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Chapter 1

Introduction

1.1 Density functional theory

In 1964, Pierre Hohenberg and Walter Kohn proved [1] that the energy and electronic

properties of atoms and molecules are uniquely determined by the electron density

ρ(r) ≡ ρ(x, y, z). The work of Hohenberg and Kohn has become the beginning of

what is now called density functional theory (DFT), one of the most successful and

widely used methods of electronic structure calculations.

Density functional theory is an attractive alternative to conventional wavefunction-

based methods. The electronic wavefunction Ψ of a system with N electrons depends

on 3N spatial coordinates, while the density depends only on three coordinates, x, y

and z. This makes calculations involving the electron density faster than calculations

with wavefunctions. In fact, density functional theory makes it possible to study

systems with hundreds and even thousands of atoms [2].

In DFT, the total electronic energy is expressed as a functional of the density

E[ρ]. This functional can be written as a sum of several terms: The kinetic energy of

electrons, T [ρ], the energy of electrons in the external field, V [ρ], and the energy of

electron-electron interaction, Vee[ρ],

E[ρ] = T [ρ] + V [ρ] + Vee[ρ]. (1.1)

Of these terms, only V [ρ] is known as an explicit functional of the density,

V [ρ] =

∫
v(r)ρ(r) dr, (1.2)

where v(r) is a multiplicative external potential acting on the electrons. For atoms,

1
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molecules and solids, v(r) is simply the Coulombic potential of the nuclei with charges

ZA at positions RA,

v(r) = −
∑
A

ZA
|r−RA|

. (1.3)

Using Eq. (1.2), the total energy functional of Eq. (1.1) can be expressed as

E[ρ] = F [ρ] +

∫
v(r)ρ(r) dr, (1.4)

where the functional F [ρ] = T [ρ] +Vee[ρ]. The leading contribution to the term Vee[ρ]

is the classical Coulomb electron-electron repulsion

J [ρ] =
1

2

∫
dr

∫
ρ(r)ρ(r′)

|r− r′|
dr′. (1.5)

Using Eq. (1.5), the functional F [ρ] may be rewritten as

F [ρ] = T [ρ] + J [ρ] + a non-classical term, (1.6)

where the non-classical term describes the quantum-mechanical effects of electronic

exchange and correlation [3]. The functional F [ρ] is universal in that it is the same

for any chemical system. All system-specific information is contained in the external

potential v(r), provided that the number of electrons N is fixed.

Hohenberg and Kohn also proved [1] that the total energy functional E[ρ] of

Eq. (1.4) is variational, that is, for any trial N -electron density ρ̃ it gives an en-

ergy that is above the exact ground-state energy E0, or E[ρ̃] ≥ E0. Therefore, the

trial density that minimizes the value of the functional E[ρ] is the true ground-state

density. In order to make this result practical, we need to know the functional F [ρ].

1.2 Kohn–Sham method

The crucial part of the functional F [ρ] is the electron-electron interaction energy

Vee[ρ]. Suppose we want to apply the Hohenberg–Kohn theory to a system of non-

interacting electrons moving in a field of external potential v(r). For this system

(denoted by a symbol “s”), the many-electron Shrödinger equation can be solved

exactly; the solution is an antisymmetrized product of orbitals φi determined from
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the single-particle Shrödinger equations[
−1

2
∇2 + v(r)

]
φi(r) = εiφi(r). (1.7)

Because the electrons in this fictitious system do not interact, the term Vee[ρ] vanishes,

so the functional Fs[ρ] becomes simply

Fs[ρ] = −1

2

N∑
i=1

〈
φi|∇2|φi

〉
≡ Ts[ρ], (1.8)

with the electron density given by

ρ(r) =
N∑
i=1

|φi(r)|2 . (1.9)

Formally, Ts[ρ] is a functional of the orbitals φi. However, for non-interacting systems,

Ts[ρ] = Fs[ρ], which means that Ts[ρ] is a universal functional of the density ρ alone.

For the real (interacting) system, the functional F [ρ] can now be written as

F [ρ] = Ts[ρ] + J [ρ] + EXC[ρ], (1.10)

where the term EXC[ρ] includes the effects of exchange and correlation. The functional

EXC[ρ] is unknown; formally, it is defined as EXC[ρ] = F [ρ]− Ts[ρ]− J [ρ].

Minimization of the total energy functional

E[ρ] = Ts[ρ] +

∫
v(r)ρ(r) dr +

1

2

∫
dr

∫
ρ(r)ρ(r′)

|r− r′|
dr′ + EXC[ρ] (1.11)

with respect to ρ yields a set of one-electron Hartree-like equations known as the

Kohn–Sham equations, [
−1

2
∇2 + vs(r)

]
φi(r) = εiφi(r). (1.12)

The Kohn–Sham potential vs(r) is the effective potential energy operator defined as

a functional derivative of the functional E[ρ]− Ts[ρ]. It can be written as

vs(r) = v(r) + vHXC(r), (1.13)

where v is the potential of the nuclei and vHXC is the effective electronic Hartree-
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exchange-correlation potential. The vHXC subsumes all electron-electron interactions

of the real system and is itself partitioned as

vHXC(r) = vH(r) + vXC(r), (1.14)

where the Hartree potential vH is the functional derivative of the electrostatic repulsion

functional J [ρ],

vH(r) =

∫
ρ(r′)

|r′ − r|
dr′, (1.15)

and the exchange-correlation potential vXC is the functional derivative of the exchange-

correlation functional EXC[ρ],

vXC(r) =
δEXC[ρ]

δρ(r)
. (1.16)

Comparison between Eqs. (1.7) and (1.12) suggests the following interpretation of the

potential vs(r): It is the external potential of a fictitious system of non-interacting

electrons that has the same density ρ(r) as the real (interacting) system [4]. The

density constructed by Eq. (1.9) from the orbitals obtained by solving the Kohn–

Sham equations is the density that minimizes the total energy functional E[ρ] of the

system of interacting electrons. But the potential vs itself depends on the electron

density, so the Kohn–Sham equations need to be solved iteratively. The self-consistent

procedure involves the following steps: (i) start with an initial guess for the density;

(ii) construct vH and vXC, and solve the Kohn–Sham equations; (iii) update the density

using the new orbitals φi. This procedure is repeated until self-consistency, i.e., until

the Kohn–Sham equations return the input density.

The simplicity and formal exactness of the Kohn–Sham density functional theory

come with a price. The exact exchange-correlation functional EXC[ρ] is unknown and

must be approximated for any practical application. There is no systematic proce-

dure for the improvement of density-functional approximations, and developers often

include empirical parameters to achieve good agreement with experiments. As a re-

sult, most density-functional methods existing today occupy an intermediate position

between semiempirical and ab initio theories.
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1.3 Functionals and functional derivatives

1.3.1 Definition of functionals and functional derivatives

In this section we present a brief discussion of the properties of functionals and func-

tional derivatives by comparing them to the familiar concepts from the ordinary cal-

culus. Recall that a function is a rule assigning a number to another number. A

functional is a rule assigning a number to a function,

f(r)
rule−−→ F [f ]. (1.17)

In simple terms, a functional can be thought of as a function whose argument is a

function. Examples of functionals include:

• A definite integral over a continuous function f(x):

F [f ] =

∫ x2

x1

f(x) dx. (1.18)

• A prescription which associates a function with the value of this function at a

particular point x0:

F [f ] = f(x0). (1.19)

This functional can be represented as an integral with the Dirac delta function

(refer to Appendix A for details):

F [f ] =

∫ x2

x1

f(x)δ(x− x0) dx, x1 < x0 < x2. (1.20)

Approximate density functionals often depend on the density ρ and its first and

sometimes second derivatives through the gradient ∇ρ and the Laplacian ∇2ρ, re-

spectively,

F [ρ] =

∫∫∫
V

f(ρ,∇ρ,∇2ρ) dr, (1.21)

where the integration volume V is the entire coordinate space. Usually the triple

integral sign
∫∫∫

V
is reduced to a single

∫
with the implied integration limits. Func-

tionals of the type of Eq. (1.21) are called explicit because they are constructed from

the density-dependent ingredients alone. By contrast, orbital-dependent functionals

such as Ts[ρ] of Eq. (1.8) include the Kohn–Sham orbitals and are thus implicit func-

tionals of ρ. The simplest explicit functionals are the Coulomb repulsion of the density
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given by Eq. (1.5) and the local-density approximation (LDA) for exchange energy of

the uniform electron gas,

ELDA
X [ρ] = −CX

∫
ρ4/3(r) dr, (1.22)

where CX = (3/4)(3/π)1/3 is a non-empirical constant.

Similar to the ordinary calculus, there exists calculus dealing with the functionals

[5–7]. The central quantity to the calculus of variations is the concept of a functional

derivative. Let F [ρ] be a density-functional approximation for some kind of electronic

energy. For a given ρ(r) and an arbitrary integrable function h(r), consider the

functional defined by

DF [ρ, h] = lim
t→0

F [ρ+ th]− F [ρ]

t
=

{
d

dt
F [ρ+ th]

}
t=0

(1.23)

If this functional exists and is linear in h, then it is called the Gâteaux differential at

ρ in the direction h. Usually, it may be written as a linear (in h) integral operator

DF [ρ, h] =

∫
v([ρ]; r)h(r) dr, (1.24)

where v([ρ]; r) is a function independent of h(r). The distribution v([ρ]; r) is called

the functional derivative of F [ρ], and it is itself a functional of ρ at every point r,

v([ρ]; r) ≡ δF [ρ]

δρ(r)
. (1.25)

For a particular choice of h = δρ, the differential DF [ρ, h] becomes the classical

variation of the functional F [ρ],

δF [ρ] =

∫
δF [ρ]

δρ(r)
δρ(r) dr, (1.26)

which implies that the total change in F upon variation of the function ρ(r) is a linear

superposition of the local changes summed over the entire range of r values. In light

of this discussion, Eq. (1.26) can be interpreted as an extension of the total differential

of a function of several variables

f(x1, x2, . . . , xN) → df =
N∑
n=1

∂f

∂xn
dxn. (1.27)
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to the case of an infinite number of variables [5, 7].

1.3.2 Calculation of functional derivatives

In order to calculate the functional derivative of F [ρ], one has to evaluate the differ-

ential DF [ρ, h] using Eq. (1.23), convert the result into the form of Eq. (1.24) and

then identify the functional derivative δF [ρ]/δρ(r). As an example, consider the local

density approximation for exchange energy defined by Eq. (1.22). The first differential

of that functional is given by

DELDA
X [ρ, h] = −CX

{
d

dt

∫ [
ρ(r)+th(r)

]4/3
dr

}
t=0

= −4

3
CX

∫
ρ1/3(r)h(r) dr. (1.28)

Comparing this expression with Eq. (1.24) we conclude that the functional derivative

of the LDA exchange functional, called the LDA potential for exchange vLDA
X , is

vLDA
X (r) ≡ δELDA

X [ρ]

δρ(r)
= −4

3
CXρ

1/3(r). (1.29)

Before we proceed further, let us show how the calculation of functional derivatives can

be simplified with the help of Dirac’s delta function (Appendix A). Let h(r) = δ(r−r′).

Substituting δ(r−r′) into Eq. (1.24) and employing the definition of the delta function,

we obtain

DE[ρ, δ] =

∫
δE[ρ]

δρ(r)
δ(r− r′) dr =

δE[ρ]

δρ(r′)
, (1.30)

and the functional derivative is simply equal to the first differential DE[ρ, δ],

δE[ρ]

δρ(r′)
=

{
d

dt
E[ρ(r) + tδ(r− r′)]

}
t=0

(1.31)

Let us illustrate this by differentiating the electrostatic repulsion functional J [ρ] given

by Eq. (1.5). We can rewrite J [ρ] as

J [ρ] =
1

2

∫
dr′
∫
ρ(r′)ρ(r′′)

|r′ − r′′|
dr′′. (1.32)
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Application of Eq. (1.31) yields

δJ [ρ]

δρ(r)
=

1

2

{
d

dt

∫
dr′
∫

[ρ(r′) + tδ(r′ − r)][ρ(r′′) + tδ(r′′ − r)]

|r′ − r′′|
dr′′
}
t=0

=
1

2

∫
ρ(r′)

|r′ − r|
dr′ +

1

2

∫
ρ(r′′)

|r− r′′|
dr′′ =

∫
ρ(r′)

|r′ − r|
dr′, (1.33)

where we have used the fact that |r−r′′| = |r′′−r| and changed the dummy integration

variable from r′′ to r′.

In a similar fashion one can derive a general functional differentiation formula for

explicitly density-dependent functionals of the type of Eq. (1.21):

δF [ρ]

δρ(r)
=
∂f

∂ρ
−∇ ·

(
∂f

∂∇ρ

)
+∇2

(
∂f

∂∇2ρ

)
, (1.34)

where ∂f/∂∇ρ is a shorthand for a vector with three components ∂f/∂ρ′α, in which

ρ′α ≡ ∂ρ/∂α and α = x, y, z.

Finally, let us derive a useful expression for the derivative of a functional with

respect to a parameter. Consider the functional F [ρ], in which the function ρ(r, t) in

turn depends on a parameter t. The variation of F [ρ] is defined by

δF [ρ] =

∫
δF [ρ]

δρ(r, t)
δρ(r, t) dr. (1.35)

Suppose the function ρ(r, t) is varied by changing the parameter t only. Then

δρ(r, t) =
∂ρ(r, t)

∂t
dt, (1.36)

and

δF [ρ] =

∫
δF [ρ]

δρ(r, t)

∂ρ(r, t)

∂t
dr dt. (1.37)

Observe that F does not involve integration over t, and may thus be treated as a

function of t. The variation of F (t) is then simply equal to δF (t) = (∂F/∂t) dt.

Comparing this equality with Eq. (1.37), we arrive at

∂F

∂t
=

∫
δF [ρ]

δρ(r, t)

∂ρ(r, t)

∂t
dr. (1.38)
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With the shorthand ρt(r) ≡ ρ(r, t), this last expression becomes

∂F [ρt]

∂t
=

∫
δF [ρt]

δρt(r)

∂ρt(r)

∂t
dr. (1.39)

We will employ this formula in the following Section.

1.4 Potential-driven density functional theory

In order to perform density-functional-theory calculations, one needs an approxima-

tion for the exchange-correlation functional EXC[ρ]. The potential vXC is then obtained

as a functional derivative of EXC[ρ] using the techniques discussed in the previous Sec-

tion. Dozens of approximate exchange-correlation functionals have been proposed to

date [3, 8–10], some of them closely approaching the chemical level of accuracy of

1 kcal mol−1. Unfortunately, functional derivatives of most existing density func-

tionals lack essential properties of the exact potential [11]. For example, all density-

functional approximations fail to reproduce the exact Coulombic −1/r asymptotic

decay of the potential. The result is a wrong description of molecular response prop-

erties such as ionization, electronic excitation energies, and hyperpolarizabilities. A

possible solution is to approximate the exchange-correlation potential vXC directly.

1.4.1 Model potentials

Model exchange-correlation potentials are usually designed to mimic the asymptotic

behavior [12–14], shell structure [15–18], and derivatives discontinuities [19, 20] of the

exact potential. Compared to common density functionals, potential approximations

predict very accurate molecular response properties [19–22]. In this section, we will

review some of the model potentials existing today and explain how they work.

Fermi–Amaldi potential

The Fermi–Amaldi (FA) potential is defined by

vFA
X (r) = − 1

N
vH(r), (1.40)

where vH(r) is the electrostatic potential of Eq. (1.15) and N is the number of elec-

trons. Formally, the potential of Eq. (1.40) is a functional derivative of the Fermi–

Amaldi density functional [23–25] obtained under the assumption thatN is a constant.



10

The Fermi–Amaldi model has the correct −1/r asymptotic decay due to the pres-

ence of the electrostatic kernel |r′ − r|−1. This follows from the multipole expansion

[25, 26] of vFA
X (r),

vFA
X (r) = − 1

N

∫
ρ(r′)

|r′ − r|
dr′ → −1

r
(r →∞). (1.41)

Taken by itself, the Fermi–Amaldi potential is a poor representation of the true

vXC. Still, it has the correct Coulombic decay and therefore can be used to tailor the

long-range behavior of other model potentials [19, 25, 27]. One of the models that

involves the Fermi–Amaldi term as an ingredient is the Umezawa potential [14].

Umezawa potential

Umezawa [14] used the Fermi–Amaldi potential to refine the asymptotic behavior of

the LDA potential. The exchange-like part of the Umezawa model (U06) is given by

vU06
X (r) = g1(r)vLDA

X (r) + g2(r)vFA
X (r). (1.42)

The switching functions g1(r) and g2(r) are defined as

g1(r) =
1

ln(1 + γ5ξ5s5) + 1
and g2(r) = 1− e−γ2ξ2s2 , (1.43)

where ξ = 21/3 is the factor arising in the transition to the spin-unpolarized form

and γ = 0.125 is the empirical parameter chosen to fit the U06 potential (combined

with the Perdew–Zunger approximation for correlation [28]) to the true vXC of the

helium atom. The quantity s is a dimensionless reduced-density gradient, a ubiquitous

component of gradient-dependent approximations [29],

s =
|∇ρ|
ρ4/3

. (1.44)

The Umezawa potential employs the switching functions g1 and g2 to adjust the

weights of the LDA and Fermi–Amaldi terms in different physical regions of the den-

sity. The asymptotic regions of atoms and molecules (r → ∞) are characterized by

the large reduced-density gradient (s → ∞), so the functions g1 and g2 approach 0

and 1 respectively. As a result, the U06 model acquires the proper long-range decay

of the Fermi–Amaldi potential.
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Model potential of van Leeuwen and Baerends

Another strategy for developing model exchange-correlation potentials is to specifi-

cally design analytic expressions with the correct asymptotic behavior [12, 30]. Con-

sider, for example, the model potential of van Leeuwen and Baerends (LB94) [12].

