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Abstract 

Using the C2C12 mouse myoblast cell line, I investigated how prolonged hypoxia affected 

components of the insulin signalling and FAO/PGC-1α/PPARs pathways, as they might 

impact insulin sensitivity in skeletal muscle cells. 

Hypoxia resulted in lower p-Akt (Thr 308) and higher total cellular GLUT4 protein levels 

after 7 days of differentiation. This coincided with higher triglyceride content and alterations 

of the FAO/PGC-1α/PPARs components, both of which could contribute to the changes 

observed in the components of the insulin signalling pathway. Specifically, cells 

differentiating in 1% O2 had lower SIRT1, PPAR- α, FATP4 and MCAD mRNA; 

accompanied by lower SIRT1, PGC-1α and higher PPAR- γ protein following 7 days of 

differentiation. Additionally, cells in prolonged hypoxia had significantly higher 

phosphorylation of PGC-1α, AMPKα and ACC; concurrent with higher PGC-1α acetylation. 

However, none of these alterations above persisted following an additional 2-day re-

oxygenation treatment (recovery).  

In conclusion, prolonged hypoxia impairs components of the insulin signalling and 

FAO/PGC-1α/PPARs pathways, although the degree of this impairment is reduced followed 

re-oxygenation. An altered FAO/PGC-1α/ PPARs interaction contributes to depress FAO, 

resulting in increased triglyceride content, which likely impairs insulin signaling, specifically 

Akt phosphorylation (Thr 308). It is important to note that the alterations of FAO/PGC-1α/ 

PPARs observed here are similar to those reported in insulin resistant adults. The changes 

obtained during hypoxia may partly explain the in utero factors contributing to decreased 

insulin sensitivity in intrauterine growth restriction offspring. 

 

Keywords 

Intrauterine growth restriction (IUGR), hypoxia, fatty acid β-oxidation (FAO), insulin 

resistance,  insulin signalling pathway, peroxisome proliferator-activated receptor (PPAR), 
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Chapter 1 Introduction 

1.1 Metabolic syndrome, insulin resistance and skeletal 
muscle 

The metabolic syndrome (or syndrome X) is a constellation of symptoms/ features, 

including central obesity, dyslipidemia and hypertension, which predisposes for the 

development of cardiovascular disease and type II diabetes. The condition of insulin 

resistance is present before these overt features of the metabolic syndrome are apparent 

and is believed to be a critical pathophysiological event early in the disease process 

(Barker 2005). Skeletal muscle is the principal site of glucose uptake under insulin-

stimulated conditions, accounting for approximately 75% of glucose disposal after 

glucose infusion (DeFronzo et al. 1985, Nuutila et al. 1992), and is also the major tissue 

site affected in insulin resistant individuals (Selak et al. 2003). Insulin resistance is a 

condition where impaired peripheral tissue response to endogenously secreted insulin 

occurs, including decreased insulin-mediated glucose uptake (Peppa et al. 2010). Further, 

in skeletal muscle from animal models of insulin resistance, intracellular lipid metabolites 

(e.g. triglyceride [TG], long-chain Acyl-CoA and ceramide) are increased, accompanied 

by a lower fatty acid β-oxidation (FAO) level and insulin signalling defects when 

compared to healthy adults (Park et al. 2005, Liu et al. 2007, Heydrick et al. 1993). All 

these studies suggest an association between decreased FAO, defects of insulin signalling 

cascade and development of insulin resistance in skeletal muscle tissue. The origins of 

insulin resistance are likely multifactorial, though, emerging evidence suggests the in 

utero environment plays a major role in setting one’s susceptibility to developing insulin 

resistance in postnatal life. This increased susceptibility occurs as a result of 

reprogramming events that occur in response to in utero stresses during pregnant and 

such activities underlie the concept of the developmental origins of health and disease 

(Barker 2005).  

1.2 Developmental origins of health and disease 

The concept of developmental origins of health and disease is the idea that environmental 

factors (usually in utero) acting early in life have crucial effects on the vulnerability to 
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diseases later in adulthood (Gluckman, Hanson & Mitchell 2010). Many studies have 

now revealed links between poor early growth in utero and susceptibility to adult disease, 

such as insulin resistance, and later type II diabetes, cardiovascular disease, obesity and 

cancer (Hales, Barker 1992, Kensara et al. 2005, Osmond et al. 1993). Inadequate 

maternal and fetal nutrition was commonly associated with poor early human growth, 

such as low birth weight (LBW) newborns, whose birth weights are less than 2,500g, 

regardless of their gestational age (Jain, Singhal 2012). Under this substantial 

developmental challenge, a range of phenotypes that have been called “thrifty” can be 

induced (Hales, Barker 1992), which refers to a condition where physiological and/or 

metabolic fetal adaptations occur to enhance the fetus’ ability to survive in adverse 

uterine environments (Fernandez-Twinn, Ozanne 2006). Such adaptations during critical 

periods may permanently reset and can produce long-term functional and structural 

changes. This might be because that the fetus predicts the environment into which it is 

likely to be born in is the same as its poor in utero environment, and adapts to gain a 

competitive advantage when it is born (Gluckman, Hanson 2004). The high incidence of 

metabolic disease in modern populations has been explained by the selection for “thrifty” 

metabolism during evolution (Anonymous1989).Various types of insults (such as high 

altitude pregnancies, placental insufficiency, maternal smoking and malnutrition, 

placental villous inflammation) have been found to affect birth weight with potential 

consequence for diseases in later life (Habek et al. 2002, Becroft, Thompson & Mitchell 

2005, Ballew, Haas 1986). 

Many epidemiological studies have revealed a close relationship between LBW and the 

subsequent development of insulin resistance leading into type II diabetes in a range of 

populations worldwide (Hales, Barker 2001). Biopsies from the vastus lateralis muscle of 

men with LBW showed reduced expression of protein kinase C (PKC) zeta, insulin 

sensitive glucose transporter type 4 (GLUT4) and other insulin signalling markers (e.g. 

p85 and p110β), which help to promote insulin resistance (Ozanne et al. 2005). Exploring 

the key molecular mechanisms underlying early life programming may help to explicate 

the development of adult diseases and validate potential targets for intervention. 
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1.3 Intrauterine growth restriction, hypoxia and skeletal 
muscle  

1.3.1 Intrauterine growth restriction  

As mentioned above, LBW refers to infants who weigh less than 2, 500g at birth, 

regardless of gestational age (Jain, Singhal 2012). Intrauterine growth restriction (IUGR) 

is a term assigned to newborns who have failed to reach their genetically predetermined 

growth potential in utero, which then leads to LBW. The IUGR infants have birth 

weights and/or lengths below the 10th percentile for their gestational age (Ness, Sibai 

2006). The etiology IUGR is multifactorial, including fetal factors (e.g. chromosomal 

alterations and intrauterine infections), maternal factors (e.g. nutritional disorders, drugs 

and alcohol abuse) as well as placenta factors (e.g. placental insufficiency). 

Placental insufficiency is the most common cause of IUGR (Resnik 2002). Placental 

insufficiency, which is commonly caused by interference with placenta vascular 

development, is characterized by reduced nutrition and oxygen supply (Baschat 2004). 

The resulting fetal undernutrition and hypoxemia are the major stimuli involved in the 

reduction in fetal growth (Baschat 2004). An early study found that fetal rats exposed to 

hypoxia showed placental hypertrophy relative to their body weights, while the least 

hypoxic fetuses showed absolute placental hypertrophy (de Grauw, Myers & Scott 1986). 

In addition, fetal sheep that were chronic hypoglycemia showed increased protein 

breakdown, amino acid oxidation and reduced plasma insulin, glucose uptake and fetal 

growth rate. However, euglycemic correction normalized these parameters within a few 

days (Limesand, Hay 2003, Limesand et al. 2009). By contrast, in fetal sheep with 

placental insufficiency (hypoxemic and hypoglycemic), euglycemic recovery failed to 

restore glucose homeostasis or improve growth rate, but in fact worsened hypoxemia and 

hypoinsulinemia, resulting in acidosis. Hence, the metabolic alterations related with 

placenta insufficiency are reliant on placenta oxygen supply and cannot be improved by 

adding just the nutrition supply (Rozance et al. 2009). All of these studies highlight the 

fact that hypoxia is a critical regulator of fetal growth, independent of other nutrients, and 

that it has a primary role in the control of fetal growth (Giussani et al. 2007). Therefore, 

the focus of this thesis was to investigate the potential impact of hypoxia on skeletal 
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muscle insulin sensitivity by studying related pathways (e.g. insulin signalling and 

FAO/PGC-1α/PPARs pathways), aiming to improve our knowledge of in utero hypoxia 

and its possible effects on fetal insulin sensitivity.  

1.3.2 Effects of hypoxia on fetal development 

Normal maternal arterial PO2 is 80-100 mmHg (Ang et al. 1969), while the typical fetal 

umbilical vein PO2 is approximately 20-30 mmHg in human (Lackman et al. 2001). The 

fetus requires a moderately low PO2 for proper development (e.g. vasculogenesis) 

(Bleiberg, Liron & Feldman 1967, Charnock-Jones, Kaufmann & Mayhew 2004). 

However, under excessive hypoxia, fetal growth can be reduced and abnormal 

development is thus incurred.  

The fetus is normally able to maintain aerobic metabolism during acute decreases in 

oxygenation that are common when there is a transient interruption in uterine or 

umbilical blood flow. Aerobic metabolism will be maintained until the available oxygen 

in the intervillous space falls to 50% of normal levels. The fetus has several normal 

compensatory mechanisms for surviving transient hypoxic insults, such as having more 

hemoglobin per cubic unit of whole blood, redistribution blood flow and increasing 

cardiac output and heart rate. If these mechanisms are not sufficient to allow the fetus to 

maintain aerobic metabolism, anaerobic metabolism will ensue. If normal fetal 

oxygenation does not resume, then asphyxia occurs, where the adaptive mechanisms fail. 

This failure in auto-regulation will result in brain injury, and all organs can be affected 

(Blackburn 2007).  

A prolonged reduction in uteroplacental perfusion, such as in the condition of placental 

insufficiency, results in the fetus limiting oxygen-consuming processes, which can result 

in curtailing oxygen-consuming activities such as protein synthesis, to direct limited 

resources to more vital functions. Metabolic normality may be maintained by the fetus, 

which suggests that the fetus is capable of rapid adaptation to limited substrate delivery 

by decreasing the growth rate. Over time, this adaption results in clinically detectable 

fetal growth restriction, such as IUGR (Blackburn 2007).  
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Infants born with IUGR have a reduced umbilical vein PO2 (as low as 15 mmHg and 20 

mmHg in human and sheep, respectively) when compared with normally grown 

newborns (Baschat 2004, Regnault et al. 2007). During these severe hypoxic conditions, 

in addition to whole body growth restriction, fetal blood flow is redistributed 

preferentially to vital organs such as the brain, heart and adrenals to ensure the nutrition 

and oxygen supply of these organs, while growth of peripheral tissues and organs, such as 

skeletal muscle is reduced (Sadiq et al. 1999). 

1.3.3 Alterations in skeletal muscle mass / function under hypoxia 

Various investigations have begun to highlight hypoxia-associated alterations in skeletal 

muscle. In adults, muscle biopsy samples of climbers who have been exposed to extreme 

hypoxia (summits higher than 8000 m in the Himalayas), showed a decline in aerobic 

work capacity, which could be a consequence of muscle mass loss. The degradation of 

muscle tissue was further characterized by an increase in muscle lipofuscin, which is 

believed to be the consequence of mitochondrial loss (Howald, Hoppeler 2003).  

