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ABSTRACT 

Renal ischemia-reperfusion injury (IRI) occurs following reduced renal blood flow 

and is a major cause of acute injury in both native and transplanted kidneys. We 

have previously demonstrated that NK cells can mediate tubular cell death and 

kidney IRI. Natural killer receptor-protein 1B (NKR-P1B) has been shown to interact 

with C-type lectin-related protein B (Clr-b), resulting in the suppression of NK cell-

mediated cytotoxicity.  

Clr-b mRNA and protein expression in the kidney were up-regulated after renal IRI. 

Similar upregulation of Clr-b expression was seen in cytokine-challenged primary-

cultured tubular epithelial cells (TEC). Furthermore, NK cytotoxicity assays 

demonstrated enhanced necrotic death in TEC after Clr-b siRNA knockdown.  

Our results indicate that Clr-b expression in TEC and the kidney is upregulated after 

injury. The blockade of Clr-b enhances NK cell-mediated TEC death and kidney 

injury. These studies suggest that enhancing the inhibitory Clr-b in transplant 

patients may protect the kidney from NK cell-mediated cytotoxicity. 
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Chapter 1  

1 Introduction 

1.1 The anatomy of the kidneys 

The kidney is a bean-shaped structure with a concave and convex surface 

(Figure 1). The concave surface lies the renal hilum, where the renal artery 

enters the organ and the renal vein and ureter exit. Surrounding the kidney is the 

renal capsule, composed of fibrous tissue, which is in turn surrounded by the 

adipose capsule, renal fascia and pararenal fat. The parenchyma is divided into 

the superficial renal cortex and the deep renal medulla. These structures consist 

of cone-shaped renal pyramids and renal columns spanning both the renal cortex 

and medulla. Within these structures are nephrons acting as the functional units 

of the kidney (Figure 1). The initial filtering portion of a nephron is the renal 

corpuscle, located in the cortex, followed by a renal tubule in the medullary 

pyramids. The medullary ray is a collection of renal tubules and part of the renal 

cortex that drains into a single collecting duct. Each renal pyramid empties urine 

into a minor calyx. The minor calyces empty into major calyces, which empty into 

the renal pelvis. 

 



2 

 

 

.  

 



3 

 

Figure 1. Structure of the kidney 

The kidney is divided into the renal cortex and medulla, consisting of renal 

pyramids and renal columns. Nephrons are functional units that span the cortex 

and medulla. Damage and the resulting inflammation in these structures may 

lead to renal dysfunction and organ loss in severe cases. 
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1.2 Challenges in kidney transplantation 

The most common risk factors associated with chronic kidney disease (CKD) 

between 2005 – 2010 in the United States are diabetes mellitus, hypertension, 

and cardiovascular disease223. In early stages of CKD, proper diet and 

medication may help the kidney maintain function. When kidney function drops 

below 10-15%, however, complications may develop and can lead to death254. In 

these cases, patients will require dialysis or a kidney transplant. Kidney diseases 

may involve the glomerulus such as diabetic nephropathy, bacterial endocarditis, 

Alport Syndrome, systemic lupus erythematosus and focal segmental 

glomerulosclerosis81. Diseases such as polycystic kidney disease144 and reflux 

nephropathy61 cause damage to the tubulointerstitium, while vascular damages 

may result from renal artery stenosis48 and Hemolytic Uremic Syndrome16. 

Kidney stones46 and prostate diseases187 may also lead to obstruction of the 

kidney. These diseases result in renal dysfunction and, if severe, may require 

patients to undergo kidney transplantation or dialysis. 

Kidney transplantation may be necessary for patients with end-stage renal 

diseases. A typical kidney transplant patient is expected to live 10 to 15 years 

longer than on dialysis256. However, kidney transplantation may involve an array 

of complications that ultimately result in organ injury and rejection. Factors 

affecting organ viability includes donor age, prolonged cold ischemic time, 

delayed graft function and acute tubular necrosis, living or deceased donor, renal 

mass, and donor brain injury103. Side effects of immunosuppressants may lead to 

sepsis and viral infections, including human cytomegalovirus and Bren nan-

Krohn polyomavirus103. Recipient factors affecting kidney grafts may include lipid 

disorders, diabetes, recurrent diseases, compliance, hypertension, and 

obstruction103. At the immunological level, allograft injury may be caused by 

direct or indirect allorecognition, donor-host mismatch, subclinical inflammation, 

co-stimulatory signaling, inadequate immunosuppression, or antibody-mediated 

rejection103. The resultant inflammation may lead to kidney failure and graft loss. 
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1.3 Acute allograft injury in kidney transplantation 

Transplantation is invariably associated with organ injury resulting from ischemia-

reperfusion injury (IRI)127, inflammation218, drug toxicity45 and rejection235. The 

kidney is vulnerable to diverse forms of injury leading to dysfunction and, in most 

severe instances, delayed graft function. Similarly, IRI, which occurs during the 

early stage of kidney transplant surgery, is a major cause of delayed graft 

function and if severe can lead to early allograft loss214. Renal IRI is a major 

cause of acute renal failure (ARF) and is associated with reduced renal blood 

flow, contributing to up to 50% mortality rate225. Following ischemia, there is 

oxidative stress causing cytokine and chemokine upregulation and also cell 

death. The result is the recruitment of inflammatory cells, which further mediates 

injury through direct cell-cell contact or indirect cytokine and chemokine 

production inside the graft164, 232. Recruitment of leukocytes into the site of injury 

is mediated by cell adhesion molecules37, 164.  

A broad range of extracellular and intracellular factors contribute to IRI. Studies 

have demonstrated that Fas-Fas ligand (FasL) interactions between tubular 

epithelial cells (TEC) lead to self-induced and inflammatory cell-mediated 

apoptosis67, 68, 173. This death receptor pathway of apoptosis involves caspase-8 

activity, as Fas stimulation by anti-Fas antibody causes liver destruction and 

mortality only in mice with functional caspase-8175. Lethality in caspase-8-

deficient mice has been traced to failure in early vascularization and 

haematopoietic development238. Lack of functional Fas, FasL or caspase-8 also 

accumulates T lymphocytes and results in progressive severe 

lymphoaccumulation175, 215. 

Disruption of Fas-FasL interactions or Fas signaling through caspase-8 inhibition 

in vivo has proven to be successful in rodent kidney transplant models by our 

group69, 166, 266. It has been difficult, however, to establish a role for this receptor 

in allograft injury because Fas expression may vary nonspecifically in the graft25. 
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A study on genes involved with host-mediated cellular response in renal biopsies 

from transplant patients found high expression of perforin, granzyme B and 

FasL211. In acute renal allograft rejection, TEC death commonly occurs via both 

the perforin and granzyme B lytic pathways and Fas-FasL system25, 84, 253. 

Studies examining perforin and granzyme B found that this pathway was 

responsible for cluster of differentiation (CD)4+ T lymphocyte-mediated renal 

tubular cell destruction129, 177, 253. The Fas-FasL system, on the other hand, has 

been shown to reduce immune responses by initiating apoptosis of immune 

cells58, 196 and apoptosis of TEC180, 239. FasL is expressed not only on 

macrophages, neutrophils, T, B and natural killer (NK) cells, but also TEC25, 179, 

where it induces the elimination of antigen-activated CD4+ T lymphocytes3. Fas-

FasL interactions have also been associated with chronic renal injury and graft 

survival, and Fas polymorphisms may affect graft survival202. 

Involvement of endogenous tumour necrosis factor-α (TNF-α) has also been 

documented in kidney IRI53, 62, 63. Resident dendritic cells appear to be the 

predominant source in the early-stages62, and TNF-α binding with its receptor 

induces one of the death receptor pathways of apoptosis11. This pathway 

involves the adaptor molecule Fas-Associated protein with Death Domain 

(FADD), which binds to the intracellular region of the receptor. FADD activates 

caspase-8 and initiates apoptosis23. Fas-associated death domain-like 

interleukin-1β converting enzyme-like inhibitory protein (FLIP) is an endogenous 

inhibitor that resembles caspase-8 but lacks a catalytic site and antagonizes this 

pathway227. However, biochemical and structural studies have indicated that 

FLIP can heterodimerize with caspase-8 to impart catalytic activity, even in the 

absence of interdomain cleavage which is typically required for caspase-8 

homodimer stabilization and activity22, 39. Gene ablation of caspase-8238, FADD259 

or FLIP258 leads to embryonic lethality, illustrating the physiological significance 

of these proteins. 

Recent studies have revealed that knockdown of caspase-8 does not simply 

prevent cell death but also sensitizes cells to necrosis240. Necrotic induction by 
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TNF-α in response to caspase-8 inhibitors involves the kinase activity of 

receptor-interacting protein kinase (RIPK)-157, 94 and -344, 89, 263. NADPH oxidase, 

mitochondrial reactive oxygen species (ROS)240, and metabolic enzymes263 

production have been demonstrated as possible downstream effectors of RIPK3. 

Interestingly, while caspase-8 deletion is lethal during embryonic development, 

RIPK3 ablation rescues the lethal phenotype of caspase-8-deficient mice175. 

RIPK1 and RIPK3 associate with FADD to induce necrosis only after caspase-8 

or FLIP knockdown, as the caspase-8-FLIP heterodimer prevents their 

stabilization through RIPK1 cleavage175, 185. TNF receptor type 1 (TNFR1), Fas 

and TNF-related apoptosis-inducing ligand (TRAIL) receptors are all capable of 

triggering RIPK-dependent necrosis in the absence of caspase-894.  

Besides conventional Fas- and TNF-α-induced cell death, TEC apoptosis can 

also result from oxidative stress and its associated mediators, including ROS, 

cytokines, chemokines and nitric oxide (NO)66, 82, 164, 232. Under physiological 

conditions, ROS are broken down by superoxides and other oxidases, including 

superoxide dismutase, catalase, and glutathione peroxidase. During IRI, 

however, the excessive production of ROS overwhelms the free radical 

scavenging system. The consequence is lipid peroxidation of cell membranes, 

DNA fragmentation, and sulfhydryl-mediated protein cross-linkage, all of which 

leads to cellular injury232. Compromise of mitochondrial ATP production can also 

inhibit the sarcoplasmic reticulum’s calcium ATPase and sodium-potassium 

ATPase activities, leading to cellular calcium accumulation92. It has been 

demonstrated that oxygen radicals result in the chemotaxis of neutrophils, which 

are sources of further radical generation195.  

NO production or inducible nitric oxide synthase (iNOS) upregulation during 

inflammation has been reported in infiltrating mononuclear cells167 and within the 

kidney, including glomerular, mesangial, smooth muscle and tubular epithelial 

cells153, 184, 193. NO, while at low levels exert cytoprotective effects, are potentially 

toxic at higher levels129. Studies have revealed that the production of cytokines 

such as IL-1β, TNF-α and interferon-γ (IFN-γ) leads to increased expression of 
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iNOS15, 167, 241. The resulting increase in nitric oxide promotes FasL expression, 

causing Fas- and caspase-8-mediated apoptosis71, 86, 241. Many of the toxic 

effects of NO are mediated indirectly by its oxidative reaction products, such as 

peroxynitrite. In the kidney, higher nitric oxide concentrations have been 

demonstrated to promote cellular injury153, 184, 193. 

Chemokines are also early major mediators of inflammation, promoting pro-

inflammatory cytokine expression, upregulating endothelial cell adhesion 

molecules, leukocyte infiltration and activation. The CC, CXC, and CX3C 

chemokine families have been implicated in kidney IRI102, 220. Renal IRI results in 

activation of the complement system in TEC and induces cells to produce pro-

inflammatory chemokines4. TEC have been shown to express toll-like receptor 

(TLR)-2 and -4 which cause the production of a variety of chemokines, some of 

which can also be induced by complement activation fragments, including 

CXCL1, macrophage inflammatory protein 2 (MIP-2), IL-6, and TNF-α4.  

Previous studies have demonstrated that macrophages and neutrophils infiltrate 

the kidney post-injury, playing an important role in tubular dysfunction24, 56, 65, 261. 

It has also been suggested that many cell types of the adaptive immune system 

participate in kidney IRI10, 27, 54, 55, 188, 201, 262. CD4+ T cells have been 

demonstrated to infiltrate the organ within the first 4 hours but vanish after a day 

following ischemia, coined the “hit-and-run” phenomenon10, 77, 135 and likely 

through the Fas-FasL pathway121. In addition, CD19+ B cells, CD4+ NK1.1+ NKT 

cells, and CD3- NK1.1+ NK cells also infiltrate the kidney shortly after injury, 

suggesting that a complex multi-factorial inflammatory response is triggered by 

kidney IRI10. This is further supported by studies showing that NKT cells promote 

neutrophil infiltration and IFN-γ production after IRI142, while NK cells also 

promote neutrophil infiltration and TEC expression of CD137115. As kidney injury 

results from multiple molecular events in TEC and inflammatory cells, further 

investigation is necessary for a more thorough understanding of inflammation-

mediated kidney injuries. 
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1.4 Chronic allograft injury in kidney transplantation 

While acute rejection rates are very low in the era of modern 

immunosuppression, chronic renal injury remains a significant clinical issue. 

There are several characterizations of chronic allograft nephropathy (CAN), 

including progressive tubular atrophy and interstitial fibrosis, as well as 

microvascular and glomerular damage103. Graft function may decline within 

months to years after transplantation103. The incidence of this disorder can be up 

to 60% of grafts 10 years post-transplant. As there are currently no specific 

strategies to prevent CAN, a more direct approach to limit TEC atrophy and 

fibrosis may produce better long-term outcomes for kidney grafts. 

