natural landscape 

(addition of agricultural fields) and distinct vegetation communities reside in close 

proximity (upland deciduous forest). Traditional four band high resolution sensors may 

not be able to provide the spectral information needed for accurate classification in this 

complex environment.   

2.5.2.4 Object-Based Classification – Four Versus Eight Band 

The differences between using four and eight spectral bands for object-based 

classification were tested with Methods 1 and 2 respectively. The four band classification 

had an overall accuracy of 92.7%, while the eight band had a slightly higher accuracy of 

94.0% (Table 2.5). There were no major differences in the accuracies of the Agricultural 

Fields, Built-Up, or Water classes as both object-based methods applied here resulted in 

high accuracies for these three classes. Similarly, both wetland classes achieved similar 

high overall accuracies for both methods. Four band Phragmites producer’s accuracy was 

slightly higher at 95.8%, compared to 95.5% for eight band. Four band Phragmites user’s 

accuracy was slightly lower at 90.8% compared to 93.2% for eight band. Four band 

Native Marsh Vegetation producer’s accuracy was slightly higher at 88.8% compared to 

87.5% for eight band. Four band Native Marsh Vegetation user’s accuracy was slightly 

lower at 87.7% compared to 90.3% for eight band. However, the main difference was 

between the accuracies for the Tree/Grass class for the respective methods.  Eight band 

had a much higher producer’s accuracy (50 versus 95%). The user’s accuracy however, 

was slightly higher for four band than eight (100 versus 90%). These differences are 

evident when comparing the two classifications (Figures 2.6(a) and (b)). The forest in the 

northeast corner of the study area is more accurately mapped by eight band as the 

forested area is highly confused with Phragmites in four band. In the case of Tree/Grass 
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classification, the extra spectral bands in eight band seem to be an advantage in 

discriminating between Tree/Grass and Phragmites.  The eight band method was able to 

separate more Tree/Grass objects from Phragmites objects initially. This allowed for 

better assignment of shadows during the last stage of classification.  The final rules 

assign shadow objects based on the surrounding objects. More accurate classification of 

Tree/Grass objects initially result in more shadow objects be correctly assigned to 

Tree/Grass in eight band. Alternatively for four band, more Tree/Grass in the forest was 

initially classified as Phragmites which resulted in more shadow objects being incorrectly 

assigned to the Phragmites class. For other classes, the extra spectral bands did not have 

a large impact on overall classification accuracy. Instead, the object-based rules that were 

developed for four band were able to separate these classes with high accuracy. 

Therefore, the extra spectral bands may be more useful when the goal is to separate more 

vegetation classes than was attempted in this study. 
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Table 2.5 Accuracy statistics for the four classification methods. 

 Method 

 1 2 3 4 

Producer’s Accuracy 4 Band, OB 8 Band, OB 4 Band, MLC 8 Band, MLC 

Agricultural Fields 100 98.0 0.0 78.0 

Built-Up 0.0 50.0 100.0 0.0 

Native Marsh Vegetation 88.8 87.5 89.4 74.4 

Phragmites 95.8 95.5 73.7 89.3 

Tree/Grass 50.0 95.0 35.0 100.0 

Water 95.0 96.7 81.6 82.7 

     

User’s Accuracy     

Agricultural Fields 100 96.1 0.0 86.7 

Built-Up 0.0 100.0 5.9 0.0 

Native Marsh Vegetation 87.7 90.3 61.4 80.6 

Phragmites 90.8 93.2 85.2 86.6 

Tree/Grass 100.0 90.5 38.9 33.9 

Water 98.3 98.3 100.0 100.0 

Overall Accuracy 92.7 94.0 73.0 83.4 

Kappa 0.896 0.915 0.625 0.768 
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Figure 2.69 Worldview-2 object-based and per-pixel classification results. Land cover map of the study area 
generated by (a) Method 1 – object-based classification of four multispectral bands, (b) Method 2 – object-
based classification of eight multispectral bands, (c) Method 3 – pixel-based classification of four 
multispectral bands, (d) Method 4 – pixel-based classification of eight multispectral bands.   
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2.5.2.5 Phragmites and Non-Phragmites Classification 

To assess which method was most accurate in extracting Phragmites, the six class 

classification was aggregated into a binary classification containing only Phragmites and 

a single Non-Phragmites class made up of the other five classes.  The producer’s, user’s, 

and overall accuracies as well as the Kappa statistic were calculated for this new 

classification (Table 2.6).  Following previous results based on the six class 

classification, Phragmites was most accurately extracted using the eight band object-

based method.  With the exception of the four band object based producer’s accuracy, 

Phragmites user’s and producer’s accuracies for eight band object based were higher than 

all of the other methods tested. Finally, the Kappa statistic for method 2 is the highest of 

the four methods tested meaning that reference data and derived classification agree 

strongly.  Classification of Phragmites was most accurate using the object based method 

combined with the full eight band set of the Worldview-2 sensor. 

Table 2.6 Accuracy statistics for the four classification methods and binary 

Phragmites versus Non-Phragmites classification. 

 Method 

 1 2 3 4 

Producer’s Accuracy 4 Band, OB 8 Band, OB 4 Band, MLC 8 Band, MLC 

Phragmites 95.8 95.5 73.7 89.3 

Non-Phragmites 93.2 95.1 91.0 90.3 

     

User’s Accuracy     

Phragmites 90.8 93.2 85.2 86.6 

Non-Phragmites 97.0 96.8 83.1 92.3 

Overall Accuracy 94.3 95.3 83.9 89.9 

Kappa 0.883 0.903 0.660 0.792 
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2.6 Conclusions 

Four different classification methods were tested on a Worldview-2 image to classify six 

land cover types with an objective of accurately mapping the invasive wetland plant 

Phragmites. Four and eight band datasets were classified using the per-pixel maximum 

likelihood classifier and object-based methods. Three major conclusions have been 

determined as a result.  First, object-based methods resulted in higher classification 

accuracy than their respective per-pixel maximum likelihood classifications.  Using four 

band imagery, the overall classification accuracy for the object-based method was 19.7% 

higher than per-pixel MLC. Similarly, eight band imagery and object-based classification 

resulted in an increase of 10.6% in overall classification accuracy over eight band per-

pixel MLC.  Therefore, object-based methods were superior than per-pixel MLC for 

classification. Second, for both per-pixel MLC and object-based methods, eight band 

imagery resulted in higher classification accuracy than four band imagery. Eight band 

per-pixel MLC was 10.4% overall more accurate than four band, while eight band object-

based was 1.3% overall more accurate.  Although the eight band object-based method did 

not result in a large increase in accuracy over the four band object-based method, the 

accuracy of the vegetation classes was improved by using the eight band imagery and the 

associated method. Therefore, the additional spectral information provided by the 

Worldview-2 satellite was useful in separating the classes on Walpole Island and 

mapping the invasive plant. Third, the best method for mapping Phragmites was the eight 

band object-based method.  This method increased overall accuracy of the six class 

classification by 21% over the four band per-pixel MLC, 10.6% over the eight band per-

pixel, and 1.3% over the four band object-based method.  The Kappa statistic for the 

Phragmites and Non-Phragmites classification for the eight band object-based method 

was also 0.422 higher than the four band per-pixel MLC, 0.211 higher than the eight band 

per-pixel, and 0.025 higher than the four band object-based method.  Therefore, the eight 

band object-based method was the best for both classifying the six land covers and for 

distinguishing between Phragmites and Non-Phragmites. 
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This study showed that a single date, eight band high resolution image classified with 

object-based methods was effective for mapping an invasive wetland plant species in a 

southwestern Ontario Great Lakes coastal wetland. Although detailed steps for Method 2 

presented here were significant for extracting the six classes, its extension for classifying 

other images collected by the Worldview-2 satellite for this purpose may not be 

appropriate. A similar classification scheme may be appropriate for images collected late 

in the growing season when vegetation conditions are similar. The Worldview-2 satellite 

may be an option for mapping Phragmites for management as a single date image can 

provide high accuracy for the invasive wetland plant.   
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Chapter 3  

3 Mapping and Evaluating Phragmites australis 
Abundance Derived from Spectral Mixture Analysis of 
Hyperspectral Data 

3.1 Introduction 

Phragmites australis (Cavenilles) Trinius ex. Steudel (common reed) is found on all 

continents, with the exception of Antarctica, making it one of the most widely distributed 

plant species in the world (Mal & Narine, 2004). Phragmites abundance and distribution 

in North America was low in the nineteenth century, but increased in the twentieth 

century and the plant was widely distributed throughout the United States and southern 

Canada by the mid-1970s (Meyerson et al., 2009). Recent genetic evidence confirms that 

a non-native strain of Phragmites, Phragmites australis subspec. australis, is present in 

North America, along with the North American native, Phragmites australis subsp. 

americanus Saltonstall, P.M. Peterson & Soreng (Saltonstall et al., 2004). The non-native 

was most likely introduced from populations originating in Europe or Asia (Saltonstall, 

2002). The aggressively spreading non-native Phragmites can grow in a range of marsh 

systems including fresh, brackish, and salt water (Mal & Narine, 2004). This has allowed 

it to spread throughout coastal marsh systems in the United States and Canada.  

Phragmites is now well established along the Atlantic coast (Chambers et al., 1999), and 

in the Great Lakes region, where recent rapid expansion has been noted in Lake Erie 

(Wilcox et al., 2003; Ghioca-Robrecht et al., 2008), Lake St. Clair (Arzandeh & Wang 

2003), and Green Bay, Lake Michigan (Pengra et al., 2007; Tulbure et al., 2007). The 

invasive Phragmites is a superior competitor compared with native Phragmites, having a 

higher root and stem density, higher aboveground biomass, longer growing season, and 

being tolerant of a wider range of salinities (Chambers et al., 1999; League et al., 2006). 

These traits also give an advantage over other native wetland plants that cannot compete 

with invasive Phragmites for nutrients, light and space resources, allowing a Phragmites 

monoculture to develop quickly (Meyerson et al., 2009). In 2005, Agriculture and Agri-

Food Canada identified non-native Phragmites as the nation’s worst invasive plant 
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species (Ontario Ministry of Natural Resources, 2011).  It is hypothesized that the 

decrease in Great Lakes water levels, combined with increase in ambient air temperature 

has allowed for increased expansion of the non-native Phragmites in Great Lakes coastal 

wetlands in the past 30 years (Wilcox et al., 2003). Phragmites growth is also expected to 

increase with the predicted future rise in CO2 levels (Farnsworth and Meyerson 2003).  

The sustainable management of wetlands relies on monitoring the distribution and 

quantity of the invasive species over time (Adam et al., 2010). This allows for the 

establishment of an invasion baseline, monitoring of the invasive plant propagation, and 

to implement an effective plan to deal with the invasion. Collection of this type of 

information has traditionally been acquired by labour intensive, costly, and time-

consuming field work. Wetland environments have poor accessibility due to dense, tall 

emergent vegetation and varying depths of water, making field work impossible or 

impractical for large areas (Lee and Lunetta, 1996).  These limitations are barriers to 

providing up-to-date information and detecting changes to the distribution and quantity of 

wetland vegetation species over short time intervals. 

Remote sensing provides an alternative method for obtaining this important information. 

It reduces costs, labour, and saves time relative to field work.  The design of remote 

sensing systems allows for repeat coverage of large areas providing up-to-date 

information and an archive of images that can be used for detecting change. Assessment 

of the remote sensing results still requires field work, but at a greatly reduced effort and 

with increased efficiency.  The information collected and extracted from imagery is 

already in digital format which allows for convenient integration and further analysis in a 

Geographic Information System (GIS) (Ozesmi and Bauer, 2002). 

