
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-14-2012 12:00 AM 

The Cost of Ethanol Synthesis During Recovery from Exhaustive The Cost of Ethanol Synthesis During Recovery from Exhaustive 

Exercise in Grass Carp (Ctenopharyngodon idella) Exercise in Grass Carp (Ctenopharyngodon idella) 

Simon A. Bradford, The University of Western Ontario 

Supervisor: Dr. Louise Milligan, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Biology 

© Simon A. Bradford 2012 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biology Commons, Comparative and Evolutionary Physiology Commons, and the Exercise 

Physiology Commons 

Recommended Citation Recommended Citation 
Bradford, Simon A., "The Cost of Ethanol Synthesis During Recovery from Exhaustive Exercise in Grass 
Carp (Ctenopharyngodon idella)" (2012). Electronic Thesis and Dissertation Repository. 1060. 
https://ir.lib.uwo.ca/etd/1060 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1060&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ir.lib.uwo.ca%2Fetd%2F1060&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/71?utm_source=ir.lib.uwo.ca%2Fetd%2F1060&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/73?utm_source=ir.lib.uwo.ca%2Fetd%2F1060&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/73?utm_source=ir.lib.uwo.ca%2Fetd%2F1060&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1060?utm_source=ir.lib.uwo.ca%2Fetd%2F1060&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


The Cost of Ethanol Synthesis During Recovery from Exhaustive Exercise in 
Grass Carp (Ctenopharyngodon idella)   

 
(Spine title: Exercise and Recovery in Grass Carp (Ctenopharyngodon idella)) 

 
(Thesis format: Monograph) 

 
 
 

by 
 
 
 

Simon Alex Bradford 
 
 
 
 

Graduate Program in Biology 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Masters of Science in Biology 
 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Simon Alex Bradford 2012 



 

ii 

 

THE UNIVERSITY OF WESTERN ONTARIO 
School of Graduate and Postdoctoral Studies 

 
 

CERTIFICATE OF EXAMINATION 
 
 
 

Supervisor 
 
 
______________________________ 
Dr. Louise Milligan 
 
Supervisory Committee 
 
 
______________________________ 
Dr. Brent Sinclair 
 
 
______________________________ 
Dr. James Staples 

Examiners 
 
 
______________________________ 
Dr. Chris Guglielmo 
 
_____________________________ 
Dr. Sheila Macfie 
 
______________________________ 
Dr. Jeremy McNeil 

 
 
 

The thesis by 
 

Simon Alex Bradford 
 

entitled: 
 

The Cost of Ethanol Synthesis During Recovery from Exhaustive Exercise 
in Grass Carp (Ctenopharyngodon idella)   

 
is accepted in partial fulfillment of the 

requirements for the degree of 
Masters of Science in Biology 

 
 
 
______________________            _______________________________ 
         Date    Chair of the Thesis Examination Board 

	  



 

iii 

 

Abstract 

 

Grass carp (Ctenopharyngodon idella) reduce white muscle glycogen (~14 µmol 

glucosyl units/g wet tissue) in response to exhaustive exercise. This reduction results in a 

small increase in muscle lactate (~9 µmol/g wet tissue) and a larger increase in muscle 

ethanol (~30 µmol/g wet tissue). Tissue-specific and whole-body measures of glycogen, 

ethanol and lactate confirm that ethanol is the major “anaerobic” glycolytic end-product. 

Additionally, while peak muscle and blood ethanol levels occur immediately post-

exercise, the excretion of ethanol to the environment is delayed, occurring over a 30-

minute period beginning ~105 minutes following exercise. As the total amount of ethanol 

synthesized in the white muscle does not account for that synthesized in the whole-body, 

it may be that the red muscle is also involved. The clearance and excretion of ethanol to 

the environment following exercise represents ~100% of the whole-body glycolytic pool 

used during exercise and therefore represents a significant carbon cost to the muscle’s 

glycolytic pool.   

Keywords: Grass Carp, Burst Exercise, Recovery, Anaerobic Metabolism, ADH, 

Ethanol. 
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Chapter 1 - Introduction 

An animal’s capacity for movement has profound effects on its distribution, 

predator-prey interactions and reproductive behavior (Bennett, 1979). Some animals can 

achieve high speeds but show little stamina, while others move more slowly over long 

distances. The study of animal movement has led physiologists, behaviourists and 

ecologists to quantify both endurance and burst activity capacities of a number of taxa 

(Kieffer, 2000).  

The study of exercise in fish was pioneered by Edgar Black and his colleagues 

(Black et al., 1962). This work defined an important avenue of research in describing the 

large anaerobic capacity of fish and their response to exhaustive exercise. Almost 60 

years of continued research has extended our understanding of the response to exercise. 

This research has identified large inter-species variation with respect to capacities for 

sustained aerobic and burst-type anaerobic swimming (Kieffer et al., 1996; Kieffer, 

2000), as well as potential mechanisms of recovery (Milligan and Wood, 1986; Wood, 

1991; Milligan and Girard, 1993; Wang et al., 1994, Moyes and West, 1995) and the 

effects of muscle pH and hormones on these processes (Walsh and Milligan, 1989; 

Milligan, 1996).  

In water, only 1/10,000th of the oxygen supply is available to aquatic organisms in 

comparison to terrestrial animals. From an evolutionary perspective, this likely supported 

the evolution of a larger scope of anaerobic activity compared to air breathers (Black, 

1962; Bennett, 1978). The difference in respiratory media is further magnified when 

oxygen consumption is considered in relation to exercise. Although locomotor costs are 

relatively similar between fish and terrestrial ectotherms of the same mass, oxygen 

consumption increases exponentially with increasing speed in swimming fish but linearly 

in walking amphibians or reptiles (Gleeson, 1991). The exponential relationship in fish is 

due to both the increased metabolic cost of extracting and delivering oxygen to the 

working muscles (Gallaugher et al., 2001) as well as the increased drag as a result of the 

swimming media. Furthermore, the metabolic rate and therefore oxygen requirements of 

fish are relatively lower than those of air breathing ectotherms (Jackson and Prange, 
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1979). Which allows adjustments in gill ventilation and transport to successfully maintain 

much of a fish’s daily swimming activity within its aerobic scope. However, 

circumstances such as spawning migrations, predator evasion and prey capture require a 

rapid increase in muscular power output (Beamish, 1978) that exceeds aerobic capacity 

and is therefore supported anaerobically. Burst-type exercise to exhaustion in fish can, 

therefore, be a particularly useful model system for identifying metabolic regulatory 

processes and allows identification of rate-limiting factors in exercise performance and 

recovery (Milligan, 1996; Kieffer 2000).  

Exercise Metabolism in Fish 

The swimming capacity of fish is commonly evaluated using critical swimming 

speed (Ucrit), which reflects the maximum speed that can be sustained aerobically. This 

provides a general measure of the metabolic pathways (aerobic or anaerobic) that 

dominate during graded swim performance tests (Lowe, 1996) and has allowed 

standardization and comparison of swim performance across a variety of species. Based 

on the measurement of Ucrit, swimming activity can be separated into three categories that 

reflect the type of metabolism employed. Sustained swimming at speeds below Ucrit can 

be maintained for >240 minutes and yields respiratory and circulatory adjustments to 

meet energetic needs aerobically (Beamish, 1978). Prolonged swimming at speeds 

approaching Ucrit, are also fuelled aerobically but can only be maintained for 20-200 

minutes and results in fatigue (Beamish, 1978). Finally, burst-type swimming at speeds 

greater than Ucrit, is fuelled anaerobically, and can only be maintained for <20 seconds 

(Brett, 1964).  

