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Abstract

Advanced testing of medical treatments involves experimentation on small laboratory an-

imals, such as genetically modified mice. These subjects are used to help researchers de-

velop medication and cures for humans. To understand the effects of the treatments, innovative

telemetry systems are developed, that enable remote real–time cardiac monitoring. The latest

research in the field of cardiac monitoring has revealed two major limitations with wireless im-

plantable systems: a) the current size of implantable electronics limits the physical size of the

system to larger subjects; and b) the systems only interface with one sensor type (e.g., pressure

sensor only). This research focuses on the design of a wireless telemetry system architecture,

intended to retrieve blood pressure and volume data. A physical prototype is created that is

2.475 cm3 and weights 4.01 g. This thesis will enable a path towards miniaturization, leading

to the incorporation of a wireless system into small laboratory animals.

Keywords: mixed–signal, implantable, bio–medical applications, digital–signal–processing,

radio frequency, sensors, pressure–volume, low–power, admittance, lock–in amplifier
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Chapter 1

Introduction

1.1 Motivation

The development of medical treatments for humans strongly depends on lab experiments in-

volving small animals. These test subjects are genetically modified and injected with treat-

ments for medical diseases. Researchers monitor various bio–signals during these experiments

including blood pressure, temperature, blood volume, electrocardiography (ECG), Electroen-

cephalography (EEG), etc. to understand the effects of the treatments on the subject’s body.

Through the use of modern telemetry systems, these bio-medical signals can be measured in

real–time from inside a living body. Researchers can use this data to develop new treatments

for many human diseases such as cardiovascular disease [2–4].

Telemetry systems are able to capture, process and transmit specific information to an end

device, wired or wirelessly. These systems contain sensors to measure the bio–medical data

from inside the living body and can be external, for example in ECG, EEG monitoring or im-

plantable in the case of most cardiac monitoring. Implantable telemetry systems are found in

many different areas of medicine including diagnostics and monitoring [5], drug delivery sys-

tems [6], neurology [7], audiology [8], and cardiology [9]. Many issues exist with the current

implementations of such systems including size restrictions, power consumption, number of

1



Chapter 1. Introduction 2

Figure 1.1: Wireless implantable system measuring environment, Cong [1] c© IEEE 2010.

sensors used etc. These issues are significantly more important for cardiac research due to the

size of the animals involved.

Real–time left ventricular (LV) pressure–volume (PV) loops have become the main analysis

for understanding the health of myocardium in animals and humans [10]. PV loops allow

researchers to quantify cardiac pathology, such congestive heart failure [11] [12]. To obtain this

data, a small catheter is inserted into the left ventricle (LV) of the heart where measurements

are taken. Pressure and volume measurements are captured separately by different electronic

systems. A pressure measurement is acquired by using a solid state pressure sensor where the

pressure from the blood will react with the sensor to cause a potential difference representing

the pressure signal [13]. A volume measurement is obtained by using a four electrode catheter

system inserted into the subject’s left ventricle to generate an electric field and to continuously

measure the conductance or admittance from the animal which is converted to volume [14].

Currently, the catheter is attached to an external base station where the main processing oc-

curs. This does not allow the animal to move freely in their normal environment. To solve this,

an implant is used, creating a measuring environment similar to the one outlined by Cong [1],

Fig. 1.1. The implant would contain all sensor electronics as well as power and data trans-

mission electronics. However, realistic design constraints are driven by the subject’s body size

and the implant’s power consumption. Larger subjects (e.g. a cow or a human) can accept an

implant whose volume is in the order of a few tens of cubic centimetres, while a tiny mouse



Chapter 1. Introduction 3

body can only tolerate a fully implanted object with the volume in the order of a few tens of

cubic millimetres. Power consumption is also of great importance to the implantable system as

decreased power consumption can lead to smaller battery sizes, further reducing the systems

volume. A low–power telemetry system is capable of being implanted for longer periods of

time while operating off of smaller capacity batteries. The proposed research focuses on cre-

ating a small wireless telemetry system suited for cardiac research that enables a path towards

miniaturization, which can be incorporated into small laboratory animals such as a mouse.

This research aims at establishing a benchmark for future research and development in the

increasingly demanding field of miniaturized wireless implantable systems.

1.2 Research Objectives

The aim of this thesis is to develop a prototype of a discrete level, miniature, short–distance,

low–power RF wireless telemetry system suited for small animal subjects. This system is

designed to measure blood pressure and volume data from small laboratory animals (e.g., mice,

rats, rabbits). The objectives of this thesis are:

• To create a telemetry system architecture suited for implantable applications. This ar-

chitecture should contain all system level blocks to allow for data collection, processing,

and transmutation to an end device for post processing. Prototypes should be created to

test the designed architecture.

• To acquire pressure–volume measurements, a sensor interface must be developed to de-

liver excitation signals to the test subject and convert the measure voltages to valid ap-

plication data.

• This research should advance the knowledge of RF implantable systems by providing a

detailed literature review and insights on the trends in this research field.
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1.3 Organization of the Thesis

In this thesis an architecture of an implantable system is developed leading to the manufactur-

ing of two miniature discrete level prototypes using modern PCB techniques.

In Chapter 2, background into implantable systems is presented, indicating main research

areas. Furthermore, pressure–volume loops are introduced along with background informa-

tion on blood pressure and volume measurement techniques in small laboratory animals. In

addition, theoretical concepts of lock–in amplifiers are discussed.

In Chapter 3, the proposed implantable wireless telemetry system architecture is discussed

block by block in detail. The architecture consists of four main modules: power supply, signal

and data processing, RF transmission, and sensor interface.

In Chapter 4, two discrete level prototypes are developed, one for poof–of–concept and a

second to minimize the overall volume of the structure to a level where it can be implanted.

Simulation results of the designed sensor interface modules are presented along with prelimi-

nary test setups and power consumption results.

The research work is summarized in Chapter 5. Achievements are listed, and suggestions

for future work are presented.



Chapter 2

Wireless Measurement Background

In the previous chapter a brief overview of the research problems, motivation, and objectives

was stated. In this chapter, implantable systems are introduced along with examples in specific

active research areas to provide the reader with knowledge in this field. Basic concepts are

introduced that provide background knowledge into pressure–volume measurement techniques

in small lab animals as well as theoretical concepts of lock–in amplifiers. This background

knowledge provides a basic understanding of the application subject and the required theoreti-

cal knowledge for sub–blocks used in the wireless telemetry system.

2.1 Implantable Systems

An implantable system is generally referred to as any device/system that is intended to function

inside a living body for either short or long term use [15]. Implantable systems provide a

method to improve the quality of life of living beings as well as provide monitoring techniques

for various medical applications. The specific advantages of implantable devices in comparison

to other monitoring methods such as magnetic resonance imaging (MRI), CT scans, etc are

their small size [16], low weight [17], low power [18], and increased functionality [16]. As

these mico–systems are dealing with living bodies, they require additional research into areas

such as packaging [19], reliability [20], and bio–compatibility [21]. To achieve these various

5
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measurements, different types sensors are utilized to convert the bio–signals to electrical data

for processing. The most common sensor used is a pressure based sensor. These different

sensors are utilized in many application areas such as retinal [18] [22], neurological [7] [23]

[24], and cardiac [9]. In addition, the focus on power consumption, small size and wireless

power are common themes found throughout the different application areas that implantable

telemetry systems are utilized.

For example, the most recent advancements in retinal implantable systems have been achieved

by Shih [18]. Here, Shih presents a 2.3 µW wireless intraocular pressure/temperature implant.

This implant is used to monitor intraocular pressures that are used in the diagnosis and treat-

ment of glaucoma. In addition, Yang [22] has researched inductor modelling to wirelessly

power such retinal implants. These retinal implantable systems have the potential to greatly

improve the monitoring of such diseases as well as the possibility of early detection before

current diagnostic methods can.

Another major application area for implantable systems is in neurological research. For

instance, Neihart [24] presents a low–power bidirectional telemetry system that is designed to

be fully implanted inside a human body for neural recording applications. Additional research

into the area of neurological research was achieved by Ghovanloo [23] who developed an

implantable system which contained a multichannel mircostimulating system–on–a–chip. This

system was designed to work as a neural protheses. These systems are able to emulate natural

neurological functions that are damaged and provide rehabilitation to the patient. Auditory

and visual prostheses are examples that this device strives to emulate. One of the most recent

publications presented on neurological applications of implantable systems was by Lee [7].

He presented an inductively powered wireless neural recording system, that contained a 14.19

mm2 integrated circuit that consumes 5.85 mW. This system is able to record neural behaviour

on a small animal while allowing the subject to freely move around. Implantable systems for

neurological research purposes provide methods to monitor and stimulate brain functions to

improved diagnosis and long term health care of patients with neurological disorders.
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Implantable systems are actively researched in other application areas as well such as blood

glucose motoring [25], drug delivery systems [26], and blood flow measurements [27]. A

wireless implantable microsystem for blood glucose monitoring is presented in 2009 by Ah-

madi [25]. These types of implants allow for diabetic patients to monitor their glucose levels

in real time and can help reduce symptoms associated with diabetes as well [28]. Smith [26]

proposed a miniaturized drug delivery system for delivering medications to the eye. These

types of systems allow doctors to control the exact dosage and delivery areas for maximum

effectiveness. In 2010, Khannur [27] presented an implantable IC for blood flow measure-

ments within prosthetic grafts. These types of systems allow doctors to monitor and created

better treatments for vascular based diseases. In addition to the major application areas above,

much research is being conducted on specific features of implantable telemetry systems such

as antenna design [29] [30], wireless powering [31] [32], and RF transmitters [5] [33].

However, the most important application area to this research is the field of cardiac mon-

itoring. Most recently, researchers have focused on creating a wireless implantable system

with integrated blood pressure sensors. These systems range from creating a fully implantable

cardiovascular pressure monitor with a medical stent [9] to a fully implantable blood pressure

sensor for hypertonic patients [34]. The most recent research in this application area is in car-

diac monitoring of small animals. New research challenges occur such as reduced implantable

area when dealing with smaller sized subjects over larger ones (e.g., humans). This prevents

larger external components from being used along with larger power sources. Most recently

in 2010, Cong [1] proposed a wireless batteryless implantable blood pressure monitoring mi-

crosystem for small laboratory animals. This publication represents the state–of–the–art in the

field of murine cardiac monitoring. Cong’s implantable system employes a blood pressure cuff

to measure the blood pressure around the blood vessel it is attached to. The pressure cuff is

made from bio–compatible materials and contains an internal MEMS pressure sensor. The

fully implantable system dissipates 300 µW and was experimentally tested. The complete size

of the wireless system is 6.4 mm diameter with a length of 4 mm and was also powered wire-
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Figure 2.1: Implantable wireless telemetry system featuring a cuff blood pressure sensor, Cong
[1] c© IEEE 2010.

lessly via RF, Fig. 2.1. However, Cong’s implantable system is only focused on blood pressure

monitoring and does not combine any additional sensors to provide increased functionality.

One such sensor is a blood volume sensor.

Implantable systems incorporating blood volume sensors for small animals have been an

area that has yet to be exploited to its full potential. Currently, the majority of blood volume

monitoring systems are what is known as tethered systems (i.e., attached to an end unit). These

are generally commercially available from manufactures such as Scisense Inc. and Millar In-

struments Inc. These systems obtain their power and communication from attached end units.

The reason that these telemetry systems still remain wired is the increased external compo-

nent count needed when dealing with accurate blood volume measurements in comparison to

simpler blood pressure measurements. By being tethered to an end unit the test subject is not

allowed to move freely in their own natural environment and may affect the measurement re-

sults [35]. The solution to this would be to create a wireless implantable system similar to

Cong’s implantable pressure system [1] but incorporate blood volume sensors as well. Prelim-

inary research has been completed on this topic by Uemura [36] in 2004. Uemura et al. devel-

oped an implantable pressure–volume telemetry system. This was one of the first implantable

systems that incorporated pressure and volume sensors. The telemetry system communicated
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with an end unit using Bluetooth wireless technology. However, this telemetry system had a

few drawbacks. First, the telemetry system was quite large as it used a programmable digital

logic device and other large components to preform the processing. This increased the overall

weight to 26 g. The second drawback of this initial telemetry system is that the conductance

technique was used to measure volume rather than admittance and it also used a dual frequency

method to remove parallel capacitance from the measured volume. This reduces the accuracy

of the volume measurements as is documented in the following subsection. Raghavan [35] built

upon this initial research to create an improved wireless telemetry system. Raghaven et al. cre-

ated a new improved telemetry system that is built using analog circuitry with a printed circuit

board size of 17.67 cm2. This system improved over the previous system by using admittance

based measurements rather than conductance methods, providing more accurate volume mea-

surements. Although, the implantable system developed in [35] represents the latest research

into pressure–volume telemetry systems, there are still drawbacks and areas of improvement.

The size and weight of this telemetry system are still quite large for small animals, with the

weight at 27 g, as noted in [35]. Therefore, it can be concluded that further miniaturization

in size, weight, and power are required to improve the quality and length of pressure–volume

measurements.

2.2 Pressure–Volume Loops

The heart is the most important muscle in the human body, as it regulates and pumps blood

throughout the living body. The heart contains four chambers, two atria and two ventricles

(left and right), Fig. 2.2. The left ventricle (LV) is generally studied over the right ventricle

because it supplies blood to the whole body rather than just the lungs, as the right ventricle

does, therefore accomplishes the majority of work in the heart [37]. In addition, the left ven-

tricle pumps blood at a much higher pressures than the right ventricle. Two measurements,

blood pressure and volume, of the LV provide insight into the efficiency of the living heart.
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Figure 2.2: Diagram of a human heart, displaying the right and left atriums and ventricles.

Combining the measurement of the LV volume with measured LV pressure, pressure–volume

(PV) loops can be created, allowing for the extraction of various medical parameters.

A pressure–volume loop can be described as the PV relationship during a cardiac cycle.

Here, the four stages of the cardiac cycle: diastolic filling, contraction, ejection (systolic phase),

relaxation are represented by various blood pressure and volume values [38] [39], Fig. 2.3. A

brief overview of these four stages is given below:

• Stage 1: Diastolic Filling: During this stage the LV muscles relax to allow for the in-

crease in blood volume. The blood pressure during this stage is relatively low and con-

stant and the blood volume increases to its highest level.

• Stage 2: Contraction: This stage begins when the LV blood filling is complete. The

mitral valve closes and the cardiac muscle starts to contract to increase blood pressure

inside the LV. The blood volume during this stage is generally constant at its highest

value and the blood pressure is constantly increasing. At the beginning of this stage

two important parameters are measured, A in Fig. 2.3, end–diastolic volume (EDV) and

end–diastolic pressure (EDP). EDV and EPV represent the value of blood volume and

pressure in the heart at the time filling is complete [38].
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Figure 2.3: Pressure vs Volume loop (PV) Loop where A is the end-diastolic (ED) point, B
represents the point where the aortic valve opens, C is the end-systolic (ES) point, D represents
where the mitral valve opens. Stroke Volume (SV) is calculated by subtracting ES volume from
ED volume. This is used to calculate the Cardiac Output (CO) in conjunction with the heart
rate.

• Stage 3: Ejection (Systolic Phase): This stage begins at B in Fig. 2.3, where the aortic

valve opens up and the blood is ejected into the blood stream. The heart muscles con-

tinue to contract to get the maximum blood ejection. The blood volume reduces to its

minimum value during this stage

• Stage 4: Relaxation: The start of stage 4 ends the Systolic phase and the heart muscles

begin to relax (i.e., reduce blood pressure) to allow the LV can refill and repeat the cycle.

At the beginning of this stage two important parameters are measured, C in Fig. 2.3,

end–systolic volume (ESV) and end–systolic pressure (ESP). ESV and ESP represent

the value of blood volume and pressure in the heart at the time ejection is complete [38].

The during this stage the blood volume is at its lowest and the pressure is reduced to its

minimum.

Specific cardiac parameters can be calculated from PV loops. Some of these include: stroke

volume (SV), stroke work (SW), cardiac output (CO), ejection fraction (EF), etc [38], outlined

in Table 2.1 with a small example located in Table 2.2.