From a fetal perspective, ultrasound measurements of hypoxia-associated IUGR fetuses 

showed a reduced muscle mass (Padoan et al. 2004, Larciprete et al. 2005). In fetal sheep 

with placental insufficiency, skeletal muscle fibers contained fewer myonuclei than those 

from control fetuses, resulting in 33% less DNA, 40% less RNA, and 76% less protein 

per fiber (Greenwood et al. 2000, Greenwood et al. 1999), which indicates reduced 

muscle growth. This is because after myogenesis, muscle growth continues via fiber 

hypertrophy and requires myoblast incorporation to increase genomic DNA content; 

myonuclei incorporation precedes protein accumulation, and the size of a muscle fiber is 

dependent on DNA content (Yates et al. 2012). Furthermore, prolonged hypoxia in 

culture decreased factors important for muscle FAO, such as peroxisome proliferator-

activated receptor- γ coactivator-1α (PGC-1α) (Regnault et al. 2010b). Additionally, the 

insulin signalling was impaired in animal models of IUGR (Jackson et al. 1993, Maier et 

al. 1992). Combined, these findings indicate that hypoxia and associated IUGR likely 

have profound effects on skeletal muscle mass, cell mitochondrial abundance and fatty 

acid oxidation, and insulin signalling.  
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1.4 Regulations of insulin sensitivity in skeletal muscle 

Insulin sensitivity in skeletal muscle refers to the ability of endogenous and exogenous 

insulin to lower glucose in extracellular fluid by stimulating the skeletal muscle glucose 

uptake. It is regulated by a series of enzymes in the insulin signalling pathway (Figure 

1.1), through which insulin conducts its signalling. Another important aspect of insulin 

sensitivity is FAO. Previous researchers have shown that decreased FAO is associated 

with reduced insulin sensitivity in heart and skeletal muscle (Zhang et al. 2010). The 

overall FAO capacity is regulated by interactions of FAO/PGC-1α/PPARs (Figure 1.2). 

Thus, the FAO/PGC-1α/PPARs interactions are also associated with insulin sensitivity, 

through impacting FAO capacity. 

1.4.1 Insulin signalling pathway 

Insulin signalling is mediated by a complex, highly integrated network that controls 

several processes (Taniguchi, Emanuelli & Kahn 2006). Stimulated by insulin, the insulin 

receptor (IR) phosphorylates insulin receptor substrate (IRS) proteins, which are 

associated with the activation of 2 signalling pathways: the phosphatidylinositol 3-kinase 

(PI3K)–Akt/protein kinase B (PKB) pathway and the ras-mitogen-activated protein 

kinase (MAPK) pathway. The PI3K-Akt pathway bears the responsibility of most insulin 

metabolic functions, while the MAPK pathway controls cell growth and differentiation 

(Avruch 1998). 

Insulin action is initiated through the binding to and activation of its cell surface receptor: 

IR, which is composed of 2 α subunits and 2 β subunits (Czech 1985). When insulin 

binds to the extracellular α subunits, a signal is transmitted across plasma membrane to 

activate the intracellular tyrosine kinase domain of the β subunit. The receptor then 

undergoes a series of intra-molecular transphosphorylation reactions in which a β subunit 

phosphorylates its adjacent partner on specific tyrosine residues (Nystrom, Quon 1999). 

Certain phosphorylated tyrosine residues on the activated IR protein can be recognized by 

IRS. Alterations in IR expression, binding, phosphorylation state, and/or kinase activity 

could account for many insulin resistance phenotypes (Krook, O'Rahilly 1996).  
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IRS proteins are important intracellular substrates of IR. Activated IR recruits IRS, which 

binds to the phosphorylated tyrosine residues on the receptor via a phosphotyrosine 

binding (PTB) domain of IRS (Holgado-Madruga et al. 1996). When IRS is bound to IR, 

the kinase activity of IR can catalyze phosphorylation of tyrosine residues on IRS. IRS is 

activated by tyrosine phosphorylation, and is negatively regulated by serine 

phosphorylation (e.g. phosphorylation at Ser 1101) (Hirosumi et al. 2002). There are 2 

predominant IRSs (IRS1 and IRS2) involved in metabolic regulation in skeletal muscle. 

These IRSs share a highly similar sequence, but appear to have different signalling 

functions. In L6 myotubes, where small interfering RNAs (siRNAs) were used to 

decrease either IRS1 or IRS2 expression, IRS1 was found to be more responsible for 

glucose uptake, whereas IRS2 was more closely associated with MAPK regulation 

(Huang et al. 2005). Tyrosine phosphorylation of the IRS after insulin stimulation leads 

to an interaction with and subsequent activation of several downstream substrates along 

the insulin signalling pathway, ultimately resulting in the activation of Akt (Walker et al. 

1998). 

Akt is a serine/threonine kinase, also known as protein kinase B (PKB), which is 

activated by its phosphorylation at Ser 473 and Thr 308(Alessi et al. 1996). There are 3 

isoforms of Akt (Akt1, Akt2, and Akt3) expressed in skeletal muscle. Either Akt1 or 

Akt2 knockout mice demonstrated that the different isoforms have specific roles (Cho et 

al. 2001b, Cho et al. 2001a). Knockout of Akt2 in mice impaired the ability of insulin to 

lower blood glucose, because of defects in the action of insulin on liver and skeletal 

muscle. Thus Akt2 is essential for the maintenance of normal glucose homeostasis (Cho 

et al. 2001a). In contrast, Akt1 is required for normal growth, but is not essential for 

glucose homeostasis maintenance in mice (Cho et al. 2001b). Studies have shown that 

overexpression of constitutively active mutants of Akt in rat adipose cells or 3T3-L1 

adipocytes led to increased recruitment of GLUT4 to the cell surface (Cong et al. 1997, 

Kohn et al. 1996). Furthermore, overexpression of a kinase-deficient inhibitory mutant of 

Akt inhibited insulin-stimulated translocation of GLUT4 in adipose cells (Cong et al. 

1997). GLUT4 is one of several isoforms in a family of facilitative glucose transporter 

proteins, and available evidence supports the idea that it is the magnitude of GLUT4 

translocation which determines the capacity of a tissue to enhance glucose uptake 
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(Holloszy, Hansen 1996). Thus, these data suggest that Akt has a role in promoting 

GLUT4 translocation and glucose uptake in adipose tissue. Similar effects of Akt on 

GLUT4 translocation and glucose uptake were also found in skeletal muscle (Ueki et al. 

1998).  

As mentioned above, GLUT4, a member of a family of facilitative glucose transporter 

proteins, is the dominant isoform in skeletal muscle (Birnbaum 1989). In the basal state, 

GLUT4 slowly recycles between the plasma membrane and vesicular compartments 

within the cell, where most of the GLUT4 resides (Satoh et al. 1993). Upon insulin 

stimulation, GLUT4 containing vesicles translocate to fuse with the cell surface 

membrane, in order to facilitate the transportation of glucose into cells (Holman, 

Sandoval 2001).Insulin resistance in Type II diabetes is not generally linked to a reduced 

skeletal muscle GLUT4 protein level (Zierath, Krook & Wallberg-Henriksson 2000). In 

contrast, GLUT4 protein fails to translocate to the sarcolemma in skeletal muscle under 

insulin stimulation from subjects with Type II diabetes (Zierath et al. 1996, Ryder et al. 

2000). These reports further support the idea that it is the magnitude of GLUT4 protein 

translocation that determines the capacity of glucose uptake in skeletal muscle. Except 

insulin, GLUT4 is also translocated to the surface membrane in response to other stimuli, 

including hypoxia (Holloszy, Narahara 1965, Azevedo et al. 1995, Cartee et al. 1991).  

Cartee found hypoxia increased the amount of GLUT4 transporters in the plasma 

membrane fraction but had little effect on the GLUT4 content of the intracellular fraction 

in rat skeletal muscle cells (Cartee et al. 1991). Hypoxia also affects other upstream 

markers of the insulin signalling pathway. Regazzetti and colleagues found in both 

human and murine adipocytes, that hypoxia (1% O2) inhibited insulin signalling as 

revealed by a decrease in the phosphorylation of IR. Furthermore, in murine 3T3-L1 

adipocytes, this inhibition of IR phosphorylation is followed by a decrease in the 

phosphorylation state of protein kinase B/Akt in response to insulin (Regazzetti et al. 

2009). Moreover, hypoxia-associated IUGR animal models also have defects in their 

insulin signalling pathway (Muhlhausler et al. 2009, Camm et al. 2011). A fetal lamb 

study showed the insulin signalling molecule PKC and GLUT4 protein in the quadriceps 

muscle of the IUGR fetal lambs were lower than that of the control normal lambs 
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(Muhlhausler et al. 2009). Also in rats, insulin signalling via Akt is reduced in liver of 

offspring from dams exposed to IUGR associated hypoxic or malnourished environments 

during pregnancy (Camm et al. 2011). All these observations suggest that the insulin 

signalling pathway plays a major role in maintaining normal insulin sensitivity, and 

hypoxia or hypoxia-related IUGR results in defects in this pathway, which may influence 

insulin sensitivity promoting insulin resistance. 

1.4.2 FAO/PGC-1α/PPARs pathway in regulating FAO 

FAO is a crucial component of determining overall insulin sensitivity. FAO capacity is 

regulated by a number of regulators in skeletal muscle, such as the components of FAO/ 

PGC-1α/PPARs pathway, including the peroxisome proliferator-activated receptors 

(PPARs), and PPAR- γ coactivator-1α (PGC-1α), silent information regulator T1 

(SIRT1), the AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). 

These regulators are directly or indirectly involved in regulating FAO related gene 

expressions such as carnitine palmitoyltransferase I (CPT1), cluster of differentiation 36 

(CD36), fatty acid transport protein 4 (FATP4) and medium-chain Acyl-CoA 

dehydrogenase (MCAD). 

PGC-1α lies at the heart of this regulatory pathway. It was discovered in 1998 as a cold-

inducible co-activator of PPAR- γ that promoted adaptive thermogenesis (Puigserver et 

al. 1998). Since then, it has become clear that PGC-1α can bind to and coactivate most 

nuclear receptors, as well as many other transcription factors (Lin, Handschin & 

Spiegelman 2005). As a transcriptional coactivator, PGC-1α functions through direct 

physical interaction with transcription factors to regulate gene transcription. PGC-1α 

mRNA and protein levels are directly correlated with muscle FAO capacity (Gerhart-

Hines et al. 2007), muscle fiber switching (Lin et al. 2002) and insulin sensitivity (Pagel-

Langenickel et al. 2008). In human studies, reduced PGC-1α mRNA in adult skeletal 

muscle has been linked to the development of insulin resistance and Type II diabetes 

(Mensink et al. 2007, Patti et al. 2003). Regardless of PGC-1α expression level, post 

translational modification is also important to its activation. Deacetylation of PGC-1 α by 

SIRT1 increases the activity of PGC-1α (Sugden, Caton & Holness 2010a). 
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Silent information regulator T1 (SIRT1) is one of the mammalian homologues of the Sir2 

protein in yeast (Rodgers et al. 2005). It is a nicotinamide adenine dinucleotide (NAD
+
)-

dependent deacetylase. SIRT1 requires NAD
+
 as a cofactor to deacetylate a number of 

target substrates, including PGC-1α, thus leading to activation of these target substrates. 

A decrease in the NAD
+
/NADH ratio inhibits SIRT1 activity, while an increase promotes 

its activity. SIRT1 regulates PGC-1α activity through NAD
+
-dependent deacetylation of 

lysine residues (de Lange et al. 2007). Deacetylated PGC-1α is able to combine with a 

heterodimer, which consists of PPARs and retinoid X receptor (RXR). This protein 

complex (PGC-1α-PPAR-RXR) regulates genes encoding proteins involved in fatty acid 

uptake and oxidation (Sugden, Caton & Holness 2010b).  

Peroxisome proliferator-activated receptors (PPARs) are transcription factors, which 

belong to the super-family of nuclear receptors. They act through binding to specific 

DNA sequences: peroxisome proliferator hormone response elements (PPREs), in the 

form of heterodimers with the RXR, and together with other cofactors, such as PGC-1α, 

to regulate genes expression (Kliewer et al. 2001). However, phosphorylation of PGC-1α 

by Akt2 at Ser 570 can decrease FAO through impairing the recruitment of this protein 

complex (PGC-1α-PPAR-RXR) to PPREs in the promoter region of PPARs target genes 

(Li et al. 2007). RXR is another nuclear receptor that functions as PPARs obligatory 

partner (Schaiff et al. 2005). There are three isoforms of PPAR: α, β and γ.  