The locomotory muscles of fish are also divided into categories and reflect the 

type of swimming for which they are recruited. The red, oxidative type I or slow twitch 

fibers have a well developed blood supply, numerous mitochondria, high myoglobin 

concentration as well as, high electron transport chain (ETC) and tricarboxylic acid cycle 

(TCA) enzyme activities (Johnston, 1977). The characteristics of the type I fibers 

correlate well with aerobic supply of energy for contraction and allow sustained or 

prolonged swimming. Conversely, the white, glycolytic or type II fibers constitute a 

much larger mass, have fewer mitochondria and lower myoglobin concentration 
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(Johnston, 1977). The characteristics of the type II fibers support rapid, anaerobic 

provision of energy supplying a large and therefore powerful muscle group and correlate 

well with their recruitment in achieving high speeds during burst-swimming.  

In the natural environment, a single bout of burst-type swimming is not 

exhausting; however, multiple sprints, one shortly after another, are likely necessary to 

capture prey or avoid predators. Consequently, burst-swim performance depends on three 

endogenous fuels stores within the muscle: adenosine triphoshate (ATP), phosphocreatine 

(PCr), and glycogen (Beamish, 1978; Kieffer, 2000). During the early stages of burst 

activity (10-15 sec.), the energetic requirements of the type II muscle are maintained 

through re-phosphorylation of adenosine diphosphate (ADP) to ATP by transfer of 

inorganic phosphate from PCr (Dobson and Hochachka, 1987). As time spent swimming 

increases, the ratio of PCr/Cr declines and is no longer sufficient to maintain the 

concentration of ATP. As a consequence of repeated contraction, the myoplasmic ratio of 

ADP to ATP and the concentration of Ca2+ increases, signaling a cascade of events 

through cAMP and protein kinase A (PKA) that activates glycogen phosphorylase and 

increases glycolytic flux in order to maintain ATP supply to the muscle (Voet et al., 

2001).  

Activation of glycogen phosphorylase results in the breakdown of muscle 

glycogen to glucose-6-phosphate (G6P), which serves as the glycolytic substrate for 

continued ATP synthesis (Voet et al., 2001). Increased rates of glycogenolysis and 

glycolysis create increasing amounts of pyruvate and continual reduction of nicotinamide 

adenine dinucleotide (NAD+) to NADH in the cytoplasm (Dobson and Hochachka, 

1987). Typically, pyruvate synthesized by glycolysis is transported into the mitochondria 

using a monocarboxylate transporter and converted to acetyl-CoA via pyruvate 

dehydrogenase (PDH) before entering the tricarboxylic acid cycle (TCA). The oxidation 

of acetyl-CoA within the TCA serves to replenish the glycolytic intermediate NAD+ 

required for continued oxidative synthesis of ATP (Fig. 1) (Brooks et al., 1999). 

However, as the glycolytic flux is increased, the synthesis of pyruvate exceeds its rate of 

oxidation and creates a mismatch of NAD+ supply and demand resulting in 

disequilibrium of redox potential (Dobson and Hochachka, 1987). In order to maintain 
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redox equilibrium, excess pyruvate is diverted to lactate dehydrogenase (LDH) in the 

cytosol. The conversion of pyruvate to lactate serves to replenish NAD+ and allows the 

continued anaerobic synthesis of ATP (Wood, 1991) (Fig. 1). However, the accumulation 

and dissociation of lactic acid in the cytosol to lactate and metabolic protons (Milligan, 

1996) cause disturbances of muscle and blood pH as well as ionic and osmotic balance 

that lead to exhaustion (Wang et al., 1994).  

Overall, the physiological and metabolic response to exhaustive exercise in fish, 

for example rainbow trout (Oncorhynchus mykiss), is characterized by an exponential 

increase in oxygen consumption and the depletion of muscular energy reserves (ATP, 

PCr and glycogen) causing a rapid decline in muscle and blood pH as a result of the 

accumulation and dissociation of lactic acid. The recovery time required for the clearance 

of metabolic end products and restoration of pH and ionic/osmotic balance may therefore 

represent a constraint on the potential for subsequent bouts of burst exercise. 

Furthermore, the duration of subsequent bouts is likely also dependent on the storage 

capacity of type II muscle energy substrates (glycogen, ATP or PCr). 
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Figure 1: Schematic model of glycolysis and Krebs cycle including enzymes (shown 

in bold) and their locations in a muscle cell. Dashed red arrows indicate irreversible 

reactions, dashed blue arrows indicate alternate pathways used depending on cell 

redox state. ATP = adenosine triphosphate; ADP = adenosine diphosphate; NAD+ = 

nicotinamide adenine dinucleotide; NADH = reduced nicotinamide adenine 

dinucleotide. Adapted from Berg et al. (2002) 
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Recovery from Exercise in Fish 

During recovery from exhaustive exercise, elevated oxygen consumption is 

sustained for ~2h and is termed “excess post-exercise oxygen consumption (EPOC)”. In 

adult sockeye (Oncorhyncus nerka) and coho (O. kisutch) salmon, Lee et al. (2003) 

determined that EPOC can be divided into fast and slow components linked to the 

cardioventilatory costs of the recovery process (Wood, 1991). The fast component (~20 

min) reflects the oxidative restoration of PCr and ATP as well as tissue O2 replenishment. 

However, the explanation for the contributions made by the slow component (~2 hours) 

remains somewhat incomplete. Lactate clearance and glycogen re-synthesis accounts for 

only ~25% of the slow component and takes 4-12h (Milligan and Wood, 1986; Milligan 

and Girard, 1993), so is therefore not the only contributor. The re-establishment of ion, 

acid-base and fluid homeostasis may significantly contribute to the slow component of 

EPOC (Wood, 1991). 

Investigation of the patterns and strategies of post-exercise lactate clearance 

revealed that the possible fates of lactate vary among species (Gleeson, 1996). Post-

exercise studies of mice indicate that blood and muscle lactate concentration are in 

equilibrium and that oxidization to carbon dioxide and water accounts for the majority of 

lactate removal (40%), while incorporation into tissue glycogen accounts for only a small 

fraction (~3%) during recovery (Hatta et al., 1994). However, while post-exercise muscle 

lactate accumulation is comparable in fish, blood lactate is often much lower (Milligan, 

1996). This disequilibrium between the muscle and blood lactate pools reflects lactate 

retention for glyconeogenic use as  ~80-85% of muscle-borne lactate in rainbow trout 

(Oncorhynchus mykiss), coho salmon (Oncorhynchus kisutch) and starry flounder 

(Platichthys stellatus) can be accounted for through in situ replacement of muscle 

glycogen (Turner et al., 1983; Milligan and McDonald, 1988).  

Lactate supported muscle glycogenesis can occur by one of three biochemical 

pathways. These pathways are distinguished by the mechanism through which pyruvate is 

converted back to phosphoenolpyruvate (PEP). The carboxylation/decarboxylation of 

pyruvate though pyruvate carboxylase (PC) and PEP carboxykinase (PEPCK) is 

generally thought to be isolated to hepatic and renal tissue, as fish skeletal muscle lacks 
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PC activity (Crabtree et al., 1972). Of the two remaining possible pathways, reversal of 

pyruvate kinase (PK) and the pathway catalyzed by cytoplasmic malic enzyme and 

PEPCK, the reversal of PK has more support as (I) PEPCK is absent in all type II fish 

muscle studied except marlin (Makaira nigricans) (Moyes and West, 1995; Suarez et al., 

1986), (II) the PK reaction is close to equilibrium (Shulte et al., 1992) and (III) that PK 

activity is sufficiently high in type II muscle to explain glycogenesis (Moyes and West, 

1995). The retention of lactate and in situ glycogenesis observed in fish, as well as 

leopard frog (Rana pipiens), American toad (Bufo americanus), and tiger salamander 

(Ambystoma tigrinum), is beneficial as releasing lactate to the blood space exposes the 

lactate pool to oxidation and use by other tissues (Withers et al., 1988; Fournier and 

Guderley 1993; Wickler and Wagner 1995). By minimizing the loss of the carbon 

substrate to oxidation or use by other tissues, the fish may be more successful in complete 

muscle glycogen replenishment without having to forage or risk exposure to predation in 

a glycogen-depleted state (Gleeson and Dalessio, 1989; Fournier and Guderley, 1992).    