It is due to these advantages that remote sensing information has been used to monitor 

invasive Phragmites and other wetland species.  Multispectral imagery is capabile of 

discriminating Phragmites from native wetland vegetation, however, this often requires 

additional information such as multi-season imagery (e.g. Ghioca-Robrecht, 2008), or 

multi-season imagery combined with height information from LiDAR (e.g. Gilmore et 

al., 2008).  Additional classification information increases cost and may not be available.  
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The limited number and broad spectral bands of these sensors alone are not capable of 

discriminating between the slight differences in vegetation signatures with high accuracy 

(Adam et al., 2010). 

Airborne and satellite hyperspectral sensors with many narrow and contiguous bands 

offer the potential to detect small spectral differences and therefore detect and map the 

invasive species without additional information (Adam et al., 2010). Airborne 

hyperspectral imagery typically acquired by a sensor on a plane flown at low altitude, can 

provide high spatial and spectral imagery and result in high accuracy for Phragmites 

mapping (e.g. Artigas and Yang, 2005).  However, data acquired with airborne sensors is 

expensive, and the revisit period depends on specific tasking. Hyperspectral satellites on 

the other hand, acquire data at regular intervals and generally lower cost (Adam et al., 

2010). The images are archived and can be accessed at a later date when a time series is 

needed for change analysis. One problem with these satellite sensors however, is the 

trade off between spectral and spatial resolution. As the spectral resolution increases, the 

amount of energy returning to the sensor decreases, resulting in a less accurate recording 

of the signal, also known as a low signal to noise ratio.  To increase this ratio, the sensor 

must observe the area on the ground for longer period of time, or sample a larger area 

(Jensen, 2005). As a result, hyperspectral satellite sensors such as Hyperion and CHRIS 

PROBA have low spatial resolutions at 30m (eoPortal, 2012a) and 17m (eoPortal, 

2012b), respectively.   

The spatial resolution of a sensor creates a problem if the average size of the marsh 

vegetation patches is smaller than the image pixel as this leads to multiple land covers 

within a single pixel (Artigas and Yang, 2005). A traditional classifier such as maximum 

likelihood, would misrepresent or oversimplify mixed pixels (Rosso et al. 2005) by 

assigning them to the class with the highest probability based on training data (Jensen, 

2005). The result is a loss of information as other land classes are assumed not to be 

present in the pixel. Alternatively, the spectral mixture analysis (SMA) method assumes 

that a pixel’s spectrum is a combination of one or more pure land cover types, known as 

endmembers (Adams et al., 1993). When the spectral signature of each endmember in the 

image is known, the pixel’s spectrum can be broken down into its component land cover 
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fractions.  Linear spectral unmixing models assume that a pixel’s spectrum is a linear 

combination of the endmembers present.  SMA provides information about the 

abundance and distribution of each endmember instead of thematic classes, which 

provides valuable information for monitoring the invasion of Phragmites. 

To assess the results of SMA, the percent canopy cover of each endmember would be 

ideally measured in the field and these fraction estimates compared to SMA derived 

fractions. As mentioned previously, wetlands present a difficult environment in which to 

conduct field work.  Dense, tall stands of Phragmites and other emergent vegetation 

combined with the water of varying depths make it a challenge to collect percent canopy 

cover estimates.  As a result, it was not possible to collect fraction estimates of 

Phragmites, Native Marsh Vegetation, and Water in the field. The percent cover of each 

endmember can also be manually interpreted from aerial photographs (e.g. Rosso et al. 

2005). However, this method relies heavily on accurate and consistent estimation of 

percent canopy cover by the interpreter and is labour intensive if many areas are to be 

evaluated.  A third option is to use classified results from high resolution imagery. He et 

al. (2010) used classified QuickBird-2 imagery to evaluate the results of SMA derived 

fractions from 30m Landsat TM imagery.  If the accuracy of the classification is high for 

all endmember classes, it can be used as a reference image to assess the accuracy of SMA 

modelling (He et al. 2010).  Using a classified image will allow for a more automated and 

thorough evaluation of more pixels than either field work or image interpretation.  A 

similar method will be used in this study, using the classification results from 

Worldview-2 high resolution imagery from Chapter 2. 

CHRIS PROBA hyperspectral imagery using the SMA method has not previously been 

used to estimate the fraction abundance of Phragmites in Great Lakes coastal wetlands. 

The objective of this chapter is to determine if the sub-pixel abundance of the three main 

land covers, Phragmites, Native Marsh Vegetation, and Water can be accurately 

estimated using the outlined method.  A classification was performed to produce a 

Phragmites invasion map where the progress of the Phragmites invasion was displayed 

for each pixel. A classification of the three land cover abundance layers was performed to 

create a dominant land cover map where the pixel class reflects the dominant land cover 
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in it. The appropriateness of using a classified Worldview-2 image as a reference image 

to approximate the real surface cover for SMA fraction accuracy assessment was also 

evaluated. 

3.2 Methods 

3.2.1 Study Site 

Walpole Island First Nation (82° 30’ W and 42° 33’ N) is located at the north end of 

Lake St. Clair in Lambton County, Ontario, Canada (Figure 3.1).  Walpole Island is a 

delta, formed as the sediments carried by the St. Clair River are deposited as the river 

slows to meet Lake St. Clair (Environment Canada, 2003). This site is unique as it is a 

bird-foot delta which is an uncommon feature in the Great Lakes system (Herdendorf, 

1992).  The six islands of Walpole cover 24,000 ha (Woodliffe, 1989) and of this area, 

the coastal wetlands cover approximately 10,360 ha or roughly 80% of all coastal 

wetlands on the Canadian side of Lake St. Clair (Environment Canada, 2003).  About 

half of the wetlands the in St. Clair delta have been diked and pumps manipulate water 

levels for marsh management related to the production of waterfowl (Bookhout et al., 

1989). The coastal marshes provide spawning, nursery, and feeding grounds for fish, 

provide breeding, migratory and wintering grounds for birds, and provide habitat for 

plant, reptile, amphibian and mammal species, some of which are provincially, 

nationally, and even globally rare (Environment Canada, 2003). Typha spp. (Cattails) 

form the dominant native vegetation while Zizania palustris (Wild Rice), Scirpus spp. 

(Bulrushes), Pontederia cordata (Pickerelweed), Nuphar variegatum (Yellow Pond Lily), 

and Nymphaea odorata (Fragrant White Water Lily) are sparsely distributed. An invasive 

species, Phragmites australis (Cavenilles) Trinius ex. Steudel subspec. australis 

(Saltonstall, 2002), is of concern at Walpole as it is expanding at the expense of native 

species (Arzandeh & Wang, 2003). Based on herbarium samples, the first occurrence of 

non-native Phragmites in southwestern Ontario was at Walpole Island in 1948 (Catling & 

Mitrow 2012). The Lake St. Clair wetlands may be especially susceptible to future 

Phragmites invasion because of climate change and the shallow depth of Lake St. Clair.  

The lake is naturally 6.5m at its deepest point and 8.5m in the dredged shipping channel 

(Environment Canada, 2003). The extent and position of the undiked wetlands are greatly 
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affected by lake water level fluctuations since the topography of the delta and land 

surrounding the lake is almost flat.  The St. Clair River only drops 20 cm over 17km 

through the delta (Edsall et al., 1988). If Great Lakes water levels drop due to a warming 

climate, newly exposed lake bottom is likely to be invaded by Phragmites as Phragmites 

colonization was found to be related to decreases in water depth and increase in bare soil 

area (Tulbure & Johnston, 2010).  

An 850m by 850m area within the coastal wetland was selected for this study (Figure 

3.1).  By choosing a small area as the focus, a more detailed assessment of the abundance 

estimates from the spectral mixture analysis method could be made. The specific site was 

selected to be representative of pure areas of three land cover types and the different 

mixing scenarios that could occur between the land cover types.  The study site under 

investigation is shown in true colour for both satellite images in Figure 3.2.  In this small 

area, large patches of the three land cover types are present.  A large unmixed water 

feature (dark blue) is present in the southwest corner. Pure Phragmites stands (green) 

surround this large water feature and also dominates the east portion of the image.  Native 

marsh vegetation (light brown) inhabits large areas of the north and central study area.  

Also represented, are different ways in which the three land cover types can mix. A long, 

thin patch of Phragmites is surrounded by monodominant Native Marsh Vegetation in the 

north central portion of the study area. Alternatively, small patches of Native Marsh 

Vegetation are surrounded by monodominant Phragmites in the southeast.  Both native 

and invasive vegetation border water in some part of the study area. 
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Figure 3.110 Walpole Island study site. Walpole Island is located in the southern Great Lakes region of 
Ontario, Canada.  The five islands of Walpole have formed where the St. Clair River flows into Lake St. 
Clair. CHRIS PROBA and Worldview-2 imagery were acquired over parts of the coastal marshes of Bassett, 
Squirrel, and Walpole Island. The area of study is focused on a small portion of marsh on Squirrel Island. 

3.2.2 Data 

3.2.2.1 Remotely Sensed Imagery 

3.2.2.1.1 CHRIS PROBA 

Two sets of remotely sensed data were used in this study (Figure 3.2).  First, a 

hyperspectral image from the Compact High Resolution Imaging Spectrometer on the 

Project for On-Board Autonomy satellite (hereafter referred to as CHRIS PROBA) was 

acquired on September 14, 2011.  The CHRIS sensor has five different imaging modes 

which allow for imagery to be acquired with various sets of spectral bands, spatial 

resolutions, and scene sizes. CHRIS PROBA is also able to capture imagery in the in-

orbit path at five viewing angles: -55°, -36°, 0° (nadir), +36°, +55°. The multiple imagery 

acquisition angles allow for bidirectional reflectance properties to be evaluated (for more 

information see Surrey Satellite Technology Ltd., 2008). The imagery for this study was 

acquired in Mode 5 with a spatial resolution of 17m, a set of 37 spectral bands covering 

the wavelength range of approximately 437-1040nm, a scene size of 14km x 7km, and 

individual bandwidths ranging from 6.1 to 33.1nm (Table 3.1). For this study, the 
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additional spectral bands at 17m spatial resolution of Mode 5 provided more important 

information compared with a larger image acquisition area (Table 3.2) available with 

other modes. Only the nadir image was used for this study as bidirectional reflectance 

properties were not the focus.  The raw CHRIS imagery was corrected for two kinds of 

noise. First, CHRIS band 2 suffers from inconsistent pixel values in some image rows 

which are referred to as drop-outs.  These pixels were identified and fixed as they will 

affect later processing stages.  The second type of noise is vertical striping which is 

typical of push-broom sensors. The CHRIS sensor suffers from irregularities of the 

entrance slit due to changes in in-orbit instrument temperature.  The change in the slit 

shape results in a complex vertical pattern related to the sensor’s temperature which can 

was modelled and adjusted.  Drop-out and vertical striping correction was completed 

using VISAT V4.10.3 (Brockmann Consult, 2012). Radiance values were then converted 

into reflectance values with a processing module in the VISAT software package 

developed specifically for CHRIS PROBA imagery based on Guanter et al. (2006). The 

CHRIS hyperspectral imagery was used as the input data for spectral mixture analysis 

(SMA) to determine the pixel fractions of the marsh land cover types. 

 

Figure 3.211 Worldview-2 and CHRIS PROBA imagery of the study area. Imagery for the study area 
displayed in true colour, Worldview-2 (Red: Band 5, Green: Band 3, Blue: Band 2) and CHRIS PROBA 
(Red: Band 7, Green: Band 4, Blue: Band 1). 
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Table 3.17 Details of the CHRIS PROBA spectral bands acquired for this study. 

