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Abstract 

Detection of harmful bioactive compounds produced by bloom-forming pelagic algae 

is important to assess the potential risks to communities. We applied two cell-based assays, 

an erythrocyte lysis assay (ELA) that assesses membrane integrity, and a RTgill-W1 

cytotoxicity assay (RCA) that detects changes in cell metabolism, to evaluate the cytotoxic 

effects of: (1) individual toxins and noxious compounds; and (2) complex mixtures of 

compounds produced by cyanobacteria and chrysophyte isolates. ELA was insensitive to 

toxins and noxious compounds except at exceptionally high concentrations (EC50≥10
6
 nM). 

RCA was sensitive to noxious compounds only, at concentrations greater than reported 

environmental averages (EC50≥10
3
 nM). Cultured isolates produced bioactive compounds 

that had recognizable, dose dependent, toxic effects. Toxicity of these bioactive compounds 

depended on the taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more 

toxic than exponential phase), location (intracellular more toxic than extracellular), and iron 

status (iron-replete cells more toxic that iron-deplete cells). 

Keywords 

Assay, Bioactive, Cyanobacteria, Chrysophyte, Freshwater , Harmful Algal Bloom , Lake, 

Odour, Taste, Toxin, 
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Chapter 1 

General Introduction 

1.1 Problem Statement 

Freshwater algal blooms dominated by cyanobacteria and chrysophyte algae are a 

growing concern in affected communities (Skulberg et al., 1984; Carmichael, 2001; 

Winter et al, 2011).  The risks posed to biota exposed to the compounds produced by 

these algae are somewhat understood; however, techniques designed to evaluate the 

biological and/or cytotoxic effects of these compounds as they occur in mixtures are 

generally lacking (Watson, 2004; Dayeh et al., 2005). This thesis aims to: (1) review the 

current state of knowledge in terms of toxic, noxious, and/or bioactive compound 

production by bloom forming freshwater algae; and (2) investigate the use of two cell-

based assays designed to evaluate the cytotoxic effects of these compounds. 

1.2 Scientific Justification 

 Freshwater cyanobacteria are prokaryotic microorganisms that are commonly 

found in water bodies around the world (Carmichael, 2008; Paerl et al., 2008; Fortin et 

al., 2010; Huber et al., 2012). The presence of cyanobacteria has been verified in 

freshwaters on every continent, and the ability to accumulate in high number (known as a 

bloom) has been a main reason for the widespread awareness of these microscopic 

bacteria (Carmichael, 2008; Heisler et al., 2008). Colloquially named blue-green algae, 

cyanobacteria are actually autotrophic bacteria that have pigments such as chlorophyll a, 

phycoerythrin, and phycocyanin which give it a blue-green appearance when observed 

under a microscope or on the surface of the open water during bloom events (Sivonen & 

Börner, 2008). Cyanobacteria exist in a variety of arrangements, including filamentous, 

colonial, and single cell orientations (Sinclair & Hall, 2008). The specific arrangement 

varies from species to species (Sinclair & Hall, 2008). 

Some genera of cyanobacteria have the ability to produce toxins and noxious 

compounds which can pose risks to exposed biota (Pouria et al., 1998; Falconer, 1999). A 

number of hepatotoxins, neurotoxins, and other compounds have been isolated from 
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strains of cyanobacteria, and these findings have led Environment Canada to designate 

every algal bloom that is dominated by cyanobacteria a harmful algal bloom (HAB), 

indicating its potential to cause harm (Charlton et al., 2008; Sivonen & Börner, 2008). 

The production, mode of action, biological and/or ecological risks associated with each 

toxic and noxious compound are unique, and information regarding the antagonistic, 

synergistic, or additive effects of the compounds is generally lacking (Watson, 2004). 

Chrysophyte algae are also common to freshwaters, and there has been an 

increase in reports of chrysophyte bloom events across a number of systems (Paterson et 

al., 2008; Winter et al., 2011). Chrysophytes are eukaryotic microorganisms known as 

‘golden-brown algae’, and the pigment primarily responsible for their unusual colour is 

fucoxanthin (Nicholls, 1995). Chrysophytes are commonly found in colonies, but also 

exist as single cells (Nicholls, 1995). Although freshwater chrysophytes do not produce 

toxins, they do produce a variety of noxious compounds associated with poor taste and 

odor events that can impact the water quality at very low concentrations (Watson, 2003). 

Many peer-reviewed articles have assessed individual compounds produced by 

cyanobacteria and chrysophyte algae in terms of their toxicological properties and 

production routes, but there is generally a lack of material that compiles this important 

information in one location (Nicholls, 1995; Sivonen & Jones, 1999). Similarly, many of 

the reviews that have been conducted focus on compounds produced by one type of 

algae, neglecting to acknowledge many of the analogous compounds produced by other 

types of algae (MacKintosh et al., 1990; Falconer, 1999). Further synthesis of the 

toxicological data available for all of the common compounds produced in freshwaters by 

cyanobacteria and chrysophyte algae is essential for drawing conclusions and identifying 

the compounds likely to be responsible for the most deleterious effects on the 

environment and exposed biota. 

A unifying theme among the compounds produced by cyanobacteria and 

chrysophyte algae is the relationship that exists between physiology and compound 

production (Watson, 2003; Paterson et al., 2004; Kaplan et al, 2012). Aside from physical 

forces that are continuously acting on the cell, an important physiological control is 

nutrient limitation (Nicholls, 1995; Paterson et al, 2004; Kaplan et al., 2012). Based on 

this knowledge, it is not surprising that the link between cyanobacterial toxin production 
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and the micronutrient iron (Fe) is well established (Alexova et al., 2011; Kaplan et al., 

2012). Fe limitation is a trigger of toxin production in some cyanobacteria, and although 

less well defined, the relationship between chrysophytes and Fe has also been examined 

(Paterson, 2004; Watson, 2004). Elucidating the link between Fe stress and toxic and/or 

noxious compound production is a major goal of this thesis and will aid in our 

understanding of how blooms respond to Fe limitation in open systems. 

Another physiological control is growth stage. The literature suggests that 

cyanobacteria have the ability to produce toxins at the highest rate during exponential 

phase growth, likely due to the high rate of cellular processes (photosynthesis) occurring 

during this stage of growth (Alexova et al., 2011; Kaplan, et al, 2012). Identifying the 

timing of production is important in furthering our understanding of the hazards of bloom 

events as they occur in natural systems. 

Furthermore, physiological controls on the storage and/or excretion of the toxins 

or noxious compounds are important. Compounds that are primarily stored in the cell are 

more likely to build up and be released in a large pulse during bloom senescence, while 

compounds that are excreted throughout the duration of their production may be found in 

the open water for great periods of time at relatively lower concentrations (Nicholls, 

1995; Watson, 2004; Kaplan et al, 2012). Identifying the storage and/or excretion 

patterns of these compounds over the course of a cells’ growth is an important factor to 

consider when assessing the impacts that freshwater algal blooms may present to exposed 

biota. 

Identifying analytical methods suitable for the task of quantifying the biological 

impacts of complex mixtures can be challenging, and cell based assays offer a modern 

solution to the limitations of traditional sampling techniques (Fent, 2001; Graham et al., 

2008; Lee et al., 2009). The erythrocyte lysis assay (ELA) and RTgill-W1 cytotoxicity 

assay (RCA) are two assays which have been applied to studies of the compounds 

produced by marine phytoplankton (Ling & Trick, 2010; Dorantes-Aranda et al., 2011). 

The adaptation of these assays for use in freshwater testing may prove valuable in 

improving understanding of the biological/cytotoxic effects of the compounds produced 

by cyanobacteria and chrysophyte algae. The ELA uses rabbit erythrocytes to evaluate 

the hemolytic capacity of the test substance and is used to evaluate how compounds 
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impact membrane integrity (Wang et al., 2007; Hemholz et al., 2010; Zhang et al., 2011). 

The RCA is used to evaluate the effects that tested substance have on cellular metabolism 

(Schirmer et al., 1998; Schirmer et al., 2001). Using these two techniques in tandem may 

prove advantageous in that it will allow us to gain further detail on the mode of action of 

the substances of interest. 

1.3 Goals and Hypotheses  

The first goal of this research is to critically assess the state of knowledge with 

regards to the toxic and noxious compounds produced by freshwater cyanobacteria and 

chrysophyte algae. Synthesizing the available information with regards to these 

compounds will aid in clarifying the importance of the relevant compounds, and 

understanding how the toxic mechanism may work in tandem. The conclusions drawn 

from this review will be useful in the analysis of the results observed from the 

experimental portion of the thesis. 

The second goal of this research was to combine the use of the RCA and the ELA 

to determine their effectiveness in the detection of cytotoxins in freshwater samples, and 

allow us to gain insights into the production of toxic, noxious, and/or bioactive 

compounds under differing nutrient (high and low Fe) conditions.  This was examined 

through: (1) the application of individual analytical standards of toxins and noxious 

compounds produced by freshwater algae; and (2) the analysis of complex mixtures of 

metabolites produced by freshwater algae isolates of cyanobacteria and chrysophyte algae 

(Figure 1.1).  

The following hypotheses were tested:  

H1: The application of individual analytical standards of toxins and/or noxious 

compounds produced by freshwater algae will result in concentration-dependent 

decreases in viability of cells in both the RCA (assesses damage to cell metabolism) and 

the ELA (assesses damage to cell membrane).  I predict that concentrations of these 

compounds at or below their environmentally measured averages will result in significant 

decreases in cell viability in both assays.  

H2: The application of complex mixtures of algal metabolites extracted from 

cultures of toxic and/or noxious compound-producing isolates of cyanobacteria and 
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chrysophyte algae will result in concentration-dependent decreases in viability of the 

RCA and ELA.  I predict that: (1) due to the increased rate of cell growth and toxic 

and/or noxious compound production during exponential phase, exposure solutions 

derived from exponential growth phases will result in significant decreases in cell 

viability in both assays relative to those of the stationary phase; (2) due to the 

predominant intracellular storage of toxic and noxious compounds, exposure solutions 

derived from lysed cultures (intracellular + extracellular compounds) will result in 

significant decreases in cell viability in both assays relative to solutions derived from 

non-lysed samples (extracellular compounds only); and (3) due to toxin production 

stimulated by Fe limitation of toxin-producing cyanobacteria, exposure solutions 

extracted from low Fe (0.1 μM) treatments will result in significant decreases in cell 

viability in both assays relative to the high Fe (10 μM) treatments. 

 The application of cytotoxicity assays for detecting toxic, noxious, and/or 

bioactive compounds produced by cyanobacteria and chrysophyte algae will allow us to 

gain insights into the production, storage, and biological effects of these compounds as 

they occur in complex mixtures (Dayeh et al., 2005). 

1.4 Thesis Organization 

This thesis is divided into four parts. Following this general introduction, chapter 

2 presents an in-depth critical review of toxic, noxious, and bioactive compounds 

produced by HAB-forming freshwater algae.  This chapter deals with the various types of 

compounds produced, their chemical structures, the genera responsible for their 

production, their mode(s) of action, and includes a discussion of the need for improved 

detection techniques.  Chapter 3 presents experimental work investigating the use of two 

cell-based assays (RCA and ELA) to evaluate the toxicity of compounds produced by 

HAB-forming freshwater algae.  This chapter includes the evaluation of individual 

compounds, as well as complex mixture derived from algal cultures.  Chapter 4 presents 

the general conclusions drawn from this thesis, and discusses the future research 

directions and management implications of this work. 
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Figure 1.1. Flow chart of experimental design for laboratory testing of toxic and noxious 

compounds produced by cyanobacteria and chrysophyte algae. 
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Chapter 2 

Toxic, Noxious, and Bioactive Compounds Produced by 

Freshwater Harmful Algal Blooms 

2.1 Introduction 

Freshwater HABs are able to exist in a wide variety of climatic regions, and have 

been reported in systems across the globe (Sinclair & Hall, 2008; van Gremberghe et al., 

2011).  Cyanobacteria-dominated HABs (cHABs) have been reported on all continents, 

including remote parts of the world such as Alaska, Antarctica, Iceland and Hawai’i 

(Sinclair & Hall, 2008; van Gremberghe et al., 2011; Figure 2.1).  This widespread 

distribution illustrates how these events affect water quality on a global scale and 

demonstrates the need to develop a concrete understanding of the risks associated with 

HABs.   

Recent work has also addressed the increased incidence of chrysophyte bloom 

events, which are not known for their ability to produce toxic compounds (in freshwater 

genera), but rather their production of a wide variety of noxious compounds responsible 

for the fouling of surface waters and causing unpleasant taste and odour events (Watson, 

2004; Winter et al., 2011). Interest in the areas of freshwater cHABs and chrysophyte 

blooms has risen in recent years (Figure 2.2). Figure 2.2 shows that the general awareness 

and concern over algal blooms dominated by cyanobacteria have by far been more 

covered by publications available to the general public (Google results) relative to 

chrysophyte blooms. This is likely a result of the toxic potential of freshwater 

cyanobacteria and their ability to effect animal health and cause of beach closures. While 

chrysophyte blooms are common, their lack of visibility (can occur below the surface of 

the water) may be a cause of underreporting or lack of awareness of these events in 

mainstream publication (Nicholls, 1995). 
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Figure 2.1.  Worldwide distribution of cHAB events. Stars indicate countries (or states) 

with documented presence of one or more cHABs, and are not an indicator of cHAB 

density in a particular region. (Synthesized from Sinclair and Hall, 2008 and van 

Gremberghe et al., 2011). 
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Figure 2.2. Number of search results per year from major databases: A) Search topics: 

cyanobacteria* AND bloom* AND freshwater*; B) Search topics: chrysophy* AND 

fresh* AND bloom*. 
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2.2 Freshwater Harmful Algal Blooms: Associated Compounds, Taxa, and 

Consequences 

The compounds present in freshwater blooms can vary drastically from basin to 

basin (Sinclair & Hall, 2008).  However there are a number of compounds, or groups of 

compounds, that are frequently present in bloom events dominated by cyanobacteria or 

chrysophyte algae (Watson, 2004; Sivonen & Börner, 2008) The genera responsible for 

the production of toxic compounds in freshwaters are exclusively cyanobacteria, while 

genera of both cyanobacteria and chrysophyte algae are capable of producing noxious 

compounds (Table 2.1).  These compounds can have direct and/or indirect effects on 

surrounding biota, with a great deal of diversity in terms of the type of mechanism that 

these substances use to cause harm (Table 2.2). 