In order for lactate to be used as a glyconeogenic substrate, the muscle requires an 

alternate oxidative substrate to form the ATP required. The substrates used to oxidatively 

generate ATP may be synthesized through three different mechanisms: (I) amino acid 

transamination, (II) hydrolysis of triacylglycerols or (III) ketone body synthesis. Milligan 

(1997) constructed a framework where cortisol-stimulated amino acid transamination and 

oxidation contributes the ATP required for replenishment of glycogen in rainbow trout. 

Briefly, in response to cortisol stimulation, hepatic BCAAs (leucine, isoleucine and 

valine) are released to the plasma. Once taken up by the muscle, transamination of 

BCAAs with α-ketoglutarate via transaminase creates glutamate and the respective 

branched-chain keto acid (BC-KA). The BC-KA can supply the TCA through branched-

chain keto acid dehydrogenase (BCAD) while glutamate and excess pyruvate are 

converted to alanine via alanine aminotransferase and released back to the plasma. Once 

in the plasma, alanine may support hepatic gluconeogenesis or, perhaps more 

importantly, oxidation by cardiac or red muscle tissue contributing to the replenishment 

of whole-body ATP and glycogen stores to their pre-exercise levels (Milligan, 1997) 

(Fig.2). 
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The second alternative is that catecholaminergic stimulation in response to stress, 

such as exhaustive exercise, may activate protein kinase A (PKA) causing the hydrolysis 

of triacylglycerols and an increase in circulatory free fatty acids (FA) and glycerol 

(Tocher, 2003). Circulatory glycerol can be taken up by the liver in rainbow trout for re-

synthesis of triacylglycerols (Bernard et al., 2003), while muscular uptake and β-

oxidation of circulating FAs supplies the TCA intermediates required for oxidative ATP 

generation and supports muscular glycogen re-synthesis (Richards et al., 2002a, Fukao et 

al., 2004) (Fig. 3). An increase in mitochondrial acetyl-CoA concentration as a result of 

β-oxidation likely inhibits pyruvate dehydrogenase and, in the skeletal muscles, functions 

to direct both pyruvate and lactate away from an oxidative state and towards a glycogenic 

fate while also supplying the ATP required.    

 The third possible pathway for supplying the required ATP for muscular 

glycogenesis arises as a result of an increased concentration of FAs in the liver. The 

production of hepatic acetyl-CoA as a result of β-oxidation can exceed the hepatic 

cellular energy requirements and cause ketogenic formation of three inter-convertible, but 

distinct, compounds known as “ketone bodies”: Acetoacetate, 3-hydroxybutyrate and 

acetone (Fukao et al., 2004). In the event of ketogenesis, both free acetoacetate and 3-

hydroxybutyrate are released to circulation as a potential oxidative substrate for ATP 

synthesis in extra-hepatic tissues (Fig. 4). Although the activity Succinyl-CoA-3-ketoacid 

coenzyme A transferase (SCOT) in the muscle is only 5% of that reported for the heart in 

humans (Williamson, 1991), the large proportion of total body mass represented by the 

skeletal muscles in fish would suggest that muscles may have an appreciable capacity for 

the generation of ATP through oxidation of ketone bodies that could aid in the energetic 

support of muscle glycogenesis. Furthermore, the increased concentration of acetyl-CoA 

would again direct pyruvate and lactate away from an oxidative fate by inhibiting the 

normal activity of PDH.    
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Figure 2: Schematic model for the use of amino acid transamination and oxidation 

in the supply of ATP and hepatic glycogen during recovery from exhaustive exercise 

in fish. Dashed arrows = hormonal targets; BCAA = branched-chain amino (leucine, 

isoleucine and valine); BC-KA = branched-chain keto acid; AAT = amino acid 

transferase BCAD = Branched-chain keto acid dehydrogenase. Adapted from 

Milligan (1996). 

 

 

 

 



10 

 

 

 

Figure 3: Schematic model for the increased mitochondrial β-oxidation of fatty 

acids through adrenergic hormone stimulation in response to exercise in fish. 

Dashed arrows = inhibition; Bolded text = enzymes; TG = triacyl glycerol; cAMP = 

cyclic adenosine monophosphate; PKA = Pyruvate Kinase; HSL = Hormone 

sensitive lipase; FA = Free fatty acid; FACS = Fatty Acyl-CoA synthetase; MCD = 

Malonyl-CoA decarboxylase; ACC = AcCoA carboxylase; AMPK = AMP activated 

protein kinase; CPTI = carnitine palmityl transferase I; CAT = Carnitine/Acyl-

carnitine transferase; CPT II = Carnitine palmityl transferase II; ATP = adenosine 

triphosphate; OMM = Outer mitochondrial membrane; IMM = inner mitochondrial 

membrane. Adapted from Fukao et al. (2004).  
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Figure 4: Schematic model of ketogenesis through fatty acid oxidation and transport 

of ketone bodies to extra-hepatic tissue for ketolytic ATP generation to support 

muscular glycogen replenishment after exercise. Bolded text = enzymes; FA = free 

fatty acid; CoA = Coenzyme A; AcCoA = Acetyl-CoA; AcAcCoA = Acetoacetyl-

CoA; AcAc = Acetoacetate; T2 = AcAcCoA thiolase; mHS = Mitochondrial HMG-

CoA synthase; 3HB = 3-hydroxybuturate; 3HBDH = 3-hydroxybuturate 

dehydrogenase; SucCoA = Succinyl-CoA; Suc = Succinyl; SCOT = Succinyl-CoA: 3-

ketoacid coenzyme A transferase. Adapted from Fukao et al. (2004) 

 



12 

 

Alternative Glycolytic End-Product Metabolism 

The goldfish (Carassius auratus) (Shoubridge and Hochachka, 1980), European 

bitterling (Rhodeus amarus) (Johnston and Bernard, 1982), crucian carp (Carassius 

carassius) (Wissing and Zebe, 1988) and grass carp (Ctenopharyngodon idella) 

(Bradford and Milligan, unpublished results) rely on the production of alternative, 

excretable glycolytic end-products (e.g. ethanol), to survive hypoxia. In order for these 

fish to remain active in an hypoxic environment, whole-body metabolism is depressed 

and those tissues that remain active operate anaerobically and are dependent on large 

stores of hepatic carbohydrates (Bickler and Buck, 2007). The use of anaerobic 

metabolism in maintaining activity results in the synthesis of lactate that is transported 

through the blood from extra-muscular tissues to the skeletal muscle for conversion to 

ethanol. Upon transport of lactate into the skeletal muscle, lactate is converted to 

pyruvate via lactate dehydrogenase (LDH) and enters the mitochondria through a 

monocarboxylate transporter. Covalent modification of PDH leads to the decoupling of 

the decarboxylase subunit of the PDH enzyme complex (Van Waversveld et al., 1989) 

and permits conversion of pyruvate to acetylaldehyde and CO2. Acetylaldehyde then 

diffuses into the muscle cytoplasm where it is rapidly converted to ethanol by alcohol 

dehydrogenase (ADH) and along with CO2 can be excreted through the gills (Mandic et 

al., 2008) (Fig 5). The conversion of lactate to ethanol removes the potential disruption of 

ionic/osmotic and pH balance associated with lactate accumulation, while the coupling of 

LDH and ADH maintain NAD+/NADH redox potential allowing continued glycolytic 

ATP synthesis (Voet et al., 2001) (Fig. 5). However, although this strategy functions to 

maintain potential activity under hypoxic stress, conversion of lactate to ethanol and its 

excretion also means that lactate is no longer available as a glycogenic substrate upon re-

oxygenation of the environment (Nilsson, 1988).  
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Figure 5: Schematic model of ethanol synthesis and excretion during hypoxia 

(double lines) or in response to exhaustive exercise in hypoxia-tolerant cyprinids. 