By analyzing PV loops and extracting the various cardiac parameters, doctors can ana-

lyze the efficiency of the heart. This process allows the study of a variety of cardiac medical
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Table 2.1: Various cardiac parameters
Cardiac Parameter Description Formula

SV – Stroke Volume
Volume of blood being pumped
with each beat S V = EDV − ES V

SW – Stroke Work
Mechanical work done by the heart
muscle S W = Area inside PV loop

CO – Cardiac Output
Volume of blood being pumped by
the heart in 1 min CO = S V x Heart Rate

EF – Ejection Fraction
Volumetric fraction of blood
pumped out of the LV with each heart beat

S V
EDV × 100%

Table 2.2: Example of cardiac parameters
Parameters given Calculated Parameters
EDV = 130 mL SV=90 mL
ESV= 40 mL CO= 7.2 L/Min
HR= 80 bpm EF= 69.2%

conditions such as congestive heart failure [11] [12], and LV hypertrophy [40] in patients.

2.3 Pressure Measurement Techniques in Small Lab Animals

Blood Pressure is one of the most important vital signals [41] in the study of the living body.

Implantable blood pressure monitoring has been around since 1959 [42] and has advanced from

invasive wired techniques [43] [44] to fully wireless solutions [13]. Blood pressure refers to

the force exerted by circulating blood on the walls of blood vessels [45]. Two main techniques

exist for measuring blood pressure in small laboratory animals: a catheter inserted into the

LV [46] or using a tail cuff device [47].

Implantable pressure sensors inside catheters are MEMS (Microelectromechanical Sys-

tems) based sensors and require a surgical procedure to insert them into the LV, i.e., invasive.

MEMS pressure sensors create an electrical voltage when the blood pressure changes. Catheter

based pressure systems are very accurate however they allow for minimal overall movement

of the test subject due to its direct connection with a larger measurement source. The surgical

procedure can also cause possible complications such infection or trauma to the heart [48–52].
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Tail cuffs are a non-invasive method of measuring blood pressure from small lab animals.

This method places a small cuff around the animal’s tail to measured the blood pressure, sim-

ilar to a human blood pressure cuff. Although a non–invasive technique, the lab animal will

still require some confinement which can cause non–ideal measurements. Unlike pressure sen-

sors inside of catheters, tail cuffs cannot obtain continuous blood pressure measurements, only

systolic blood pressure data [13].

More recently, pressure monitoring systems have evolved into wireless based solutions for

long term implantable use. In [53] a pressure monitoring system is proposed which uses a

passive telemetry link to send and receive power and data. Further advancement in miniatur-

ization and packaging techniques has lead to the implantable system developed in [34]. Full

implantable blood vessel cuff monitoring systems have also advanced throughout the years to

current state–of–the -art methods such as the systems mentioned in [13] and [54].

2.4 Volume Measurement Techniques in Small Lab Animals

Left ventricle volume measurements in small laboratory animals is a difficult task to achieve

due to the size restrictions and heart rate of these animals. For example, a small mouse heart’s

LV volume can be as small as 40 µL and have a heart rate of 500-600 beats per min (bpm)

with heart rates reaching as low as 300 bpm for an anesthetized mouse [55]. This requires

measurement systems to be quite small, impacting the effectiveness and overall functionality

of the measurements. Various different approaches on the measurement of instantaneous blood

volume from small laboratory animals have been accomplished, these include using magnetic

resonance imaging (MRI) [56] [57], echocardiography [57], CT volume measurements [58]

and piezoelectric crystals [59]. These measurement techniques all require large equipment and

laboratories to achieve their respective measurements and are sometimes very costly. They do

however, provide highly accurate LV volume measurements when used. Catheter based meth-

ods have been developed [60] [61] to provide a low cost, yet accurate measurement solution
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Figure 2.4: Example of the physical size of a implantable catheter, along with the electrode
spacing for volume measurements and pressure sensor location.

for finding LV volume in small test subjects. Two techniques exist to measure LV blood vol-

ume using a catheter based system: conductance and admittance. These techniques provide

methods for the accurate measurement of LV blood volume from small lab animals in a cost

effective and accurate fashion.

2.4.1 Conductance

The classical method of measuring blood volume in a catheter based system is the conductance

technique, which was first introduced by Baan et al. in the early 1980s [60]. In this method a

tetra–polar catheter, Fig. 2.4, with two sets of rings located at the top and bottom of the catheter

is placed inside the LV. The two outer electrodes inject a constant AC current into the blood

to create an electric field within the LV and the two inner electrodes measure instantaneously

the voltage created as the heart goes through its pump cycle. Conductance is calculated from

the known excitation current and measured voltage using (2.1). It should be noted that the

myocardium conductance varies over the cardiac cycle.

Conductance =
Current (I)
Voltage (V)

(2.1)

The classical equation to convert the measured conductance to a LV volume is directly
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Gb GpIin

Figure 2.5: Conductance electrical heart model, where Iin represents the injected current, Gb

blood conductance, Gp muscle conductance.

found by using Baan’s linear conductance to volume equation (2.2), where ρ is the blood re-

sistivity (Ωm), L is the length between the voltage sensing electrodes (m),
1
α

is the stroke

volume (SV) calibration factor (originally assumed to be 1), Gmeas is the instantaneous mea-

sured conductance (S), Gp is the surrounding myocardial conductance (S), and Gb is the blood

conductance (S) [3]. Baan’s equation makes the following assumptions: a) the electric field

distribution is uniform throughout the cardiac cycle; b) the ventricular wall is insulated from

the blood, i.e., the total measured conductance is due to the blood and not the heart muscle; c)

the heart cavity has a cylindrical shape; and d) the catheter is stationary and always perfectly

centred along the cylinder’s axis.

Volume =
1
α
ρL2(Gmeas −Gp)

=
1
α
ρL2Gb

(2.2)

The electrical model of the heart used in the conductance measurement method, Fig. 2.5,

models the blood and muscle as single resistive components. A single conductance measure-

ment includes information about both blood, Gmeas and myocardium muscle, Gp, leading to

an over estimation of the LV blood volume. However, they are a combined value and cannot

be separated without calibration [60]. One technique that is used to measure and calibrate out

muscle conductance is Hypertonic saline bolus injection [62]. This technique is predominantly

used in larger animals because the saline solution will significantly alter the blood resistivity

and blood volume of smaller animals [61] causing Baan’s equation to become invalid [60]. In
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addition, other researchers have proposed combining the hypertonic saline technique with a

simultaneous measurement at two different frequencies [63–65]. However, these calibration

techniques are not time dependent, therefore not creating instantaneous calibration to the con-

ductance measurement. The conductance value requires a time dependent calibration factor to

take care of the change in LV volumes (i.e., changing the electric field based on heart cycle)

during the cardiac cycle from end–diastolic to end–systolic. In summary, Baan’s equation is a

very simple conversion of conductance to volume, however, it is limited to measuring volume

changes not absolute volumes because of its high error (overestimation of blood volume).

To correct for the effects from the nonuniform electric field on the conductance measure-

ment, Wei et al. proposed a new improved equation denoted as Wei’s equation (2.3) [66].

Volume =
γ

γ −Gmeas −Gp
ρL2(Gmeas −Gp)

=
γ

γ −Gb
ρL2(Gb)

(2.3)

Where ρ is the blood resistivity (Ωm), L is the length between the voltage sensing electrodes

(m), γ is the field form factor, Gmeas is the instantaneous measured conductance (S), Gp is the

surrounding myocardial conductance (S), and Gb is the blood conductance (S) [66]. The field

form factor γ is calculated by (2.4).

γ =
−b ±

√
b2 − 4ac
2a

where a = S V − ρL2(Gb−ED −Gb−ES )

b = −S V(Gb−ED + Gb−ES )

c = S V ×Gb−ED ×Gb−ES

S V = strokeVolume (L)

ρ = blood resistivity (Ωm)

L = distance between sensing electrodes (m)

(2.4)

The main benefit of Wei’s equation compared to Baan’s is the compensation for the non–
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linear electric field throughout the LV. This is corrected using the field form factor or γ. Wei’s

equation does however, require an independent stroke volume (SV) measurement for the cal-

culation of γ. For larger subjects, Wei’s equation can reduce the overestimation error to 10%

compared to using the original Baan’s equation [66]. In addition, this equation still requires

parallel conductance removal through Hypertonic saline techniques. Therefore, a new tech-

nique was created to separate blood volume from the surrounding muscle (myocardium) to

calculate a more accurate LV volume measurement using Wei’s equation.

2.4.2 Admittance

Porterfield et. al [67] proposed a new admittance based technique in the late 2000s, where the

electrical and permittivity properties of the murine myocardium [68] are exploited to remove

the myocardium conductance (Gp) component from the overall measured signal. In addition,

this technique includes the effects of the parallel myocardium capacitance (Cm), where the

original conductance method did not. This is described in the admittance equation (2.5), where

the myocardium conductance and capacitance vary over the cardiac cycle.

Ymeas = Yblood + Ymuscle

= Gb + Gp + jωCm

(2.5)

The motivation for measuring admittance (complex conductance) rather than conductance

is that by using excitation frequencies of approximately 20 kHz, blood is purely resistive and

the myocardium has both resistive and capacitive electrical properties [68] [69–71]. Therefore,

an updated electrical model of the heart is realized, Fig. 2.6, where Gb represents the conduc-

tance of the blood, Gp myocardium conductance, and Cm myocardium capacitance. Using an

excitation frequency of ∼20 kHz allows for the separation of the admittance of the myocardium

from the combined measured admittance using electric field theory [67].

For an electric field E in homogenous tissue (left ventricle heart tissue), the conductance

and capacitance between the inner electrodes are given by (2.6) and (2.7) [67].
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Gb GpIin Cm

Figure 2.6: Admittance electrical heart model, where Iin represents the injected current, Gb

blood conductance, Gp muscle conductance and Cm as the capacitive component of the muscle.

G =
I
V

=

!
σmE · dS

−
∫

E · dL
= σmF (2.6)

C =
Q
V

=

!
εmE · dS

−
∫

E · dL
= εmF (2.7)

Where, G is conductance (S), I is current (A), V is voltage potential (V), σm is the electrical

conductivity of the myocardium (S/m), εm is the electric permittivity (F/m), F is the field

geometry factor (m), C is capacitance (F), and Q is charge (C). The integration is from one

inner electrode to the other along a vector pathway (L) and the surface (S). The measured

conductance and capacitance of the electric field are related by (2.8), where the ratio of
σm

εm

is found using a surface probe measurement before the main experimental procedure. The

derivation and process on measuring and calculating these parameters is detailed in [68].

Gp = Cm
σm

εm
(2.8)

During an experimental procedure, only the magnitude and phase of the admittance signal

will be measured (i.e., Ymeas = |Ymeas|∠θ). This is conducted using the same catheter, Fig 2.4,

as the conductance method. Therefore, using these two parameters the values of Gb, Gp, and

Cm can be calculated. Recall, that Ymeas is equal to (2.5) and that blood is purely resistive and

the myocardium has both resistive and capacitive electrical properties when using an excitation
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frequency of 20 kHz. With this knowledge, one can calculate the instantaneous values of Cm,

Gp, and finally Gb using equations (2.8), (2.9), and (2.10), respectively.

Cm =
|Ymeas| sin(θ)

2π f
(2.9)

Gb = |Ymeas| cos(θ) −Gp (2.10)

These three equations allow the parallel conductance (myocardium conductance) to be dynam-

ically calculated based on the frequency dependent value of Cm. This eliminates the need for

hypertonic saline injection to calculate Gp, which is extremely beneficial for testing in small

laboratory animals. Finally, with the complex admittance calculated, Wei’s equation (2.3) can

be used to calculate accurate volumes of the LV [68] [14].

State–of–the–art LV volume systems use this technique to calculate absolute volumes, how-

ever, test animals must still be tethered to the catheter measuring device causing non-ideal

blood pressure and volume data. Hence, there is a significant need for wireless miniaturized

telemetry systems to retrieve LV pressure and volume from a small living animal

2.5 Lock–In Amplifier Background Theory

Lock–in amplifiers are used to measure low voltage AC signals (µV to nV) within noisy envi-

ronments. These noise signals can be many times larger than the signal of interest and a lock–in

amplifier is still able to extract such a signal [72]. Recall, standard AC voltage measurements

measure all voltages at the measurement input, including all noise signals as well as the signal

of interest. This can cause signals of interest to be lost or overwhelmed with noise. Lock–in

amplifiers are different from these AC voltage measurements because not only is a excitation

signal provided to the experiment but a reference signal is also provided [73]. This signal must

be phase and frequency locked with the original excitation signal for the amplifier to work cor-
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Figure 2.7: Block diagram of a Lock–In Amplifier.

rectly. The lock–in amplifier uses the reference signal to locate the measured signal of interest

within the noisy environment, while disregarding all signals that are not of the same frequency

as the reference signal. This technique is known as phase sensitive detection [74]. This is the

main reason that a lock–in amplifier can measure very small experimental voltage amplitudes in

an environment that contains noise signals much greater. Lock–in amplifiers are used in many

different applications from gas monitors [75] to wireless embedded applications [76–78].

The basic lock–in amplifier structure, Fig. 2.7, contains seven main components: excita-

tion source, experimental system, signal conditioning, reference generation, phase sensitive

detector (PSD), low pass filter (LPF), and DC amplifier [73].

Time Domain Analysis

The excitation signal Vext(t) = Vo cos(2π fot) is fed into the test system to initiate the measure-

ment. The measured signal is first directed through the signal conditioning block. Here, the

measured waveform is amplified and filtered to remove unwanted frequencies above and below

the frequency of interest, fo. The output of the signal conditioning block is (2.11), where Gac

is the gain of the signal conditioning block, Vo is the amplitude of the signal of interest, fo is

the excitation frequency, and θs is that possible phase shift of the signal. This represents one

input to the PSD.

Vac(t) = GacVo cos(2π f0 + θs) (2.11)

The phase sensitive detector is a specific type of frequency mixer (multiplier). A frequency
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mixer in the most basic sense multiplies two signals V1(t) and V2(t) to form a new signal. As

stated previously, one input is (2.11) and the reference voltage, Vre f (t), is the other. A mixer can

be implemented in many forms including transistors, diodes, or any non linear device. How-

ever, in a simple implementation, the mixing circuit can be described by Fig. 2.8 [76]. Here,

the measured signal, (2.11), is split into the in–phase 0◦ and the anti–phase 180◦ components,

where a switch controls the output. This switch is controlled by the reference signal, Vre f (t).

This configuration offers the widest dynamic range to maximize the signal recovery [74].

The reference signal is chosen to be a square wave with a gain of 1 to control the switch in

the PSD. In different mixer circuit configurations the reference signal can be a general sinusoid.

The reference signal is phase and frequency locked to the original excitation frequency Vext(t)

and is represented by (2.12).

Vre f (t) =
4
π

[cos(2π fot + θR) −
1
3

cos 3(2π fot + θR) +
1
5

cos 5(2π fot + θR) . . .] (2.12)

When two signals of frequencies f1 and f2 are multiplied together, two additional signals are

created with one equal to f1 + f2 and another equal to f1 − f2, along with harmonics. Therefore

if (2.11) and (2.12) are multiplied (2.13) is created, where ωR = 2π fre f , ωS = 2π fmeas and θR, θS

represent the phase shifts of the respective signals.
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VPS D(t) =
2
√

2 VoGac

π
[cos(ωRt ± ωS + θR ± θS )

−
1
3

cos(3ωRt ± ωS + 3θR ± θS )

+
1
5

cos(5ωRt ± ωS + 5θR ± θS ) . . .]

(2.13)

If the assumption that the measured signal and reference signal are frequency locked ( i.e.,

ωRt = ωS t) is made and that the subsequent low pass filter cuts off well below the reference

frequency ( i.e., removes upper harmonics) then (2.13) reduces to (2.14).

VPS D(t) =
2
√

2 VoGacGlp f

π
cos(θR − θS ) (2.14)

Equation (2.14) is directly proportional to the amplitude of the signal of interest Vo along

with a phase difference of θR − θS . However, if the experiment does not introduce a phase

shift, then this component can be ignored. In addition, the LPF block acts as an integrator to

remove any additional noise created at the output of the mixing circuit. Further DC gain can be

obtained through a DC amplifier. All factors are known except for Vo, therefore, the measured

signal can be extracted from the noisy environment using the final DC output, (2.15).

VPS D =
2
√

2 VoGacGlp f GDC

π
(2.15)

Magnitude and Phase Measurements

The previous lock–in amplifier design will only detect the magnitude of the measured signal,

however even if θR − θS , 0◦ this design cannot measure it. To measure the phase shift created

by the experimental process, two phase sensitive detectors are required [74] [72], Fig. 2.9.