This approximation is defined as a sum of the LDA potential and a semilocal gradient

correction term. The exchange-like part of the LB94 is given by

vLB94
X = vLDA

X − ρ1/3 βξs2

1 + 3βξs sinh−1(ξs)
. (1.45)

Here, s is the reduced-density gradient of Eq. (1.44), ξ = 21/3, and β is an empirical

parameter. The value of β = 0.05 was determined by fitting the LB94 potential

(combined with the LDA correlation potential of Ref. 31) to the exact exchange-

correlation potential of the Be atom.

The gradient correction term of Eq. (1.45) has the analytic form of the Becke

exchange energy density [8]. To understand why this correction exhibits the Coulom-

bic decay, consider its behavior in the limit of large s. Asymptotic expansion of the

semilocal part of LB94 yields, up to the leading term,

− ρ1/3βξs2

1 + 3βξs sinh−1(ξs)
∼ −1

3

ρ1/3s

ln s
(s→∞). (1.46)

Upon substitution of the exponential density ρ(r) = Ne−ar into the expression above,

its right-hand side becomes exactly −1/r.

Because of the proper long-range decay, well-defined shell structure, and the

computational simplicity, LB94 to this day remains one of the most popular model

exchange-correlation potentials.

Slater, Becke–Johnson and related models

So far we considered approximations to the total exchange-correlation potential.

There also exist a number of approximations to the exact exchange-only potential.

Consider the conventional exact-exchange (EXX) energy functional,

EEXX
X = −1

4

∫
dr

∫
|γ(r, r′)|2

|r− r′|
dr′, (1.47)
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where

γ(r, r′) =
N∑
i=1

φi(r)φ∗i (r
′) (1.48)

is the density matrix of the Kohn–Sham non-interacting system. The exact-exchange

functional of Eq. (1.47) is defined as the Hartree–Fock exchange energy formula writ-

ten in terms of the Kohn–Sham orbitals. Because the exact-exchange functional

explicitly depends on the Kohn–Sham orbitals, its functional derivative cannot be

obtained by techniques described in the Section 1.3.2. It can be, however, evaluated

numerically using the optimized effective potential (OEP) method [32, 33]. Due to

the ill-posed nature of the OEP problem in a finite basis set [34, 35], attempts have

been made to model the functional derivative of Eq. (1.47) directly [13, 15–18, 36].

The averaged exchange-charge potential of Slater [13] arises as a leading term in

the expression for a functional derivative of the exact-exchange functional [16]. For

closed-shell systems, this potential can be written as

vS
X(r) = − 1

2ρ(r)

∫
|γ(r, r′)|2

|r− r′|
dr′, (1.49)

where γ(r, r′) is given by Eq. (1.48). Like the model potentials we discussed before, vS
X

possesses the proper Coulombic asymptotic decay. But unfortunately, for a uniform

electron gas, the Slater potential is deeper than the exact-exchange potential by a

factor of 3/2 and is not a good approximation if taken alone.

The Slater potential is a starting point for many other approximations. In the

Becke–Johnson model [17], for example, the exchange potential is represented as the

sum of the Slater potential and a correction term,

vBJ
X = vS

X +
kBJ

2π
, (1.50)

where

kBJ =

(
10

3

τ

ρ

)1/2

(1.51)

and τ(r) = 1
2

∑N
i=1 |∇φi(r)|2 is the Kohn–Sham kinetic energy density. Inclusion of

the τ -dependent term brings the Becke–Johnson model closer to the exact-exchange

potential [17]. At the same time, kBJ/2π becomes a constant for exponential densities,

and the resulting potential has a wrong −1/r + C asymptotic decay, where C is a

system-dependent constant.

The Becke–Johnson potential can be improved by adding to it a term that depends
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on the derivatives of τ(r) and ρ(r). The result is the gradient-corrected (GC) potential

of Staroverov [18],

vGC
X = vBJ

X −
7

288π

|∇k2
BJ|2

k5
BJ

. (1.52)

This correction refines the shell structure of the potential but inherits the incorrect

−1/r + C behavior of the Becke–Johnson model.

Another improvement of the Becke–Johnson potential was proposed by Räsänen,

Pittalis and Proetto [36]. For real Kohn–Sham orbitals, their potential is given by

the same formula as the Becke–Johnson model of Eq. (1.50) but with kBJ replaced by

kRPP defined as

kRPP =

(
10

3

τ − τW
ρ

)1/2

(1.53)

where τW = |∇ρ|/8ρ is the von Weizsäcker correction to the Thomas-Fermi kinetic

energy density [37]. The correction of Räsänen and co-workers vanishes at each point

r for one- and two-electron densities and has the exact −1/r asymptotic decay.

Potentials of the localized Hartree–Fock family

A further improvement of the Slater potential is provided by the model potentials of

the localized Hartree–Fock (LHF) family [38]. The members of this family can be

represented as the Slater potential vS
X plus a correction,

vX(r) = vS
X(r) +

1

ρ(r)

N∑
i=1

N∑
j=1

ωijφ
∗
i (r)φj(r). (1.54)

Different choices of ωij correspond to different models. The potentials defined by

Eq. (1.54) include the approximations of Krieger, Li, and Iafrate (KLI) [15], Della Sala

and Görling [38], Grüning, Gritsenko, and Baerends [39], and Staroverov, Scuseria,

and Davidson [40]. Very recently, the author in collaboration with Kananenka, Kohut,

Ryabinkin, and Staroverov designed a new accurate model potential [41] of the same

family. This potential was constructed with the aid of the Kohn–Sham inversion

procedure [12, 42, 43] for the Hartree–Fock equations, and is given by

vX(r) = vS
X([ρHF]; r) +

1

ρHF(r)

N∑
i=1

(εi − εHF
i )|φHF

i (r)|2. (1.55)

The whole expression, including the Slater potential vS
X([ρHF]; r), is constructed using

the Hatree–Fock orbitals φHF
i and the density ρHF. Our model is a special case of
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Eq. (1.54) with ωij = (εi−εHF
i )δij, where εi are the eigenvalues of the potential vX and

εHF
i are the Hartree–Fock orbital energies. Since a potential is always determined up

to an arbitrary constant, we fixed it by requiring ωHOMO = 0. This choice eliminated

the HOMO from the last term of Eq. (1.55) and ensured that the potential inherits

the correct −1/r decay of the Slater model. The potential of Eq. (1.55) is computed

iteratively starting with the Hartree–Fock orbitals until the eigenvalues εi become

consistent between iterations. For this reason, the model of Eq. (1.55) was termed

the ‘ε-consistent potential’.

Let us analyze the relation between the ε-consistent potential and two potentials

proposed in Ref. 38, TLHF and TKLI. TLHF and TKLI approximations are equivalent

to the LHF [38] and KLI [15] but, similar to our model, are defined using the Hartree–

Fock orbitals. The parameters ωij that generate these potentials are:

TLHF: ωij = 〈φHF
j |vTLHF

X − K̂|φHF
i 〉

TKLI: ωij = 〈φHF
i |vTKLI

X − K̂|φHF
i 〉δij

Eq. (1.55): ωij =
(
εi − εHF

i

)
δij

In these equations, K̂ is the non-local Hartree–Fock exchange energy operator [44].

The TLHF model depends on the full matrix ωij, while TKLI and Eq. (1.55) neglect

its off-diagonal part. Furthermore, ωij for the TKLI and the ε-consistent models can

be brought to a similar form [41] as

TKLI: ωij ≈ 〈φHF
i |ĥ|φHF

i 〉δij − εHF
i δij

Eq. (1.55): ωij = εiδij − εHF
i δij,

where ĥ is the local Kohn–Sham operator with TKLI exchange potential. Thus,

the model potential defined by Eq. (1.55) amounts to a replacement of expectation

values 〈φHF
i |ĥ|φHF

i 〉 in TKLI with eigenvalues εi. It has similar performance to other

potentials from the family, and is more accurate than the Slater and Becke–Johnson

models [41].
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1.4.2 Reconstruction of density functionals1

Application of the potential-driven DFT has long been hindered by several method-

ological difficulties. One of the problems is that the energy functional, corresponding

to a given model potential, is usually unknown. This means that one needs to find

a way to compute the energy corresponding to a model potential. Furthermore, the

parent functional for a model potential may not exist at all. We are going to address

these issues in more detail in the present and the following Sections.

Assume that a model potential vXC has a parent functional EXC[ρ]. Since the

explicit form of EXC[ρ] is unknown, one needs some sort of functional “integration”

procedure to compute the energy. Many texts discuss functional differentiation at

length [7, 26, 37], but very few consider the inverse problem [45].

On the basis of Eq. (1.34) it is obvious that for any local exchange-correlation po-

tential (that is, a potential that depends only on ρ but not on ∇ρ or higher derivatives

of ρ), the exchange-correlation energy density can be found simply as an indefinite in-

tegral (antiderivative) of vXC with respect to ρ. For semilocal exchange-correlation po-

tentials, which also depend on ∇ρ and higher derivatives of ρ, a more general method

is required. Such a method was developed by van Leeuwen and Baerends [46], who

essentially reincarnated Volterra’s result from the general theory of functional calculus

[5]. The idea of van Leeuwen and Baerends was to introduce an additional param-

eter t into the density ρ(r) to create a path of densities ρt(r). As explained at the

end of Section 1.3.2, the functional EXC[ρ] then becomes a function of the variable t,

EXC[ρt] = EXC(t). The derivative of this function is given by Eq. (1.39):

∂EXC(t)

∂t
=

∫
δEXC[ρt]

δρt(r)

∂ρt(r)

∂t
dr =

∫
vXC([ρt]; r)

∂ρt(r)

∂t
dr. (1.56)

Integrating this derivative from t = A to t = B, we arrive at the following energy

difference:

EXC[ρB]− EXC[ρA] =

∫ B

A

∂EXC(t)

∂t
dt =

∫ B

A

dt

∫
vXC([ρt]; r)

∂ρt(r)

∂t
dr, (1.57)

which holds for an arbitrary path connecting ρA and ρB [46]. Equation (1.57) is the

most general form of the van Leeuwen–Baerends line integral. In particular, if the

parametrization ρt(r) is such that EXC[ρA] = 0 and ρB(r) = ρ(r), then Eq. (1.57)

1Reproduced in part with permission from A. P. Gaiduk, S. K. Chulkov, and V. N. Staroverov,
“Reconstruction of density functionals from Kohn–Sham potentials by integration along density
scaling paths”, J. Chem. Theory Comput. 5, 699 (2009). Copyright 2009, American Chemical
Society.
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reduces to

EXC[ρ] =

∫ B

A

dt

∫
vXC([ρt]; r)

∂ρt(r)

∂t
dr. (1.58)

This last expression can be used to assign an energy to a given model potential without

prior knowledge of the functional EXC[ρ].

Any reasonable parametrization ρt can be used with the line-integral formula of

Eq. (1.58). The word “reasonable” means that the derivative ∂ρt/∂t exists for all

values of t. In practice, it is convenient to perform line integration along paths

of magnitude- or coordinate-scaled density. This allows one to have vXC([ρt]; r) in

a closed form at any point along the integration path. We will now give several

examples of such density transformations. The first example is the linear density

scaling explored by Liu and Parr [47], Chan and Handy [48], and Nagy et al. [49].

We will call it the q-scaling,

ρq(r) = qρ(r). (1.59)

Another example is the uniform density scaling, which we will call the λ-scaling. This

transformation, extensively studied by Levy [50], is defined by

ρλ(r) = λ3ρ(λr). (1.60)

Under the λ-scaling of the density, any valid exchange potential is homogeneous of

degree one [51, 52]:

vX([ρλ]; r) = λvX([ρ];λr). (1.61)

The line integral of Eq. (1.58) expressed in terms of the λ-scaled exchange potential

can be evaluated in closed form; the result is the Levy–Perdew virial relation [46, 53]

EX[ρ] =

∫
vX(r)[3ρ(r) + r · ∇ρ(r)] dr. (1.62)

Finally, consider the density scaling proposed by Perdew and co-workers [54]. We will

refer to it as the ζ-scaling,

ρζ(r) = ζ2ρ(ζ1/3r). (1.63)

The paths connecting the points A = 0 and B = 1 along the q-, λ-, and ζ-scaled

densities are called, respectively, the Q-, Λ-, and Z-paths. Among these paths, only

the Λ-path conserves the electron number. The number of electrons along the Q-

and Z-paths changes as qN and ζN , respectively, where N is number of electrons

in ρ(r). Note that the condition EXC[ρA] = 0 is trivially satisfied for the Q-path.

For the Λ-path, ρλ(r) becomes infinitely dilute (vanishes locally) as λ → 0, so that
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limλ→0EXC[ρλ] = 0 [50, 55, 56]. For the Z-path, both ρζ(r) and EXC[ρζ ] vanish in the

ζ → 0 limit.

Partial derivatives of these scaled densities with respect to their scaling parameters

are readily obtained by applying the chain rule of differentiation. For future reference,

we write out the results:
∂ρq(r)

∂q
= ρ(r), (1.64)

∂ρλ(r)

∂λ
= λ2 [3ρ(λr) + (λr) · ∇λrρ(λr)] , (1.65)

∂ρζ(r)

∂ζ
= ζ

[
2ρ(ζ1/3r) +

ζ1/3r

3
· ∇ζ1/3rρ(ζ1/3r)

]
. (1.66)

We will now illustrate how Eq. (1.58) can be used to reconstruct exchange and

correlation density functionals from the corresponding functional derivatives.

Local density approximation for exchange

According to Eq. (1.29), the LDA potential for exchange is given by

vLDA
X ([ρ]; r) = −4

3
CXρ

1/3(r). (1.67)

Suppose we did not know what functional generated this potential. Let us employ

the line integral method to reconstruct this “unknown” functional.

Under the q-scaling of the density, the LDA exchange potential transforms as

vLDA
X ([ρq]; r) = q1/3vLDA

X ([ρ]; r). (1.68)

Multiplying this potential by ∂ρq(r)/∂q = ρ(r) and integrating over q we obtain the

Q-reconstruction

ELDA
X,Q [ρ] =

3

4

∫
ρ(r)vLDA

X ([ρ]; r) dr, (1.69)

which, in view of Eq. (1.67), is identical with ELDA
X [ρ] of Eq. (1.22).

Under the uniform density scaling, the LDA exchange potential transforms as

vLDA
X ([ρλ]; r) = λvLDA

X ([ρ];λr). (1.70)

Inserting the λ-scaled LDA potential into Eq. (1.58) we obtain the Λ-reconstruction:

ELDA
X,Λ [ρ] =

∫
vLDA

X ([ρ]; r)[3ρ(r) + r · ∇ρ(r)] dr, (1.71)
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which is just the Levy–Perdew relation of Eq. (1.62). It is not obvious, but can

be proved by invoking the divergence theorem, that the value of ELDA
X,Λ [ρ] is equal

to ELDA
X,Q [ρ] for any ρ vanishing at infinity. Numerical evaluation of the integrals of

Eqs. (1.69) and (1.71) for test densities also confirms their equivalence [57].

Consider now the ζ-scaling of the LDA exchange potential

vLDA
X ([ρζ ]; r) = ζ2/3vLDA

X ([ρ]; ζ1/3r). (1.72)

Substitution of the ζ-scaled LDA exchange potential into the line integral formula

yields

ELDA
X,Z [ρ] =

∫ 1

0

dζ

∫
ζ2/3vLDA

X ([ρ]; ζ1/3r) ζ

[
2ρ(ζ1/3r) +

ζ1/3r

3
· ∇ζ1/3rρ(ζ1/3r)

]
dr.

(1.73)

After the substitution ζ1/3r→ r and integration over ζ we obtain the Z-reconstruction

of the LDA:

ELDA
X,Z [ρ] =

3

5

∫
vLDA

X ([ρ]; r)
[
2ρ(r) +

r

3
· ∇ρ(r)

]
dr. (1.74)

This functional is actually a linear combination of the Q- and Λ-reconstructions,

namely, 4
5
ELDA

X,Q [ρ] + 1
5
ELDA

X,Λ [ρ], as can be seen by combining Eqs. (1.69) and (1.71).

Since each of the Q- and Λ-reconstructions is numerically equivalent to ELDA
X [ρ], the

value of ELDA
X,Z [ρ] is also equal to ELDA

X [ρ]. Thus, Eqs. (1.69), (1.71), and (1.74) are

different but equivalent representations of the same functional.

Local density approximation for correlation

Consider now the Wigner correlation functional

EW
C [ρ] = −

∫
aρ

b+ rs
dr, (1.75)

where rs = (3/4πρ)1/3 and a = 0.44 and b = 7.8 are constants. The functional

derivative of EW
C [ρ] is

vW
C ([ρ]; r) = −ab+ (4/3)rs(r)

[b+ rs(r)]2
, (1.76)

where we have used the fact that drs/dρ = −rs/3ρ. Let us reconstruct the Wigner

correlation functional from vW
C ([ρ]; r) by using Eq. (1.58) and integrating the potential

along three distinct density scaling paths.



19

The q-scaled Wigner correlation potential is

vW
C ([ρq]; r) = −ab+ (4/3)q−1/3rs(r)

[b+ q−1/3rs(r)]2
. (1.77)

The Q-reconstruction is, therefore,

EW
C,Q[ρ] = −a

∫
dr ρ(r)

∫ 1

0

b+ (4/3)q−1/3rs
(b+ q−1/3rs)2

dq = −
∫

aρ(r)

b+ rs(r)
dr, (1.78)

which is precisely the original functional EW
C [ρ].