Bolded text = enzymes; Dashed lines = diffusion; LDH = lactate dehydrogenase; 

ADH = alcohol dehydrogenase; PDC* = pyruvate decarboxylase subunit of pyruvate 

dehydrogenase. 
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Unlike hypoxia, exhaustive exercise requires an increased whole-body glycolytic 

flux in order to sustain the energetic demands of muscle contraction. As the flux is 

increased, the rate of pyruvate synthesis from glycogen catabolism exceeds that of 

oxidation creating the potential for pyruvate accumulation. In hypoxia-intolerant species, 

the rate of glycolytic ATP production is maintained by shunting pyruvate to lactate 

through the use of LDH, restoring the NAD+ required for continued anaerobic glycolysis. 

However, Davidson and Goldspink (1978) observed that, in goldfish,  s lactate 

accumulated post-exercise was much lower than predicted from the corresponding 

change in glycogen if lactate was the major anaerobic end product. Mandic et al. (2008) 

suggested that, in goldfish, pyruvate may be shunted through a covalently modified PDH 

to synthesize acetylaldehyde and ultimately ethanol as observed during hypoxia. The 

conversion of acetylaldehyde to ethanol via alcohol dehydrogenase (ADH) in the cytosol 

serves the same function as LDH in replacing the NAD+ required for continued 

glycolysis (Mandic et al., 2008). If in response to exercise, ethanol is produced and 

excreted because of a mismatch between pyruvate synthesis and oxidation then, the 

clearance of anaerobically formed ethanol suggests a substantial loss from the whole-

body glycolytic pool and, therefore, a significant cost to the organism. 

As grass carp have the ability to synthesize the alternative end product ethanol 

during hypoxic insult (Bradford and Milligan, unpublished results), it is possible that the 

synthesis of ethanol is constitutive whenever anaerobic metabolism occurs. Furthermore, 

the previous research on exhaustive exercise has focused on carnivorous species, such as 

the rainbow trout that have a high protein but relatively low carbohydrate intake in their 

natural diet. As herbivores, grass carp have much easier access to carbohydrates and 

therefore represents an interesting model to investigate the metabolic changes associated 

with recovery from exhaustive exercise as well as estimate the potential impacts of 

glycolytic carbon loss through ethanol synthesis and excretion.  
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Hypotheses and Objectives 

The objectives of this thesis were 1) to determine if exhaustive exercise results in 

the synthesis and excretion of ethanol as a consequence of exercise, 2) to determine the 

location of ethanol synthesis and the potential substrates used to support end-product 

synthesis, and 3) if ethanol is excreted to the environment, whether the clearance and 

excretion of ethanol represents a significant loss from the glycolytic carbon pool. The 

following two hypotheses were tested: 1) Exhaustive exercise will result in the depletion 

of skeletal muscle energy metabolites (PCr, glycogen and glucose) resulting in the 

synthesis of ethanol as the major glycolytic end product, and 2) The synthesis and 

excretion of ethanol to the environment represents a significant loss from the grass carp’s 

glycolytic carbon pool. 
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Chapter 2 - Materials and Methods 

Experimental Animals 

Triploid grass carp (Ctenopharyngodon idella) (n=75, 30.7-59.6 g) were certified 

and obtained from The Aquaculture Center for Excellence, Lethbridge Community 

College, Lethbridge, Alberta (License # 1058068, Appendix 4) and held at the University 

of Western Ontario (UWO) greenhouse in a 1500L concrete tank under flow-through 

conditions (4 mL/min) of aerated, de-chlorinated City of London water. All fish were 

acclimated to laboratory conditions for one month in the holding system maintained at 

18-24 oC by an electronically controlled water heater. The fish were fed daily on a diet of 

sow thistle grown in the UWO greenhouse and supplemented with Koi pellets 

(Vandermeer Nursery, Ajax, Ontario). Twenty-four hours prior to experimentation, fish 

were isolated and fasted in a respirometer (Qubit Systems, D008, V = 2.25 L) or 4 L 

black plastic boxes (406 mmx83 mmx102 mm) covered with an opaque lid, under flow-

through (8mL/min) conditions kept at a temperature of 18 ± 3 oC. The UWO Animal Use 

Subcommittee, in accordance with the Canada Council on Animal Care guidelines, 

approved all protocols for holding and handling of fish (Appendix 3). 

Experimental Design 

 Preliminary experiments revealed  that following 4 hours of recovery, oxygen 

consumption and ethanol excretion had returned to resting status. Therefore, three 

experimental series were carried out in order to investigate the physiological and 

metabolic changes that occur as a consequence of exercise and during a 4-hour recovery 

period. All experimental series compared the resting condition to the response after 

exhaustion or a designated recovery treatment.   

Series 1 – As a consequence of exhaustive exercise, is ethanol excreted to the 

environment during recovery? 

Using the intermittent respirometry setup (Loligo Systems), oxygen consumption 

( O2, µmol O2/g*min) and ethanol excretion ( EtOH, µmol/g*min) was determined (N V V
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= 16) (see Appendix. 1). After 24-hours acclimation, each respirometer was switched 

from a flow-through (5 mL/min) to a recirculation format (5mL/min) in which the 

respirometer was flushed for two minutes at fifteen-minute intervals from a temperature 

controlled (18-24 oC) oxygenated water reservoir in order to replace the volume of the 

respirometer with fresh, normoxic (minimum 6 mg/L O2) water. A small plastic tube was 

mounted inline to allow water samples (1 mL) to be taken directly from the respirometer 

using a syringe (BD, Franklin Lakes, N.J.) immediately before and after each 2 minute 

flushing cycle for analysis of ethanol concentration and calculation of EtOH (µmol 

EtOH/g*min). Resting O2 (µmol O2/g*min) and EtOH were measured for a period 

of 1 hour, after which each fish was individually released to a 20 L exercise tank and 

exercised to exhaustion by manual chasing until unresponsive to further stimulation 

(approx. 2-3 min). Once unresponsive, the fish were then transferred back to their 

respective respirometers where O2 and EtOH were monitored throughout a 4-hour 

recovery period.    

Series 2 – How does exhaustive exercise affect the grass carp’s energy metabolites? Does 

ethanol synthesis in the tissues account for the timing and amount of ethanol excreted to 

the environment?  

Fish were allowed at least seven days of recovery from the first experiment before 

being used in following experiments. Fish were then randomly assigned to one of nine 

treatments (Rest, Exhausted or Recovery for 0.25hr, 1hr, 1.5hr, 1.75hr, 2hr, 2.5 hourand 

4hr, N = 4-6). Each fish was placed in a separate 4L plastic box with an opaque lid for 24 

hours under flow-through conditions of aerated, de-chlorinated City of London water 

kept at a constant temperature (18 ± 3oC) prior to experimentation. Resting fish were 

euthanized via an overdose of tricaine methane sulfonate (1.3g MS-222 and 2 g 

NAHCO3; Syndel, Vancouver, B.C.) administered directly into the box. Immediately 

after death, blood was drawn (~100-500µL) via caudal puncture using a 1mL syringe 

(BD, Franklin Lakes, N.J.) that has been flushed with heparinized saline (50U/mL). The 

heart, liver and white muscle were excised, freeze-clamped and stored under liquid N2 

until transfer to a -80oC freezer. White muscle was dissected dorsal to the lateral line and 

anterior to the dorsal fin. The entire dissection process from euthanasia to completed 

V
V V

V V
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dissection took approximately six minutes. The remaining eight fish were individually 

transferred to the exercise tank and manually chased to exhaustion. The exhausted fish 

were euthanized immediately after exercise and sampled as described above, while the 

recovery groups were returned to their respective boxes. Each recovery group was 

euthanized and sampled in the same manner as described above upon reaching the 

designated recovery period. All fish tissue samples were collected at the same time each 

day in an effort to reduce any possible differences between sampling days. 