Band Number Band Center 

(nm) 

Bandwidth 

(nm) 

Band Number Band Center 

(nm) 

Bandwidth 

(nm) 

1 442.2 10.5 20 765.3 7.2 

2 489.9 11.6 21 772.6 7.3 

3 529.6 11.4 22 783.8 15.2 

4 550.9 12.9 23 795.2 7.7 

5 569.5 10.6 24 803.1 7.9 

6 630.8 14.0 25 866.6 18.1 

7 660.5 15.7 26 884.9 18.7 

8 673.9 11.0 27 899.1 9.5 

9 685.0 11.4 28 908.7 9.8 

10 696.7 11.8 29 918.4 9.7 

11 705.7 6.1 30 928.4 10.1 

12 711.8 6.2 31 943.5 20.3 

13 718.1 6.3 32 958.9 10.5 

14 724.4 6.4 33 969.4 10.4 

15 730.9 6.6 34 979.9 10.6 

16 737.5 6.7 35 990.6 10.8 

17 744.3 6.8 36 1001.4 10.7 

18 751.2 6.9 37 1023.2 33.1 

19 758.2 7.1    
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Table 3.28 Overview of CHRIS PROBA operating modes. 

Operating Mode Number of Bands GSD (m) Swath Width Application 

1 62 34 Full (14km x 14km) Aerosols 

2 18 17 Full Water 

3 18 17 Full Land 

4 18 17 Full Chlorophyll 

5 37 17 Half (14km x 7km) Land 

Source: eoPortal 2012b 

3.2.2.1.2 Worldview-2 

A Worldview-2 image was acquired on October 17, 2010 with 0% cloud cover. The data  

are 11-bit radiometric resolution and were geo-referenced to the Universal Transverse 

Mercator (UTM) coordinate system, Zone 17 North, North American Datum 1983 

(NAD83) by the image provider (MacDonald, Dettwiler, and Associates Ltd., Richmond, 

British Columbia).   

Both images in this study were acquired late in the growing season to capitalize on the 

spectral differences between native and non-native vegetation at this time of year. 

Gilmore et al. (2008) found that Phragmites has a high NIR response late in the growing 

season relative to other vegetation and suggests that a single date of imagery captured 

during this time could be used to map this invasive species adequately.  Chapter 2 

described how the high spatial resolution Worldview-2 satellite was used for mapping of 

native and non-native marsh vegetation in Chapter 2. The classified Worldview-2 image 

for the study area is shown in Figure 3.3. 

Since high classification accuracies were achieved from the 0.5m Worldview-2 imagery, 

it can be assumed to approximate the real surface cover (He et al., 2010), and be used to 

compare the fraction results of the SMA method.  The WV-2 image was taken one year 

prior to the hyperspectral image, and as a result there could be changes in the amount of 

Phragmites and Native Marsh Vegetation cover. It is assumed the difference in cover 
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between years is small and changes that do occur will be at the edge of Phragmites stands 

as the invasive species spreads.  The CHRIS PROBA imagery was carefully geo-

referenced to the Worldview-2 imagery with root mean square error (RMSE) of less than 

0.5 of CHRIS PROBA pixel dimension. 

 

Figure 3.312 Worldview-2 classification result for SMA fraction accuracy assessment. This area is 
composed of three land covers: Phragmites, Native Marsh Vegetation, and Water. 

 

3.2.2.2 Reflectance Spectra Field Data 

An Analytical Spectral Devices (ASD) Fieldspec HH UV/VIR handheld 

spectroradiometer (ASD, Inc., Boulder, CO) was used to measure the reflectance spectra 

of land cover types in the field. The device has a wavelength range of 325-1075nm, a 

sampling interval of 1.6nm, and a spectral resolution of 3nm (ASD Technical Guide, 

1999).  Individual spectral measurements were an average of 10-25 scans to obtain an 

accurate spectral signature of the sampled vegetation canopy.  The land cover was 

sampled between 3-5 times and the average of these measurements was used to provide a 

single spectrum for each target.  A white Spectralon panel (Labsphere, Inc., North Sutton, 

NH) was used to normalize the reflectance spectra.  Reflectance spectra were taken using 

the bare head of the spectroradiometer with a field of view (FOV) of 25°. Spectra were 

measured by hand-positioning the ASD approximately at nadir within 1 meter of the 
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species canopy.  Spectra were measured two hours before and after solar noon to 

minimize the effects of shade. 

Reflectance spectra were collected for the dominant native wetland vegetation species, 

Typha spp., the invasive plant Phragmites, and for water.  The selected vegetation stands 

were dense monocultures in order to determine each cover’s endmember characteristics.  

For Typha spp. and Phragmites, spectral measurements were not taken where understory 

species were observed.  Measurements were taken of water when there was no aquatic 

vegetation near the surface. Spectral measurements were taken August 16 and 17, 2011 to 

coincide with a CHRIS PROBA satellite overpass, however thin cloud cover during 

image acquisition rendered the image unusable for SMA analysis. Instead, a cloud-free 

CHRIS image acquired September 14, 2011 was used for SMA modeling.  It was not 

possible to conduct fieldwork close to the September CHRIS image acquisition as a local 

guide was not available, and the waterfowl hunting season prevented safe conditions in 

the marsh.  Additional fieldwork was conducted October 7, 2011, under clear skies.  

Access to the marsh was gained by land via roads on top of dykes, and by boat.  For the 

ASD to be held a sufficient height above the Phragmites canopy to collect spectral 

measurements late in the growing season when Phragmites reaches its maximum height, 

the ASD was held above the canopy while standing on the cargo bed of a pick up truck.  

The height of Phragmites did pose a challenge for ASD measurements obtained in the 

boat so shorter stands were targeted to allow adequate space between the spectrometer 

and canopy. 
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3.2.3 Spectral Mixture Analysis Method Overview 

The flow chart in Figure 3.4 illustrates the steps conducted in the deriving the SMA 

fractions and assessing the accuracy of these fractions with the ground truth fractions 

calculated from Worldview-2 imagery.  The spectrally calibrated and georectified CHRIS 

PROBA imagery was the input data for the SMA method. The minimum noise fraction 

transformation was used to separate the useful data from the noise, eliminating the 

redundant spectral information from further processing. The image derived endmembers 

were selected by two methods based on their values from the PPI index. Endmembers 

were also selected based on ASD measurements of pure endmember areas in the field. 

The different sets of endmembers were used as input for the spectral mixture analysis 

model to derive the endmember fraction estimations. The Phragmites fraction was used 

to develop a Phragmites invasion map showing the degree of Phragmites dominance in 

each pixel. A dominant classification map showing the dominant land cover for each 

pixel was produced from the endmember fraction values.  The accuracy of the 

endmember fractions, Phragmites invasion map and dominant land cover map were 

evaluated by comparison with ground truth derived from the object-based classification 

from Chapter 2. The individual steps taken are described in more detail in the following 

sections. 
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Figure 3.413 Flowchart outlining the method used in this study. 

3.2.3.1 Hyperspectral Data Dimensionality Reduction 

Hyperspectral imagery contains highly correlated bands due to the narrow and continuous 

placement of the spectral bands (see Table 3.1 for CHRIS PROBA bandwidths and band 

placement).  Reducing the spectral dimensionality of the imagery removes redundant 

information from the analysis, which decreases the amount of data carried forward and 

reduces computing requirements (Jensen, 2005). To reduce the spectral dimensionality of 

the data, a forward Minimum Noise Fraction (MNF) transformation (Green et al. 1988) 
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was applied to the hyperspectral image bands to separate the useful information from the 

noise.  The MNF transformation is the product of two principal components analyses 

(PCA).  The first PCA transformation decorrelates and rescales the noise in the bands 

resulting in data with no correlation between bands and for which the noise has unit 

variance. The second PCA produces MNF eigenimages ranging from coherent MNF 

eigenimages that contain useful information to completely noise-dominated MNF 

eigenimages (Jensen, 2005).  By inspecting the resulting eigenvalues and MNF 

eigenimages, the true spectral dimensionality can be determined.  MNF bands with high 

eigenvalues or that are visually coherent, contain useful information and are kept for later 

processing (Exelis Visual Information Solutions, 2012). MNF bands with low 

eigenvalues (value of 1) or that are visually incoherent, are dominated by noise and are 

discarded. MNF bands with eigenvalues greater than 1, and typically of an order of 

magnitude greater than MNF bands dominated by noise, contain useful information 

(Jensen, 2005). 

MNF bands were evaluated by investigating eigenvalues (Figure 3.5) and the spatial 

coherency of the MNF bands (not shown).  Analysis of the eigenvalues showed that the 

first eight MNF bands had high eigenvalues ranging from 42.16 for the first MNF band to 

2.15 for the eighth. After the eighth band, the relative difference between MNF band 

eigenvalues was small and MNF band eigenvalues approached 1, indicating that they 

were dominated by noise. Inspection of the MNF eigenimages supported this conclusion 

as the spatial coherency of the eigenimages diminished after MNF band 8. The first two 

MNF bands have much higher eigenvalues compared to bands 3 through 8.  This 

indicates that the majority of the information (~75%) is contained in the first two MNF 

bands.  Although the hyperspectral data cube should be reduced to a small number of 

significant bands, caution should be taken not to throw out bands supplying important 

information (Bedini et al. 2009). Also, a requirement of the SMA model to solve the pixel 

mixture is that the number of input bands is one more than number of endmembers 

(Exelis Visual Information Solutions, 2012). Therefore, the first eight MNF bands were 

kept for SMA to retain the majority of information, and to allow up to seven endmembers 

to be included in the mixture model. 
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Figure 3.514 Eigenvalue plot for the 37 Minimum Noise Fraction (MNF) bands. The first eight MNF bands 
contained the majority of information and were retained for the SMA analysis. 

3.2.3.2 Endmember Selection 

An important step in successful SMA fraction estimation is the identification of all land 

cover classes present in the area of study (Jensen, 2005).  In this study, there are three 

land cover types present: the non-native plant species Phragmites, Native Marsh 

Vegetation, and Water. These land cover classes are referred to as endmembers in SMA.  

Endmembers are defined as the relatively pure materials in the study area and all pixels in 

the study area are assumed to be a mixture of these endmembers. If the spectral signature 

of a pure pixel of each endmember is known, then by using SMA methods it is possible 

to determine the abundance fraction of endmembers in each pixel (Exelis Visual 

Information Solutions, 2012).   

There are three methods in which the spectral signatures of endmembers are selected. The 

spectral signatures may be obtained from a spectral library that contains laboratory or 

field tested spectra of materials. Libraries exist for materials such as minerals and 

vegetation, e.g. USGS Mineral and Vegetation Spectral Library (Clark et al. 1993), man-

made materials, e.g. John Hopkins University Spectral Library (Exelis Visual 

Information Solutions, 2012), etc. Endmember selection through this method is more 
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successful for mineral mapping as minerals tend to have a limited number of possible 

spectra which don’t change with geographical location or time of year.  Spectral libraries 

for vegetation tend to be relatively less complete as they may contain limited species or 

limited spectral variation which is needed to address changes in plant reflectance at 

specific times of the year.   

Direct spectral reflectance of endmembers can be acquired by ASD measurements in the 

field or in the controlled environment of a laboratory. Accurate SMA fraction estimation 

using this method is highly dependent on acquiring spectral signatures of endmembers 

under similar conditions as when the hyperspectral imagery was captured. This reduces 

the chance of differences in spectral reflectance occurring due to changes in endmembers 

with time as is the case with vegetation.  

The third way to obtain representative endmembers is by identifying pure endmember 

pixels in the hyperspectral imagery. This method tends to produce better SMA fraction 

results than field measurements because the image endmember contains the same errors 

resulting from calibration or atmospheric correction as the rest of the pixels in the study 

area (Exelis Visual Information Solutions, 2012).  Since these errors are uniform across 

the image, fraction estimates are less likely to be influenced. 