Under the uniform density scaling, the Wigner correlation potential transforms as

vW
C ([ρλ]; r) = −ab+ (4/3)λ−1rs(λr)

[b+ λ−1rs(λr)]2
. (1.79)

The line integral along the Λ-path can be written as

EW
C,Λ[ρ] = −a

∫ 1

0

dλ

∫
b+ (4/3)λ−1rs(λr)

[b+ λ−1rs(λr)]2
[3ρ(λr) + (λr) · ∇λrρ(λr)]

d(λr)

λ
. (1.80)

Changing the real-space integration variable λr→ r and integrating over λ we obtain

the Λ-reconstruction of the Wigner functional

EW
C,Λ[ρ] = −a

∫ [
1

b
ln
b+ rs
rs

+
1

3(b+ rs)

]
[3ρ(r) + r · ∇ρ(r)] dr. (1.81)

Similarly, we have derived the Z-reconstruction

EW
C,Z[ρ] = −a

∫ [
1− rs/b− (3/2)(rs/b)

2

b+ rs
+

3r
3/2
s tan−1

√
b/rs

2b5/2

] [
2ρ(r) +

r

3
· ∇ρ(r)

]
dr,

(1.82)

which, unlike the exchange functionals above, does not appear to be a linear combi-

nation of the Q- and Λ-reconstructions. However, numerical calculation [57] proves

that the correlation energies obtained by Eqs. (1.81) and (1.82) are exactly the same

as those obtained by Eq. (1.75).

1.4.3 Potentials that are not functional derivatives

Equation (1.58) was derived under the assumption that the parent functional EXC[ρ]

for the potential vXC actually exists. For any such potential, the line integration

recovers the parent functional EXC[ρ] in which the energy density may have been
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transformed to a new gauge determined by the choice of the integration path. It may

happen, however, that a model potential does not have a parent functional, that is,

it is not a functional derivative. In such a case, the energy obtained using Eq. (1.58)

will in general depend on the particular integration path [46].

Consider, for example, the following model potential:

vM([ρ]; r) =
|∇ρ(r)|
ρ(r)

. (1.83)

Is there a functional that generates this potential? We will show that the answer to

this question is “no”.

Under the q-scaling, this potential is unchanged:

vM([ρq]; r) =
|∇ρq|
ρq

= vM([ρ]; r), (1.84)

Therefore, the line integral along the Q-path is

IQ =

∫ 1

0

dq

∫
vM([ρq]; r)

∂ρq(r)

∂q
dr =

∫
|∇ρ(r)| dr. (1.85)

Under the uniform density scaling,

vM([ρλ]; r) =
|∇ρλ|
ρλ

= λvM([ρ];λr), (1.86)

so the line integral along the Λ-path is

IΛ =

∫ 1

0

dλ

∫
vM([ρλ]; r)

∂ρλ(r)

∂λ
dr =

∫
|∇ρ(r)|
ρ(r)

[3ρ(r) + r · ∇ρ(r)] dr. (1.87)

Finally, under the ζ-scaling

vM([ρζ ]; r) =
|∇ρζ(r)|
ρζ(r)

= ζ1/3vM([ρ]; ζ1/3r), (1.88)

and the line integral along the Z-path is

IZ =

∫ 1

0

dζ

∫
vM([ρζ ]; r)

∂ρζ(r)

∂ζ
dr =

3

4

∫
|∇ρ(r)|
ρ(r)

[
2ρ(r) +

r

3
· ∇ρ(r)

]
dr. (1.89)

It is easy to see that the three reconstructions are related to each other: IZ = 3
4
IQ+1

4
IΛ.

Numerical evaluation of the three integrals given by Eqs. (1.85), (1.87), and (1.89)
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yields different values [57]. Therefore, the quantity defined by Eq. (1.83) is not a

functional derivative of any density functional with respect to ρ(r).

Let us introduce new terminology. We will call the model potential integrable if

it has a parent functional. If a model potential is not a functional derivative of any

density functional, we will call it non-integrable or stray. The outcome of line integra-

tion depends on whether the potential is integrable or not. If vXC(r) is integrable, the

line integration recovers the parent functional EXC. If vXC(r) is stray, then the line

integral is path-dependent, which means that the energy assigned to that potential is

not unique.

The issue of stray potentials is closely related to the problem of incomplete dif-

ferentials from the ordinary calculus [58]. Consider a well-behaved function f(x, y).

The total differential of f has the form

df = P (x, y) dx+Q(x, y) dy, (1.90)

where

P (x, y) ≡ ∂f(x, y)

∂x
and Q(x, y) ≡ ∂f(x, y)

∂y
. (1.91)

According to the theorem on the symmetry of second mixed derivatives, the functions

P (x, y) and Q(x, y) are related to each other via the condition

∂P (x, y)

∂y
≡ ∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x
≡ ∂Q(x, y)

∂x
. (1.92)

The complete differential df of Eq. (1.90) has a special property: Line integration

of df along an arbitrary path C from (x1, y1) to (x2, y2) always yields [58]∫
C

df =

∫
C

P (x, y) dx+

∫
C

Q(x, y) dy = f(x2, y2)− f(x1, y1). (1.93)

Assume for a while that we have not derived the functions P and Q using Eq. (1.91)

but rather, approximated them directly. If the model functions P and Q are such that

Eq. (1.92) does not hold, the sum P (x, y) dx+Q(x, y) dy is not a complete differential.

Line integration of this sum will depend on the particular choice of the path C [58].

The situation described above is analogous to what happens when the model

Kohn–Sham potential is stray. Recall that the differential of a functional [Eq. (1.26)]

is a generalization of a differential of a multivariable function [Eq. (1.27)]. In this

light, the potential v(r) ≡ δF [ρ]/δρ(r) is equivalent to a set of partial derivatives

∂f/∂xi. In calculus of variations, there exists a condition for integrability similar to
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Eq. (1.92),
δv([ρ]; r)

δρ(r′)
=
δv([ρ]; r′)

δρ(r)
. (1.94)

This relation was first stated by Volterra [5] and subsequently introduced into density

functional theory by Ou-Yang and Levy [52]. Stray model potentials do not satisfy

Eq. (1.94). As a result, expression for δF [ρ] of Eq. (1.26) evaluated with stray poten-

tials is not a complete differential, and the line integral of Eq. (1.58) depends on an

integration path.

1.4.4 Problems of non-integrable model potentials

Path-dependence of the line integral is not the only problem of stray model potentials.

Recall that the Kohn–Sham equations (1.12) minimize the total energy functional

E[ρ] given by Eq. (1.11). If the exchange-correlation potential in Eq. (1.12) is not a

functional derivative, the Kohn–Sham equations do not represent a solution to any

implied energy minimization problem. As a result, the density constructed from the

converged Kohn–Sham orbitals φi(r) does not correspond to the true minimum of

the energy. This means that stray potentials cannot be used for molecular geometry

optimizations [59–61] because the point where the forces acting on the nuclei vanish

will not coincide with the energy minimum [59].

Furthermore, energies assigned to model potentials often lack translational and

rotational invariance. Consider the Levy–Perdew virial relation of Eq. (1.62), the

usual energy expression used for model exchange potentials. Integration of the virial

relation by parts yields an equivalent form

EX[ρ] = −
∫
ρ(r)r · ∇vX([ρ]; r) dr. (1.95)

Suppose we displace a molecule from its original position by −R, so that the density

ρ(r) becomes ρ′(r) = ρ(r + R). Exchange energy evaluated for a displaced molecule

using Eq. (1.95) is

EX[ρ′] = −
∫
ρ(r + R)r · ∇rvX([ρ]; r + R) dr. (1.96)

After the variable substitution r′ = r + R → r, we can rewrite the expression above

as

EX[ρ′] = EX[ρ] + R ·
∫
ρ(r)∇vX([ρ]; r) dr. (1.97)
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Translational invariance requires that the second term on the right-hand side of

Eq. (1.97) vanish for an arbitrary R. This is possible only if, for every ρ,∫
ρ(r)∇vX([ρ]; r) dr = 0, (1.98)

or, after integration by parts, ∫
vX([ρ]; r)∇ρ(r) dr = 0. (1.99)

Similar expression also exists for the invariance of the virial energy with respect to

arbitrary rotations of the molecule,∫
vX([ρ]; r)r×∇ρ(r) dr = 0. (1.100)

The relations (1.98)–(1.100) are known in the literature as the “zero-force” and “zero-

torque” conditions on the density [53]. They are automatically satisfied if vX([ρ]; r)

is a functional derivative of some translationally and rotationally invariant energy

functional, but are violated if the potential is stray. As a result, the virial energies

corresponding to stray model potentials depend on the position of the molecule with

respect to the coordinate axes. No such problems exist for integrable potentials that

originate from some density functional.

Finally, even when the total energy is not needed (e.g., in time-dependent density

functional theory), use of stray potentials can still result in artifacts such as spurious

self-excitations of the system [62]. Other response properties, e.g. molecular polariz-

abilities, are also affected by the integrability of model potentials [63]. All this means

that one needs to have reliable methods to detect stray potentials and to construct

integrable model potentials directly.

1.5 Objectives of the study

The purpose of my graduate research was twofold. First, we wanted to develop a

method to identify and “repair” stray model potentials (i.e., make them integrable),

and be able to construct integrable potentials directly. Second, we wanted to design

accurate potential approximations and using them, improve prediction of molecular

response properties. This thesis describes some of our results achieved to this end.

In Chapter 2, we propose a set of numerical tests to identify stray potentials. In
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Chapter 3, we investigate the structure of functional derivatives of density-dependent

approximations and, guided by this information, propose a practical procedure for

constructing integrable model potentials. Chapter 4 discusses a modification of this

approach to avoid the explicit reference to the density functional. In Chapter 5, we

propose a novel application of the line-integration technique for the development of

density functionals from stray model potentials. Finally, in Chapter 6, we develop

a correction scheme for functional derivatives of standard density functionals. Our

correction scheme effectively generates model potentials on the fly.
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Chapter 2

Tests for functional derivatives

2.1 Introduction

An attractive alternative to pursuing the functional EXC[ρ] of Eq. (1.11) is to approx-

imate the potential vXC([ρ]; r) of Eq. (1.16) directly with the Kohn–Sham orbitals,

which gives rise to the potential-driven density functional theory. However, a model

exchange-correlation potential may be stray, that is, not a functional derivative of any

functional. Stray model potentials produce a number of unphysical artifacts discussed

in Sec. 1.4.4.

Several workers have devised analytical and numerical criteria [1–4] to test the in-

tegrability of model potentials. For example, Ou-Yang and Levy examined translation

symmetry properties of the Slater potential [5] and found that it is not a functional

derivative [2], while Karolewski et al. [4] demonstrated that the Becke–Johnson poten-

tial [6] is stray by comparing the polarizabilities of polyacetylene fragments computed

using different methods. More generally, it has been remarked that approximate

potentials are usually not functional derivatives [7].

The present work is a concentrated effort to address the problem of stray potentials

in a general way. Our approach is to identify a few necessary conditions for a functional

derivative that can be turned into straightforward numerical tests and then to apply

these tests to actual model Kohn–Sham potentials.

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “Virial exchange
energies from model exact-exchange potentials”, J. Chem. Phys. 128, 204101 (2008). Copyright
2008, American Institute of Physics.
Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “How to tell when
a model Kohn–Sham potential is not a functional derivative”, J. Chem. Phys. 131, 044107 (2009).
Copyright 2009, American Institute of Physics.
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2.2 Methodology

In this section, we discuss analytic properties that distinguish functional derivatives

from stray potentials and formulate three numerical tests for stray potentials.

2.2.1 Self-consistent-field convergence test

In the functional-driven approach, the functional EXC[ρ] is known from the outset

while the potential vXC(r) is determined as the functional derivative of EXC[ρ]. The

iterative solution of the Kohn–Sham equations with integrable vXC(r) is variational,

and the self-consistent-field (SCF) energy is strictly lower than any intermediate en-

ergy. If, by contrast, the exchange-correlation potential is stray, then the Kohn–Sham

equations do not solve any implied energy minimization problem and the orbitals φi(r)

do not necessarily yield the lowest energy. In practice, this means that some inter-

mediate values of E[ρ] during the iterative solution of Eq. (1.12) could be below the

energy at convergence.

These arguments lead us to our first test for stray potentials: If in any itera-

tion of the SCF procedure the total energy obtained from a Kohn–Sham potential is

lower than at convergence, the potential is not a functional derivative. Of course, an

abnormal convergence pattern may simply indicate that the energy converges to an

excited state (i.e., a local minimum). However, if this abnormality is not a remedia-

ble SCF convergence problem, then the trial potential vXC(r) does not have a parent

functional.

2.2.2 Line-integral test

The line-integral method provides a solution to the inverse problem of functional

differentiation [3]. In this method, the difference between two values of EXC[ρ] at

arbitrary densities ρA and ρB is obtained as a line integral along a path of parametrized

densities ρt connecting ρA and ρB. If the parametrization is such that EXC[ρA] = 0

and ρB = ρ, then the line integral can be written as Eq. (1.58).

The value of the line integral can be easily evaluated for a given model potential

vXC([ρ]; r), which provides a convenient way to calculate the exchange-correlation en-

ergy corresponding to the unknown functional. If the model potential is a functional

derivative, then any reconstruction of the functional yields the same value. If, how-

ever, the potential is stray, then the line integrals along different paths yield different

energies. In this work, we employ the line-integral method as a test for stray po-
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tentials. We recover density functionals from model potentials using the formula of

Eq. (1.58) along the Q-, Λ- and Z-paths given by Eqs. (1.59), (1.60), and (1.63), and

compare the integrals. If the values of the integrals are not the same, the potential is

stray.

The line-integral test is limited only to the potentials that explicitly depend on the

electron density and its derivatives. This leaves out a wide and important class of po-

tentials constructed from the Kohn–Sham orbitals and eigenvalues [8, 9]. We address

this problem and propose a similar test applicable to orbital-dependent potentials in

the following subsection.

2.2.3 Virial-energy test for exact-exchange potentials

Almost all approximate exact-exchange potentials (Sec. 1.4.1) depend on the Kohn–

Sham orbitals, and it is not possible to assign the line-integral energy to them along an

arbitrary path. Luckily, under the λ-scaling of the density [Eq. (1.60)], exchange po-

tentials satisfy the relation of Eq. (1.61), and the line integration can be accomplished

analytically to give the Levy–Perdew virial relation of Eq. (1.62).

This means that there are at least two energy expressions for model exact-exchange

potentials at our disposal: (i) the “parent” EXX functional given by Eq. (1.47) and

(ii) the Levy–Perdew formula of Eq. (1.62). This suggests another straightforward

test for functional derivatives: Compare the energies assigned to a model potential

using the conventional exact-exchange functional and the Levy–Perdew virial relation.

If a model potential vX(r) descends from the functional of Eq. (1.47), the energies

evaluated using these two methods will be the same. Of course, the virial-energy

test is useful only for approximate exchange potentials but not for the full exchange-

correlation potential. This does not matter in practice because the few exchange-

correlation model potentials existing today [10–12] are density-dependent, and can

be examined using the line-integral test. From our experience, virial-energy and line-

integral tests complement each other.

2.2.4 Zero-force and zero-torque tests

Any physically reasonable approximation to the exchange-correlation functional must

be invariant with respect to translation and rotation of the density. Levy and Perdew

[13] and, independently, van Leeuwen and Baerends [3] found that functional deriva-

tives of invariant functionals satisfy two static-equilibrium conditions of “no net ex-

ternal force” and “no net external torque” on the density. These conditions, also
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referred to as the “zero-force” and “zero-torque” theorems [14], are formulated as two

vector identities,
∫
ρ(r)∇vXC(r) dr = 0 and

∫
ρ(r)r×∇vXC(r) dr = 0. Integration by

parts yields more convenient Eqs. (1.99) and (1.100). The zero-force and zero-torque

conditions can be derived either by invoking the Hellmann–Feynman theorem [13] or

by evaluating the line integral along the path taken as a simple translation or rotation

of the density [3].

The identities of Eqs. (1.99) and (1.100) can also be used to examine the properties

of a potential vXC. It follows from the careful analysis of van Leeuwen and Baerends

that if the zero-force and zero-torque theorems do not hold for an approximate vXC,

then either (i) the potential does not have the translational and rotational invariance

or (ii) it is not a functional derivative [3]. In fact, if vXC does not explicitly depend

on the position vector r, then the possibility (i) can be safely rejected, which in turn

means that the potential is not a functional derivative.

Using these arguments, we employ the zero-force and zero-torque theorems as a

test for stray potentials. We evaluate the integrals of Eqs. (1.99) and (1.100) with a

model potential, and if they do not vanish, we conclude that the model potential is

not a functional derivative.

2.3 Results and discussion

From the tests described in Sec. 2.2, only the zero-force theorem has been used to

identify stray potentials [2, 7] prior to this study. The other tests have been formulated

and developed in our work. We have applied our tests to the Fermi–Amaldi, Umezawa,

van Leeuwen–Baerends, Slater, Becke–Johnson, Staroverov, and the ε-consistent po-

tentials described in Sec. 1.4.1. For simplicity, we did not include the LDA for correla-

tion (which is a functional derivative) in the Umezawa and the van Leeuwen–Baerends

models.

For comparison purposes, we also tested several potentials that are a priori known

to be functional derivatives. The integrable potentials were derived from the LDA,

Gill (G96) [15], and Becke (B88) [16] exchange functionals using the expression of

Eq. (1.34) for a functional derivative of explicitly density-dependent functionals.