Series 3 – Does ethanol synthesis in the whole-body account for the difference observed 

between ethanol excretion to the environment and its clearance from individual tissues? If 

so, does ethanol excretion represent a significant loss from the whole-body glycolytic 

carbon pool?  

A third experimental series identical to that described in “Series 2” was carried 

out to measure the changes in whole-fish metabolites, as the results of ethanol synthesis 

in the individual tissues (Series 2) did not account for the amount of ethanol observed to 

be excreted in Series 1. The changes in whole-body metabolites were further used to 

calculate the percentage of the whole-body glycolytic pool lost through ethanol clearance. 

As a significant correlation was found to exist between body weight and the metabolites 

measured (Appendix 3), all results were standardized to the weight of a 30g fish. The 

resting, exhausted, and 1 hour and 2 hour recovery treatment periods were selected as 

those that represented key time points to observe whole-fish metabolite changes. Fish 

were assigned to one of four treatments (N = 3) and placed in a separate 4 L plastic box 

with an opaque lid for 24 hours under flow-through conditions kept at 18 ± 3 oC prior to 

experimentation. Resting fish were immediately euthanized via administration of an 

overdose of tricaine methane sulfonate (1.3 g MS222 and 2 g NaHCO3, Syndel, 

Vancouver, BC) directly into the box and were then frozen using liquid N2. The treatment 

groups were individually transferred to the exercise tank and manually chased to 

exhaustion. The exhausted group was immediately euthanized as described above, while 

the recovery groups were returned to their respective flux boxes. Each recovery group 

was euthanized as described above and frozen under liquid N2 upon completion of the 

designated recovery time. All fish were sampled at the same time each day in an effort to 
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reduce any possible differences between sampling days and placed in an -80 oC freezer 

until analysis.  
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Analytical Measurements 

Oxygen Concentration 

Oxygen concentration (µmol/L) was measured using the Loligo Systems (DAQ-

PAW-G4S) intermittent respirometry system. This system permits a user to designate a 

time interval to switch between recirculation or flow-through formats allowing either the 

collection of oxygen concentration data or flushing of the respirometer (Appendix. 1). 

During recirculation, the system functions as a closed loop where water from the 

respirometer is pumped past an inline galvanic oxygen probe (±0.1% accuracy) and back 

to the respirometer. The data from the oxygen probe were collected using a USB 

connection to a laptop computer and analyzed using AutoResp 4 respirometry software 

(Loligo Systems #AR12610). 

Metabolite Analysis 

 Frozen whole animal or individual muscle, liver, and heart samples were 

individually ground to a fine powder in liquid N2 with an insulated mortar and pestle to 

ensure that the aliquots taken were representative of the individual tissues or whole-body. 

Aliquots of white muscle (~100 mg), liver (80-150 mg) and heart (15-40 mg) were 

homogenized by vortexing for 5 min in 1.0 mL ice-cold 8% perchloric acid (PCA). 

Whole blood (100 µL) was mixed 1:2 with 8% PCA and set on ice. Aliquots of whole-

animal (~100 mg) were homogenized for 5 min in 1.0 mL ice-cold 8% PCA using a 

tissue homogenizer, and those intended for glycogen/glucose/G6P analysis were set aside 

while the remainder were neutralized with 2.5 M K2CO3 and centrifuged at 5000 g for 5 

min. Supernatants were then withdrawn and stored at -80 0C until analysis. All 

metabolites measured were run in parallel with known standards and all NAD+/NADH 

coupled reactions were measured at a wavelength of 340 nm and absorbance read using a 

SPECTRAmax 340PC spectrophotometer (Molecular Devices, Sunnyvale, California, 

USA) (See Appendix. 2 for details of enzymatic reactions). Whole-body metabolites 

were standardized to a 30 g body weight as a relationship between whole-body 

metabolites and body mass was observed (Appendix 3).  
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Glycogen, Glucose-6-Phosphate (G6P) and Glucose. Aliquots of whole animal or 

separated tissue homogenates (200 uL) were taken for glycogen digestion and the 

remainder of the homogenate was centrifuged at 5000 g for 5 min to determine 

glucose/G6P. The acidic and neutralized glycogen homogenates were compared and 

acidic homogenates yielded increased recovery values. Acidic glycogen homogenates 

were incubated at 380C and digested to glucose using excess glucoamylase (2 mL, ≥10 

kUL-1, Sigma-Aldrich) in 0.2 M acetate-buffer (pH = 4.8) with shaking for two hours. 

The digestion reaction was terminated by addition of 1 mL 0.6 M PCA and centrifuged at 

5000 g for 15 minutes. The supernatant was then neutralized with 1 M KHCO3 and 

centrifuged again for 5 minutes at 5000 g. Both glycogen and glucose supernatants (50 

uL) were added to a 2 mL cuvette and the first absorbance was recorded. 1 mL of 

reaction buffer (1 mM ATP, 0.9 mM βNAD+, >700 U/L G6PDH) was then added. The 

increase in absorbance was followed until constant and the second absorbance was 

recorded. 5 uL of hexokinase (280 kU/L, Sigma-Aldrich) was then added and absorbance 

followed until stable when a final absorbance was recorded. The difference in absorbance 

after the addition of reaction buffer and after the addition of hexokinase will be 

proportional to the concentration of G6P and glucose, respectively (Bergemeyer 1965). 

ATP/PCr. Separated tissue supernatants were neutralized with 3 M K2CO3 and 

centrifuged for 5 minutes at 5000 g. Neutralized supernatant was incubated in 2 mL 

buffer (G6PDH ≥2 kU/L Sigma-Aldrich, 0.01 M βNAD+, pH= 8) for 10 minutes and the 

absorbance was read. 5 µL of hexokinase (HK) (1.5 kUmL-1, Sigma-Aldrich) was then 

added and allowed to incubate for 20 minutes before a second absorbance reading was 

taken. 20 µL of 0.1 M adenosine diphosphate (ADP) was added and allowed to incubate 

for 10 minutes and a third absorbance reading was taken. 10 µL of creatine kinase (≥700 

kUL-1, Sigma-Aldrich) was added and allowed to incubate for 25 minutes and a final 

absorbance reading was taken. The difference in absorbance between incubation with 

G6PDH/ βNAD+ buffer and addition of HK and between the addition of ADP and 

creatine kinase will be proportional to the concentration of ATP and CP, respectively 

(Bergemeyer, 1965). 
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Lactate. Supernatants and standards were assayed in glycine buffer (0.6 M 

glycine, 0.5 M hydrazine buffer, pH= 9.4), 2.5 mM NAD+, and excess lactate 

dehydrogenase (LDH, ≥14 kUL-1) (Bergemeyer, 1965). Cuvettes were incubated for 30 

minutes at 37 oC and absorbance read at 340 nm. 