2.3 Cyanotoxins 

Cyanotoxins: microcystins and nodularins  

 Microcystins (MCs) are the toxins most commonly produced by cyanobacteria in 

freshwaters (Sivonen & Börner, 2008).  These heptacyclic peptides have been implicated 

in the poisonings of a number of animals, and have the potential for endangering human 

health if ingested at high concentrations (Jochimsen et al., 1998; Carmichael, 2001).  The 

primary method of cytotoxicity exhibited by MCs is the inhibition of type 1 and 2A 

protein phosphatases (Honkanen et al., 1990; Mackintosh et al., 1990).  These enzymes 

act by dephosphorylating proteins that are essential to cellular processes such as 

differentiation, transport, cell cycle regulations, and metabolism (Barford, 1995).   

 The presence of hemorrhaging and tumor formation in the livers of exposed 

animals, suggests that MCs disrupts the primary function of this organ (glucose 

metabolism) (Cohen, 1989; Nishiwaki-Matsushima et al., 1992; Jochimsen et al., 1998; 

Carmichael, 2001; Pearson et al., 2010).  Based on these observations, MCs are classified 

as hepatotoxins that act primarily on the liver, although alternative/secondary effects of 

MCs on an organism level have been identified (Gupta et al., 2003; Sedmak & Elersek, 

2006; Sivonen & Börner, 2008; Amado & Monserrat, 2010).   
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Table 2.1. Cyanobacteria and chrysophyte taxa and their corresponding production of 

toxic and noxious compounds. +,  –  indicate the ability, or inability, respectively, of a 

genus to produce a compound (MC – Microcystin; NOD – Nodularin; ANTX – 

Anatoxin; STX – Saxitoxin; CYN – Cylindrospermopsin; BMAA – β-methylamino-L-

amine; Synthesized from Watson, 2004; Sinclair and Hall, 2008; Sivonen and Börner, 

2008; Pearson et al., 2010). 

 Toxins      Noxious compounds   

Genera MC NOD ANTX STX CYN BMAA Terpenoids PUFAs Sulfurous Amines Pyrazines 

Cyanobacteria            

Microcystis  + - + - - + + + + - - 
Anabaena + - + + + + + + + - - 
Aphanizomenon - - + + + + + + - - - 
Planktothrix  + - + + - + - + - - - 
Cylindrospermopsis - - - + + + - + - - - 
Nodularia  - + - - - - - + - - - 
Chrysophyte            
Dinobryon - - - - - - - + - + + 
Synura - - - - - - - + - + + 
Uroglena - - - - - - - + - + + 
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Table 2.2. Direct and indirect effects of exposure to toxic, noxious, and/or bioactive 

compounds produced by bloom-forming freshwater algae (MC – Microcystin; NOD – 

Nodularin; ANTX – Anatoxin-a; ANTX-a (S) – Anatoxin-a (S); STX – Saxitoxin; CYN – 

Cylindrospermopsin; BMAA – β-methylamino-L-amine). 

Class Compound Direct effects Indirect effects References 

Toxic MC Inhibition of protein phosphatase 

1, 2A; promotes tumor formation 

Infochemicals; 

inhibit growth 

Kaplan et al., 2012 

 NOD Inhibition of protein phosphatase 

1, 2A; promotes tumor formation 

 Pearson et al., 2010 

 ANTX-a Depolarizing neuromuscular 

blocking agent (post synaptic); 

disrupts muscle function 

 Carmichael et al., 1975 

 ANTX-a (S) Inhibits the enzymatic 

breakdown of acetylcholine; 

disrupts muscle function 

 Matsunaga et al., 1989 

 SAX Alters the current of Na ion 

channels; associated with 

paralytic shellfish poisoning 

 Strichartz, 1981; 

Pearson, 2010 

 CYN Inhibition of protein synthesis  Fastner et al, 2003 

 BMAA Acts on NMDA & mGluR5 

receptors 

Oxidative stress 

response 

Lobner et al., 2007; Liu 

et al., 2009 

Noxious Terpenoids Potent T&O causing substances; 

earthy 

 Srinivasan & Sorial, 

2011  

 PUFAs Potent T&O causing substances; 

fishy 

Pheromones; 

defense 

mechanisms 

Nicholls, 1995; Watson, 

2004 

 Sulfurous Potent T&O causing substances; 

sulfurous 

Cellular 

identification 

Hofbauer & Juttner, 

1988 

 Amines, 

pyrazines 

Potent T&O causing substances  Young et al., 1996; 

Watson et al., 2004 

Bioactive Cyanopeptolins Some are serine protease 

inhibitors  

Toxic effects 

towards crustaceans 

Weckesser et al., 1996; 

Gademann et al., 2010 

 Hexapeptides Some are non-specific protease 

inhibitors  

 Sivonen & Börner, 2008 

  Microviridins, 

microginins, 

aeruginosins 

Some are non-specific protease 

inhibitors  

Toxic effects 

towards 

zooplankton 

Rohrlack et al., 2004 
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 All MCs display the general structure cyclo(d-Ala-X-d-MeAsp-Z-Adda-d-Glu-

MdhA) in which X and Z represent variable single amino acids. d-MeAsp is d-erythro-β-

methyl-aspartic acid, MdhA is N-methyldehydroalanine and Adda is (2S,3S,8S,9S)-3-

amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6 dienoic acid (Botes et al., 1984; 

Rinehart et al., 1988).  There have been at least 87 identified variants of MCs to this date 

and the advent of more sensitive analysis techniques and investigations into additional 

taxa capable of producing MCs will undoubtedly lead to an expansion of this list (del 

Campo et al., 2010).   

 The most cytotoxic variant has repeatedly proven to be microcystin-leucine-

argenine (MC-LR), although evidence has suggested that MC variants that contain 

similarly hydrophobic amino acids (such as Phe, Try, or Ala) in the variable regions of 

the molecule will have similar cytotoxic effects (Stotts et al., 1993; Codd et al., 1999; 

Gupta et al., 2003).  Conversely, MCs that contain amino acids that are more hydrophilic 

in their variable regions may be less harmful, as the interactions with the lipid bilayer of 

cells may be affected (Stotts et al., 1993; Gupta et al., 2003; Teixeira & Rosa, 2012). 

 Structurally, nodularins are also classified as cyclic peptides and are closely 

related to MCs.  The general chemical structure is cyclo (D-MeAsp-L-argenine-Adda-D-

glutamate-Mdhb, in which Mdhb is 2-(methylamino)-2-dehydrobutyric acid (Rinehart et 

al., 1988).  The mechanism of toxicity by nodularins is reported to be very similar to that 

of MCs, although much less data is available on the subject (Yoshizawa et al., 1990).   

 A difference between nodularins and MCs in natural systems is their spatial 

distribution.   Nodularins are more prevalent in brackish/estuarine waters, while MCs are 

commonly found in freshwaters (Sivonen & Börner, 2008).  Both nodularins and MCs 

are susceptible to microbial and bacterial degradation, and the variability observed in this 

type of degradation likely relates to the spatial differentiation generally observed between 

the two (Imanishi et al., 2005; Edwards et al., 2008).  Genera that produce MCs include 

Microcystis, Anabaena, Planktothrix, and Oscillatoria; whereas, nodularin production is 

predominantly limited to Nodularia (Kaplan et al., 2012). 

Beyond the direct hepatotoxic properties of these cyclic peptides, various 

allelopathic effects have been identified.  Specifically, the MCs and nodularins in aquatic 

environments negatively affect the growth of other algal species and microorganisms, 
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reduce the animal and algal community diversity, and may affect bioaccumulation in 

food chains (Inderjit and Dakshini, 1994; Aboal et al., 2001; El-Sheek et al., 2010; 

Pearson et al., 2010). 

Cyanotoxins: cylindrospermopsins 

Cylindrospermopsins (CYNs) are hepatotoxic cyclic alkaloids, first observed in 

the tropical freshwater cyanobacterium Cylindrospermopsis raciborskii in Australia 

(Hawkins et al., 1985).  Subsequent work has demonstrated the presence of these 

compounds in North and South America, Asia, and Europe (Sivonen & Jones, 1999; 

Kinnear, 2010).  CYN production has also been observed in a number of different 

cyanobacteria genera including Anabaena, Aphanizomenon, Umezakia, Raphidiopsis, and 

Lyngbya (Fastner et al., 2003; Bazin et al., 2010).   

CYNs consist of a tricyclic guanidine moiety combined with hydroxymethyluracil 

with two structural variants: deoxycylindrospermopsin and 7-epicylindrospermopsin.  

Both structural variants were identified in Australian waters, although only the latter was 

found to be toxic (Hawkins et al., 1985; Sivonen & Börner, 2008).  The major concern 

with CYNs has been in drinking water-related health problems in Australia, although 

these events have been relatively isolated (Hawkins et al., 1985; Kinnear, 2010). Despite 

sharing the cyanobacterial hepatotoxic status of MCs, CYNs do not share the same tumor 

promoting potential, and they act though the inhibition of protein synthesis (Chong et al., 

2002).  This inhibition produces toxic effects on organs such as the kidneys, spleen and 

heart (Falconer et al., 1999; Shaw et al., 2000; Chong et al., 2002; Sivonen & Börner, 

2008).  Geno-toxic effects have also been observed via the use of cell lines (Bazin et al., 

2010).  

Cyanotoxins: saxitoxins  

Saxitoxins (STXs) are potent neurotoxins originally detected in marine systems as 

a by-product of some dinoflagellates.  STXs can accumulate to high concentrations in 

shellfish, which has led to instances of human poisoning (Kao & Nishiyama, 1965; Kao, 

1966; Anderson et al., 1990).  These incidents prompted the development of a detailed 

chemical characterization of STXs.  They are a type of carbamate alkaloid that contains 
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three rings and can be generally described as a 3,4,6-trialkyl tetrahydropurine (Schantz et 

al., 1975; Strichartz, 1981).  Variants of this general structure include non-sulfated, singly 

sulfated, or doubly sulfated types (Sivonen & Börner, 2008).  SAXs act on the nervous 

system by altering the current of sodium ion channels, although this inhibition is 

reversible (Strichartz, 1981).  Although there has not been a confirmed instance of human 

poisoning from consumption of freshwater shellfish, the potential for STXs 

contamination alone is cause for concern (Sivonen & Jones, 1999).  The locations of 

these reports have been widespread, with STX being identified in freshwaters in North 

and South America, Europe, Asia, and Oceania (Smith et al., 2011).  The genera 

responsible for the production of STXs in freshwaters are variable, but all are 

cyanobacteria (Sivonen & Jones 1999; Sivonen & Börner, 2008).  Specifically, 

Anabaena, Aphanizomenon, Cylindrospermopsis, Planktothrix, as well as benthic 

cyanobacteria such as Lyngbya, Scytonema, and Raphidiopsis, have been linked to the 

production of STXs in freshwaters (Sivonen & Jones, 1999; Smith et al., 2011).  

Relatively few attempts have been made to assess the allelopathic potential of STXs, and 

existing research has not identified a secondary role for STXs beyond sodium ion channel 

inhibition (Leflaive & Ten-Hage, 2007; Juhl et al., 2008). 

Cyanotoxins: anatoxins  

Anatoxin-a is also a neurotoxin that is classified as an alkaloid compound with the 

general chemical structure 2-acetyl-9-azabicyclo (4-2-1) non-2-ene with two variants 

(homoanatoxin-a, 4-hydroxyhomoanatoxin-a) (Sivonen & Börner, 2008).  This 

compound acts as a post-synaptic depolarizing neuromuscular blocking agent and is 

associated with uncontrollable muscle contraction and respiratory paralysis when 

ingested (Carmichael et al., 1975; Hawkins et al., 2006).  Evidence of animal deaths due 

to anatoxin-a exposure in natural systems, as well as the potent effects observed during 

laboratory testing, make this toxin especially concerning for those exposed to affected 

waters (Carmichael et al., 1975; Hawkins et al., 2006; Faassen, 2012).  It is thought that 

anatoxin-a is the most common cyanobacterial neurotoxin on a global scale, with 

frequent occurrences recorded in North American and European freshwaters (Skulberg et 

al., 1992; Sivonen & Börner, 2008). Genera recorded as producers of anatoxin-a include 
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Anabaena, Aphanizomenon, Microcystis, Cylidrospermum, Lyngbya, Planktothrix, 

Oscillatoria, and Phormidium (Sinclair & Hall, 2008; Sivonen & Börner, 2008). 

Anatoxin-a (S) shares a similar name to anatoxin-a, although the chemical 

structure, mode of toxicity, and occurrence in natural systems are all notably different. 

Anatoxin-a (S) is a phosphate ester of a cyclic N-hydroguanine in contrast to the alkaloid 

structure of anatoxin-a (Matsunaga et al., 1989).  The neurotoxic mechanism of anatoxin-

a (S) is that of an anticholinesterase; it inhibits the enzymatic breakdown of acetylcholine 

allowing it to build up and continue to act as a stimulant in the nervous system (Furchgott 

& Zawadzki, 1980; Sivonen & Jones, 1999).  Despite these potent neurotoxic effects the 

natural occurrence of anatoxin-a (S) is relatively rare in freshwater systems (Sivonen & 

Börner, 2008). 