All calculations were performed in an appropriately modified development version

of the gaussian program [17]. In all occurrences, the Slater potential was obtained

by the finite-basis-set resolution-of-the-identity technique of Ref. 18 as described in

Ref. 19. Because this method is exact only in the complete basis set limit, large

uncontracted basis sets were used to minimize numerical errors [19]. In addition,
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the potential of Staroverov required special handling because it involves a highly

oscillatory gradient ∇τ from |∇k2
BJ|2. These oscillations are large enough to cause a

noticeable error in the potential and in the exchange energy. To reduce this error, we

used the prescription of Ref. 20 and set

|∇k2
BJ|2

k5
BJ

= 0 if r <
1

10Z
, (2.1)

where Z is the charge of the nucleus. This cutoff introduces only a negligible error

and would be unnecessary in codes employing Slater-type basis functions.

2.3.1 SCF convergence pattern

The self-consistent-field convergence test can be applied to any potential for which

one can easily obtain the energy. In the potential-driven approach to DFT, the parent

functional is not known, so the exchange-correlation contribution to the total energy

should be evaluated as a line integral. When a potential scales like Eq. (1.61), which

is the case for the Fermi–Amaldi potential and the exchange parts of the Umezawa

and van Leeuwen–Baerends models, the line integral along the Λ-path reduces to the

Levy–Perdew relation of Eq. (1.62). We used Levy–Perdew relation to compute the

energy from these and other (exact-exchange) model potentials. For consistency, we

initialized all SCF calculations with converged Hartree–Fock orbitals.

Fig. 2.1 shows typical SCF convergence patterns observed during an iterative so-

lution of the Kohn–Sham equations in which the exchange-correlation potentials are

functional derivatives. The total energy approaches the minimum strictly from above

and the convergence behavior is generally monotonic. We note that monotonicity is

not a requirement for a functional derivative. It is essential that the total energy is

never below its lowest (converged) value. Conversely, Fig. 2.2 shows that the total

energies obtained from the model potentials of van Leeuwen and Baerends, Umezawa,

Slater, Becke and Johnson oscillate during the convergence and at some points are

actually below the converged values. The SCF solutions obtained with these model

potentials do not appear to be excited states because all our attempts to obtain a

lower energy and tweak the SCF procedure into the same convergence behavior as in

Fig. 2.1 (by using different initial guesses, turning on and off the DIIS, applying level

shifting and other SCF convergence controls) have been unsuccessful. The dipping

below the minimum in each of the panels of Fig. 2.2 strongly suggests that the van

Leeuwen–Baerends, Umezawa, Slater, and Becke–Johnson potentials are stray.
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Figure 2.1: Convergence of the total energy during the iterative self-consistent-field
solution of the Kohn–Sham equations with the functional derivatives of the LDA, Gill,
Becke exchange functionals, and Fermi–Amaldi model potential. All calculations are
performed for a Mg atom in the cc-pVQZ basis set starting from the HF/cc-pVQZ
density. The direct inversion in the iterative subspace (DIIS) [21] is turned off. The
convergence pattern “from above” is consistent with the fact that the potentials are
functional derivatives.
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2.3.2 Path dependence of the line integral

As explained in Sec. 2.2.2, the line-integral test cannot be easily applied to orbital-

dependent models such as that of Slater, Becke–Johnson, etc. For this reason, we

shall use this test only with the Fermi–Amaldi, and the exchange parts of the van

Leeuwen–Baerends and Umezawa potentials.

First, let us write out general formulas for the line integrals along the Q-, Λ- and

Z-paths, which hold for all three potentials. For the Q-path, we have

EX,Q[ρ] =

∫
dr ρ(r)

∫ 1

0

dq vX([ρq]; r). (2.2)

Under the uniform scaling of the density, all the potentials tested transform as

Eq. (1.61), so the integral over the parameter λ in the expression

EX,Λ[ρ] =

∫
dr [3ρ(r) + r · ∇ρ(r)]

∫ 1

0

dλ

λ
vX

(
[ρλ];

r

λ

)
(2.3)

becomes the Levy–Perdew virial relation of Eq. (1.62). Finally, the line integral along

the Z-path can be written as

EX,Z[ρ] =

∫
dr
[
2ρ(r) +

r

3
· ∇ρ(r)

] ∫ 1

0

dζ vX

(
[ρζ ];

r

ζ1/3

)
, (2.4)

where the quantity vX([ρζ ]; ζ
−1/3r) means the original potential vX written in terms

of the density ζ2ρ(r).

Fermi–Amaldi potential has a simple dependence on the density ρ(r), so the inte-

grals over the scaling parameters in Eqs. (2.2) and (2.4) can be evaluated analytically.

Assuming that N is fixed, we get for the Q-path

EFA
X,Q[ρ] =

1

2

∫
ρ(r)vFA

X (r) dr (2.5)

and for the Z-path,

EFA
X,Z[ρ] =

3

7

∫ [
2ρ(r) +

r

3
· ∇ρ(r)

]
vFA

X (r) dr. (2.6)

We calculated these line integrals with the Fermi–Amaldi, van Leeuwen–Baerends,

and Umezawa potentials for several atoms and molecules. The results of our calcula-

tions are presented in Table 2.1. The line integrals evaluated with the Fermi–Amaldi

potential along different paths all have the same energy. This happens because the
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Å
,
θ(

H
O

H
)=

10
4.

51
◦ ;

N
H

3
,
r(

N
H

)=
1.

01
2

Å
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Å
.



39

Fermi–Amaldi potential is a functional derivative of the scaled electrostatic repulsion

energy functional. We note that if the number of electrons N in the denominator of

the Fermi–Amaldi potential is treated as a functional of the density rather then a con-

stant, then the potential is not a functional derivative and the line integral becomes

path-dependent.

For the Umezawa and van Leeuwen–Baerends potentials, the line integrals over

the scaling parameters q and ζ in Eqs. (2.2) and (2.4) do not lend themselves to

analytical evaluation but can be easily computed with one-dimensional quadratures

at every real-space grid point r. We have done so using 256-node Gauss–Legendre

quadratures [22]. The real-space integration was then completed using a tight gaus-

sian three-dimensional grid with 299 radial shells and 974 angular points per shell.

Table 2.1 shows that line integrals along Q-, Λ-, and Z-paths all yield different ex-

change energies for the van Leeuwen–Baerends and Umezawa potentials, and that

the difference between the values is significant. This suggests that these two model

potentials are stray.

We note that in the previously published assessments of the van Leeuwen–Baerends

and Umezawa potentials [10, 12, 23–25], the exchange energies were invariably ob-

tained by the Levy–Perdew virial relation which corresponds to our Λ-path, one of

many paths possible.

2.3.3 Virial energies from exact-exchange potentials

We apply this test only to approximate exact-exchange potentials of Slater, Becke–

Johnson, Staroverov, and to the ε-consistent model given by Eq. (1.55). For each

potential, we solve Kohn–Sham equations self-consistently and compare two values

of the exact-exchange-only total energy E: one in which EX is found via Eq. (1.47)

and the other in which EX is found via Eq. (1.62). The resulting total energies are

denoted by EEXX and Evirial, respectively.

Table 2.2 compares conventional and virial exact-exchange-only total energies of

14 selected atoms obtained using self-consistent potentials constructed in the univer-

sal Gaussian basis set (UGBS) of Ref. 26. The optimized effective potentials yield

almost identical energies when using the exact and the virial functionals. This is

an expected result because the OEP is a functional derivative of the exact-exchange

energy functional. The Slater potential is a zeroth-order approximation to the OEP,

and it gives the largest deviations of virial energies from the exact values. The virial

energies are too negative because the Slater potential is too deep in the energetically

important region near a nucleus [27].



40

T
ab

le
2.

2:
T

ot
al

en
er

gi
es

(i
n
E
h
)

co
m

p
u
te

d
u
si

n
g

va
ri

ou
s

se
lf

-c
on

si
st

en
t

m
o
d
el

ex
ch

an
ge

p
ot

en
ti

al
s

v
ia

th
e

co
n
ve

n
ti

on
al

ex
ac

t-
ex

ch
an

ge
en

er
gy

fu
n
ct

io
n
al

(E
E

X
X

)
an

d
th

e
v
ir

ia
l

re
la

ti
on

(E
v
ir

ia
l

=
E

E
X

X
+

∆
E

v
ir

ia
l)

fo
r

se
le

ct
ed

at
om

s.
C

al
cu

la
ti

on
s

u
se

th
e

U
G

B
S

b
as

is
se

t.

S
la

te
r

B
ec

ke
–J

oh
n
so

n
S
ta

ro
ve

ro
v

E
q
.

(1
.5

5)
O

E
P

a

A
to

m
s

E
E

X
X

∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

H
−

0.
50

00
0

0.
00

00
−

0.
50

00
0

0.
00

00
−

0.
50

00
0

0.
00

00
−

0.
50

00
0

0.
00

00
−

0.
50

00
0

0.
00

00
H

e
−

2.
86

16
8

0.
00

00
−

2.
86

09
4

0.
08

25
−

2.
86

09
6

0.
08

17
−

2.
86

16
8

0.
00

00
−

2.
86

16
8

0.
00

00
L

i
−

7.
42

69
0
−

0.
13

24
−

7.
43

13
0

0.
05

04
−

7.
42

74
0

0.
00

48
−

7.
43

24
4
−

0.
00

25
−

7.
43

24
9

0.
00

00
B

e
−

14
.5

61
41

−
0.

39
00

−
14
.5

71
68

0.
03

17
−

14
.5

67
10

−
0.

07
71

−
14
.5

72
31

−
0.

01
04

−
14
.5

72
43

−
0.

00
01

N
−

54
.3

75
89

−
1.

43
99

−
54
.3

99
26

0.
25

06
−

54
.3

98
54

0.
07

58
−

54
.4

03
08

0.
02

92
−

54
.4

03
39

0.
00

00
N

e
−

12
8.

50
07

−
3.

19
9
−

12
8.

53
58

0.
78

2
−

12
8.

53
99

0.
55

3
−

12
8.

54
49

0.
14

6
−

12
8.

54
54

0.
00

0
N

a
−

16
1.

79
38

−
3.

95
5
−

16
1.

84
89

0.
80

6
−

16
1.

85
07

0.
53

2
−

16
1.

85
60

0.
17

8
−

16
1.

85
66

0.
00

0
M

g
−

19
9.

53
30

−
4.

90
9
−

19
9.

60
57

0.
79

9
−

19
9.

60
67

0.
48

1
−

19
9.

61
08

0.
19

6
−

19
9.

61
16

0.
00

1
P

−
34

0.
62

24
−

7.
30

0
−

34
0.

71
10

0.
90

4
−

34
0.

71
19

0.
40

0
−

34
0.

71
40

0.
23

7
−

34
0.

71
50

−
0.

00
1

A
r

−
52

6.
70

30
−

10
.1

44
−

52
6.

80
89

1.
18

2
−

52
6.

81
01

0.
44

7
−

52
6.

81
08

0.
28

4
−

52
6.

81
21

−
0.

00
3

C
a

−
67

6.
60

62
−

12
.5

99
−

67
6.

74
84

1.
12

7
−

67
6.

74
77

0.
25

8
−

67
6.

75
02

0.
27

5
−

67
6.

75
20

0.
00

2
Z

n
−

17
77
.5

76
2
−

27
.7

64
−

17
77
.8

24
0

2.
13

0
−

17
77
.8

26
3

0.
90

5
−

17
77
.8

31
4

0.
97

7
−

17
77
.8

34
4

0.
00

1
K

r
−

27
51
.7

55
8
−

37
.8

04
−

27
52
.0

36
4

3.
12

9
−

27
52
.0

38
3

1.
54

6
−

27
52
.0

40
0

1.
50

2
−

27
52
.0

42
7

−
0.

00
8

C
d

−
54

64
.6

95
9
−

62
.8

23
−

54
65
.1

08
0

3.
61

8
−

54
65
.1

08
0

1.
19

4
−

54
65
.1

09
2

2.
19

3
−

54
65
.1

13
5

0.
00

4

m
.a

.v
.b

—
12
.3

19
—

1.
06

4
—

0.
46

8
—

0.
43

1
—

0.
00

1

a
O

pt
im

iz
ed

eff
ec

ti
ve

po
te

nt
ia

l
en

er
gi

es
ar

e
fr

om
R

ef
.

1.
b
M

ea
n

ab
so

lu
te

va
lu

e.



41

T
ab

le
2.

3:
S
am

e
as

T
ab

le
2.

2
b
u
t

fo
r

m
ol

ec
u
le

s.
C

al
cu

la
ti

on
s

u
se

th
e

co
m

p
le

te
ly

u
n
co

n
tr

ac
te

d
6-

31
1+

+
G

(3
df
,3
pd

)
b
as

is
se

t.

S
la

te
r

B
ec

ke
–J

oh
n
so

n
E

q
.

(1
.5

5)
O

E
P

a

M
ol

ec
u
le

sb
E

E
X

X
∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

E
E

X
X

∆
E

v
ir

ia
l

N
2

−
10

8.
89

95
0

−
3.

48
3

−
10

8.
97

32
9

0.
23

2
−

10
8.

97
47

0
0.

30
7

−
10

8.
97

74
4

−
0.

00
5

H
2
O

−
76
.0

11
37

−
2.

33
4

−
76
.0

51
17

0.
24

2
−

76
.0

55
94

0.
14

2
−

76
.0

57
13

−
0.

00
6

N
H

3
−

56
.1

73
99

−
1.

88
9

−
56
.2

12
85

−
0.

02
8

−
56
.2

15
79

0.
11

3
−

56
.2

16
91

−
0.

00
6

C
H

4
−

40
.1

71
61

−
1.

41
8

−
40
.2

07
89

−
0.

26
5

−
40
.2

09
07

0.
09

9
−

40
.2

10
05

0.
00

2
C

H
3

−
39
.5

39
99

−
1.

33
1

−
39
.5

71
50

−
0.

18
2

−
39
.5

74
07

0.
07

1
−

39
.5

74
89

−
0.

00
2

m
.a

.v
.

—
2.

09
1

—
0.

19
0

—
0.

14
6

—
0.

00
4

a
O

pt
im

iz
ed

eff
ec

ti
ve

po
te

nt
ia

l
en

er
gi

es
ar

e
fr

om
R

ef
.

1.
b
E

xp
er

im
en

ta
l

ge
om

et
ri

es
:

N
2
,
r(

N
N

)=
1.

09
76

9
Å
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The model of Becke and Johnson yields significantly smaller discrepancies between

EEXX and Evirial than the Slater potential. Nevertheless, the differences ∆Evirial are

still appreciable. Note that the Slater potential is exact for both the H and He atoms,

but vBJ
X (r) is exact only for the H atom. This is because the Becke–Johnson correction

term kBJ/2π reduces to a constant only for exponential one-electron spin-densities

which occur in the H atom but not in He (nor in H+
2 ).

The gradient-corrected potential of Staroverov is significantly closer to the OEP

potential than the approximation of Becke and Johnson. Still, it is exact only for

the H atom, but not for He. The ε-consistent model of Eq. (1.55) yields even smaller

energy differences and in addition, is exact for two-electron systems. This property

of the ε-consistent model comes from the Slater potential and is missing in both the

Becke–Johnson and Staroverov approximations.

Table 2.3 makes similar comparisons for molecules. Here, discrepancies between

EEXX and Evirial follow similar trends, although less systematically than in atoms,

possibly because the uncontracted 6-311++G(3df, 3pd) basis set used for molecules

is not large enough for accurate resolution of the identity. The Staroverov potential

is not included in this comparison because the oscillations from ∇τ near the nuclei

distort the results. Unfortunately, it is more difficult to remove the oscillations from

the molecules than from the individual atoms.

The results in this section indicate that the Slater, Becke–Johnson, Staroverov, and

the ε-consistent potentials are not functional derivatives of the exact-exchange energy

functional. As the quality of potentials increases from the Slater to the ε-consistent

model, the difference between the virial and the exact-exchange energy ∆Evirial de-

creases. This gradual improvement of the virial energies indicates that the model

potentials in the row Slater < Becke–Johnson < Staroverov < ε-consistent indeed

become closer to the functional derivative of the exact-exchange energy functional.

2.3.4 Exchange-correlation force and torque on the density

In applying the net zero-force and zero-torque tests it is necessary to keep in mind

that the integrals of Eqs. (1.99) and (1.100) may vanish by symmetry [7]. It is always

the case for atoms and symmetric molecules. In order to avoid false positives, the

integrals of Eqs. (1.99) and (1.100) should be evaluated using molecular densities,

preferably of low symmetry.

In Table 2.4, we compare the values of the net force and net torque for two

molecules: H2O, which belongs to the C2v group, and HSOH (oxadisulfane), which has

no high-order symmetry elements [28]. The zero-force test is failed by all potentials
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Table 2.4: Magnitudes of the net force and net torque vectors of Eqs. (1.99) and (1.100)
evaluated for various model potentials using the HF densities. Completely uncon-
tracted 6-311++G(3df, 3pd) basis set was used for fair comparison with the Slater
(vS

X) and Becke–Johnson (vBJ
X ) potentials constructed by the finite-basis-set resolu-

tion of the identity. The molecules are in the standard orientation as defined in the
gaussian [17] program.

Moleculea vLDA
X vFA

X vG96
X vU06

X vLB94
X vS

X vBJ
X

Net exchange force (in hartrees/bohr)
H2O (C2v) 0.0000 0.0000 0.0000 0.0755 0.0605 0.0256 0.0152
HSOH (C1) 0.0000 0.0000 0.0000 0.0565 0.1432 0.1337 0.0393

Net exchange torque (in hartrees/bohr)
H2O (C2v) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HSOH (C1) 0.0000 0.0000 0.0000 0.0830 0.0785 0.0498 0.0487

aGeometries: H2O, r(OH)=0.9575 Å, θ(HOH)=104.51◦; HSOH, equilibrium MP2/6-31G* geometry.

except vLDA
X , vFA

X , and vG96
X , which are functional derivatives. The zero-torque test

gives a false positive for all model potentials in the case of H2O molecule. The reason

is that H2O has two perpendicular mirror planes and the components of the vector

r×∇ρ(r) vanish by symmetry. When the asymmetric molecular density of HSOH is

used, the net torque vanishes only for the LDA, Fermi–Amaldi, and Gill potentials.