In this study, image derived endmembers were selected based on their Pixel Purity Index 

(PPI) values and the n-dimensional visualization of high value PPI pixels in MNF 

spectral space. Endmembers based on ASD measurements of pure species stands made in 

the field were included to demonstrate the importance of obtaining endmember spectral 

signatures close to the hyperspectral image acquisition date. Endmembers from publicly 

available spectral libraries for marsh species in this study were not available. The next 

sections describe the methods used to determine the endmembers for SMA. 

3.2.3.3 Pixel Purity Index Endmember Selection 

The goal of PPI mapping is to find the most spectrally pure pixels in the hyperspectral 

image. These pixels are most likely to represent the image endmembers since they 

represent pure land cover types. The PPI method determines the most spectrally pure 
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pixels by projecting an n-dimensional scatterplot onto a random unit vector.  The pixels 

at both ends of the projected vector are recorded if they are within the user specified 

threshold of the most extreme pixels. The user defined threshold is set at 2 to 3 times the 

noise level in the data.  Since MNF bands are used, the noise level is 1, so a threshold or 

2 or 3 is specified.  If a larger threshold is used, more extreme pixels are recorded at each 

iteration but there is a greater chance that they are spectrally less pure (Exelis Visual 

Information Solutions, 2012).  This process is repeated for a user defined number of 

iterations and the total number of times each pixel is found to be extreme is noted.  The 

output is a PPI map where the PPI value refers to the number of times each pixel was 

found to be “extreme”.  Therefore, pixels with high PPI values are spectrally unique and 

the most likely to represent the endmembers. 

A Pixel Purity Index was calculated to determine the most spectrally pure pixels in the 

image. The PPI value image was opened in ArcGIS and the values were sorted from 

highest PPI value to lowest. The highest PPI value was selected and the pixel ID noted. 

This pixel was located in the CHRIS image and a spectral profile of this pixel was 

displayed and compared to ASD measurements taken in the field to identify the land 

cover it represented. When the pixels with the highest PPI values were found for each of 

the three land cover types, this set of spectral signatures became the first group of 

endmembers. The second highest PPI values for each land cover were then determined 

and used for the second group of endmembers. This was repeated a third time to yield 

three sets of image derived endmembers. The endmember group and PPI values for the 

specific endmembers are shown in Table 3.3. 

Table 3.39 Endmembers chosen using Pixel Purity Index values. 

 Land Cover 

Endmember Group Phragmites PPI Value Native Marsh 
Vegetation PPI Value 

Water PPI Value 

1 1655 1080 1622 

2 1366 1080 1587 

3 1362 1071 1524 
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3.2.3.4 N-Dimensional Visualization Endmember Selection 

Endmembers were also selected through visualizing the PPI results in an n-dimensional 

visualizer and selecting the most pure pixels. The n-dimensional visualizer is an n-

dimensional scatter plot where n corresponds to the number of MNF bands used to 

display the data (Exelis Visual Information Solutions, 2012). The position of a pixel in 

the n-dimensional spectral space is determined by the pixel reflectance value in each 

MNF band, and is therefore representative of the pixel’s spectral signature.  Pixels with 

pure spectral signatures tend to occupy the corners of the n-dimensional data cloud while 

less pure or mixed pixels occupy the space in between (Exelis Visual Information 

Solutions, 2012).  By displaying the data using different combinations of MNF bands and 

rotating the data cloud, it is possible to locate the corners and therefore the endmember 

pixels. 

Using this approach, pixels located in a corner of the data cloud were selected and the 

mean signature was compared to the ASD measurements and identified as one of the land 

cover types. If the cluster of pixels was representative of one of the endmembers, the 

mean spectral signature of these pixels was used as the endmember signature. The 

process was repeated until endmember pixels were located for all three land cover 

classes. Endmember group 4 refers to the image derived endmembers selected through n-

dimensional visualization. 

3.2.3.5 ASD Field Measurement Endmember Selection 

Spectral measurements were taken with the ASD HH UV/NIR handheld spectrometer in 

mid-August and early October. Endmember signatures were computed by averaging the 

spectral measurements taken of each land cover.  Both sets of endmembers were input to 

the SMA model for fraction estimation. Endmember set 5 and 6 refer to the August and 

October ASD measurements respectively. 
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3.2.4 Spectral Mixture Analysis 

Spectral mixture analysis is a method which determines the relative abundance of 

endmembers in a pixel based on the pixel reflectance and endmember spectral signatures. 

SMA models are divided into two groups based on the type of mixing assumed to be 

occurring in the field of view. The linear mixing model is based on the assumption of 

linear mixing where photons interact with a single land cover type before reaching the 

sensor (Adams et al. 1993). The signature of the mixed pixel can be modelled as a linear 

sum of each endmember weighted by the fraction of each endmember within the pixel 

(Roberts et al. 1998). Alternatively, the nonlinear model assumes that mixing is more 

complex since photons interact with multiple land cover types before reaching the sensor 

(Adams et al. 1993). Many studies of wetland vegetation are based on the linear mixture 

assumption (e.g. Rosso et al., 2005, He et al., 2010). In this study linear mixing is 

assumed. 

Linear spectral unmixing, makes four assumptions (Settle and Drake, 1993).  1) The 

occurrence of multiple scattering between different surface components is not significant.  

If this assumption is not met, the mixing is complex and results in nonlinear mixing. 2) 

The spectral signatures of each surface component are sufficiently different from one 

another to allow their separation. 3) The total land cover within each pixel is unity. 4) All 

of the endmembers present in the study area are known.  

When photons have interacted with only a single land cover, the reflectance for that pixel 

is a linear sum of the reflectance received from each endmember.  Each endmember will 

contribute the reflectance that is characteristic of that land cover and the energy will be 

proportional to the area covered (Adams et al. 1993). If the pixel land covers include 

vegetation, the fraction is equal to the proportion of canopy cover (Parker Williams and 

Hunt, 2002). 

The Horwitz (1971) linear mixture model is used in this study and is described below as 

in Drake et al. (1999). n denotes the number of bands in the hyperspectral image, and c 

the number of land cover types, or endmembers, present.  For any pixel, xi represents the 

observed spectral signal in the ith hyperspectral band and fj denotes the fraction of that 
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pixel covered by the jth land cover type. The spectral signature of any pixel is represented 

by the vector x = {x1, x2,..., xn}
T
. The land cover fractions are represented by the vector f 

= {f1, f2, ...,fc}
T
. The superscript T in both cases denotes ‘transpose’. The linear spectral 

mixture model is defined by equation (1): 

x = Mf + e                   (1) 

where M is an (n x c) matrix whose columns are the endmember spectral signatures. 

Unmodelled portions of the spectrum are expressed by the residuals vector e = {e1, e2, 

...,en}
T
. f can be estimated by a modified least squares approach if M and N are known.  

N is the variance-covariance matrix of the noise term e.  The least squares estimate for f 

is selected by minimizing the quadratic function in equation (2): 

(x – Mf)
T
N

-1
(x – Mf)                (2) 

where f can be subject to two constraints: 

f1 + f2 + ...fc = 1                 (3) 

and 

0 ≤ fj ≤ 1    j = {1,... , c}                (4) 

Equation (3) constrains the sum of the individual endmember fractions to 1 and equation 

(4) constrains the individual endmember fractions to values between 0 and 1.  A linear 

spectral model using both constraints is referred to as a fully constrained mixing model. 

In this study, a partially constrained linear unmixing model obeying equation (3) was 

performed using ENVI version 4.8 (Exelis Visual Information Solutions, Boulder, 

Colorado).  However, this allows for the endmember fractions to be negative or greater 

than 1 which are both physically impossible. If pixels have a value below 0.0 or 1.0, this 

could be an indication that the endmember signatures are not representative, or that an 

endmember may be missing from the analysis (Exelis Visual Information Solutions, 

Boulder, Colorado).  Therefore, to determine how many pixels could be modelled with 

physically possible fraction values for all land covers, the second constraint was applied 
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to the model fraction results. The results from applying this second constraint were used 

to compare the individual SMA models.  

3.2.5 Spectral Mixture Analysis Accuracy Assessments 

The six class classification from Worldview-2 was used as the ground truth for this study.  

Figure 3.6 outlines how the ground truth fractions were extracted from the classified 

Worldview-2 image for each CHRIS PROBA pixel.  The Worldview-2 classification was 

reclassified into binary classifications where a value of 1 represented the land cover class 

of interest, and 0 represented all other classes.  Binary classifications were performed for 

Native Marsh Vegetation, Phragmites, and Water. A grid of polygons representing the 

CHRIS pixels was created using a custom script in ENVI IDL. This grid was overlain on 

the Worldview-2 binary classifications and the zonal statistics for each 17m by 17m pixel 

was calculated in ArcGIS.  The sum within each pixel was calculated using the zonal 

statistics tool and sum operator.  The sum was divided by 1156 to yield the fraction of 

each land cover. Each CHRIS PROBA pixel represents 1156 individual 0.5m x 0.5m 

Worldview-2 pixels. Each individual Worldview-2 pixel represents approximately 

0.0865% fraction cover for the CHRIS PROBA pixel. This process was repeated for all 

pixels within the study area. 

The fractions calculated from the CHRIS PROBA imagery using SMA were compared to 

the ground truth fractions from the Worldview-2 classification in multiple ways. The 

number of pixels modelled refers to the number of pixels which meet the physical 

constraints placed on fractions with a pixel.  Pixels with fraction values and sum of 

fraction values between -0.01 and 1.01 are considered to be feasible, allowing for slight 

fraction over- or underestimation.  Model RMSE is a measure of the difference between 

the pixel reflectance and the fractional mixtures of the endmembers in the model (Rosso 

et al. 2005). An RMSE value is output for each pixel and the average of these RMSE 

values yields a measure of overall model fit. The difference between predicted and 

ground truth fractions was computed and averaged for each class. If ground truth and 

SMA fractions are accurate, the average difference should be close to 0.  Phragmites 

ground truth fractions were plotted against SMA fractions and a linear regression 

performed.  With the linear regression, a slope value close to 1, a y-intercept close to 0, 
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and R
2
 value near to 1, all indicate SMA fractions that closely match ground truth 

fractions. The difference between predicted and ground truth fractions was computed and 

the frequency displayed as a histogram. The frequency was broken down into fraction 

cover increments of 0.05.  Histograms that have a small spread and are centred around 0 

indicate accurate SMA land cover fractions. Evaluating the SMA fractions with these 

methods will determine which endmember selection method is best for Phragmites 

fraction estimation in the marsh environment. 
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Figure 3.615 The method used to extract land cover ground truth fractions from the classified Worldview-2 
image. 
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3.2.6 Phragmites Invasion Mapping 

In this study, two thresholds are defined which can be applied to SMA fraction data to 

determine the status of Phragmites invasion within a pixel.  One threshold is set at ⅓ of a 

pixel area. Since the sum of the three fractions must equal to 1, if Phragmites is less than 

⅓, one of the other two fractions must be the dominant fraction. Therefore, if Phragmites 

fraction is below ⅓ then Phragmites has not reached dominance in the pixel.  The second 

threshold is set at ½ of a pixel area.  This represents the fraction value at which the pixel 

can be guaranteed to be dominated by Phragmites. As a result of defining these two 

thresholds, a third group of pixels is automatically defined. These pixels have Phragmites 

fraction values greater than ⅓ but less than ½.  Depending on the fraction values of the 

other two classes, these pixels represent areas that may or may not be Phragmites 

dominated. The thresholds were applied to ground truth and SMA fraction layers to 

determine how well the SMA method can detect different stages of Phragmites invasion 

within individual pixels. 