Tubular epithelial cells comprise more than 75% of renal parenchymal cells and 

their susceptibility to injury directs long-term function of kidney allografts, as 

tubular injury can be a primary cause for nephron loss191. Apoptosis is an innate 

mechanism required for kidney remodelling and repair. When cell death exceeds 

the kidney`s regenerative capacity, there may be loss of function and even 

premature graft failure. In many patients, a gradual loss of renal function occurs 

after transplantation, causing chronic allograft injury and becoming a critical 

problem in clinical settings214. Although kidney tubular cells are highly capable of 

regeneration after injury174, it remains unclear as to how early-stage ischemic 

injury negatively influences allograft function over long-term survival.  

Studies have suggested that IRI may play a role in permitting kidney allograft 

tolerance40, 50, 128, 169. Recent studies have demonstrated that lymphatic 

neoangiogenesis may contribute to chronic renal graft injury112, 113. Tertiary 

lymphoid tissues have been found in patients with graft loss114 and are 

associated with chronic rejection and alloantibody production226. Others have 

suggested that epithelial-to-mesenchymal transition (EMT) may be a common 

pathway leading to chronic graft function loss244, 251. EMT has been described in 

other chronic kidney diseases with fibrosis, and TEC injury has been associated 
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with the development of fibroblasts within the interstitium of the kidney108. 

Consistent with this, connective tissue growth factor (C-TGF) and transforming 

growth factor-β (TGF-β) have been shown to be involved in the fibrotic response 

in kidney allografts42, 51, 52, 78. In kidney transplant models, C-TGF can induce 

transformation of kidney TEC into fibroblasts42. Furthermore, high-mobility group 

protein 1 (HMGB-1) has been observed as an extracellular secreted protein in 

serum of patients with sepsis and regulates the production of interleukin (IL)-1 

and TNF-α during inflammation70. HMGB-1 has been suggested to be a key 

mediator of immune-mediated EMT in TEC by reducing E-cadherin expression, 

increasing α-smooth muscle actin expression and enhancing cell migration151. 

Other factors involved in augmenting TGF-β signalling, such as endothelin-1231, 

platelet-derived growth factor-BB (PDGF-BB), epidermal growth factor (EGF), 

and basic fibroblast growth factor (bFGF)247, or counteracting TGF-β signalling, 

such as bone morphogenic protein-7 and hepatocyte growth factor (HGF), are 

also potentially important in the response to injury.  

Although progress has been made, greater knowledge about the 

pathophysiology of IRI and chronic kidney graft injury is required to develop 

rational and effective therapeutics. There are currently no specific treatments 

available to prevent IRI, as it involves a complex biological process and many 

contributing factors that have not yet been clearly identified. Understanding the 

precise mechanisms behind IRI and late kidney graft loss is therefore vital for 

identifying clinically-effective approaches. 

 

1.5 NK cell biology 

NK cells are predominantly derived from the bone marrow and provide a first line 

of defense against pathogens and cancer. Immature NK cells lie in the bone 

marrow and lymph nodes, whereas mature NK cells can be primarily found in the 

spleen, peripheral blood, and lungs6, 88, 116. Studies have demonstrated the 

existence of bipotent NK/T progenitor cells in the thymus35, 64, 192. NK cells are 



11 

 

responsible for attacking abnormal or foreign cells by releasing perforin and 

granzymes to initiate cytotoxicity, or secreting inflammatory cytokines, such as 

IFN-γ, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF). 

NK cells are believed to be triggered based on the “missing-self” hypothesis, 

where target cells with defective major histocompatibility complex (MHC) class I 

expression are identified and eliminated by NK cells. Viruses such as 

cytomegaloviruses and human immunodeficiency viruses can evade the NK 

cell’s immune surveillance system by manipulating the balancing of NK receptor 

signalling interactions178.  

The natural killer gene complex (NKC) encodes type II integral membrane 

proteins with C-type lectin-like extracellular domains260. Receptors from the same 

family have been demonstrated to exhibit opposing functions. For example, 

Ly49A, Ly49C, and Ly49G recognize MHC Class I antigens and act as inhibitory 

receptors, while Ly49D and Ly49H stimulate NK cell activity109, 118, 156, 217. 

Inhibitory Ly-49 engagement prevents NK cells from attacking “self-MHC” class I-

expressing cells, whereas activating receptors such as natural-killer group 2 

member D (NKG2D) permit NK cells to attack “non-self” MHC molecules and 

cells deficient of self-MHC class I molecules. In the presence of normal MHC 

class I molecules, inhibitory receptors tend to dominate NK cell function182. 

However, activating receptors can overcome the inhibition depending on the 

target cell’s regulation of its surface ligands. For example, stress-induced 

expression of ligands for NKG2D can activate NK cell-mediated cytotoxicity even 

in the presence of MHC class I molecules17, 59. As NK cell activity is modulated 

by multiple receptors, further studies need to be conducted to elucidate their 

functions. 

NK cell receptor expression can also mark different developmental stages. 

Natural killer receptor-protein 1 (NKR-P1) acquisition is an early developmental 

event, followed by CD94/NKG2. Final NK cell maturation is reached after Ly49 

expression, consisting of a full set of NK cell receptors and effector functions73, 

117. In mice and humans, fully mature NK cells can be identified by expression of 



12 

 

the integrin CD11b116. Interestingly, immature murine NK cells are CD11b- CD27- 

and transit through CD11b- CD27+ and CD11b+ CD27+ until fully maturing as 

CD11b+ CD27- cells43, 88. In humans, NK cells can be differentiated based on their 

surface density of CD5676, 137, 206. Fully differentiated NK cells are associated with 

low CD56 expression and are highly cytotoxic, whereas less mature and 

cytotoxic NK cells have high expression of CD56216, 245. NK cells expressing high 

levels of CD56 are believed to be the main contributors of IFN-γ release upon 

cytokine stimulation, while NK cells with low CD56 can produce IFN-γ upon 

interaction with target cells72. Low-expressing CD56 NK cells are also associated 

with Killer cell immunoglobulin-like receptor (KIR) expression, and high-

expressing CD56 NK cells express CD94/NKG2 receptors73. In rats, Ly49 

expression is found primarily in NK cells with Ly49 stimulatory receptor 3, while 

NKG2 receptors are mainly expressed in NK cell subsets with NKR-P1B100, 133. 

NK cell development undergoes various stages of maturation through the 

programmed acquisition of receptors and ligands. 

 

1.6 Role of NK cells on kidney injury  

NK cells are important participants in early-stage innate immune responses. In 

solid organ transplantation, NK cells have emerged as a particular focus of 

interest because of their potent cytolytic activity and their ability to distinguish 

between allogeneic MHC antigens. NK cells have been shown to participate in 

both acute and chronic rejection of solid organ allografts18 and are influenced by 

immunosuppressive drugs such as calcineurin inhibitors, steroids, or therapeutic 

antibodies. After ischemia, NK cells quickly infiltrate kidney grafts and participate 

in renal IRI265. It has been demonstrated in several studies that NK cells can 

determine transplant survival by rejecting an allograft indirectly by influencing the 

alloreactivity of T cells or by killing antigen-presenting cells28. Recent findings 

also demonstrated that NK cells can induce allograft tolerance, suggesting that 

the role of NK cells in graft rejection and tolerance needs to be reconsidered. In 
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order to understand the role of NK cells in kidney injury, it is important to 

decipher the mechanisms regulating NK cell function in the kidney. 

Unlike T and B cell responses, NK cells are constitutively cytotoxic and can lyse 

target cells without pre-sensitization. Along with cellular toxicity, IFN-γ and TNF-α 

production by NK cells form an essential component of their innate immune 

response150, 246, 268. We have recently shown that NK cells can lyse TEC in a 

perforin-dependent manner and contribute to renal IRI264, 265. NK cells infiltrate 

the kidney as early as 30 minutes after IRI and regress to low levels after 24 

hours265. Depletion of NK cells in mice inhibited kidney IRI and adoptive transfer 

of NK cells worsen injury265. We also previously found that, while osteopontin is 

important for tissue repair and can inhibit TEC apoptosis, it is highly expressed in 

the kidney after IRI and contribute to NK cell activation and mediate TEC 

death264. Furthermore, increases in the NKG2D ligands retinoic acid early 

inducible-1 (Rae-1), murine ULBP-like transcript 1 (MULT-1) and 

histocompatibility 60 (H60) were also observed in mouse kidneys after renal IRI41, 

265. Ectopic expression of Rae-1b or H60 in various tumour cell lines have 

resulted in NK cell-mediated rejection of the tumour cells by syngeneic mice60. As 

a subset of NK cells remain long-term in kidney grafts, a potential role for NK 

cells exist in chronic graft dysfunction as well as regulation of NK cell function by 

the kidney. 

 

1.7 Regulatory roles of NKR-P1 receptors 

An early method for NK cell purification involved the immunization of C3H mice 

with CE thymocytes to produce α-Ly1.2 anti-serum, capable of depleting NK cell 

activity80. Afterwards, it was discovered that anti-NK cell specificity could be 

isolated serologically by selectively adsorbing the C3H α-CE anti-serum into 

BALB/c thymocytes or splenocytes80. The NK alloantigen, called “NK-1,” was 

broadly used to define and purify NK cells124, 126. This led to the development of 

an α-NK1.1 monoclonal antibody (mAb), PK136, by Koo and Peppard125. PK136 
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identifies NK cells from CE, B6, NZB, C58, Ma/My, ST, and SJL mice, but not 

BALB/c, AKR, CBA, C3H, DBA, or 129 mice80, 126. It was reported that blocking 

the NK1.1 antigen did not alter NK cell-mediated cytotoxicity and that the 39 kDa 

glycoprotein stimulated NK cell function upon cross-linking110, 125, 210. 

The NK1.1 alloantigen is now widely used as a marker for NK cell identification. 

Previous studies have revealed that NK1.1 is a member of the NKR-P1 family of 

disulfide-linked homodimeric type II transmembrane C-type lectin-like receptors34, 

79, 183, 200, which includes NKR-P1, killer cell lectin-like receptor subfamily G 

member 1 (KLRG1), Ly49, CD94-NKG2A/C/E, and NKG2D receptors. It has 

further been determined that the NK1.1 alloantigen is NKR-P1C in C57BL/6 mice 

and NKR-P1B in the SJL/Sw strain, while the anti-NK1.1 mAb recognizes neither 

NKR-P1B nor NKR-P1C in the BALB/c strain32, 34, 131, 200. Furthermore, the Nkr-p1 

cluster was found to be located on chromosome 6 in mice and chromosome 12 in 

humans200. Currently, the Nkr-p1a, -b, -c, -d, -e, -f and -g genes have been 

identified, although further analysis suggests that Nkr-p1e is nonfunctional34, 183. 

During development, NK cells express NKR-P1C, NKR-P1D and NKR-P1F 

before the expression of most members of the Ly49 family in C57BL/6 mice12. It 

has also been demonstrated that (C57BL/6 × BALB/c)F1 NK cells and (C57BL/6 

× 129/Sv)F1 NK cells express proportionally the same C57BL/6 isoform of NKR-

P1C and NKR-P1D by immunostaining12. Studies have identified that the 

inhibitory NKR-P1B and NKR-P1D receptors are recognized by C-type lectin-

related (Clr)-b31, and the stimulatory NKR-P1F receptor is recognized by Clr-g99.  

Sequencing and functional studies indicate that the NKR-P1A, NKR-P1C and 

NKR-P1F receptors exert stimulatory effects on NK cells, whereas NKR-P1B and 

NKR-P1D are inhibitory9, 32, 99, 110, 131, 181. NKR-P1A, NKR-P1C and NKR-P1F 

contain positively charged amino acid residues in its transmembrane domain, 

and association of ligands with its Fcγ chain delivers stimulatory signals, 

transmitted via the FcRγ adaptor molecule, that triggers cytotoxic activity and 

cytokine secretion9, 110. FcRγ is known to transduce signals for FcγRIII and FcεRI 

in immunoglobulin9. It has been suggested that association with FcRγ involves 
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the charged transmembrane R residue in the NKR-P1 receptors and the 

corresponding transmembrane D residue in FcRγ32. Stimulatory NKR-P1 

receptor cross-linking presumably results in phosphorylation of the FcRγ 

immunoreceptor tyrosine-based activation motif (ITAM) Y residues, leading to 

downstream recruitment of the spleen tyrosine kinase (Syk), and activation of NK 

cytotoxicity9, 32. ITAMs are also known to associate with other adaptor molecules 

such as killer activating receptor-associated protein (KARAP) or DNAX-activation 

protein of 10 kDa (DAP10). Protein tyrosine kinases with Src homology 2 

domains or phosphatidylinositol 3-kinase (PI3K) can then bind to phosphorylated 

tyrosine residues and modulate downstream signalling (Figure 2)182. Antibody 

cross-linkage to rat NKR-P1A in a previous study provoked antibody-induced 

redirected lysis (AIRL), phosphatidylinositol turnover, and calcium flux38, 197. In 

C57BL/6 murine NK cells, NKR-P1C was also observed to mediate AIRL and 

IFN-γ production7, 110. The murine NKR-P1C receptor has been implicated in 

allorecognition by studies involving the NK-mediated F1 anti-parent “hybrid 

resistance” phenomenon130.  

NKR-P1B and NKR-P1D, however, lack charged transmembrane residues and 

possess an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the 

cytoplasmic domain, which interacts with Src homology phosphatase-1 (SHP-1) 

in a phosphorylation-dependent manner to produce inhibitory signals (Figure 2)32, 

99, 131, 181. Sequence analysis revealed that mouse NKR-P1B lacks a charged 

transmembrane R residue due to a single amino acid deletion in its sequence25. 