Cyanotoxins: β-methylamino-L-amine 

β-methylamino-L-amine (BMAA) is a non-protein amino acid that has potent 

neurotoxic potential if ingested at high concentrations (Sivonen & Börner, 2008). High 

levels of BMAA exposure, either through dietary or environmental vectors, have been 

linked to the development of Amyotrophic Lateral Sclerosis or Parkinsonism Dementia 

Complex and other neurodegenerative diseases (NTP, 2008; Pablo et al., 2009; 

Esterhuizen-Londt & Downing, 2011). BMAA promotes this type of neurological 

damage by acting on two key receptors (NMDA and mGluR5), and by inducing oxidative 

stress (Lobner et al., 2007; Liu et al., 2009).  These types of neurological risks are 

heightened when considering the evidence of BMAA bioaccumulation in aquatic plant 

and animal life in tropical and temperate systems (Esterhuizen et al., 2011; Esterhuizen-

Londt & Downing, 2011; Lurling et al., 2011; Mondo et al., 2012).  The demonstrated 

ability of the many freshwater cyanobacteria – including isolates from the genera 

Anabaena, Aphanizomenon, Microcystis, Cylindrospermopsins, Synechococcus, 

Planktothrix, and Nostoc – to produce BMAA is also of biological and ecological 

significance given their presence in freshwaters around the globe (Cox et al., 2005). 

In contrast to the above findings, some researchers have questioned whether the 

concern over BMAA exposure is warranted. Some neurological studies have not been 

able to make the link between BMAA exposure and its hypothesized storage in the 
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cerebral cortex, raising doubts about its ability to cause the aforementioned diseases 

(Snyder et al., 2009). 

2.4 Noxious (Taste and Odour) Compounds 

Noxious (taste and odour) compounds: terpenoids  

Terpenoids are produced by a wide variety of freshwater algae and have intense 

odiferous properties (Watson, 2003).  Notable terpenoids produced by freshwater 

cyanobacteria include geosmin  (E-l, l0-dimethyl-E-9-decalol) and 2-methylisoborneol 

(MIB) (Izaguirre et al., 1982; Juttner et al., 1995; Watson, 2004).  These two compounds 

are responsible for most of the reported taste and odour events in freshwaters, and they 

can be detected by the human nose at concentrations in the range of parts per trillion 

(Young et al., 1996).  Because traditional forms of water treatment are ineffective in 

dealing with these compounds their presence can be especially noticeable, although they 

are not considered to be cytotoxic even at the concentrations observed in hyper-eutrophic 

systems (Blevins, 1980; Watson, 2003).  The ability of these compounds to cause taste 

and odour events has led to investigation into the potential secondary effects of these 

compounds and the allelopathic interactions that may be a result of exposure to them.  

Much of this research has not offered analysis of chronic exposure to these compounds, 

and has been focused on the acute effects of these compounds via bioassays (Dionigi et 

al., 1993; Nakajima et al., 1996; Mochida, 2009; Srinivasin & Sorial, 2011).  

 Nor-carotenoids are a sub-set of terpenoids that occur in freshwaters and are also 

potent odour-causing compounds (Juttner, 1984, 1986).  Their relatively limited 

occurrence in natural systems may help explain why these compounds collectively 

receive far less attention than the related geosmin and MIB (Watson, 2003).  The most 

abundant nor-carotenoid in freshwaters is β-cyclocitral, a compound produced by 

cyanobacteria genera such as Microcystis and Aphanizomenon (Watson, 2003, 2004).  

Despite some evidence that nor-carotenoids such as β-cyclocitral have allelopathic effects 

on neighboring algae, the concentrations required for these effects are far above any 

observed maximum in natural systems (Ikawa, 2001). 
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Noxious (taste and odour) compounds: poly-unsaturated fatty acids 

The presence of poly-unsaturated fatty acids (PUFAs) in freshwater algae has 

been repeatedly linked to the overall health of food webs and ecosystems (Ahlgren et al., 

1992; Brett & Muller-Navarra, 1997).  Despite these benefits, PUFAs are associated with 

the occurrence of taste and odour events both directly (by their presence in a system) and 

indirectly (by their role as precursor materials for various PUFA derivatives) (Watson, 

2003, 2008).  Counter to the common terpenoid compounds many PUFAs are not easily 

detectable by olfaction in contaminated waters but their presence is much more 

pronounced in terms of the potential biological, ecological, and allelopathic effects of 

these substances.  PUFAs produced by both cyanobacteria and chrysophyte algae have 

can act as pheromones and defense mechanisms.  Evidence for direct cytotoxic effects is 

generally lacking (Watson et al., 2001; Watson, 2003, 2004).  PUFA derivatives such as 

alcohols, alkanes, esters, aldehydes, and ketones, are often found to be the root of taste 

and odour events. Nonadienals, heptadienals, octadienals, decadienals, and decatrienals 

are the common derivatives produced by freshwater chrysophyte algae, which generally 

emit an odour described as ‘fishy’ (Nicholls, 1995; Watson et al., 2001; Watson 2003).  

Chrysophyte genera such as Synura, Dinobryon, and Uroglena are most commonly 

associated with the production of these compounds, yet detailed work examining the 

secondary effects of these compounds has not been completed at this time (Nicholls, 

1995; Watson, 2004). 

Noxious (taste and odour) compounds:  sulfurous compounds  

Sulfurous compounds are a lesser-studied group of taste and odour causing 

metabolites most likely due to their relatively low abundance in natural systems 

compared to terpenoids and PUFAs (Watson, 2003).  Common examples observed in 

freshwater systems include: methyl disulfide, dimethyl trisulfide, di-isopropyl disulfide, 

and di-isopropyl trisulfide, as well as compounds such as methanethiol, ethanethiol, 

propanethiol, and t-butythoil (Juttner, 1984; Hofbauer & Juttner, 1988, Watson, 2004). 

These compounds can be produced by freshwater cyanobacteria and green algae, 

although the biological role of the sulfur-containing compounds remains unclear.  
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Hofbauer and Juttner (1988) suggest that sulfur-containing compounds serve as chemical 

markers used by algae for identification purposes, but this hypothesis has not been further 

investigated. 

Noxious (taste and odour) compounds: amines and pyrazines  

Although relatively few amine- or pyrazine-based compounds have been 

characterized some of the compounds in these classes produce potent taste and odours 

(Young et al., 1996; Watson, 2004). Most notable are 2-isobutyl-3-methoxypyrazine and 

2-isopropyl-3-methoxypyrazine, which give off highly potent earthy odours (Watson, 

2004).  These two groups are by far the least studied of the taste and odour causing 

compounds, and additional work needs to be done to improve the understanding of these 

compounds. 

2.5 Bioactive Compounds 

Bioactive compounds: cyanopeptolins  

Cyanopeptolins are a sub-class of cyclic desipeptides (Gademann et al., 2010).  

The distinguishing feature of cyanopeptolins is that they are produced by freshwater 

cyanobacteria and contain a unique 3-amino-6-hydroxy-2-piperidone (Ahp) residue 

(Sivonen & Börner, 2008; Gademann et al., 2010).  The cyanopeptolins are inclusive of a 

wide variety of compounds including micropeptins, microstylins, aeruginopeptins, and 

anabaenopeptilides.  Cyanopeptolins are produced by the cyanobacteria genera 

Anabaena, Microcystis, Nostoc, and Planktothrix, and are generally recognized as serine 

or trypsin protease inhibitors (Weckesser et al., 1996; Harada et al., 2001; Grach-

Pogrebinsky & Carmeli, 2008; Sivonen & Börner, 2008).  Cyanopeptolins are also 

capable of having acute toxic effects on crustaceans although these effects are not 

produced by exposure to every compound of this group (Grach-Pogrebinsky & Carmeli, 

2008; Gademann et al., 2010). 
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Bioactive compounds: hexapeptides  

Similar to cyanopeptolins, but containing D-lysine and an uriedo linkage, 

hexapeptides are a sub-class of desipeptides produced by a range of cyanobacteria 

(Harada et al., 1995; Sivonen & Börner, 2008). Feritoic acids, anabaenopeptolins, and 

oscillamides all fall under this category (Williams et al., 1996). In freshwaters 

hexapeptides are produced by Anabaena, Aphanizomenon, Microcystis, Nodularia, and 

Planktothrix, and have the capacity to act as non-specific protease inhibitors, suggesting 

the ability to have similar biological impacts as cyanopeptolins or other protease 

inhibiting molecules (Sivonen & Börner, 2008). 

Bioactive compounds: microviridins, microginins, and aeruginosins  

The tricyclic desipeptide structure of microviridins and its production by Nostoc 

sp. are the major distinguishing factors from microginins and aeruginosins, which are 

both linear peptides (Sivonen & Börner, 2008).  All three classes of compounds are 

produced by isolates of the cyanobacteria genera Microcystis and Planktothrix, although 

the toxicological properties of the three vary drastically (Fujii et al., 1997; Welker & von 

Dohren, 2006).  Microviridins and aeruginosins are capable of causing cytotoxic 

responses, via protease inhibition, while the role of microginins has yet to be identified 

(Rohrlack et al., 2004; Sivonen & Börner, 2008).  Microviridins exhibit toxic effects to 

zooplankton in vitro, and this result has served as an indicator of the toxic and/or 

bioactive potential of these compounds (Rohrlack et al., 2004). 

2.6 Current Toxin Detection Methods 

 A wide selection of techniques and methodologies are employed to detect and 

quantify toxic, noxious, and bioactive compounds produced by freshwater algae. 

Common methods used for toxin analysis include: enzyme linked immunosorbent assays 

(ELISAs), protein phosphatase inhibition assays (PPIAs), 2-methoxy-1- methyl-3-

phenylbuturic acid (MMPB), nuclear magnetic resonance (NMR), solid-phase micro-

extraction-mass spectrometry (SPME-MS), high performance liquid chromatography 

(HPLC), thin layer chromatography (TLC), matrix assisted laser desorption/ionization- 
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time-of-flight-mass spectrometry (MALDI-TOF-MS), and liquid chromatography with 

electrospray ionization triple-quadrupole mass spectrometry (LC-MS) (Demirel & 

Sukatar, 2012).  Despite these techniques and instruments the data available concerning 

the safe limits for acute and chronic exposure to individual compounds are generally 

lacking (Sivonen & Börner, 2008).  The only available limit regarding exposure to the 

toxins produced by freshwater algae is set by the WHO for microcystin exposure.  This 

guideline stipulates that total (intracellular + extracellular) MC-LR concentrations should 

not exceed 1.0 μg l
-1 

in waters used for human consumption (WHO, 2003).  This 

guideline does not include the other 86 variants of microcystin that have been identified 

and can be present in natural systems at concentrations higher than the LR variant (WHO, 

2003; del Campo et al., 2010).   

It is difficult to quantify the relationships among multiple compounds when they 

occur in complex mixtures.  These effects can be additive, synergistic, or antagonistic, 

and establishing methods of analysis that elucidate the effects of these types of mixtures 

is the key to evaluating the true toxic and/or noxious potential of freshwater samples 

(Watson, 2003).  Whole organism bioassays are useful but limited.  The state of the art in 

whole-organism bioassay development for freshwater analysis is the 96-hour rainbow 

trout acute lethality test (Dayeh et al., 2003).  While a good indicator of water quality for 

a wide range of tested substances, the inherent limitations of this assay include the 

inevitable (and difficult to assess) stress response of the organisms involved, the large 

volume of sample and the amount of time required to run the test, the sacrifice of 

organisms that perish during the test, and the cost of organism husbandry and storage for 

the period leading up to the trial (Dayeh et al., 2005).  All of these factors have led some 

researchers to consider new, cost effective and reliable assays to avoid some of the 

pitfalls of the traditional whole-organism testing while maintaining the ability to evaluate 

samples that contain complex mixtures of toxic, noxious, and/or bioactive substances 

(Fent, 2001).  

2.7 Alternative Toxin Detection Methods: Cell-Based Assays 

Cell-based assays are the primary alternative to using of whole-organisms in 

freshwater testing and have been gaining popularity due to the ever increasing availability 
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of cell lines derived from a variety of organisms (Fent, 2001).  Recent research has 

investigated the ability of animal cell lines to experience the cytotoxic effects of 

compounds produced by marine phytoplankton isolates, and this work has illustrated the 

potential for adapting this assay to analyze compounds produced by freshwater 

phytoplankton as well (Burkholder et al., 2005; Dorantes-Aranda et al., 2011).  

Specifically, the RTgill-W1 cell line cytotoxicity assay (RCA) has been used in 

conjunction with various in vitro and in vivo methods to assess a wide range of 

environmental pollutants and toxicants (Lee et al., 2009). Adapting the assay to 

investigate polycyclic aromatic hydrocarbons, industrial effluents, petrochemicals, 

jellyfish venom and many other compounds occurring in both freshwater and marine 

systems has made it a prominent candidate for use in freshwater research (Schirmer et al., 

1998, 2001; Dayeh et al., 2005; Helmholz et al., 2010).  The advantages of using the 

RTgill-W1 cell line rather than commercially available mammalian cell lines include the 

ability to conduct trials at room temperature (~20 °C), the tendency of fish cells lines to 

tolerate prolonged exposure, the availability of fluorescent dyes that yield multiple 

endpoints for a single trial, and its ability to serve as an appropriate substitute for the 

whole organisms used to test whole-water samples in 96-hour rainbow trout acute 

lethality tests (Dayeh et al., 2005). 

 Another cell-based assay of interest is the erythrocyte lysis assay (ELA).  The 

ELA has also been used to examine the effects of a wide variety of compounds including 

the hemolytic activity of marine phytoplankton, bacteria, invertebrates, and higher plants 

(Eschbach et al., 2001; Ling & Trick, 2010).  The ELA has been used in cyanobacteria 

bioactive compound analysis, highlighted by investigations into the hemolytic 

compounds produced by Anabaena variabilis (Wang et al., 2007; Zhang et al., 2011).  