3.2.7 Dominant Fraction Classification 

A classification was performed based on the dominant fraction within each pixel, as 

another method to assess the fractions estimated by the SMA method. The dominant 

fraction is defined as the land cover class with the highest percentage cover within each 

pixel. For example, in Figure 3.7 the fractions of Phragmites, Native Marsh Vegetation, 

and Water derived from ground truth and SMA are 0.197, 0.498, 0.305, and 0.162, 0.422, 

0.416, respectively.  In both cases, the dominant land cover is Native Marsh Vegetation 

so this pixel is classified as being Native Marsh Vegetation dominated in both layers. The 

Worldview-2 classification was classified in this manner and acted as the ground truth for 

the comparison of the SMA tests. These dominant classification results were compared in 

a confusion matrix and the user’s accuracy (commission error), producer’s accuracy 

(omission error), overall accuracy, and the Kappa statistic were used as accuracy 

measures. If SMA fractions are accurate, the classification based on the dominant class 

within each pixel will provide useful information about dominant land cover distribution 

in the marsh.   



73 

 

 

Figure 3.716 The method used to assign the dominant class to each pixel. An example is given showing the 
method for a single CHRIS PROBA pixel. a) The ground truth fractions for a single pixel are compared.  
Since the fraction of Native Marsh Vegetation (NMV) is greater than the fraction of Phragmites and Water, 
NMV is assigned as the dominant fraction.  b) The procedure in a) is repeated for the fractions estimated 
from SMA. 

 

3.3 Results and Discussion 

3.3.1 ASD Measurements and Image Derived Spectral Signatures 

The spectral curves of Phragmites, Native Marsh Vegetation, and Water from field 

measurements and from image pixels representing each endmember are shown in Figure 

3.8. To better compare the field collected land cover spectral curves, ASD measurements 

were averaged over the corresponding CHRIS spectral bandwidths.  Phragmites and 

Native Marsh Vegetation both show healthy, unstressed vegetation curves in August 

(Figure 3.8 (a) and (b) respectively).  There is strong absorption in the blue and red 

portions of the spectrum where the primary chlorophyll absorption bands occur, 

indicating plant photosynthesis. The spectral curves also display high near-infrared 

reflectance typical of healthy green vegetation. They also show a steep red-edge which 

occurs due to strong absorption of red wavelengths and strong reflectance of energy in 

the near-infrared. However, in September and October, both Phragmites and Native 

Marsh Vegetation are showing signs of plant stress and/or seasonal senescence.  Signs 

include a decrease in absorption in the blue and red regions corresponding to the 

chlorophyll bands and a decrease in the near-infrared reflectance indicating decreased 

photosynthesis, and a shift of the red-edge towards the shorter blue wavelengths.  The 
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ASD spectral curves of water (c) remain consistent between sampling dates indicating 

that the spectral properties of Water did not change, which also shows that sampling was 

done consistently from one date to another.  The image derived endmember for Water 

shows slightly increased reflectance in the green and near-infrared part of the spectrum 

compared to ASD measurements. This may be due to the limited number of pure water 

pixels in the study area. Most patches of water contained a small amount of emergent or 

floating aquatic vegetation which accounts for the slight increase in reflectance in the 

green and near-infrared. 

Spectral measurements for Phragmites and Native Marsh Vegetation in August are 

similar through the visible range to the red-edge (440-740nm) but differ in the near-

infrared (740-1040nm), with Phragmites having higher near-infrared reflectance. Greater 

differences between the two vegetation classes are seen in the September image derived 

endmember spectra.  Phragmites has slightly increased reflectance in the blue and red 

portions of the spectrum and decreased reflectance in the near-infrared relative to the 

ASD measurement taken in August. Over this time period, Phragmites has begun to show 

early signs of seasonal senescence. The Native Marsh Vegetation curve has changed very 

rapidly between August and September. Large increases in reflectance in the blue and red 

regions of the spectrum combined with a large decrease in reflectance through the near-

infrared suggests that Native Marsh Vegetation has gone through significant change 

likely indicating rapid senescence. The spectral differences are small and may indicate 

that Phragmites and Native Marsh Vegetation will soon reach similar stages of 

senescence.  

The month by month change in the spectral curves provides valuable information as to 

when Phragmites and Native Marsh Vegetation are spectrally distinct. In August, both 

Phragmites and Native Marsh Vegetation are healthy and green and have only slight 

differences in the reflectance in the near-infrared.  In October, both land covers show 

similar spectral curves which show signs of severe plant stress likely related to seasonal 

senescence. Since the spectral plots for the plant species in August and October are very 

similar, SMA methods may not produce accurate sub-pixel abundance estimates.  

Alternatively, the spectral curves exhibited in September provide important information 
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for the discrimination of Phragmites and Native Marsh Vegetation.  Differences occur in 

the visible and near-infrared portions which result in very different spectral curves for the 

species at this time. Therefore, an image acquired in September may be the best input for 

sub-pixel abundance estimations for Phragmites derived from SMA methods. Neither 

ASD measured endmembers for August or October matched the spectral characteristics 

of the three land covers in September and are hypothesized to predict land cover fractions 

with poor accuracy. 
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Figure 3.817 Reflectance spectra of the three land covers from field ASD spectroradiometer 
measurements and pure CHRIS PROBA image pixels. 
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3.3.2 Spectral Mixture Analysis Results 

3.3.2.1 Model Performance 

Results obtained from tests using endmembers from high Pixel Purity Index values will 

from now on be referred to as ‘PPI models’. ‘N-DV model’ refers to the test using 

endmembers selected using the N-Dimensional Visualizer.  A-ASD and O-ASD will refer 

to the endmembers selected from August and October ASD field measurements, 

respectively. The results of the spectral mixture analysis (SMA) are shown in Table 3.4. 

Pixels modelled refers to the number of pixels whose fraction values for all classes are 

between the values of -0.01 and 1.01, and whose sum of the three land cover fractions is 

also between -0.01 and 1.01. In this analysis, values one percent below 0 and above 1 

were considered reasonable errors of fraction cover and pixel sums. Average Root Mean 

Square Error (RMSE) refers to the error associated with the model.  After modelling, 

each pixel has an RMSE value which is an indicator of model fit.  The RMSE values 

were averaged for all pixels within that model to give us overall average model RMSE. 

The absolute difference between predicted and ground truth was calculated for each land 

cover and averaged.  

The N-DV model resulted in the lowest average difference between ground truth and 

predicted fractions for all classes (Table 3.4).  This may be because the N-DV 

endmembers were the mean of multiple pixels, which accounts for variation within each 

class and thus an endmember that was more representative of the majority of the pixels.  

In contrast, using a single pixel as the land cover endmember in PPI models, does not 

account for any variation within each class.  Of the three PPI models, Test1 resulted in 

the lowest average difference between ground truth and predicted fractions for all classes. 

PPI models resulted in the greatest number of pixels that were within the physical 

constraints placed on the model, being able to model roughly 81-84 percent of all pixels. 

Although the N-DV model endmembers had the lowest average difference, only 74% of 

the pixels yielded physically possible fraction estimates. Therefore, models with single 

endmembers based on PPI values resulted in comparable differences in fraction estimates 

to the N-DV model while being able to model more pixels. Although model RMSE is 

supposed to give an estimate of the error associated with the model, there was no relation 
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between how many pixels were physically modeled or the average difference between 

ground truth and predicted fractions for PPI or N-DV models. Higher average model 

RMSE was not associated with higher average fraction differences or lower number of 

pixels modelled except in the case of ASD models.   

ASD models performed poorly compared to image derived endmember models.  This 

was expected as ASD measured endmembers were not representative of the land cover 

types at the time of hyperspectral image acquisition.  Better fractions estimates and a 

higher number of pixels modelled would have been expected had the ASD measurements 

been taken close to hyperspectral image acquisition. Due to the spectral differences 

between ASD and image endmembers and the subsequent poor SMA model performance, 

ASD models will not be considered in further analysis. 

Table 3.410 Spectral Mixture Analysis model performance. 

Test Endmember 
Selection 
Method 

Pixels Modelled  

(Total = 2500) 

Average  

Pixel RMSE 

Average Difference between 
Ground Truth and Predicted 

Fractions 

  Number Percentage  Phragmites NMV Water 

1 PPI Value 2044 81.76 0.006633 0.1659 0.2561 0.1741 

2 PPI Value 2103 84.12 0.006021 0.1825 0.2634 0.1793 

3 PPI Value 2068 82.72 0.005046 0.1776 0.2631 0.1808 

4 N-DV 1854 74.16 0.005111 0.1592 0.2451 0.1538 

5 ASD-A 1297 51.88 0.022008 0.2329 0.3603 0.3278 

6 ASD-O 1231 49.24 0.011614 0.4262 0.5790 0.2375 

3.3.2.2 Ground Truth Versus Spectral Mixture Analysis Plots 

If SMA produces highly accurate fraction estimates of the three land covers, the SMA 

derived fractions match the ground truth fractions perfectly, and there should be a linear 

relationship with a slope of 1 and the y-intercept passing through 0 when predicted 

fractions are plotted against ground truth fractions.  Figure 3.9 shows the predicted 

fraction (SMA fraction from CHRIS PROBA imagery) plotted against ground truth 
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fraction (from Worldview-2 classification) for Phragmites for the six tests. The gray line 

in the plots represents the 1 to 1 relationship expected when predicted fractions match 

their corresponding ground truth fractions.  Points above the 1 to 1 line indicate the 

fraction was overestimated by SMA while below the 1 to 1 line indicates the fraction was 

underestimated by SMA. 

Image derived endmember models outperformed both ASD models. ASD-O has a slope 

close to 1 and high R
2
 = 0.7003, but this model predicts Phragmites fraction poorly as 

many pixels have fractions greater than 1. The regression line passes through the y-

intercept at 0.427 meaning that fraction values are, on average, overestimated by >40% 

fraction cover. Differences between PPI models and the N-DV model are small and all 

models predict Phragmites fractions equally well.  

Overall, model predictions of Phragmites cover are quite poor. When Phragmites ground 

truth fraction is high, SMA fraction are consistently underestimated.  For low ground 

truth Phragmites fractions, SMA fractions tend to be overestimated.  As a result of these 

two trends, slope values are low ranging from 0.5111 to 0.5651, and y-intercepts are 

positive passing through approximately 0.10 and 0.15 fraction cover. The plots also show 

large differences in individual predicted fractions and ground truth for mixed pixels. In 

general, fractions of mixed pixels have a large scatter on either side of the 1 to 1 line. 

These results suggest that CHRIS PROBA imagery and SMA may not be able to predict 

Phragmites cover for individual pixels with high accuracy. 
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Ground Truth Fraction 

Figure 3.918 Regression plots of the six SMA models for the Phragmites class. The gray line represents the 
1 to 1 line or a perfect match between predicted and ground truth fractions. The black line is the regression 
line of the Phragmites predicted and ground truth fractions. 
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3.3.2.3 Phragmites Fraction Difference Histogram 

The difference between SMA and ground truth fractions can be summarized by the 

histograms in Figure 3.10. These histograms show the number of times SMA and ground 

truth fractions differed using 5% fraction increments. SMA fractions were subtracted 

from ground truth fractions meaning positive values indicate the fraction was 

overestimated by SMA while negative values indicate the fraction was underestimated by 

SMA. 

The overall shape of the histograms for Phragmites fractions are very similar for the PPI 

models and the N-DV model. For PPI models, the main peak of values is slightly positive 

meaning many of pixels had slightly overestimated Phragmites fraction.  The main peak 

for N-DV model was centred closest to 0. However, we would expect to see all pixels 

centred closely to 0 if the SMA fractions were close to the ground truth fractions.  

Instead, the histogram values range from -0.75 to +0.75 and a bimodal distribution is 

evident. Since the histograms are not tightly clustered around 0, a more detailed 

breakdown of the fraction differences is needed to determine exactly how SMA pixel 

fractions relate to ground truth. 
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Figure 3.1019 Fraction error histograms of the six SMA models for the Phragmites class. Positive values 
indicate the fraction was overestimated by SMA. Negative values indicate the fraction was underestimated 
by SMA. 
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The detailed breakdown of the histogram for Test1 (PPI-1) is shown in Figure 3.11. In 

histograms (b)-(d), the pixels are separated into different categories based on the amount 

of Phragmites occurring in the ground truth pixel and compared with the overall fraction 

error histogram (a).   