PPAR- α is highly expressed in skeletal muscle (Su et al. 1998). It regulates genes 

expression associated with fatty acid transport and oxidation through binding to PPREs 

(Kliewer et al. 2001). Examples of these target genes include CD36, which is involved in 

fatty acid uptake (Bonen et al. 2009); CPT1, which is involved in the mitochondrial 

transfer and oxidation of long-chain fatty acids (Cunningham et al. 2007) and the MCAD, 

which is an Acyl-CoA dehydrogenase within the FAO cycle with specificity for medium-

chain fatty acids (Purushotham et al. 2009). Altered expressions of these genes are 

directly correlated with altered FAO and insulin resistance (Hulver, Dohm 2004). PPAR- 

γ, another nuclear receptor in PPAR family, together with RXR, enhance fatty acid 

uptake and accumulation in vitro by promoting genes expression known to be associated 

with fatty acid uptake and accumulation, such as FATP4 and CD36 (Schaiff et al. 2007). 

http://en.wikipedia.org/wiki/Hormone_response_element
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PPAR- γ is regulated by SIRT1, as a previous study showed that SIRT1 negatively 

regulated PPAR- γ by interacting with the transcriptional corepressor, NCoR, which then 

inhibited fatty acid accumulation (Picard et al. 2004). 

The acute energy sensor of the cell AMPK also plays an additional regulatory role in 

FAO. AMPK regulates FAO through its regulation of ACC activity and further 

downstream control of CPT1.When the energy status of a cell is low (e.g. fasting and 

acute hypoxia), with a rise in AMP/ATP ratio, the AMPK can be activated by 

phosphorylation, and consequently phosphorylates its downstream substrate ACC at a 

number of serine residues, such as Ser 79. ACC, when active, is an enzyme which 

regulates fatty acid metabolism through its catalyzation of malonyl-CoA. Malonyl-CoA 

is a building block for new fatty acids and can inhibit the transport of long-chain fatty 

acids across the mitochondrial membrane by depressing CPT1. These events ultimately 

inhibit FAO in the mitochondria. Phosphorylation of ACC by activated AMPK (p-

AMPK) inactivates this enzyme and prevents the production of malonyl-CoA. This, in 

turn, releases the inhibitory effect exerted by malonyl-CoA on CPT1and promotes the 

transport of long-chain fatty acids into the mitochondria for β-oxidation (Kahn et al. 

2005, Ruderman et al. 1999).  

Besides, AMPK affects GLUT4 protein as well, in an insulin- independent manner (Fryer 

et al. 2002). Previous studies have shown that chronic chemical activation of AMPK 

increases total cellular GLUT4 protein level in rat muscle (Holmes, Kurth-Kraczek & 

Winder 1999), which suggests the possibility of targeting the AMPK as a potential 

treatment of insulin resistance.  

All the above facts highlight that PGC-1α/PPARs pathway plays a major role on 

controlling FAO genes and through this control regulates overall FAO capacity. A further 

regulatory input is through AMPK/ACC and together, the AMPK and FAO/PGC-

1α/PPARs pathway control the overall FAO capacity and thereby impact insulin 

sensitivity. Hypoxia, one of the essential components of placental insufficiency, may 

interfere with these interactions. One of the major basis of this interference is that 

hypoxia alters the cellular redox balance by reducing NAD
+
 concentration, which results 

http://en.wikipedia.org/wiki/Long-chain_fatty_acid
http://en.wikipedia.org/wiki/Long-chain_fatty_acid
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in increased NADH concentration (Wu et al. 2006)
 
. This change could result in 

decreased SIRT1activity, as SIRT1 requires NAD
+
 as a cofactor to deacetylate target 

substrates. Therefore, PGC-1α activity may be influenced by hypoxia through SIRT1. 

Besides, a previous study has reported that hypoxia stimulated the increased expression 

of cardiac membrane fatty acid transporters (e. g. CD36), contributing to lipid 

accumulation (Chabowski et al. 2006a, Chabowski et al. 2006b). Additionally, the stress 

of hypoxia likely induces an acute energy deficient status and an alteration in the 

AMP/ATP ratio thereby promoting AMPK activity. All of these indicate the possibility 

that hypoxia might impede FAO/PGC-1α/PPARs pathway in skeletal muscle, which 

ultimately setting the stage for impaired insulin signalling and development of insulin 

resistance. 

1.4.3 Links between lipid metabolism and insulin resistance 

A growing body of scientific evidence indicates a strong correlation between lipid 

metabolism and insulin resistance, and ultimately type II diabetes (Kelley, Goodpaster & 

Storlien 2002a). Data reported by Pan and colleagues obtained from lipid extractions of 

human biopsy samples of vastus lateralis showed that TG level was significantly 

increased in obesity and was directly associated with the severity of insulin resistance 

(Pan et al. 1995). In another study using light microscopy, Goodpaster observed that the 

volume of lipid droplets occupied in myocytes was 1.5% in lean volunteers, while this 

proportion rose to 3-4% in obesity, and slightly higher in type II diabetes (Goodpaster et 

al. 2000). All of these studies emphasize the importance of lipid accumulation in the 

development of insulin resistance and its related type II diabetes. But what is the 

underlying mechanism by which lipids contribute to insulin resistance? Studies have 

found that excessive intracellular fatty acids, which are the lipid building blocks, have 

deleterious effects on insulin action (Yu et al. 2002b).  

Fatty acids are crucial energy source besides glucose in skeletal muscle. Once entering 

the myocyte, fatty acids are directed towards either the synthesis of lipid metabolites or 

mitochondrial β-oxidation. Increases in fatty acids uptake and/or decreases in 

mitochondrial fatty acids β-oxidation leading to excessive fatty acids in cells, results in 

accumulation of lipid intermediates. These lipid intermediates, including long-chain 
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Acyl-CoA, diglyceride (DAG), ceramide and/or TG, can activate a number of different 

serine kinases, such as PKC and c- jun n-terminal kinase (JNK) (Yu et al. 2002b). These 

serine kinases phosphorylate serine residues of IRS-1, and decrease phosphorylation of 

tyrosine residues and activation of IRS-1. Inhibition of IRS-1consequently decreases 

activation of downstream signalling markers (e.g. PI3 kinase and Akt) along the insulin 

pathway (Schenk, Saberi & Olefsky 2008), leading to reduce GLUT4 translocation and 

glucose uptake into cells (Dresner et al. 1999) (Figure 1.3).  

1.5 Thesis objectives 

Hypoxia is an important component of placental insufficiency, which is the most 

common cause of IUGR. The IUGR condition has been highlighted as predisposing 

offspring to metabolic associated diseases in their later life. Reduced insulin sensitivity, is 

believed to be a critical pathophysiological event early in metabolic associated disease 

development. Insulin sensitivity is regulated by the insulin signalling pathway and its 

interaction with FAO: the later is ultimately regulated by FAO/PGC-1α/PPARs 

interactions. Given that hypoxia may adversely modulate components of these pathways, 

it is possible that hypoxia as an insult during in utero development may impair insulin 

sensitivity by altering or modulating components of the insulin signalling pathway and or 

FAO/PGC1-α/PPARs in utero. It is further feasible to speculate that these alterations or 

modulations may persist after birth, making these offspring more likely to suffer from 

chronic metabolic associated diseases. Therefore, I postulated that prolonged hypoxia, 

during muscle cell differentiation, induces impairment of the FAO/PGC-1α/PPARs in 

conjunction with aspects of insulin signalling. Further, these changes will remain 

following a recovery period in normal oxygen. 

Prediction 

Mouse skeletal muscle cells that differentiate under prolonged hypoxia will have an 

increased intramyocyte TG level in conjunction with altered and modified aspects and 

components of insulin signalling and FAO/PGC-1α/PPARs pathways. I predict that these 

alterations and modifications will persist following a recovery treatment under normoxia. 
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Figure 1.1 Summary of the insulin signalling pathway. Once insulin binds to insulin 

receptor (IR), IR will auto-phosphorylate a number of tyrosine residues. Certain tyrosine 

residues are recognized by insulin receptor substrate (IRS), which is recruited to the 

receptor. IR then activates IRS by phosphorylating IRS molecules at numerous tyrosine 

residues. Tyrosine phosphorylation of the IRS protein leads to an interaction with and 

subsequent activation of several downstream substrates along the insulin signalling 

pathway, ultimately resulting in the activation of Akt. The activated Akt then stimulates 

glucose uptake by inducing glucose transporter type 4 (GLUT4) translocation from 

intracellular storage to plasma membrane. Figure was adapted from: www. 

environmentalhealthnews.org /newscience/2007/2007-0405insulinsignaling.html.  
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Figure 1.2 Illustration of the FAO/PGC-1α/PPARs interactions. The PPAR- γ 

coactivator-1α (PGC-1α) lies at the heart of the FAO/PGC-1α/PPARs interactions. It is 

deacetylated by Silent information regulator T1 (SIRT1), which is a cellular deacetylase. 

This deacetylated PGC-1α then goes to combine with PPAR-RXR heterodimer. 

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which 

function as transcription factors. Retinoid X receptor (RXR) is another nuclear receptor 

which works as PPARs obligated partner. When PGC-1α combines with PPAR-RXR, 

this protein complex then goes to connect with specific DNA sequence: peroxisome 

proliferator hormone response elements (PPRE) to regulate gene transcriptions which are 

involved in fatty acid β-oxidation (FAO), uptake and accumulation. These genes include 

carnitine palmitoyltransferase I (CPT1), cluster of differentiation 36 (CD36), medium-

chain Acyl-CoA dehydrogenase (MCAD) and fatty acid transport protein 4 (FATP4). 

However, when PGC-1α is phosphorylated by Akt2, the recruitment of the protein 

complex (PGC-1α-PPAR-RXR) to specific DNA sequence of promoter region will be 

impaired, which leads to decreased FAO rate. One the other hand, FAO is also regulated 

by AMP-activated protein kinase (AMPK)/ acetyl-CoA carboxylase (ACC) through 

CPT1. When ACC is phosphorylated and inhibited by AMPK during fasting or acute 

hypoxia, the inhibition of ACC to CPT1 can be removed, which consequently increases 

FAO rate. In addition, the activated AMPK up-regulates total GLUT4 protein content. 

http://en.wikipedia.org/wiki/Hormone_response_element
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Figure 1.3 Classic model of lipid-induced insulin resistance. Decreased FAO rate will 

result in accumulation of lipid intermediates including triglyceride (TG), diglyceride 

(DAG), long-chain Acyl-CoA and ceramide. These intermediates activate serine kinases, 

which phosphorylate serine residues of IRS. This will decrease tyrosine phosphorylation 

and activation of IRS, leading to decreased activation of downstream molecules along the 

insulin signalling pathway (e.g. Akt).   

Figure was adapted from:www. environmentalhealthnews .org/newscience/2007/2007-

0405insulinsignaling.html and Zhang et al. 2010. 
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Chapter 2 Materials and Methods 

2.1 Experiment design 

Animal models using tools such as maternal uterine artery ligation, which mimic 

placental insufficiency, can display the compounding effects of both hypoxemia and 

undernutrition. However, it is also important to investigate the separate effect of each 

regulator, by assessing it directly without any alterations to other regulators. To 

accomplish this purpose, an in vitro system using a mouse muscle cell line C2C12 (ATCC 

catalog number CRL-1772) was employed in my project. A C2C12 myoblast cell line, 

which is derived from mice, closely parallels skeletal muscle differentiation from 

myoblasts to myotubes, and has been widely used in studies of hypoxia, insulin 

sensitivity, as well as the FAO/PGC-1α/PPARs pathway (Sun et al. 2007, Dressel et al. 