Based on our results, we conclude that the model potentials of van Leeuwen and

Baerends, Umezawa, Slater, and Becke and Johnson are not functional derivatives.

2.4 Conclusion

Model Kohn–Sham potentials are usually designed to have at least a few basic prop-

erties of the exact potential such as proper scaling behavior, atomic shell structure,

correct asymptotic decay, recovery of the gradient expansion to some order, and so

on. The property of being a functional derivative may be more difficult to impose but

it is actually very important for practical calculations with model potentials.

First, if a potential does not have a parent functional, then the energy assigned

to it by the van Leeuwen and Baerends line integral formula is path-dependent and,

therefore, ambiguous. Differences between energies evaluated along different inte-

gration paths may be as large as several hartrees. Next, stray potentials generate

spurious forces and torques on the density. Energies obtained from such potentials

are not invariant with respect to translation of the density and may depend on the
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orientation of the molecule. Finally, if the potential is not a functional derivative, the

Kohn–Sham equations do not represent a solution to any implied energy-minimization

problem. This is relevant to geometry optimizations, because the point where the en-

ergy gradient is zero will not coincide with the energy minimum [24].

In this work, we have selected three properties of functional derivatives that are

especially convenient for detecting stray potentials. Of these, the SCF convergence

test is the most straightforward but also the least rigorous because the “dipping below

the minimum” may indicate that the energy converges to an excited state, which is

a local minimum. The line-integral test is more reliable, but it can only be applied

to the potentials expressed exclusively in terms of the density. The virial-energy

test complements the line-integral test, but is useful only for approximations to the

exact-exchange potential. The zero-force and zero-torque tests appear to be the most

general and useful, because they are very easy to implement and can be applied to

any potential. Passing all our tests, however, is not sufficient to guarantee that the

trial potential is a functional derivative, although in practice a false positive would

be extremely unlikely.

Using these tests, we have demonstrated that the model potentials of van Leeuwen

and Baerends, Umezawa, Slater, Becke and Johnson, and Staroverov, as well as the

ε-consistent potential, are not functional derivatives. Some of these approximations,

namely, the Slater, Becke–Johnson, and van Leeuwen–Baerends potentials have been

identified as stray by other workers [2, 4, 24] prior to this study. Our results fully

support those conclusions.
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Chapter 3

Analytic structure of functional

derivatives

3.1 Introduction

An attractive alternative to development of density-functional approximations is to

model the exchange-correlation potential vXC without recourse to functional differ-

entiation [1–4]. This approach makes it easier to impart vXC with essential analytic

properties such as Coulombic (−1/r) asymptotic decay, shell structure, and deriva-

tive discontinuity [1, 5–9]. Unfortunately, potentials approximated directly are not

likely to be functional derivatives of some density functionals on their own accord,

which leads to numerous problems in density-functional calculations [3, 4]. To make

the potential-driven DFT a viable alternative to the functional-driven approach, one

needs to be able to directly construct integrable model potentials.

In this Chapter, we propose such a method based on direct examination of the

analytic structure of functional derivatives. We start by deriving a suitable ana-

lytic representation for functional derivatives of generalized gradient approximations

(GGA), the simplest class of semilocal density functionals. Using this expression we

demonstrate that the functional derivative of every GGA consists of a few simple

terms such that the knowledge of any one of these terms is usually sufficient to re-

construct the entire functional derivative. After presenting the working equations of

our method we illustrate their use by constructing a first integrable semilocal model

exchange potential.

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “Construction of
integrable model Kohn–Sham potentials by analysis of the structure of functional derivatives”, Phys.
Rev. A 83, 012509 (2011). Copyright 2011, American Physical Society.
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3.2 Methodology

3.2.1 Functional derivatives of GGAs

The term GGA refers to density-functional approximations of the form

F [ρ] =

∫
f(ρ, g) dr, (3.1)

where g is the norm of the density gradient,

g ≡ |∇ρ| = (ρ2
x + ρ2

y + ρ2
z)

1/2, (3.2)

in which ρx ≡ ∂ρ/∂x, ρy ≡ ∂ρ/∂y, and ρz ≡ ∂ρ/∂z. Functional derivatives of GGAs

can be evaluated using a standard formula of calculus of variations [10, 11], a special

case of Eq. (1.34) with no dependence on the Laplacian of the density ∇2ρ:

v(r) ≡ δF [ρ]

δρ(r)
=
∂f

∂ρ
−∇ ·

(
∂f

∂∇ρ

)
, (3.3)

where ∂f/∂∇ρ is a shorthand for a vector with the components ∂f/∂ρx, ∂f/∂ρy, and

∂f/∂ρz. Taken alone, Eq. (3.3) does not provide much insight into the structure of

functional derivatives. The scalar product of the operator ∇ and ∂f/∂∇ρ in Eq. (3.3)

needs to be evaluated for every particular functional, which makes this formula not

very convenient for practical applications.

Let us obtain a more revealing representation of v(r). Using the chain rule of

differentiation and the fact that ∂g/∂∇ρ = ∇ρ/g, we cast the second term of Eq. (3.3)

as

∇ ·
(
∂f

∂∇ρ

)
=

(
∇∂f
∂g

)
· ∇ρ
g
− ∂f

∂g

(
∇ · ∇ρ

g

)
. (3.4)

Further differentiation on the right-hand side yields

∇ ·
(
∂f

∂∇ρ

)
=

∂2f

∂ρ∂g
g +

∂2f

∂g2

∇ρ · ∇g
g

+
∂f

∂g

(
l

g
− ∇ρ · ∇g

g2

)
, (3.5)

where l ≡ ∇2ρ. Observe that the three Cartesian components of the vector ∇g ≡
(gx, gy, gz) can be written as gi = g−1

∑
j ρijρj, where i, j = x, y, z and ρij are the

components of the Hessian tensor of the density. This permits us to write

∇ρ · ∇g =
1

g

∑
ij

ρiρijρj =
w

g
, (3.6)
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where we define w as

w =
∑
ij

ρiρijρj (i, j = x, y, z). (3.7)

The quantity w is identical to the density-dependent function (∇ρ)†(∇∇†ρ)(∇ρ) dis-

cussed earlier by J̈emmer and Knowles [12–14]. Combining Eqs. (3.3)–(3.7), we write

the result as

v =
∂f

∂ρ
− ∂2f

∂ρ∂g
g − ∂f

∂g

l

g
+

(
∂f

∂g
− g∂

2f

∂g2

)
w

g3
. (3.8)

Note that this formula is given completely in terms of density-dependent ingredients

ρ, g, l, and w, and does not involve explicit differentiation with respect to the real-

space coordinates, so it is more practical than the original Eq. (3.3). We refer to the

quantities ρ, g, l, and w as the variables of functional derivatives of GGAs.

For the purpose of development of model Kohn–Sham potentials with the proper

scaling behavior, it is more convenient to use dimensionless derivatives of the density.

The dimensionless counterparts of g, l, and w are

s =
g

ρ4/3
, q =

l

ρ5/3
, u =

w

ρ13/3
. (3.9)

To obtain a formula similar to Eq. (3.8) for the functional

F [ρ] =

∫
f(ρ, s) dr, (3.10)

we use Eq. (3.9) and the following transformation rules

∂

∂ρ
→ ∂

∂ρ
+
∂s

∂ρ

∂

∂s
=

∂

∂ρ
− 4

3

s

ρ

∂

∂s
, (3.11)

∂

∂g
→ ∂s

∂g

∂

∂s
=
s

g

∂

∂s
. (3.12)

After some manipulations we arrive at the final result

v =
∂f

∂ρ
+

4

3

∂2f

∂s2

s2

ρ
− ∂2f

∂ρ∂s
s− ∂f

∂s

q

ρs
+

(
∂f

∂s
− s∂

2f

∂s2

)
u

ρs3
. (3.13)

Note that in this formula, the variables ρ and s are formally independent, and the

derivative of f with respect to ρ refers only to the explicit dependence of f on ρ. The

implicit dependence on ρ through s is taken into account by Eq. (3.11).

Expressions similar to Eqs. (3.8) and (3.13) have been derived earlier by other
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Figure 3.1: The four ingredients of functional derivatives of GGAs evaluated at the
HF/UGBS density of the Kr atom.

workers [1, 3, 15, 16] and used for analyzing the capabilities and limitations of

GGAs. In the present work, we emphasize a different perspective in which Eqs. (3.8)

and (3.13) are viewed as a means of constructing integrable model potentials.

3.2.2 Ingredients of functional derivatives of GGAs

Equation (3.13) tells us that the functional derivative of any GGA depends on at

most four ingredients: ρ, s, q, and u, and that the dependence on q and u is linear.

Figure 3.1 compares the plots of these quantities for the electron density of the Kr

atom computed by the Hartree–Fock (HF) method using the universal Gaussian basis

set (UGBS) of Ref. 17. In order to rationalize these plots we make use of the fact that

atomic densities are approximately piecewise exponential [18]. Consider a spherically

symmetric N -electron exponential density

ρ =
N

8π
a3e−ar. (3.14)

For this ρ it is straightforward to show that

s =

(
8π

N

)1/3

ear/3 = aρ−1/3, (3.15)
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q =

(
8π

N

)2/3(
1− 2

ar

)
e2ar/3 = s2 − 2s2

ar
, (3.16)

u =

(
8π

N

)4/3

e4ar/3 = s4. (3.17)

These equations reveal that the shell structure of exponential densities is transferred to

s, q, and u, and that the maxima of s, q, and u for such densities occur simultaneously

at the same values of r. Eqs. (3.14)–(3.17) also show that s, q, and u diverge at large

r because these quantities are proportional to negative powers of the density, and

that q diverges at the nucleus because it contains a term proportional to 1/r. One

can even estimate the value of s at the nucleus. In a many-electron atom, the density

near r = 0 is essentially two-electron exponential [19]. For N = 2, Eq. (3.15) gives

s(r = 0) = (4π)1/3 ≈ 2.325 regardless of the value of the exponent. This result is in

excellent agreement with Fig. 3.1.

It is appropriate to remark here that the dimensionless quantities q and u are more

well-behaved than their dimensional counterparts l and w. In particular, plots of l

and w (not shown here) would exhibit spurious oscillations near the nucleus which

are well-known artifacts of cuspless Gaussian-type basis functions [20, 21].

Equation (3.13) tells us that any model potential constructed only from ρ and s

is not a functional derivative. According to Eq. (3.13), the only way to avoid q- and

u-dependence of the potential is to have ∂f/∂s = 0, a requirement that no GGA can

satisfy by definition. However, dependence on u is not necessary. The potential v

does not involve u when

s
∂2f

∂s2
− ∂f

∂s
= 0. (3.18)

Integrating this equation twice, we find the energy-density function that satisfies this

condition:

f(ρ, s) = s2ε1(ρ) + ε2(ρ), (3.19)

where ε1(ρ) and ε2(ρ) are arbitrary functions of ρ. We conclude that the functional

derivative of a GGA does not depend on u only if the energy density is of the form of

Eq. (3.19). Functionals of this type include second-order density gradient expansions

for exchange and correlation, as well as the Thomas–Fermi–Weizsäcker kinetic energy

functional [11].



53

3.2.3 Analytic structure of functional derivatives of exchange

GGAs

Let us now focus on functional derivatives of GGAs for exchange. The energy-density

function f(ρ, s) of exchange functionals can be written as a sum of the local-density

approximation term and a gradient-dependent correction,

fX(ρ, s) = fLDA
X (ρ) + ρ4/3G(s), (3.20)

where fLDA
X (ρ) = −CXρ

4/3 with CX = (3/4) (3/π)1/3 [cf. Eq. (1.22)] and G(s) is

a function of the reduced density gradient s only. Such analytic form of energy

density ensures that the exchange energy has correct scaling behavior EX[ρλ] = λEX[ρ]

under the uniform transformation of the density of Eq. (1.60). Substituting f from

Eq. (3.20) into Eq. (3.13), we arrive at the following formula for functional derivatives

of exchange-only GGA functionals,

vX = vLDA
X + ρ1/3 [R(s) +Q(s)q + U(s)u] , (3.21)

where

vLDA
X =

∂fLDA
X

∂ρ
= −4

3
CXρ

1/3 (3.22)

and

R(s) =
4

3

(
d2G

ds2
s2 − dG

ds
s+G

)
, (3.23)

Q(s) = −1

s

dG

ds
, (3.24)

U(s) =
1

s3

(
dG

ds
− sd

2G

ds2

)
. (3.25)

These equations show that each of the functions R(s), Q(s), and U(s) uniquely de-

termines G(s) and, hence, the entire functional derivative vX. Let us elaborate.

Suppose that we know R(s). Then G(s) can be obtained by solving Eq. (3.23)

using the method described in sections 9.5 and 9.6 of Ref. 10. The general solution is

G(s) = s I0(s) ln s− s I1(s), (3.26)

where I0(s) and I1(s) are antiderivatives given by

In(s) =
3

4

∫
R(s)

s2
lnn s ds+ Cn, n = 0, 1, (3.27)
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and Cn are integration constants. Once R(s) is known, the components Q(s) and U(s)

of the functional derivative immediately follow from Eqs. (3.24) and (3.25). Similarly,

if we know the function Q(s), then G(s) is given by

G(s) = −
∫
sQ(s) ds+ C. (3.28)

Finally, if we start with the function U(s), then G(s) may be obtained by integrating

Eq. (3.25) using the method of section 9.2 of Ref. 10 to give

G(s) = −
∫ [

s

(∫
sU(s) ds+ C1

)]
ds+ C2. (3.29)

Thus, the problem of developing an integrable exchange potential reduces to con-

structing any of its components ρ1/3R(s), ρ1/3Q(s)q, or ρ1/3U(s)u. To devise such

functions, we need to know what they may look like. We take some clues from stan-

dard exchange GGAs. As an example, consider the functional derivative of Becke

(B88) [22], Perdew, Burke and Ernzerhof (PBE) [23], and Gill (G96) [24] exchange

functionals. Factors G(s) corresponding to these functionals are as follows:

GB88(s) = − bξs2

1 + 6bξs sinh−1(ξs)
, (3.30)

where b = 0.0042 and ξ = 21/3 is a factor which arises in the conversion to the

non-spin-polarized form;

GPBE(s) = − CXµs
2

1 + µs2/κ
, (3.31)

where µ = 0.21951/4(3π2)2/3 and κ = 0.804; and

GG96(s) = −γs3/2, (3.32)

where γ = 21/6/137.

We evaluated functional derivatives of the above functionals using Eq. (3.21) and

plotted their components in Fig. 3.2. The figure shows that distinct GGA exchange

potentials have very similar composition: The shell structure almost entirely comes

from the terms ρ1/3Q(s)q and ρ1/3U(s)u, whereas the term ρ1/3R(s) is relatively small.

Overall, the shape of the contributions to vX is very similar for different approxima-

tions.
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Figure 3.2: Decomposition of vX − vLDA
X , the semilocal part of functional derivatives

of the B88, PBE, and G96 exchange functionals. The components are defined by
Eqs. (3.21)–(3.25) and evaluated at the HF/UGBS density of a Kr atom.
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potential scaled by 0.06. All quantities are evaluated at the HF/UGBS density of a
Kr atom.

3.3 Application

It follows from our discussion that to develop an integrable model potential of the

GGA type, one needs to approximate any of the terms of vX identified in the previous

section. Let us take a closer look at the terms vLDA
X and ρ1/3R(s) of Eq. (3.21).

Their sum has the same analytic structure as the exchange part of the van Leeuwen–

Baerends model potential defined by Eq. (1.45). Our idea is to use the LB94 model to

construct an integrable potential vX. Observe that the semilocal part of LB94 must

be scaled by approximately 0.06 to be a valid representation of the ρ1/3R(s) term

(Fig. 3.3). But for now, let us use the unscaled LB94 potential.

Having identified the R(s) function as the gradient correction of the LB94 po-

tential, we use Eq. (3.26) to recover the function G(s) and then set C0 = C1 = 0.

Finally, we insert G(s) into Eqs. (3.24) and (3.25) to obtain Q(s) and U(s). This

leads to the following functional derivative, called fd-LB94, recovered from the stray

LB94 potential:

vfd-LB94
X = vLB94

X − ρ1/3

s

(
J0 ln s− J1 + J0

)
q +

ρ1/3

s3

(
J0 ln s− J1 − s

dJ0

ds

)
u, (3.33)
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where J0(s) and J1(s) are given by

Jn(s) = −3

4

∫ s

0

βξ lnn t

1 + 3βξt sinh−1(ξt)
dt, n = 0, 1. (3.34)

The corresponding energy functional is

Efd-LB94
X [ρ] = ELDA

X [ρ] +

∫
ρ4/3s [J0(s) ln s− J1(s)] dr. (3.35)

The fd-LB94 potential of Eq. (3.33) and the associated density functional of Eq. (3.35)

are unusual in that they involve nonelementary functions J0(s) and J1(s) defined by

Eq. (3.34). These functions do not pose any difficulty in numerical calculations and

may be readily evaluated using one-dimensional quadratures for every value of s. In

this paper, we computed the integrals Jn(s) using Gauss–Legendre quadratures with

100 nodes per integral. The added computational cost of these integrals is very small.