The majority of slightly overestimated pixels are the result of SMA fractions predicting 

very low fractions of Phragmites for ground truth pixels with a Phragmites fraction of 0 

(Figure 3.11 (b)). When no Phragmites was present, SMA fractions were 97.2% accurate 

in assigning a fraction value that could not make Phragmites the dominant land cover 

class (less than ⅓) (Table 3.5). Therefore, the SMA model is accurate at predicting low 

Phragmites fraction when ground truth fraction of Phragmites is 0.  

The minor peak that is observed in the Test1 (PPI-1) histogram centred close to -0.30 

corresponds to pixels where Phragmites ground truth fractions are 1 (Figure 3.11(c)). The 

SMA model consistently underestimates the fraction of Phragmites in these 

monodominant pixels.  Although these fractions are underestimated, Phragmites as the 

dominant land cover (highest fraction within the pixel) is correctly predicted by SMA 

fractions in 92.0% of Phragmites monodominant pixels (Table 3.5). 

In Figure 3.11 (d) we can see that SMA fractions for mixed pixels do not follow a pattern 

and are evenly spread out through -0.5 and +0.5 fraction difference. However, for mixed 

pixels in which Phragmites was dominant (highest fraction within the pixel) 69.6% of 

SMA predicted fractions also had Phragmites as dominant (Table 3.5). For mixed pixels 

in which Phragmites could not be dominant (cover <⅓), 60.0% were correctly identified 

as having a fraction that was not dominant (Table 3.5). 

Although the Test1 histogram was not useful for determining how SMA fractions 

compared with ground truth fractions, breaking the distribution down into ground truth 

Phragmites categories yielded useful comparisons.  These results suggest that SMA 

fractions cannot reproduce highly accurate ground truth fractions for every pixel. SMA 

fractions derived from CHRIS PROBA imagery seem to be indicators of Phragmites 

dominance within individual pixels.  SMA fractions were highly accurate when 

Phragmites was not present in the pixel. They were also highly accurate for classifying a 
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pixel as being Phragmites dominant when the species was dominant in a pixel. In the 

case of mixed pixels, SMA fractions had fair accuracy predicting where Phragmites was 

and was not the dominant fraction in the pixel. SMA fractions resulted in 89.1% overall 

accuracy for the four scenarios covered (Table 3.5).  

 

 

(a) 

 

(b) 

 

(c) 

 

 (d) 

Figure 3.1120 Fraction error histograms for Test1 (PPI-1) for the Phragmites class, broken down by 
Phragmites ground truth cover of 0%, mixed and 100%.  
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Table 3.511 Accuracy of the SMA fractions when Phragmites ground truth fraction 

is broken down into categories of 0, mixed and 1 fraction cover. 

Phragmites Ground Truth Fraction SMA Condition Correct Total Accuracy (%) 

0 < ⅓ 1489 1532 97.2 

Mixed and < ⅓ < ⅓ 143 238 60.0 

Mixed Dominant Dominant 231 332 69.6 

1 Dominant 301 327 92.0 

Overall for four scenarios 2164 2439 89.1 

 

3.3.2.4 Land Cover Abundance Layers 

3.3.2.4.1 Grayscale Distribution and Abundance 

The ground truth and SMA fraction maps for the three land covers for Test1 (PPI-1) are 

displayed in Figure 3.12. All three SMA fraction maps show similar overall pattern to 

their corresponding ground truth fraction maps. The main difference between ground 

truth and SMA maps is the dark contrast of ground truth maps compared to SMA maps.  

Ground truth maps tend to have very pure areas where the land cover type is or is not 

present whereas SMA maps tend to show a more continuous surface. Of the three land 

covers, the Phragmites SMA match the best with ground truth maps.  Similarly, areas 

where Phragmites is absent in ground truth tend to show low Phragmites fractions in 

SMA maps. For Native Marsh Vegetation, the SMA fractions tend to be slightly 

underestimated compared to the ground truth map. The reason for this difference can be 

seen in the Water SMA fraction map.  Water tends to be over predicted throughout pixels 

dominated by Native Marsh Vegetation leading to under prediction for Native Marsh 

Vegetation.  
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Figure 3.1221 The ground truth and SMA predicted fraction maps for Test1 (PPI-1) for the three land cover 
types. Black pixels represent low fraction abundance whereas white pixels represent high fraction 
abundance. 
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3.3.2.4.2 Colour Composite Distribution and Abundance 

In Figure 3.13, the three individual land cover fraction layers were combined as a Red, 

Green, and Blue colour image, representing Phragmites, Native Marsh Vegetation, and 

Water classes, respectively. Comparison of the ground truth and SMA colour composites 

show that the overall distribution of the three land covers can be reproduced by SMA 

fractions.  The SMA map gives us confidence that the land cover present at different 

locations in the map would be found in the field. A colour composite map could point to 

investigate areas where the map colour is red, yellow or purple.  Red pixels indicate areas 

that are dominated by Phragmites.  Yellow pixels contain a mixture of Phragmites and 

Native Marsh Vegetation and these areas likely represent future Phragmites expansion.  

When pixels are purple, Phragmites is mixing with Water. These areas are likely to 

represent expanding fronts of Phragmites or places where water is too deep for a solid 

stand. Some differences between the maps are noticeable and may indicate areas that 

have changed between October 2010 and September 2011. One changed area is the 

southern portion of the marsh. In the ground truth image, this area contains bright green 

pixels indicating pure Native Marsh Vegetation. However, in the SMA colour composite, 

these bright green areas have turned to purple and gray. This may indicate that 

Phragmites is increasing at the expense of Native Marsh Vegetation. This is not a 

surprising change as these areas of Native Marsh Vegetation are surrounded by pixels 

with high Phragmites. The high similarity between ground truth and SMA colour 

composite maps make this a valuable product of the method. A colour composite 

interpretation key is given in Table 3.6. 
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Figure 3.1322 Colour composite maps for the ground truth and Test 1 SMA fraction layers. The Phragmites, 
Native Marsh Vegetation, and Water fraction images are displayed as red, green, and blue image layers, 
respectively. 

Table 3.612 Colour composite interpretation key. 

Colour Combination Land Cover Combination Map Colour 

Red + Blue Phragmites + Water Purple 

Green + Blue Native Marsh Vegetation + Water Cyan 

Green + Red Native Marsh Vegetation + Phragmites Yellow 

Red + Green + Blue Even Mixture of Phragmites, Native 

Marsh Vegetation, and Water 

Gray 

3.3.2.4.3 Classified Worldview-2 as a Ground Truth Source 

In the SMA land cover map, more mixing is predicted between Water and Native Marsh 

Vegetation than in the ground truth map. This appears as fewer bright green areas than in 

the ground truth fraction map.  However, mixing between Phragmites and water is not 

observed as frequently.  This highlights one problem with ground truth maps produced 

from high resolution imagery and object-based classification. The main reason for this 

discrepancy is differences in the vegetation canopy between Native Marsh Vegetation 

and Phragmites (Figure 3.14).  In the study, Native Marsh Vegetation is dominated by 

Typha spp. The canopy of Typha is very open due to relatively low plant density and 

vertical leaf orientation that allows light to penetrate through the canopy to the surface. 
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Meyerson et al. (2000) found that in stands of Typha, the amount of light was 100% at 

1.5m and 5 – 10% at the ground surface.  On the other hand, the canopy of Phragmites is 

very dense due to high density of stalks and a horizontal leaf orientation.  For Phragmites 

stands, Meyerson et al. (2000) found the amount of light was 10% at 1.5m 10% and 0% 

at the ground surface.  Therefore there is a possibility of light reflection from water 

beneath the Typha canopy but this is not true in dense Phragmites stands.  These canopy 

differences have different effects on the classification of Worldview-2 imagery with the 

object-based classification and CHRIS PROBA imagery with SMA method. 

In Worldview-2 imagery, the reflectance of an individual 0.5m by 0.5m pixel may be 

representative of a very pure Typha pixel consisting of 90% Typha and 10% Water.  In 

the immediate area surrounding this pixel are other pixels that are also very pure and 

have a similar spectral reflectance as each other.  Using the object-based classification 

method, these four individual pixels are grouped together to form an object based on the 

low variation between their spectral values. During object classification, this Typha 

object is classified as Native Marsh Vegetation. This results in a 100% Native Marsh 

Vegetation canopy cover percentage for the four pixel object when in reality represents 

90% Native Marsh Vegetation and 10% Water. If a 17m CHRIS pixel covers an area of 

these 90% Native Marsh Vegetation and 10% Water Worldview-2 pixels, the signature of 

this pixel will be a mixture of 90% Native Marsh Vegetation and 10% Water. When 

broken down into its component fractions by the SMA method, the fraction of Native 

Marsh Vegetation and Water will be 90% and 10% respectively. However, when this 

SMA pixel is compared to the ground truth fraction from object-based classification of 

Worldview-2 imagery, the Native Marsh Vegetation fraction will be underestimated by 

10% while the Water will over estimated by 10%. This scenario is less likely to occur for 

Phragmites. The Worldview-2 pixels will contain pure Phragmites stands and result in 

correct object canopy cover. If the CHRIS PROBA pixel covers an area of these 100% 

pure Phragmites Worldview-2 pixels, the signature of this pixel will be 100% 

Phragmites.  When compared to the ground truth, SMA fractions should be close for 

Phragmites.  
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Therefore, it is unlikely that Worldview-2 classification using object-based classification 

can represent 100% ground truth. It can be expected that SMA fractions will differ from 

ground truth for the Native Marsh Vegetation and Water classes due to the mixing of 

Water and Typha at the Worldview-2 pixel level. Based on the results from Chapter 2, it 

is unlikely that pixel-based methods will resolve this issue as classification accuracy was 

found to be lower for the pixel-based method.  The most accurate ground truth for SMA 

fraction comparison is to estimate fractions in the field. For most studies, the ground truth 

accuracy provided by classification of high resolution imagery is sufficient. This method 

overcomes the issue of estimating the fraction coverage of Phragmites in a marsh 

environment which is very difficult. 
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Figure 3.1423 Canopy structure differences between Typha and Phragmites. The difference in plant density 
and canopy structure of Typha and Phragmites has an effect on Worldview-2 pixels for object-based 
classification and ground truth fraction estimation. 
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3.3.2.5 Phragmites Invasion Mapping 

Two thresholds were defined to determine the status of Phragmites invasion within the 

individual pixels. This resulted in a three class Phragmites invasion map. The first class 

represents pixels not dominated by Phragmites (Phragmites fraction less than ⅓).  The 

second class identifies pixels in which Phragmites fraction was greater than ⅓ and less 

than ½.  The third class represents pixels where Phragmites fraction was greater than ½.  

SMA was highly accurate for identifying non-dominant Phragmites and Phragmites 

dominated pixels (Table 3.7).  The intermediate dominant Phragmites class had the 

lowest accuracy. However, even though the accuracy was low for this class, the locations 

of these pixels appear to have ecological meaning (Figure 3.15).  Many of the 

intermediate pixels occurred at the edge of Phragmites stands.  

The spectral angle mapper (SAM) classifier was used to determine if similar results could 

be produced as the threshold classification. The SAM method classifies each pixel based 

on the angle between the reference spectrum and the hyperspectral image pixel 

measurement vector in n-dimensions.  The pixel is assigned reference spectrum class that 

yields the smallest angle (Jensen, 2005). The final Phragmites and Other binary 

classification using the SAM classifier is shown in Figure 3.16.  The SAM classifier with 

Phragmites and Other classes, produced a slightly lower accuracy than the SMA method 

with three classes representing Phragmites dominance (Table 3.8).  Comparing the SMA 

and SAM maps clearly shows the advantages of using the SMA method.  With SMA, we 

get the locations of the three Phragmites invasion classes which tell us about the status of 

Phragmites invasion. This is more useful than the SAM map which only tells us if the 

pixel is Phragmites dominated or not. In addition, the detailed three class Phragmites 

invasion map had a higher accuracy than the SAM map.  
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Figure 3.1524 Phragmites three class invasion map based on spectral mixture analysis (SMA) fractions and 
thresholds. 