The second PSD requires a reference signal shifted by 90◦ from the original excitation

signal. This allows quadrature signals to be measured or in–phase (I) and out of phase (Q)

components. The second PSD’s output is (2.16).
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Figure 2.9: Dual Lock–In Amplifier block diagram.

VPS D2(t) =
2
√

2 VoGacGlp f GDC

π
sin(θR − θS ) (2.16)

By using equation (2.14) and (2.16) the magnitude and phase of the measured signal can

be calculated using simple trigonometry. The magnitude is calculated by (2.17) and the phase

is calculated by (2.18).

Magnitude =
√

(VPS D1)2 + (VPS D2)2 (2.17)

Phase = tan−1
(
VPS D2

VPS D1

)
(2.18)

Using this technique the magnitude and phase of a specific signal can be measured inside a

noisy environment.

2.6 Summary

In this chapter, an introductory literature review on implantable systems with their various

application areas is presented. In addition, the critical publications relevant to this research are
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discussed. A brief introduction to pressure–volume loops and some of the cardiac parameters

that can be calculated are examined. Furthermore, pressure–volume measurement methods in

murine animals are explored in detail. Additional circuit theories are provided for background

context into the implementation of the designed wireless telemetry system.



Chapter 3

Wireless Telemetry System Architecture

A wireless telemetry system is designed that is suited for measuring blood pressure and volume

data from a small laboratory subjects. The system captures, processes and transmits this data

wirelessly to an end base station for further processing. The main design requirements for this

system are: it must be small in size and have low power consumption. These two criteria allow

a system such as this, to be implanted for a long period of time while operating off of battery

power. The overall system is divided into two units: external and internal, Fig. 3.1.

The external unit includes both a future power delivery section and an end device. The

power delivery section contains a larger transmitting coil, which is connected to a wired power

source, and is designed to allow for maximum power transfer to the smaller implant coil. The

transmitting and receiving power coils are designed in [79]. The second sub–block is the end

device, which can refer to a computer or a more application specific embedded system. The

end device is connected wirelessly to the internal unit through a wireless data–link.

The implantable internal unit is a small application specific system, designed to capture

biosensor data using a custom interface board and communicate to the end device for further

processing. The implantable unit contains four main sub–blocks: power–harvesting, process-

ing, RF transceiver, and an application specific interface block. Each block is discussed in

detail in the following sections.

25
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Figure 3.1: Block diagram of the proposed wireless telemetry system.

The main focus for this thesis is the development of the internal implant system. The power

delivery section is not discussed here and is being developed concurrently in another project.

It is assumed that the implant will be designed around a battery based system, Section 3.1

provides details into this. Two experimental prototypes are created, denoted as Phase 1 and

Phase 2 prototypes. These prototypes are discussed in results chapter, Section Section 4.2.1.

The wireless implantable telemetry system architecture is based on the overall structure out-

lined in Fig. 3.1. The specific design of the internal unit is achieved by creating four main mod-

ules: Power Module, Microcontroller Module (Processing Module), RF Module (Transceiver

Module), and Interface Module, Fig. 3.2. All these modules communicate with each other

through a commutation bus. Each module has access to this bus, and is described in more

detail in Section 3.4. There is also an auxiliary module for testing and programming indicated

as the Development module, with more information found in Section 4.2.1. The following

sections describe the design process for each module culminating in the design of the two

prototypes.
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3.1 Power Module

The power module contains all electronics to provide power to the whole system. The main

components in the power module are: a battery, low–dropout regulator, supervisor device, and

an analog switch for the interface module, Fig. 3.3. The power module provides 3.6 V DC

to the system through the main bus structure. All modules have access directly to the power

module, with each module’s ground plane connected directly to the batteries ground.

3.1.1 Battery

A battery for an implantable system should be small in size but have a large capacity. It also

should be rechargeable in order to extend the lifetime of the system. Lithium-ion polymer

batteries are chosen for the batteries for this system because of their high capacity and small

size characteristics, as well as being rechargeable. Two batteries are chosen for this project,

America Kokam SLPB 241019 and Full River 501213, for Phase 1 and Phase 2, respectively.

In the first phase of the project, the battery has a 25 mAh capacity with a nominal voltage
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of 3.7 V and a charge condition of 1C. The overall dimensions are 25.35 mm x 10.8 mm x 2.4

mm (L x W x H), Fig. 3.4(a).

The second battery that is used has a 40 mAh capacity with a nominal voltage of 3.7V and a

charge condition of 1C. The overall dimensions are 15 mm x 11.0 mm x 5 mm, Fig. 3.4(b). The

overall area is reduced from 273.78 mm2 to 195 mm2 or a reduction of 27.7% in area compared

to the phase 1 battery. However, the volume of the second battery increases to 975 mm3 from

657.07 mm3. This increase is justified by the increase in charge capacity. The overall area is

the most import design constraint for the battery as this directly dictates the system size. Each

battery is recharged with a Li–Poly USB battery charger.

3.1.2 Low Dropout Regulator

A voltage regulator is used to regulate the input voltage from the battery to some select DC

voltage, in this case, the battery voltage is 3.7 V and the main system voltage is 3.6 V. The

regulator should have a low consumption current (Iq), very low dropout (LDO), and have a

high power supply rejection ratio (PSRR).

Two LDO regulators are chosen for this project, one for each phase. The first phase the TI
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Figure 3.4: Dimensions of the batteries used in each prototype, 3.4(a) Phase 1 and 3.4(b) Phase
2.

TPS77301DGK, Fig. 3.5, is chosen for LDO regulator. This is an adjustable voltage regulator,

where the output can be varied based on a set of two resistors. The TPS77301DGK has a

typical Iq current of 92 µA, with a 200 mV dropout for a 3.3 V output and a PSRR of 55 dB.

The main advantage of this regulator is the adjustable nature of the output voltage. This allows

for flexible system voltages if needed. The output voltage is calculated by (3.1).

Vout = Vre f ∗ (1 +
R1
R2

) (3.1)

where Vre f is 1.1834 V from the internal Bandgap reference. R1 and R2 are chosen for ap-

proximately 50 µA. The resistor values are chosen to output a fixed 3.6 V, where R1 was 68

kΩ and R2 was 33 kΩ. This regulator provides a stable 3.6V reference for the main system.

The voltage regulator that is used in phase 2 of the project is the TI TLV70036. This

regulator has a fixed 3.6V output rather than an adjustable output, with a typical Iq of 31µA,

175 mV dropout for a 2.35 V output and a PSRR of 68 dB. The lower current consumption,

higher PSRR and less external components are the main reasons for adopting the new LDO

regulator in the second revision of the system. As a result of having a fixed voltage output, no
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external resistors are needed to create the regulated output voltage. This reduces the component

count by two resistors.

3.1.3 Supervisor Device

A supervisor integrated circuit (IC) is used in the power module to provide circuit initialization

and voltage protection to the microcontroller and battery. The supervisor circuit is connected to

the microcontroller’s reset pin where an internal delay is started to prevent the microcontroller

from powering until the line voltage is stable and above a specific voltage. If the line voltage or

in our system, the output of the battery drops below the specific voltage the supervisor chip will

cause the microcontroller to reset and prevent damage to the microcontroller. The supervisor

chip used in both systems is the TI TPS3838 with a typical power consumption of 220 nA and

a supervisor (threshold) voltage of 2.93 V.

3.1.4 Voltage Reference

The need for a voltage reference in the designed wireless telemetry system is to provide a

virtual ground to the analog circuitry on the interface modules. A virtual ground is needed

to allow for full voltage swing to occur in the analog signal chain while using single ended

devices. As described in Section 3.1, the telemetry system operates off of a single ended 3.6

V power supply, if full voltage swing is needed in any module, a virtual ground of VDD/2 =
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3.6/2 = 1.8V is required. A series voltage reference was chosen for this project due to its

highly accurate regulated voltage output.

The Maxim MAX6018 1.8 V series voltage reference is chosen to achieve this function.

The MAX6018 has an output voltage of 1.8 V with a min voltage of 1.7964 V to a maximum

output of 1.8036 V. It also has a supply current of 3 µA with a wide input range. The high

precision, low power, and minimal component packaging of the MAX6018 were the main

reasons for choosing this series voltage reference.

3.1.5 Analog Switch for Interface Module

The Interface modules operate using the same DC 3.6 V power supply as the rest of the system,

however, the voltage supplied to these modules should be switched off whenever not in use.

Therefore, the main power rail is split to form a separate interface module voltage rail (Interface

Voltage). An analog Single Pole Single Throw (SPST) is used to perform this purpose. A SPST

switch generally has five terminals: power, ground, control, Vin, Vout, Fig. 3.7. In this system,

the MAXIM MAX4715 is used to provide this function. The MAX4715 contains the five

terminals outlined above with 0.4 Ω max of RON resistance at a 3 V power supply and 0.04

µA of current consumption. The main function of this switch is to control when the interface

module power is on or off, allowing the overall power consumption to be reduced. The control

line for the SPST switch is P12 (GPIO) from the microcontroller. If P12 is low then the output

voltage to the interface modules is off and when P12 is high the output voltage to the interface

modules is on. By using this logic, the interface module’s power supply can be controlled
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by sending digital I/O signals from the microcontroller down the bus to the power module to

control the operation of the switch.

3.2 Microcontroller Module

The Microcontroller module is the main communications hub between the RF electronics, in-

terface electronics and power electronics, Fig. 3.8. The main duties of this module are to

capture the incoming analog data from the interface module, digitize it and then process the

data for RF transfer. The transfer of digital data to the RF radio is transferred via the Serial

Peripheral Interface (SPI) bus, discussed in more detail in Section 3.3.2. The analog data is

transferred down to the microcontroller module through the communication bus and connected

directly to the microcontroller’s input pins. This data is then digitized by a 10 bit ADC, pro-

cessed and sent to the CC2500 for RF transfer. The microcontroller module is programmed

through a external programming connector that is disconnected after each upload.

3.2.1 MSP430

Various microcontrollers exist that perform basic functions such as general digital input and

output (GPIO), analog input and communication protocols. These microcontrollers come from

a wide range of manufactures such as Atmel, Texas Instruments, PIC, etc. The microcon-

troller chosen for this project is the MSP430 from Texas Instruments (TI). It is chosen for its
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wide availability, low cost, and low power consumption. The MSP430 comes in may differ-

ent versions, each with different features, the MSP430F2274 is chosen for this project. The

MSP430F2274 contains a 12 channel 10-bit SAR ADC, SPI communication bus, a 16 MHz

internal clock and many more features within a 40 pin package [80]. All pins of the microcon-

troller are connected to the main communication bus, allowing each module to communicate

directly with the microcontroller. The internal clocking, ADC and power management modules

are three of the main MSP430 features that are utilized in this project.

Clocking MSP430

The MSP430F2274 contains a clock module which includes three main clock sources, LFXT1CK,

DCOCLK, VLOCLK. Each clock source can be used to drive any of the three main clock sig-

nals: ACLK, MCLK, SMCLK. The low–frequency oscillator is the clock source for external

crystals and resonators, with a frequency range of 400 kHz to 16 MHz. The internal Digitally

Controlled Oscillator (DCO) is the main clock inside the MSP430, with a maximum frequency

of 16 MHz and is able to be divided internally to create sub frequencies. Finally the VLOCLK

is an internal low–power, low–frequency oscillator in the frequency range of 12 kHz. Each of

these clock sources are used to route the clock signals to the MSP430’s internal architecture.

The main clock signal of the MSP430 is MCLK, which is used by the CPU and the support-

ing architecture. The remaining clock signals, ACLK (Auxiliary Clock), SMCLK (Sub–Main



Chapter 3. Wireless Telemetry System Architecture 34

Clock), are used to control individual peripheral modules.

In the designed telemetry system, the MSP430F2274 is clocked using the internal clock

rather than an external crystal. An external crystal is not used to reduce area and component

count of the system. The MCLK is sourced from the DCO using a internal frequency of 1 MHz

and ACLK, SMCLK are sourced by the VLOCLK. A lower clock frequency is used in the DCO

instead of the higher maximum frequency of 16 MHz to conserve power during active modes

of the MSP430.

Analog to Digital Conversion in the MSP430

The analog to digital (ADC) conversion module is an essential module for the operation of

the wireless telemetry system. The ADC is used to convert the analog sensor data to usable

digital data. The MSP430 contains a 10–bit successive approximation ADC with eight external

inputs. The voltage reference that is used for comparison can be an external or internal voltage

reference. A internal 1.5V or 2.5V Bandgap reference is used for the internal voltage reference.

Any clock in the MSP430 can be used to control the conversion timing.

The main formula used in the conversion of the analog signal to the 10–bit digital signal

is (3.2) [81], where Vin represents the analog input voltage, VR+ indicates the positive voltage

reference used, and VR− indicates the negative voltage reference used, in most cases 0 V.

NADC = 1023 ∗
Vin − VR−

VR+ − VR−
(3.2)

In the proposed system, 4–6 analog inputs are used depending on the interface electronics

active, with each using the internal voltage reference. The internal voltage reference is used

rather than the external voltage reference as less external components are needed, allowing the

reduction of the area of the overall system. The internal ADC oscillator is used to clock the

conversion of the analog to digital signal.
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Power Management

One of the key features of the MSP430 is that it’s designed for low–power applications, which

makes it an ideal choice for the proposed implantable system. The MSP430 has six different

operating modes designed specifically for low power operation, Active, LPM 0 – 4. These

modes range from 270 µA at 1 MHz, 2.2 V supply to 0.7 µA in LPM4.

The main difference between each mode is the number of clocks in the clocking module

that are active. Where in the active mode, all clocks and the CPU are active, while at the other

extreme in LPM4, all clocks and the CPU are disabled. Low Power Mode (LPM) 0 to LPM

3 have various clocks on or off. Ideally in a implantable system, the MSP430 would remain

in LPM4 for most of the time, only to be placed in one of the other low power modes when

processing is needed, this is done using an interrupt. By using these different operating modes,

the power consumption of the wireless system can be greatly reduced.

3.2.2 Microcontroller Software

The MSP430 was programmed using IAR Embedded Workbench for MSP430 IDE. MSP430

assembly and C are the main programming languages used in this implantable telemetry sys-

tem. For the preliminary tests of the MSP430, assembly language is used to test each register

and specific functions while C language is used for higher level programming. The main

telemetry system programming is a separate research project and is not discussed in this the-

sis. For the purposes of functionality, C and assembly level code is written to enable wireless

communication and basic processing.

The MPS430 is programmed using a 6 pin custom connector which contains the pins:

Power, Ground, TX, RX, RST, and TEST. The power and ground pins are connected to the USB

power and ground to supply power to the microcontroller while programming. The TX and RX

pins are the data lines used in communication between the software and the microcontroller.

Finally, the RST and TEST pins and used by IAR Embedded Workbench for resetting the

device and testing the microcontroller.
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Figure 3.9: Radio Module schematic with SPI communication through the bus. Matching
network and RF antenna are also included.

3.3 Radio Module

The radio module inside the telemetry system enables wireless communication to an end device

and contains four major components: RF transceiver, matching network, antenna, and a clock

source, Fig. 3.9.

This module directly interfaces with the Microcontroller Module through the communi-

cation bus, with no other modules interfacing with it. The radio module transmits its data

wirelessly via a RF antenna with a specific RF protocol. Different wireless protocols exist to

transmit data wireless such as bluetooth, WIFI, non-standard 2.4 GHz, other RF proprietary

RF frequencies, etc. A non–standard TI 2.4 GHz protocol is chosen for its low–power features

and its high compatibility with other Texas Instruments components.

The RF transceiver must interface with an external antenna that will allow it to transmit to

a base station. Generally, this must be done through a matching network, matching the output

impedance of the transceiver to the 50 Ω antenna, discussed in Section 4.2

Along with a matching network and antenna, the RF transceiver must also contain a clock

to correctly time the communication between the RF transceiver and the microcontroller for

sending data, a 26 MHz quartz crystal is used to achieve this function.
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3.3.1 CC2500

The Texas Instruments CC2500 is the transceiver used in the proposed implantable wireless

telemetry system. The CC2500 is a low–power 2.4 GHz wireless transceiver and is designed

for the Industrial, Scientific and Medical (ISM) band along with the Short Range Device (SRD)

band, 2400 MHz – 2483.5 MHz. The CC2500 has a programmable output power up to +1

dBm, with a maximum data rate of 500 kBaud. The CC2500 acts as a receiver as well, with a

sensitivity of -104dBm.