2003, Yun, Lin & Giaccia 2005, Arthur, Giles & Wakeford 2000). 

C2C12 myoblasts were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin until 

~90% confluency. Then cells were induced to form myotubes by then supplementing 

media with 2% adult horse serum (AHS) instead of FBS, and were incubated in 21%, 5% 

or 1% O2, with 5% CO2 at 37°C. The 5% and 1% O2 treatments were selected as these 

values are representative of fetal oxygenation in the normal situation (5% ~ 38 Torr) and 

in the hypoxic fetal growth-restricted situation (1% ~ 8 Torr) from previous data 

(Regnault et al. 2007) and as recently described by others for in utero culture (Casanello 

et al. 2009). Hypoxia was attained by placing appropriate cultures in an anaerobic 

incubator (Modular Incubator Chamber (MIC-10), Billups-Rothberg, Del Mar, CA) 

flushed and filled with a predetermined oxygen mixture, either 1% or 5% O2 (with 5% 

CO2, balance N2). After 7 days of differentiation, a subset of cells in each oxygen regime 

was placed in 21% oxygen as a recovery period for additional 2 days. C2C12 cells were 

collected, as outlined in Figure 2.1, at various time points through the experiment: Day 0 

(cells grown at 21% O2 before growth medium was replaced with differentiation 

medium), Day 7 (cells after seven days of differentiation under 1 of 3 O2 treatments) and 
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recovery (cells after Day 7 and the 2-day recovery period at 21% oxygen). Collected cells 

had TG, mRNA, and protein analyses. 

2.2 RNA isolation and real-time PCR procedures 

2.2.1 RNA isolation 

Adherent C2C12 cells were collected in Trizol reagent (Invitrogen, catalog number 15596-

026) following 2 PBS washes and stored at -80⁰C before RNA isolation. Total RNA was 

then isolated from C2C12 cells using Trizol following the manufacturer’s instructions. 

Briefly, cell samples were thawed, and incubated in Trizol at room temperature for 5 

minutes. Two hundred microliters of chloroform was added to the 1 ml of Trizol used 

initially. Samples were shaken vigorously by hand for 15 seconds and left at room 

temperature for 3 minutes, and then centrifuged for 15 minutes at 12,000 × g at 4⁰C. The 

mixture separated into a lower red phenol-chloroform phase, an inter-phase, and a 

colorless upper aqueous phase. RNA remained exclusively in the aqueous phase. The 

upper aqueous phase was ~50 % of the total volume. The top chloroform phase was 

removed and placed in a fresh tube and 500 μl of isopropyl alcohol were added to the top 

phase for every ml of Trizol used initially. This mixture was incubated at room 

temperature for 10 minutes prior to centrifugation at 12,000 × g for 15 minutes at 4⁰C. 

The chloroform and isopropyl alcohol supernatant was removed, leaving only the RNA 

pellet. The pellet was washed twice by adding 1 ml of 75% ethanol per 1 ml of Trizol 

used in the initial cell samples. Samples were vortexed briefly, and then were centrifuged 

at 7,500 × g for 5 minutes at 4⁰C. The ethanol was removed with a pipette. These pellets 

were air dried and dissolved in diethylpyrocarbonate treated water for 5 minutes at room 

temperature and stored in -80⁰C before cDNA production. 

The quantity of RNA yield was determined by a NanoDrop 2000 spectrophotometer 

(Thermo-Scientific) and quality was measured using the A260/A280 ratio (≥1.8). To 

further ensure RNA quality, samples were separated on a 1.2% agarose gel containing 

ethidium bromide. Samples were screened for degradation by the visualization of the 

28S:18S bands; only samples without degradation were used for further analysis. 
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2.2.2 Reverse transcription and real-time PCR 

Two micrograms total RNA was used for reverse transcription. Briefly, samples were 

treated with deoxyribonuclease (Invitrogen), and then a recombinant ribonuclease 

inhibitor (Invitrogen) was added to each sample and incubated at 37⁰C for 30 minutes. 

Next, samples were incubated with murine leukemia virus reverse transcriptase 

(Invitrogen) at 37⁰C for 2 hours to generate cDNA with the use of random primers. 

cDNA was diluted 1/10 before real-time PCR.  

Real-time PCR was performed using Fast EvaGreen Supermix (Invitrogen) on the CFX 

384 real-time PCR detection system (Bio-Rad). A total volume of 8 μl in each well 

contained 3 μl of diluted cDNA, 0.08 μl primer mix, 4 μl SYBR Green and the remaining 

volume was filled with autoclaved water. Primers sets were designed using the NCBI 

Primer-BLAST tool based on published Mus musculus sequences. Specific primer sets 

for mouse SIRT1, PGC-1α, PPAR- α, PPAR- γ, FATP4, MCAD, CD36 and ribosomal 

protein L7 (RL7) are listed in Table 1. All results were standardized by a reporter gene 

RL7and then expressed relative to the undifferentiated cells (D0) using the 2
-ΔΔct

 method 

(Livak and Schmittgen, 2001). 

2.3 Western blotting analysis 

2.3.1 Total protein extraction 

Adherent C2C12 cells were washed twice with ice cold PBS in the dish. Ice cold RIPA 

buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.25% Na-

deoxycholate, pH 7.4) supplemented with protease and phosphatase inhibitor cocktail 

(Thermo Scientific catalog number 78446) was then utilized to extract total proteins from 

cells. Cells were mixed by triturating, and then were incubated on ice for 10 minutes. 

Extractions were centrifuged at 4°C at 16,000 g for 10 minutes and supernatants were 

collected and stored in -80°C for further analyses. 

2.3.2 Protein quantification and immunoblotting 

Protein quantity was measured using a BCA Protein Assay Reagent Kit (Pierce), and 

determined using a Sepectramax spectrophotometer (Molecular Devices). Eighteen 
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micrograms of total protein was mixed with sample reducing agent (10×) and LDS 

sample buffer (4×), heated for 10 minutes at 90-100°C and loaded onto a 4-12% SDS-

PAGE gradient gel. Gel electrophoresis was then undertaken at 175 V for 45-60 minutes 

in MES buffer until proteins were separated. After the proteins were sufficiently 

separated, they were transferred from SDS-PAGE gradient gels onto polyvinylidene 

fluoride (PVDF) membranes (GE Healthcare, Buckinghamshire, UK) for 2 hours at 100 

V. Amino black staining was performed to show efficient transfer and equal loading of 

protein (as shown in Figure 2.2). Following several TBST washes, membranes were 

blocked in 5% milk or 5% bovine serum albumin (BSA) in Tris-buffered saline with 

Tween 20 (TBST) (50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween 20, pH 7.6) for 1 hour 

at room temperature. And then membranes were incubated with primary antibodies of 

1:1000 dilutions overnight at 4°C. Primary antibodies for western blotting are listed in 

Table 2. Following the overnight primary incubation, membranes were then washed with 

TBST several times before incubation with a horseradish peroxidase conjugated donkey 

anti-rabbit secondary antibody (711-0350152, 1:10,000; Jackson Immunoresearch 

laboratories, Inc. West Grove, PA) at room temperature for 1 hour. Following secondary 

antibody incubation, membranes were washed several times prior to detection by 

SuperSignal West Pico Chemiluminescent Substrate (ThermoScientific, part number 

34087). VersaDoc Imaging System (BioRad) and Image Lab Software (BioRad) were 

employed to visualized and quantified protein bands, respectively. 

2.4 Immunoprecipitation 

Adherent C2C12 cells were washed twice with PBS in the dish. Ice-cold modified RIPA 

buffer (0.025 M Tris, 0.15 M NaCl, 0.001 M EDTA, 1% NP-40, 5% glycerol, pH 7.4) 

supplemented with protease and phosphatase inhibitor cocktail (Thermo cat# 78446) was 

added to cells. Cells were scraped and transferred into eppendorf tubes. Cell suspensions 

were sonicated at 30% output amplitude for 4 bursts (burst/second). Protein quantity was 

measured with a BCA Protein Assay Reagent Kit (Pierce) as described above. Cell lysate 

was diluted to 1µg/µl. Two hundred microliters of diluted cell lysate was used in each 

assay. Cell lysate was precleared with 20 μl protein A/G Plus-Agarose 

Immunoprecipitation Reagent (agrose beads) (Santa Cruz, sc-2003, 0.5 ml agarose in 2.0 



21 

 

ml PBS buffer with 0.02% azide) by rotating for 1 hour at 4°C. Then samples were 

centrifuged at 1000 g for 2 minutes at 4°C, the supernatants were then collected. One half 

microgram of PGC-1α antibody (Santa Cruz, sc-13067, Rabbit) was then added to each 

precleared sample prior to rotation overnight at 4°C. Following the overnight rotation, 

another 20 µl of protein A/G Plus-Agarose Immunoprecipitation Reagent (agrose beads) 

were added to samples, and incubated for 1 hour at 4°C. After centrifuging samples at 

1,000 g for 2 minutes at 4°C, the agarose beads were collected. Then a series of washes 

were performed with modified RIPA buffer, except the last wash using TBS (1×) buffer. 

Samples were centrifuged at 1,000 g for 2 minutes at 4°C after each wash, and beads 

were collected. To each sample, 40-50 μl of LDS (2×)-10% mercaptoethanol was added 

before heating at 90-95°C for 5 minutes. Equal fractions of the supernatant were used in 

western blotting as described above for PGC-1α (calbiochem cat# 516557, Rabbit) and 

acetylated-lysine (cell signaling, cat# 9441, Rabbit) antibodies. 

2.5 Triglyceride assay 

To determine intracellular TG level, a TG assay was performed using an adipogenesis 

detection kit (Abcam, catalog number ab102513). Briefly, after washing adherent C2C12 

cells twice with PBS, they were collected and then transferred into eppendorf tubes. Cell 

suspensions were centrifuged at 1,000 g for 10 minutes at 4°C and the supernatant was 

removed. One hundred microliters of lipid extraction solution was added to each sample, 

before sonicating samples twice at 30% output amplitude for 4 bursts (burst/second). 

Then samples were heated at 90-100°C for 30 minutes, followed by vortexing for 1 

minute prior to centrifugation briefly to remove insoluble material. Fifty microliters of 

the lipid extracts were transferred to a 96-well plate. A standard curve was prepared 

according to the manufacturer’s instructions. Forty microliters of TG standard (1 mM) 

was diluted into 160 µl assay buffer to generate 0.2 mM standard. 0, 10, 20, 30, 40, 50 µl 

of the 0.2 mM TG standard was added into a series of wells, volume was adjusted to 50 

µl/well with assay buffer to generate 0, 2, 4, 6, 8, 10 nmol/well of TG standard. Two 

microliters of lipase was added to each well with sample and standard. The plate was 

mixed well and incubated at room temperature for 10 minutes. Fifty microliters of 

Reaction Mix (adipogenesis assay buffer 46 µl, probe 2 µl and enzyme mix 2 µl) was 
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added to each well containing the TG standard or sample. The plate was mixed well and 

incubated at 37°C for 30 minutes, protected from light. The OD at 570nm was measured for 

colorimetric assay in a microplate reader. Protein concentration of the lipid extract was 

tested and used as an internal control to normalize the lipid concentration in the samples. 

Total cellular TG levels were expressed in mol/g. 

2.6 Statistical analysis 

All data was presented as mean ± SEM, and was analyzed with a Student’s two-tailed 

unpaired t-test or a one-way ANOVA, followed by a Tukey’s post-test (Graphpad Prism 

5, GraphPad Software, Inc.). Significance was set at a P-value of 0.05 or less. Any sets of 

data that failed the Shapiro-Wilk normality test or equal variance test (Bartlett’s test) 

were transformed using the log10 and re-tested for normality and equal variance. 
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Figure 2.1 Schematic of cell culture procedures and sampling. C2C12 mouse skeletal 

muscle myoblasts were induced to differentiation under 1%, 5% and 21% O2 for seven 

days (D7), after cells reached approximately ~90% confluency in growth medium (D0). 