To verify that the fd-LB94 potential is indeed a functional derivative, we used

the zero-force and zero-torque tests discussed in Chapter 2. We calculated the net

exchange force
∫
vX(r)∇ρ(r) dr and torque

∫
vX(r)r×∇ρ(r) dr with the LB94 and fd-

LB94 potentials and found that the integrals vanish for asymmetric density of HSOH

molecule [25] for the fd-LB94, but not for the LB94 potential. This confirms that the

repaired potential is indeed a functional derivative (for details, see Sec. 2.3.4).

As seen in Fig. 3.4, the LB94 and fd-LB94 potentials differ considerably. Compared

to LB94, the fd-LB94 potential is too negative near the nucleus. Whereas the LB94

potential has an underdeveloped shell structure, the fd-LB94 potential exaggerates it.

In addition, the fd-LB94 potential has a singularity at r = 0 introduced through the

Laplacian-dependent term—a feature common to GGA-based potentials (see Fig. 3.2).

Also, although Fig. 3.4 does not show this, the LB94 potential decays asymptotically

as −1/r, whereas the fd-LB94 potential increases without bound as r → ∞. This

behavior hardly matters in practice because it occurs well outside the energetically

important region and is much slower than that of the G96 potential.

It is easy to see why the fd-LB94 potential is too negative and exaggerates the

shell structure. According to Fig. 3.3, the gradient correction in the LB94 is a valid

representation of the term ρ1/3R(s) of GGA potentials only when it is scaled down

roughly by a factor of 0.06. The fd-LB94 approximation, however, uses the unscaled

LB94 potential as a source. In other words, although the term ρ1/3R(s) in the fd-LB94

potential has a qualitatively correct shape, it is about an order of magnitude larger

than it should be. The possible remedies are (i) to scale down the semilocal part of
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Figure 3.4: Stray model potential LB94 and integrable model potentials fd-LB94
and fd-revLB94. The latter are given by Eq. (3.33) with β = 0.05 and β = 0.004,
respectively. All potentials are constructed using the HF/UGBS density of a Kr
atom. Fully self-consistent LB94 and fd-revLB94 potentials are not shown but are
very similar.

LB94 potential or (ii) to vary the empirical parameter β. We found that changing

β from 0.05 to 0.004 gives a realistic integrable potential. The functional derivative

recovered from the revised LB94 potential (revLB94), in which β = 0.004, is called

here fd-revLB94 and is depicted in Fig. 3.4. Its shape between r = 0 and 10 bohr is

very similar to that of the PBE and B88 potentials.

To extract exchange energies from our model potentials we employed the Levy–

Perdew virial relation [26] of Eq. (1.62). For the functional derivatives fd-LB94 and

fd-revLB94, the Levy–Perdew formula yields the same energy as the density functional

given by Eq. (3.35). As follows from Table 3.1, the fd-revLB94 potential predicts very

accurate exchange energies. The energies from fd-revLB94 are significantly closer to

the exact values than the LB94 results and are on par with other exchange functionals

such as PBE. The fd-LB94 energies are too low due to the reasons discussed above.

There is one property of the LB94 potential which has not been passed to the

fd-revLB94 model. The function R(s) of the LB94 model is such that the complete

functional derivative “grown” from it no longer has the −1/r decay. Conceivably, the

asymptotic behavior of fd-revLB94 might be improved by fine-tuning the integration

constants C0 and C1 appearing in Eq. (3.27).
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Table 3.1: Exchange energies obtained from the LB94, fd-LB94, fd-revLB94 po-
tentials, and the PBE functional. The fd-LB94 and fd-revLB94 are both given by
Eq. (3.33) with β = 0.05 and β = 0.004, respectively. All energies are evaluated
by the Levy–Perdew relation of Eq. (1.62) at the HF/UGBS densities. Fully self-
consistent values are not shown but are within 1.9% for LB94 and within 0.4% for
fd-revLB94.

EX (units of Eh)

Atom LB94 fd-LB94 fd-revLB94 PBE Exacta

He −0.9847 −2.4390 −1.0602 −1.0136 −1.0258
Be −2.6363 −5.9871 −2.7113 −2.6358 −2.6669
Ne −12.9909 −22.1584 −12.1579 −12.0667 −12.1083
Mg −17.2787 −28.4425 −15.9862 −15.9147 −15.9943
Ar −32.5402 −50.3845 −30.0590 −29.9960 −30.1850
Ca −38.2234 −58.0148 −35.0470 −35.0156 −35.2112
Zn −77.2639 −106.2587 −69.4627 −69.5280 −69.6413
Kr −103.7220 −138.9071 −93.3204 −93.4250 −93.8560

aHF/UGBS values.

3.4 Conclusion

We have shown that functional derivatives of generalized gradient approximations

have a strong inner structure which can be exploited for designing integrable model

Kohn–Sham potentials. We have identified several characteristic terms present in ev-

ery functional derivative of a GGA and derived the equations which relate these terms

to one another. Using these relations one can take any particular term and recon-

struct the entire functional derivative along with the associated density functional.

Existing model potentials such as LB94 may be used as sources of the component

ρ1/3R(s), but they need to be modified to ensure that the resulting approximation

yields accurate properties.

The method outlined in this Chapter represents a distinct approach to developing

density functional approximations via model Kohn–Sham potentials. It goes beyond

conventional GGA construction in the sense that it naturally leads to potentials and

functionals involving unconventional integral expressions such as those appearing in

Eq. (3.33). We expect that by putting the emphasis on the potential it should be easier

to incorporate into density-functional approximations the important exact constraints

such as the proper asymptotic behavior and the shell structure.
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Chapter 4

Integrability conditions for model

potentials

4.1 Introduction

Development of practical exchange-correlation potential approximations has long been

hindered by two methodological challenges: (i) how to obtain the energy from a Kohn–

Sham potential and (ii) how to ensure that a model potential actually corresponds to

some density functional. The first problem was addressed by the line integral method

of van Leeuwen and Baerends [1]. The second problem has not been tackled so far

in general (a special case of the exchange-only GGAs has been solved in Chapter 3),

but it cannot be ignored if one wants to use model potentials to calculate observable

physical properties. Given that a model potential is not likely to be integrable by

itself, one must find a way to impose this property as a constraint.

The basic condition of integrability for model potentials based on the symmetry

of second functional derivative was derived by Ou-Yang and Levy [2] and by van

Leeuwen and Baerends [1]:

δv([ρ]; r)

δρ(r′)
=
δv([ρ]; r′)

δρ(r)
. (4.1)

(For more detail, refer to Chapter 1.) Although this condition is both necessary

and sufficient, it is too general to be exploited as a constraint or even to serve as

a convenient test. Here we transform Eq. (4.1) into a set of convenient analytic

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “Explicit construction
of functional derivatives in potential-driven density-functional theory”, J. Chem. Phys. 133, 101104
(2010). Copyright 2010, American Institute of Physics.
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integrability conditions which enable one not only to identify, but also to construct

functional derivatives. This method complements and generalizes the approach of the

previous Chapter exploiting the structure of functional derivatives.

4.2 Methodology

In this section, we will obtain a practical equivalent of Eq. (4.1) in terms of second

differentials. Consider the second differential D2F [ρ, h, k] obtained in a similar way

to DF [ρ, h] of Eq. (1.23). For fixed ρ and h,

D2F [ρ, h, k] =

{
d

dt
DF [ρ+ tk, h]

}
t=0

(4.2)

where k(r) is an arbitrary normed function. The second differential is a bilinear

functional of h and k, so it may be written as [3]

D2F [ρ, h, k] =

∫
dr

∫
dr′K([ρ]; r, r′)h(r)k(r′). (4.3)

The kernel of this operator is called the second functional derivative of F [ρ], and it is

customary to write

K([ρ]; r, r′) ≡ δ2F

δρ(r)δρ(r′)
=
δv([ρ]; r)

δρ(r′)
. (4.4)

According to the condition (4.1), the proper kernel K([ρ]; r, r′) is symmetric in r

and r′. Referring to Eq. (4.3), this implies that the second differential D2F [ρ, h, k]

is symmetric in h and k. As we will see, this leads to an integrability condition

equivalent to Eq. (4.1).

Let us express the second differential of F [ρ] in Eq. (4.3) using the Gâteaux dif-

ferential of the potential v. The potential v([ρ]; r) is a functional of ρ at each point

r, so its first differential along an arbitrary direction k is given by

Dv([ρ, k]; r) =

{
d

dt
v([ρ+ tk]; r)

}
t=0

(4.5)

Let us rewrite Eq. (4.2) by casting the first Gâteaux differential in the form of

Eq. (1.24), moving the d/dt operator inside the integral, and invoking Eq. (4.5).

The result is

D2F [ρ, h, k] =

∫
Dv([ρ, k]; r)h(r) dr. (4.6)
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Relating this equality to the symmetric kernel condition, we see that for a trial po-

tential v([ρ]; r) to be integrable, it is necessary and sufficient that the right-hand side

of Eq. (4.6) be symmetric in h and k for every h, k, and ρ:∫
Dv([ρ, k]; r)h(r) dr =

∫
Dv([ρ, h]; r)k(r) dr. (4.7)

A complete formal proof of this result may be found in Ref. 4 as Theorem 5.1. Con-

dition (4.7) is equivalent to Eq. (4.1).

We thus have two alternative ways to check the integrability of a potential v([ρ]; r):

(i) directly through the symmetry of the kernel [Eq. (4.1)]; (ii) using the symmetry

condition on the second differential [Eq. (4.7)]. We will now show that the second

approach is more practical by applying these two methods to a simple case of explicitly

density-dependent potential v([ρ], r) of the form

v = v(ρ,∇ρ,∇2ρ). (4.8)

4.2.1 Integrability from the symmetry of the kernel

Let us evaluate both sides of Eq. (4.1) using the Dirac delta function δ(r − r′) as

prescribed by Eq. (1.31). For the left-hand side δv([ρ]; r)/δρ(r′) we have

δv([ρ], r)

δρ(r′)
= Dv([ρ, δ]; r). (4.9)

With the particular choice of density-dependent ingredients of v given by Eq. (4.8),

the differential Dv([ρ, δ]; r) can be computed simply as the differential of a function,

Dv([ρ, δ]; r) =

{
d

dt
v
(
ρ(r)+ tδ(r−r′),∇ρ(r)+ t∇δ(r−r′),∇2ρ(r)+ t∇2δ(r−r′)

)}
t=0

(4.10)

where all the gradients ∇ are with respect to r. Taking the derivative d/dt and setting

t = 0, we obtain the left-hand side of Eq. (4.1):

δv([ρ], r)

δρ(r′)
=
∂v

∂ρ
(r)δ(r− r′) +

∂v

∂∇ρ
(r)∇rδ(r− r′) +

∂v

∂∇2ρ
(r)∇2

rδ(r− r′). (4.11)

The right-hand side of Eq. (4.1) has all the variables r and r′ interchanged:

δv([ρ], r′)

δρ(r)
=
∂v

∂ρ
(r′)δ(r′ − r) +

∂v

∂∇ρ
(r′)∇r′δ(r′ − r) +

∂v

∂∇2ρ
(r′)∇2

r′δ(r′ − r). (4.12)
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Let us simplify these expressions before attempting to compare them. We introduce

shorthand notation P ≡ ∂v/∂ρ, G ≡ ∂v/∂∇ρ, and L ≡ ∂v/∂∇2ρ. We also change the

arguments of delta functions in Eq. (4.11) from (r− r′) to (r′ − r) using Eqs. (A.15)

and (A.17) from Appendix A, and change the variables of differentiation in Eq. (4.12)

from r′ to r using Eq. (A.18) from the same Appendix. The result is

δv([ρ], r)

δρ(r′)
= P (r)δ(r′ − r) +G(r)∇δ(r′ − r) + L(r)∇2δ(r′ − r), (4.13)

δv([ρ]; r′)

δρ(r)
= P (r′)δ(r′ − r)−G(r′)∇δ(r′ − r) + L(r′)∇2δ(r′ − r), (4.14)

where the subscripts r in ∇ are suppressed for brevity. Taking the difference of the

two functional derivatives, we obtain

δv([ρ]; r)

δρ(r′)
− δv([ρ]; r′)

δρ(r)
= [G(r) +G(r′)]∇δ(r′− r) + [L(r)− L(r′)]∇2δ(r′− r). (4.15)

To evaluate this expression, we multiply it by an arbitrary function f(r′) and integrate

over r′. The right-hand side of the identity above becomes∫
[G(r) +G(r′)]∇δ(r′ − r)f(r′)dr′ +

∫
[L(r)− L(r′)]∇2δ(r′ − r)f(r′) dr′. (4.16)

Observe that functions G(r) and L(r), as well as the operators ∇ may be moved

outside the integrals. With this, the last equation can be easily evaluated using the

definition of the delta function. Switching back to the explicit expressions instead of

P , G and L, we obtain

∂v

∂∇ρ
∇f +∇

(
∂v

∂∇ρ
f

)
+

∂v

∂∇2ρ
∇2f −∇2

(
∂v

∂∇2ρ
f

)
. (4.17)

Expanding this equation and canceling out identical terms yields

2

[
∂v

∂∇ρ
−∇

(
∂v

∂∇2ρ

)]
∇f +

[
∇
(
∂v

∂∇ρ

)
−∇2

(
∂v

∂∇2ρ

)]
f. (4.18)

For the kernel of Eq. (4.1) to be symmetric with respect to r and r′, the expression

above needs to vanish. This is possible for an arbitrary f(r) only when

∂v

∂∇ρ
= ∇ ∂v

∂∇2ρ
. (4.19)
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We have a strong result: a trial potential of the type (4.8) is a functional derivative if

and only if it satisfies Eq. (4.19). In particular, this implies that any model potential

that depends on ρ and ∇ρ, but not on ∇2ρ, is stray. We obtained this result in a

different way in Chapter 3. The derivation here is more general and robust, because

it is valid for any potential involving ρ, ∇ρ and ∇2ρ.

4.2.2 Integrability from the symmetry of second differential

Let us evaluate the second differential with the potential v. Using Eq. (4.5), the

left-hand side of Eq. (4.7) for v is∫ (
∂v

∂ρ
k +

∂v

∂∇ρ
· ∇k +

∂v

∂∇2ρ
∇2k

)
h dr. (4.20)

We integrate the last term of this expression by parts. Since ρ, h, k are normed

(vanish at infinity), we get∫ [
∂v

∂ρ
hk +

(
∂v

∂∇ρ
−∇ ∂v

∂∇2ρ

)
· h∇k − ∂v

∂∇2ρ
∇h · ∇k

]
dr. (4.21)

We now interchange the functions h and k in Eq. (4.21) and subtract the result from

the original integral. According to Eq. (4.7), v is a functional derivative only if the

difference is zero for every acceptable h, k, and ρ,∫ (
∂v

∂∇ρ
−∇ ∂v

∂∇2ρ

)
· (h∇k − k∇h) dr = 0. (4.22)

By the fundamental lemma of the calculus of variations, the latter is possible only if

Eq. (4.19) is true.

The present derivation yields the same result as the direct evaluation of Eq. (4.1)

discussed in the previous section, but is much simpler. We will now use the approach

described here to derive integrability conditions for a broader class of model potentials.

4.3 Analytic integrability conditions

Consider a formal expression of the type

v = v(ρ, {ρi}, {ρij}), (4.23)
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where ρi ≡ ∂iρ and ρij ≡ ∂i∂jρ, in which the operator ∂i stands for differentiation

with respect to the ith Cartesian real-space coordinate (i = x, y, z). To simplify

our derivation, we will treat ρij and ρji as distinct variables. The left-hand side of

Eq. (4.7) in this case is∫ (
∂v

∂ρ
k +

∑
i

∂v

∂ρi
ki +

∑
i

∑
j

∂v

∂ρij
kij

)
h dr, (4.24)

where ki ≡ ∂ik and kij ≡ ∂i∂jk. Integrating by parts each term containing kij with

respect to j we obtain∫ {
∂v

∂ρ
hk +

∑
i

∂v

∂ρi
hki −

∑
i

∑
j

[
∂j

(
∂v

∂ρij

)
hki +

∂v

∂ρij
hjki

]}
dr. (4.25)

This integral is symmetric in h and k only if

∂v

∂ρi
−
∑
j

∂j

(
∂v

∂ρij

)
= 0. (4.26)

The system of equations (4.26) is the general integrability condition for expressions

of the type (4.23).

Of course, physical density-functional approximations and Kohn–Sham potentials

depend on ρi and ρij only through their rotation-invariant combinations. Consider,

for example, potentials associated with generalized-gradient approximations. The

functional derivative of a GGA was computed in Sec. 3.2.1 and is given by Eq. (3.8).

It involves four rotation-invariant variables: ρ, g, l, and w. Therefore, we can express

the partial derivatives of v in Eq. (4.26) in terms of these variables to obtain the

following integrability condition

∂v

∂g

∇ρ
g
− ∂v

∂w
(l∇ρ− g∇g) = ∇∂v

∂l
+

(
∇ ∂v
∂w
· ∇ρ

)
∇ρ. (4.27)

This condition may be applied to any analytic expression involving no variables other

than ρ, g, l, w, and is always satisfied by the functional derivative of a GGA.