The CC2500 is chosen for the RF module for its low current consumption (400nA in sleep)

and minimal external components required. The CC2500 is programmed by the MSP430 di-

rectly through the SPI bus discussed in Section 3.3.2. The CC2500 is clocked using an external

26 MHz crystal, with two 27 pF capacitors connected directly to the IC. Additional external

components are needed for decoupling capacitors, bias resistors and matching network cir-

cuitry.

The CC2500 interfaces with a 50 Ω antenna through a balun and matching network. The

RF input and output of the CC2500 is balanced with an impedance of Zout = 80 + j74 Ω. A

balance to unbalanced (balun) network is generally created from passive components to convert

the balanced signal, i.e., differential in/out to unbalanced, i.e., single ended 50 Ω antenna. This

intermediate impedance is then matched to the 50 Ω antenna for maximum power transfer. Two

balun and matching network designs are implemented in a respective prototype, discussed in

detail in Section 4.2.

3.3.2 Communication Between Microcontroller and CC2500

The digital communication between the microcontroller (MSP430) and the transceiver (CC2500)

is achieved through the SPI bus. Six wired connections make up this bus, four for the main SPI

link and two for interrupts, Fig. 3.10. The four SPI wired connections, SPI SIMO, SPI SOMI,

SPI CLK, and SPI Chip Select send and receive data from the CC2500. SPI Chip select is used

to enable and disable the communications between the two devices. This pin is essential in the
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Figure 3.10: SPI digital communication link between MSP430 and CC2500.

design as the SPI bus is utilized in other ares of the system, i.e. digital pressure section, hence

allowing the SPI bus to be multiplexed. The timing for the SPI communication is preformed

by the SPI CLK pin. This timing is synchronized between both the master and salve devices

using this pin automatically. Finally, the two main data lines, SPI SIMO, SPI SOMI, represent

the master to slave communication and the slave to master communication, respectively. In

this case, the MSP430 acts as the master and the CC2500 as the salve device. However, the

CC2500 does not communicate back to the MSP430 through the SPI SOMI pin, it can only

receive instructions.

The other two connections, are used for interrupts to allow the CC2500 to trigger the mi-

crocontroller to wake up from low–power state when a packet is received. The CC2500 refers

to these two pins as GDO0 and GDO2. In the designed telemetry system they are connected to

GPIO pins 2 and 3 on the MSP430. By using these two interrupts, the MSP430 is able to go in

low–power state while the CC2500 remains in receive mode.

The SPI bus is directly integrated in the main communication bus structure. By doing this,

any module can access the SPI bus to communicate digitally with the microcontroller module,

only an additional chip select pin is needed to determine which device to communicate with.

3.3.3 RF Parameters

The CC2500 includes 47 programmable registers that contain the parameters used in RF trans-

mission. Examples of these registers include configuration for modulation type, frequency,

output power, packet size, etc. These registers are all programmed through the SPI bus from the
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MSP430. Upon power up, these parameters are copied to the registers from the MSP430, as the

CC2500 does not store them after loss of power. The CC2500 is configured to use Frequency-

Shift-Keying (FSK) Modulation and an operating frequency of 2.45 GHz. These parameters

are determined using the TI SimplicTI drivers or manually if optimization is needed.

3.4 Communications Bus

The telemetry system’s main form of digital and analog communication between each module

and the outside world is achieved through the use of a communications bus. When designing

the bus structure multiple signals are required and must be taken into consideration. These

include: power signals (System Voltage, Interface Voltage, HF voltage), ground signals, I/O,

programming pins, charging pins, etc. With the physical design in mind, the communication

bus is split across two vertical connectors. There are two different communication bus pinouts

used in this telemetry system, one for each prototype version. Refer to Section 4.2.1 for physi-

cal connector information.

3.4.1 Phase 1 – Communication Bus

In the first phase of the design, a total of 32 pins split across two connectors with 16 pins

each are used. In this architecture, 5 pins for power (1 System Voltage, 4 high frequency (HF)

Voltage), 12 pins are used for ground, 6 SPI pins, 4 for programming (plus VCC and ground),

and 5 I/O pins, Table 3.1. Each module has access to any of these pins, if needed.

The power and ground signals all originate from the power module. The power module

creates and distributes these signals from the battery to the communications bus. Every board

has access to multiple grounds, which provide a low impedance path back to the battery. There

are two main power signals in this version of the communication bus: 3.6 V Rail for System

Voltage and 3.6 V Rail for high frequency devices. The main 3.6 V rail is connected to the

microcontroller and interface modules, and the 3.6 V HF is only connected to the RF module.
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Table 3.1: Communication Bus in Phase 1 prototype
Pin Function
System Voltage 3.6 Volt Rail for System Voltage – From Power Module
HF Voltage 3.6 Volt Rail for RF Module – From Power Module
Ground Ground – Connected Directly to the Battery
UCB0STE Chip Select for SPI Bus
UCB0SIMO Slave In, Master Out for SPI Bus
UCB0SOMI Slave Out, Master In for SPI Bus
UCB0CLK SPI Clock
GDO0 Interrupt for communication between CC2500 and MSP430
GDO2 Interrupt for communication between CC2500 and MSP430
TEST Test signal using in programming MSP430
RST Reset signal to MSP430
TXD0 Transmit Pin for Programming MSP430
RXD0 Receive Pin for Programming MSP430
P20 Pressure Out – Interface Module
P21 I Out – Interface Module
P22 Q Out – Interface Module
P23 General I/O – Extra Pin From MSP430
P24 General I/O – Extra Pin From MSP430

This power is filtered through a inductor on the power board. These three signals provide

electric power to every component in the telemetry system.

The connections labeled Test, RST, TXDO, and RXDO are the main MSP430 programming

signals along with two power signals. The TEST pin provides a test signal when the MSP430

is being programmed. TXDO and RXDO are the transmit and receive signals to program the

MSP430 and RST is the reset signal for the MSP430.

There are five general I/O pins that connect directly to the microcontroller module, P20 –

P24. Pins P23 and P24 are set as general I/O pins and are connected to the main bus, serving

as optional pins for future connections.

Pins P21, P22, and P23 used in the communication between the interface module and mi-

crocontroller module. Here, P20 represents the voltage created from the pressure section of the

interface module, and P21–I out, P22–Q out represent the output of the volume section of the

interface module. These three signals are connected to the analog inputs of the microcontroller,
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where each signal is sampled and processed digitally. The generation of these three signals are

discussed in Sections 3.5.2 and 3.5.3.

The communication bus architecture for the first prototype provides each module with only

the necessary connections, with two optional connections (P23 and P24). However this was

necessary in the first prototype as only a proof of concept was needed. However, in order to

create a more functional and advanced telemetry system, a more complex communication bus

architecture is needed.

3.4.2 Phase 2 – Communication Bus

The second prototype includes a communication bus with a total of 88 pins or 175% increase

over the first version, Table 3.2. The additional pins are warranted due to the more expandabil-

ity and complexity of the second prototype. In this version, the 88 connections can be broken

into the following groups: power signals, ground, SPI, programming, and general input and

output.

In this version, the system voltage and HF voltage pins are increased to two pin allocations

each. Three additional power signals are added to this improved architecture, interface voltage,

1.8 V ref signal, and 5 V USB charging. The interface voltage rail provides power to the

interface module through a SPST analog switch located on the Power Module, Section 3.1.5.

The 1.8 volt rail is added because of the relocation of the voltage reference chip to the Power

Module. Finally, a 5 V power rail is added to the bus to allow for USB charging directly

to the battery. There are a total of 44 ground connections used in this architecture of the

Communications Bus. The additional grounds do not affect the overall function of the system

but do provide additional connections on each module, simplifying the layout. The SPI and

programming connections remain the same in this version.

The main additions to this communications architecture are from the added I/O pin. Twenty

seven I/O pins are connected to the bus in this version. Here, the pins are allocated into six

specific categories: general I/O, power monitoring, enable pins, analog inputs, Interface Mod-
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Table 3.2: Communication Bus in the second prototype
Pin Function
System Voltage 3.6 Volt Rail for System Voltage – From Power Module
HF Voltage 3.6 Volt Rail for RF Module – From Power Module
Interface Voltage 3.6 Volt Rail for Interface Module – From Power Module
1.8 V Reference 1.8 Volt Reference for Interface Module – From Power Module
Ground Ground – Connected Directly to the Battery
UCB0STE Chip Select for SPI Bus
UCB0SIMO Slave In, Master Out for SPI Bus
UCB0SOMI Slave Out, Master In for SPI Bus
UCB0CLK SPI Clock
GDO0 Interrupt for communication between CC2500 and MSP430
GDO2 Interrupt for communication between CC2500 and MSP430
TEST Test signal using in programming MSP430
RST Reset signal to MSP430
TXD0 Transmit Pin for Programming MSP430
RXD0 Receive Pin for Programming MSP430
P17, P40, P47, P36, P10, P11,
P13, P14, P15, P16

General I/O – Extra Pin From MSP430

P25 Digital Potentiometer Control – SPI on and off

P20 Power Supply Voltage (To Monitor Power to the System)
P21 Power Efficiency
P22, P37, P23, P24 Analog A2, A7, A3, A4
INA1 Out Interface Board Split – Mag/Phase Method
SINE Interface Board Split – Mag/Phase Method
Q Gate Interface Board Split – Lock-in Method
I Gate Interface Board Split – Lock-in Method
P41 Duty Cycle of the Oscillator – Mag/Phase Method
P42 Duty Cycle of the Heart Signal – Mag/Phase Method
P43 Rectifier Out – Mag/Phase Method / Q Out – Lock-in Method
P44 ECG Out – Mag/Phase Method / I Out – Lock-in Method
P45 Pressure Out – Mag/Phase Method and Lock-in Method
P46 Magnitude Out – Mag/Phase Method
P12 Interface Module Enable
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ule outputs, and Interface Module separation. There are ten digital general I/O ports and four

analog inputs that are un–allocated on the bus, for future use if needed. Two pins are allocated

to monitor the power efficiency and the power supply voltage when an optional wireless power

module is added, not currently used in the battery based system. Two enable pins are allocated

to control the Interface Module’s power supply and the digital potentiometer SPI bus in the

magnitude phase version of the Interface module.

Four signals are used in the PCB separation of the Interface Modules, two for each version.

These four signals are shared across two physical pins, as only two are used at one time. Six

signals are used to form the outputs of the Interface Module, with each version sharing these

outputs.

For the lock-in method, P41, P42, and P46 are allocated as general I/O and are not used

for any outputs. P43, P44, and P45 are used as the main outputs of this module where P43

represents the Q Out, P44 the I Out and P45 represents the output voltage related to pressure

output. For the magnitude and phase method, additional pins are used to monitor various stages

of this design. P43, P44 are examples of this and represent the rectifier and ECG signals,

respectively. P41 is assigned as the duty cycle of the oscillator, P42 is assigned to the duty

cycle of the heart signal, P45 is associated with the output voltage representing the pressure

signal and P46 is assigned the Peak Gain Out on the Interface Module.

3.5 Interface Modules

The Interface Modules provide the electronics to connect the medical catheters to the teleme-

try system. Each catheter is connected to the Interface Module directly with the designed

electronics providing a way to translate the raw analog signal from the sensor to accurate

pressure–volume (PV) data.

Each Interface Module contains electronics to decode both PV data, Fig. 3.11, where M1,

M2, M3, M4 represent the volume measurement inputs and SR1, SR2, and COM represent
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Figure 3.11: Interface Module block diagram.

the pressure measurement inputs. In this implantable telemetry system, two different pressure

measurement methods and two different volume measurement methods are used. The follow-

ing subsections will describe the catheters used in this design, as well as both versions of the

pressure and volume measurements.

3.5.1 Catheters

Catheters are an essential part of the wireless telemetry system as they provide the structure

to house the bio–medical sensors along with a direct connection to the telemetry system.

Catheters can contain various types of bio–sensors, in this research project, only two types

of sensors are used, pressure and volume. These sensors can be separated into three catheter

types: pressure only, volume only, and combined PV, with this design utilizing PV catheters.

An example of a pressure volume catheter used in this system is shown in Fig. 2.4. This

diagram represents a 1.2 French catheter, with a width of 0.4 mm. It contains four electrode

rings and a pressure sensor separated at specific distances. The top and bottom sets electrodes

are separated by a distance of 4.5 mm with each set separated by 0.5 mm. The tetra–polar

catheter is inserted directly into a small animal subject’s left ventricle to measure blood pres-

sure and volume. The two outer electrodes inject current into the blood and the two inner

electrodes measure the voltage created by the electric field inside the left ventricle. Conduc-

tance/admittance is calculated from the known current and measured voltage. The blood pres-

sure is directly determined from the included pressure sensor.
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Figure 3.12: Pressure measurement block.

3.5.2 Pressure Measurement

The pressure measurement block contains the electronics to convert the pressure created by

the blood on the catheter (mmHG) to a voltage (V). This voltage is obtained by the use of a

catheter containing a small MEMS based pressure sensor, Section 3.5.1. This pressure sensor

is connected directly to the pressure block electronics for processing using three wires, SR1,

SR2 and COM. These three wires are used to excite the pressure sensor and provide voltage

measurement, Fig 3.12. The pressure sensor used in this telemetry system is the GE P161 Pres-

sure sensor [82]. This is a MEMS based sensor and contains two pressure sensitive resistors

with a nominal resistance of 800 Ω. A wheatstone bridge configuration is used as the main

voltage measurement method.

The wheatstone bridge is an combination of four branches of resistors used to measure an

unknown resistance, by balancing two branches of the bridge circuit, with one branch including

the unknown resistance, Fig. 3.13. Nodes A and B represent the measurement points and Ext

is the excitation signal. The top two resistors, P1, P2, in the bridge represent the pressure

sensor and the bottom two R1, R2, are external matching resistors. If the measured voltage

between nodes A and B is zero then the bridge is balanced, in other words there is no pressure

exerted. When pressure is exerted on the sensor, the resistance of P1 and P2 will increase
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Figure 3.13: Example wheatstone bridge.

or decrease based on the difference in pressure from the calibrated pressure. The calibrated

pressure is when the bridge is balanced i.e., no measured output voltage. The sensor resistor

P1 will increase when P2 decreases and vice versa, this causes the bridge voltage to be linearly

based on the pressure exerted.

In most wheatstone bridge configurations the bridge is driven by a voltage source rather

than a current source. In this system, a current source is used because of two main reasons. The

first is that current driven whetstone bridges have the advantage of not introducing measure-

ment errors when the excitation circuit is far away from the sensor. In this telemetry system,

the catheter is located away from the main electronics and could introduce measurement error

due to the increased wire length and wire resistance if voltage driven circuits are used. The

second benefit is the pressures sensitivity is directly linear to the excitation current, allowing

the sensitivity to be controlled.

The external components of the wheatstone bridge ( R1, R2, Current source) must be com-

pleted based on the specifications of the pressure sensor. As the pressure sensor contains two

nominal 800 Ω resistors, the bridge completion resistors must be close to 800 Ω to balance the

bridge correctly. As well, a constant current source must be constructed to provide the nomi-

nal current needed to excite the pressure sensor and drive the circuit. The bridge completion

resistors are generally tuned or trimmed to get the resistance needed to complete the bridge.

Generally, exact 800 Ω resistors are not used as some adjustment must be made to offset the

effects of wire resistance, temperature, etc. Two methods exist to tune these resistors: Analog
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Figure 3.14: Current source design.

and Digital trimming, with each method discussed in detail below.

The current source is constructed using an OP–Amp, a diode and two resistors, Fig. 3.14.

This current source is located next to the interface electronics and is directly connected to the

pressure sensor through the COM pin on the sensor. The constructed current source is designed

to provide ∼580µA of current as required by the pressure sensor. The current source used is a

simple diode and sense resistor configuration. The voltage drop of the diode across the resistor

R2 provides the correct current to the sensor.

Analog Resistive Trimming

The first version of the telemetry system uses analog resistors to complete the wheatstone

bridge, Fig. 3.15(a). In most cases, sets of high precision resistors are connected in parallel to

balance the bridge more effectively rather than single resistors. If the overall volume allows,

analog potentiometers (POTs) are used to provide additional resistance trimming capabilities.

However, these are larger in size and create a lot of mechanical noise. The benefits of us-

ing standard resistors or analog (POTs) are that they provide very accurate results as well as

generally costing less and no additional ICs are used. The additional space increase for poten-

tiometers and mechanical noise is a downfall of this method. As well, if only precision resistors

are used no additional resistance trimming can take place once the circuit is constructed.
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Figure 3.15: Pressure measurement design using (a) Analog Tuning and (b) Digital Tuning
techniques along with current source in Fig. 3.14.