The ELA determines the cytotoxicity/hemolytic activity of a sample through the 

evaluation of the integrity of the erythrocyte membrane by photometry, assessing the 

quantity of heme released from lysed erythrocytes following exposure (Eschbach et al., 

2001).  

The RCA and the ELA are prime examples of assays that could aid in the in the 

detection of toxic, noxious, and bioactive compounds in freshwaters.  
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2.8 Conclusions 

 The presence of toxic and noxious compounds in freshwater systems around the 

world is certainly cause for concern and is an issue worthy of additional research.  The 

potent nature of the compounds produced by cyanobacteria and chrysophyte algae 

illustrate the need for developing a better means of understanding and predicting the 

effects of these compounds.  The variety of compounds produced by freshwater 

cyanobacteria and chrysophyte algae makes this task extremely difficult if one relies on 

traditional methods of single compound identification.  The majority of current methods 

neglect the potential additive, synergistic, or antagonistic effects that compounds may 

have in mixtures.  The current state of toxin and noxious compound identification and 

quantification in freshwater systems may be greatly improved through the application of 

cell-based assays that can be used to fill in some of the gaps in modern assessment 

techniques. 
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Chapter 3 

Application of Cytotoxicity Assays for Detection of Potentially 

Harmful Bioactive Compounds Produced by Freshwater Bloom-

Forming Algae 

3.1 Introduction 

Algal blooms are marked by significant increases in the population of pelagic 

algae resulting in the aesthetic, odorous, and/or biochemical fouling of surface waters 

(Reynolds & Walsby, 1975).  Harmful algal blooms (HABs) are considered a sub-

category of these events and are distinguished by the presence of particular taxa that have 

the ability to produce toxins, irritants, and/or noxious secondary metabolites (Carmichael, 

1992, 2001; Watson, 2003; Watson et al., 2008).  Freshwater HABs can have serious 

ecological, toxicological, and physiological effects on aquatic and terrestrial biota, and 

increased occurrence of these events over the past three decades is cause for concern 

(Skulberg et al., 1984; MacKintosh et al., 1990; Pouria et al., 1998; Falconer, 1999; 

Carmichael, 2001, 2008; Paerl et al., 2001; Sinclair & Hall, 2008; Fortin et al., 2010; 

Winter et al., 2011; Huber et al., 2012).  

Blooms of high biomass are commonly attributed to excess nutrients entering the 

water body (Heisler et al., 2008; Paerl & Huisman, 2008).  HABs are formed when these 

nutrients are preferentially consumed by harmful algal species that accumulate in 

biomass (Reynolds & Walsby, 1975; Paerl, 1988; Wetzel, 2001).  Despite the multiple 

factors that promote HAB formation, accelerated eutrophication of surface waters by 

human inputs is the leading cause of HABs in freshwater systems (Schindler, 1987; 

Wetzel 2001; Smith, 2003; Christensen et al., 2006).  Particularly of concern is the 

loading of macronutrients with phosphorus and nitrogen, which have been implicated as 

the key nutrients for bloom development (Schindler, 1977; Tett et al., 1985; Fisher et al., 

1992; Guildford & Hecky, 2000).  

Additional work has illustrated the importance of micronutrients in phytoplankton 

growth (Klausmeier et al., 2004; Molot et al., 2010; Fujii et al., 2011; Sorichetti et al., 

submitted). Specifically, Fe has been identified as a critical micronutrient for bloom 
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development and maintenance because it is required for essential cellular processes such 

as photosynthesis, pigment biosynthesis and (in some cyanobacteria) nitrogen fixation 

(Guikema & Sherman, 1983; Rueter & Ades, 1987; Paerl, 1988; Raven et al., 1999; 

Sterner et al., 2004).  Fe has also been identified as a regulator of microcystin (potent 

cyanobacterial hepatotoxin) production  (Kaplan et al., 2012).  However, unlike most 

cellular functions the production of microcystin increases under conditions of Fe 

limitation (Utkilen & Gjølme, 1995; Alexova et al., 2011; Kaplan et al., 2012).  

Cyanobacteria are the most common type of algae associated with freshwater 

HABs, and the most common genera are Microcystis, Anabaena, Aphanizomenon, and 

Gloeotrichia, all of which have the potential to produce toxins, noxious, and/or bioactive 

compounds (Skulberg et al., 1984; Carmichael, 2001; Paerl et al., 2001; Watson et al., 

2008; Molot et al., 2010; Winter et al., 2011; Sorichetti et al., submitted).  The incidence 

of blooms dominated by chrysophyte algae may also be on the rise (Paterson et al., 2004, 

2008; Winter et al., 2011). Chrysophyte genera that are commonly observed dominating 

bloom events include Dinobryon, Synura, Uroglena, and Mallomonas (Nicholls, 1995; 

Watson, 2003; Paterson et al., 2004, 2008).  While chrysophyte algae common to 

freshwaters do not produce toxins, they are infamous for their ability to produce a variety 

of noxious compounds that act as irritants or offensive taste and odour causing substances 

(Jüttner et al., 1986; Nicholls, 1995; Watson et al., 1999, 2008; Paterson et al., 2004; 

Winter et al., 2011).  Collectively, the noxious compounds produced by chrysophyte 

algae are termed taste and odour compounds and are easily recognized by their ability to 

foul water bodies at even at very low concentrations (<10 nM) (Watson et al., 1999; 

Chorus, 2000; Watson, 2003). 

This study targets the need for quick, reliable and cost effective tools to detect and 

evaluate the cytotoxicity of freshwater samples that may be contaminated with toxic, 

noxious, and/or bioactive phytoplankton metabolites.  In 2008, Environment Canada 

released a report addressing the increase in HAB occurrence (Charlton et al., 2008).  

Three important research needs were outlined in this report, including: improving 

detection, characterization, and modeling of toxic and noxious algal metabolites produced 

during HABs (Charlton et al., 2008).  The adaptation of existing cell-based assays to 

quantify the toxicity of whole-water samples is one way to improve detection, and may 
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offer a solution to the first step in the line of research needs.  The main advantages of 

cell-based assays include: the low volume of sample required for analysis, the large 

number of samples that can be tested, the rapid exposure time, ease of sample 

preparation, and the avoidance of sacrificing whole organisms (Dayeh et al., 2005).  

Recent research has investigated the ability of animal cell lines to detect the 

cytotoxic effects of compounds produced by marine phytoplankton isolates, and this 

work has illustrated the potential for the adaptation of these assays to analyze compounds 

produced by freshwater phytoplankton as well (Burkholder et al., 2005; Dorantes-Aranda 

et al., 2011).  Specifically, the RTgill-W1 cell line cytotoxicity assay (RCA) has been 

used in conjunction with various in vitro and in vivo methods of analysis to assess a wide 

range of environmental pollutants and toxicants (Lee et al., 2009).  The adaptation of the 

assay for investigations into polycyclic aromatic hydrocarbons, industrial effluents, 

petrochemicals, jellyfish venom and many other compounds occurring in both freshwater 

and marine systems has made it a prominent candidate for further use in freshwater 

research (Schirmer et al., 1998, 2001; Dayeh et al., 2005; Helmholz et al., 2010). The 

advantages of using the RTgill-W1 cell line rather than other commercially available 

mammalian cell lines include: the ability to conduct trials at room temperature (~20 °C), 

the tendency of fish cells lines to tolerate prolonged exposure to simple exposure 

medium, the availability of fluorescent dyes that can yield multiple endpoints for a single 

trial, and the ability to serve as an appropriate substitute for the whole organisms used to 

test whole-water samples in 96-hour rainbow trout acute lethality tests (Dayeh et al., 

2005). For this study, the RCA was used with a resazurin-based dye, which served as an 

indicator of cellular metabolic activity. 

 Another cell-based assay of interest is the erythrocyte lysis assay (ELA). The 

ELA has also been used to examine the effects of a wide variety of compounds including 

the hemolytic activity of marine phytoplankton, bacteria, invertebrates, and higher plants 

(Eschbach et al., 2001; Ling & Trick, 2010).  This work can be used in cyanobacteria 

bioactive compound analysis, highlighted by investigations into the hemolytic 

compounds produced by Anabaena variabilis, suggesting that the ELA may be suitable 

for further use in freshwater algae investigations (Wang et al., 2007; Zhang et al., 2011). 

The ELA determines the cytotoxicity/hemolytic activity of a sample by photometrically 



38 

 

assessing the quantity of heme released from lysed erythrocytes following exposure, 

which evaluates the integrity of the erythrocyte membrane (Eschbach et al., 2001).  

The effectiveness of these two cytotoxicity assays were assessed through applying 

individual analytical standards of toxins and noxious compounds produced by freshwater 

algae, and analyzing of complex mixtures of metabolites produced by freshwater algae 

isolates – including both toxic and/or noxious compound producing isolates of 

cyanobacteria and chrysophyte algae.  The following hypotheses were tested:  

H1: The application of individual analytical standards of toxins and/or noxious 

compounds produced by freshwater algae will result in concentration dependent 

decreases in the viability of cells in both the RCA (assessing damage to cell metabolism) 

and the ELA (assessing damage to cell membrane). I predict that concentrations of these 

compounds at or below their environmentally measured averages will result in significant 

decreases in cell viability in both assays.  

H2: The application of complex mixtures of algal metabolites extracted from 

cultures of toxic and/or noxious compound producing isolates of cyanobacteria and 

chrysophyte algae will result in concentration dependent decreases in viability as part of 

the RCA and ELA. I predict that (a) due to the increased rate of cell growth and toxic, 

noxious, and/or bioactive compound production during exponential phase, exposure 

solutions derived from exponential growth phases will result in significant decreases in 

cell viability in both assays relative to those of the stationary phase; (b) due to the 

predominant intracellular storage of toxic and noxious compounds, exposure to solutions 

derived from lysed cultures (intracellular + extracellular compounds) will result in 

significant decreases in cell viability in both assays relative to solutions derived from 

non-lysed samples (extracellular compounds only); and (c) due to toxin production 

stimulated by Fe limitation of toxin producing cyanobacteria, exposure solutions 

extracted from low Fe (0.1 μM) treatments will result in significant decreases in cell 

viability in both assays relative to the high Fe (10 μM) treatments. 

 The adaptation of cytotoxicity assays for detecting toxins, noxious, and/or 

bioactive compounds produced by cyanobacteria and chrysophyte algae will allow us to 

gain insights into the additive, synergistic and/or antagonistic biological effects that these 
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compounds may exhibit while produced in the complex mixtures by different isolates of 

cyanobacteria and chrysophyte algae (Dayeh et al., 2005). 

3.2 Methods 

RTgill-W1 cell line 

The RTgill-W1, obtained from the American Type Culture Collection (ATCC 

CRL-2523), is a continuous cell line derived from gill explants of a healthy rainbow trout 

(Onchorhunchus mykiss) (Bols et al., 1994).  The cell line culture was maintained in the 

dark at 20 °C in sterile, plug sealed, tissue culture treated (coating within the flask that 

promotes cell growth) flasks.  Small flasks (culture area: 25 cm
2
) were used for initial 

sub-culturing from cryopreserved samples, and large flasks (culture area: 75 cm
2
) were 

used for the subsequent sub-cultures (353109/353110, BD Biosciences).  This sub-

culturing sequence ensured that an ample number of cells were available for use in 

multiple assays simultaneously.  The cells were grown in 0.2 μm filter-sterilized L-15 

Complete (Leibovitz’s L-15 medium (MT10-045-CV Mediatech); 10% (v/v) fetal bovine 

serum (FBS, A15-204, PAA Laboratories); 2% (v/v) antibiotic/antimycotic solution (17-

745E, Lonza)), which was renewed (old media removed and replaced with fresh media) 

twice weekly.  Sub-culturing and/or cell cultivation was carried out once a confluent 

monolayer of cells was observed over the majority of growth surface via inverted 

microscopy (Axiovert 100 TV, Zeiss).  Cell detachment was achieved by applying a 

phosphate buffered saline (PBS)-0.53 mM EDTA solution rinse (1 minute) followed by 

incubating (5 minute) with 0.25% Trypsin-2.21 mM EDTA in Hank’s balanced salt 

solution (CA45000-664, VWR Canada).  Cells were collected and concentrated by 

centrifugation at 200 × g for 5 minutes.  The sub-culturing ratio was commonly 1:4, 

although this varied according to the degree of confluence observed prior to detachment.  

All solutions and equipment were sterilized via autoclave, 70% ethanol, or 0.2 μm filter 

prior to use, and handling occurred in a laminar flow hood with the appropriate aseptic 

techniques being employed to maintain the sterility of the culture (Dayeh et al., 2003, 

2005).  
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Cryopreservation of RTgill-W1 cells 

Cryopreservation of the RTgill-W1 cell line proved to be important to long-term 

cell storage, which allowed for a minimization of the use of consumables, the risk of 

microbial contamination, and the risk of genetic drift/morphological changes (Sigma-

Aldrich, 2010).  Cryopreservation also allowed me to conduct experiments using cells at 

a consistent passage number.  Cells were cryopreserved by suspending cell solutions in 

L-15 Complete-5% (v/v) dimethylsulfoxide (DMSO) medium at a density of 10
6
 cells 

mL
-1

.  Aliquots (1 mL) were pipetted into 2 mL polypropylene Cryule® vials (985746, 

Wheaton) which were immediately sealed. A -1 °C minute
-1

 ‘Mr. Frosty’ freezing 

container (5100-0001, Thermo Fischer Scientific Inc.) filled with isopropyl alcohol was 

used to hold the vials, and was immediately placed into a -80 °C freezer.  Cells remained 

viable in the freezer at least 1 year after the initial freezing event, as evidenced by 

successful culturing of cryopreserved cells (data not shown).  Cryopreservation in liquid 

nitrogen was also successful when coupled with the use of an isopropyl alcohol bath to 

bring the temperature of the samples down to -80 °C prior to insertion into the liquid 

nitrogen dewar.  