After 7 days differentiation, a subset of cells from each O2 tension was placed in a 

recovery condition of 21% O2 for additional 2 days (D9).  
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Figure 2.2 Representative amino black stained blot.  A representative amino black 

stained blot was selected to show efficient transfer and equal loading of protein. MW, 

molecular weight; M, marker; D7, day 7; D9, day 9; 21%, 5% and 1% indicate oxygen 

tensions.  

 

 

 



25 

 

 

 

Table 2.1 Primer sequences for real-time PCR 

Primers Accession No. Strand Sequence (5’→3’) 

SIRT1 NM 019812.2 
Forward 
Reverse 

5’-ATATTCCACGGTGCTGAGGT 
5’-TCCAAATCCAGATCCTCCAG 

PGC-1α NM 008904.2 
Forward 
Reverse 

5’-AACGATGACCCTCCTCACAC 
5’-GGGTCATTTGGTGACTCTGG 

PPAR- α NM 011144.6 
Forward 
Reverse 

5’-AACCGGAACAAATGCCAGTA 
5’-CCGAATCTTTCAGGTCGTGT 

PPAR- γ NM 001127330.1 
Forward 
Reverse 

5’-CCAACTTCGGAATCAGCTCT 
5’-CAACCATTGGGTCAGCTCTT 

FATP4 NM 011989.4 
Forward 
Reverse 

5’- CAGCAACTGTGACCTGGAGA 
5’- CCTTCCGCAACTCTGTCTTC 

MCAD NM 007382.4 
Forward 
Reverse 

5’-ACACAACACTCGAAAGCGGC 
5’-CCTCTCTGGCAAACTTGCGG 

CD36 NM 001159555.1 
Forward 
Reverse 

5’-ATTGGTGCAGTCCTGGCTGT 
5’-TCTTTGCCACGTCATCTGGGT 

RL7 NM 011291.5 
Forward 
Reverse 

5’-GGAGCTCATCTATGAGAAGGC 5’-
AAGACGAAGGAGCTGCAGAAC 
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Table 2.2 Primary antibodies utilized in western blotting 

Antibody Company Catalogue # Host 

SIRT1 Santa Cruz sc-15404 Rabbit 

PPAR- γ Santa Cruz sc 7196 Rabbit 

PPAR- α Abcam ab24509 Rabbit 

GLUT4 Abcam ab65976 Rabbit 

PGC-1α Calbiochem 516557 Rabbit 

p-PGC-1α (S571) R &D system AF 6650 Rabbit 

AMPK- α Cell signaling 2603 Rabbit 

p-AMPK- α (Thr 172) Cell signaling 2535 Rabbit 

ACC Cell signaling 3676 Rabbit 

p-ACC (ser 79) Cell signaling 3661 Rabbit 

IR- β Cell signaling 3025 Rabbit 

p-IR (Tyr 1146) Cell signaling 3021 Rabbit 

IRS1 Cell signaling 2382 Rabbit 

p-IRS1 (Ser 1101) Cell signaling 2385 Rabbit 

Akt (pan) Cell signaling 4691 Rabbit 

p-Akt (Thr 308) Cell signaling 2965 Rabbit 

Akt2 Cell signaling 3063 Rabbit 
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Chapter 3 Results 

3.1 Low oxygen tension partially affected the protein 
contents of insulin signalling pathway markers 

In order to determine if chronic hypoxia impairs the insulin signalling pathway, western 

blotting was utilized. No significant alterations were identified in the protein content for 

IR, IRS, p-IR (Tyr 1146) or p-IRS (Ser 1101) among groups (21%, 5% and 1% O2) 

(Figure 3.1 and 3.2). However, the basal (without insulin stimulation) levels of p-Akt 

(Thr 308) and the subsequent p-Akt (Thr 308) to Akt (pan) protein ratio were 

significantly lower in the 1% O2 treatment relative to those treated with 21% O2  at day 7 

(p<0.05) (Figure 3.3).  

3.2 Impact of chronic hypoxia on total GLUT4 protein 
content 

Given that chronic activation of AMPK increased total GLUT4 protein content in rat 

epitrochlearis and gastrocnemius muscle (Holmes, Kurth-Kraczek & Winder 1999), we 

determined whether chronic hypoxia, and the subsequent activation of AMPK, increased 

total cellular GLUT4 protein content in skeletal muscle cells using western blotting. 

Significantly higher total GLUT4 protein was detected in 1% (p<0.001) and 5% 

(p<0.001) O2 treatments compared to the 21% O2 treatment; also the protein level in 1% 

was significantly higher than that in the 5% O2 treatment (p<0.001; Figure 3.4 A) at day 

7.  

3.3 Cells treated with low oxygen tension displayed higher 
triglyceride level  

In order to determine the effects of prolonged hypoxia on lipid metabolism, the cellular 

TG level of C2C12 myotubes was determined using an adipogenesis detection kit. The TG 

level of the 1% O2 treated cells was significantly higher when compared to that of the 

21% O2 treated cells (p<0.05), and was higher than that of the 5% O2 treated cells by 

83% (p= 0.063) (Figure 3.5).  
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Figure 3.1 IR was not affected in hypoxic treated muscle cells. C2C12 cells were 

collected and total protein extractions were used in western blotting with antibodies 

specific to IR and p-IR (Tyr 1146). Densitometry was performed and represented in (A) 

and (B); ratio of p-IR to IR was calculated and represented in (C). Representative western 

blots are shown in (D). A one-way ANOVA test was used.  All data was presented as 

mean ± SEM (* p<0.05, n=4/experimental group). 

D 
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Figure 3.2 IRS was not affected in hypoxic treated muscle cells. C2C12 cells were 

collected and total protein extractions were used in western blotting with antibodies 

specific to IRS and p-IRS (Ser 1101). Densitometry was performed and represented in 

(A) and (B); ratio of p-IRS to IRS was calculated and represented in (C). Representative 

western blots are shown in (D). A one-way ANOVA test was used.  All data was 

presented as mean ± SEM (* p<0.05, n=4/experimental group).        

D 
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Figure 3.3 p-Akt protein decreased with hypoxic treatment. C2C12 cells were 

collected and total protein extractions were used in western blotting with antibodies 

specific to Akt (pan) and p-Akt (Thr 308). Densitometry was performed and represented 

in (A) and (B); ratio of p-Akt to Akt was calculated and represented in (C). 

Representative western blots are shown in (D). A one-way ANOVA test, with a Tukey’s 

post-test and a student’s two-tailed unpaired t-test were used.  All data was presented as 

mean ± SEM (* p<0.05, n=4/experimental group). 

D 



31 

 

 

                         

               

 

 

 

 

 

Figure 3.4 GLUT4 protein was elevated in hypoxia. C2C12 cells were collected and 

total protein extractions were used in western blotting probing with antibody specific to 

GLUT4. Densitometry was performed and represented in (A). A representative western 

blot is shown in (B). A one-way ANOVA with a Tukey’s post-test was utilized. All data 

was presented as mean ± SEM (*** p<0.001; n=7/experimental group). 

 

B 



32 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Cellular TG content increased in hypoxia. C2C12 cells were collected and 

total cell TG was extracted and measured. Protein concentration was measured as an 

internal control. A one-way ANOVA with a Tukey’s post-test was utilized. All data was 

presented as mean ± SEM (* p<0.05; n=4~5/experimental group). 
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3.4 SIRT1 mRNA and protein levels are lower in prolonged 
hypoxia 

SIRT1 is a crucial cellular deacetylase. It activates PGC-1α by deacetylation and allows 

the formation of the protein complex of PGC-1α-PPAR-RXR. This complex then binds to 

specific DNA sequences to regulate gene expressions involved in FAO, which ultimately 

impact upon insulin sensitivity.  SIRT1 mRNA was determined using real-time PCR. 

There were significantly lower SIRT1 mRNA in both 1% and 5% O2 treatments (P<0.05) 

relative to the 21% O2 treatment at day 7 (Figure 3.6 A).  

Examination of SIRT1 protein by western blotting showed that differentiating C2C12 cells 

with the 1% and 5% O2 treatments had protein levels that were 23% (p<0.01) and 8% 

(p>0.05) lower, respectively than that with the 21% O2 treatment at day 7 (Figure 3.6 B).  
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Figure 3.6 SIRT1 mRNA and protein levels decreased in hypoxia. C2C12 cells were 

collected; SIRT1mRNA (A) and protein (B) were analyzed by real-time PCR and western 

blotting, respectively. SIRT1 mRNA was standardized to a house keeping gene (RL7), 

and then expressed relative to the undifferentiated cells (Day 0). A representative western 

blot of SIRT1 is shown (C). A one-way ANOVA with a Tukey’s post-test was employed. 

All data was presented as mean ± SEM (* p<0.05, ** p<0.01; n=4~7/experimental 

group). 

C 
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3.5 Reduced oxygen tension did not affect PGC-1α mRNA 
but did affect protein content and post translational 
modification 

3.5.1 Effects of chronic hypoxia on PGC-1α mRNA and protein 
levels 

Real-time PCR and western blotting were utilized in order to examine whether chronic 

hypoxia alters PGC-1α mRNA and protein levels. C2C12 cells differentiating under 

hypoxia (1% O2) had significantly lower PGC-1α protein level (by 35%) when compared 

to the 21% O2 treatment at day 7 (p<0.05; Figure 3.7 B). However, there was no 

significant change observed among groups for PGC-1α mRNA levels at day 7 (Figure 3.7 

A).  

3.5.2 Effect of chronic hypoxia on PGC-1α acetylation status 

Since SIRT1 protein level was found to be lower in 1% oxygen at day 7 (Figure 3.1 A), 

and given the fact that SIRT1 deacetylates PGC-1α, it was reasonable to postulate that the 

ratio of acetylated PGC-1α to total PGC-1α might be higher in the 1% group at day 7. To 

examine this hypothesis, immunoprecipitation and western blotting were performed. 

There was no significant difference between any of the 3 groups (21%, 5% and 1% O2) 

when comparing the total PGC-1α precipitates protein level at day 7 (Figure3.8 A).  

However, under 1% O2 treatment for 7 days, acetylated PGC-1α protein level was 

significantly higher (p<0.05; Figure 3.8 B); subsequently, the ratio of acetylated PGC-1α 

to total PGC-1α was higher (p<0.05; Figure 3.8 C).  

3.5.3 Effect of chronic hypoxia on PGC-1α phosphorylation status 

PGC-1α activity is not only regulated through its acetylated status, but also determined 

by phosphorylation. Phosphorylation of PGC-1α at Ser 570 prevents the recruitment of 

PGC-1α to the cognate promoters, and thus impairs its ability to activate genes involved 

in FAO.  In order to determine whether PGC-1α phosphorylation status may be altered 

under low oxygen tension, western blotting was employed with primary antibodies: PGC-

1α and p-PGC-1α (Ser 571). As described in 3.5.1, cells that were differentiated under 

1% O2 had a significantly lower PGC-1α protein level when compared to the 21% O2 
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treatment at day 7 (p<0.05; Figure 3.7 B or Figure 3.9 A). Lower total PGC-1α protein 

level was accompanied by higher p-PGC-1α (Ser 571) protein content relative to those 

under 5% (p<0.05; Figure 3.9 B) and 21% O2 (p<0.01; Figure 3.9 B) after 7 days of 

differentiation. Furthermore, when expressed as a ratio (p-PGC-1α to total PGC-1α) the 

differences are more significant (1% vs. 21%, p<0.001and 1% vs. 5%, p<0.01; Figure 3.9 

C).  