Digital Resistive Trimming

The more modern way to trim the bridge completion resistors is to tune them digitally. Instead

of a mechanical potentiometer that is much larger and can create noise in the circuit, a digital

potentiometer is used. This digital potentiometer is a small IC, that is able to provide the same

functions as an analog potentiometer but be controlled using SPI communication. These ICs

contain many set interval steps between 0 Ω and the maximum resistance. This method is used

in the the second version of the telemetry system prototype, Fig. 3.15(b). For example, the

digital potentiometer used in the second prototype is a 10KΩ digital potentiometer with 1024

steps, Maxim MAX5484. These POTs are generally connected with additional high precision

resistors in parallel to get the exact bridge completion resistance. The digital POTs allow for

constant resistive trimming to the bridge during operation. The digital pot in the telemetry

system is controlled using the SPI bus from the microcontroller.

3.5.3 Volume Measurements

The blood volume is measured using the same catheter as in the pressure measurements, how-

ever four electrodes are used rather than a MEMS sensor. These four electrode rings provide

the excitation signal to the heart, as well as an interface to provide the voltage measurement,

Section 3.5.1. The four rings connect directly to the interface electronics enabling analog pro-

cessing of the voltage signal and conversion to a volume measurement.
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As discussed in the background theory, Section 2.4.2, admittance measurement techniques

are used to accurately measure the blood volume in the heart. Two methods are implemented in

this telemetry system that precisely measure admittance from the PV catheter. Both methods,

lock–in and magnitude and phase, measure a voltage and convert it to a magnitude and phase

measurement or into I, Q values. These parameters are used to calculate the admittance, (2.5).

Lock–in Amplifier Method

One technique to achieve an accurate volume measurement using admittance is to use the

Lock–in amplifier technique. This method utilizes the theory of phase–sensitive detectors dis-

cussed in detail in Section 2.5. This type of circuit allows the low amplitude voltage signal to

be extracted from the noisy environment (e.g., animal body) and amplified to a useable signal.

The circuit implementation of the lock–in amplifier used in this system is realized by the

block diagram in Fig. 3.16 where nine stages are used to excite the catheter and extract the in–

phase (I) and quadrature (Q) DC voltages to calculate the complex admittance using equations

(3.3) and (3.4).

Voltag Magnitude =
√

I2 + Q2 (3.3)

Voltage θ = tan−1(Q/I) (3.4)

A quadrature oscillator is designed, Fig. 3.17 to generate sine and cosine signals at 19.866

kHz centred around the virtual ground of 1.8 V. As discussed in Section 2.4.2, exciting the heart

with a frequency of ∼20 kHz causes the blood to become purely resistive and the heart muscle

to contain both resistance and capacitance properties, allowing only the blood volume to be

measured. This implementation uses only six passive components (three 820 p f capacitors

and three 9.76 kΩ resistors) and two operational amplifiers. High slew rate amplifiers are

needed to achieve the required frequency and switching speed of the oscillator. Other oscillator
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Figure 3.16: Lock–In implementation of Interface Module.

configurations were researched such as phase shift and Wien Bridge oscillators [83] however

to achieve the required frequency, dual output (sin and cos) and full voltage swing required

more discrete components to create the equivalent circuit.

The reference signals for the analog multiplier are created using two comparators. The in-

puts to these comparators are the generated sin and cos waveforms and the virtual ground. The

resulting output signals are frequency locked square waveforms providing a phase reference

for the excitation signal and are connected to the analog switch.

The in phase or cosine signal is used to directly excite the heart through a voltage to current

(V to I) converter. This V to I converter uses three resistors (20 kΩ, 12 kΩ, and 1 MΩ) and one

operational amplifier to achieve 61 µA of alternating current, Fig. 3.18. This current is achieved

by using equation (3.5). Additional DC offset compensation is achieved through resistor R4.

The two input rings on the catheter are connected to the output of the V to I converter through

two 1 uF DC blocking capacitors and a 1 MΩ resistor separating the two nodes of the circuit.
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This excitation current generates an electric field between the two outer rings enabling a voltage

to be measured.

I =
Vrms

R

I =
1.22Vrms

20kΩ

I =61µA

(3.5)

The voltage created by the electric field through the heart is measured through an instru-

mentation amplifier (IA) with a gain 26 dB, Fig.3.19. Two 10 nF capacitors are used to decou-

ple any DC offset created from the electrode rings during measurement. In addition, two 100

kΩ resistors are used to restore the virtual ground offset to the incoming AC signal. Finally,
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the voltage difference is amplified with a gain of 26 dB to be further processed.

Along with the desired voltage waveform the electrode rings will also measure the electrical

signals created from the surrounding heart nerves and muscles causing additional unwanted

noise in the signal. A bandpass filter is used to remove the ECG signal and additional noise

contained in the measured AC signal. A 4th order, two stage multiple feedback bandpass filter

is designed with a total gain of 12.04 dB and is centred around 18.59 kHz with a passband of

4 kHz. A total of 10 passive components (6 resistors and 4 capacitors) and two OP–Amps are

used to implement this filter, Fig. 3.20. This amplified and filtered signal is the main input to

the next stage of lock–in amplifier – the phase sensitive detector.

Section 2.5 indicated that the main blocks of the phase sensitive detector are the mixer and

low pass filter. It was also noted that one of the simplest forms of a mixer is an inverter/switch
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combination, Fig. 2.8. The designed interface module implements this mixer architecture with

an active low pass filter design. The inverter block is implemented by an unity gain inverting

amplifier configuration. An analog switch is used to complete the mixer configuration. To

extract both I and Q values, two analog switches are needed. The input to each switch is the

inverted and the non–inverted filtered signal with the frequency locked square waves providing

the switching controls.

The high frequency harmonics of the output waveform are removed using a low pass filter

to reduce the waveform to a DC level which is directly proportional to the magnitude and phase

of the voltage signal. To obtain maximum SNR, the DC signal must span the full input range of

the microcontroller (0 – 3.6 V). This is achieved by removing the virtual ground offset of 1.8 V

and amplifying the DC output to span between 0 and 3.6 V. A 2nd order Bessel active low pass

filter with a cut-off frequency of 127 Hz is designed with a gain of 13.46 dB and resistors to

remove the DC offset, Fig. 3.21. Each switch output is connected to a separate active low pass

filter block. The outputs, I and Q, are connected to the communications bus for the MSP430 to

convert into magnitude and phase values for the measured voltage. This complex voltage along

with the known excitation current are used to calculate the complex admittance to be converted

to an absolute volume.
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Magnitude and Phase Method

The second technique to extract the complex admittance from the measured AC voltage is to

use a more straightforward approach. In this method, the magnitude and phase are extracted

directly from the measured signal. Based on the mathematical theory of sinusoid signals, a

circuit is created to implement the calculation of the magnitude and phase of the measured

voltage signal. In comparison to the lock–in method, this technique does not require a mixer or

additional filtering to extract the specific signals. Rather, the magnitude is directly measured by

using an envelope detector on the rectified signal and the phase is directly extracted using a set

of comparators and the microcontroller. A total of eight sub–blocks are used to implement the

circuit for the interface module, Fig. 3.22, from creating the excitation signal to the extraction

of the magnitude and phase values.

For the same reasons outlined in the lock–in method, an oscillator is needed to excite the

catheter inside the test subject. In this method, only a single sinusoid waveform is needed
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not both sine and cosine signals, as the lock–in method is not used. Additional sine oscilla-

tor designs were researched however, the existing quadrature oscillator design contained the

lowest component count to achieve the required signal. Hence, the same circuit design was

chosen for the oscillator sub-block, Fig. 3.17. The cosine output of the quadrature oscillator

is not used in this version, only the sine output. The circuit implementation, Fig. 3.18, of the

voltage to current converter used in the subsequent block is identical to the previous method’s

impelmentation as well. The AC voltage from the induced electric field is measured using

an instrumentation amplifier configuration similar to Fig. 3.19 and the ECG signal is filtered

through the designed ECG bandpass filter, Fig. 3.20. The remaining circuitry deviates from the

lock–in method with four new sub-blocks.

To extract the magnitude or absolute value of the signal the waveform must be rectified.

The circuit implementation of the rectifier has to satisfy various requirements as to remain

as close as possible to the ideal rectified sinusoid. These requirements include minimal peak

loss, operate on a single supply voltage, low component count, full wave rectification, and

work within the operating frequency of the system. A four diode bridge configuration was

first researched as this would provide the lowest component count and would provide full

rectification if used with a symmetrical power supply. However, the peak loss created by the

diodes’ voltage drop was unacceptable for the power supply used in this system. For example,

if standard 0.7 V drop diodes are used, a total of 1.4 V is lost in rectification process from the

original power supply maximum of 3.6 V. Therefore, this configuration was not implemented

in the system. Active rectification methods are needed to mitigate the peak loss created by any

diodes used in the circuit topology. The main issue with discrete active rectification methods

is that most topologies are designed with symmetrical power supplies in mind. This creates

a problem if implemented in the proposed telemetry system architecture as a single ended

power supply is used, substantially reducing the amount of topologies to choose from. A two

stage single supply active full wave rectifier [84] is chosen as the implemented rectifier design,

Fig. 3.23.
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Figure 3.23: High precision two stage full wave rectifier.

This full wave rectifier is separated into two stages defined by their respective OP-Amp

configuration. In the first stage, OP1 has two defined states: an inverter with a gain of one and

a unity gain buffer with a output equal to virtual ground; that are controlled by two diodes D1

and D2. State 1 is active when the input voltage is greater than virtual ground causing D2 to be

on, enabling the inverting amplifier configuration. State 2 is active when the input voltage is

less than virtual ground causing D1 to be on, creating the unity buffer configuration. The overall

function of the two states of OP1 is a half wave inverter. For the case when Vin = Vtrl gnd,

D1 and D2 are off causing OP1 to be completely disconnected from the output of the rectifier.

This can lead to irregularities in the output voltage where the output voltage is calculated as

Vout = Vin × R19 × (R16 ‖ R15 + R17 + R18). The second stage of this rectifier is defined by

OP2’s operation, where it sums the inverted half wave signal with the original waveform and

amplifies it with a gain of 6.02 dB. The combination of the two stages creates the full wave

rectified signal. In addition, resistors R20 and R21 in Fig. 3.23 are used to limit the bias current

due to the voltage offsets created by the input impedance the inverting node of each amplifier.

Peak amplitudes are detected from the rectified waveform by using an peak detector, Fig. 3.24.

A general peak detector can be made with a diode connected to a resistor in parallel with a ca-

pacitor. However, a super diode configuration is needed to counter the peak loss created by
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the turn on voltage of the diode. To calculate the values of the RC components two condi-

tions must be met for the envelope detector to work properly [85]. First off, the output voltage

should follow the envelope of the signal rather than the changes in the main excitation signal.

The time interval between each peak is controlled by the discharge rate of the capacitor. This

rate is approximately equal to the inverse of the excitation frequency, or in this case
1

19.4 kHz
.

In between each peak of the excitation signal the output voltage of the envelope detector is

defined by V(t) = exp(−1/ fcRC). Hence, for the output voltage to only follow the peaks, the

timing constant RC should be chosen to be close to
1
Fc

. The timing constant must also be small

enough so that the peak detector can still follow changes in the envelope not only the peak val-

ues. The changes in the envelope itself are related to the message bandwidth (mb) ( e.g., the

heart rate of the animal), with the timing constant resulting in a value close to
1
fmb

. These

conditions are combined (3.6) to calculate a timing constant to allow the envelope detector to

work correctly for the given excitation frequency and heart rate (message bandwidth).

1
fc
� RC �

1
fmb

(3.6)

For example, if the test subject is a small mouse with a maximum heart rate of 200 beats

per min and allowing for 20 harmonics, the maximum frequency bandwidth needed is 6.66

Hz. Using this information with an excitation frequency of 19.4 kHz, a range of RC values

can be found from 51.54 µSec to 15.01 mSec. Through experimentation it was found a value

of RC = 500µS ec (10 KΩ, 50 nF) adequately tracks the waveforms shape and allows for

variations in the envelope bandwidth as well.
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Figure 3.25: Span and offset removal circuit.

The span and offset removal block serves the same purpose as the lock-in amplifier method,

to remove the virtual ground and span the output to a 0 to 3.6 V value. However, the implemen-

tation is slightly different, with the main difference being the lock-in method’s implementation

is combined with a LPF where only the span and offset functions are needed in this implemen-

tation. A difference amplifier is used, Fig. 3.25, to accomplish this function with an overall

gain of 13.76 dB.

The phase difference between the excitation signal and the measured waveform is calcu-

lated in 4 steps. 1) Convert the excitation signal and output of the ECG filter (before recti-

fication) to square waveforms. 2) These waveforms are read by the microcontroller’s digital

inputs, where the period of the excitation is calculated and stored in the MSP430’s memory

using timers. 3) The waveforms are XOR’ed in software where the output waveform repre-

sents the phase difference in time of the two signals, with a high voltage representing a out of

phase signal and a low voltage as an in phase signal. 4) The phase difference is determined

by the amount of time the XOR output is high with reference to the original excitation period.

The measured signal can be out of phase 0-180 degrees from the original excitation signal. If

the measured waveform is 180◦ out of phase, the XOR’d output will be high for the whole

excitation signal’s period. If the signal is in-phase then the XOR output will be low during this

time. The phase difference is directly proportional to the time this signal is high. The specific
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phase difference can be calculated using (3.7).

Phase Di f f erence (◦) =
Time XOR output is high

Excitation S ignal Period / 180◦
(3.7)

This implementation of interface module uses envelop tracking similar to AM modulation

methods to extract the magnitude and uses specific hardware and the MSP430 to extract the

phase from the measured voltage signal. The electronics are much simpler than the lock–in

implementation however, it is more reliant on the microcontroller for phase measurements.

Magnitude measurements can be improved by adding additional filters and using lower volt-

age diodes. Phase measurements can be implemented in hardware however, this reduces the

flexibility in correcting for phase offsets in signal path.

3.6 Summary

In this chapter an implantable wireless telemetry system architecture is developed. This system

contains four main modules: power, microcontroller, radio, and sensor interface. Along with

the four main modules, the communications bus architecture is discussed. Two interface mod-

ule implementations are developed, Lock–in method and magnitude and phase, to interface the

pressure–volume sensors to the wireless system. The proposed telemetry system architecture

is capable of measuring blood pressure and volume data from a test subject and wirelessly

transmit it via a 2.45 GHz RF signal to a end device for full processing.



Chapter 4

Simulation and Experimental Results

In this chapter, simulation results of the interface modules will be shown. Two prototypes

were constructed based on the architecture designed in Chapter 3. The construction and 3D

modelling of these prototypes are discussed. In addition, the test setups used in the preliminary

experimental testing are also examined along with the initial test results.

4.1 Simulation Results

Each interface module version is simulated before the physical construction to ensure proper

operation. Behavioural simulations are completed on the direct magnitude and phase method

and SPICE simulations were preformed on the Lock–in method.

4.1.1 Behaviour modelling

The magnitude and phase implementation of the interface module is simulated using behavioural

modelling techniques inside the Cadence simulation environment. Each block in Fig. 3.22, is

verified mathematically using Verilog–A behavioural modelling language. All the main circuit

elements are treated as ideal elements either as Verilog–A code or ideal circuit models such as

a voltage controlled voltage source. The goal of the behavioural simulations is to demonstrate

60
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Table 4.1: Myocardial parameters used in behavioural simulations
Domain Conductivity (S/m) Permittivity (F/m)
Myocardium 0.17 4.419 x 10−7

Blood 0.93 8.853 x 10−9

that the functionality of the circuit.

A variable heart model is created that is based on a similar model developed by Wei [71],

similar to Fig. 2.6. The value of the resistors and capacitors are treated as variables and con-

trolled by an oscillator at a specific frequency. This frequency is the intended heart rate of the

test subject. The myocardial parameters used in the simulations are shown in Table 4.1. There

is no Electrocardiogram (ECG) filter used in these simulations as the circuit is ideal. A voltage

controlled oscillator is used to excite the system and provide an input to the comparators that

are created using ideal behavioural models. The rectifier is represented by the mathematical

function |X| and is created in one single block with the peak detector. There is also no need

to create a span and offset removal as everything is ideal and power supplies are not an issue.