RTgill-W1 cell line contamination test 

The absence of culture contamination by mycoplasma was confirmed through the 

use of a MycoAlert™ assay kit (LT07-118, Lonza).  A small aliquot (1 mL) taken from 

the supernatant after the cell suspension was centrifuged at 200 × g for 5 minutes.  The 

sample was combined with a buffer solution and pipetted into a 96-multiwell plate 

(MWP) in triplicate.  Positive and negative control solutions were loaded into the plate, 

and all wells were analyzed by a fluorescence spectrophotometer (Cary Eclipse, Varian) 

with a multi-well plate attachment set to read chemi/bio-luminescence from 540 nm to 

700 nm.   

RCA experimental design 

The RCAs were conducted in 96-MWPs. Cell concentrations were adjusted to 

density of 1.5 x10
5
 cells mL

-1
 in L-15 Complete medium using a haemocytometer. 

Aliquots (200 μL) of the cell solution were transferred into the wells of a sterile, tissue 
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culture treated 96-MWP (353075, BD Biosciences).  Not all wells of the 96-MWP were 

seeded with the cell suspension, as preliminary work suggested that the wells on the outer 

edge of the 96-MWP were not all suitable for use (data not shown).  Seeded plates were 

immediately covered with a lid, wrapped with Parafilm M®, and incubated in the dark at 

20 °C until a confluent monolayer was observed in each well via microscopy (2-3 days).  

The plates were moved into the laminar flow hood and inverted over a waste basin to 

drain the L-15 complete media overlying the monolayer at the bottom of each seeded 

well.  Plates were kept upside down and placed onto a stack of paper towels to drain any 

remaining media.  A rinse of PBS (200 μL) was then applied to all wells, followed by 

another inversion over the catch basin and drying on paper towel.  Aliquots (200 μL) of 

the desired exposure solutions, controls, and blanks were loaded into the appropriate 

wells of the 96-MWP, and silicone sealing-mats (521-01-151, Axygen) were used to 

prevent interactions between wells.  The plates were wrapped in Parafilm M® to limit 

evaporative loss, and inverted microscopy was used to ensure that no cells had become 

detached during the rinse and application steps. Exposure was carried out in the dark at 

20 °C (Dayeh et al., 2003, 2005). 

Measuring cell viability 

PrestoBlue™ (A-13262, Life Technologies), a resazurin-based compound that 

uses the reducing environment of cells to measure metabolic activity, was used in place 

of AlamarBlue® to quantitatively assess cell viability (Dayeh et al., 2003; Dorantes-

Aranda et al., 2011).  Following removal of exposure solutions (via inversion, as 

described above) and a rinse with PBS (200 μL), aliquots of 5% (v/v) PrestoBlue™-L-

15/ex solution (100 μL) were applied to all wells.  The plate was wrapped in Parafilm 

M® and left to incubate in the dark at 20 °C for 2 hours.  The plate was read by a 

fluorescence spectrophotometer (Cary Eclipse, Varian) with multi-well plate attachment 

set to read excitation/emission of 540/590 nm.  Raw fluorescence (FU) was converted 

into cell viability (% of control) by using the formula outlined by Dayeh et al. (2003; 

Equation 3.1).  To test for significant differences one-way ANOVA was used followed 

by Dunnett’s test (α=0.05).  When applicable, EC50 values were calculated for each 

compound (Alexander et al., 1998). 
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(3.1)  

Erythrocyte Lysis Assay (ELA) 

Rabbit blood in Alsever’s solution was obtained from Inverness Medical Canada 

(QSRBA25) and stored in the dark at 4 °C. Cells were resuspended by hand at least twice 

weekly (they settle out of solution if left undisturbed), and erythrocyte density was 

determined through the use of a haemocytometer.  Handling the blood at 4 °C rather than 

at room temperature aided in keeping the blood viable for longer (Inverness Medical, 

2012).  The decision to use rabbit erythrocytes in Alsever’s solution was made on the 

basis of their commercial availability, ease of storage, and their history as a sensitive 

erythrocyte for detecting algal hemolysins (Kuroda et al., 2005; Wang et al., 2007; Ling 

& Trick, 2010; Zhang et al., 2011). 

ELA experimental design 

Erythrocytes were rinsed three times with ELA buffer in a 1.7 mL 

microcentrifuge tube (311-05-051, Axygen) by inversion and centrifugation at 2000 × g 

at 4 °C. Washed erythrocytes were diluted to a concentration of 10
7
 cells mL

-1
 and used 

immediately (Eschbach et al., 2001; Ling & Trick, 2010).  Equal parts erythrocyte 

solution (500 μL) and exposure solution (500 μL) were mixed in a 1.7 mL 

microcentrifuge tube and incubated at 20 °C for 4 hours.  The data were converted from 

raw absorbance values into percent viability through the use of the formula similar to that 

proposed by Ling and Trick (2010; Equation 3.2).  Significant differences were assessed 

using a one-way ANOVA followed by Dunnett’s test (α=0.05). 

 

 

(3.2) 
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Photometric profile of erythrocytes 

A photometric profile of the erythrocytes was conducted to confirm that the 

optimal wavelength was being used to assess erythrocyte lysis.  Whole erythrocytes in 

ELA buffer were prepared at a concentration of 5×10
6
 cells mL

-1
, while a solution of 

equal cell density was sonicated with a Virsonic 100 ultrasonic cell disrupter (SP 

Scientific) at a continuous power output of 10 for 20 seconds in an ice bath to provide the 

lysed sample.  Absorbance scans of 350 nm to 700 nm were done with an integrated 

scanning DU 640 spectrophotometer (Beckman Coulter). 

Erythrocyte fragility test 

Erythrocyte fragility tests were performed weekly to evaluate the integrity of the 

erythrocytes over the course of their storage. Prior to each fragility test fresh stocks of 

saponin, originally isolated from tree bark from Quillaja saponaria (8047-15-2, Sigma) 

in ELA buffer were made to concentrations of 0-10, 15, 20 and 50 μg mL
-1

.  The 

solutions were mixed 1:1 with a 10
7
 cells mL

-1
 erythrocyte solution in 1.7 mL micro-

centrifuge tubes and incubated in the dark at 20 °C for 2 hours.   

Toxins and noxious compounds tests 

Thirteen compounds were selected for analysis by both cell-based assays (Table 

3.1). Analytical standards of nodularin and 7 microcystin variants (LA, LF, LR, LW, LY, 

RR, and YR) (ALX-850-325-KI01, Alexis Biochemicals) were obtained and stored in the 

dark at -20 °C.  Analytical grade solutions of (E,E)-2,4-decadienal (W313505, Sigma), 

(E,E)-2,4-heptadienal (W316407, Sigma), and β-cyclocitral (2,6,6-Trimethyl-1-

cyclohexene-1-carboxaldehyde; W363928, Sigma), (±)-geosmin (G5908, Sigma) and 2-

methylisoborneol (743364, Sigma) were obtained and stored in the dark at 4 °C. 

Exposure solutions consisted of single compounds dissolved in L-15/ex or ELA buffer 

solution, for use in the RCA or ELA, respectively (Eschbach et al., 2001; Dayeh et al., 

2003).  
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Algal cultures 

Nine phytoplankton isolates were obtained from the Canadian Phycological 

Culture Collection (CPCC) in Waterloo, ON, Canada (Table 3.2). Four chrysophyte 

isolates, Dinobryon sp. isolate 392, Synura uvella isolate 422, Synura petersenii isolate 

495, and Uroglena sp. isolate 276 were selected to be used as representative isolates of 

phytoplankton species that cause the taste and odour bloom events (Nichols et al., 1995; 

Watson and Satchwill, 2003; Paterson et al., 2008). These cultures were isolated from 

small ponds in Maine, USA, and Newfoundland, Canada.  Five cyanobacteria isolates, 

including Anabaena flos-aquae isolates 64 and 543, Aphanizomenon schindlerii isolate 

631, and Microcystis aeruginosa isolates 124 and 299, were used as representative 

isolates of phytoplankton which produce freshwater HABs (Molot et al., 2010; Winter et 

al., 2011; Sorichetti et al., submitted).  These isolates were obtained from lakes in 

Ontario, Saskatchewan, Manitoba, Ontario, and Alberta, Canada, respectively. Two 

isolates, A. flos-aquae 64 and M. aeruginosa 299, are confirmed microcystin producers.  

Maximum growth rates were calculated according to MacIntyre & Cullen (2005), by 

examining the exponential phase growth of each isolate.  These data were used to 

calculate the optimum flow rate of the chemostat runs for each strain of cyanobacteria as 

described below. 

Algal medium 

Cyanobacteria isolates required BG-11 medium, which was prepared using 

ultrapure water (Barnstead Nanopure Infinity Ultrapure Water System), and adjusted to a 

pH of 7.5 (Andersen et al., 2005).  BG-11 medium was then microwave-sterilized on 

‘High’ (1000 W) power twice for 10 minutes prior to use, and stored at 4 °C (Andersen et 

al., 2005).  BG-11 medium was warmed to room temperature (~20 °C) prior to addition 

to any culture.  Chrysophyte isolates required WC growth medium, which was prepared 

using ultrapure water, pH adjusted to 7.8, microwave sterilized on ‘High’ power twice for 

10 minutes prior to use, and stored at 4 °C (Andersen et al., 2005). Each isolate was 

grown in a low (0.1 μM) and high (10 μM) Fe medium that was prepared trace metal 

clean and stored in acid washed (soaked in 10% HCl for ≥ 24 hours) containers. Major 

nutrient additions were passed through a Chelex® 100 ion exchange resin (C7901,  
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Table 3.1. Chemical information and associated hazards of toxins and noxious 

compounds. 

Compound 

Chemical 

Formula 

Molecular 

Weight Associated Hazards 

Microcystin-LA C46H67N7O12  910.0 Hepatotoxic; skin, eye irritant 

Microcystin-LF C52H71N7O12  986.2 Hepatotoxic; skin, eye irritant 

Microcystin-LR C49H74N10O12  995.2 Hepatotoxic; skin, eye irritant 

Microcystin-LW C54H72N8O12  1025.2 Hepatotoxic; skin, eye irritant 

Microcystin-LY  C52H71N7O13  1002.2 Hepatotoxic; skin, eye irritant 

Microcystin-RR C49H75N13O12  1038.2 Hepatotoxic; skin, eye irritant 

Microcystin-YR C52H72N10O13  1045.2 Hepatotoxic; skin, eye irritant 

Nodularin  C41H60N8O10  825.0 Hepatotoxic; skin, eye irritant 

(E,E)-2,4-Decadienal C10H16O 152.2 Skin, eye irritant; fatty/citrus 

odour 

(E,E)-2,4-Heptadienal  C7H10O 110.2 Skin, eye irritant; rancid fish odour 

β-Cyclocitral  C10H16O 152.2 Skin, eye irritant; sweet tobacco 

odour 

2-Methylisoborneol  C11H20O 168.3 Skin, eye irritant; musty odour 

Geosmin   C12H22O 182.3 Skin, eye irritant; earthy odour 
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Table 3.2. Cyanobacteria and chrysophyte isolates obtained from the Canadian 

Phycological Culture Collection (CPCC) in Waterloo, ON. 

Organism Strain Isolation location Year of 

isolation 

Cyanobacteria    

Anabaena flos-aquae  CPCC 64 Lake Ontario, ON, Canada 1987 

Anabaena flos-aquae CPCC 543 Burton Lake, SK, Canada 2001 

Aphanizomenon 

schindlerii  

CPCC 631 Experimental Lakes Area, ON, 

Canada  

2005 

Microcystis aeruginosa CPCC 124 Heart Lake, ON, Canada 1987 

Microcystis aeruginosa CPCC 299 Pretzlaff  Pond, AB, Canada 1990 

Chrysophyceae    

Dinobryon sp. CPCC 392  Sippewisset, MA, USA 1986 

Synura petersenii CPCC 495  Hwy 410, NL, Canada 1982 

Synura uvella  CPCC 422  Arrowwood Lake, ND, USA 1995 

Uroglena sp. CPCC 276  Dickie Lake, ON, Canada 1991 
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Sigma) to remove excess trace metals prior to addition to the medium (Price et al. 

1988/1989).  

Measurement of algal growth  

Optical density, calculated by measuring absorbance at 720 nm with a DU 640 

spectrophotometer (Beckman Coulter), is an accurate measure of phytoplankton density 

(Held, 2011).  Using optical density as a proxy for the biomass of samples allowed me to 

bypass performing cell counts on isolates which are filamentous and/or colonial, such as 

A. flos-aquae isolates 64 and 543, Apha. schindlerii isolate 631, Syunra petersenii isolate 

495, and Dinobryon sp. isolate 392.  

Cyanobacteria growth specifications 

For exponential phase experiments, a continuous culture apparatus was used to 

maintain cultures at a constant growth rate with a fixed/known concentration of nutrients 

in the medium (Monod, 1949; Novick & Szilard, 1950).  The chemostat apparatus was 

supported by a custom designed structure (Appendix A). Modified aquaria (25 cm × 50 

cm × 30 cm) were placed ~15 cm from a side-mounted fluorescent light source. Aquaria 

were angled to reduce the incoming flux of light to 70 ± 10 μmol photons m
-2

 s
-1

 in each 

of the culture tubes. The tanks were filled near to the top with tap water, and wall-

mounted heaters maintained a constant water temperature of 24 °C. Glass culture tubes 

(250 mL) were arranged haphazardly, suspended vertically in each tank, and capped with 

a modified rubber stopper to keep out ambient dust.  An adjustable electric pump 

provided sterile media to the culture tubes, allowing the growth rate of each culture to be 

controlled via dilution (MacIntyre & Cullen, 2005).  All parts of the chemostat apparatus 

were acid-washed, rinsed in ultrapure water, and ethanol-sterilized prior to inoculation. 