Mutation of the NKR-P1B cytoplasmic ITIM Y residue was found to eliminate both 

SHP-1 recruitment and inhibitory responses147. NKR-P1B was also demonstrated 

to produce inhibitory signals in PK136-mediated AIRL assays32, 131, and cross-

linking of both NKR-P1B and NKR-P1C on (B6 x Sw)F1 LAK cells using PK136 

mAb revealed a dominance of NKR-P1B inhibitory response over NKR-P1C 

stimulatory signaling32. In rats, NKR-P1B displayed dominant inhibitory function 

over 2B4-mediated cytotoxicity141. Similarly, mouse NKR-P1B overexpression in 

the human YTSeco NK cell line also showed dominant inhibition over 2B4 

function147.  
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Furthermore, Inngjerdingen and colleagues have demonstrated in rats that NKR-

P1B’s expression pattern varies between compartments. Particularly, in 

comparison with other organs, NKR-P1B is prevalent in the peripheral blood, 

mesenteric lymph nodes, Peyer’s patches and the liver100. Relatively low levels of 

NKR-P1B were detected on the surface of NK cells residing in the bone marrow 

and cervical/inguinal lymph nodes100, suggesting developmental-stage specific 

NKR-P1B expression. Interestingly, a distinct pattern of chemokine receptors 

was observed between these NK cell populations. In the highly NKR-P1B+ NK 

cell population there were higher levels of CX3CR1, CXCR6 and CCR5, and 

lower levels of CCR7 and CCR9 than the low NKR-P1B+ population100. NK cells 

with high NKR-P1B expression were demonstrated to be more responsive in 

terms of IFN-γ production100. 

Sequence analysis of mouse and rat NKR-P1 receptors revealed that all isoforms 

possess a cytoplasmic CxCP motif similar to those found in the CD4 and CD8 

receptors30, 199, 236. This motif is known to associate with Lymphocyte-specific 

tyrosine kinase (Lck), a Src-related protein tyrosine kinase236. A study 

demonstrated that association between Lck and rat NKR-P1A was dependent on 

the CxCP motif, as mutation of both C residues abrogated the interaction30. 

Mutation of a single C residue in the CxCP motifs of mouse NKR-P1B and NKR-

P1C either abolished or greatly reduced the capacity of the receptors produce 

intact signals147. NK cells from C57BL/6 lck-/- mice displayed significantly less 

PK136-mediated AIRL of FcR+ P815 mastocytoma targets, demonstrating the 

necessity of Lck in NKR-P1C function. Lck-deficient bone marrow-derived 

lymphokine-activated killer (LAK) cells were more severely impaired in NK1.1-

mediated AIRL than splenic LAK cells, suggesting other signalling mechanisms 

may compensate for the Lck deficiency during NK cell maturation147. Upon 

receptor activation, Lck phosphorylates the ITIM tyrosine residue, facilitating 

recruitment of the SHP-1 tyrosine phosphatase. Thus, both the stimulatory and 

inhibitory NKR-P1 receptors utilize the CxCP motif to initiate their signalling 

pathways.  
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As NKR-P1A, NKR-P1D and NKR-P1F are weakly expressed on NK cells, 

activation of these receptors has been shown to have no significant effect on NK 

cell-mediated cytotoxicity12. NKR-P1A is expressed at very low levels on NK cells 

and some activated T cells, while undetectable on NKT cells. IL-2-activated NKT 

cells were demonstrated to express NKR-P1C, low levels of NKR-P1A, and no 

NKR-P1D and NKR-P1F12. While the endogenous ligand is unknown, rat NKR-

P1A was shown to functionally recognize a xenogeneic ligand expressed on 

several mouse tumour lines198. A study has suggested that oligosaccharides may 

bind to rat NKR-P1A with high affinity, however the results could not be 

reproduced20, 21, 122, 123.  

NKR-P1D, on the other hand, has been found to be expressed on approximately 

half of the NK cell population in C57BL/6 mice12. NKR-P1D expression increased 

in a progressive manner during NK cell development, independently of Ly49E 

and CD94/NKG212. Notably, the study also demonstrated that NKR-P1D+ NK 

cells express low levels of Ly49 receptors and high levels of CD94/NKG2 

receptors relative to NKR-P1D- NK cells12. The activating receptors CD16, 

NKG2D, natural killer cell p46-related protein (Nkp46), NKR-P1C and NKR-P1F 

expression were shown to be independent of NKR-P1D expression12, and 

antibody cross-linking or Clr-b ligand interaction with NKR-P1D resulted in 

receptor down-regulation12. Interestingly, activated NKR-P1D- NK cells produce 

less IFN-γ and were less cytotoxic relative to NKR-P1D+ NK cells. The reduced 

cytotoxicity may be similar to NK cells lacking inhibitory Ly49 receptors, either 

because cells lacking inhibitory receptors are subjected to chronic low-level 

activation that induces self-tolerance190, or because the ligand-receptor 

interactions deliver signals that are required for function117.  

Another study demonstrated that CD3δ/NKR-P1D fusion receptors expressed on 

BWZ.36 reporter cells can detect ligands on ex vivo bone marrow and spleen 

cells, but not thymocytes99. Further analysis of hematopoetic cells identified 

macrophages and dendritic cells as the stimulators for the BWZ.CD3 δ/NKR-P1D 

reporter cells99. Clr-b overexpression on tumour cells was found to inhibit 
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C57BL/6 NK cell activity, which was reversible by an NKR-P1D blocking mAb99. 

However, another study revealed that Clr-b expression on BWZ.4A6+ cells was 

insufficient to inhibit lysis by NKR-P1D-expressing C57BL/6 NK cells, but 

significantly inhibited NKR-P1B-expressing Sw or CD-1 NK cells31. Due to the 

low affinity of NKR-P1D-Clr-b interaction99, physiological Clr-b levels expressed 

on normal lymphocytes appear to be insufficient in delivering signals via NKR-

P1D receptors on mature NK cells12.  

A study on YB2/0 rat plasmacytoma cells transfected with the NKR-P1F ligands 

Clr-g and Clr-x demonstrated that this pathway does not affect IFN-γ synthesis 

by NK cells12. Similarly, although anti-NKR-P1C mAb acted as a potent inducer 

of IFN-γ production, anti-NKR-P1A and anti-NKR-P1F mAbs failed to stimulate 

IFN-γ synthesis12. Interestingly, Clr-x ligand interaction with NKR-P1F resulted in 

receptor down-regulation, but not Clr-g12. It has been reported, however, that 

NKR-P1F is highly expressed in bone marrow-derived dendritic cells and 

facilitates T cell activation through interaction with Clr-g expressed on T cells229, 

230.  
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Figure 2. NKR-P1 receptors contain classical ITAM ITIM motifs 

An illustration demonstrating the molecular signalling of the classical 

immunoreceptor tyrosine-based activation (ITAM) and inhibitory motifs (ITIM) 

upon ligand interaction. After recruitment of the FcRγ adaptor molecule, the 

phosphorylated Y residue on ITAM initiates tyrosine kinase activity and 

downstream signalling cascades such as the Nuclear factor κB (NF-κB), Nuclear 

factor of activated T cells (NFAT) or Mitogen-activated protein kinase (MAPK) 

pathways. In ITIM, phosphorylation by Src results in the phosphorylation and 

activation Src homology phosphatase-1 (SHP-1), which inhibits Spleen tyrosine 

kinase (Syk) to block cascade activation. 
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1.8 NKR-P1B and Clr-b interaction 

Recently, Carlyle and colleagues demonstrated that NKR-P1B and NKR-P1D 

interact with Clr-b31. Clr-b expression exhibits a broad spectrum including adult 

splenocytes, thymocytes and lymph node cells. Its expression pattern is also 

similar to that of MHC Class I molecules: high levels are observed in 

hematopoietic cells, low levels in CD4+ CD8+ thymocytes, and negligible during 

erythropoiesis and in terminally-differentiated erythrocytes31. Clr-b expression 

and function, however, were found to be independent of β2m and MHC I 

expression31. Clr-b is also frequently downregulated in mouse tumour cell lines, 

as NKR-P1B tetramers were shown to bind endogenous Clr-b on cell lines, 

including MNK-1 pre-NK cells and NIH-3T3 fibroblasts, but not several tumour 

lines31. Tumour cell lines that expressed Clr-b exhibited dramatically reduced NK 

cell-mediated lysis31. SJL/Sw NK cells transduced with NKR-P1B were shown to 

decrease CD107a degranulation and TNF-α expression against Clr-b-expressing 

target cells234. 

Although it is unknown whether there is bidirectional communication, the Clr-b 

cytoplasmic tail contains motifs for casein kinase 2 (CK2) phosphorylation 

(SxxE), TNF receptor-associated factor 2 (TRAF2) binding (SPQE), 

ubiquitinylation and endocytosis267. CK2 overexpression is common in tumour 

cell lines, and active CK2 is known to regulate the nuclear factor-κB (NF-κB) 

pathway, caspase activation and Bcl-X levels1, 145, 208, leading to 

lymphoproliferation and accelerated lymphomagenesis207, 208. Phosphorylation of 

CK2 in certain receptors also results in endocytosis49, 176. TRAF2, on the other 

hand, is required for TNF-α-mediated activation of the mitogen-activated protein 

kinase (MAPK)8/c-Jun N-terminal kinase (JNK) and NF-κB249. TRAF2 forms a 

complex with TRAF1 to interact with the inhibitor-of-apoptosis protein (IAP), 

functioning as a mediator of anti-apoptotic signals. The interaction of this protein 

with TNF receptor type 1-associated DEATH domain (TRADD), a TNF receptor 

adaptor protein, ensures the recruitment of IAPs for the direct inhibition of 

caspase activation. Thus, it is tempting to postulate that NKR-P1B-Clr-b 
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interaction functions as a cell survival pathway in Clr-b-expressing cells (Figure 

3). 

The Clr genes are closely linked and interspersed among the Nkr-p1 genes in the 

NKC, which may ensure the co-inheritance of receptor and ligand genes and 

provide a mechanism for “missing self-recognition”34. Whereas the Ly49 genes 

are divergent between the C57BL/6 and BALB/c mice strains, the Nkrp1 and Clr 

families are conserved34. Interestingly, NKR-P1B expression is missing in certain 

mouse strains, such as C57BL/634. Similarly, sequencing analysis revealed that 

Ly49h and Ly49d are absent in the BALB/c strain5, resulting in uncontrolled 

mouse cytomegalovirus replication, early host death8, 26, and decreased NK cell 

cytotoxic efficiency98. It has been suggested that the Nkr-p1d gene in these mice 

represent a divergent allele to the Nkr-p1b gene found in BALB/c and other 

mouse strains34. Protein sequence alignment revealed only three amino acid 

substitutions in the extracellular regions between the NK1.1+ Sw/SJL and NK1.1- 

BALB/c mice, and only a single amino acid mutation (position 191) in the BALB/c 

NKR-P1B receptor was able to confer NK1.1 reactivity34. In contrast to the other 

conserved Nkr-p1 genes, the C57BL/6 and BALB/c Nkr-p1c alleles have 

diverged significantly34. It is possible that the variable prevalence of NKR-P1 

receptors may account for the different susceptibilities of mouse strains to kidney 

injury. 

The existence of NKR-P1 and Clr-like genes within the MHC region of chicken 

and quail genomes suggests that the MHC and NKC regions may share a 

common ancestral origin111, 213. Also, Clr-like genes were found in the rat 

cytomegalovirus genome, suggesting that some viruses may have evolved 

strategies to bypass NKR-P1 recognition during infection243. In humans, it is 

interesting to note that only the isoform NKR-P1A exists and interacts with lectin-

like transcript-1 (LLT1), a ligand which shares significant homology with the Clr 

family2, 194. Similar to mouse NKR-P1B and Clr-b, NKR-P1A and LLT1 interaction 

inhibits NK cell function2. Notably, LLT1 was observed to stimulate IFN- γ 

production in human T cells but inhibited cytotoxicity and IFN-γ secretion in NK 
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cells2. Unlike murine NKR-P1 receptors, the human NKR-P1A receptor was 

found to lack the CxCP Lck-recruitment motif136, 199. 
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Figure 3. NK cells express a plethora of receptors to regulate cytotoxicity 

An illustration demonstrating multiple activating and inhibitory receptor 

interactions with TEC ligands to form an immunological synapse and cause a 

graded cytotoxic NK cell-mediated response. 
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1.9 Hypothesis 

We hypothesize that Clr-b is up-regulated in TEC during tissue injury and this up-

regulation provides protection to kidney grafts against NK cell-mediated 

cytotoxicity. 

 

1.10 Specific aims 

1. To determine if Clr-b expression is up-regulated in TEC after cytokine 

treatment, hypoxia, ischemia and renal injury 

2. To investigate the effect of NKR-P1B and Clr-b interaction on NK cell-

mediated TEC death 

3. To investigate the effect of stimulated/deficient NKR-P1B and Clr-b 

interaction on ischemia and renal injury in mice 
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Chapter 2  

2 Materials and Methods 

2.1 Animals 

C57BL/6 (H-2b), BALB/c (H-2d), C3H (H-2k) and Rag1-/- mice were purchased 

from The Jackson Laboratory (Bar Harbor, ME). All animals were maintained in 

the animal facility at Western University using approved protocols and 

procedures. Animal experiments were conducted in accordance with the 

Canadian Council of Animal Care guidelines with protocols approved by the 

Animal Use Subcommittee of Western University. 

2.2 Antibodies and reagents 

Cells were characterized with the following fluorescent-conjugated antibodies: 

FITC anti-mouse CD26 (eBioscience, San Diego, CA), PE Conjugated 

Streptavidin (eBioscience), and a 4A6 monoclonal antibody that specifically 

recognizes Clr-b (kindly from JR Carlyle, University of Toronto, Toronto, ON). 