Instead of having the output’s of the comparators connected to the microcontroller as is the

case in the actual design, an ideal XOR gate is used instead to measure the phase difference in

respect to the duty cycle.

This behavioural model is simulated with a input frequency of 20 kHz, Fig. 4.1(a) and

the heart model is controlled by a voltage source with a frequency of 17.5 Hz. An example

simulation ran for 100 ms and created differential amplifier, Fig. 4.1(b), magnitude, Fig. 4.1(c),

and phase, Fig. 4.1(d) measurements. These measurements are used to calculate the complex

voltage, to be used in the admittance to volume conversion. As indicated by the simulation

results the designed circuit behaves as expected.

4.1.2 Lock–In Circuit Simulation

The architecture of the lock–in amplifier implementation of the interface module is simulated

using SPICE in National Instruments Multisim 12. SPICE models for each component were
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Figure 4.1: Outputs of behaviour modelling simulations.

found to correctly model the operation of the Lock–In amplifier. Each block, as discussed in

Section 3.5.3, is simulated for functionality. The blocks simulated are: quadrature oscillator,

voltage to current converter, instrumentation amplifier, comparators, analog switch, gain and

offset and the overall operation. A power supply of 3.6 V with a virtual ground of 1.8 V is used

in the simulations along with LMV554 OP-Amps.

The quadrature oscillator designed in Fig. 3.17 is simulated. The oscillator produced two

waveforms swinging from rail-to-rail and are 90◦ out of phase from one another, Fig. 4.2.

The quadrature oscillator is designed to oscillate at 19.86 kHz however, in simulations the

oscillation frequency is found to be 18.6 kHz. Each resistor and capacitor is given realistic

tolerances which attributed to the difference in oscillations. The voltage-to-current converter,

Fig. 3.18, is simulated using a sine wave as the input with a frequency of 18.6 kHz to produce

the expected 61 µA of AC current. The heart model used in these SPICE simulations is a

simple parallel combination of a 100 Ω resistor and a 15 nF capacitor. These components are



Chapter 4. Simulation and Experimental Results 63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 10u 20u 30u 40u 50u
V

o
lt
a
g
e
 [
V

]
Time [S]

Sine Out
Cosine Out

Figure 4.2: Quadrature Oscillator output where the solid lines represent the Sine output and
dashed represent the Cosine output.

variable to allow the full heart cycle to be tested. The simpler heart model is used rather than

the complex model used in the behavioural model because it reduces overall simulation times.

The heart model is attached to the V-to-I converter and the instrumentation amplifier in the

overall simulation. The instrumentation amplifier, Fig. 3.19, is simulated using two sin sources

with 18.86 kHz, 1 mv input signals 180◦ out of phase to verify the correct gain. The simulated

frequency response of the ECG bandpass filter is shown in Fig. 4.3(a). The comparators block

is simulated using the outputs of the quadrature oscillator and the appropriate square waves are

created. The analog switch and gain and offset blocks are simulated together for validation.

Two sine sources along with a digital pulse are used as inputs and a single output is measured.

As discussed in Section 3.5.3, the gain offset block is a 127 Hz active low pass filter with a

gain of 13.46 dB, the filter response is shown in Fig. 4.3(b). This testing process confirmed the

functionality of each block before an overall simulation.

Each block is connected together along with the heart model to create the full lock–in

amplifier implementation of the interface module. The full range of R and C values of the heart

are simulated to validate the module however, only two specific simulations will be discussed,

R = 100 Ω C= 0 nF and R = 50 Ω C = 15 nF.
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Figure 4.3: Frequency response of (a) ECG filter with a centre frequency of 18.596 kHz and a
gain of 12.04 dB and (b) 2nd order low pass filter with a cut-off frequency of 127.4 Hz and a
gain of 13.4 dB.

R = 100 Ω C= 0 nF

The measured voltages at the inputs to the instrumentation amplifier with an excitation current

of 61 µArms are V+= 6.96 mVrms and V- = 993 µVrms and an output voltage of 478 mVrms. The

ECG filter used in the simulations is set with a gain of 3.02 dB which further increased the

voltage signal to 964 mVrms, Fig. 4.4(a). The second control signal to the analog switch, the

inverted signal is shown as well, Fig. 4.4(a). As described in the Lock–In amplifier theory in

Section 3.5.3, the analog switch acts as a voltage mixer, the output in time domain of the in

phase and quadrature signals are shown in Fig 4.5(a) and 4.5(b), respectively. The signal is

then passed through the 127 Hz active filter to reduce the upper harmonics, amplify the signal

further, and remove the voltage offset. The output’s of this stage are DC values proportional

to the I and Q values of the measured voltage and are displayed in Table 4.2. In practice the

measured IQ values would be converted to admittance if used to convert to an absolute volume.

It should be noted that an initial calibration should be completed on a known resistive load to

calibrate any phase shift and gain offset created by the components in the signal path. The

process to complete this is not discussed in this thesis.

R = 50 Ω C= 15 nF

The second simulation example is completed in the same fashion as the initial example. For
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Figure 4.4: Outputs of ECG filter (Solid) and Inverter (Dashed) when (a) R = 100 Ω, C = 0 nF
and (b) R = 50 Ω, C = 15 nF.
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Figure 4.5: (a) in phase and (b) quadrature outputs of the dual phase sensitive detectors before
the low pass filter, when R = 100 Ω, C = 0 nF.

Table 4.2: IQ values of R = 100 Ω, C = 0 nF
Output Measured Voltage
I 3.31641 V
Q 2.51542 V
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Figure 4.6: (a) in phase and (b) quadrature outputs of the dual phase sensitive detectors before
the low pass filter, when R = 50 Ω, C = 15 nF.

Table 4.3: IQ values of R = 50 Ω, C = 15 nF
Output Measured Voltage
I 1.560957 V
Q 1.394040 V

this specific load the inputs to the IA are V+ = 3.86 mVrms, V- = 976 µVrms and an output

voltage of 239 mVrms. This is further increased to 487 mVrms by the ECG filter, Fig. 4.4(b), the

inverted signal is also shown. The outputs of the analog switch for the in phase and quadrature

signals are displayed in Fig. 4.6(a) and Fig. 4.6(b) respectively. Finally after low pass filtering

and amplification, the measured I and Q values are shown in Table 4.3. These two examples

demonstrate the validity of this implementation and allow for absolute volumes to be measured.

4.2 Physical Prototypes

Two physical prototypes are developed to implement the architecture designed in Chapter 3.

The first prototype is a proof of concept design where functionality is the main design criteria

and miniaturization a secondary one. A second prototype is created to further miniaturize the

system by reducing the volume, weight and power of the system. 3D modelling is completed

on both prototypes to ensure clearance and overall construction before the physical prototype
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was manufactured. Each prototype is discussed in detail below.

4.2.1 Phase 1 – Prototype

The first prototype contained a total of seven printed circuit boards (PCBs) connected through

a vertical communications bus. As discussed in Chapter 3, this first prototype contains the

modules: power, microcontroller, radio and interface modules. Along with these four, two

additional modules are created for testing and programming purposes.

This system is constructed on 1.6 mm thick FR-4 printed circuit boards and contains passive

components of 0402 size. The boards varied from 2 layer to 4 layer designs. The additional

layers are used as either power planes or for routing signals. Each module is designed on a

15 mm x 30 mm surface. This area contains all vertical connectors, integrated circuits (IC),

passives and any other components needed. The telemetry system’s modules are connected to

each other in a stack formation. The interface module represents the top of the structure and the

power module the bottom. The reason for this design decision is to allow easy access for the

catheter to be soldered on at the top and the larger battery at the bottom of the structure. The

vertical connectors increased the clearance in between each module to allow larger components

to be used. The final assembled size of this prototype is 15 mm x 30 mm x 24 mm and contains

the main four modules along with the Li–Poly battery.

Power Module – Physical Construction: As describe in detail in Section 3.1, the power

PCB contains a low dropout (LDO) regulator, supervisor IC, USB charging IC and a battery.

The majority of the ICs and passives are located on the top of the board leaving the bottom for

the battery, Fig. 4.7. An additional five pin surface mount header is used to switch between

the battery powering the system, charging or completely off. Two additional pins are used to

connect a custom USB cable to provide an external 5 V connection. Small outline integrated

circuit (SOIC) and mini small outline package (MSOP) packages are chosen for the ICs as they

are more readily available and can be hand soldered. A LED is added to view if the the circuit
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Figure 4.7: Power Module – prototype 1 PCB layout.

Figure 4.8: Microcontroller Module – prototype 1 PCB layout.

is operating, allowing to debug the power module if necessary. The MAX1811 is chosen to

charge the Li–Poly batteries and can have either a 100 mA or 500 mA charge rate, 100 mA is

chosen as required by the lower rated vertical connectors used. The general charging time is

about 30min – 1 hr.

Micro Module – Physical Construction: The physical implementation of the micro module

contains a single 40 pin no–lead package along with the headers and receptacles for insertion

into the stack, Fig. 4.8. A test LED along with a current limiting resistor is added along with

the microcontroller for programming tests.

RF Module – Physical Construction: The RF module in the first prototype is separated into

two distinct PCBs, RF transceiver with supporting passives and an antenna board. The module

is split into two PCBs, Fig. 4.9 due to the limited space and size requirements of the specific

components used. The RF transceiver, CC2500, is also a no–lead package that contains 6
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Figure 4.9: Radio Module – prototype 1 PCB layout.

decoupling capacitors and a bias resistor. The ABM3B 26 MHz crystal is chosen to provide

timing for the transceiver and has a physical size of 5 mm x 3.2 mm. With these components

added along with the connectors there is no additional space left to house the antenna and

matching network passives. Therefore, an additional PCB is created to accommodate the an-

tenna and matching network with a size of 9 mm x 11 mm. The balun is created using a series

of inductors and capacitors to not only convert the differential output to a single ended signal

but also convert the output impedance to a intermediate source that is matched, Fig. 4.10(a).

The matching network is passive based, created out of a single inductor and two capacitors,

Fig. 4.10(b), to match to 50 Ω. The antenna chosen is a single ended chip antenna designed

for 2.4 GHz operation. This antenna provides about 30 m of range in non–line of sight config-

urations. This provides simple wireless connection to occur but is not suited for implantable

devices as it is not modular and cannot be located away from the system (i.e., closer to the

surface), to achieve lower power levels. The antenna also only has a distinct radiation pattern

that does not fare well when placed into a stack configuration. These effects are taken into

account when the second prototype is created. Finally, the antenna board is connected through

three 42 AWG copper/ beryllium wires (RF+, RF-, GND) to the RF transceiver. The antenna

PCB is placed on top of the RF PCB to complete the overall RF module.

Interface Module – Physical Construction: The interface module is constructed using a 4

layer PCB with the physical size of 21 mm x 30 mm, Fig. 4.11. The volume and pressure
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Figure 4.11: Interface Module – prototype 1 PCB layout.

electronics are located on this PCB. The IQ method is used in volume measurements and the

pressure section was comprised of fixed resistances. In this version of the telemetry system the

1.8 V voltage reference is located in the interface module rather than the power module using

a SOT-23 package.

The layout of the interface printed circuit board is separated into the volume electronics and

the pressure electronics based off the designed schematic, Figures 3.15(a) and 3.16. Electronic

packages are shared when needed by both sections. Analog Devices AD8607 and AD8609

are used in this system as they are micro power OP–Amps with 50 µA of power consumption.

These operational amplifiers are shared between sections to reduce the component count. The

instrumentation amplifier (IA) is designed using two OP–Amps to reduce component count.
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High precision resistors are used in this IA to reduce common mode rejection. Multiple 0402

passive components are also used in the construction of this module. In addition, a shunt

voltage reference is used in the current source located in the pressure section to provide the

voltage drop. Lastly, an Analog Devices ADG787 is used to accomplish the analog switch

functions in the lock–in volume method. This IC is chosen as its a ultra low power device

along with a 2.5 Ω on resistance and a small MSOP–10 package.

The catheter pads are located on the top (pressure) and bottom (volume) of the PCB. The

interface module is inserted at the top of the telemetry system stack allowing the catheter

wires to directly solder on. As a result, only header connectors are soldered on to this PCB.

The IQ and pressure outputs are directed to the communications bus to be processed by the

microcontroller and then to the end device.

Testing / Programming Board – Physical Construction: Two additional PCBs are created

for testing and programming purposes, Fig. 4.12. Both of these boards can only be placed

at the top of the stack due to only containing header vertical connectors. The testing PCB,

Fig. 4.12(b), contains two right angled through hole headers, 6 and 7 pins each. These pins are

attached to the vertical bus to measure power consumption, battery voltage, and have access

to the input/output pins on the microcontroller. The programming PCB, Fig. 4.12(a) contains

a single 6 pin through hole receptacle which is connected to the external USB programming

device. Only a single extra board may be used at a time, either programming or testing as they

are attached at the top of the stack.

Vertical Connectors – Physical Construction: As discussed in Section 3.4.1 the vertical

connectors in this system contain a total of 32 pins. The physical connector must have specific

design requirements to fit in the telemetry system. The connector must be small in size, fine

pitch, low mated height and a simple mating system. The first design specification used to

select a connector is the width of the boards. The connector has to be less than 15 mm, as

to not extend out from the stack and it has to have a minimum width to maximize component
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(a) Programming Board – Top (b) Testing Board – Top

Figure 4.12: Interface Module – prototype 1 PCB layout.

space. In order to increase the pin count of the connector, a fine pitch connector is needed.

There is a trade off between the pitch and the overall physical size of the connector. When the

pitch increases (i.e., becomes finer) the overall physical size becomes larger. This is due to the

extra housing needed for the header to fit in. A mated height of less than 5 mm is needed to

reduce overall height of the structure but still provide adequate clearance for components. The

connectors must also be able to be physically removed easily without additional force, as to

not damage the connectors.

Taking all the above requirements into account the Samtec CLE (receptacle) [86] and FTE

(header) [87] series of connectors are chosen for this design. These connectors are 3.18 mm

wide by 12.8 mm long with a mated height of 4.09 mm. They feature dual 0.8 mm pitch 16

pin rows for a total of 32 pins per connector. Single row connectors were also investigated

however, to obtain the required pin count the size increase was not justifiable as well as most

connectors of this micro–pitch do not come in single row designs.

Headers and receptacles are placed on the micro and RF PCBs to allow for interchange-

ability. Only receptacles are added to the power module as it is placed in the bottom of the

stack. On the other hand, only headers are added to the interface, testing and programming

modules as they are placed at the top of the stack. Additional modules can be connected to the

communication bus as long as the connectors are placed in the same positions and the pinout

is followed.
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Figure 4.13: Fully assembled prototype 1.

Overall Assembly – Prototype 1: The overall system is assembled with each module placed

on top of each other, with the stackup from top to bottom as follows: interface module, RF

module, microcontroller module, and power module. The system including the battery is 15

mm x 30 mm x 24 mm with a total volume of 10.8 cm3. Between each module there is a ∼5

mm space to allow for proper airflow and component clearance. The final assembled wireless

telemetry system is shown in Figure 4.13.

4.2.2 Phase 2 – Prototype

Using the first prototype as a foundation to build upon, an improved experimental model of a

wireless telemetry system is developed. The main motivation to develop a second prototype

is to further miniaturize the telemetry system for future implantable use. In addition, this new

prototype would consume less power and provide further testing and optimization opportuni-

ties.

The new prototype features eight four layer 15 mm x 15 mm PCBs that are built using

0.4 mm thick FR-4 substrates. Major changes to the physical structure of this prototype are

made in comparison to the initial physical design. Some of these changes include all passives

components being 0201 sized, new vertical communication bus connectors, both volume mea-

surement techniques included, and a full debugging interface is designed and implemented.
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Figure 4.14: Power Module – prototype 2 PCB layout.

Each module’s physical construction will be discussed in detail in the following sections.

Power Module – Physical Construction: The second revision of the power board contains

all the main sub–blocks found in the original design however with some modifications. These

modifications include a different battery, different packaging, and the addition of new compo-

nents. The ICs and passives are located on the top side of the PCB and leaving the battery to

be located on the bottom, Fig. 4.14.

The new battery is chosen to fit exactly in the desired board dimensions 15 mm x 15 mm.

As mentioned in Section 3.1.1 the new battery does have an increased volume however this

provides an increased capacity to 40 mAh. The battery is soldered on to the bottom of the PCB

using two wires and is glued on for stability purposes.