 

Ethanol. Supernatant and standards were assayed in a clear 96-well plate using a 

pre-made kit (DIET-500, QuantiChromTM). The kit is based on the reduction of 

dichromate by ethanol and results in a bluish chromic product (Cr3+). The intensity of 

color was measured by absorbance at 680nm and is proportional to concentration of 

ethanol (mM) (Jetter, 1950). Ethanol excretion was calculated by the following 

equations:  

1. EtOH (umol) =  

(Concentration of EtOH (mM)*Relative Volume of Respirometer (L))/1000) 

2. EtOH (µmol EtOH/g*min) = (EtOH (umol)/body weight (g))/15 min 

Statistical Analysis  

Data are presented as means (±SEM) where N represents the number of fish used 

in each treatment group. Statistical analyses were performed using SPSS software. A 

repeated measures ANOVA followed by a post-hoc Tukey’s HSD was used to determine 

statistical differences between the resting and recovery treatments in series 1. Based on 

the results of an F-test, a single factor one-way ANOVA assuming unequal variance 

followed by Dunnett’s C test was used to determine statistical differences between the 

resting and recovery treatments for series 2 and 3. All graphical representations of data 

were constructed using R modeling software (version 2.14.2). 

 

 

 

 

V
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Chapter 3 - Results 

 Excretion of ethanol to the environment was not significantly different from rest 

until 1.75 to 2 hours of recovery when peak excretion was observed (Fig. 6, p=0.04). 

Oxygen consumption increased 2.5-fold immediately post-exercise compared to resting 

values and remained significantly elevated until 90 minutes of recovery (p=0.052) (Fig. 

7).  

 The breakdown of glycogen resulted in the accumulation of the end products lactate 

and ethanol; however, the recovery and distribution patterns observed for these 

metabolites were different from one another. Even at rest, the muscle contained ethanol 

(31.19 ± 5.53 µmol/g tissue) and a similar concentration was observed in the blood 

(35.59 ± 2.06 µmol/mL) (Fig. 8a,c). Immediately post-exercise, white muscle and blood 

ethanol were significantly elevated by ~2-fold compared to resting values (Fig. 8a,c, 

p=0.002). Heart and liver ethanol were not significantly different from rest and remained 

relatively stable throughout 4 hours of recovery (Fig. 8b, d). 

 At exhaustion, white muscle, liver, heart and blood lactate were all significantly 

elevated post-exercise (Fig. 9). Muscle lactate (Fig. 9a) remained elevated, while liver 

(Fig. 9b) and blood (Fig. 9c) lactate peaked at 1.5 hours of recovery. Blood lactate 

remained significantly elevated throughout the 4-hour recovery period while muscle, 

liver and heart lactate (Fig. 9d) were no longer significantly different from rest by 2.5 

hours of recovery.   

 At exhaustion, muscle ATP (Fig. 10a) and PCr (Fig. 10b) were both significantly 

decreased, by ~3 µmol/g tissue and ~5 µmol/g tissue, respectively, compared to resting 

values. Muscle ATP was no longer significantly different from resting values by 1 hour 

of recovery and remained relatively stable throughout the remainder of the recovery 

period. Muscle PCr was no longer significantly different from resting values after 15 

minutes of recovery but continued to increase and by 1.75 hours of recovery, peak PCr 

content was significantly greater than resting values (Fig. 10b, p=0.03). PCr content was 

no longer significantly different from rest after 2 hours of recovery and remained stable 

throughout the remainder of the 4 hours of recovery observed. 
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Figure 6: Ethanol excretion at rest (R) and throughout 4 hours of recovery from 

exhaustive exercise in grass carp. Asterisks (*) above data points indicate significant 

differences from resting condition (R) (p < 0.05). All values are presented as means 

± S.E.M (n=6). Note: The difference of two minutes between each 15-minute interval 

displayed is as a result of the flushing cycle. 
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Figure 7: Oxygen consumption at rest (R) and throughout 4 hours of recovery from 

exhaustive exercise in grass carp. Asterisks (*) above data points indicate significant 

differences from resting condition (R) (p < 0.05). All values are presented as means 

± S.E.M (n=6). Note: The difference of two minutes between each 15-minute interval 

displayed is as a result of the flushing cycle. 
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Figure 8: White muscle (A), liver (B), blood (C) and heart (D) ethanol at rest (R) 

and throughout 4 hours of recovery from exhaustive exercise in grass carp. 

Asterisks (*) associated with data points within a panel indicate significant 

differences from rest condition (p <0.05). All values are presented as means ± S.E.M 

(n=6). 
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Figure 9: White muscle (A), liver (B), blood (C) and heart (D) lactate at rest (R) and 

throughout 4 hours of recovery from exhaustive exercise in grass carp. Asterisks (*) 

associated with data points within a panel indicate significant differences from rest 

condition (p < 0.05). All values are presented as means ± S.E.M (n=6). 
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Figure 10: White muscle ATP (A) and PCr (B) at rest (R) and throughout 4 hours of 

recovery from exhaustive exercise in grass carp. Asterisks (*) associated with data 

points within a panel indicate significant differences from rest condition (p < 0.05). 

All values are presented as means ± S.E.M (n=6). 
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 An ~80 % reduction in white muscle glycogen (p=0.006, Fig. 11a) immediately 

post-exercise compared to rest confirms that glycogen is the predominant substrate used 

to power exercise. Liver glycogen fluctuated throughout the recovery period; however, 

none of the observed changes during the 4-hour recovery period were statistically 

significant (Fig. 11b). White muscle, blood, and liver glucose were significantly 

increased immediately post-exercise compared to the resting value (Fig. 12). White 

muscle glucose (Fig. 12a) remained significantly elevated throughout 4 hours of 

recovery. Liver glucose returned to resting values within 15 minutes after exercise and 

remained relatively stable throughout the 4-hour recovery period (Fig. 12b), the decline 

of liver glucose can be followed by a concomitant rise in blood and heart glucose, while 

both blood and heart glucose returned to resting values by 2.5 hours (Fig. 12c & d).  

 My study indicated that the amounts of whole-body glycogen and glucose at 

exhaustion were significantly correlated with body weight (Appendix 3). All whole-body 

measurements were therefore standardized to 30 g body weight. The measurements of 

whole-body lactate (Fig. 13a) paralleled the pattern observed in separated tissues (Fig. 

10) and remained significantly elevated through 2 hours of recovery. Whole-body ethanol 

synthesis (Fig. 13b) accounts for those changes observed in the white muscle tissue (Fig. 

8a) but were significantly higher than the sum of the separated tissues selected for 

analysis; however, the total loss of ethanol from the whole-body (~3000 µmol) was still 

less than the total ethanol excreted (~3600 µmol) based on calculations for a 30 g fish. 

The measurement of both whole-body and tissue specific lactate and ethanol content 

confirm that ethanol was the major anaerobic end product. Whole-body measurements of 

glycogen (Fig. 14a) and glucose (Fig. 14b) were similar to those trends observed in 
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individual tissues, and, when the changes in whole-body metabolites are converted to 

glucosyl unit equivalents, the clearance of ethanol represents ~100% of the decrease in 

whole-body glycogen and glucose (Table 1). 
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Figure 11: White muscle (A) and liver (B) glycogen at rest (R) and throughout 4 

hours of recovery from exhaustive exercise in grass carp. Asterisks (*) associated 

with data points within a panel indicate significant differences from resting 

condition (p < 0.05). All values are presented as means ± S.E.M (n=6). 

 

Rest 0 0.25 1 1.5 1.75 2 2.5 4
0

5

10

15

20

Recovery Time (Hours)

G
ly

co
ge

n 
(µ

m
ol

 g
lu

co
sy

l u
ni

ts/
g 

w
et

 ti
ss

ue
)

Rest 0 0.25 1 1.5 1.75 2 2.5 4
0

500

1000

1500

Recovery Time (Hours)

G
ly

co
ge

n 
(µ

m
ol

 g
lu

co
sy

l u
ni

ts/
g 

w
et

 ti
ss

ue
)

* * *

*

*

A.

B.



32 

 

  

Figure 12: White muscle (A), liver (B), blood (C) and heart (D) glucose at rest (R) 

and throughout 4 hours of recovery from exhaustive exercise in grass carp. 