Mouse cytokines TNF-α, and IFN-γ were purchased from PeproTech (Rocky Hill, 

NJ). Cell viability assays identifying necrotic and apoptotic cells employed 

propidium iodide (PI) and annexin V, respectively (eBioscience). Data were 

acquired and analyzed on a Cytomics FC500 flow cytometer (Beckman Coulter, 

Mississauga, ON).  

Primary TEC were obtained from C57BL/6 or BALB/c mouse kidneys after 

digestion with 1 mg/mL of collagenase V (Sigma-Aldrich, St. Louis, MO) for 15 

min and then sequentially sieved. All TEC were grown in complete K1 culture 

medium (DMEM:HamsF12, 50:50; Invitrogen-Life Technologies, Carlsbad, CA), 

supplemented with 5% bovine calf serum, hormone mix (5 µg/mL insulin, 1.25 

ng/mL PGE1, 34 pg/mL triodothyronine, 5 µg/mL transferrin, 1.73 ng/mL sodium 

selenite, and 18 ng/mL hydrocortisone), 100 U/mL penicillin (Invitrogen), 100 

µg/mL streptomycin (Invitrogen), and 25 ng/mL epidermal growth factor. Cells 
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were trypsinized before each passage. Proximal tubular phenotype of TEC was 

confirmed by staining with anti-CD26 antibody (eBioscience). 

 

2.3 Primary kidney tubular epithelial cell isolation and culture 

Primary kidney cell cultures were obtained from the cortex region of either 

C57BL/6 or BALB/c mouse kidneys after digestion with collagenase V at 1 

mg/mL (Sigma) for 15 min in complete K1 media in a humidified incubator at 37 

°C. The digested cells were then passed through a 40 μm cell strainer (BD 

Biosciences, San Jose, CA) and washed with 20 mL of PBS. The single cell 

suspension was then grown in complete K1 media in a 75 cm2 vented flask (BD 

Biosciences) in a humidified incubator at 37 °C. Trypsin-EDTA at 0.125% was 

used for each passage cycle with prior washing using PBS without magnesium 

and calcium (Invitrogen). 

 

2.4 Isolation of NK cells 

NK cells were purified from C57BL/6 or BALB/c mouse spleens by gently passing 

the spleen through a 40 μm cell strainer (BD Biosciences), washed with 10 mL of 

PBS and spun down at 500 × g for 5 min. The pellet was subsequently 

resuspended in 1 mL of ACK lysis buffer (Invitrogen) for 30 sec and washed with 

10 mL of PBS. Subsequent isolation was performed as described in MACS cell 

separation kit (Miltenyi Biotec, Auburn, CA). Briefly, a single cell suspension was 

made in 490 μL of MACS buffer (PBS, 1% FBS, 0.5% EDTA) and incubated with 

10 μL of magnetic beads conjugated with anti-CD3 (Miltenyi) for 15 min at 4 °C. 

Cells were then washed with 9.5 mL of MACS buffer and centrifuged for 5 min 

again. Washed cells were then resuspended in 500 μL of MACS buffer and 

transferred into a MACS midsize column (Miltenyi) that was subjected to a 

magnetic field. The column was washed three times with 500 μL of MACS buffer 

and the flow through was collected and spun down. Cells were subjected to a 
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second round of purification using anti-CD49b (DX5; Miltenyi). Purity of NK cells 

was confirmed by flow cytometry analysis and was found to be > 94% CD3- 

CD49b+. 

 

2.5 Cytokine induction 

TEC were challenged with 25 ng/mL of IFN-γ (PeproTech) and 25 ng/mL of TNF-

α (PeproTech) in K1 culture media without glucose for 0, 24, 48, 72 and 96 h. 

Cell death was confirmed with annexin V and propidium iodide staining and 

analyzed by flow cytometry, according to the manufacturer’s protocol (BD 

Biosciences). 

 

2.6 Hypoxia induction 

Hypoxic culture conditions were produced by placing the cells in a mini-incubator 

perfused with 95% N2 saturated with water. Temperature was maintained on a 

heating pad at 32 °C. The cells were exposed to hypoxia for 20 min. Cells were 

cultured in deoxygenated K1 culture media without glucose for 0, 24, 48, 72 and 

96 h. Cell death was confirmed with annexin V and propidium iodide staining. 

 

2.7 siRNA transfection 

TEC were transfected with 2 μg/mL of Clr-b siRNA oligonucleotides using 6 

μg/mL of Lipofectamine (Invitrogen), and then cultured for an additional 96 h 

before use in NK:TEC co-cultures or analyzed by flow cytometry. Reduction in 

expression of the appropriate marker was then calculated using flow cytometry or 

RT-PCR. Clr-b siRNA oligonucleotides were purchased as a pool of 3 different 

duplexes from Santa Cruz Biotechnology (Santa Cruz, CA). siRNAs included: 5′-

CAG UAC CAG GAU CUA UUC Att -3′ and 5′- UGA AUA GAU CCU GGU ACU 

Gtt -3′; 5′- GCU ACA CUG UAC UUU AUA Ctt -3′ and 5′- GUA UAA AGU ACA 
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GUG UAG Ctt -3′; 5′- GGA CGA AAU AAC AGG CUA Att -3′; 5′- UUA GCC UGU 

UAU UUC GUC Ctt -3′. 

 

2.8 NK cell killing assay 

NK cells were purified by CD49b+ selection on a MACS beads column (Miltenyi), 

then activated with IL-2 (1000 U/mL) in RPMI 1640, supplemented with 10% 

FCS, penicillin (100 U/mL), streptomycin (100 mg/mL), glutamine (2 mM), sodium 

pyruvate (1 mM), HEPES (10 mM), and b-mercaptoethanol (0.5 mM). Activated 

or naïve NK cells were used as effector cells in a killing assay. Cell death was 

confirmed with propidium iodide staining, according to the manufacturer’s 

protocol (BD Biosciences). TEC were transfected with Clr-b siRNA (Santa Cruz) 

4 days prior to the killing assay. TEC were labeled with 0.5 mM 

Carboxyfluorescein succinimidyl ester (CFSE; Invitrogen) for 8 min and washed 

three times with medium. The CFSE-labeled TEC were mixed with NK cells or 

cultured alone for 5 h. PI staining and flow cytometry were used to determine the 

percentage of TEC death by gating on CFSE+ cells. 

 

2.9 Quantitative real-time polymerase chain reaction 

Total RNA were extracted from kidneys with a spin column (Qiagen, 

Mississauga, ON). cDNA pools were synthesized with the First Strand Synthesis 

System (Stratagene, La Jolla, CA). Primers were designed using Oligo Perfect 

Designer, (Invitrogen-Life Technologies). Clr-b: 5’- CTC GGT TTG ACA ACC 

AGG AT -3’ and 5’- GAT CCC GTT GTT GTT CAG GT -3’; NKR-P1A: 5’- CCT 

GCT CAC CAG TTC AGT GA -3’ and 5’- CTT CTT GGT CTT GAA TGA GCA T -

3’; NKR-P1B: 5’- CTC CTG ACT GTG AAT CCC ATC CCC A -3’ and 5’- GCC 

CCT CAG CTA CCA GGG CTT -3’; NKR-P1C: 5’- TCC CTT CTC ACC ACC 

AGT TA -3’ and 5’- CAG TCT TGT GGG CAC TCT AAA -3’; NKR-P1D: 5’- GTT 

TGT CCC TGT TCA CGA GG -3’ and 5’- TCT TGA ACA TCC GCG CAG AT -3’; 
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NKR-P1E: 5’- GGA AAG GAG CCA CTT TGC TGC TCA -3’ and 5’- TCC TTT 

TGG CAG ATC CAA CGT CC -3’; NKR-P1F: 5’-  TGT CAC TGT TCA CAG TTC 

CC -3’ and 5’- ATC TCG GGC ACT CTA GTA TG -3’; NKR-P1G: 5’- AGC TGT 

GCC CTC ATC TCA CAA ACA -3’ and 5’- CAG GAG TCA GGA CAC AGG GTT 

TCA -3’; and β-actin: 5’- CCA GCC TTC CTT CCT GGG TA -3’ and 5’- CTA GAA 

GCA TTT GCG GTG CA -3’. Real-time quantitative PCR were performed on 

standardized quantities of cDNA using the Brilliant SYBR Green QPCR Master 

Mix kit, and amplified DNA products were generated and detected using the 

Mx4000 system (Stratagene). Each PCR amplification condition was set up in 

triplicate. β-actin amplification was used as the endogenous control. The 

normalized δ threshold cycle value and relative expression levels (2∆∆Ct) were 

calculated. 

 

2.10 Histological analyses 

Formalin-fixed kidney sections were stained with H&E, and injury were scored in 

a double-blinded fashion by a single pathologist at London Health Sciences 

Centre, using an arbitrary scoring system (0: no change; 1+: < 25% area change; 

2+: 25–50% area change; 3+: 50–75% area change; 4+: > 75% area change). 

Criteria for kidney injury included tubular necrosis, immune cell infiltration, tubular 

casts, and glomerular necrosis. Kidney sections were embedded in OCT 

compound and snapped frozen in liquid nitrogen.  

 

2.11 Kidney ischemia-reperfusion injury 

Ischemia and reperfusion injuries were performed by a single microsurgeon at 

the Matthew Mailing Centre for Translational Transplant Studies. Ischemia was 

induced by clamping the left kidney for 45 min at 32 °C on a thermo-regulated 

pad in C57BL/6 or C3H mice, and 60 min at 33 °C in BALB/c mice. To assess 

function of the ischemic kidney, the clamps were released and the right kidney 
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was subsequently removed. Kidneys were sampled at different time points after 

being flushed with cold PBS. Sham controls were treated with the same 

operative procedure as in the injury group but kidneys were not clamped. Serum 

was collected for creatinine detection by a Jaffe reaction method with an 

automated CX5 clinic analyzer (Beckman, Fullerton, CA). 

 

2.12 Kidney transplantation 

Kidney transplants were performed by a single microsurgeon at the Matthew 

Mailing Centre for Translational Transplant Studies. Ten week old male BALB/c 

mice were bilaterally nephrectomized and transplanted with a single kidney from 

a male C57BL/6 mouse of similar weight. Both donor and recipient mice were 

anaesthetized with isoflurane. Donor kidney, ureter, bladder, renal artery and 

vein were recovered together. Vascular vessels of the donor kidney were 

anastomosed to the recipient’s respective abdominal aorta and inferior vena cava 

below the native renal vessels of the recipient. Renal ischemia time was limited 

to 30-45 min. Donor and recipient bladders were attached dome-to-dome. Kidney 

graft survival was assessed daily based on the overall health of the animal. If the 

recipient mouse was found to be suffering, the mouse was sacrificed for blood 

and kidney graft retrieval and analysis. Mice were followed up to 60 days and 

were subsequently sacrificed. 

 

2.13 Statistical analyses 

Experimental values were expressed as mean ± SEM. Data were compared 

using Student’s T-Test (Statview, Nesbit, MS) for unpaired values and one-way 

ANOVA for multigroup differences. The p values < 0.05 were considered 

significant.  
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Chapter 3  

3 Results 

3.1 Clr-b expression in BALB/c TEC increases upon pro-
inflammatory cytokines TNF-α and IFN-γ treatment 

Our previous work identified NK cells as important participants in renal IRI265 and 

that TEC apoptosis can be induced by TNF-α and IFN-γ, pro-inflammatory 

cytokines which can be secreted by NK cells68. As NK cells are regulated by 

multiple signalling interactions with target cells, we investigated the effect of 

tubular Clr-b expression upon stimulation by TNF-α and IFN-γ. Real-time 

quantitative PCR data analysis of Clr-b in primary-cultured TEC from BALB/c (H-

2d) kidneys indicated that a combination of the cytokines TNF-α and IFN-γ 

effectively upregulated Clr-b expression. At a dose of 25 ng/mL each, TNF-α and 

IFN-γ significantly increased Clr-b mRNA transcription just 8 h after treatment. 