 

Table 3.713 Accuracy of the Phragmites invasion map from thresholding spectral 

mixture analysis (SMA) Phragmites fractions. 

  Phragmites Fraction 

Overall <⅓ >⅓ and <½ >½ 

Test Accuracy Kappa UA PA UA PA UA PA 

Threshold 85.2 0.677 0.959 0.926 0.111 0.440 0.931 0.701 
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Figure 3.1625 Spectral angle mapper (SAM) classification of Phragmites and Other land cover class map. 

 

Table 3.814 Results of the spectral angle mapper (SAM) classification compared 

against the dominant fraction based on ground truth fractions from Worldview-2. 

Test Overall Phragmites Other 

Accuracy Kappa UA PA UA PA 

SAM 84.2 0.655 0.976 0.630 0.795 0.989 

 

3.3.2.6 Dominant Fraction Classification 

Ground truth and spectral mixture analysis (SMA) fractions were classified based on the 

dominant fraction occurring within each pixel.  A spectral angle mapper (SAM) 

classification was also performed as a comparison to the dominant classification of 

fractions. The SAM classifier is a hard form of classification meaning only one class is 

assigned to each pixel which is the same for the dominant fraction classification.  Test1 

endmembers were used as the reference spectrum for SAM classification since they 

produced the highest dominant fraction accuracies. The dominant fraction classification 

accuracy results are presented in Table 3.9. The dominant fraction classification maps for 

ground truth, Test1, and SAM are shown in Figure 3.16.   
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The best overall accuracy of 82.8% was achieved for Test1. Phragmites was over 

predicted where large pure stands occurred but was under predicted in Native Marsh 

Vegetation dominated areas. N-DV model had slightly lower overall and land cover 

accuracies compared to Test1 for all land cover classes.  This was expected as the N-DV 

model did not perform as well as Test1 PPI model for other accuracy measures. 

The SAM dominant land cover map produced an overall accuracy of 72.9%.  Both image 

derived endmember SMA models resulted in dominant fraction maps that were more 

accurate than the SAM derived map. Accuracies were higher for image derived 

endmember models for all land cover classes. The SAM classifier tended to over predict 

Phragmites coverage and under predict small Water areas.  Therefore, the dominant 

fraction classification yields better results than the SAM classifier even though both were 

based on the same endmember spectrums. 

 

Table 3.915 Classification results based on the dominant fraction in each pixel. 

 Overall Phragmites NMV Water 

Test Accuracy Kappa UA PA UA PA UA PA 

PPI-1 82.8 0.723 0.825 0.821 0.830 0.861 0.829 0.767 

N-DV-4 80.7 0.678 0.854 0.692 0.763 0.917 0.895 0.702 

SAM 72.9 0.563 0.630 0.976 0.764 0.777 1.000 0.354 
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Figure 3.1726 Classification maps based on the dominant land cover fraction in each pixel for a) ground 
truth from Worldview-2, b) spectral mixture analysis and c) spectral angle mapper from CHRIS PROBA. 

3.4 Conclusions 

Monitoring of the spectral response of invasive Phragmites and Native Marsh Vegetation 

species from August to October revealed that Phragmites might be best separated from 

Native Marsh Vegetation in September. At this time, the differences in the spectral 

reflectance of the two land covers seem to be the greatest of the three dates sampled.  As 

spectral differences vary according to plant phenology, the geographical location within 

the Great Lakes may have an effect on the time when Phragmites and Native Marsh 

Vegetation are spectrally distinct.  
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Spectral mixture analysis (SMA) modelling of the three land covers using Analytical 

Spectral Device (ASD) derived endmembers did not produce accurate fraction results.  

This was a result of the time difference between hyperspectral image acquisition and 

ASD field measurements.  To produce more accurate land cover fractions, the ASD 

endmembers should be acquired within a short time of image acquisition to closely match 

the spectral signature of land covers in the image.  

Image derived endmembers produced more accurate pixel fractions for the three land 

covers than ASD endmembers. Large differences in fraction estimates were not found 

between SMA models using endmembers chosen by high Pixel Purity Index (PPI) values 

or interactive selection of individual pixels in the n-dimensional visualizer. This shows 

that intra-specific variation in land cover spectral reflectance is high and pixel fractions 

are not well estimated by using a single endmember spectrum for each land cover. Future 

Phragmites pixel fraction extraction studies employing SMA methods should test 

Multiple Endmember Spectral Mixture Analysis (MESMA) methods to account for the 

intra-specific spectral differences.  MESMA allows multiple endmember signatures to be 

defined for each land cover class and for combinations of these endmembers to be 

optimized for each pixel to model fractions more accurately.  

Evaluation of the SMA models with various accuracy measures revealed that land cover 

endmembers selected from pixels with the highest PPI value (Test1) performed slightly 

better than all other SMA models.  Test1 produced physically possible fraction values for 

a high number of pixels and low average differences between predicted and ground truth 

fractions for all three land cover classes. High PPI endmembers representing the target 

land covers can be selected from the imagery if one of two things is known.  If the 

spectral reflectance of the target land covers at the time of imagery acquisition is known, 

the spectral signature of the high PPI pixels can be labelled based on the comparison of 

these two signatures.  Alternatively, if the identity of the land cover class at the location 

of the high PPI pixel is known, the PPI pixel is labelled as this class. This makes the 

selection of endmembers for SMA modelling simpler than trying to isolate and identify 

clusters of pixels in n-dimensional space. 
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Breaking down the Phragmites SMA fraction values based on the amount of Phragmites 

in the ground truth pixels revealed the nature of the errors in the fraction estimates.  

Phragmites fraction was over predicted in pixels with no Phragmites, which led to many 

pixels having small positive fraction errors. pixels with 100% Phragmites cover was 

consistently under estimated in pixels with 100% cover. Pixels containing a mixture of 

land covers including Phragmites had equal spread in fraction estimate errors.  Although 

fraction estimates for Phragmites were not highly similar to ground truth, these 

differences did not have a large impact if the fractions were grouped into broader fraction 

categories.  Ground truth pixels with 0% Phragmites fraction had 97.2% of their SMA 

fractions less than ⅓ meaning that Phragmites was non-dominant. Similarly, ground truth 

pixels with 100% Phragmites fraction had 92.0% of their SMA fractions greater than ½ 

meaning that Phragmites remained the dominant land cover class. Ground truth fractions 

containing mixed proportions of land classes including Phragmites resulted in fair 

accuracy.  Phragmites SMA fractions matched the ground truth when grouped in broader 

relevant classes with 89.1% overall accuracy. Although the SMA model could not 

produce highly accurate Phragmites fraction estimates, fractions were still related to 

Phragmites abundance at a broader scale. 

When individual fraction layers were displayed as grayscale maps, overall land cover 

patterns matched the ground truth very well.  However, high ground truth fractions of 

Native Marsh Vegetation were less apparent in the SMA predicted grayscale map. Water 

fraction tended to be over predicted. This was particularly evident in the colour 

composite map where Phragmites, Native Marsh Vegetation, and Water were displayed 

as the Red, Green, and Blue bands, respectively.  This result highlights a problem with 

using the object-based classification as a substitute for ground truth fraction estimates. 

Despite the 0.5m resolution, Native Marsh Vegetation and Water are more likely to mix 

in a Worldview-2 pixel than Phragmites and Water due to canopy structure differences 

between the dominant Native Marsh Vegetation species Typha and Phragmites. Typha 

has a less dense canopy relative to Phragmites and therefore is more likely to have its 

spectral signature affected by reflectance of water from the surface. Since this mixing 

occurs at the level of the Worldview-2 pixel, Native Marsh Vegetation is over predicted 

while Water is under predicted in the ground truth. He et al. (2010) found that water 
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lowered the accuracy of SMA fractions derived from Landsat TM data compared against 

ground truth derived from QuickBird-2 high resolution imagery. However, there was no 

mention of SMA fraction error resulting from errors in fractions based on the ground 

truth classification.  This study shows that ground truth can be biased in favour of 

vegetation fraction leading to SMA fraction underestimation when vegetation is less 

dense. Despite this bias, this ground truth method is still accurate and useful compared to 

difficult field based fraction estimation in the marsh environment. 

The Phragmites SMA fraction was separated into three classes based on the status of 

Phragmites invasion. Pixels could be Phragmites-non-dominant, -potentially dominant, 

and –dominant. These classes were based on Phragmites SMA fractions of <⅓, >⅓ and 

<½, and >½, respectively.  A map with two classes, Phragmites and Other, where pixel 

class indicated dominant fraction was made using the SAM method.  The three class 

SMA Phragmites invasion map had a higher accuracy than the SAM map.  Therefore, 

SMA maps are more valuable since they have higher accuracy and provide more 

information about the state of Phragmites invasion within each pixel. 

The SMA fraction layers were classified based on the highest fraction occurring within 

the pixel resulting in a single Phragmites, Native Marsh Vegetation, and Water map. The 

land cover class assigned to the pixel meant that that class was the dominant class.  The 

SAM classifier was used to create a similar Phragmites, Native Marsh Vegetation, and 

Water map. The land cover class assigned to each pixel in the SAM map meant the 

signature of that pixel most closely matched the corresponding endmember used for 

SMA. The SAM method therefore produces a map with the same classes using the same 

input information as the SMA method. However, the SMA method produced an overall 

accuracy of 82.8%, close to 10% higher than the SAM map. Most importantly, the SMA 

method produced higher accuracies for the Phragmites class compared to the SAM 

method.  Therefore, when the spectral signatures of the endmembers are known, using the 

SMA method to yield pixel fractions and then classifying the pixels based on the 

dominant fraction within each pixel results in higher accuracy than using the SAM 

method.   
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SMA fractions provide a wealth of information.  Individual grayscale fraction layers give 

an accurate distribution of the three land cover types in the marsh. Combining the three 

land cover fraction layers in an RGB colour composite map yields valuable information 

about the location of Phragmites and the type of mixing occurring between classes in the 

study area. Classifying the Phragmites fraction layer based on thresholds produces a 

highly accurate map that shows the location and severity of Phragmites invasion within 

the study area. Finally, highly accurate information about the location of dominant 

vegetation in the marsh can be derived by classifying the SMA fraction layers based on 

the highest fraction within the pixel.  All of this information can be used for assessing the 

state of the Phragmites invasion in the Great Lakes coastal marsh. 
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Chapter 4  

4 Conclusion 

4.1 Summary 

The sustainable management of wetlands relies on monitoring the distribution and 

quantity of the vegetation over time (Adam et al., 2010). This is especially important 

when an aggressive non-native species such as Phragmites australis becomes established 

and threatens to severely degrade the quality of the freshwater wetlands and coastal 

estuary environments in North America. Frequent monitoring permits the establishment 

of an invasion baseline, monitoring of the invasive plant propagation, and the possibility 

to implement an effective plan to deal with the invasion. Remote sensing provides a tool 

for the production of this important information which is more cost, labour, and time 

efficient relative to field based monitoring (Ozesmi & Bauer, 2002).   

Mapping wetland vegetation at the species level with remote sensing methods is difficult 

as the high degree of similarity in spectral reflectance between species greatly reduces 

their separability (Adam et al., 2010).  Very high-resolution multispectral satellite 

imagery lacks the spectral information needed to separate vegetation at the species level.  