3.5.4 Effect of chronic hypoxia on Akt2 protein content 

Protein Akt2 is reported to be involved in the phosphorylation of PGC-1α at Ser 570 with 

insulin stimulation. Given we observed a significantly higher p-PGC-1α (Ser 571) protein 

content under chronic hypoxia (1% O2) in present study, we postulated that the level of 

Akt2 protein would be higher under chronic hypoxia. However, examination of Akt2 

protein revealed no alterations among the 3 treatments (21%, 5% and 1% O2) at day 7 

(Figure 3.10).   
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Figure 3.7 Reduced oxygen tension did not affect PGC-1α mRNA, but did affect 

protein content.  C2C12 cells were collected; PGC-1α mRNA (A) and protein (B) were 

analyzed by real-time PCR and western blotting, respectively. PGC-1α mRNA was 

standardized to a house keeping gene (RL7), and then expressed relative to the 

undifferentiated cells (Day 0). A representative western blot of PGC-1α is shown (C). A 

one-way ANOVA with a Tukey’s post-test was employed. All data was presented as 

mean ± SEM (* p<0.05; n=4~6/experimental group).  

C 
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Figure 3.8 Reduced oxygen tension increased acetylated PGC-1α protein. C2C12 cells 

were collected and immunoprecipitated by antibody specific to PGC-1α. PGC-1α (A) and 

acetylated PGC-1α (B) in immunoprecipitates were detected using western blotting, with 

antibodies specific to PGC-1α, and acetylated-lysine.  Ratio of Ac-PGC-1α to PGC-1α 

was calculated and represented in (C). Representative western blots are shown in (D). A 

one-way ANOVA with a Tukey’s post-test and a student’s two-tailed unpaired t-test were 

employed. All data was presented as mean ± SEM (* p<0.05; n=5/experimental group). 

D 
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Figure 3.9 Reduced oxygen tension increased p-PGC-1α protein. C2C12 cells were 

collected and total protein extractions were used in western blotting with antibodies 

specific to PGC-1α and p-PGC-1α (Ser 571). Densitometry was performed and 

represented in (A) and (B); ratio of p-PGC-1α to PGC-1α was calculated and represented 

in (C). Representative western blots are shown in (D). A one-way ANOVA with a 

Tukey’s post-test was utilized. All data was presented as mean ± SEM (* p<0.05, 

**p<0.01, ***p<0.001; n=4/experimental group). 

 

D 
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Figure 3.10 Reduced oxygen tension had no effect on Akt2 protein content. C2C12 

cells were collected and total protein extractions were used in western blotting probing 

with antibodies specific to Akt2. Densitometry was performed and represented in (A). A 

representative western blot is shown in (B). A one-way ANOVA test was utilized. There 

were no significant alterations among groups at both day 7 and recovery.  All data was 

presented as mean ± SEM, n=7/experimental group. 

B 



41 

 

3.6 Chronic hypoxia altered PPAR- α mRNA and PPAR- γ 
protein content 

PPAR- α and- γ have been identified as important nuclear receptors that regulate FAO 

related gene expressions. Examination of PPAR- α and PPAR- γ mRNA expression 

revealed that PPAR- α mRNA level was significantly lower in both 5% (p<0.001) and 

1% (p<0.001) O2 relative to the 21% O2 treatment at day 7 (Figure 3.11 A), while no 

significant alteration was found among the 3 groups for PPAR- γ mRNA levels (Figure 

3.12 A). Interestingly, western blotting analysis revealed no significant changes among 

the 3 oxygen treatments for PPAR- α protein (Figure 3.11 B). However, in contrast, 

under 1% O2, PPAR- γ protein was significantly increased (p<0.05) compared to the 21% 

and 5% O2 treatments at day 7 (Figure 3.12 B).  

3.7 FAO genes were altered under chronic hypoxia 

FATP4, MCAD and CD36 are all FAO related genes. FATP4 and CD36 are important 

membrane transporters, which were found to increase FAO rate (Nickerson et al. 2009) 

and are all PPARs targets (Purushotham et al. 2009). MCAD is an enzyme that functions 

to catalyze the initial step in each FAO cycle, and was reported to be associated with 

FAO rate (Purushotham et al. 2009). To determine if reduced oxygen tension impacts its 

expression, real-time PCR was performed to determine the mRNA level of each gene. 

FATP4 showed significant lower mRNA levels after exposure to both 5% (p<0.01) and 

1% O2 (p<0.05) for 7 days than those under 21% O2 (Figure 3.13 A). MCAD mRNA 

level was also reduced in hypoxia group (1% O2) (p<0.05) compared to normoxia group 

(21% O2) at day 7 (Figure 3.13 B). CD36 mRNA level exhibited a decreasing trend at 

day 7 from 21% to 1% O2 treatments, with no significant difference (p>0.05) (Figure 

3.13 C). 
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Figure 3.11 PPAR- α mRNA level decreased in hypoxia. C2C12 cells were collected; 

PPAR- α mRNA (A) and protein (B) were analyzed by real-time PCR and western 

blotting, respectively. PPAR- α mRNA was standardized to a house keeping gene (RL7), 

and then expressed relative to the undifferentiated cells (Day 0). A representative western 

blot of PPAR- α is shown (C). A one-way ANOVA with a Tukey’s post-test was 

employed. All data was presented as mean ± SEM (* p<0.05, ** p<0.01, ***p<0.001; 

n=5~6/experimental group). 

C 
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Figure 3.12 PPAR- γ protein content increased in hypoxia. C2C12 cells were collected; 

PPAR- γ mRNA (A) and protein (B) were analyzed by real-time PCR and western 

blotting, respectively. PPAR- γ mRNA was standardized to a house keeping gene (RL7), 

and then expressed relative to the undifferentiated cells (Day 0). A representative western 

blot of PPAR- γ is shown (C). A one-way ANOVA with a Tukey’s post-test was 

employed. All data was presented as mean ± SEM (* p<0.05, ** p<0.01; 

n=5~6/experimental group) 

C 
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Figure 3.13 FAO genes were suppressed in chronic hypoxia. C2C12 cells were 

collected; mRNA levels of FATP4 (A), MCAD (B) and CD36 (C) were analyzed by real-

time PCR. All mRNAs were standardized to a house keeping gene (RL7), and then 

expressed relative to the undifferentiated cells (Day 0). A one-way ANOVA with a 

Tukey’s post-test and a student’s two-tailed unpaired t-test were utilized. All data was 

presented as mean ± SEM (* p<0.05, ** p<0.01; n=6/experimental group).  
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3.8 The protein ratios /contents of p-AMPK- α to AMPK- α, 
p-ACC to ACC in chronic hypoxia 

3.8.1 Impact of chronic hypoxia on p-AMPK- α and AMPK- α 
protein content 

Acute hypoxia can activate AMPK- α by phosphorylation at a key residue, Thr 172, 

which is essential to its activity (Park et al. 2002). Whether chronic hypoxia has the same 

effect on AMPK- α as acute hypoxia is unknown. Investigating the effect of chronic 

hypoxia, western blotting found no significant difference in AMPK- α protein among the 

21%, 5% and 1% O2 treatments (Figure 3.14 A). However, the p-AMPK- α protein was 

significantly increased with hypoxia (1% O2) (p<0.05) compared to the 21% O2 treatment 

at day 7 (Figure 3.14 B), and the p-AMPK- α/AMPK- α was also higher (p<0.05; Figure 

3.14 C). 

3.8.2 Impact of chronic hypoxia on p-ACC and ACC protein 
content 

ACC is a downstream substrate of AMPK- α and when AMPK- α is activated, ACC 

phosphorylation occurs, inhibiting ACC activity, which increases FAO. Based on our 

previous result that protein ratio of p-AMPK- α to AMPK- α was significantly higher 

with hypoxia, it was reasonable to postulate that p-ACC to ACC would be higher with 

hypoxia. Surprisingly, ACC protein level was significantly lower with the 1% relative to 

the 21% O2 treatments at day 7 (Figure 3.15 A), and the same pattern was also seen for p-

ACC (Ser 79) (Figure 3.15 B), although these differences failed to reach statistical 

significance. However, a significantly higher level was found for the protein ratio of p-

ACC (Ser 79) to ACC in hypoxia (1% O2) at day 7 (p<0.01; Figure 3.15 C). 

However, all the alterations in mRNA, protein and TG content described above failed to 

maintain following an additional 2-day re-oxygenation (recovery). 
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Figure 3.14 p-AMPK- α protein increased in hypoxic treated cells. C2C12 cells were 

collected and total protein extractions were used in western blotting with antibodies 

specific to AMPK- α and p-AMPK- α (Thr 172). Densitometry was performed and 

represented in (A) and (B); ratio of p-AMPK- α to AMPK- α was calculated and 

represented in (C). Representative western blots are shown in (D). A student two-tailed 

unpaired t-test was utilized. All data was presented as mean ± SEM (* p<0.05, 

n=5/experimental group) 

D 
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Figure 3.15 Protein ratio of p-ACC to ACC increased in hypoxic treated cells. C2C12 

cells were collected and total protein extractions were used in western blotting with 

antibodies specific to ACC and p-ACC (Ser 79). Densitometry was performed and 

represented in (A) and (B); ratio of p-ACC to ACC was calculated and represented in (C). 

Representative western blots are shown in (D). A one-way ANOVA with a Tukey’s post-

test and a student two-tailed unpaired t-test were utilized. All data was presented as mean 

± SEM (* p<0.05, n=5/experimental group). 

D 
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Chapter 4 Discussion 

Hypoxia resulted in lower p-Akt (Thr 308) and higher total cellular GLUT4 protein levels 

after 7 days of differentiation. This coincided with higher TG content and alterations of 

the FAO/PGC-1α/PPARs components, both of which could contribute to the changes 

observed in the components of the insulin signalling pathway. Specifically, cells 

differentiating in 1% O2 had lower SIRT1, PPAR- α, FATP4 and MCAD mRNA; 

accompanied by lower SIRT1, PGC-1α and higher PPAR- γ protein following 7 days of 

differentiation. Additionally, cells in prolonged hypoxia had significantly higher 

phosphorylation of PGC-1α, AMPK- α, ACC; concurrent with higher PGC-1α 

acetylation (Figure 4.1). However, none of these alterations above persisted following an 

additional 2-day re-oxygenation treatment (recovery).  

4.1 Roles of prolonged hypoxia on insulin signalling 
pathway and intracellular TG accumulation in skeletal 
muscle 

IRS and Akt are essential signalling molecules along the insulin signalling pathway, their 

activation leads to insulin-stimulated glucose uptake. Their activation is stimulated or 

inhibited by a series of phosphorylation steps. In the present study, a significantly lower 

in Akt phosphorylation at Thr 308 was found after 7 days of differentiation under 

hypoxic condition (1% O2) when compared to control (21% O2) (Figure 3.3). This was 

accompanied by a higher in intracellular TG content in hypoxia (Figure 3.5). Previous 

data that was obtained using magnetic resonance spectroscopy (MRS) showed TG was 

increased in obesity and was correlated with the severity of insulin resistance 

(Szczepaniak et al. 1999). Several mechanisms have been proposed to explain the 

correlation between increasing muscle TG and insulin resistance. A classical one is based 

on the concept that elevated TG derivatives or metabolites impair the insulin signalling 

pathway. The enhanced TG derivatives or metabolites (e.g. long-chain Acyl-CoA, DAG, 

and ceramide) activate a number of serine/threonine kinases, such as PKC. These 

serine/threonine kinases in turn phosphorylate serine residues of IRS-1, specifically Ser 

1101, which inhibits IRS-1 (Bandyopadhyay et al. 2006, Jean-Baptiste et al. 2005, 
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Sathyanarayana et al. 2002, Yu et al. 2002a), leading to impaired downstream signalling, 

such as Akt, as observed in our hypoxic treatment (Figure 3.3). Of note, it is TG 

derivatives or metabolites that activate members of the serine/threonine kinases leading 

to insulin resistance (Schmitz-Peiffer, Craig & Biden 1999, Itani et al. 2002), thus TG 

itself does not directly cause insulin resistance. However, TG content is a strong predictor 

of muscle insulin resistance (Krssak et al. 1999), as studies in sedentary obese and type II 

diabetics found that higher TG content probably reflects increases in other lipid 

intermediates, which are factors contributing to insulin resistance (Kelley, Goodpaster & 

Storlien 2002b, Cooney et al. 2002). Therefore, increased TG content in our hypoxic 

muscle cells did not directly alter Akt phosphorylation, but may reflect potential 

increasing levels of its derivatives or metabolites, which could exert direct effects on the 

upstream (e.g. IRS) and subsequent downstream (e.g. Akt) markers of the insulin 

signalling pathway. Interestingly, while Akt phosphorylation was lower after 7 days of 

hypoxic treatment, its upstream marker IRS phosphorylation was not affected (Figure 

3.2). Therefore, the depressed Akt phosphorylation (Thr 308) observed here may not be 

induced by IRS, instead could be directly induced by ceramide, as mentioned in a 

previous study that ceramide resulted in decrease Akt phosphorylation at Thr 308 in a 

human glioblastoma cell line (Zinda, Vlahos & Lai 2001).   