This upregulation continued to progress and peaked at 48 h. A decrease in Clr-b 

mRNA expression level was observed by 72 h (Figure 4A). At the surface protein 

level, flow cytometry analysis revealed a transient upregulation of Clr-b 24 h after 

induction by the cytokines (Figure 4B). The effect of these cytokines on tubular 

cell viability was confirmed by annexin V and propidium iodide (PI) staining, 

indicators of apoptosis and necrosis, respectively (Figure 4C). Put together, our 

data demonstrates that the pro-inflammatory cytokines TNF-α and IFN-γ induces 

cell death and Clr-b upregulation in BALB/c TEC. 
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Figure 4. Clr-b ligand in primary-cultured BALB/c kidney TEC increases 

upon pro-inflammatory cytokines TNF-α and IFN-γ treatment in a time-

dependent manner 

A) Quantitative RT-PCR of BALB/c TEC Clr-b RNA expression after cytokine 

induction; n = 2 – 7; Statistical analysis was performed with ANOVA. * p < 0.05 

compared with untreated media control. B) Surface ligand Clr-b expression 0 h, 

24 h, 48 h, 72 h and 96 h after cytokine induction. BALB/c TEC were cultured 

and treated as described in Materials and Methods. Time points are compared to 

null (gray) and untreated (solid line); n = 3. C) Cell death in BALB/c TEC, as 

measured by annexin V and PI staining 0 h, 24 h, 48 h, 72 h and 96 h after 

cytokine induction to detect apoptotic and necrotic death, respectively; n = 1.  
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3.2 Clr-b expression in BALB/c TEC is not affected by 
hypoxia treatment 

During IRI, cells are subjected to multiple factors that result in cellular and organ 

injury. One of the factors includes hypoxia, where cells are subjected to oxygen 

deprivation until the blood supply can re-nourish the organ. We therefore decided 

to test whether Clr-b regulation is affected under hypoxic conditions. Albeit not as 

effective as cytokine stimulation, we found that hypoxic stress also increased Clr-

b mRNA expression in BALB/c TEC at the 24 h mark (data not shown). At the 

cell surface, however, we were unable to convincingly detect a change in Clr-b 

expression by flow cytometry (Figure 5A). Furthermore, cell viability of BALB/c 

TEC was not affected by hypoxic stress (Figure 5B). Based on our in vitro data, 

oxygen deprivation is not a factor associated with Clr-b regulation in BALB/c 

TEC. 
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Figure 5. Clr-b ligand in primary-cultured BALB/c kidney TEC is not 

affected by hypoxia treatment 

A) Surface ligand Clr-b expression 24 h, 48 h, and 72 h after being induced by 

hypoxia for 20 min. BALB/c TEC were cultured and treated as described in 

Materials and Methods. Time points are compared to null (gray) and untreated 

(solid line); n = 4. B) Cell death in BALB/c TEC, as measured by annexin V and 

PI staining 24 h, 48 h and 72 h after hypoxia to detect apoptotic and necrotic 

death, respectively; n = 3. 
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3.3 Clr-b expression in C57BL/6 TEC increases upon pro-

inflammatory cytokines TNF-α and IFN-γ treatment 

A recent study by Carlyle and colleagues has revealed that NKR-P1B expression 

is missing in the C57BL/6 mouse strain34. From our studies, we know that 

C57BL/6 mice are more susceptible to renal IRI than BALB/c mice; therefore we 

opted to compare these two mouse strains. Similar to BALB/c TEC, real-time 

PCR quantification of C57BL/6 (H-2b) TEC after TNF-α and IFN-γ also appeared 

to increase Clr-b expression (Figure 6A). Whereas BALB/c TEC Clr-b mRNA 

levels peaked at 48 h, C57BL/6 TEC peaked at 24 h. In C57BL/6 TEC, a 

regression in Clr-b mRNA level was observed by 48 h. However, this increase 

was not significant upon further statistical analysis. The relative increase of Clr-b 

in C57BL/6 was also much lower than BALB/c TEC. Although data analysis 

suggested that this increase in C57BL/6 TEC was not statistically significant at 

the mRNA level, FACS analysis demonstrated a Clr-b expression pattern similar 

to BALB/c TEC. In C57BL/6 TEC, Clr-b surface protein upregulation was 

transiently observed 24 h after cytokine induction (Figure 6B). The effect of these 

cytokines on tubular cell viability was confirmed by annexin V and PI staining 

(Figure 6C). In addition, various TNF-α and IFN-γ doses were tested to 

determine whether Clr-b is regulated in a dose-dependent manner. At doses 

between 15 - 40 ng/mL each, we could not detect any noticeable differences in 

Clr-b levels (Figure 6D). Thus, similarly with BALB/c TEC, our data demonstrates 

that Clr-b is upregulated upon stimulation by the cytokines TNF-α and IFN-γ in 

C57BL/6 TEC at the surface protein level. 
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Figure 6. Primary-cultured C57BL/6 kidney TEC Clr-b level increases upon 

pro-inflammatory cytokines TNF-α and IFN-γ treatment in a time-dependent 

manner 

A) Quantitative RT-PCR of C57BL/6 TEC Clr-b RNA expression after cytokine 

induction; n = 2 - 5. Statistical analysis was performed with ANOVA. B) Surface 

ligand Clr-b expression 24 h, 48 h, 72 h and 96 h after TNF-α (25 ng/mL) and 

IFN-ɣ (25 ng/mL) treatment. Time points are compared to null (gray) and 

untreated (solid line); n = 1 - 3. C) Cell death in C57BL/6 TEC, as measured by 

annexin V and PI staining 24 h, 48 h and 96 h after cytokine treatment to detect 

apoptotic and necrotic death, respectively; n = 1 - 3. D) Surface ligand Clr-b 

expression 24 h after TNF-α and IFN-γ treatment, each at doses of 15, 20, 25, 

30, 35, and 40 ng/mL. C57BL/6 TEC were cultured and treated as described in 

Materials and Methods. Dosages are compared to null (gray); n = 1. 
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3.4 Clr-b expression in C57BL/6 TEC increases with 

hypoxic stress 

Similarly, we also tested the effect of hypoxia on C57BL/6 primary-cultured TEC. 

FACS analysis of these tubular cells demonstrated a slight increase in Clr-b 

surface protein levels 72 and 96 hours after in vitro hypoxic stress (Figure 7A). 

Tubular cell viability was measured by annexin V and PI staining, demonstrating 

cell death upon oxygen deprivation (Figure 7B). It is possible that the treatments 

had different capabilities and effectiveness to induce cell injury in different strains 

of mice, as hypoxic stress was insufficient in BALB/c TEC following the same 

conditions (Figure 5B). 
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Figure 7. Primary-cultured C57BL/6 kidney TEC Clr-b level increases with 

hypoxic stress in a time-dependent manner 

A) Surface ligand Clr-b expression 24 h, 48 h, 72 h and 96 h after being induced 

by hypoxia for 20 min. C57BL/6 TEC were cultured and treated as described in 

Materials and Methods. Time points are compared to null (gray) and 0 h after 

hypoxia treatment (solid line); n = 1 - 3. B) Cell death in C57BL/6 TEC, as 

measured by annexin V and PI staining 24 h, 48 h, 72 h and 96 h after hypoxia to 

detect apoptotic and necrotic death, respectively; n = 3. 

 



48 

 

3.5 NKR-P1 expression vary between mouse strains 

The Ly49 receptors and their ligand MHC class I molecules are important for the 

prevention of NK cell-mediated self-destruction, yet these molecules are 

constitutively expressed and contain a high degree of polymorphism33. The 

intricate signalling system of NK cells also involve various NKR-P1 receptor 

subtypes, acting as either stimulatory or inhibitory mediators. NKR-P1A, NKR-

P1C and NKR-P1F receptors have been postulated to exert stimulatory effects 

on NK cells, whereas NKR-P1B and NKR-P1D are inhibitory9, 32, 99, 110, 131, 181. 

While BALB/c mice express both the stimulatory receptors and the inhibitory 

NKR-P1B, C57BL/6 mice lack NKR-P1B signalling34. Here, we tested splenic 

naive NK cells and IL-2-activated NK cells from C57BL/6 and BALB/c for NKR-P1 

expression. Real-time PCR analysis demonstrated that the stimulatory NKR-P1A 

expression is significantly higher in C57BL/6 than BALB/c NK cells (Figure 8). As 

the C57BL/6 genome does not contain the NKR-P1B subtype34, we did not detect 

it in C57BL/6 NK cells. In BALB/c NK cells, NKR-P1B expression did not change 

despite IL-2 activation (Figure 8). Although more experiments need to be 

repeated for statistical significance, there appears to be variability in the 

expression of these NKR-P1 receptors between mouse strains. Furthermore, we 

quantified every known Clr ligand in C57BL/6 and BALB/c TEC, as they are 

interspersed between the Nkr-p1 genes and may serve to stimulate the NKR-P1 

receptors34. Based on the mRNA profile, C57BL/6 primary-cultured TEC appear 

to express higher levels of the Clr subtypes than BALB/c (Figure 9). As BALB/c 

NKR-P1B did not change upon IL-2 activation, the Clr-b ligand on the TEC side 

may be more important in regulating this pathway. 
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Figure 8. NKR-P1 receptors expression profile in C57BL/6 and BALB/c 

mice. 

Quantitative RT-PCR of Nkr-p1 receptor subtypes in C57BL/6 and BALB/c NK 

cells; n = 1 - 8. NK cells were isolated and cultured as described in Materials and 

Methods. Statistical analysis was performed with ANOVA. * p < 0.05 compared 

with C57BL/6 naïve NK cells. 
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Figure 9. Clr ligands mRNA expression is higher in primary-cultured TEC 

from C57BL/6 mice than BALB/c mice 

Quantitative RT-PCR Clr ligand subtypes in BALB/c and C57BL/6 TEC. Total 

RNA was extracted (Qiagen) and cDNA pools were synthesized (Stratagene). 

Real-time quantitative PCR was performed using the Brilliant SYBR Green 

QPCR Master Mix kits and the Mx3005P system (Stratagene). β-actin 

amplification was used as the endogenous control. The normalized δ threshold 

cycle value was calculated according to the manufacturer’s protocol; n = 1. 
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3.6 TNF-α and IFN-γ did not affect TEC sensitivity to NK cell-
mediated cytotoxicity 

In this study, we demonstrated that the pro-inflammatory cytokines TNF-α and 

IFN-γ can upregulate Clr-b in tubular cells (Figures 4 and 6). We decided to test 

whether cytokine-induced Clr-b expression can overcome other signalling 

mechanisms and inhibit NK cell activity. While there was less TEC death in the 

cytokine-treated group, as measured by PI staining, it was not statistically 

significant (Figure 10). Cytokine-dependent Clr-b up-regulation, therefore, was 

not sufficient to overcome other stimulatory mechanisms activated upon TNF-α 

and IFN-γ stimulation at a 10:1 NK cell-TEC ratio. 
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Figure 10. Clr-b up-regulation by the cytokines TNF-α and IFN-γ did not 

affect NK cell-mediated cytotoxicity in BALB/c kidney TEC 

A) Surface ligand Clr-b expression 24 h after 25 ng/mL of TNF-α and IFN-γ 

cytokine induction. BALB/c TEC were cultured and treated as described in 

Materials and Methods. Treatment is compared to null (gray) and untreated (solid 

line); n = 3. B) Percentage of TEC death from NK cell-mediated cytotoxicity at 

10:1 effector-target ratio, with or without cytokine induction. CFSE-stained cells 

were mixed with IL-2-activated NK cells for 5 h. PI staining and FACs analysis 

were used to determine the percentage of TEC death by gating on CFSE+ cells. 

Percentages represent the difference between TEC death before and after 

incubation with NK cells; n = 3. Statistical analysis was performed with Student’s 

T-Test. 
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3.7 Antibody Clr-b blockade did not affect NK cell-mediated 
cytotoxicity in TEC 

Furthermore, as it has been previously demonstrated that the 4A6 monoclonal 

anti-Clr-b antibody has ligand blocking capabilities31, we tested whether the 

antibody can block the interaction between NKR-P1 and Clr-b, or Clr-b function in 

TEC. Anti-Clr-b blockade by the antibody at 2.5 μg/mL did not have a significant 

effect on TEC death at a 10:1 effector – target ratio, as measured by PI staining 

(Figure 11).  
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Figure 11. Clr-b blockade by monoclonal antibody did not affect NK cell 

cytotoxicity in BALB/c kidney TEC 

Percentage of TEC death from NK cytotoxicity at 10:1 effector-target ratio. 

CFSE-stained cells were incubated with or without anti-Clr-b mAb (2.5 μg/mL) for 

45 min and mixed with IL-2-activated NK cells for 5 h. PI staining and FACS 

analysis were used to determine the percentage of necrotic TEC by gating on 

CFSE+ cells. Percentages represent the difference between TEC death before 

and after incubation with NK cells; n = 3. Statistical analysis was performed with 

Student’s T-Test. 
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3.8 Clr-b knockdown by siRNA in TEC increased NK cell-
mediated death 

As we had previously used RNAi successfully as a form of therapy to ameliorate 

renal IRI69, we decided to knock down Clr-b using siRNA technology to decipher 

its functional significance in tubular cells. TEC were extracted and cultured from 

BALB/c mice and treated with Clr-b siRNA to prevent Clr-b and NKR-P1B 

interaction, mimicking C57BL/6’s lack of inhibition by this pathway and higher 

susceptibility to renal IRI. Characterization with α-CD26 confirmed that TEC 

phenotype was retained after treatment with either scrambled or Clr-b siRNA 

(Figure 12A). Transfection efficiency in BALB/c TEC was also determined with 

fluorescent-labelled GAPDH siRNA (Figure 12B). Upon treatment of siRNA, Clr-b 

mRNA was knocked down most efficiently at 24 and 48 h after transfection 

(Figure 12C), and surface protein down-regulation was observed 96 h after 

treatment (Figure 12E). Upon co-culture with IL-2-activated NK cells, BALB/c 

TEC treated with Clr-b siRNA displayed an increase in tubular death relative to 

scrambled siRNA, as indicated by PI staining (Figure 12F). Killing assays at 

various LAK:TEC ratios suggest that this inhibitory mechanism can suppress only 

up to a certain point, as at 10:1 ratio there were no significant differences 

between the scrambled and Clr-b siRNA groups (Figure 12G). In conclusion, 

these data support the notion that Clr-b acts as an inhibitory mechanism for NK 

cells in kidney tubular cells, since knocking Clr-b down dampened the ligand-

receptor interaction and increased NK cell-mediated tubular cell death. 
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Figure 12. Clr-b knockdown by siRNA transfection in BALB/c primary-

cultured TEC increases NK cell cytotoxicity 

A) Cell characterization by CD26, a marker for TEC, after treatment with either 

scrambled or Clr-b siRNA. BALB/c kidney TEC were extracted and treated as 

described in Materials and Methods; n = 1. B) Transfection efficiency in BALB/c 

TEC by fluorescent-labelled GADPH siRNA; n = 2. C) Quantitative RT-PCR of 

BALB/c TEC Clr-b RNA expression after Clr-b siRNA transfection; n = 2 - 14. D) 

Clr-b surface protein detection after scrambled siRNA transfection. Time points 

are compared to null (shaded); n = 1. E) Surface protein knockdown was 

observed 96 hours after Clr-b siRNA transfection. Time points are compared to 

null (shaded); n = 2. F) TEC viability after the addition of IL-2-activated NK cells. 