Let us look closer at GGA potentials. According to Eq. (3.8), derivatives ∂v/∂l
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and ∂v/∂w in Eq. (4.27) do not depend on either l or w, so we may write

∇∂v
∂l

=
∂2v

∂ρ∂l
∇ρ+

∂2v

∂g∂l
∇g, (4.28)

∇ ∂v
∂w

=
∂2v

∂ρ∂w
∇ρ+

∂2v

∂g∂w
∇g. (4.29)

If we substitute these expressions into Eq. (4.27), we can cast the result in the form

P∇ρ = G∇g, where P and G are scalar functions. This condition must hold pointwise

for every ρ. However, since the vectors ∇g and ∇ρ are related through a tensor

(gi = g−1
∑

j ρijρj), they cannot in general be scalar multiples of each other at every

r. Therefore, in order for the condition P∇ρ = G∇g to be satisfied at every r, both

P and G must vanish, that is,
1

g

∂v

∂g
− l ∂v

∂w
− ∂2v

∂ρ∂l
− g2 ∂2v

∂ρ∂w
− w

g

∂2v

∂g∂w
= 0,

g
∂v

∂w
− ∂2v

∂g∂l
= 0.

(4.30)

Integrability conditions such as Eq. (4.30) are entirely in the (ρ, g, l, w)-space and so

are very convenient for constructing functional derivatives in the following manner.

4.4 Direct construction of integrable potentials

Suppose we have an expression of the type v0(ρ, g). Expressions that depend on g,

but not on l or w, do not satisfy Eq. (4.30) and hence are stray. Let us assume that v0

can be made a functional derivative of some GGA by introducing linear dependence

on l and w. We write

v(ρ, g, l, w) = v0(ρ, g) +X(ρ, g)l + Y (ρ, g)w, (4.31)

where X and Y are unknown functions to be determined from the requirement that

v be integrable. Substitution of Eq. (4.31) into Eq. (4.30) yields a system of two

equations 
1

g

∂v0

∂g
− ∂

∂ρ

(
X + g2Y

)
= 0,

gY − ∂X

∂g
= 0.

(4.32)
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We integrate the first of these equations with respect to ρ and use the second equation

to write the result as

g
∂X

∂g
+X =

1

g

∫ ρ ∂v0

∂g
dρ+ C1(g), (4.33)

where C1(g) is an arbitrary function of proper dimensionality. The general solution

of Eq. (4.33), obtained by the method of section 9.2 in Ref. 5, is

X =
1

g

∫ g (1

g

∫ ρ ∂v0

∂g
dρ

)
dg +

1

g

[∫ g

C1(g) dg + C2(ρ)

]
, (4.34)

where C2(ρ) is another arbitrary function of appropriate dimensionality. Once X

is obtained from v0 by Eq. (4.34), Y may be found by the second equation of the

system (4.32). Let us illustrate this with specific examples.

As a warm-up, consider the expression v0 = g2/8ρ2 which is clearly not a functional

derivative. If we assume that v0 is an incomplete functional derivative of a GGA,

Eq. (4.34) yields X = −1/4ρ + g−1
[∫ g

C1(g) dg + C2(ρ)
]
. Setting C1 = C2 = 0 in

this solution, so that Y = 0, we obtain the expression

v =
1

8

g2

ρ2
− 1

4

l

ρ
. (4.35)

One may instantly recognize in this result the functional derivative of
∫

(g2/8ρ) dr,

the Weizsäcker gradient correction to the Thomas–Fermi kinetic-energy functional.

Our second example involves the expression v0 = g/ρ briefly discussed in Sec. 1.4.3.

In this case Eq. (4.34) gives X = g−1
[
(ln ρ) ln g +

∫ g
C1(g) dg + C2(ρ)

]
. Choosing

C1 = C2 = 0, we obtain Y = −g−3 [(ln ρ) ln g − ln ρ]. Thus, a functional derivative

“grown” from v0 = g/ρ is

v =
g

ρ
+
l

g
ln ρ ln g − w

g3
(ln ρ ln g − ln ρ) . (4.36)

Model Kohn–Sham potentials for exchange and correlation are usually developed

in terms of ρ and dimensionless counterparts of the variables g, l, w given by Eq. (3.9).

It is straightforward to show that with the dimensionless variables s, q and u, and
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under the assumption that v is linear in q and u, Eq. (4.30) becomes
1

s

∂v

∂s
+

5

3

∂v

∂q
+
∂v

∂u

(
17

3
s2 − q

)
− ρ ∂

2v

∂ρ∂q
− s2ρ

∂2v

∂ρ∂u
+

∂2v

∂s∂u

(
4

3
s3 − u

s

)
= 0,

s
∂v

∂u
− ∂2v

∂s∂q
= 0.

(4.37)

Let us now show how one can design integrable exchange potentials using the vari-

ables ρ, s, q, and u. Exchange potentials are homogeneous of degree one [Eq. (1.61)]

under the uniform density scaling of Eq. (1.60), which implies that v ∼ ρ1/3. From

Eq. (3.8) we also know that if v descends from a GGA, it must be linear in q and u.

The general form of v that satisfies these requirements is

v(ρ, s, q, u) = ρ1/3 [R(s) +Q(s)q + U(s)u] , (4.38)

where the functions R, Q, U are at our disposal. Note that this formula is equivalent

to Eq. (3.21) that we derived in Chapter 3. Suppose the function R is known. To find

Q and U we insert Eq. (4.38) into Eq. (4.37) and get
1

s

dR

ds
+

4

3
Q+

16

3
s2U +

4

3
s3dU

ds
= 0,

U − 1

s

dQ

ds
= 0.

(4.39)

Substitution of the second equation into the first yields

s2d
2Q

ds2
+ 3s

dQ

ds
+Q = − 3

4s

dR

ds
. (4.40)

Integrating Eq. (4.40) as explained in sections 9.5 and 9.6 of Ref. 5 we write the

general solution as

Q(s) = −1

s
[c1 + c2 ln s− I1(s) + (ln s+ 1)I0(s)] , (4.41)

where c1 and c2 are integration constants and

In(s) =
3

4

∫ s R(s)

s2
lnn s ds, n = 0, 1. (4.42)



72

The function U is then found from Eq. (4.39) to be

U(s) =
1

s3

[
c1 − c2 + c2 ln s− I1(s) + I0(s) ln s− 3

4

R(s)

s

]
. (4.43)

The constants c1 and c2 may be employed to satisfy known exact constraints. For

instance, to recover the correct second-order gradient expansion of the exact exchange

potential [6], one should choose c1 = c2 = 0.

4.5 Conclusion

The general strategy for developing integrable model Kohn–Sham potentials that

emerges from this work is as follows: (i) choose a set of explicitly density-dependent

ingredients of the approximation (ρ, ∇ρ, ∇2ρ, . . .) and use Eq. (4.7) to derive the

corresponding integrability conditions; (ii) assume some general analytic form of v and

construct one term; (iii) use the integrability conditions to derive the other terms. In

particular, for exchange potentials of the GGA type, one can start with the function

R(s) and then use Eqs. (4.41)–(4.43) to obtain Q(s) and U(s).

In Chapter 3 we proposed a method for developing integrable Kohn–Sham poten-

tials by analyzing the structure of functional derivatives. Integrability conditions pro-

vide an equivalent solution to this problem. For example, we could apply Eqs. (4.41)

and (4.43) to the model potential of van Leeuwen and Baerends [7] and construct

the fd-LB94 and fd-revLB94 approximations discussed in that Chapter. Unlike the

approach proposed before, the integrability conditions involve only the derivatives of

the potential and, formally, at no point use the functional explicitly.

Clearly, when designing integrable model potentials one implicitly designs den-

sity functionals. This raises the question of whether approximating potentials makes

possible anything that is not afforded by approximating functionals. Our answer

is yes because working in terms of integrable potentials is equivalent to working in

terms of energy expressions containing integrals such as Eq. (4.42) which may not

be expressible in elementary functions but clearly go beyond conventional forms of

density-functional approximations.
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Chapter 5

Energy functionals based on model

Kohn–Sham potentials

5.1 Introduction

When the Kohn–Sham potential is approximated directly, there arises the question

of finding the energy corresponding to that potential. The usual way to assign an

energy to model exchange potentials is via the Levy–Perdew virial relation given by

Eq. (1.62) [1, 2]. The problem with this approach, clearly recognized before us [3–5], is

that the functional EX[ρ] constructed from vX([ρ]; r) is not assured to be translation-

ally and rotationally invariant. (For an explanation refer to Sec. 1.4.4.) The energies

assigned to stray potentials by the Levy–Perdew relation are position-dependent. No

such problems exist for integrable potentials that originate from some density func-

tional. This means that the Levy–Perdew virial relation is an acceptable way to

assign energies only to integrable exchange potentials. Almost all model potentials

existing today are stray (Chapter 2). This calls for a method that yields properly

invariant energy expressions from arbitrary potentials. The aim of this Chapter is

to propose such a method. As an example, we construct a competitively accurate

density functional from the model potential of van Leeuwen and Baerends [3].

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “A generalized gra-
dient approximation for exchange derived from the model potential of van Leeuwen and Baerends”,
J. Chem. Phys. 136, 064116 (2012). Copyright 2012, American Institute of Physics.
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5.2 Methodology

Our starting point is to realize that the Levy–Perdew relation is not the only way to go

from potentials to the functionals. In fact, it is a special case of a more general method

based on the line integrals [6, 7] which was discussed in Chapter 1. According to this

method, a density functional can be obtained from the potential vXC([ρ]; r) by taking

an integral given by Eq. (1.58) along a line (path) of a parametrized density ρt(r).

If vXC([ρ]; r) is a true functional derivative of some EXC[ρ], then Eq. (1.58) recovers

the parent functional in one of its equivalent forms [8], and functional differentiation

of that functional returns vXC([ρ]; r). But if vXC([ρ]; r) is stray, its parent functional

does not exist and Eq. (1.58) predicts different energy values for different paths.

Nevertheless, one can lend a meaning to this unphysical result by saying that the line

integral of a stray potential taken along a particular path ρt(r) defines a new energy

functional. Of course, functional differentiation of any functional constructed in this

manner will not recover the original stray potential.

Any “reasonable” parametrization of the density can be used with Eq. (1.58), such

as scaling [7, 8], spatial redistribution of ρ(r) [7] or even filling the density electron-

by-electron in accordance with the Aufbau principle [9]. From a practical point of

view, a convenient choice of parametrization is density scaling. A number of scaling

transformations has been discussed in the literature [10–17]. The most well-known of

them is, perhaps, the uniform density scaling [10, 11] of Eq. (1.60), termed the Λ-path

in Sec. 1.4.2. Here, we write it with the scaling parameter t instead of λ,

ρt(r) = t3ρ(tr), 0 ≤ t ≤ 1. (5.1)

Application of this path to Eq. (1.58) yields

EXC[ρ] =

∫
dr [3ρ(r) + r · ∇ρ(r)]

∫ 1

0

dt

t
vXC

(
[ρt];

r

t

)
. (5.2)

In the particular case of exchange potentials, this line integral becomes the Levy–

Perdew relation of Eq. (1.62). Note that it is the coordinate scaling that is responsible

for the presence of r in Eq. (1.62), and ultimately, for the lack of translational and

rotational invariance of Levy–Perdew relation when applied to stray model potentials.

Consider now the density scaling [13, 14] of Eq. (1.59) called the Q-path in

Sec. 1.4.2. We rewrite it here as

ρt(r) = tρ(r), 0 ≤ t ≤ 1. (5.3)
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The energy expression corresponding to this path is

EXC[ρ] =

∫
dr ρ(r)

∫ 1

0

dt vXC([ρt]; r). (5.4)

This functional does not depend on the position vector r explicitly, so it is transla-

tionally and rotationally invariant as long as vXC([ρ]; r) is itself invariant. Our idea is

to assign energies to model potentials using Eq. (5.4) rather than Eq. (5.2). Note that

if vXC([ρ]; r) is a functional derivative, then the functional of Eq. (5.4) is equivalent

to the functional of Eq. (5.2) up to a gauge transformation of the energy density. For

a stray potential, the functionals of Eq. (5.2) and (5.4) are different.

5.3 Application

5.3.1 Λ-LB94 and Q-LB94 functionals

To put our idea to practice, we chose a model potential of van Leeuwen and Baerends

[3], a gradient-dependent approximation designed to mimic the Coulombic (−1/r)

asymptotic behavior of the exact potential. The exchange-like part of the LB94

potential is given by Eq. (1.45). Let us rewrite it as

vLB94
X = vLDA

X − ρ1/3G(s), (5.5)

where vLDA
X is the local density approximation for exchange given by Eq. (1.29) and

G(s) =
βξs2

1 + 3βξs sinh−1(ξs)
. (5.6)

Recall that β = 0.05 is an empirical parameter, ξ = 21/3 is a factor arising in transition

to the spin-unpolarized form, and s is the dimensionless reduced density gradient of

Eq. (3.9).

Consider now two exchange functionals constructed from the LB94 as line inte-

grals. The first functional, which we call Λ-LB94, is obtained by integrating the LB94

along the Λ-path, that is, by Eq. (5.2). It is defined as

EΛ-LB94
X [ρ] =

∫
vLB94

X ([ρ]; r)(3ρ+ r · ∇ρ) dr, (5.7)
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or, equivalently,

EΛ-LB94
X [ρ] = ELDA

X [ρ]−
∫
ρ1/3G(s)(3ρ+ r · ∇ρ) dr. (5.8)

The second functional, called Q-LB94, is obtained by integrating the LB94 potential

along the Q-path, that is, by Eq. (5.4). We write that functional as

EQ-LB94
X [ρ] = ELDA

X [ρ]−
∫
ρ4/3Q(s) dr, where (5.9)

Q(s) = βξs2

1∫
0

dt

t1/3 + 3βξs sinh−1(t−1/3ξs)
. (5.10)

The LB94 potential is not a functional derivative, so the functionals of Eqs. (5.8)

and (5.9) yield different energy values (Chapter 2).

To obtain the functional derivative of the Λ-LB94 functional, we use Eq. (B.20)

derived in the Appendix B. The result is

vΛ-LB94
X = vLB94

X − ρ1/3

[
4

3

d2G

ds2

s2

ρ
− 5

3

dG

ds

s

ρ
− dG

ds

q

ρs
+

(
dG

ds
− d2G

ds2
s

)
u

ρs3

]
× (3ρ+ r · ∇ρ) + 2ρ1/3dG

ds
r · ∇s, (5.11)

where G(s) is given by Eq. (5.6), and q and u are density-dependent variables defined

in Eq. (3.9). Note that vΛ-LB94
X turns out to be the original LB94 plus a correction.

This correction completes stray LB94 to a functional derivative, so that LB94 and

Λ-LB94 yield the same energy via the Levy–Perdew relation:∫
vLB94

X (3ρ+ r · ∇ρ) dr =

∫
vΛ-LB94

X (3ρ+ r · ∇ρ) dr,

the result which we verified numerically.

The functional derivative of the Q-LB94 functional can be obtained using

Eqs. (3.20)–(3.25). Explicitly,

vQ-LB94
X = vLDA

X − ρ1/3

[
4

3

(
d2Q

ds2
s2 − dQ

ds
s+Q

)
− dQ

ds

q

s
+

(
dQ

ds
− sd

2Q

ds2

)
u

s3

]
,

(5.12)

where Q(s) is given by Eq. (5.10).

We implemented the functionals of Eqs. (5.8) and (5.9) in the development version

of the gaussian program [18]. To evaluate the function Q(s) and its derivatives we
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Figure 5.1: Exchange part of the LB94 potential and functional derivatives of the
Λ-LB94 and Q-LB94 exchange functionals. The potentials are evaluated using
HF/UGBS density of the Kr atom.

used the 256-point Gauss-Legendre quadrature formula [19]. The large number of

points was chosen to ensure an accuracy of at least 10−5 Eh in the total energy.

Figure 5.1 compares the functional derivatives of Λ-LB94 and Q-LB94 function-

als to the original LB94 potential. All three curves here are clearly different, which

reflects the fact that LB94 is not a functional derivative. The Λ-LB94 has a pro-

nounced oscillatory behavior, which might explain why the self-consistent-field (SCF)

procedure with this potential was difficult to converge. Both Λ-LB94 and Q-LB94

are singular at the nucleus, a feature that is common to functional derivatives of

generalized gradient approximations (cf. Fig. 3.2).

To test translational properties of the Λ-LB94 and Q-LB94 functionals, we calcu-

lated the total energy of an H2O molecule in two different positions relative to the

coordinate axes. The results are reported in Table 5.1. This test shows that the

Λ-LB94 functional is not translationally invariant, but the Q-LB94 functional is. The

difference between the Λ-LB94 energies for the initial and the displaced positions in

Table 5.1 is precisely equal to

∆E = R ·
∫
vLB94

X (r)∇ρ(r) dr, (5.13)

in agreement with Eq. (1.97).

To get an idea of the accuracy of the Λ-LB94 and Q-LB94 functionals we compared

the above values to the HF/cc-pVQZ energy, which is a good approximation to the
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Table 5.1: Tests of translational invariance of the Λ-LB94 and Q-LB94 functionals.
All energies are evaluated using the cc-pVQZ basis set at the HF/cc-pVQZ density of
the H2O molecule. Symmetry was disabled with the NoSymm keyword.

Total energy (Eh)

Position Λ-LB94 Q-LB94 HF

Initiala -76.45904 -79.48049 -76.06374
Displacedb -75.92645 -79.48049 -76.06374

aInitial position: the oxygen is at (0, 0, 0); the hydrogens are at (0,±0.763208,−0.596582) Å.
bDisplaced position: the molecule is translated by −R, where R = (0, 0, 5) Å.

exact exchange-only value. As seen from Table 5.1, the Λ-LB94 energy evaluated at

the initial position is quite reasonable, but varies at a rate of about 0.1 Eh/Å as the

molecule is moved. The Q-LB94 energy of H2O is already too low by 3.4 Eh.