 For stationary phase experiments, all isolates were maintained in a batch culture. 

Each of the cyanobacteria isolates was grown in BG-11 medium at high (10 μM) and low 

(0.1 μM) Fe concentrations (prepared as described above) in 500 mL glass Erlenmeyer 

flasks.  All flasks were acid-washed, rinsed in ultrapure water, and ethanol-sterilized 

prior to inoculation.  All cyanobacteria cultures were grown at 24 °C under constant light 

conditions of 70 ± 10 μmol photons m
-2

 s
-1

. 
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Following termination of experiments, cyanobacteria samples were stored in trace 

metal-cleaned bottles in the dark at -20 °C.  These samples were kept in storage until 

immediately before application to both assays when they were thawed to room 

temperature.  The cyanobacteria isolates proved to be resistant to lysis during freezing, 

which made this storage method ideal for the preservation of cells and bioactive 

compounds (data not shown) (Furtula et al., 2004; Kim et al., 2009). 

Chrysophytes growth conditions 

Chrysophyte cultures were grown under light conditions consisting of a 12 hour 

photoperiod and an irradiance of 20±5 μmol photons m
-2

 s
-1

.  Three of the chrysophyte 

isolates were grown at a temperature of 20 °C, while Syunra petersenii isolate 495 was 

maintained at 10 °C.  Exposure of Syunra petersenii isolate 495 to higher temperatures 

(20 °C) resulted in degradation of the culture (data not shown).  For exponential and 

stationary phase experiments, all isolates were maintained in batch culture in WC 

medium at high (10 μM) and low (0.1 μM) Fe concentrations (prepared as described 

above) in 500 mL glass Erlenmeyer flasks.  All flasks were acid-washed, rinsed in 

ultrapure water, and ethanol-sterilized prior to inoculation.  Chrysophyte samples were 

taken directly from the termination point of their growth period (either exponential or 

stationary) and processed for immediate application to both assays.  

Testing algal metabolites 

Algal samples were split into equal parts prior to assay application. Half of the 

sample was centrifuged (10,000 × g for 10 minutes for cyanobacteria, 1000 × g for 10 

minutes for chrysophytes; higher speeds were required to pelletize physically smaller 

isolates of cyanobacteria like M. aeruginosa 124 and 299), and the other half was lysed 

using a Virsonic 100 ultrasonic cell disrupter (SP Scientific) at a continuous power output 

of 10 for 5 minutes per 10 mL of sample.  During sonication, keeping the sample tube in 

an ice bath allowed the sample to stay cool and helped to avoid denaturing organics 

within the sample.  Lysed samples were then centrifuged as described above.  The 

resulting solutions were mixed with the appropriate buffer solution for each assay.  A 

serial dilution of each exposure solution allowed for the assessment of the solutions over 
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a range of concentrations (0, 20, 40, 60, 80, and 100% concentration relative to the 

original culture density).  This dilution series allowed for the assessment of the potency 

of each exposure solution at various cell densities.  As discussed above, cell density was 

measured by determining the absorbance of each culture at 720 nm (optical density).  The 

assays were conducted under the conditions described above. 

3.3 Results 

Cell line contamination test 

The absence of culture contamination by mycoplasma is required for all of the cell line 

viability tests.  It is critical that contaminating organisms are not in the bioassay.  The 

prime contaminant is mycoplasma and cells from the cell line were surveyed prior to 

every bioassay experiment.  The result of this test (repeated throughout the duration of 

the experiment) indicated that the tested cells were not contaminated with mycoplasma 

and were suitable for use in the assay (Figure 3.1). 

Photometric profile of erythrocytes 

The metric for the destruction of the erythrocytes is the release of heme from the 

cell.  Three peaks can be seen in the scan of the both the lysed and whole erythrocytes: 

one at 414 nm, one at 540 nm, and one at 570 nm. Measured by the change in absorbance 

spectra, an alteration of the spectrum at 414 nm makes this the ideal wavelength to 

evaluate the proportion of lysed erythrocytes (Figure 3.2). 

Erythrocyte fragility test 

The results of these fragility tests indicated that the erythrocytes were suitable for 

use in the assay (Figure 3.3).  By conducting this test on a weekly basis and confirming 

that the curve maintained its sharp sigmoid shape, we determined that the erythrocytes 

were able to maintain their integrity in 4 °C dark storage for 5 months (time series data 

not shown).  Deviations from the sharp sigmoid curve to a more gently sloped curved 

indicate that erythrocytes are no longer suitable for use in the assay. 
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Figure 3.1. The mycoalert mycoplasma detection assay was used to detect chemi/bio-

luminescence in relative light units (mean ± one standard deviation, n = 3) for the RCA. 

Corrected chemi/bioluminescence values >1.0 indicate mycoplasma contamination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 
Figure 3.2. The absorbance spectra of lysed and whole erythrocytes concentrated to 5x10

-

6 
cells mL

-1
 and read with a scanning spectrophotometer from wavelengths of 350-750 

nm. Peak absorbance of lysed erythrocytes occurred at 414 nm. 
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Figure 3.3. The fragility of cells during the ELA was determined by measuring percent 

erythrocyte lysis relative to saponin concentration (mean erythrocyte lysis ± one standard 

deviation, n = 3). Deviation from the sharp sigmoid curve indicates that erythrocytes are 

not suitable for use in the ELA. 
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ELA optimization 

Establishing the optimal duration for erythrocyte incubation in the assay buffer 

solution was a key to determining the experimental setup used for further testing.  

Preliminary work showed differences in erythrocyte degradation rates under different 

incubation temperatures and the need for optimization was recognized.  The percentage 

of erythrocyte degradation was evaluated at 4 °C and 20 °C every 2 hours to establish the 

optimum incubation period for ELA buffer solution at each temperature (Figure 3.4).  

Results indicated that an incubation time of 4 hours was appropriate for all conditions 

tested as this allowed for maximum exposure time with modest (<50%) erythrocyte 

degradation. 

Several reports have shown that erythrocyte lysis is stimulated in conditions of 

high irradiance (≥100 μmol photons m
-2 

s
-1

) (Kuroda et al., 2005; Ling & Trick, 2010).  

Preliminary testing investigated the effects of dark and light (100 μmol photons m
-2 

s
-1

) 

conditions on erythrocyte lysis in ELA buffer solution (Figure 3.4).  Light did not 

stimulate erythrocyte lysis in either the 4 °C or 20 °C treatment, indicating the ELA 

buffer solution was not reacting with the light to enhance lysis on its own (Figure 3.4).  

This suggested that the investigation into light and dark treatments for testing selected 

compounds in both ELA buffer was appropriate. 

During preliminary work it was also observed that erythrocytes had a tendency to 

settle to the bottom of 1.7 mL micro-centrifuge tubes during the incubation period, 

potentially minimizing the interactions with hemolytic compounds and decreasing the 

sensitivity of the assay.  Constant, yet gentle, shaking of the micro-centrifuge tubes was 

investigated to assess the effects of constant erythrocyte suspension.  Shaking tests took 

place with ELA buffer solution, and occurred in the dark at 4 °C and 20 °C with the use 

of a shaker revolving at ~15 rpm (Gyratory Shaker Model-2, New Brunswick Scientific) 

(Figure 3.4).  Shaking did not affect the rate of lysis of the erythrocytes and was not used 

in future experiments. 
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Figure 3.4. Rabbit erythrocytes incubated with ELA buffer to investigate the effect of 

light, temperature and shaking (mean erythrocyte viability ± one standard deviation, n = 

3; *, Ɨ , and ǂ  indicate statistically significant differences relative to the control (4 °C 

treatments) for shaker, dark, and light treatments, respectively, p<0.05; students t-test). 
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Solvent selection for toxins and noxious compounds tests 

While all attempts were made to dissolve the algal extract into the medium, the 

non-polar nature of some of the compounds required the use of an organic solvent.  

Compounds with low water solubility required an organic solvent to be used as a carrier. 

It was important to select a solvent that is not toxic to the cells of the assay, and the 

sensitivity needed to be evaluated prior to use. Four organic solvents - acetonitrile, 

DMSO, methanol, and ethanol - were investigated for use with the RCA over 24 hour 

incubations. Methanol was the least harmful of the solvents at higher concentrations, 

although DMSO and ethanol were suitable for use at lower concentrations (< 1%) (Figure 

3.5).  DMSO was used as for all subsequent experiments.   

Cell growth rates 

The dilution rate selected for each isolate grown in the continuous culture 

(chemostat) apparatus was equal the maximum growth rate of each isolate, μmax, which 

was determined through analysis of the growth curves of each isolate in batch culture 

(Table 3.3). Two isolates of M. aeruginosa (124 and 299) had the highest maximum 

growth rates, while the lowest maximum growth rate was obtained for A. flos-aquae 

isolate 543. 

BG-11 (algal medium) exposure to RCA and ELA 

The RCA and ELA were evaluated for their ability to tolerate algal medium. 

Different ratios of algal medium: L-15/ex (1:0, 4:1, 3:2, 2:3, 1:4, 0:1) were applied to the 

RCA over a 24-hour exposure period. A 2:3 mix of BG-11: L-15/ex did not result in a 

loss of viability relative to the control (Figure 3.6).  Based on this result, a conservative1: 

1 ratio was used for all subsequent experiments.  Similarly, the optimization of the 

exposure time of the ELA with algal medium (1:1) was accomplished by testing the 

percentage of erythrocyte degradation was evaluated at 4 °C and 20 °C every 2 hours to 

establish the optimum incubation period for ELA buffer solution at each temperature 

(Figure 3.7).  Results indicated that an incubation time of 4 hours was appropriate for all 

conditions tested, as this allowed for maximum exposure time with middling (<60%) 

erythrocyte degradation. 
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Table 3.3. Maximum growth rates of cyanobacteria isolates determined by calculating the 

slope of the growth curve during exponential phase as described by MacIntyre & Cullen 

(2005). 

Type  Organism Strain μ
max

 (divisions day
-1

) 

Cyanobacteria  Anabaena flos-aquae  CPCC 64 0.23±0.03  

 Anabaena flos-aquae  CPCC 543 0.17±0.02  

 Aphanizomenon schindlerii  CPCC 631 0.21±0.02 

 Microcystis aeruginosa CPCC 124 0.28±0.03  

 Microcystis aeruginosa  CPCC 299 0.26±0.03  
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Table 3.4. EC50 values for toxins, noxious compounds, and algal metabolites (after 

Alexander et al., 1999). 

Compound Mean 

Environmental 

Concentration (nM) 

Maximum 

Environmental 

Concentration (nM) 

EC50 Values (nM)  

   RCA ELA 

Microcystin-LA <10
0
  - >10

3
 >10

3
 

Microcystin-LF <10
0
  - >10

3
 >10

3
 

Microcystin-LR <10
0
 <10

2 
>10

3
 >10

3
 

Microcystin-LW <10
0
  - >10

3
 >10

3
 

Microcystin-LY <10
0
  - >10

3
 >10

3
 

Microcystin-RR <10
0
  - >10

3
 >10

3
 

Microcystin-YR <10
0
  - >10

3
 >10

3
 

Nodularin <10
0
  - >10

3
 >10

3
 

(E,E)-2,4-Decadienal <10
1 <10

2
 2×10

3
  6×10

6
  

(E,E)-2,4-Heptadienal  <10
1
 <10

2
 5×10

3
  5×10

7 
 

β-Cyclocitral  <10
1
 <10

2
 3×10

6
  10

7
  

Geosmin  <10
-1

 <10
1
 7×10

2
  10

7
  

2-Methylisoborneol  <10
0
  <10

0
  6×10

3
  10

7
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Figure 3.5. The effect of four organic solvents on the RCA for 24 hour incubations (mean 

cell viability  one standard deviation, n = 10; * indicates significant differences relative 

to the control, p<0.05; Dunnett’s test).  
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Figure 3.6. The effect of BG-11 medium on the RCA for 24 hour incubations (mean cell 

viability  one standard deviation, n = 10; * indicates significant differences relative to 

the control, p<0.05; Dunnett’s test). 
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Figure 3.7. Rabbit erythrocytes incubated with BG-11 (algal medium) to investigate the 

effect of light, and temperature (mean erythrocyte viability ± one standard deviation, n = 

3; *, and Ɨ  indicate statistically significant differences relative to the control (4 °C 

treatments) for dark, and light treatments, respectively, p<0.05; students t-test) on the 

ELA. 
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RCA vs. toxins, noxious compounds and algal metabolites  

 The RCA was used to evaluate the effects of noxious and toxic compounds on 

cellular metabolism.  The selected compounds were tested at concentrations well beyond 

their environmentally measured maximums.  The RCA was insensitive to concentrations 

of individual microcystin variants and nodularin at or below environmental averages.  In 

fact, the RCA did not show sensitivity at concentrations that are three orders of 

magnitude above these averages (Figure 3.8, Table 3.4).  Losses of viability greater than 

50 percent were not observed in any treatment, therefore the EC50 values for all 

microcystin variants and nodularin were beyond the tested range limit, and are generally 

many orders of magnitude higher than concentrations that would be measured in natural  

systems. Statistically significant declines in viability were observed in the MC-LR trial at 

the highest concentration tested (1000 nM), well beyond the maximum relevant 

environmental concentration. 

The noxious taste and odour causing compounds tested with the RCA showed much 

greater sensitivity than the above noted toxins (Figure 3.9, Table 3.4). A notable 

reduction in viability was observed in the heptadienal trial, where a 50% reduction in 

viability was observed at concentrations between 10
2
 and 10

3
 nM following the 72-hour 

incubation (Figure 3.9).  This suggests that heptadienal may be detectable individually 

near its environmental average concentration (Table 3.4).  For the remainder of the 

compounds reductions in viability were observed at concentrations exceeding 

environmental averages (Table 3.4). 