The packages of the supervisor device and the voltage regulator are changed in this version.

In the previous design, these ICs came in larger packages such as SOT-23 and a 8 pin VSSOP

which are not suitable for the smaller size telemetry system. Therefore, new packages are

chosen which minimize the physical footprint and still keep the overall functionality. The

same supervisor IC that is found in the first prototype is also available in a no lead package.

The new fixed LDO regulator (TI TLV70036) also comes in a small 1.5 mm x 1.5 mm no lead

package and does not require additional resistors to control the output voltage, further reducing

the overall size and component count.

Two additional components are added to the power module in this prototype, the voltage
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reference and the analog switch. The 1.8 V voltage reference was originally located on the

interface module however, it is relocated to the power module to consolidate all power elec-

tronics in one central location. The 1.8 V reference output is connected to the communications

bus for every module to access. This component is still in a SOT-23 package. The second

new component to be located on the power PCB is the analog switch, MAX4714. This IC

is connected to the communications bus turning off and on the interface module power. The

MAX4714 comes in a SC70-5 package allowing it to fit into the available PCB space as well

as not needing any external passives to operate. In this version of the telemetry system the

USB charging IC is removed from the power module and moved to the external development

board. The large SOIC-8 package of the MAX1811 does not fit into the allowable design space

of the PCB as well as connecting an external cable to these small PCBs is not recommended.

Furthermore, the space restrictions also removed any physical switch for controlling the power

to the system. The battery is now fixed to the PCB powering at least the voltage regulator,

supervisor IC, voltage reference and analog switch. However, these components have very low

current consumption sub ∼5 µA and is still taken into consideration in power measurements.

Additional test pads are added to the power module to provide testing and fail safes to the

system. Three test pads are added to test the main power supply voltage, ground and the 1.8 V

voltage reference. These pads are added to test the power module directly without the external

development board. Two additional pads provide direct access to the battery for charging

purposes. These pads are added to provide charging access to the battery if the vertical bus

happens to fail. It should be noted that an external charging PCB should be used if the battery

is charged using this method. If voltage is directly applied, the battery may be damaged.

Microcontroller Module – Physical Construction: The second prototype of the microcon-

troller module contains the same MSP430F2274 that is in previous version along with the new

headers and receptacles that are inserted into the main stack, Fig. 4.15. There is no longer a

LED for testing as size and power restrictions do not allow this component to placed in the 15
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Figure 4.15: Microcontroller Module – prototype 2 PCB layout.

mm x 15 mm PCB area. However, multiple LEDs are located on the development board for

testing purposes.

RF Module – Physical Construction: In this prototype the RF module underwent significant

changes to the components used in this design, Fig. 4.16. Major changes are made on the

balun/matching network, RF antenna, and a smaller crystal is used.

In the previous prototype the balun and matching network are created using 11 passive com-

ponents (8 capacitors and 3 inductors). These components are 0402 sized and do not take up

much space in the previous prototype as the size of the boards are larger. However, when minia-

turizing the system even further the balun and matching network has to be redesigned. Various

options were researched such as using 0201 components to create the same balun/matching

network as was previously done, creating a custom ceramic device using LTCC technology to

achieve the matching and finally looking at other commercial options available. Using 0201

components would reduce the overall area as smaller passive devices are used however, the

component count is still the same which is not desirable. A custom ceramic device is also not

recommended as it is very costly to manufacture and is not desirable for high yield systems.

Finally, commercial solutions were researched and the Anaren BD2425N50ATI [88] is chosen

to replace the existing balun/matching network structure.

This new component replaces the previous balun/matching networking with a single 1.05
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Figure 4.16: Radio Module – prototype 2 PCB layout.

mm x 1.05 mm x 0.65 mm mutli–layer ceramic structure and 2 external passive components.

The extremely miniature size and low external components are the main reasons that this de-

sign is chosen. The Anaren balun along with 2 external components, 10 nH inductor and 5.6

pF capacitor, is designed specifically for the CC2500 RF transceiver used in the RF module’s

architecture. It is made to convert the balanced output impedance of the CC2500 to an inter-

mediate unbalanced impedance and then convert it to 50 Ω to be connected to a RF antenna.

The steps to convert the 50 Ω antenna impedance to the balanced input/output impedance of

80+j74 Ω as outline in [88] are: 1) the 50 Ω connector and trace are attached to the Anaren

balun, which directly transforms the impedance to 127 + j34 as noted in the specifications of

the device. 2) The added 10 nH inductor at the differential output of the BALUN converts the

127 + j34 Ω to 76 + j66 Ω. 3) The connecting differential trace to the CC2500 converts the

impedance to 83 + j87 Ω. 4) The DC blocking capacitor, 5.6 pF coverts the overall impedance

to 89 + j86Ω. This impedance is slightly off of the optimum differential impedance of the

CC2500, which causes a negligible loss in overall performance. This possible performance

loss is a tradeoff of the minimization of the size and area of the circuit. The overall space

savings from the initial 0402 passive balun and matching network to the new ceramic solution

is approximately 84% [88].

The second major change in the physical construction of the RF module is the addition of

an RF connector. Previously, a fixed 50 Ω 2.4 GHz antenna was used. This allowed for direct
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communication to occur however, it had some drawbacks. First, it is fixed on the antenna PCB

and does not allow for very much movement to the antenna itself. Secondly, it did not allow

different antennas to be tested to determine optimal physical design for implantable systems.

Finally, the previous antenna is too large to fit into the new miniaturized design. Therefore,

a new RF connector is added to the system rather than a specific fixed antenna. The TE Ul-

traminiature Coax Connector (UMCC) [89] is chosen to be the new RF connector. The main

reason this connector is chosen it’s small PCB footprint of 3 mm x 3 mm and also can interface

with any type of antenna. The UMCC can interface with various larger connectors such as

SMA, BNC, etc using 50 Ω adapter cables. Currently, for testing purposes this is attached to a

SMA connector with a 2.4 GHz pigtail antenna. A full antenna study is to be undertaken where

the optimal antenna for implantable applications will be found.

The 26 MHz crystal is also changed to a smaller package. The new package is 2 mm x

1.6 mm (3.2 mm2) which 5 times smaller in area than the previous crystal (5 mm x 3.2 mm or

16 mm2). The same CC2500 package is used in this prototype, 20 pin no–lead package, along

with the new headers and receptacles to connect to the main stack. As this is an RF layout,

extra care is taken when laying out the components along with proper grounding procedures. In

addition, the trace connecting the ceramic balun to the RF connector is designed to be exactly

50 Ω based the physical PCB parameters provided by the PCB manufacture. The entire RF

module is designed in the 15 mm x 15 mm however, an extension is made to allow the mated

height (2 mm) of the RF connector to not interfere with the internal clearance of the stack.

Interface Module – Physical Construction: Two interface modules are constructed in this

prototype: one with the lock–in method for volume measurement and analog pressure trimming

and a second module using the magnitude and phase method for volume measurement and

digital pressure trimming.

Interface Version 1 – Lock–in with analog resistive trimming: The interface module is

designed with the prior knowledge from the first prototype, this includes component choices
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and board size. Rather than extend the area of a single printed circuit board it is more beneficial

to extend the design to two separate PCBs. This increases the overall volume slightly however,

it does not change the shape of the system, as it still remained cubic shaped. Design decisions

are made on how to separate the design across two PCBs, this includes which signals are

connected to the communications bus, which packages are used, and where the catheter pads

are located. In addition, this module’s power supply is controlled by the analog switch located

on the power module.

In the original prototype the catheter pads are located on the top and bottom of the PCB.

This is inconvenient when attaching a catheter and could cause the catheter wires to break

during movement. Therefore, it is recommend to have them attached on the top of the first

PCB on the stack. This allows the catheter to be attached with no physical issues. The second

critical design decision that is made is which packages and components are used. In the initial

prototype Analog Devices AD8607 and AD8609s are used. It was discovered that due to their

low power consumption, they do not provide a high enough slew rate to create the oscillations

required by the quadrature oscillator. In most cases when choosing OP-Amps with high slew

rate they generally have higher current consumption. As this design is an implantable system,

if at all possible the lowest current consumption amplifiers should be chosen that still achieve

the correct slew rate. National Semiconductor LMV554 OP-Amps are chosen. These opera-

tional amplifiers consume an average of 37 µA of current, work in the designed voltage supply

range and are available in single, dual and quad packages. Another major component change

from the previous prototype is the addition of a dedicated instrumentation amplifier. In the

previous prototype, two discrete OP-Amps along with precision resistors are used to create

the instrumentation amplifier. The reason for this is to reduce active and passive component

count. However, in practice this is not ideal and a dedicated instrumentation amplifier with

high gain and high CMRR is used instead, TI INA2332. The dual analog switch from the

previous prototype is still used.

As interface module is split across two PCBs multiple signals are to be routed to the com-
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munication bus to be connected to the second PCB in the stack. When choosing which signals

are to be connected, the physical packages of the components are considered. In this design,

there are a total of 12 OP-Amps, 2 IAs and 2 switches that are used by the lock–in and analog

pressure sections. The OP-Amps can be split up into different combinations of quad and dual

packages (i.e., 3 quads or 2 quads and 2 duals, etc). In addition, all pressure components should

be on a single PCB not split up, as well the instrumentation amplifier used by the pressure cir-

cuit is located in a dual packaged shared with the volume section. Therefore, taking these

considerations and analyzing the schematic to view logical separation points it is determined

that three signals are used for separation purposes, I-Gate, Q-Gate and INA Out, and one out-

put, pressure. I-Gate and Q-Gate represent the output of the comparators to create the Lock–In

reference signals for the I and Q signal chains. The signal INA Out represents the signal taken

from the output of the instrumentation amplifier in the volume section. In addition to the three

separation signals, output pressure is also sent to the communication bus to be digitized by the

microcontroller for transmission.

Using these three signals along with output pressure the interface module is split into two

PCBs created by using a total of six packages. The first PCB contains three packages: 1 quad

OP-Amp, 1 dual OP-Amp and a dual instrumentation amplifier. The second PCB contains

three packages as well: 1 quad OP-Amp, 1 dual OP-Amp and 1 dual analog switch. The

complete pressure section is located on the top PCB along with the catheter pads. The second

PCB contains the outputs I and Q which are connected to the microcontroller through the

communications bus. The two PCBs are fabricated using the same 15 mm x 15 mm FR-4

boards as the previous modules and are shown in Fig, 4.17(a) and Fig 4.17(b) for the first and

second board, respectively.

Interface Version 2 – Magnitude and Phase method with digital resistor trimming: This

interface module contains all the magnitude and phase electronics required for volume mea-

surement along with pressure electronics with digital resistive trimming capabilities. As this

design is not implemented in the previous prototype a new design is created. Along with the
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(a) First PCB (b) Second PCB

Figure 4.17: Interface Module Lock–In method – prototype 2 PCB layout. (a) first PCB (b)
second PCB.

Lock–in version, this interface module is separated into two separate PCBs. By using the same

design methodology of the Lock–In version, specific signals are chosen for separation along

with using smallest packages for each major component.

As with the previous version, the catheter pads are chosen to be located on the top of the

first PCB to ensure a strong connection. This implementation of the interface board contains a

total of seven operational amplifiers with six using the same LMV554’s as utilized in the Lock–

In version. The Op–Amp used in the envelope detector requires a higher slew rate to track the

incoming rectified signal therefore, the LMV651 is chosen to achieve this. The LMV651 is the

class above the LMV554, consumes an average of 112 µA, and is packaged in a SOT-23. Two

instrumentation amplifiers are required, one each for the pressure and volume electronics. The

INA333 is chosen to implement this function. The INA333 is a single IA that consumes 50 µA

of current and is packaged in a small no–lead package. The main reason for choosing this IA

is the minimal package size. As noted in Section 3.5.2 the MAX5484 is used in the pressure

section for digital resistor trimming and is contained within a no-lead package. In addition,

dedicated comparators, TLV3402 (MSOP-8), are used in the phase detection.

Following the procedure used in the Lock–in implementation, the boards are separated

using connecting signals through the communications bus. Two signals are used along with
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(a) First PCB (b) Second PCB

Figure 4.18: Interface Module Magnitude and Phase method – prototype 2 PCB layout. (a)
first PCB (b) second PCB.

one output on the first board, sine, gain out and output pressure. The Sine signal represents

the sine output from the quadrature oscillator and the gain out signal is taken from after the IA

gain stage in the volume electronics. The output pressure is provided to the microcontroller

through the communication bus.

By taking into account the two separation signals along with the output pressure, the inter-

face module can be created using a total of nine packages. The first PCB contains five pack-

ages: 1 quad OP-Amp, 1 dual OP-Amp, two single IAs, and a single digital potentiometer. The

second PCB contains four packages: 1 quad OP-Amp, 1 dual OP-Amp, a single high speed

OP-Amp, and 1 dual comparator package. The complete pressure section is located on the top

PCB along with the catheter pads. The second PCB contains the outputs magnitude, heart duty

cycle, oscillator duty cycle, and rectifier and ECG out for testing. These signals are connected

to the microcontroller through the communications bus. The fabricated printed circuit boards

are shown in Fig 4.18(a) and Fig 4.18(b) for the first and second board, respectively.

Vertical Connectors – Physical Construction: With the miniaturization of the second pro-

totype, new connectors are required to facilitate the increased pin count, reduced height and

smaller footprint. The previous connectors have a much larger footprint with a mated height of



Chapter 4. Simulation and Experimental Results 83

∼ 5 mm. This height is drastically reduced to miniaturize the telemetry system even further.

New Molex micro–connectors [90] [91] are chosen to serve as the vertical connectors in this

prototype. These headers and receptacles are much smaller than the previous connectors with

a size of 1.54 mm x 10.26 mm (15.8 mm2) and a mated height of 1.5 mm with a total of 44

pins at 0.4 mm pitch. The mated height of 1.5 mm is the minimum height to allow for proper

clearance for ICs located above and below the specific module. The new micro–miniature con-

nectors provide a physical area savings of 61% compared to the previous connectors (40.70

mm2).

Debugging Interface: The first prototype features two printed circuit boards that are added

to the vertical stack to be used for programming and testings purposes. This design is modified

for the the second prototype as the size of the overall system is much smaller and does not

allow for debugging to be completed directly on the system. Instead, a new testing system is

developed to allow for full programming, charging, and debugging of the wireless telemetry

system. This system consists of two PCBs, a breakout board and a full featured development

board.

The breakout board’s main purpose is to route all the signals from the communication

bus to two additional connectors. These connectors are located on the opposite ends of the

board compared to the vertical communication bus, Fig. 4.19(a). Flat flex connectors (FFC)

are chosen for the breakout connectors, more specifically 26 pin 0.5 mm pitch Molex FFC

connectors [92]. These are right angle flat cable connectors with a mated height of 2 mm.

The overall PCB size is increased to 25 mm x 21 mm to facilitate the new FFC connectors and

avoid all clearance issues associated with the increased mated height and the system stack. Two

identical FFC connectors are placed on the development board to transfer the signals from the

vertical bus to the development board. Flat flex cables, 0.305 m, are used for this connection.

No additional components are placed on this PCB, only the two FFC connectors and the vertical

connectors. The breakout board provides only signal routing to the development board and
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(a) Breakout Board (b) Development Board

Figure 4.19: (a) Breakout board and (b) Development boards of the second physical prototype.

serves no other functional purpose inside the system stack.

The second board in the debugging interface is a much larger PCB (60 mm x 47 mm)

which contains programming, charging and debugging capabilities. This PCB receives the

communication bus signals from the FPC cables and distributes them to various sections of the

boards, Fig. 4.19(b). These sections are separated into battery charging, power management,

USB programming, and testing components.

The battery charging is located on the development board rather than the power board in

this prototype due to size restrictions as noted in above sections. A mini USB connector is

added to the PCB to provide a direct connection to USB power for the MAX1811. Test pins

are provided to test the input voltage from the USB connector and the output voltage of USB

charging IC. This power signal is routed directly to the FFC connectors and directly connects

to the external battery to charge it. An LED is also used to indicate when the battery is being

charged.

Power management and testing functionality is also designed into the development board.

The main telemetry system can be powered through the attached battery or by the development

board in testing. The power signals are routed to test points along the PCB to test for correct
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voltages for the system voltage, interface voltage and 1.8 V reference. Another design feature

of this PCB is enabling an external power connection to the development board, which in turn

can power the whole system without the use of a battery. This feature is extremely important in

testing and debugging the system as precise current consumption can be calculated. All three

main telemetry system voltages can be applied externally through custom 2 pin connectors

located on the PCB. Additional connectors are added to switch between battery power and

external power as to not damage the electrical components.