4.2 GLUT4 expression was up-regulated in chronic hypoxic 
muscle cells 

GLUT4 is final readout of insulin signalling and the dominate glucose transporter in 

skeletal muscle, which can translocate from intracellular storage to the plasma membrane 

to uptake glucose into cells (Lizcano, Alessi 2002). The importance of GLUT4 in 

maintaining insulin sensitivity has been studied extensively in recent years. Muscle 

specific deletion of GLUT4 results in insulin resistance and glucose intolerance in mice 

(Zisman et al. 2000). Interestingly, my data have shown that total cellular GLUT4 protein 

content was significantly higher in both the 1% and 5% O2 treatments (Figure 3.4), even 

in the presence of an impaired insulin pathway (reduced p-Akt to Akt ratio) (Figure 3.3). 

Similar to our data, Viscarra also found that total GLUT4 protein in adipose tissue was 

up-regulated despite of decreased insulin signalling during prolonged fasting in northern 
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elephant seal pups (Viscarra et al. 2011). Their data, in conjunction with ours, indicate 

that the up-regulated GLUT4 in skeletal muscle/adipose tissue during prolonged 

hypoxia/fasting is insulin signalling pathway independent, and an alternative pathway 

may be involved. Studies from Holmes and colleagues have demonstrated that chronic 

activation of AMPK increased total GLUT4 protein content in rat epitrochlearis and 

gastrocnemius muscle (Holmes, Kurth-Kraczek & Winder 1999). In our study, activated 

AMPK was significantly higher with prolonged hypoxia, which suggests the possibility 

that AMPK-dependent but insulin-independent mechanism(s) may determine the up-

regulation effect of prolonged hypoxia on total GLUT4 protein content in skeletal muscle 

cells. 

Does this up-regulated total GLUT4 content indicate increases in GLUT4 translocation at 

basal state (without insulin stimulation) and/or under insulin-stimulated condition? In 

fact, patients with type II diabetes do not have a deficiency in total GLUT4 in muscle 

(Garvey et al. 1992), but insulin-induced translocation of GLUT4 to the cell surface is 

defective (Garvey et al. 1998). The possible mechanisms could be defects in the function 

of GLUT4, which could include impaired translocation to the plasma membrane, 

impaired fusion with the plasma membrane, and/or reduced intrinsic activity (Kahn et al. 

1991). These findings suggest the possibility that GLUT4 translocation, either in the 

basal state or under insulin-stimulated condition could still be unaltered or reduced, 

although the total GLUT4 content was higher in cells treated with diminished oxygen, 

since GLUT4 defects could occur.  

As a result, how prolonged hypoxia would affect GLUT4 translocation with or without 

insulin stimulation in our hypoxic mouse skeletal muscle cells are still unknown, further 

experiments (e.g. plasma membrane GLUT4 protein content measurement) are needed to 

answer these questions. 

4.3 Roles of prolonged hypoxia on altering PGC-1α/PPARs 
interactions 

As mentioned in section 1.1, TG was significantly higher in hypoxic muscle cells (Figure 

3.5). But what are the factors contributing to this excessive accumulation? To answer this 
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question, a definition of TG turnover needs to be introduced first. TG turnover is a 

composite measure of the dynamic balance between lipolysis and lipogenesis; both are 

influenced by mitochondrial FAO and plasma free fatty acid availability (Moro, Bajpeyi 

& Smith 2008). In other words, when lipogenesis exceeds lipolysis, in which TG turnover 

is low, excessive TG accumulation occurs. Mitochondrial FAO is a critical step in 

lipolysis. Thus, a potentially reduced FAO in our cell culture system may be responsible 

for the excessive TG accumulation. Then a question will be raised: what mechanism is 

involved in hypoxia mediated FAO impairment?  

The PGC-1α/PPARs pathway is crucial in regulating FAO in skeletal muscle (Sugden, 

Caton & Holness 2010a, Purushotham et al. 2009). It is most likely that the damaging 

effect of hypoxia on FAO capacity is through this pathway. In my experiments, we tried 

to determine whether prolonged hypoxia would alter and/or modulate components of 

PGC-1α/PPARs pathway in skeletal muscle cells. PGC-1α, which lies in the central part 

of PGC-1α/PPARs pathway, was explored at both mRNA and protein levels to determine 

if it plays a role in the potentially decreased FAO rate. PGC-1α protein level was lower, 

but its mRNA level was not changed with 1% O2 treatment when compared with 21% O2 

control at day 7 (Figure 3.7). Two possible mechanisms could explain these unparallel 

changes between mRNA and protein. First, PGC-1α mRNA stability may be improved by 

hypoxia. Second, hypoxia may induce degradation of PGC-1α protein, without affecting 

its protein synthesis (translation from mRNA). A previous study showed that 

phosphorylation of PGC-1α at Ser 570 by Akt2 under insulin stimulation led to a more 

unstable protein in the primary hepatocytes of mice (Li et al. 2007). Based on this result, 

it is possible that hypoxia induces PGC-1α protein degradation by increasing 

phosphorylation at Ser 570 of PGC-1α. In order to confirm this prediction, 

phosphorylation of PGC-1α at Ser 571 was examined by western blotting. The results 

showed that in chronic hypoxia PGC-1α phosphorylation (Ser 571) significantly 

increased after 7 days differentiation (Figure 3.9). This outcome could partially, if not 

completely explain the unmatched mRNA and protein content of PGC-1α under 

prolonged hypoxia. Moreover, phosphorylation of PGC-1α at Ser 570 in mice liver 

prevents the recruitment of PGC-1α to the cognate promoters of its target genes, such as 

MCAD which is an Acyl-CoA dehydrogenase in FAO cycle (Li et al. 2007). This 
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prevention impairs the ability of PGC-1α to promote FAO, by preventing its binding to 

promoter regions of FAO genes such as MCAD. Similar with their data was my 

observation that PGC-1α had a higher phosphorylation (Ser 571) in response to chronic 

hypoxia (1% O2 for 7 days) (Figure 3.9) in mouse skeletal muscle cells, which may 

suggest an impaired FAO capacity in those cells.  

Interestingly, other studies have reported that phosphorylation of PGC-1α leads to a more 

stable and active protein, which promotes FAO in muscle (Rodgers et al. 2008). These 

studies, however, used an autoradiography technique to explore effects of another two 

kinases: P38MAPK and AMPK on PGC-1α phosphorylation status. They found 

P38MAPK and AMPK phosphorylated multiple threonine and serine residues of PGC-1α 

(e.g. Thr 262 and Ser 538), activated PGC-1α and increased FAO (Rodgers et al. 2008). 

These data, in concert with the present study, indicate that phosphorylation of PGC-1α 

can either promote or inhibit FAO, depending on the upstream kinases and their 

corresponding phosphorylation locus. Therefore, phosphorylations of PGC-1α by 

P38MAPK or AMPK at Thr 262 or Ser 538 might be reduced in hypoxic differentiated 

cells.  

With such a higher level of p-PGC-1α (Ser 571) in the hypoxia treated muscle cells, we 

explored whether hypoxia influenced its upstream kinase, Akt2, after exposure to 

hypoxia for 7 days. As a previous study found that it is Akt2 that phosphorylates PGC-1α 

(Ser 570) in mouse liver (Li et al. 2007), thus, it is reasonable to expect an increased Akt2 

protein level in these hypoxic cells. Interestingly, hypoxia had no effect upon Akt2 

protein content in mouse muscle cells, as there were no differences among treatments 

(21%, 5% and 1% O2) at both day 7 and recovery (Figure 3.10). Therefore, we postulate 

that if Akt2 is the main driver of PGC-1α phosphorylation at Ser 571/570, then possible 

post translational modifications of Akt2, to increase its activity may play an essential role 

in deactivating PGC-1α through Ser 571/570 phosphorylation. Further research is 

necessary to confirm this postulation.  

SIRT1, an upstream component of PGC-1α in the FAO/PGC-1α/PPARs pathway, was 

also measured in this study to verify if it would be affected by prolonged low oxygen 



53 

 

tension. As SIRT1 is a NAD
+
-dependent deacetylase; then a high NADH/NAD

+
 ratio 

might be expected to decrease SIRT1 activity. Thus, SIRT1 activity would potentially be 

decreased in prolonged hypoxia, since hypoxia results in increased NADH/NAD
+ 

ratio 

(Wu et al. 2006).
 
Our results show that SIRT1 mRNA and protein levels are much lower 

following 7 days of differentiation under hypoxia (1% O2) than controls (21% O2) 

(Figure 3.6). But how might the decreased SIRT1 mRNA and protein influence FAO 

capacity in the hypoxic muscle cells? Purushotham and colleagues demonstrated that 

hepatocyte-specific deletion of SIRT1 decreases FAO in mice. In their experiment, liver-

specific SIRT1 knockout mice (LKO) on a C57BL/6 background were generated. 

Although SIRT1 LKO mice were phenotypically normal, q-PCR revealed that a number 

of PPAR- α target genes that are involved in hepatic FAO were significantly decreased, 

including MCAD and CD36. Consistent with a reduction in FAO gene expression, β-

oxidation of 
3
H-palmitate in SIRT1-deficient hepatocytes was significantly lower 

compared to that in control hepatocytes. According to their results, it is rational to predict 

that decreased SIRT1 level in mouse hypoxic muscle cells in our experiment may cause 

decreases in messenger RNAs of FAO genes, which contribute to impaired FAO 

capacity. This is to some extent further confirmed by subsequent real-time PCR analysis 

in our experiment, where MCAD mRNA level was significantly lower in the hypoxic 

muscle cells (Figure 3.13), although, no alterations were found among groups for CD36 

mRNA (Figure 3.13).  

Decreases in SIRT1 mRNA and protein levels suggest that PGC-1α deacetylation and 

activation may also be inhibited by hypoxia, as SIRT1 is required to deacetylate and 

thereby activate PGC-1α. To test this possibility, the acetylation level of PGC-1α in the 

hypoxia treated muscle cells was analyzed by using immunoprecipitation. PGC-1α 

acetylation level was higher in hypoxia at day 7, while no significant alterations were 

detected in total PGC-1α immunoprecipitates from C2C12 muscle cells (Figure 3.8). This 

confirmed the prediction that PGC-1α deacetylation was reduced after 7 days of low 

oxygen treatment. Similar with our data, Gerhart and colleagues who treated C2C12 cells 

with nicotinamide, an SIRT1 inhibitor, found that nicotinamide inhibited PGC-1α 

deacetylation and was blocked with ectopic expression of SIRT1 (Gerhart-Hines et al. 