Asterisks (*) associated with data points within a panel indicate significant 

differences from rest condition (p < 0.05). All values are presented as means ± 

S.E.M (n=6). 
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Figure 13: Whole-body lactate (A) and ethanol (B) at rest (R) and throughout 2 

hours of recovery from exhaustive exercise in grass carp. Values are standardized to 

30g body weight. Asterisks (*) associated with data points within a panel indicate 

significant differences from rest condition (p < 0.05). All value presented as means ± 

S.E.M (n=3) 
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Figure 14: Whole-body glycogen (A) and glucose (B) at rest (R) and throughout 2 

hours of recovery from exhaustive exercise in grass carp. Values are standardized to 

30g body weight. Asterisks (*) associated with data points within a panel indicate 

significant differences from rest condition (p < 0.05). All values are presented as 

means ± S.E.M (n=3). 
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Table 1: Percentage of the whole body glycolytic pool lost as ethanol as a 

consequence of exercise in grass carp. All metabolites are standardized to the weight 

of a 30g fish as a significant correlation between body mass and metabolites was 

found. All metabolites are represented as glucose equivalents. 

 

For a 30g Fish Glycogen (µmol) Glucose (µmol) Ethanol (µmol) Lactate (µmol) 

Rest 1686.49 29.02 940.06 50.13 

Time 0 694.32 42.39 1202.55 116.48 

1 Hour Recovery 522.77 43.33 2281.58 109.24 

Total Change -1164.49 14.31 1341.58 66.35 

% of glycolytic pool   113.81 5.63 

1 Hour Recovery    2281.58 109.24 

2 Hour Recovery   1042.42 117.76 

Total Change   -1239.16 8.52 

% Glycolytic Pool 

Lost as Ethanol 

  106.41  
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Chapter 4 - Discussion 

Despite the occurrence of peak ethanol concentration immediately post-exercise 

in the muscle and blood (Fig. 8a, Fig. 8c), ethanol excretion to the environment was not 

seen until 1.5-2 hours into recovery (Fig. 6). This disconnect between synthesis and 

excretion is further magnified as increased oxygen consumption (Fig. 7), and associated 

increases in gill perfusion, lamellar recruitment, stroke volume and heart rate as a result 

of exhaustive exercise (Evans et al., 2005) would be expected to facilitate ethanol efflux 

from the gill upon synthesis and diffusion from the muscle to the plasma. Although the 

timing of ethanol clearance from the muscle (Fig. 8a) to the blood (Fig. 8c) was similar to 

that observed in excretion (Fig. 6), the amount excreted per 30g fish (3600 µmol) was 

significantly more than the sum of ethanol loss from the individual tissues (~1180 µmol 

ethanol, Fig. 8). Further measurements using the whole animal revealed that a total of ~ 

3000 µmol of ethanol were lost from the whole-body (Fig. 13b) and therefore accounts 

for the majority of observed excretion to the environment (Fig. 6). Furthermore, when 

calculated as a percentage of the whole-body glycolytic pool (Table 1), the clearance of 

ethanol accounts for ~100% of glycolytic substrates used as a consequence of exercise, 

and therefore represents a significant glycolytic cost to the grass carp. The temporal 

difference between ethanol excretion and its synthesis in the tissues measured may reflect 

the possibility of ethanol retention and or storage. Retention and pulsatile ethanol 

excretion has also been observed in goldfish at similar recovery time points in response to 

exhaustive exercise (Mandic et al., 2008); however, the tissues responsible for retention 

and/or trigger for release have yet to be identified.  

Immediately post-exercise, the glycolytic end products ethanol and lactate were 

synthesized (Fig. 8, 9). However, as the increase in white muscle ethanol (Fig. 9a) was 

~3.5-fold that of muscle lactate (Fig. 9a), ethanol is confirmed as the major glycolytic 

end product of exhaustive exercise. A smaller (~2-fold) difference in the post-exercise 

accumulation of ethanol compared to lactate has been observed in goldfish (Carassius 

auratus), and is supported by the difference in white muscle ADH and LDH activity, 14 

µmol/g/min and 7.47 µmol/g/min at 25 oC, respectively (Johnston et al., 1975; Nilsson, 

1988). Therefore, it may be that a difference in ADH and LDH activity is also 
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responsible for the ~3.5-fold difference in white muscle ethanol and lactate accumulation 

observed in grass carp.  

Following exercise, a reduction of whole-body glycogen by ~1000 µmol glucosyl 

units (Fig. 14a), would be expected to yield ~2000 µmol of lactate and/or ethanol 

equivalents. However, at exhaustion, only ~1/3 of that amount is observed to accumulate 

in the whole-body (~130 µmol lactate, ~525 µmol ethanol, Fig. 13a, b). Using the 

assumption that a 30 g fish possess’ approximately 18 g of muscle, 1.4 g of liver, 0.02 g 

of heart and 1.5 mL of blood, this discrepancy between glycogen breakdown and end 

product accumulation is reduced to ~1/2 of expected or ~3.71 µmol glucosyl units/g 

tissue (ethanol ~540 µmol, Fig. 8; lactate ~168 µmol, Fig. 9). At exhaustion, the 

cytoplasmic concentration of Ca2+ remains elevated as a result of muscle contraction and 

potentially supports an increased availability of fish muscle GLUT transporters (Ihleman 

et al., 1999). An increased availability of muscle GLUT transport could support the 

observed increase in muscle glucose (Fig. 12a) supplied by the breakdown of glycogen to 

glucose in the liver (Fig. 11b, Fig. 12b) during recovery. Furthermore as muscle ATP was 

depleted at exhaustion (Fig. 8), the increase in muscle AMP would act to promote 

phosphofructokinase and direct any glucose taken up by the muscle towards the 

glycolytic end products lactate or ethanol. Therefore the changes in whole-body glycogen 

and glucose collectively account for the appearance of the end products lactate and 

ethanol.      

Interestingly, the patterns of ethanol synthesis and accumulation were also 

different when whole-body and tissue measurements are compared. Peak ethanol 

accumulation occurred immediately post-exercise in the white muscle (Fig. 9a) and blood 

(Fig. 9c). However, ethanol content for the whole-body was not significantly different 

from rest until 1 hour of recovery (Fig. 13b). Upon closer inspection, while the changes 

in white muscle and blood ethanol content were significant within the respective tissues, 

the total change in ethanol for all the tissues measured between rest and exhausted is only 

~530 µmol (Fig. 9). In comparison, the change in whole-body ethanol between rest and 

exhausted are actually quite similar, ~525 µmol, although not significant with respect to 

whole-body ethanol content (Fig. 13b). Furthermore, the substantial increase in whole-
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body ethanol after 1 hour of recovery (~2500 µmol) would suggest that an unmeasured 

tissue is of significant importance to whole-body ethanol synthesis. In goldfish, red 

muscle fibers occupy approximately 10% of the myotome (Johnston and Lucking, 1978) 

and have an ADH activity (31.7 µmol/g/min) approximately 3.5-fold greater than that of 

the white muscle fibers. If this estimation of myotome composition holds true in grass 

carp, then red muscle would account for approximately 1.8 g of a 30 g fish. The red 

muscle would therefore have the potential to synthesize ~ 3500 µmol of ethanol over the 

period of one hour and is of potential interest in identifying the source of the observed 

increase in whole-body ethanol synthesis during recovery. 

By using the existing knowledge of exercise recovery in salmonid models and 

incorporating the results of this study, it is suggested that the release of stress hormones 

(catecholamines and cortisol) act to supply FAs and BCAAs that may in part be used to 

support the observed muscle and whole-body glycogen re-synthesis (Fig. 11a, Fig. 14a). 