The RCA was also used to evaluate the effects of algal metabolites on cellular 

metabolism.  Extracts from selected cultures were applied to the RCA at concentrations 

of 100, 80, 60, 40, and 20% so that the effects of the metabolites at different culture 

densities could be examined.  These concentrations were expressed in terms of optical 

density at 720 nm.  The tests of the RCA against the algal metabolites produced during 

exponential phase by cyanobacteria isolates showed no response, except for CPCC 64 (A. 

flos-aquae) which showed >80% decreases in viability in both lysed treatments (10 μM 

and 0.1 μM Fe), as well as the non-lysed 10 μM treatment (Figure 3.10).  Conversely, 

algal metabolites harvested from stationary phase growth of the cyanobacteria isolates all 

showed decreases in viability, specifically the 10 μM Fe lysed treatment showed 
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reductions in cell viability > 90% across all isolates (Figure 3.11).  CPCC 299 (M. 

aeruginosa) resulted in  ~ 100% reductions in viability across all treatments during 

stationary phase tests (Figure 3.11).  This result was not seen in any other isolate (Figure 

3.11).  Four broad trends were observed across all stationary phase tests of cyanobacteria 

isolates: 1) in treatments that resulted in significant reductions in viability at low 

concentrations, equal or greater reductions in viability were observed at higher 

concentrations (Figure 3.11); 2) 10 μM Fe treatments generally showed reductions in 

viability more frequently than the 0.1 μM Fe treatments; 3) exposure solutions composed 

of intracellular and extracellular material (lysed) generally resulted in greater reductions 

in viability than their counterparts containing only extracellular material (non-lysed); 4) 

optical densities of cultures that resulted in ≥ 50% reduction in cell viability ranged from 

~0.1 to 0.6 a.u. (720 nm), with a large amount of variation among isolates and treatments. 

 The tests of the RCA against the algal metabolites produced during exponential 

and stationary phase by chrysophyte isolates generally showed no response (Figure 3.12, 

3.13). Isolate CPCC 495 (S. petersenii) was the lone exception, showing >50% decreases 

in viability in both the 10 μM Fe lysed and 0.1 μM Fe lysed treatments of the stationary 

phase tests (Figure 3.12, 3.13).  

ELA vs. toxins, noxious compounds and algal metabolites 

The ELA was used to evaluate the effects of noxious and toxic compounds on 

membrane integrity.  The selected compounds were tested at concentrations well beyond 

their environmentally measured maximums.  Of the eight toxin analytical standards tested 

against the ELA, none produced a significant amount of erythrocyte lysis (Figure 3.14). 

This negative result is in spite of the application of toxins at concentrations that far 

exceed environmental averages by up to three orders of magnitude (1000 nM) (Table 

3.4).  Similarly to the toxins above, no significant amount of hemolysis was observed at 

environmentally relevant concentrations of noxious compounds tested (Figure 3.15).  

High percentage hemolysis was observed at extremely high concentrations (of these 

compounds, in most cases three to four orders of magnitude beyond an environmentally 

relevant concentration.  Generally, this assay proved to be insensitive to all tested 

compounds at concentrations that are environmentally relevant.  



63 

 

The ELA was also used to evaluate the effects of algal metabolites on membrane 

integrity.  Extracts from selected cultures were applied to the RCA at concentrations of 

100, 80, 60, 40, and 20% so that the effects of the metabolites at different culture 

densities could be examined.  These concentrations were expressed in terms of optical 

density at 720 nm.  The ELA was generally not sensitive to cyanobacteria and 

chrysophyte metabolites (Figure 3.16, 3.17).  Cyanobacteria isolates of M. aeruginosa 

124 and 299 showed slight (10 to 20%) reductions in viability in samples from the lysed 

high (10 μM) Fe, stationary growth phase treatment (Figure 3.17).  Likewise, samples 

from the lysed high (10 μM) and low (0.1 μM) Fe treatment of A. flos-aquae isolates 64 

and 543 taken from stationary phase growth experiments also saw mild (20-40%) 

reductions in viability (Figure 3.17).  Samples from exponential growth phase yielded an 

overall lack of response, the single exception being the moderate amount of hemolysis (~ 

30%) observed in the lysed high (10 μM) Fe treatment of cyanobacterium isolate CPCC 

543 (A. flos-aquae) (Figure 3.16).  Chrysophyte metabolites showed no effect on ELA 

viability as a whole (Figure 3.18, 3.19).  Generally, the ELA was relatively insensitive to 

the metabolites produced by cyanobacteria and chrysophyte algae irrespective of growth 

stage (exponential or stationary), growth conditions (10 or 0.1 μM Fe), or sample lysis 

(lysed or non-lysed) (Figure 3.18, Figure 3.19). 
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Figure 3.8. The effect of toxins on the RCA was assessed by incubating seven 

microcystin variants and nodularin for 24, 48, and 72 hours (mean viability ± one 

standard deviation, n = 10; *, Ɨ , and ǂ indicate statistically significant differences relative 

to the control for 24, 48, and 72 hour treatments, respectively, p<0.05; Dunnett’s test). 
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Figure 3.9. The effect of noxious compounds on the RCA was assessed by incubating 

five compounds for 24, 48, and 72 hours (mean viability ± one standard deviation, n = 

10; *, Ɨ , and ǂ  indicate statistically significant differences relative to the control for 24, 

48, and 72 hour treatments, respectively, p<0.05; Dunnett’s test). 
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Figure 3.10. The effect of cyanobacterial metabolites produced in exponential phase was 

assessed with the RCA. Extracts from five isolates  ((a) CPCC 124, M. aeruginosa, (b) 

CPC 299, M. aeruginosa, (c) CPCC 64, A. flos-aquae, (d) CPCC 543, A. flos-aquae, (e) 

CPCC 631, Apha. Schindlerii) and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM 

lysed, and Fe 0.1 μM lysed) were tested (mean viability ± standard error of the mean, n = 

3). Exposure solutions were evaluated at concentrations equivalent to 100, 80, 60, 40, 20, 

and 0% of the culture density, as expressed by optical density at 720 nm. 
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Figure 3.11. The effect of cyanobacterial metabolites produced in stationary phase was 

assessed with the RCA. Extracts from five isolates  ((a) CPCC 124, M. aeruginosa, (b) 

CPC 299, M. aeruginosa, (c) CPCC 64, A. flos-aquae, (d) CPCC 543, A. flos-aquae, (e) 

CPCC 631, Apha. Schindlerii) and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM 

lysed, and Fe 0.1 μM lysed) were tested (mean viability ± standard error of the mean, n = 

3). Exposure solutions were evaluated at concentrations equivalent to 100, 80, 60, 40, 20, 

and 0% of the culture density, as expressed by optical density at 720 nm. 
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Figure 3.12. The effect of chrysophyte metabolites produced in exponential phase was 

assessed with the RCA. Extracts from four isolates ((a) CPCC 495, Synura petersenii, (b) 

CPCC 422 Synura uvella, (c) CPCC 392, Dinobryon sp. (d) CPCC 276, Uroglena sp.) 

and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM lysed, and Fe 0.1 μM lysed) were 

tested (mean viability ± standard error of the mean, n = 3). Exposure solutions were 

evaluated at concentrations equivalent to 100, 80, 60, 40, 20, and 0% of the culture 

density, as expressed by optical density at 720 nm. 
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Figure 3.13. The effect of chrysophyte metabolites produced in stationary phase was 

assessed with the RCA. Extracts from four isolates ((a) CPCC 495, Synura 

petersenii, (b) CPCC 422 Synura uvella, (c) CPCC 392, Dinobryon sp. (d) CPCC 

276, Uroglena sp.) and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM lysed, 

and Fe 0.1 μM lysed) were tested (mean viability ± standard error of the mean, n 

= 3). Exposure solutions were evaluated at concentrations equivalent to 100, 80, 

60, 40, 20, and 0% of the culture density, as expressed by optical density at 720 

nm. 
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Figure 3.14. The effect of seven microcystin variants and nodularin on the ELA in 4 hour 

light incubations (dark trials not shown,  mean viability ± standard error of the mean, n = 

3; * indicates statistically significant differences relative to the control, p<0.05; Dunnett’s 

test). 
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Figure 3.15. The effect of noxious compounds on the ELA in 4 hour light incubations 

(dark trials not shown,  mean viability ± standard error of the mean, n = 3; * indicates 

statistically significant differences relative to the control, p<0.05; Dunnett’s test). 
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Figure 3.16. The effect of cyanobacterial metabolites produced in exponential phase was 

assessed with the ELA. Extracts from five isolates  ((a) CPCC 124, M. aeruginosa, (b) 

CPC 299, M. aeruginosa, (c) CPCC 64, A. flos-aquae, (d) CPCC 543, A. flos-aquae, (e) 

CPCC 631, Apha. Schindlerii) and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM 

lysed, and Fe 0.1 μM lysed) were tested (mean viability ± standard error of the mean, n = 

3). Exposure solutions were evaluated at concentrations equivalent to 100, 80, 60, 40, 20, 

and 0% of the culture density, as expressed by optical density at 720 nm. 



73 

 

 
Figure 3.17. The effect of cyanobacterial metabolites produced in stationary phase was 

assessed with the ELA. Extracts from five isolates  ((a) CPCC 124, M. aeruginosa, (b) 

CPC 299, M. aeruginosa, (c) CPCC 64, A. flos-aquae, (d) CPCC 543, A. flos-aquae, (e) 

CPCC 631, Apha. Schindlerii) and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM 

lysed, and Fe 0.1 μM lysed) were tested (mean viability ± standard error of the mean, n = 

3). Exposure solutions were evaluated at concentrations equivalent to 100, 80, 60, 40, 20, 

and 0% of the culture density, as expressed by optical density at 720 nm. 
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Figure 3.18. The effect of chrysophyte metabolites produced in exponential phase was 

assessed with the ELA. Extracts from four isolates ((a) CPCC 495, Synura petersenii, (b) 

CPCC 422 Synura uvella, (c) CPCC 392, Dinobryon sp. (d) CPCC 276, Uroglena sp.) 

and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM lysed, and Fe 0.1 μM lysed) were 

tested (mean viability ± standard error of the mean, n = 3). Exposure solutions were 

evaluated at concentrations equivalent to 100, 80, 60, 40, 20, and 0% of the culture 

density, as expressed by optical density at 720 nm. 
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Figure 3.19 The effect of chrysophyte metabolites produced in stationary phase was 

assessed with the ELA. Extracts from four isolates ((a) CPCC 495, Synura petersenii, (b) 

CPCC 422 Synura uvella, (c) CPCC 392, Dinobryon sp. (d) CPCC 276, Uroglena sp.) 

and four treatments (Fe 10 μM, Fe 0.1 μM, Fe 10 μM lysed, and Fe 0.1 μM lysed) were 

tested (mean viability ± standard error of the mean, n = 3). Exposure solutions were 

evaluated at concentrations equivalent to 100, 80, 60, 40, 20, and 0% of the culture 

density, as expressed by optical density at 720 nm. 
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3.4 Discussion 

Freshwater algae produce a large number of toxic, noxious, and bioactive 

metabolites, and selecting one specific test to quantify these effects is seemingly 

impossible.  Using a bioassay, rather than an extraction and evaluation test, may provide 

useful information on both the general toxicity of a sample, and on the directed regulation 

of toxins (Fent, 2001).   

Two tests using dramatically different cell types, the gill cell line (RCA, 

metabolic activity) and the red blood cell bioassay (ELA, membrane integrity), were 

chosen to evaluate the cytotoxic effects of both individual compounds and of extracts 

from algal cells grown under specific conditions. These two tests are complementary and 

provide an opportunity to evaluate samples on multiple cell structures.   

Despite the application of seven microcystin variants and nodularin at a 

concentration that exceeded environmentally measured averages (Table 3.4), the RCA 

proved to be insensitive to detecting these compounds (Figure 3.8).  Fish and mammalian 

cell lines generally show a wide range of sensitivities to these hepatotoxins, although no 

mammalian or fish cell line has been shown to be sensitive to microcystins at 

environmentally measured concentrations (McDermott et al., 1998; Chong et al., 2000; 

Pichardo et al., 2005, 2006, 2007).  This repeated insensitivity may be due to the nature 

of the cell-based assays, which are primarily tests for acute cytotoxic effects, while 

microcystins, nodularins and a variety of other cyanotoxins generally show effects over 

periods of long-term (chronic) exposure (Schindler 1987; Chen et al., 2009; El Ghazali et 

al., 2010).   

 The RCA also proved to be predominantly insensitive to the noxious taste and 

odour compounds tested (Figure 3.9).  With the exception of the moderate losses in 

viability observed in the heptadienal trials, the investigated compounds caused negligible 

decreases in viability at average environmental concentrations (Table 3.4).  Although 

these compounds do not have the extensive history with bioassay work as is seen with 

microcystins, the documented qualities of these compounds as potential dermal irritants 

makes these results somewhat unexpected (Graham et al., 2008).  However, these 

compounds are generally recognized for their ability to produce foul odours, rather than 

their ability to adversely affect surrounding biota (Watson, 2003).   
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 The significant decreases in viability observed in the RCA trials involving 

bioactive metabolites from cyanobacteria cultures have shed light on several key areas of 

cyanobacteria metabolite production and storage.  The most consistent result observed 

was the lack of response seen from exposure solutions derived from exponential phase 

relative to those from stationary phase (Figure 3.10, 3.11).  Despite a reduction in 

viability seen in the high (10 μM) Fe treatments in the exponential phase sample from 

isolate CPCC 64 (A. flos-aquae), the remaining four isolates showed no losses in viability 

from any sample derived from exponential growth phase.  This suggests that either the 

cytotoxic/bioactive compounds are not being produced in the exponential phase, or that 

they are being produced but are not present at high enough quantities to have a significant 

impact on the RCA.  This result is opposite to my predicted outcome, and does not 

support the findings from similar studies that evaluated cyanobacterial toxin production 

rates in exponential phase (Schatz et al., 2007; Kaplan et al., 2012).   