Cytotoxicity assays were conducted as described in Materials and Methods. 

CFSE-stained cells were mixed with IL-2-activated NK cells for 5 h. The cells 

were used for PI staining to detect necrotic death; n = 11. G) Percentage of TEC 

death from NK activity at various effector:target ratios. CFSE-stained cells were 

mixed with IL-2-activated NK cells for 5 h. PI staining and FACS analysis were 

used to determine the percentage of TEC death by gating on CFSE-labelled 

tubular cells; n = 5 – 8. Statistical analysis was performed with ANOVA. * p < 

0.05 and *** p < 0.01 compared with its scrambled siRNA-treated counterpart. 
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3.9 Clr-b in BALB/c kidneys increases in renal IRI 

Ischemia-reperfusion injury in transplantation is an unavoidable phenomenon. 

Prior to transplantation, the graft is subjected to oxygen deprivation. After 

transplantation, there is a rush of blood supply, including infiltrating cells such as 

B cells, T cells, NK cells, macrophages and neutrophils, leading to renal failure. 

We examined whether Clr-b expression is affected by renal IRI in our animal 

model. As, under similar conditions, BALB/c mice are particularly resistant 

against IRI than C57BL/6 mice, we subjected these mice to a more severe 

condition (60 min at 33°C) than the IRI protocol for C57BL/6 (45 min at 32°C). 

Surface protein analysis demonstrated that Clr-b surface expression in BALB/c 

kidneys progressively increased, peaked at 48 hours, and persisted after IRI 

(Figure 13B). Among the kidney cells stained positive for CD26, a TEC marker, 

51.3% were also positive for Clr-b in naïve mice. This percentage increased to 

55.2% and 63.0% 24 h and 48 h after IRI, respectively (Figure 13C). In summary, 

our data concludes that BALB/c kidney Clr-b expression increases as a response 

to renal injury. 
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Figure 13. BALB/c kidney Clr-b expression increases with renal IRI in a 

time-dependent manner 

A) Quantitative RT-PCR of BALB/c mice kidney Clr-b RNA expression 0 h, 24 h, 

48 h and 96 h after renal IRI. Total RNA was extracted (Qiagen) and cDNA pools 

were synthesized (Stratagene). Real-time quantitative PCR was performed using 

the Brilliant SYBR Green QPCR Master Mix kits and the Mx3005P system 

(Stratagene). β-actin amplification was used as the endogenous control. The 

normalized δ threshold cycle value was calculated according to the 

manufacturer’s protocol; n = 1 – 4. Statistical analysis was performed with 

ANOVA. * p < 0.05 compared with naïve control. B) Surface ligand Clr-b 

expression 0 h, 8 h, 24 h, 48 h, and 96 h after renal IRI. BALB/c kidney cells 

were extracted as described in Materials and Methods and collected for FACS 

analysis after α-Clr-b staining. Time points are compared to null (gray) and sham 

(solid line); n = 1 – 2. C) Clr-b expression in CD26+ TEC. BALB/c kidney cells 

were collected from naïve, 24 h and 48 h after IRI and stained with α-Clr-b and α-

CD26 for FACS analysis. R2 quadrant represents cells positive for both Clr-b and 

CD26; n = 1. 
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3.10 C57BL/6 and C3H kidney Clr-b increases in renal IRI 

Similarly, we tested whether Clr-b expression is affected by renal IRI in other 

mouse strains. In our IRI injury model, real-time PCR analysis demonstrated that 

Clr-b mRNA expression in C57BL/6 mice increased within the first few hours 

after IRI, but began to return to basal levels afterwards (Figure 14A). FACS data 

also demonstrated that Clr-b surface expression increased 24 hours after IRI, but 

regressed to physiological levels by day 4 (Figure 14B). Among the kidney cells 

stained positive for CD26, 61.4% were also positive for Clr-b in naïve mice. This 

percentage increased to 78.0% and 82.2% 0 h and 8 h after IRI, respectively. 

Clr-b expression in CD26+ TEC began to regress afterwards, as 62.3% were 

positive at 24 h, 71.3% at 48 h, and 49.4% at 96 h after IRI (Figure 15C). FACS 

analysis of C3H (H-2k) mice also indicated an increase in kidney Clr-b surface 

expression within 24 hours post-IRI (Figure 14D). Serum creatinine levels were 

analyzed to measure C3H renal dysfunction (Figure 14E). In summary, our data 

shows that Clr-b expression in C57BL/6 and C3H kidneys and, specifically, TEC 

increases after renal injury. 
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Figure 14. C57BL/6 and C3H kidney Clr-b expression increases with renal 

IRI in a time-dependent manner 

A) Quantitative RT-PCR of C57BL/6 mice kidney Clr-b RNA expression in sham, 

0 h, 1 h, 2 h, 4 h, and 8 h after renal IRI; n = 4 – 6. Statistical analysis was 

performed with ANOVA. *** p < 0.01 and * p < 0.05 compared with sham. B) 

Surface ligand Clr-b expression 0 h, 8 h, 24 h, 48 h, and 96 h after IRI. TEC were 

purified from C57BL/6 mice as described in Materials and Methods and collected 

for FACS analysis with α-Clr-b staining. Time points are compared to null (gray) 

and naïve (solid line); n = 1 – 2. C) Clr-b expression in CD26+ TEC. C57BL/6 

kidney cells were collected from naïve, 0 h, 8 h, 24 h, 48 h and 96 h after IRI and 

stained with α-Clr-b and α-CD26 for FACS analysis. O2 quadrant represents 

cells positive for both Clr-b and CD26; n = 1 – 2. D) Surface ligand Clr-b 

expression 8 h, 24 h, 48 h, and 96 h after IRI. TEC were purified from C3H mice 

as described in Materials and Methods and collected for FACS analysis with Clr-

b staining. Time points are compared to null (gray) and sham (solid line); n = 1. 

E) Serum creatinine levels of sham, 8 h, 24 h, 48 h, and 96 h after IRI. C3H 

kidney TEC were extracted as described in Materials and Methods. The cells 

were used for annexin V and PI staining to detect apoptotic and necrotic death, 

respectively; n = 1. 
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3.11 BALB/c mice are more resistant to renal IRI than C57BL/6 

To confirm kidney injury, serum creatinine levels (Figure 15A) and H & E staining 

(Figure 15B) were analyzed to measure renal dysfunction, annexin V staining to 

measure cell apoptosis, and PI staining for cell necrosis in BALB/c mice following 

IRI (Figure 15C). H & E staining demonstrated more tubular and glomerular 

necrosis after renal IRI. Serum creatinine at 37 °C averaged 173 (± 43.84) 

μmol/L at 24 hours and died within 2 days (n = 2). When the IRI temperature and 

clamping duration were decreased to 33 °C and 45 min., serum creatinine level 

measured 30 μmol/L at 24 hours and 12 μmol/L at 48 hours (n = 1). Thus, the 

optimal conditions for BALB/c mice appear to be at 33 °C for 60 min. Similarly, 

serum creatinine levels (Figure 15D) and H & E staining (Figure 15E) were 

analyzed to measure renal dysfunction, annexin V staining to measure cell 

apoptosis, and PI staining for cell necrosis (Figure 15F) in C57BL/6 mice at 32 °C 

for 45 min. Here, we demonstrate that BALB/c mice are more resistant to renal 

IRI than C57BL/6 mice. 
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Figure 15. Ischemia-reperfusion injury model is optimal at 33 °C in BALB/c 

mice 

A) BALB/c mice serum creatinine extracted as described in Materials and 

Methods; n = 1 - 12. B) BALB/c kidney sections were taken from either naïve 

(left) or 24 hours post-IRI (right) and were stained with hematoxylin and eosin. 

Pictures were taken in the medulla region of the kidney at 100x magnification. C) 

Cell death in BALB/c TEC, as measured by annexin V and PI staining of sham, 0 

h, 8 h, 24 h, 48 h, and 96 h after IRI to detect apoptotic and necrotic death, 

respectively. BALB/c kidney TEC were extracted as described in Materials and 

Methods; n = 1 - 2. D) C57BL/6 mice serum creatinine; n = 1 - 2. E) C57BL/6 

kidney sections were taken from either naïve (left) or 24 hours post-IRI (right) 

and were stained with hematoxylin and eosin. Pictures were taken in the medulla 

region of the kidney at 100x magnification. F) Cell death in C57BL/6 TEC, as 

measured by annexin V and PI staining of sham, 0 h, 8 h, 24 h, 48 h, and 96 h 

after IRI to detect apoptotic and necrotic death, respectively. C57BL/6 kidney 

TEC were extracted as described in Materials and Methods; n = 1 – 2. 
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3.12 Clr-b decreases in C57BL/6 to F1 kidney transplants 

As ischemia-reperfusion injury is an unavoidable phenomenon during organ 

transplantation, we characterized Clr-b expression in kidney grafts to determine 

whether this signalling mechanism can play a role in transplants. A parent to F1 

transplant model in which T cell tolerance is present was utilized for these 

studies. Real-time PCR data analysis of Clr-b in C57BL/6 to (C57BL/6 × 

BALB/c)F1 kidneys indicated that there was a reduction in Clr-b expression 60 

days post-transplant (Figure 16). As Clr-b acts to protect the kidney against NK 

cell-mediated cytotoxicity, ligand down-regulation in these grafts may partly 

compromise its ability to defend against NK cell-mediated tubular death. Our data 

demonstrate for the first time a critical role for NK cells in mediating chronic 

kidney injury in transplantation, independent of T and B cells (submitted for 

publication). 
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Figure 16. Clr-b ligand in kidney decreases in C57BL/6 to F1 transplants 

Quantitative RT-PCR of Clr-b RNA expression in transplanted kidneys. Kidney 

transplantations were performed as described in Materials and Methods; n = 4; * 

p < 0.05 compared with untransplanted naïve C57BL/6 kidney. 
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Chapter 4  

4 Discussion 

4.1 Summary of this study 

In this study, we demonstrated at the mRNA and surface levels that Clr-b can be 

upregulated by TNF-α and IFN-γ in tubular epithelial cells from the BALB/c and 

C57BL/6 mouse strains (Figures 4 and 6). Clr-b up-regulation in BALB/c, 

C57BL/6 and C3H kidneys was also observed in our in vivo IRI model (Figures 

14 and 15). Although many of the ligands’ functions have not yet been 

discovered, mRNA expression of the Clr subtypes appears to be notably higher 

in C57BL/6 mice than BALB/c mice (Figure 9). More experiments, however, need 

to be conducted to determine whether Clr expression is strain-dependent. 

Differences between mouse strains were also observed in the expression profile 

of the Nkr-p1 receptors (Figure 8). In support of published literature34, we 

detected Nkr-p1b in BALB/c but not C57BL/6 NK cells. We also did not detect 

Nkr-p1b up-regulation upon IL-2 stimulation by NK cells (Figure 8). Using siRNA 

technology, we found that knocking down Clr-b on TEC significantly increased 

NK cell-mediated cytotoxicity (Figure 12). Furthermore, Clr-b in kidneys 

regressed in C57BL/6 to F1 transplants (Figure 16), demonstrating a possible 

compromised mechanism and reduction in TEC’s ability to defend against NK 

cell-mediated tubular death. Manipulating the NKR-P1B-Clr-b pathway in the 

clinical setting may prevent NK cell-mediated TEC death in both acute and 

chronic allograft injury. 

 

4.2 Regulation of NK cell ligand Clr-b in TEC and the kidney 

In recent studies, we have found that NK cells can kill syngeneic TEC in vitro265. 

NK cells quickly infiltrate into the kidney after ischemia and reperfusion. NK cell 

depletion in wild type C57BL/6 mice was protective while adoptive transfer of NK 

cells worsened injury in NK, T and B cell null Rag2-/-γc-/- mice with IRI. Our 
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results demonstrated for the first time that NK cells can directly kill TEC and that 

NK cells contribute substantially to kidney IRI265. Although reduced, a significant 

amount of NK cells still remains in the kidney after IRI over a long period of time. 

As a measure to prevent prolonged NK cell-mediated injury, the kidney may have 

developed a mechanism to resist against NK cell-mediated cytotoxicity after IRI 

and transplantation.  

As previously mentioned, NK cell function is regulated by their receptors and 

ligand interactions. The Ly49 receptors and their ligand MHC class I molecules 

are important for the prevention of NK cell-mediated self-destruction. However, 

these molecules are constitutively expressed on TEC and have a high degree of 

polymorphism33. Other molecules, therefore, should be regulated after kidney IRI 

to increase the resistance capability of TEC towards NK cell-mediated 

cytotoxicity. It is known that the Clr-b molecule delivers inhibitory signals to its 

receptor NKR-P1B on NK cells31. Similar to MHC class I molecules, Clr-b is 

highly expressed on hematopoietic cells, excluding erythrocytes31. Tumour cell 

lines in mice often demonstrate Clr-b downregulation31, indicating a potential role 

for MHC class I-independent “missing self-recognition”31. A recent study has 

found Clr-b to be down-regulated after viral infections such as vaccine virus and 

ectromelia virus255. Rat cytomegalovirus infection also down-regulated host Clr-b 

expression while concurrently expressed its own ligand, rat cytomegalovirus C-

type lectin-like (RCTL)242. RCTL was demonstrated to interact with NKR-P1B and 

protect infected cells from NK cell-mediated cytotoxicity242. Genotoxic and 

cellular stress induced by chemotherapeutic agents or irradiation were other 

mechanisms demonstrated to downregulate Clr-b and enhanced cytotoxicity 

mediated by NKR-P1B+ NK cells74. 