The release of catecholamines stimulates the release of FAs and glycerol through 

activation of PKA and subsequent stimulation of hormone sensitive lipase (HSL) (Fukao 

et al., 2004; Fig. 3). Extracellular glycerol has the potential to act as a glycogenic 

substrate, although its contribution to the skeletal muscle glycogen pool in rainbow trout 

is limited in preference of lactate (Kam and Milligan, 1996). If exhaustive exercise 

resulted in similar cytosolic glycerol accumulation as in rainbow trout (0.1µmol/mL; 

Richards et al., 2002b) then glycerol has the potential to contribute only ~6% of the 

observed glycogen replenishment. However, this may be an underestimation of the 

contribution of glycerol as the post-exercise accumulation of muscle lactate in rainbow 

trout (~25 µmol/g wet tissue, Richards et al., 2002a) is more than twice that observed in 

grass carp (~9 µmol/g wet tissue, Fig. 10a). This difference in lactate accumulation 

between grass carp and rainbow trout may therefore alter the contribution of glycerol as a 

potential glycogenic substrate and in part explain the glycogen replenishment observed 

during recovery (Fig. 11a, Fig. 14a). Furthermore, the oxidation of FAs in the liver in the 

presence of elevated glucose (Fig. 12b) creates the potential for hepatic acetyl-CoA 

concentration to exceed the oxidative capacity of the TCA (Fukao et al., 2004). The 

accumulation of hepatic acetyl-CoA would promote ketogenic release of acetoacetate 

and/or 3-hydroxybutarate to circulation. Once in circulation, these ketone bodies may be 
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used as a source of muscular acetyl-CoA and therefore oxidative ATP synthesis. As a 

result of FA oxidation, the increased concentration of acetyl-CoA within the muscle 

mitochondria likely inhibits PDH and therefore the oxidation of any pyruvate formed as a 

result of increased concentration of glycerol. Therefore, the oxidation of FAs may, in 

part, support both the substrate and energetic needs required for the observed muscular 

glycogen re-synthesis (Fig. 11a).  

In rainbow trout (Oncorhynchus mykiss), the release of cortisol as a result of 

inactivity during recovery from exercise stimulates hepatic proteolysis causing the release 

of BCAAs to circulation (Milligan, 1997), and has been identified as a primary stress 

response hormone in grass carp (Yavuzcan-Yildiz and Kirkagac-Uzbilek, 2001). Once 

taken up by the muscle, BCAAs supply glutamate and the respective branched-chain keto 

acid that may act as an additional source of oxidative ATP, while glutamate and excess 

pyruvate are converted to alanine. Once in the plasma, alanine supports hepatic 

gluconeogenesis and release into circulation (Milligan, 1997) supporting the observed 

elevation of blood (Fig. 10c), liver (Fig. 10b), and whole-body glucose (Fig. 14b). 

However, the contribution of blood glucose to muscle glycogenesis may be limited as 

relatively little evidence exists for the use of specific GLUT transporters in fish. The only 

evidence of potential increase and availability of GLUT transporters is a consequence of 

the increased cytoplasmic concentration of Ca2+ as a result of muscular contraction 

(Ihleman et al., 1999). If the appropriate GLUT transporters were present in grass carp 

white muscle, circulatory glucose upon uptake to the muscle could be available as a 

glycogenic substrate via phosphorylation to G6P by HK (Milligan, 1997) (Fig.2). 

Furthermore, rainbow trout and grass carp have a similar profile of muscular glycogen 

replenishment at ~2 hours of recovery (Fig. 9a) when the levels of circulatory cortisol are 

reduced (Milligan 1996). If cortisol plays a similar role in stimulating BCAA release and 

inhibiting muscular glycogen replenishment in grass carp during recovery then it 

potentially explains the pattern of observed glycogen replenishment observed at ~2 hours 

of recovery.       

Overall, it is clear that the grass carp white muscle is functionally different from 

that of other fish species, like rainbow trout. The synthesis of ethanol as the predominant 
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end product occurs in both hypoxia and exhaustive exercise as a result of anaerobic 

metabolism. The metabolic depression associated with hypoxia tolerance allows glycogen 

stores to be conserved, while ethanol synthesis permits the clearance of anaerobic extra-

muscular lactate. The excretion of ethanol under hypoxic conditions therefore represents 

a relatively small loss of glycolytic substrate in exchange for maintaining activity levels. 

However, during burst exercise, where the rate of metabolism and therefore glycogen 

depletion is greatly increased, the synthesis and excretion of ethanol represents a 

significant loss from whole-body glycolytic pool to the environment. The oxidation of 

FAs, and BCAAs in combination with liver glycogen stores could supply the ATP 

requirements and substrates required for the observed replenishment of the muscular 

glycogen stores during recovery. However, after repeated bouts of exercise the liver’s 

capacity to support muscle glycogen replenishment would likely be dependent on 

replenishing its own glycogen stores through feeding.    
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Chapter 5 - Conclusions and Future Work 

The results of the present study indicate that in response to exhaustive exercise, 

grass carp (Ctenopharyngodon idella) use glycogen as the primary energetic substrate for 

anaerobic glycolysis resulting in ethanol as the predominant glycolytic end product. As 

the synthesis of ethanol exceeds that of glycogen depletion, glucose may also contribute 

to post-exercise ethanol synthesis as a result of increased GLUT transporter availability 

and phosphofructokinase activation in response to the cytosolic ATP/AMP ratio. The 

differences observed in the amounts of ethanol synthesized between tissue specific and 

whole-body measures may be linked to a difference in ADH activity between red and 

white muscle fibers.   

Interestingly, all of the ethanol synthesized is excreted to the water over a 30-

minute period, after approximately 1.75 hours of recovery from exhaustive exercise. The 

clearance of ethanol from the whole-body accounts for ~100% of glycolytic substrates 

used as a consequence of exercise, and therefore represents a significant cost in terms of 

lost carbon from the grass carp’s glycolytic pool. Future experiments involving the 

dissection and in vitro perfusion of grass carp gills with ethanol may yield some 

explanations as to the retention of ethanol and/or the trigger for its release during 

recovery. Furthermore, dividing the recovery tank to separate ethanol excretion from the 

gills compared to that lost through urination may also be of benefit in further isolating the 

site responsible for ethanol retention and/or excretion.   

It is suggested that stress hormones and their stimulation of hepatic proteolysis 

and BCAA/FA/ketone body oxidation may play a role in supporting the use of liver 

supplied glycolytic carbon for the observed replenishment of the muscle glycogen stores. 

It is assumed that multiple bouts of exercise would deplete the grass carp’s liver glycogen 

stores and therefore require feeding to replenish whole-body glycolytic pools. The results 

of my study provide insight into the distinct differences between the herbivorous grass 

carp and the carnivorous, salmonid models of exercise physiology. The grass carp’s 

access to a carbohydrate rich diet may offset the requirement to retain glycolytic end 

products as substrates for muscle glycogen replenishment as observed in the rainbow 
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trout. This research provides the initial calculations and findings for generating a 

comprehensive model of recovery from exhaustive exercise in these hypoxia-tolerant 

cyprinids.   
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Appendices 

 

Appendix 1: Schematic of Qubit Systems intermittent respirometry apparatus with 

sampling port and USB connection allowing collection water samples and O2 

concentration data. 
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Appendix 2: Details of chemical reactions used for the basis of metabolite analysis. 
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Appendix 3: The relationship of grass carp body weight (g) with post-exercise 

metabolites (ethanol (A), lactate (B), glycogen (C) and glucose (D)). Asterisks 

associated with P values within a panel denote significant correlation (P<0.05).  
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Appendix 4: Animal husbandry protocol for care and use of grass carp. Granted to 

Dr. C.L. Milligan, UWO London. 
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Appendix 5: License to collect a restricted fish (Grass carp, Ctenopharyngodon 

idella) for the purpose of scientific research. Granted to C.L. Milligan, UWO 

London. 
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