Some success mapping at the species level can be achieved when additional information 

such as multiple images or height information from LiDAR are included in the analysis. 

However, additional information means extra expenses or may not be readily available.  

Imagery from a single date is more likely to be accessible to a management team for the 

monitoring of wetland vegetation.  Hyperspectral sensors, acquiring many narrow and 

contiguous spectral bands, allow for a high-resolution reflectance spectrum of each pixel 

to be measured (Jensen, 2005). Airborne hyperspectral sensors flown on planes provide 

an ideal combination of high-spatial and high spectral resolution imagery which allows 

for detailed vegetation mapping. However, the cost and infrequent acquisition of imagery 

is a barrier to their use for repeated mapping over large areas. Hyperspectral sensors on 

satellite platforms combine the frequent acquisition of imagery with the high-resolution 

reflectance spectrum of each pixel, but at lower spatial resolution than satellite 
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multispectral or airborne hyperspectral imagery.  The spatial resolution becomes a 

problem if the average size of the marsh vegetation patches is smaller than the image 

pixel as this leads to multiple land covers within a single pixel (Artigas & Yang, 2005). 

Chapter 2 presented an object-based classification method for the extraction of 

Phragmites cover from a single date Worldview-2 high-spatial resolution satellite image. 

The Worldview-2 sensor collects imagery in four additional spectral bands than 

traditional high-spatial resolution satellite sensors (e.g. QuickBird-2, IKONOS-2). 

Separate classifications were performed on four and eight band sets of imagery, and their 

accuracy for separating the land cover classes was evaluated.  

Chapter 3 described the use of a single date hyperspectral satellite image from the CHRIS 

PROBA sensor to map the sub-pixel abundance of Phragmites, native marsh vegetation, 

and water using a linear spectral mixture analysis method. Individual layers were 

produced showing the spatial distribution and abundance of the three land cover types in 

the marsh.  A Phragmites invasion map showed pixels that were Phragmites dominated, 

potentially dominated, and non-dominated. Fraction layers of the three classes were 

classified based on the dominant fraction occurring within each pixel showing the spatial 

distribution of the dominant land cover in the marsh. 
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4.2 Conclusions 

 The research presented in this thesis has answered the research questions posed in 

the introduction: 

1. The Phragmites cover in the Great Lakes coastal marsh at Walpole Island was 

classified with a high overall accuracy of 94.0% from a single high-resolution 

Worldview-2 satellite image using the object-based method. 

2. Object-based classification methods were developed for four and eight band 

imagery sets to investigate differences in classification accuracy with the 

addition of the four spectral bands. The four extra spectral bands were found to 

increase the overall classification accuracy from 92.7% to 94.0%.  The 

improvement in accuracy resulted from the decreased confusion between the 

Tree and Phragmites classes.  

3. Linear spectral mixture analysis of CHRIS PROBA hyperspectral imagery 

produced fraction maps predicting the distribution and fraction of land cover 

types which matched the ground truth pattern with good accuracy.  

4. The classified Worldview-2 image from Chapter 2 was used as ground truth to 

evaluate the fractional abundances of the Phragmites, native marsh vegetation 

and water classes. Mixing between native marsh vegetation and water at the level 

of the Worldview-2 pixel is believed to bias the ground truth fractions of these 

two classes. Native marsh vegetation and water ground truth fractions are 

overestimated and underestimated, respectively. 

5. The Phragmites fraction layer was reclassified to provide information about the 

state of Phragmites invasion in the marsh.  The Phragmites invasion map had a 

high overall accuracy of 85.2% when compared to ground truth. 
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6. The individual fraction layers were combined to provide a distribution map of 

the dominant land cover types in the marsh.  When compared to ground truth, 

this map had a high overall accuracy of 82.8% for the Phragmites, native marsh 

vegetation, and water classes. 

4.3 Contributions of this Research 

The main contribution of the study in Chapter 2 is it is the first known use of Worldview-

2 high-resolution eight band imagery and the object-based method for mapping a Great 

Lakes coastal wetland with the emphasis on extracting Phragmites cover. This satellite 

combines high-spatial resolution with increased spectral resolution compared with 

traditional high-resolution sensors. The results of the research show that a single date of 

imagery acquired late in the growing season, when spectral differences between 

Phragmites and other vegetation are greatest, is sufficient for mapping Phragmites with 

high accuracy. Worldview-2 imagery acquired late in the growing season, could be used 

by wetland managers for creating a baseline for Phragmites invasion, mapping its annual 

invasion. This could assist in developing a plan to deal with the invasion. Utilizing a 

single image from Worldview-2 reduces the cost associated with a vegetation monitoring 

program while providing similar accuracies to those methods using additional 

information such as multi-season imagery and/or height information from LiDAR. 

Chapter 3 adds to the research on using hyperspectral satellite imagery for mapping 

Phragmites in the Great Lakes region.  The research presented is the first known use of 

CHRIS PROBA hyperspectral satellite imagery to map the sub-pixel abundance of 

Phragmites in a Great Lakes coastal wetland. Pengra et al. (2007) used 30m Hyperion 

hyperspectral satellite imagery and the Spectral Correlation Mapper algorithm to map 

Phragmites on Green Bay, Lake Michigan, and it is the only other known study to use 

satellite hyperspectral imagery for Phragmites mapping in the Great Lakes. This research 

shows that accurate detailed information about the state of Phragmites invasion can be 

extracted from CHRIS PROBA using sub-pixel abundances. CHRIS PROBA land cover 

fractions can be combined to create a dominant land cover map for the marsh.  These 

fraction layers could be updated every year to monitor the spread of the invasive species, 

and determine how the dominant vegetation distribution is changing. 
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4.4 Possible Future Research 

4.4.1 High Resolution Imagery  

Future research using a single date Worldview-2 image could focus on generating 

additional information from the image to use for more accurate classification of 

Phragmites. For example, the texture of image objects could be calculated and used as 

additional information to separate Phragmites objects from other land cover class objects. 

eCognition provides texture measures based on Haralick gray-level co-occurrence 

matrices (GLCM) to be calculated for each object (Haralick et al., 1973; Haralick, 1979). 

Texture layers have been used to increase of accuracy of Phragmites classifications using 

radar data (Arzandeh & Wang, 2002) and high-resolution multispectral imagery (Laba et 

al. 2010).  The additional four spectral bands of Worldview-2 imagery could allow for 

specific band indices to be developed to aid in discriminating Phragmites from other 

vegetation. Gilmore et al. (2008) found that simple band indices calculated from 

QuickBird-2 bands, allowed for the classification of Phragmites from other species. 

4.4.2 Multiple Endmember Spectral Mixture Analysis 

The spectral mixture analysis method used in Chapter 3 is a very basic spectral unmixing 

model since it only allows for a single reference spectrum to be defined per land cover 

class.  Other spectral unmixing models such as multiple endmember spectral mixture 

analysis (MESMA), has been used to produce better results than SMA (e.g. Somers et al., 

2011) and may produce better fraction estimates for the three land covers.  Unlike basic 

SMA, MESMA allows for multiple endmembers to be defined for each land cover class.  

For example, additional endmembers could be defined for the Phragmites class which 

represent pure Phragmites stands in slightly different plant stages. The spectrums will be 

slightly different from each other, allowing for the spectral variability within the 

Phragmites class to be better accounted for.  Multiple endmembers are defined for each 

class.  The endmembers are grouped into different combinations and a basic SMA model 

is run for each combination.  After these endmember combinations have been tested in 

the SMA models, the pixels are evaluated one at a time using the resulting fractions, 
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RMSE and residual values (Roberts et al., 1998) to select the best SMA model fit for 

each pixel.  
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Appendices 

A.1 Smoothing Filter-based Intensity Modulation 

Image fusion is a commonly used method to increase the information in an image.  The 

Worldview-2 satellite acquires eight multispectral bands of 2m resolution and one 

panchromatic band with 0.5m resolution.  Therefore, the multispectral bands can be 

enhanced with the greater spatial information provided by the panchromatic band.  In this 

study, the Smoothing Filter-based Intensity Modulation (SFIM) image fusion technique 

described by Liu (2000) was used to create a new dataset with both high spatial and 

spectral information.  The multispectral bands were resampled to the same resolution as 

the panchromatic band to ensure precise pixel alignment.  An averaging filter equal to or 

greater than the ratio between the high spectral resolution band and the high spatial 

resolution band is then applied to the high spatial resolution band.  The multispectral 

band resolution was 2m and the panchromatic band resolution was 0.5m so a 5x5 

averaging filter was applied.  The fusion technique is described by the equation: 

DN(sim) = DN(low)DN(high)/DN(mean)             (1) 

where DN(sim) is the value of the SFIM pansharpened higher resolution pixel in a 

multispectral channel corresponding to DN(low).   DN(high) is the value of the 

corresponding pixel in the high resolution panchromatic channel, and DN(mean) is the 

value of the corresponding pixel in the low-pass filtered panchromatic band.  This 

equation was applied to each of the eight Worldview-2 multispectral bands.  The result is 

eight multispectral bands with 0.5m resolution.  These pansharpened bands and the 

original panchromatic band were used as input layers for classification. 
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A.2 Land Cover Types of Walpole Island First Nation 

 

Figure A2.127 Phragmites australis (Cavenilles) Trinius ex. Steudel subsp. australis, Common Reed, 
growing on a marsh dike. 

 

 

Figure A2.228 Phragmites australis (Cavenilles) Trinius ex. Steudel subsp. australis, Common Reed, 
growing in the coastal marsh. 



111 

 

 

Figure A2.329 Phragmites australis (Cavenilles) Trinius ex. Steudel subsp. australis, Common Reed, in the 
flowering/fruiting stage. 

 

Figure A2.430 Phragmites australis (Cavenilles) Trinius ex. Steudel subsp. australis, Common Reed, is the 

dominant species in many parts of the marsh. 
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Figure A2.531 Native Marsh Vegetation. 

 

 

Figure A2.632 Native Marsh Vegetation – Typha spp., Cattails. 
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Figure A2.733 Native Marsh Vegetation – Pontederia cordata, Pickerelweed. 

 

Figure A2.834 Native Marsh Vegetation - Scirpus spp., Bulrush. 
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Figure A2.935 Native Marsh Vegetation – Nymphaea odorata, Fragrant White Water Lily. 

 

 

Figure A2.1036 Native Marsh Vegetation - Nuphar variegatum, Yellow Pond Lily. 
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Figure A2.1137 Native Marsh Vegetation – Zizania palustris, Wild Rice. 

 

Figure A2.1238 Forest and Tallgrass Prairie are found inland away from the marsh. 
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Figure A2.1339 Tallgrass Prairie. 

 

Figure A2.1440 Agriculture, Tallgrass Prairie, and Forest land cover types. 



117 

 

 

Figure A2.1541 Corn is a major crop type grown in WIFN. 

 

Figure A2.1642 Soybeans are a main crop type grown in WIFN. 
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Figure A2.1743 Asphalt roads are common in the urban areas of WIFN. 

 

Figure A2.1844 Gravel roads allow access to the agricultural areas of WIFN. 
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Figure A2.1945 Roads on the marsh dikes are made of compacted soil. 

 

Figure A2.2046 Manicured grass is found in urban areas of WIFN. 
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Figure A2.2147 Drainage ditch between agricultural fields. 

 

Figure A2.2248 The St. Clair River is a major shipping channel that allows cargo vessels to travel between 
the upper and lower Great Lakes. 
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Figure A2.2349 The coastal marshes of WIFN extend into Lake St. Clair. 

 

 

Figure A2.2450 The islands of WIFN are separated by the Bassett, Chematogan, Johnston (shown here), 
and the Snye channels. 
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Figure A2.2551 The "heart" of WIFN, Goose Lake. 

 

Figure A2.2652 Snooks Lake, Squirrel Island, WIFN. 
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