In this study, we found that Clr-b expression is up-regulated in the kidney after 

IRI based on real-time quantitative PCR and FACS analysis (Figures 13 and 14). 

Similarly, expressions of Clr-b mRNA and protein were significantly enhanced in 

primary-cultured TEC after treatment with pro-inflammatory cytokines TNF-α and 

IFN-γ, well-known to be factors involved in inflammation and renal IRI68 (Figures 



83 

 

4 and 6). The primary role of TNF-α is to regulate immune cells and is involved in 

systemic inflammation. Among other cells, TNF-α is predominantly released by 

macrophages and T cells after infection224, while resident dendritic cells appear 

to be the predominant source in the early-stages of renal IRI62. TNF-α may 

interact with either TNFR1 or TNFR2; TNFR1 is broadly expressed and can be 

activated by both membrane-bound and soluble TNF homotrimers, while TNFR2 

is limited to immune cells and respond to the membrane-bound form224. Upon 

receptor-ligand interaction, TNF-α may activate the MAPK pathways to mediate 

cell differentiation, proliferation, and pro-apoptotic events224. TNF-α may also 

activate the NF-κB pathway, leading to transcription of proteins involved in cell 

survival, proliferation, inflammation, and anti-apoptosis224. Among the genes 

mediated by NF-κB, it is possible that Clr-b is one of the factors upregulated to 

promote self-survival. IFN-γ, on the other hand, is predominantly produced by NK 

and T cells and can interact with heterodimer IFN-γ receptor 1 (IFNGR1) and 

receptor 2 (IFNGR2) to activate the janus kinase (JAK)/signal transducer and 

activator of transcription (STAT) pathway105. IFN-γ not only promotes cellular and 

humoral immunity, such as NK, T and B cell activation, but also stimulates MHC 

class I and II expression on normal cells204. While Clr-b initiates an MHC-

independent pathway, it may also be up-regulated during the process of 

inflammation to prevent NK cell-mediated death of healthy cells. 

Natural killer cells are the earliest defense against tumours and viral infections. 

As one of the mechanisms to counter foreign intruders, NK cells secrete the pro-

inflammatory cytokine TNF-α. TNF-α is an important regulator of both adaptive 

and innate immune responses by promoting inflammation and has been 

associated with malignancy152. Both circulating and urinary TNF-α levels have 

been found to be up-regulated in inflammatory chronic kidney diseases such as 

diabetic nephropathy170, 257. In the early stages of many kidney diseases, 

variations of urinary fluid flow induces shear stress, which was demonstrated to 

increase mononuclear chemoattractant protein-1 (MCP-1), TNF-α, vascular cell 

adhesion molecule-1 (VCAM-1), and adhesion of monocytes in human 

endothelial cells. Interestingly, when exposed to short-term fluid shear stress, 
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TNF-α mainly came from endothelial production. However, long-term exposure to 

stress induced the release of TNF-α directly from tubular cells165, demonstrating 

interactive paracrine signalling between these cells. A recent study also showed 

that TNF-α can play a crucial role in nephritis by inducing MCP-1, and cell 

surface adhesion molecules, intercellular adhesion molecule-1 (ICAM-1) and 

VCAM-1 expression via the MAPK signaling pathway and promote macrophage 

and lymphocyte infiltration93.  

The TNF-α converting enzyme (TACE) is a metalloproteinase responsible for 

cleaving TNF-α into a 26 kDa membrane form and a 17 kDa soluble peptide, and 

also membrane shedding of TNFR1 and TNFR2248, 250. In acute rejecting kidneys, 

TACE was demonstrated to be upregulated mainly in TEC, where it co-localizes 

with TNFR2 and leads to TNFR2 release250. TACE suppression, such as by TNF-

α protease inhibitor, can block TNFR2 release and suppress the pro-

inflammatory effect of TNF-α in acute renal injury250. In addition, TNF-α-induced 

activation of the extracellular-signal-regulated kinase (ERK)/guanine nucleotide 

exchange factor H1 (GEF-H1)/Ras homolog gene family member A (RhoA) 

signalling pathway in tubular cells was demonstrated to be mediated through 

TACE-dependent epidermal growth factor receptor (EGFR) activation107. Such a 

mechanism could act as both an inflammatory and proliferative stimuli and thus, 

TNF-α may play an important role in the regulation of not only cell death, but also 

wound healing and fibrogenesis in TEC during chronic injury. 

Interferons are another class of cytokines commonly released by cells in 

response to pathogens, and named after their ability to "interfere" with viral 

replication. Interferons activate immune cells such as NK cells and macrophages, 

increase recognition of infection or tumour cells by upregulating antigen 

presentation to lymphocytes, and increase the ability of cells to resist against 

infections204. In a study, mice deficient of type I interferons, which includes IFN-γ, 

showed significantly reduced necrosis of tubules in the outer medulla, loss of the 

brush border, cast formation and tubular dilatation75. Type 1 interferons were also 

shown to increase neutrophil and macrophage infiltration in the outer medulla, 
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and promote the expression of pro-inflammatory TNF-α, IL-1, IL-6 and CXCL-275. 

Interferons are important chemical mediators in kidney injury and inflammation, 

and are one of the cytokines secreted by NK cells to induce in cell death. 

In our study, we demonstrate that the inhibitory ligand Clr-b is upregulated in 

response to the cytokines TNF-α and IFN-γ in primary-cultured TEC (Figures 4 

and 6). While at the mRNA level, clr-b expression in BALB/c TEC increased 

quickly after cytokine induction and peaked at 48 h, Clr-b was found to be 

upregulated on the tubular cell surface only at the 24 h time-point. Similarly, in 

C57BL/6 TEC, mRNA levels were relatively high at the 48 h time point in 

comparison to basal level, yet Clr-b upregulation was again only detected at the 

24 h time point on the surface of primary-cultured TEC. It appears that the early 

onset of gene upregulation may temporarily induce Clr-b expression, but other 

post-transcriptional or -translational factors may be involved to inhibit further 

induction, as Clr-b surface expression returned to normal physiological levels by 

48 h. In fact, these factors may be upregulated at a later onset than Clr-b, as not 

only did the ligand revert back to basal levels, but Clr-b was observed to be 

downregulated 48 h and 72 h in BALB/c and C57BL/6 TEC, respectively. 

Similarly in MULT-1 regulation, protein expression is post-translationally 

controlled by cytoplasmic lysine residues associated with polyubiquitination of the 

protein171. Another plausible explanation may be that protein shuffling within cells 

resulted in the decrease in Clr-b detection. Nonetheless, both these modification 

factors and Clr-b appear to be transiently regulated by TNF-α and IFN-γ, as 

surface Clr-b protein was detected to match basal levels by 96 h. While these 

pro-inflammatory cytokines are known to induce necrosis and apoptosis, we 

demonstrate here for the first time that they upregulate the inhibitory Clr-b, a 

ligand that may prevent NK cell-mediated cytotoxicity. 

Since renal IRI also involves oxygen deprivation, we subjected these primary-

cultured TEC to hypoxic conditions. In BALB/c TEC, we did not detect any 

significant changes of Clr-b expression on the cellular surface (Figure 5A). 

Conversely, in C57BL/6 TEC, we detected a positive shift in Clr-b on the tubular 
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cell (Figure 7A). A plausible explanation is that BALB/c TEC are more adaptable 

to hypoxia or the hypoxia time was not sufficient, as there were no indications of 

cell death with annexin V and propodium iodide staining (Figure 5B), whereas 

there were clear apoptotic and necrotic cell populations in C57BL/6 TEC (Figure 

7B). A more severe condition may be required for BALB/c TEC to match the 

amount of hypoxic injury as the C57BL/6 mouse strain. 

As suspected, BALB/c mice were resistant against renal IRI when compared to 

the C57BL/6 mouse strain, since there were no indications of kidney injury under 

our IRI protocol. We therefore subjected these mice to a more severe condition 

than that of C57BL/6 mice. Twenty-four hours after surgery, there were marked 

upregulation of Clr-b on the cellular surfaces in kidneys, which continued even 

after 96 h in BALB/c mice (Figure 14B). Subsequently, in C57BL/6 mice, we once 

again observed ligand upregulation at 24 h and regression to physiological levels 

afterwards, similar to our in vitro studies (Figure 15B). However, it should be 

noted that these strains underwent different IRI conditions, thus making it difficult 

to interpret the differences between these two mouse strains. 

Based on these data, we conclude that the inhibitory Clr-b ligand is up-regulated 

on tubular cells and the kidney as a consequence of renal IRI. NK cells are 

observed in kidney post-transplant patients long-term after surgery47. Thus, Clr-b 

may act as an inhibitor against NK cells to protect kidney grafts from the immune 

system. A balance between stimulatory and inhibitory signals on both tubular and 

NK cells may dictate the amount of cytotoxicity caused by these infiltrating 

immune cells, where a minor preference for stimulatory signals may ultimately 

lead to chronic allograft rejection. 

 

4.3 Clr-b expression in TEC inhibits NK cell activity 

There are a plethora of receptors on NK cells, including activating receptors such 

as NKG2D, Ly49 subtypes which can either promote or inhibit activity, or the 
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NKG2A/CD94 complex which inhibits cytotoxicity. These receptors bind to target 

cells to form an immune synapse and rearrange actin within the NK cell. This 

results in the reorganization of the golgi complex and microtubule organizing 

centre to polarize lytic granules toward the synapse, and the release of granzyme 

B or perforin towards the target cell. NK cells are also known to mediate 

inflammatory responses by secreting cytokines, including TNF-α and IFN-γ. The 

degree of cytotoxicity depends on the balance between activating and inhibitory 

receptors. 

We have previously demonstrated that NK cells can injure kidneys and TEC in a 

perforin-dependent manner265. Following IRI, we noted increased expression of 

the NK cell ligand Rae-1 on TEC, as well as stimulatory receptor NKG2D 

expression by NK cells. This receptor-ligand interaction was demonstrated to act 

as an NK cell activation signal to lyse TEC265. Fas-FasL pathway may also be 

another mechanism involved in acute ischemic kidney injury, as blockade of Fas 

ligand on leukocytes attenuated kidney IRI in mice67. 

In this study, we silenced the inhibitory ligand Clr-b in BALB/c tubular cells by 

using siRNA technology to determine whether NK cell-mediated lysis is affected 

by the NKR-P1B-Clr-b molecular pathway. As suspected, clr-b-silenced cells had 

a higher level of cell death (Figure 12). We demonstrate that, without the 

inhibitory function of Clr-b, kidney TEC becomes more susceptible against NK 

cell-mediated cytotoxicity. This indicates that Clr-b plays a dominant role to 

control NK cell-mediated cytotoxicity even in the presence of other activating 

molecules on NK cells.  While Clr-b blockade with anti-Clr-b antibody did not alter 

NK cell-mediated lysis in our hands (Figure 11), we suspect that we either did not 

use a sufficient quantity of antibody or the antibody does not have neutralizing 

capabilities. We have nonetheless demonstrated with siRNA that removing clr-b 

proves to be very effective in promoting TEC death. 

Interestingly, another study done in rat models found that NKR-P1B+ NK cells 

with high NKR-P1B expression killed YAC-1 cells at a higher efficiency than 
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either NKR-P1B- Ly49s3+ NK cells or NK cells with low NKR-P1B expression100. 

These NKR-P1B+ NK cells, however, have been demonstrated to act as mature 

effector NK cells. Similar to effector CD8+ T cells, the NKR-P1B+ NK cells 

expressed low levels of CD62L, CCR7 and CD27, and had limited proliferative 

capacity212. A plausible explanation, therefore, is that other activating receptors 

on rat NKR-P1B+ NK cells in this scenario outbalanced the inhibitory effect of 

NKR-P1B, resulting in the higher cytotoxic efficiency. Another study that 

introduced genetically engineered chimeric NKR-P1B into primary mouse NK 

cells resulted in NKR-P1B overexpression and increased sensitivity against 

inhibitory Clr-b by NK cells234. In NS0 cells, NKR-P1B+ NK cells demonstrated 

reduced cytotoxic efficiency against targets transfected with Clr11, the rat 

equivalent of Clr-b, than untransfected NS0 cells100. These studies support the 

inhibitory role of NKR-P1B-Clr-b interaction and our finding that Clr-b protects 

TEC against NK cell-mediated cytotoxicity. 

In this study, we also noted that NKR-P1B is not affected by IL-2 stimulation 

(Figure 8). Similarly in rats, where subsets of NK cells with either high or low 

NKR-P1B expression were isolated and cultured in vitro, cytokine activation 

could not induce NKR-P1B100. However, while NKR-P1B may not be regulated 

with IL-2 stimulation, we were able to induce its ligand Clr-b with the cytokines 

IFN-γ and TNF-α in TEC. It may be that NKR-P1B is superfluous in nature, and 

expression of Clr-b may be the main dictator in this molecular pathway. In 

support of this hypothesis we found that C57BL/6 to (C57BL/6 × BALB/c)F1 

transplantation resulted in Clr-b down-regulation in kidney grafts (Figure 16). 