Another observation from the cyanobacteria testing was the propensity for lysed 

samples (intracellular + extracellular material) to result in greater decreases in RCA 

viability relative to the non-lysed samples (extracellular material only) of the same 

treatment (Figure 3.10, 3.11).  This observation supports my prediction, as well as 

previous work suggesting that the proportion of bioactive material that is retained inside 

the cell over the course of its growth is greater than the proportion that is excreted to the 

extracellular environment (prior to senescence) (Park et al., 1998).  This may have played 

a role in the differences observed in the exponential and stationary phase tests, as the 

accumulation of intracellular compound would increase proportionally with the age of the 

cells (Park et al., 1998).   

The role of Fe was also observed to be a contributing factor in the cytotoxicity of 

the bioactive metabolites taken from cyanobacteria cultures.  Contrary to my expectations 

that nutrient limitation increased toxicity, it was generally the Fe-replete (10 μM) 

treatments that resulted in the greatest reductions in RCA viability (Figure 3.10).  Cells 

grown under the elevated Fe concentration repeatedly proved to provide the most 

cytotoxic samples, providing support for the claim that it is under optimum growth 

conditions, rather than nutrient limitation, that bioactive compound synthesis is at its peak 

(Kaebernick & Neilan, 2001).  This result suggests that the Fe-limited conditions that 
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favour microcystin production are not necessarily ideal for the production of a wider 

variety of bioactive compounds as has been suggested by previous work (Alexova et al., 

2011; Kaplan et al., 2012).  Furthermore, it is likely that the bioactive products 

responsible for the loss in viability in the RCA are derivatives of molecules produced by 

photosynthetic processes (Kaebernick & Neilan, 2001).  Fe-limited treatments may 

decrease the cells’ photosynthetic efficiency and therefore limit the production of these 

molecules. 

Aside from the large declines in viability observed in the stationary phase, high 

(10 μM) Fe, lysed treatment of algal isolate CPCC 495 (S. petersenii), no decline in 

viability was observed in any other chrysophyte-derived treatment (Figure 3.12, 3.13).  

The loss in viability seen in isolate CPCC 495 suggests similar patterns to that of the 

cyanobacteria tests — high (10 μM) Fe conditions and intracellular storage may be 

factors in their production of the bioactive compounds — however, these findings are not 

supported by any of the other three chrysophyte isolates tested.   

The overall lack of response seen in the RCA when exposed to mixtures isolated 

from chrysophyte cultures was likely a result of an inability to grow cultures to sufficient 

densities, and there may be potential for this assay to be used in the future with these 

isolates. Concentration of cell cultures to increase density was considered following the 

growth experiments of the chrysophyte cultures; however, these techniques led to a level 

of complexity that would remove many of the advantages gained by using cell-based 

assays. 

The relative lack of sensitivity of the ELA towards the toxic and noxious 

compounds investigated indicates that the selected compounds do not cause hemolysis or 

cytotoxic responses based on membrane disruption at environmentally relevant 

concentrations (Figure 3.14, 3.15).  Only at extremely high concentrations of the selected 

noxious compounds were detectable rates of lysis observed, often at concentrations more 

than five orders of magnitude beyond the environmental measured levels (Figure 3.15, 

Table 3.4).  These results for the toxins tested confirm previous work by Grabow et al. 

(1982), Henning et al., (1992) and Zhang et al. (2011) that detected hemolysis only at 

extremely high exposure concentrations.  These results also  
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Similarly, an overall lack of hemolytic response was observed when applying the 

cyanobacteria and chrysophyte culture-derived samples (Figure 3.16-3.19).  The 

exceptions were the moderate (~30%) lysis observed in the lysed treatments of isolate 

CPCC 543 (A. flos-aquae) in both exponential and stationary phase tests, as well as the 

lysed treatments of CPCC 64 (A. flos-aquae) in stationary phase.  This observation 

supports the finding of freshwater cyanobacteria producing hemolytic compounds, even 

though full erythrocyte lysis was not achieved at the highest tested concentration (Wang 

et al., 2007; Zhang et al., 2011). These results, when combined with the information 

gained from the toxin observations, generally support the finding that microcystins are 

not the key factor in the hemolysins produced by cyanobacteria (Henning et al., 1992).  

3.5 Conclusions 

 The RCA and ELA were ineffective at detecting responses to compounds at or 

below environmental average concentrations (H1).  Significant declines in viability were 

not observed in any toxin trial up to three orders of magnitude above environmentally 

observed averages.  Analysis of noxious compounds revealed similar insensitivity with 

both assays, although declines in viability were observed at concentrations greater than 2 

orders of magnitude above environmentally observed averages. This study was the first to 

investigate the effects of all of these compounds using either the ELA or RCA. 

 Conversely, the RCA proved to be very sensitive to undefined algal metabolites 

produced by the cyanobacteria isolates tested (H2).  This is a novel result and is the first 

evidence of extracts from cyanobacterial cultures being used against the RCA to evaluate 

cytotoxicity.  Samples derived from stationary phase growth experiments showed a 

tendency to result in greater decrease in viability of the RCA relative to their counterparts 

derived from exponential phase growth experiments.   

The above observation counters the predicted result and indicates that the 

production of secondary metabolites and other bioactive compounds capable of 

producing cytotoxic effects may be favoured.  My prediction hinged on the increased rate 

of production of bioactive compounds in exponential phase being the major factor in 

decreasing cell viability. My results indicate that it is not the rate of production but the 

build-up of these compounds inside the cell that is more closely related to cytotoxic 
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responses (leading to larger decreases in viability being observed in stationary phase 

tests).  

As predicted, exposure solutions derived from lysed cultures (intracellular + 

extracellular compounds) generally resulted in decreases in RCA viability relative to 

solutions derived from non-lysed samples (extracellular compounds only).  It is likely 

that the cytotoxic and bioactive compounds responsible for the observed decreases in 

RCA viability are primarily stored intra-cellular.  

Cyanobacteria isolates grown in Fe-replete (10 μM) conditions generally were 

responsible for greater decreases in viability of the RCA, suggesting that the production 

of cytotoxins is greater in these conditions than in Fe-deplete (0.1 μM) medium. 

Comparing this finding to the established link between Fe-deplete conditions and the 

stimulation of microcystin production suggests that the monitoring of microcystin levels 

in natural systems is likely not a good indicator of the overall levels of cytotoxic and/or 

bioactive compounds present in a sample, although it is still an important parameter to 

monitor in terms of drinking water quality. 

 The RCA proved to be a sensitive technique for the assessment of production of 

cytotoxins in laboratory cultures, although not ideally sensitive to relevant concentrations 

of the toxin and noxious compounds tested.  Cultures were grown to densities above 

those normally observed in natural systems, so adaptation to field studies may require a 

concentration step.  Despite the repeated use of the ELA for marine and freshwater algal 

research the assay was not ideal for use with the toxins, noxious compounds, or isolates 

selected for this study.  Concentration of algal samples (via SPATT bags, dialysis bags, 

etc.) would be a necessary step to making this assay suitable for use with isolates that 

produce low levels of hemolysins. 
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Chapter 4 

General Conclusions 

4.1 Scientific Findings 

The two aims of this thesis were to (1) review the current state of knowledge in 

terms of toxic, noxious, and/or bioactive compound production by bloom forming 

freshwater algae; and (2) investigate the use of two cell-based assays designed to evaluate 

the cytotoxic effects of these compounds. My review of freshwater toxins and noxious 

compounds produced by cyanobacteria and chrysophyte algae in Chapter 2 is a unique 

synthesis of information not currently found in the literature. By combining research 

from a variety of sources and assessing the totality of the information in one place the 

stark differences in the mode of action, risk of exposure, and genera responsible for 

production of each class of compound are easily identified. Through this review the 

importance of the emerging group of compounds known as bioactive compounds 

emerged. Little research has been done to this point with regards to these compounds, and 

the details provided in the review summarize the latest information available. The 

importance of bioactive compounds on cytotoxicity and the inhibition of cellular 

processes were further demonstrated in some of the results from my experimental work in 

Chapter 3. This review provides a resource for aquatic researchers and as it provides the 

latest information on the subject of freshwater algal toxicology. 

My investigation into suitable cell-based bioassays established that the RCA and 

ELA were ineffective at detecting individual toxic or noxious compounds at 

concentrations at or below environmental averages (H1).  Declines in cell viability were 

observed at concentrations that greatly exceed environmentally measured concentrations.  

This outcome suggests that these assays are not ideal for analysis of these particular 

compounds in isolation (Figure 4.1).  

However, the RCA proved to be sensitive to metabolites produced by the algal 

isolates tested, specifically those produced by cyanobacteria (H2).  Complete loss of 

viability was observed in RCA tests against all cyanobacteria isolates collected during 

stationary phase growth under high (10 μM) Fe, lysed treatments.  Additionally, all 



88 

 

cyanobacteria isolates except CPCC 64 (A. flos-aquae) and 543 (Apha. schindlerii) 

showed losses in viability when extracts from stationary phase growth under high (10 

μM) Fe, non-lysed samples were tested.  These results suggest that the harmful 

metabolites responsible for decreased in RCA viability are being produced at higher 

concentrations under high (10 μM) Fe conditions relative to low (0.1 μM) Fe conditions.  

This may be due to the increased capacity of the cyanobacteria to photosynthesize at 

higher rates under Fe replete conditions, allowing for a continued production of 

metabolites within the cell (Rueter & Ades, 1987).  These results also suggest that the 

RCA is a tool that is sensitive enough to be used as a part of a sampling regimen for 

cyanobacteria blooms events, and would be helpful in identifying the biological hazards 

presented by cyanobacteria bloom events (Figure 4.1). 

Furthermore, when comparing the results of the RCA tests with cyanobacteria 

extracts and the negative results observed in the toxin and noxious compound trials, it is 

apparent that there must be another group of compounds being produced by the 

cyanobacteria isolates. Based on the findings in Chapter 2, it is possible that it is the 

bioactive compounds produced by the cyanobacteria isolates that are the key players in 

the observed losses in RCA viability. Although no data is available with regards to the 

production of these bioactive compounds with each isolate tested, it is likely that they are 

in part responsible for observed losses in viability. 

In contrast, ELA proved to be insensitive to the mixtures of compounds produced 

by the algal isolates tested (H2).  Slight declines in viability were observed in 

cyanobacteria isolates CPCC 124 (M. aeruginosa), 64 (A. flos-aquae), and 543 (Apha. 

schindlerii), specifically in the high (10 μM) Fe, lysed treatments.  Complete loss of 

viability was not observed in any treatment, even at the highest concentrations tested.  

This result does not mean that the algal isolates were all unable to produce of hemolytic 

compounds, but rather that they were likely produced at concentrations too low to induce 

toxicity.  

Declines in RCA viability were observed when extracts from chrysophyte isolate 

CPCC495 were tested.  Similar to the outcomes of the cyanobacteria trials, the high (10 

μM) Fe, lysed treatment resulted the largest decline in viability.  All other results 
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involving the extracts from chrysophyte isolates had no declines in viability, and this 

result may have been a product of the relatively low culture density that was achieved. 

4.2 Management Implications 

Comparing my findings to the established concepts of individual compound 

assessments raises concerns in terms of traditional monitoring strategies.  My results 

show that monitoring of individual compound concentrations (such as microcystins) in 

natural systems is likely not a good indicator of the overall levels of cytotoxic and/or 

bioactive compounds present in a sample. My results suggest that the complex mixtures 

of bioactive compounds produced by cyanobacteria may have additive and or synergistic 

effects that cannot be accounted for via the analysis of individual compounds.  Further 

development of affordable but biologically comprehensive methods of testing are 

essential for expanding understanding of how the complex mixtures of toxic and noxious 

compounds act together in open systems.  Cell-based assays such as the RCA and ELA 

are generally not sensitive enough to include as part of routine analysis for compound-

specific identification, but may have value as secondary tools to assess algal toxicity 

when trying to assess the biological risk posed by a cyanobacteria bloom event (Figure 

4.1). 

4.3 Future Research Directions 

Further investigations into the use of cell-based assays to evaluate the toxic, 

noxious and/or bioactive compounds produced by bloom-forming freshwater algae are 

necessary to determine the most effective biological analysis of these compounds as they 

occur in mixtures.  The ELA and RCA represent two of the most likely candidates for 

further use as their ability for detection has been documented here and in other 

publications (Wang et al., 2007; Dorantes-Aranda et al., 2011).  Expanding the search for 

cell lines that may not have been previously investigated for this type of application, and 

exploring the ability of these cell lines to respond to a range of compounds produced by 

freshwater algae is essential in identifying new methodologies.  Putting an emphasis on 

assays that employ high throughput technologies is also important for future work, as this 

allows for maximization of the number of samples that can be analyzed per unit effort. 
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Figure 4.1. Flow chart illustrating the suitability of cell based assays to be used as 

screening tools for toxic and noxious compounds produced by cyanobacteria. X indicates 

test insensitive for application, and √ indicates that test is sensitive for application. 
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Appendix A 

 

 

 

Schematic diagram of the chemostat apparatus used for cyanobacteria exponential growth 

at high (10 µM) and low (0.1 µM) Fe treatments. This design, specifically when used 

with a variable speed pump, allows the optimization and maintenance of cultures in 

exponential growth phase. This is made possible by determining the maximum growth 

rate (μmax) of the culture and adjusting the dilution rate to match this value. Diagram not 

to scale. 
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