2007).  
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Another component regulated by SIRT1 is PPAR- γ. PPAR- γ protein level was much 

higher in hypoxia (1% O2) than that in control (21% O2) (Figure 3.12). A previous study 

showed that SIRT1 interacted with the transcriptional co-repressor NCoR, negatively 

regulating PPAR- γ in white fat, which promoted fatty acid mobilization and inhibited 

fatty acid accumulation (Picard et al. 2004). If such a pathway occurs in chronically 

hypoxic muscle in conjunction with the down-regulated SIRT1, this interaction could be 

responsible for removing SIRT1 inhibition on PPAR- γ, which resulted in the observed 

enhanced PPAR- γ protein. Interestingly, in our study while PPAR- γ protein was higher, 

its mRNA level was similar among groups. The possible reasons of this mismatch 

between mRNA (unchanged) and protein levels (higher) could be decreased PPAR- γ 

protein degradation or/and impaired mRNA stability. As the inhibition of SIRT1to 

PPAR- γ transcription could be relived indicated by a decrease in SIRT1 protein under 

hypoxia, then enhanced PPAR- γ mRNA and protein levels would be expected. However, 

PPAR- γ mRNA was unchanged and its protein was higher, which suggests that hypoxia 

may impair PPAR- γ mRNA stability, and the higher PPAR- γ protein levels are most 

likely to be due to lower PPAR- γ degradation rather than higher transcription (mRNA) 

and translation of PPAR- γ coding gene, since the mRNA levels of PPAR- γ among 

treatments were not changed.      

An additional member of the PPAR family is PPAR- α, which has an anti-diabetic effect. 

Initial studies conducted by Narravula and colleagues using microarray analysis of 

intestinal epithelial mRNA revealed that hypoxia down-regulates PPAR- α mRNA and 

protein in epithelial cells in vitro and in vivo (Narravula, Colgan 2001). Further studies 

found that there was a DNA consensus motif for the transcription factor hypoxia-

inducible factor 1 (HIF1) on the antisense strand of PPAR- α gene. The electrophoretic 

mobility shift assay (EMSA) revealed that ambient hypoxia (20 Torr) induced HIF1α 

binding to the HIF1 consensus domain of PPAR- α, which was associated with the 

inhibitory effect of the hypoxia on PPAR- α (Narravula, Colgan 2001). Similarly, in my 

cell culture system, the PPAR- α mRNA level was significantly lower in both 5% and 1% 

O2 relative to that in 21% O2 (Figure 3.7). Furthermore, HIF1 activity was suggested to 

be higher in C2C12 myotubes under hypoxia, indicated by the increased mRNA level of a 

HIF1α-induced molecular marker, lysyl oxidase (LOX) (Regnault et al. 2010a). 
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Therefore, it might be assumed that the lower PPAR- α mRNA level observed in our 

study is attributable to an increasing HIF1α activity, especially an increasing interaction 

with its consensus domain on the PPAR- α gene. This result suggests HIF1α induced 

PPAR- α mRNA inhibition under hypoxia is not just limited to intestinal epithelial cells, 

but at least may also occur in skeletal muscle cells. Nevertheless, protein levels of PPAR- 

α were not altered among treatments at day 7 (Figure 3.7). A possible mechanism which 

may explain this unchanged PPAR- α protein could be that hypoxia inhibited PPAR- α 

protein degradation; thus, the protein level could be unchanged even with a potential 

reduced protein synthesis. 

Target genes of PPARs related to FAO include FATP4 (PPAR- γ), CD36 (PPAR- α, γ) 

and MCAD (PPAR- α). In our study, FATP4 and MCAD both were significantly lower at 

the transcriptional levels in the hypoxia groups (1% O2) (Figure 3.13). These findings 

suggest that chronic hypoxia might inhibit the FAO gene (FATP4 and MCAD) 

transcription, leading to a potentially decreased FAO, through reducing fatty acid uptake 

and dehydrogenase within the FAO cycle. This is in agreement with previous studies 

which reported that FATP4 increased FAO in rat skeletal muscle (Nickerson et al. 2009) 

and MCAD mRNA level was associated with a decreased FAO (Purushotham et al. 

2009). However, no significant alterations were found among groups for CD36 mRNA 

(Figure 3.13). 

4.4 Activation of the AMPK signalling system in chronic low 
oxygen tension 

In my experiment, I provide novel evidence that 7 days of exposure to hypoxia (1% O2) 

increased AMPK activation and consequent ACC phosphorylation in skeletal muscle 

cells (Figure 3.14 and 3.15). As previously mentioned, under acute low oxygen 

conditions, AMPK is activated by phosphorylation. The activated AMPK then 

phosphorylates its downstream substrate, ACC, to inhibit ACC, so as to reduce the 

production of malonyl-CoA. This, in turn, releases the inhibitory effect exerted by 

malonyl-CoA on CPT1, which promotes the transport of long-chain fatty acids into the 

mitochondria for β-oxidation. In our studies, phosphorylation of AMPK was significantly 

higher after 7 days of differentiation under hypoxia when compared to controls. 
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Correspondingly, the ratio of p-ACC to total ACC was much higher following hypoxia. 

Therefore, if the interactions among p-ACC, malonyl-CoA and CPT1 exist in chronic 

hypoxia, the decreased protein ratio (p-ACC to ACC) would suggest a reduction in 

malonyl-CoA production, a consequent abolishment of its inhibition on CPT1, and an 

ultimate increase in FAO in the hypoxic cells. However, a recent study has found 

decreased CPT1mRNA levels in C2C12 muscle cells after exposure to hypoxia (1% O2) 

for 8 days (Regnault et al. 2010a), indicating a potential impairment of FAO capacity. 

This result is in conflict with what was predicted from my AMPK/ACC data. In fact, 

Pimenta and colleagues have also demonstrated that FAO impairment occurs despite the 

activation of AMPK in skeletal muscle cells which were exposed to palmitate (Pimenta et 

al. 2008). In their experiment, L6 myotubes were exposed to various palmitate 

concentrations for 8 hours. They found FAO was significantly reduced to different 

extents without affecting cell viability; this occurred despite significant increases in 

AMPK and ACC phosphorylation and in malonyl-CoA decarboxylase activity. Their 

study provides evidence that activation of the AMPK/ACC system is potentially not 

sufficient to counteract the suppressive effect of palmitate on FAO. Thus, although we 

have higher AMPK and ACC phosphorylation levels in cells treated with prolonged 

hypoxia, it is plausible that a decreased FAO may also occur through hypoxic induced 

inhibition of the PGC-1α/PPARs system. This situation would be further confounded by 

the fact that TG level was also higher after exposing C2C12 muscle cells to prolonged 

hypoxia (Figure 3.5). It has been demonstrated that factors resulting in an increasing TG 

level include: 1) reduction of FAO capacity; 2) decreased TG breakdown; 3) excessive 

fatty acid uptake, and 4) increased (re)esterification of intermediate products (Moro, 

Bajpeyi & Smith 2008). Hence, a reduction in FAO capacity is expected to contribute to 

the increased TG content, especially when the fatty acid uptake was decreased (indicated 

by decreased FATP4 mRNA), assuming the other 2 factors are not affected. In summary, 

C2C12 cells in my study could still display a low FAO after 7 days of hypoxia exposure, 

even if there was a significant increase in AMPK activation. The higher activation of 

AMPK observed in hypoxic cells may represent the muscle cells’ attempt to increase 

oxidation, as happens in the acute hypoxic condition with declining ATP levels. 

However, after exposure to prolonged hypoxia, the downstream substrates of the 
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AMPK/ACC system appear to lose their capacity to respond to or the PGC-1α/PPARs 

interactions are more dominant players in regulating FAO chronically, resulting in the 

failure of rescuing the impaired FAO.  

4.5 Speculations  

In summary, skeletal muscle differentiation under prolonged hypoxia in cell culture 

caused impairment of components of the PGC-1α/PPARs and markers of insulin 

signalling pathways, though the degree of these impairments are reduced after normoxic 

recovery. Altered PGC-1α/PPARs/FAO gene interactions are likely responsible for 

depressed FAO, resulting in increased TG content. An increased TG level could reflect 

increases in other lipid intermediates, such as DAG, ceramide and long-chain Acyl-CoA, 

which contribute to impaired insulin signalling (lower p-Akt to Akt ratio) and likely 

impair insulin sensitivity.  

Our data suggests that hypoxia, distinguished from other insults, is sufficient to alter or 

modulate PGC-1α/PPARs/FAO and insulin signalling pathways. This is important given 

that in IUGR fetus’ oxygen is limiting and hence reduced oxygen during IUGR muscle 

development could pre-set the offspring with a defective FAO/PGC-1α/PPARs system, 

predisposing the offspring to the development of insulin resistance and associated chronic 

diseases. It is important to note that the alterations of FAO/PGC-1α/PPARs pathway 

observed here are similar to those reported in insulin resistant adults (Sun et al. 2007). 

Therefore, the changes observed during prolonged hypoxia may partly explain the 

intrauterine factors contributing to decreased insulin sensitivity in IUGR offspring. 

 Significant hypoxic associated changes in the insulin signalling and FAO pathways are 

described, however upon re-oxygenation, many of these changes returned 

to levels associated with normoxia. We speculate that in our in vitro system a degree of 

plasticity exists and that following a 7- day period of hypoxic differentiation, C2C12 cells 

are able to resume normoxic like metabolism upon re-oxygenation. This may be because 

the hypoxic treatment in my study was not long enough to make permanent changes in 

the components of the two pathways.  
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4.6 Future studies 

This study has highlighted prolonged hypoxia during differentiation as a major 

contributor to alterations and modulations of insulin signalling and FAO/PGC-1α/PPARs 

pathways in skeletal muscle. More importantly, these changes suggest a potentially 

decreased FAO and impaired insulin sensitivity may occur in hypoxic muscle cells.  

Future studies may employ the palmitate oxidation assay to investigate if FAO rate 

actually decreases in prolonged hypoxia, and more importantly, the aspect of insulin 

signalling pathway and glucose uptake will be tested under insulin stimulation to 

determine insulin sensitivity in my system.  

Our study found that total cellular GLUT4 protein was increased, despite the defect in the 

insulin signalling pathway under the basal state (without insulin stimulation) in hypoxia. 

Further examination into how prolonged hypoxia influences GLUT4 protein translocation 

in the basal state and insulin-stimulated condition may help to further determine glucose 

uptake capacity in skeletal muscle, since it is the magnitude of GLUT4 protein 

translocation rather than total protein content that determines the capacity for glucose 

uptake in tissues.  

Levels of post translational modification (e.g. phosphorylation) of PPAR- α and - γ will 

also be investigated, as they may have implications in FAO gene regulation. Studies have 

found that phosphorylation of PPAR- α at both Ser 12 and 21 decreased the 

transcriptional activity of PPAR- α, whereas dephosphorylation at both sites significantly 

increased the activity in human hepatoma HepG2 cells (Tamasi et al. 2008). Moreover, 

Rangwala revealed genetic prevention of PPAR- γ phosphorylation at Ser 112 preserved 

insulin sensitivity in the setting of diet-induced obesity (Rangwala et al. 2003); Choi and 

colleagues demonstrated that phosphorylation of PPAR- γ at Ser 273 led to dysregulation 

of a large number of genes whose expression is altered in obesity (Choi et al. 2010). 

Examination of these phosphorylation sites on PPAR- α and - γ may help to further reveal 

the roles of PPAR- α and - γ on prolonged hypoxia induced impairment of FAO capacity. 
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The duration of hypoxic treatment for skeletal muscle cells will be prolonged, under a 

precondition of high cell viability, to explore if modifications and alterations in the 

insulin signalling and the FAO/PGC-1α/PPARs pathways would persist following a 

recovery treatment in normal oxygen. 
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Figure 4.1 Model of prolonged hypoxia induced alterations and modifications in 

insulin signalling and its interactions with FAO. Hypoxia impaired components of the 

FAO/PGC-1α/PPARs pathway. This is likely responsible for depressed FAO, which 

resulted in increase in TG content. An increased TG content could reflect increases in 

other lipid intermediates, such as DAG, ceramide and long-chain Acyl-CoA, which 

contribute to impaired makers of insulin signalling pathway(e.g. depressed Akt), and 

ultimately promoting insulin resistance.  

Solid arrow heads indicate actual changes measured in the present experiment; hollow 

arrow heads indicate potential alterations and further experiments are needed.  Figure was 

adapted from: www.environmentalhealthnews.org /newscience/ 2007/2007-0405 

insulinsignaling.html and Zhang et al. 2010. 
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