Hence NK cell-mediated rejection may be mediated by the down-regulation of 

Clr-b in kidney grafts, shifting the balance towards NK cell activation. Taken 

together, we demonstrate that NKR-P1B-Clr-b interaction serves as an important 

mechanism in regulating NK cell function in kidney tubular cells. The inhibitory 

NKR-P1B receptor may play a tolerogenic role as an MHC Class I-independent 

mechanism to prevent NK cell-mediated lysis of healthy tubular cells. 
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Sequence analyses have determined that the NKR-P1 receptor subtypes consist 

of either the classical ITAM or ITIM motif10, 29, 83, 91, 139. NKR-P1A, NKR-P1C and 

NKR-P1F contain the ITAM motif and have been proposed to act as stimulatory 

receptors, while NKR-P1B and NKR-P1D contain ITIM motifs and are inhibitory. 

Interestingly, studies have suggested that the signalling pathway of these 

stimulatory receptors involve an interaction between the ITAM motif and the Fc 

receptor γ-chain (FcRγ) adaptor molecule9. In antibody-dependent cell-mediated 

cytotoxicity (ADCC), specific antibodies recognize and bind to membrane 

antigens found on target cells. NK cells bind to the Fc region of these antibodies 

through its FcγIII receptors and release cytokines and cytotoxic granules toward 

the target cells, triggering apoptosis. It has been revealed that the FcγIII 

receptors on human NK cells can either mediate lysis against immunoglobulin 

(Ig)G antibody-coated target cells or induce NK cell inhibition upon interaction 

with monomeric IgG221. Similar to the stimulatory NKR-P1 receptors, FcγIII 

receptors also signal through intracellular recognition between the FcγIII ITAM 

motif and the FcγR adaptor molecule. Therefore, it remains possible that these 

stimulatory NKR-P1 receptors act additively or synergistically with FcγIII 

receptors to promote NK cell activity. 

 

4.4 Knock down of Clr-b using siRNA technology 

RNA interference refers to post-transcriptional gene silencing by degrading or 

blocking the translation of the target RNA of interest. SiRNAs show great promise 

in both biological applications and clinical therapy as it has the ability to knock 

down any gene of interest. In addition to deciphering biological mechanisms at 

the molecular level, siRNAs can be therapeutic by turning off the responsible 

genes in many diseases.  

However, much work remains to apply siRNA as a therapeutic tool. One of the 

greatest challenges for achieving RNAi with siRNA is that many cells are difficult 

to transfect. Another hurdle is the limited duration of post-transfection effects, 
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typically with gene silencing activities peaking around 24 hours, and diminishing 

within 48 hours189. Target specificity is also of concern, as studies have 

suggested that non-target genes with sequence homology as short as 9 

nucleotides may be affected101. In addition to non-specificity, siRNA efficacy must 

also be considered because different siRNA sequences targeting the same gene 

of interest have different potencies. Furthermore, as siRNA is quickly degraded 

by the blood stream, the dose and delivery to the body needs to be optimized. In 

New Zealand mice, there is spontaneous development of antibodies to double-

stranded RNA and DNA, which can be accelerated by the administration of 

synthetic double-stranded RNA186. Therefore, the cell target, synthetic gene 

sequence, and immune response need to be considered in order to optimize 

siRNA specificity and efficacy. 

As RNAi blocks further protein synthesis, there is still an initial pool of protein 

prior to gene interference. Hence, another factor that alter siRNA efficacy is the 

kinetics of protein degradation. Here, we show that while there is significant 

mRNA knockdown by 24 h, Clr-b protein down-regulation is not visible on the cell 

surface until 96 h (Figure 12). siRNA efficacy also varies depending on the cell 

type, where certain cells may have high gene knockdown while others show no 

knockdown despite efficient transfection. One plausible explanation is the dilution 

of siRNA within cells due to rapid cell division. For every cell division, the 

intracellular siRNA is also divided, and cells that multiply will lose their initial pool 

of siRNA. If cells, such as TEC, undergo rapid cell division, the dose of siRNA 

within these cells may become insufficient to silence the gene of interest.  

While siRNA application poses technical challenges, there are also limitations to 

other therapeutic tools. Antibodies pose the issues of specificity, efficacy, cost, 

and their inability to target intracellular proteins163, 172. Antibodies have a short 

circulating half-life and require large quantities for administration219. There are 

also issues with limited penetration and antigen internalization by tumour cells219. 

Knockouts are technically challenging and limited to in vitro embryonic 

manipulations of animal cells. Antisense oligonucleotides are single-stranded 
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RNA or DNA of approximately 18-30 base pairs in length and complementary to 

target mRNA, resulting in either the cleavage of the resulting dsRNA by RNase H 

enzyme activity or blockade of the ribosomal assembly139. However, unlike 

siRNA, antisense oligonucleotides are not amplified by an existing endogenous 

gene silencing pathway. High intracellular concentrations are required due to its 

low stability, resulting in higher cost and toxicity, and sufficient time is needed to 

recognize and bind to the target mRNA19, 209, 228, 233. Ribozymes are catalytic 

RNAs that can perform sequence-specific mRNA cleavage. Ribozymes mediate 

the hydrolysis of self-phosphodiester bonds and hydrolysis of phosphodiester 

bonds in other RNAs and can catalyze the aminotransferase activity of the 

ribosome29, 87, 160, 203. Nevertheless, ribozymes require considerable optimization 

for efficiency and specificity to serve as a therapeutic tool. Finally, while 

microRNAs serve as powerful endogenous post-transcriptional regulators, they 

act by binding to complementary sequences on families of mRNA targets, 

resulting in multiple gene targeting functions14, 91, 134, 138, 140, 143. 

Extensive studies currently exist to optimize siRNA efficacy for clinical 

applications. Short-hairpin RNA (shRNA) can be used for prolonged and 

enhanced gene knockdown. Short-hairpin RNA is delivered via viral vectors and 

translocates to the cell nucleus. It is then exported for DICER to process the 

shRNA into functional siRNA. The process of converting shRNA into functional 

siRNA involves an endogenous RNAi machinery that naturally processes miRNA 

responsible for gene regulation96. There are reports, however, implicating shRNA 

to cause lethal toxicity154, 158, 159. In a human hepatitis B virus mouse model, 

Grimm and colleages studied the effects of 49 shRNAs, distinct in length and 

sequence, using a viral vector directed toward the liver in mice. They found that 

36 of the tested shRNAs caused dose-dependent liver injury, and 23 shRNAs 

had killed their hosts within two months independent of the viral vector85. 

However, weakly-expressed shRNAs at low doses decreased serum viral DNA 

without signs of toxicity85.  Furthermore, toxic shRNA levels were shown to inhibit 

the microRNA miR-122 processing in the liver, whereas nontoxic shRNA doses 

did not85. It is possible that shRNA toxicity may be the result of oversaturating the 
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cellular miRNA processing machinery, preventing vital miRNAs from accessing 

those proteins. Therefore, shRNA sequence and dose are imperative in 

controlling endogenous shRNA expression for therapeutic potential. 

Nanoparticles are also particularly of interest, as they may be a solution to 

siRNA’s low stability in the bloodstream and provide a method for cell-specific 

delivery. Biodegradable poly(ester amine), a cationic polymer, conjugated to a 

kidney targeting peptide has been demonstrated to show good physicochemical 

properties as a gene delivery carrier, with DNA condensation ability, protection 

from enzyme degradation, and formation of nanosized complexes with spherical 

shapes. Its efficacy was demonstrated with the HGF gene in unilateral ureteral 

obstruction rat models to recover renal functions and treat kidney fibrosis119. 

Nanoparticles, consequently, also have promising potential to overcome current 

obstacles in siRNA delivery and gene therapy. 

 

4.5 IRI susceptibility and strain-dependent genetic differences 

C57BL/6 mice are the most commonly used inbred strain for general purpose 

and for the generation of congenic mutations. Although this strain is refractory to 

many tumours, it allows maximal expression of most mutations. BALB/c mice are 

also among the top 3 most widely used inbred strains. This strain is well-known 

for the production of plasmacytomas after injection with mineral oil, which is used 

for generating monoclonal antibodies.  

BALB/c and C57BL/6 mice are well established to have different immune 

responses under physiological and pathological states, due to interstrain 

differences in their genetic background146. When compared to C57BL/6 mice, the 

BALB/c strain preferentially develops T helper type 2 cells over T helper type 1, 

is more resistant to autoimmune diseases, and is more susceptible to 

intracellular parasite infection and tumorigenesis. IFN-γ production by C57BL/6 T 

lymphocytes activates macrophages to produce NO and initiates inflammation, 
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while BALB/c T lymphocytes produce more IL-4 that suppresses macrophages90, 

205. A previous study demonstrated that C57BL/6 macrophages also produce 

higher levels of TNF-α and IL-12 than those from BALB/c mice after stimulation 

of TLR-2 or TLR-4252. The resulting IL-12 production by C57BL/6 macrophages 

increases IFN-γ while decreases IL-13 production by CD4+ T cells252. Studies 

have demonstrated that C57BL/6 mice are more susceptible to the induction of 

autoimmune diseases such as myasthenia gravis83  and uveitis13, 36, 222, while 

BALB/c mice display increased susceptibility to mammary162, 237 and colon 

tumours132. In addition to immunological differences between mouse strains, 

there are also variations between the sexes. A Recent study showed that male 

BALB/c mice infected with coxsackievirus B3 resulted in severe myocarditis and 

gave predominantly a T helper cell type 1 immune response. Conversely, 

females gave predominantly a T helper cell type 2 response. It was further 

demonstrated that the sex hormones testosterone and estradiol may be involved 

in the different T helper immune responses95. These discrepancies between 

mouse strains and the sexes offer significant distinctions in their immune 

responses for scientists to take into account and manipulate.   

We have demonstrated that C57BL/6 mice are more susceptible to renal IRI than 

BALB/c mice (Figure 15), which may be due to not only the preferential 

dominance of T helper type 2 cells, but also the lack of MHC Class II Eα 

antigens. The MHC Class II antigens are surface glycoproteins involved in 

controlling immune responses and known to inhibit NK cell-mediated 

cytotoxicity104, 120, 148, 149, 161. A recent study demonstrated that NK cells can 

acquire MHC Class II antigens by intercellular membrane transfer, or 

trogocytosis, with dendritic cells and thereby competitively compete with T helper 

cells for antigen presentation168. C57BL/6 is an H-2b haplotype mouse strain that 

lack the MHC Class II Eα molecules, whereas BALB/c is haplotype H-2d and does 

not155. Cells from mouse strains with haplotypes H-2b, H-2s, H-2q, and H-2f fail to 

express one of the antigen complexes, the E complex, on the surface106. The 

presence of the Eα gene’s promoter region allows the expression of I-E molecules 

responsible for the autoimmune inhibitory effect97, 157. While Eα mRNA was found 
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to be 1.25 kb in length, Eα probes detected mRNA 2.8 kb in length from H-2f 

mice, and mice of the q haplotype have defective RNA processing causing 

mRNA instability157. Mice of haplotypes b and s, including C57BL/6, were found 

to bear a deletion in the Eα gene. Thus, NK cell activation by MHC Class II 

antigens, along with other NK cell signalling mechanisms, may explain the 

variable susceptibility of renal IRI between mouse strains. 

Here, we detected Clr-b on tubular cells regardless of whether it is of the BALB/c 

or C57BL/6 phenotype. However, strain variability comes into play on NK cells, 

as NKR-P1B is expressed differently depending on the strain of mouse. In a 

previous publication, cross-linking of NKR-P1B and NKR-P1C receptors on 

(C57BL/6 × Sw)F1 NK cells revealed a dominance of NKR-P1B inhibitory 

response over NKR-P1C stimulatory signalling32. Here, we confirm that NK cells 

from BALB/c mice express NKR-P1B, while C57BL/6 NK cells do not express 

this inhibitory receptor (Figure 8)34. This may provide additional insights for the 

variable susceptibilities to injury and NK cell-mediated immunological responses 

of different mouse strains. In our transplant experiment, kidney clr-b expression 

was significantly down-regulated after 60 days (Figure 16), providing a possible 

mechanism for NK cell-mediated injury in kidney grafts. The expression of 

inhibitory receptor NKR-P1B and its ligand Clr-b may therefore be one of the 

mechanisms that protect BALB/c mice against NK cell-mediated renal injury and 

explains the increased resistance against renal IRI. 

 

4.6 Conclusions 

Based on our findings, Clr-b expression on TEC and the kidney is found to be up-

regulated after renal injury. As Clr-b-NKR-P1B interaction serves to protect cells 

from NK cell-mediated cytotoxicity, blockade of Clr-b may enhance TEC death 

and kidney injury caused by NK cells. We also found that the common pro-

inflammatory cytokines TNF-α and IFN-γ, known to be associated with kidney 

allograft injury68, induce Clr-b expression in TEC and the kidney (Figures 4 and 
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6). Cytokine-induced Clr-b expression, therefore, may prevent NK cell-mediated 

injury in TEC and the kidney. Furthermore, we also found that there were 

significant variations in NKR-P1 receptor subtype expression between mouse 

strains (Figure 8). It is possible that NKR-P1 polymorphisms in humans may 

explain the different susceptibilities of patients against ischemia-reperfusion 

injury. Up-regulating inhibitory Clr-b in transplant patients thus may protect the 

kidney from NK cell-mediated cytotoxicity in acute and chronic allograft injury. 

 

4.7 Future directions 

We will study whether increased Clr-b expression by gene delivery techniques 

can inhibit NK cell-mediated acute and chronic kidney injury, which may render a 

rationale for future clinical therapy to overcome NK cell-mediated lysis. We will 

examine whether enhancing expression of Clr-b before IRI can prevent kidney 

cells from NK cell-mediated injury. Clr-b expression will be amplified in vivo 

through Clr-b-coded vectors and renal injury will be measured by serum 

creatinine. Mice injected with Clr-b-coded vectors will be compared with its 

control vector with no Clr-b insertion (Origene, Rockville, MD). 
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