A programming interface is also provided on the development board. The programming

of the MSP430 is achieved through at the same 6 pin connector as used in the previous pro-

totype. The programming interface also provides external power to the system and must be

disconnected from any additional power source when connected.

Finally, multiple debugging connections are added to the PCB. There are a total of six

LEDs which are directly connected to the pins of the microcontroller and can be controlled for

testing. Furthermore, test pins are provided for all outputs of the interface module as well as

various other inputs and outputs of the microcontroller. Lastly, all the signals from the FFC are

also routed to a larger external breakout connector. This is 50 pin connector that is used for

additional pin out or connection to an external board. The breakout and development boards

provide all the testing functionality to the wireless telemetry system along with USB charging

and programming features.

Overall Assembly – Prototype 2:

3D modelling:

Once the layouts of each board were initially completed, 3D modelling was done to ensure

full clearance and mechanical connection. Simple 3D modelling is completed for the first

prototype however, size and clearance were not of critical importance, therefore it was only

used as an elementary mock–up. On the other hand, 3D modelling plays a major role in the

second prototypes design and is modelled to scale.
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The second prototype is modelled using SolidWorks 3D CAD software. An additional

tool, Read3Di, is used to convert the gerber files from the layout design phase to compatible

SolidWorks files. This software allows an exact scale FR-4 substrate model to be created based

on the gerber files. The full stack up of gerber layers must be provided along with dialectic

and solder layer sizes to create an accurate model. As this prototype uses 0.4 mm thick FR-4

substrate it is crucial that the model be accurate, this includes even the solder pads modelled.

Each component is then modelled. Component 3D models are obtained by each manufacture if

possible, however, in some cases custom models are created based on the specifications in the

respective data sheets. The battery is also modelled based on the data sheet dimensions. Each

component is mounted on their specific solder pads and all PCB’s are modelled.

As this prototype pushes the limits of discrete components, component clearance is a main

design constraint. The mated height of the vertical connectors only allows for 1.5 mm of clear-

ance. This does not create a problem for most 0201 passive components as they are generally

only 150 µm to 250 µm high. However, for active components such as the integrated circuits

used in this design, this is a major problem for clearance. Most packaged IC’s heights are

minimum ∼1 mm for most no–lead packages and upwards of 1.1 mm for a TSSOP package.

When components are placed on the bottom side of the above board they may interfere physi-

cally with the components placed on the PCB below. Initial modelling confirmed that multiple

clearance issues did exist. These are mostly found on the dual board interface modules and

physical clearance between the RF module and the extended breakout connectors. Therefore,

these issues and any other clearance issues found in modelling are dealt with by redesign-

ing the layout of the PCB. This process is repeated until all clearance issues are resolved. A

3D rendering of the fully assembled wireless telemetry system – 2nd prototype is displayed in

Fig. 4.20(a).

Assembly:

Once the 3D modelling ensured clearance and a correct mechanical connection, the overall

telemetry system is assembled with each module placed on top of each other, with the stickup
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(a) Full 3D rendering (b) Fully assembled prototype 2 without battery

Figure 4.20: (a) Full 3D rendering of assembled wireless telemetry system with battery and
lock–in method interface boards; (b) Fully assembled prototype 2 without battery attached.

(a) Prototype 1 vs Prototype 2 (b) Prototype 2 vs Canadian Dime

Figure 4.21: (a) Comparison – prototype 1 on the left and 2 (without battery) on the right (b)
Prototype 2 vs Dime size comparison.

from top to bottom as follows: interface module board 1, interface board 2, RF module, mi-

crocontroller module and, power module. The system including the battery is 15 mm x 15 mm

x 11 mm with a total volume of 2.475 cm3. Between each module there is a ∼1.5 mm space

to allow for proper airflow and component clearance. During testing the breakout board is

added to the stack to connect the communications bus to the development board. To ensure full

clearance the breakout board must be connected directly above the power module to allow for

clearance between the breakout and RF boards. The final assembled wireless telemetry system

is shown in Figure 4.20(b), comparing it to the 3D rendering.
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Table 4.4: Comparison of relevant works
Functions Uemura [36] Raghavan [35] Cong [1] Prototype 1 Prototype 2
Sensor Type PV PV Pressure PV PV

Size –
Interface Board
17.67 cm2

Dia – 6.4 mm
L – 4 mm

L = 30 mm
W = 15 mm
H = 24 mm

L = 15 mm
W = 15 mm
H = 11 mm

Weight 26 g 27 g 330 mg 11.50 g
Without Battery –2.67 g
With Battery – 4.01 g

Battery Size Li–ion 625 mAh No Battery 25 mAh 40 mAh
Power
Consumption Unknown

Active – 151.2 mW
Standby – 79.2 mW 300 µW

Active 57.72 mW
Standby – 37.74 mW

Power Module
130.5 µW

Volume Type Conductance Admittance – Admittance Admittance

4.2.3 Comparison – Prototype 1 vs Prototype 2

The second prototype not only reduced the overall size of the wireless telemetry system but it

also increased functionality. The volume from the first prototype to the second is reduced by

77%. This is attributed to the minimal PCB substrate used at 0.4 mm along with reductions

in mated connector height from 5 mm to 1.5 mm. Additional size reductions are found from

using smaller passive components 0201 compared to 0402 and switching to no–lead packages

whenever possible. Further functionality is added from the modular RF connector and the

designed development board. Physical comparisons are shown in Fig 4.21(a) where the second

prototype is compared with the first. As the represented in Fig 4.21(a), the second prototype is

much smaller than the initial prototype and is even smaller than a Canadian dime, Fig. 4.21(b).

A comparison of this work with relevant previous works is shown in table 4.4. This work

is smaller than the previous two pressure volume implantable telemetry systems, however is

larger than Cong’s pressure only version.

Future Bio-Compatible Capsule Rendering:

Future bio–compatible shell renderings are created for both prototypes. As with the other

3D models designed for the first prototype the shell design is also very simple. The capsule

houses the first prototype along with a future wireless power solution, Fig. 4.22(a). The sec-

ond prototype’s capsule is designed specifically to house this prototype. The capsule contains

two access connectors, these attach the catheter and the external antenna, Fig 4.22(b). These
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(a) Preliminary rendering of capsule design – pro-
totype 1

(b) Preliminary rendering of capsule design – pro-
totype 2

Figure 4.22: Future bio-compatible capsule renderings

capsules would be located inside the test animal’s body with the catheter placed in the left

ventricle. A separate study is being preformed on bio–compatible materials and other possible

capsule designs to optimize the design for the designed wireless telemetry system.

4.3 Preliminary Experimental Testing

The prototypes are experimentally tested for power consumption, wireless range, and wireless

communication. The first prototype is tested fully and the second prototype is only preliminar-

ily tested with future plans for a full characterization study to be completed.

The prototypes are tested using state–of–the–art equipment with a specific test plan to en-

sure proper documentation of results. The power modules are tested using a Keithley Battery

simulator. This device allows a Li–Poly battery to be emulated along with instantaneous cur-

rent to be recorded. During power consumption tests this is attached to the battery solder

terminals on the PCB rather than the Li–Poly battery. In addition, a 6.5 digit multimeter is

used to measure any DC voltages or resistances in testing of the electronics. The first proto-

type’s power module is initially powered without connecting to the main stack. The power

consumption recorded by the battery simulator with a set battery voltage of 3.7 V is 17.76 mW.

The majority of the power consumption of the power module is from the LED that is used
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to indicate if the module is powered, the regulator and supervisor ICs attribute to less than a

mW to the overall power consumption of the power module. When connected to the full stack

with the microcontroller running in a timing loop where analog data is acquired by the ADC

from the internal temperature sensor, digitized and sent to an end unit every 1 sec with the RF

electronics set to an output power of -12 dBm, and the interface electronics attached, the power

consumption increased to 57.72 mW during transmission and 37.74 mW when not acquiring

and transmitting data. The second prototype’s power consumption is tested on the power mod-

ule only with a power consumption of 130.53 µW. The full power consumption of the second

prototype will be tested in future work with the results being published in journal publications.

The microcontroller module is tested by creating small test programs to evaluate specific

functions of the microcontroller. Although intended for testing the first prototype, these test

procedures work on the second prototype with slight modifications. These programs are written

in the MSP430 assembly language and programmed to the MSP430 through the IAR Embed-

ded Workbench. The first program created is a simple LED test program, to light up an LED. A

second program is created to test the SPI bus between the microcontroller and RF transceiver.

Finally, a main test program is created to initiate communication with the transceiver, write

the RF modulation and power settings to the transceiver and to send data every few seconds

using the built in timers. More extensive microcontroller programs written in C will be cre-

ated for the second prototype along with further improvements to power management and data

transmission.

The RF module of the first prototype is tested using a spectrum analyzer. This is used to

test the output power along with viewing the frequency spectrum of the transceiver. Simple

distance measurements are also performed to determine the range of the SMD antenna used in

the first prototype. The first prototype is able to achieve a range of ∼30 m with a direct line

of site. A sample output spectrum of the RF module with a distance of 10 cm and a constant

data stream output with an output power of 0 dBm from the RF transceiver is shown, Fig. 4.23.

The received power level is -50 dBm at a centre frequency of 2.433592 GHz. The second



Chapter 4. Simulation and Experimental Results 91

-130

-120

-110

-100

-90

-80

-70

-60

-50

2.432 2.4325 2.433 2.4335 2.434 2.4345 2.35 2.4355

S
ig

n
a
l 
P

o
w

e
r 

[d
B

m
]

freq, [GHz]

Figure 4.23: Frequency spectrum of RF transmission output at 10cm distance and 0 dBm input
power. Fcentre = 2.433592 GHz.

prototype will undergo a full antenna study to determine the best antenna to use for biomedical

applications and the same test equipment will be used to determine output power, frequency

spectrum, and modulation used.

The interface module from the first prototype is tested using a digital sampling scope. This

allows the outputs of the Lock–in amplifier, I and Q, to be measured and recorded with high

precision. It was determined that due to the low slew rate of the OP-Amps used in the initial

design of the quadrature oscillator, oscillations did not occur. This failed to create the excitation

signal for the interface module. Both outputs of the oscillator along with the power supply and

virtual ground terminals were also measured. Therefore, during this testing stage of the first

prototype it was determined that the interface board needed modifications to operate properly.

These modifications included selecting new high speed operational amplifiers and modifying

the structure of the instrumentation amplifier, listed in detail in Section 4.2.2. With these

modifications included, it is estimated that the full characterization of the second prototype

will include results from the interface boards that are comparable with the simulation results

listed in Sections 4.1.1 and 4.1.2. Future in-vivo testing is planned once full characterization of

the second prototype is completed. This will indicate areas of improvement to the implantable
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system that would be included when further miniaturizing the system.

4.4 Summary

In this chapter two physical prototypes of an implantable wireless telemetry system are devel-

oped. These prototypes are based on the architecture designed in Chapter 3. The complete

assembly and 3D modelling was also discussed. The first prototype’s size including the battery

is 15 mm x 30 mm x 24 mm with a total volume of 10.8 cm3 and the second prototype was

miniaturized even further creating a new improved implantable system with the dimensions 15

mm x 15 mm x 11 mm (including the battery) and a total volume of 2.475 cm3. The second

prototype reduced the overall volume by 77%. In addition, future bio-compatible shells are

shown that would encompass each prototype for implantation.

Initial simulations were completed on both implementations of the interface module, mag-

nitude and phase and the lock–in method. Behavioural simulations were completed to en-

sure theoretical operation of the magnitude and phase method and SPICE simulations were

performed on the Lock–In implementation. Preliminary experimental testing procedures and

results are discussed, Each model’s testing is discussed along with improvements to the first

prototypes interface module. These physical prototypes demonstrate an implantable wireless

implantable system capable of measuring pressure and volume data from laboratory animals.



Chapter 5

Conclusion

The aim of this thesis is to design and implement a discrete level prototype of a miniature,

short–distance, low–power, RF wireless telemetry system. In correspondence to this goal, a

telemetry system architecture based on four modules is created along with two physical pro-

totypes for measuring blood pressure and volume data. This chapter gives a summary of the

contribution made by this thesis, plus suggestions on future work.

5.1 The Contribution of the Thesis

In this thesis, the following achievements are made:

• A custom telemetry system architecture is designed which is focused on implantable

systems. It features four main modules: sensor interface, data and signal processing, RF

transmission, and power electronics. It is designed around a low–power microcontroller

and RF transceiver, MSP430 and CC2500, respectively and is designed to be modular

to allow for future improvements without a complete redesign of the major components.

This architecture provides the basis to build miniaturized implants for blood pressure and

volume research in small laboratory animals.

• In order to convert the measured signals into absolute blood pressure and volume, a
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sensor interface had to be created. Two different implementations of sensor interfaces

are developed for the pressure and volume measurements. First, a direct approach is

used to extract the measured complex voltage and convert it to Admittance for abso-

lute volume conversion. This is denoted as the magnitude and phase method. Here,

the magnitude and phase are extracted directly from the measured waveform using a

peak detector and comparators. The advantages of this system are that it is very sim-

ple to implement mathematically however, it does rely on the microcontroller for phase

measurements. A second improved implementation was developed, the lock–in method,

where phase–sensitive detectors are used to extract the low amplitude voltage signal from

the environment and produce DC I and Q values. These values are used are then used

to calculate the measured admittance to be converted into a absolute volume. The mag-

nitude and phase method is theoretically proven using behavioural level simulations and

the lock–in method is simulated using SPICE to validate the results. In addition to the

volume circuitries, pressure electronics are also designed using both analog and digital

resistive trimming techniques.

• Two physical prototypes were developed that are based on the designed implantable

system architecture. The first prototype measures 15 mm x 30 mm x 24 mm with a total

volume of 10.8 cm3. This prototype system consumes 57.72 mW of power during ADC

acquisition test when having all modules including the sensor interface active. A much

smaller implantable system prototype is created to build upon the knowledge gained in

the initial physical design. This second prototype is 15 mm x 15 mm x 11 mm with a

total volume of 2.475 cm3, or a volume reduction of 77 % from the first prototype. State–

of–the–art PCB manufacturing techniques including utilizing PCB FR-4 board thickness

of 0.4 mm and minimal track sizes along with the reduction of external components are

the main reasons for the miniaturization in size. In comparison to previous works [35],

both physical prototypes are smaller in size than the prototype created in [35] with the

second prototype being 87.24 % smaller in area than the instrumentation board recored
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in [35].

The achievements completed in this thesis create a benchmark to enable further advance-

ment of micro–wireless telemetry systems through the use of a variety of sensors, not limited

to cardiac monitoring, as well as allowing for future benefits in eHealth monitoring systems for

humans.

5.2 Future Work

General trends in this field are leading to increased miniaturization of implanted sensors leading

to sub 1 mm3 systems [93] and unique RF techniques such as carbon nanotube radios [94].

These trends among others indicate that this research field continues to improve and create

new improved telemetry systems. Therefore, improvements should be made on the current

system to further improve pressure–volume implantable telemetry system for small laboratory

animals. Based on the preliminary results of this thesis, further miniaturization is required to

enable the telemetry system to be implanted in small laboratory animals such as a mouse. To

achieve this, a new improved telemetry system will be developed based on CMOS integrated

circuit (IC) and system in a package (SiP) technologies. The future work is outlined below

• Full characterization of the second prototype should be completed along with software

optimization. In addition, in–vivo testing should be completed to verify experimental

results.

• A CMOS 0.13 µm integrated circuit of the sensor interface should be tested and devel-

oped. This would reduce the sensor electronics area from 225 mm2 to 4 mm2.

• A custom integrated circuit of the RF transceiver should be developed. The power con-

sumption will be optimized specifically for implantable devices, further reducing the

systems overall power consumption.
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• A custom IC of the processing module should be developed. This processor should be

designed only to perform the tasks needed by this specific application, allowing power

consumption to be optimized specifically for the low–power requirements of this im-

plantable system.

• Finally, the three subsystems should be integrated using system–in–a–package (SiP)

technology provided by the Cadence RF SiP Methodology Kit, enabling the encapsu-

lation of the three ICs (whose volume will be reduced to ∼8mm3) into a single biocom-

patible implantable package. This reduction in volume represents the physical limits of

the state–of–the–art semiconductor and packaging technologies.
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