This leads us to a choice: Q-LB94 functional is invariant with respect to molecular

orientation but yields the energies that are too low. The Λ-LB94 functional is reason-

ably accurate but has problems with molecular translations and an unphysical behav-

ior of functional derivative. An attempt to solve the problem of position-dependence

was made by Kurzweil and Head-Gordon [5], who imposed the zero-force [Eq. (1.99)]

and zero-torque [Eq. (1.100)] conditions on model potentials (which, in turn, make

Levy–Perdew energies invariant with respect to translation and rotation). We will

show that instead of trying to salvage the Λ-LB94 energy expression it is easier to

repair the Q-LB94 functional.

5.3.2 Refinement of the Q-LB94 functional

To understand why the Q-LB94 functional gives unphysically low energies, let us

consider its behavior in the uniform-gas limit, s→ 0. The Q-LB94 functional belongs

to a class of GGAs for exchange. It is well known [20] that in the s→ 0 limit, GGAs

reduce to density-gradient expansion (DGE),

EX[ρ] = ELDA
X [ρ]− γ

∫
ρ4/3s2 dr + . . . , (5.14)

where γ is a parameter. The non-empirical value of γ that makes Eq. (5.14) exact for

a slowly varying electron gas is γDGE = (10/81)[3/16π(3π2)1/3] ≈ 0.0023817 [21]. In

order for a GGA to be accurate for atoms and molecules, Perdew and coworkers [16]

demonstrated that the parameter γ must be approximately twice as large, γ ≈ 2γDGE.
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For example, the Perdew–Burke–Ernzerhof GGA [22] has γ = 0.0042348, while the

Becke exchange GGA [23] has γ = 0.0052917.

We will now show that the Q-LB94 functional recovers the DGE up to the second

order but its coefficient γ is very different from the exact result. In the limit of small

s, the function Q(s) of Eq. (5.10) becomes

Q(s) =
3

22/3
βs2 + . . . (s→ 0). (5.15)

It has the desired quadratic behavior in s, but the second-order gradient expansion

coefficient of the Q-LB94 is γ = 3β/22/3 ≈ 0.094494, a value 40 times greater than

γDGE! Since γ is too high, the function Q(s) is too large, and the energies are too low.

Physically, there is no reason why the value of β in the Q-LB94 functional should

be the same as in the original LB94 potential. First, the LB94 potential is not the

functional derivative of the Q-LB94 functional. Second, the value of β in the LB94

potential is an empirical parameter that was fitted to reproduce the correct shape of

the exchange-correlation potential, not accurate energies. The argument of Perdew

and coworkers [16] applied to Eq. (5.15) suggests that, in order to make the Q-LB94

functional accurate for chemically relevant systems, we should revise the value of β

from 0.05 to

βrev =
22/3

3
(2γDGE) ≈ 0.0025. (5.16)

We call the functional utilizing the updated value of β Q-revLB94. To be clear,

the Q-revLB94 functional is given by the same Eq. (5.9) as the Q-LB94, but uses

βrev = 0.0025 instead of β = 0.05.

5.3.3 Performance of the Q-revLB94 functional

Table 5.2 compares the total energies computed using Λ-LB94, Q-LB94, Q-revLB94

functionals with the energies from standard exchange-only density-functional approx-

imations, B88 and PBE. All calculations were performed in a post-SCF fashion using

HF/UGBS densities. This was done for fair comparison with Λ-LB94 and Q-LB94,

which are difficult to converge for certain atoms. There were no convergence prob-

lems with the Q-revLB94 functional. One can see that the energies from the Λ-LB94

functional are not very accurate, with a mean absolute percentage error (MAPE)

of 1.07%. The Q-LB94 energies are even worse, with MAPE = 6.35%. But the Q-

revLB94 (MAPE = 0.070%) is a dramatic improvement over the Λ-LB94 and Q-LB94

approximations. In fact, it is comparable in accuracy to the B88 and PBE function-
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als. Compared to the Λ-LB94 energy expression, the Q-revLB94 functional is not

only more accurate but also gives energies that are position-independent. This makes

the Q-revLB94 approximation suitable for calculating forces acting on the nuclei and

for performing geometry optimizations.

5.3.4 The Q-revLB94 exchange potential

The functional derivative of Q-revLB94 has a shape similar to that of other popular

approximations for exchange, as Fig. 5.2 shows. The exchange-only GGA potentials

B88, PBE, and Q-revLB94 are almost indistinguishable on the scale shown. This is

due to the like behavior of accurate exchange functionals for slowly varying densities,

which makes their functional derivatives similar near the nucleus, where s is small.

Compared to the GGA potentials, LB94 is more negative almost everywhere and does

not have a singularity at the origin. The differences in the large-r behavior of the

four potentials examined here are emphasized by plots of rvX(r), which are shown in

Fig. 5.3. It is seen from this figure that the LB94 potential decays roughly as −1/r,

whereas the other three potentials decay much faster.

To deduce the asymptotic behavior of Q-revLB94 potential we need to analyze its

s→∞ limit (because s becomes infinitely large as r →∞). From Eq. (5.10) we have

Q(s) ∼ 8s(ξs)3E1(3 ln 2ξs), where E1(z) is the exponential integral [25]. Using the

asymptotic expansion formula for E1(z) (identity 5.1.20 in Ref. 25), we obtain

Q(s) ∼ 1

3

s

ln 2ξs
(s→∞), (5.17)

which is similar to the asymptotic behavior of the B88 gradient correction, except that

the B88 analog of Q(s) has a prefactor 1/6 instead of 1/3. (This occurs because the

Q-revLB94 functional is based on the LB94 potential which in turn uses a B88-style

gradient correction.) Finally, substituting an exponentially decaying density ρ = e−ar

into Eqs. (5.12) and (5.17), we find that

vQ-revLB94
X ∼ − 5

ar2
(r →∞), (5.18)

where a is a constant. For comparison, the B88 exchange potential decays as −5/2ar2

(see Ref. 26), and PBE as −ce−ar/3, where c is another constant.

Because the LB94 potential is more negative almost everywhere and decays more

slowly than the Q-revLB94, B88, and PBE potentials, the quality of the highest

occupied molecular orbital (HOMO) energies obtained with the LB94 potential is
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Table 5.3: Negative of the HOMO energy (in units of eV) obtained from various
exchange-only approximations. All calculations are self-consistent and use the UGBS.

Atom Λ-LB94 Q-revLB94 B88 PBE Exacta

H 11.32 7.39 7.41 7.37 13.61
He 21.62 15.02 15.08 15.05 24.98
Li 4.77 2.96 2.97 2.97 5.34
Be 7.67 4.90 4.94 4.94 8.41
N 12.94 7.64 7.74 7.74 15.54
Ne 19.69 12.21 12.37 12.39 23.15
Na 5.04 2.74 2.79 2.79 4.96
Mg 6.86 3.99 4.05 4.06 6.88
P 9.21 5.66 5.71 5.72 10.66
Ar 14.36 9.20 9.30 9.32 16.08
Ca 5.61 3.09 3.15 3.15 5.32
Zn 9.22 5.03 5.15 5.16 7.97
Kr 13.05 8.21 8.30 8.32 14.24

MAEb 1.46 5.32 5.24 5.24

aExact exchange-only HOMO eigenvalues from Ref. 24.
bMean absolute error.

better than from the other three approximations (Table 5.3). This means that the

Q-revLB94 potential will not perform better than the B88 and PBE approximations

in calculations of response properties such as polarizabilities and excitation energies

in time-dependent density functional theory.

5.4 Relation to other methods

Application of our method to the LB94 potential produces a competitively accurate

exchange GGA. In Chapter 3 we described the construction of another GGA from

the same model potential, using a different approach. In that case, we started with

the LB94 potential, completed it to a functional derivative, and then recovered the

parent functional. Here, we first assign a functional to the LB94 potential and then

use that functional to obtain the functional derivative. Since neither completion to a

functional derivative nor line integration is unique for stray potentials, the Q-revLB94

functional and the functional of Chapter 3 are different. The approach based on line

integrals is more flexible.

Our method is also related to the procedure for constructing the “unambiguous

energy density” proposed by Burke et al. [27, 28]. For exchange potentials, Burke’s
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method amounts to defining the functional,

EX[ρ] = − 3

4π

∫
dr′
∫
dr
∇ · [ρ(r)∇vX([ρ]; r)]

|r− r′|
. (5.19)

This expression is essentially a gauge transformation of the Levy–Perdew virial en-

ergy density carried out using the Helmholtz decomposition. Burke and co-workers in-

tended Eq. (5.19) to be used with functional derivatives of standard density-functional

approximations (such as LDA, PBE, and BLYP) as a way of eliminating the ambigu-

ity of conventional energy densities. But, of course, their method may be also used to

construct energy functionals from stray model potentials. Unfortunately, Eq. (5.19) is

not very practical because it requires real-space integration over r for each grid point

r′. Our method involves only a one-dimensional quadrature at every real-space grid

point, so it is easier to implement and has a lower computational cost.

5.5 Conclusion

Assigning energy to stray model potentials always involves some degree of arbitrari-

ness. Exchange energies computed via the Levy–Perdew virial relation (i.e., by line

integration along a path of uniformly scaled density) are quite reasonable, provided

that a model potential has a realistic shape. However, Levy–Perdew energies are not

invariant with respect to molecular translations and rotations. By choosing an inte-

gration path that does not involve coordinate scaling, one can ensure proper invariance

of the energies obtained from a stray model potential, but often at the expense of the

accuracy of the resulting energy expression.

In this work, we adopt a different view of line integration as an instrument for de-

signing new density-functional approximations using stray model potentials as start-

ing points. The resulting functionals are not expected to automatically yield good

energies and may require fine-tuning. The modification may be as simple as adjust-

ing a parameter to satisfy an exact constraint. This strategy proved quite effective

in deriving the Q-revLB94 functional starting with the LB94 model potential. This

new functional is properly invariant and yields better energies than the Levy–Perdew

relation.



Bibliography

[1] M. Levy and J. P. Perdew, “Hellmann–Feynman, virial, and scaling requisites

for the exact universal density functionals. Shape of the correlation potential and

diamagnetic susceptibility for atoms”, Phys. Rev. A 32, 2010 (1985).

[2] O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, “Self-

consistent approximation to the Kohn–Sham exchange potential”, Phys. Rev. A

51, 1944 (1995).

[3] R. van Leeuwen and E. J. Baerends, “Exchange-correlation potential with correct

asymptotic behavior”, Phys. Rev. A 49, 2421 (1994).

[4] D. J. Tozer, “The asymptotic exchange potential in Kohn–Sham theory”,

J. Chem. Phys. 112, 3507 (2000).

[5] Y. Kurzweil and M. Head-Gordon, “Improving approximate-optimized effective

potentials by imposing exact conditions: Theory and applications to electronic

statics and dynamics”, Phys. Rev. A 80, 012509 (2009).

[6] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equa-

tions, Dover Publications, Inc., New York (1959).

[7] R. van Leeuwen and E. J. Baerends, “Energy expressions in density-functional

theory using line integrals”, Phys. Rev. A 51, 170 (1995).

[8] A. P. Gaiduk, S. K. Chulkov, and V. N. Staroverov, “Reconstruction of den-

sity functionals from Kohn–Sham potentials by integration along density scaling

paths”, J. Chem. Theory Comput. 5, 699 (2009).

[9] P. D. Elkind and V. N. Staroverov, “Energy expressions for Kohn–Sham po-

tentials and their relation to the Slater–Janak theorem”, J. Chem. Phys. 136,

124115 (2012).

86



87

[10] M. Levy, “Coordinate scaling requirements for approximating exchange and cor-

relation”, in Density Functional Theory, edited by E. K. U. Gross and R. M.

Dreizler, Plenum Press, New York, pp. 11–31 (1995).

[11] M. Levy and J. P. Perdew, “Density functionals for exchange and correlation

energies: Exact conditions and comparison of approximations”, Int. J. Quantum

Chem. 49, 539 (1994).

[12] S. Liu and R. G. Parr, “Expansion of the correlation-energy density functional

Ec[ρ] and its kinetic-energy component Tc[ρ] in terms of homogeneous function-

als”, Phys. Rev. A 53, 2211 (1996).

[13] G. K.-L. Chan and N. C. Handy, “Kinetic-energy systems, density scaling, and

homogeneity relations in density-functional theory”, Phys. Rev. A 59, 2670

(1999).
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Chapter 6

Self-interaction correction scheme

for Kohn–Sham potentials

6.1 Introduction

In the Kohn–Sham density functional theory, electrons move in an electric field de-

scribed by a multiplicative Kohn–Sham potential vs(r). The electronic part of vs

is the Hartree-exchange-correlation (HXC) potential vHXC given by Eq. (1.14). The

vHXC describes interaction of each electron with the field created by the remaining

N − 1 electrons in the system, and behaves asymptotically as (N − 1)/r. The vHXC

is further partitioned into a sum of the Hartree vH [Eq. (1.15)] and the exchange-

correlation vXC potentials [Eq. (1.16)]. Of these two, the Hartree term includes the

spurious self-interaction of each electron with itself and has the N/r asymptotic de-

cay. This implies that the exact exchange-correlation potential should fall off as −1/r.

Unfortunately, most approximations to vXC decay faster than −1/r and hence do not

cancel out the self-interaction part of vH completely. The resulting error in vHXC,

termed self-interaction error, causes the effective Kohn–Sham potential to be more

repulsive than it should be at intermediate and large r [1, 2]. One immediate conse-

quence of this aberration is a collapse of the virtual Kohn–Sham orbital eigenvalue

spectrum, which translates into poor description of response properties [3–6].

In this Chapter, we propose a self-interaction correction (SIC) motivated by a

Reprinted in part with permission from A. P. Gaiduk, D. Mizzi, and V. N. Staroverov, “Self-
interaction correction scheme for approximate Kohn–Sham potentials”, Phys. Rev. A 86, 052518
(2012). Copyright 2012, American Physical Society.
Reprinted in part with permission from A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, “Im-
proved electronic excitation energies from shape-corrected semilocal Kohn–Sham potentials”, Phys.
Rev. Lett. 108, 253005 (2012). Copyright 2012, American Physical Society.
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fractional charge perspective on density functional theory [7]. We demonstrate appli-

cation of our method to the calculation of vertical ionization and excitation energies.

We also emphasize a unifying point of view according to which our method, the Slater

transition-state technique [8–11], and the Xα approximations [9] are all different forms

of self-interaction correction for approximate exchange-correlation potentials.

6.2 Self-interaction error in Kohn–Sham poten-

tials

Consider the ground-state hydrogen atom. For this system, vHXC(r) must vanish

identically because a single electron does not interact with itself. Most approximate

exchange-correlation potentials, however, violate the condition vHXC(r) = 0. This

is illustrated in Fig. 6.1 for the local density approximation with the Perdew–Wang

parametrization of the correlation energy [12].

In many-electron atoms and molecules, the exact vHXC is of course no longer zero,

but the symptoms of the self-interaction error are similar: a typical approximate

vHXC is not sufficiently negative at medium and large r, and decays too fast. This is

illustrated in Fig. 6.2 by the example of an LDA calculation on the Ne atom. Note

that here vHXC is dominated by the Hartree potential, while the contribution of vXC

is relatively small. Generalized gradient approximations such as the Perdew–Burke–

Ernzerhof exchange-correlation functional [13] yield similar curves (not shown), except

that vXC and vHXC tend to −∞ at the nucleus.

A useful measure of how strongly an approximate Hartree-exchange-correlation

potential deviates from vexact
HXC is the corresponding HOMO eigenvalue, εHOMO. From

Eqs. (1.12) and (1.13) we have

εHOMO =
〈
φHOMO

∣∣−1
2
∇2 + v + vHXC

∣∣φHOMO

〉
. (6.1)

For the H atom, the exact vHXC = 0 with the exact 1s hydrogenic orbital φ(r) =

e−r/
√
π yields the exact eigenvalue εHOMO = −0.5 Eh, whereas the self-consistent

LDA and PBE potentials give εHOMO = −0.269 and εHOMO = −0.279 Eh, respectively.

Differences between exact and approximate εHOMO values for many-electron atoms are

of similar magnitude.

The self-interaction error in Kohn–Sham potentials can be also analyzed by con-

sidering the behavior of εHOMO as a function of the HOMO occupation number. When
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a fraction δ of an electron is removed from the HOMO, the density becomes

ρ̃(r) = ρ(r)− δ|φHOMO(r)|2. (6.2)

Here and below, we call the parameter δ the HOMO depopulation. To study εHOMO

as a function of δ, we construct the potential vHXC([ρ̃]; r) using the electron-deficient

density ρ̃(r) and then solve the Kohn–Sham equations self-consistently. Recall that

in the fractional occupation formalism, εHOMO and the total electronic energy E are

related by the Slater–Janak theorem [16],

εHOMO(n) =
∂E(n)

∂n
, (6.3)

where n = 1−δ. In the exact Kohn–Sham DFT, E is a linkage of straight-line segments

between consecutive integer electron numbers [7, 17–19]; the slope of each segment

between J − 1 and J is the vertical ionization energy (VIE) of the J-electron system.

By Eq. (6.3) this implies that a plot of the exact εHOMO as a function of δ (0 < δ < 1)

should be a horizontal straight line drawn at εHOMO = −VIE. It is known that nearly

all approximate density functionals violate this constraint [20–23], as illustrated in

Figs. (6.3) and (6.4) by the examples of the LDA, PBE, Tao–Perdew–Staroverov–

Scuseria (TPSS) [24], and hybrid PBE (PBE0) [25] functionals. The deviation of

εHOMO(n) from the exact horizontal line or, equivalently, the deviation of E(n) from

linearity have been termed the many-electron self-interaction error. Now let us show

how this error can be reduced.

6.3 Self-interaction correction for Kohn–Sham po-

tentials

Observe that each curve in Figs. 6.3 and 6.4 crosses the exact straight line near δ = 1/2.

This suggests that the shape of the LDA, PBE, TPSS, and PBE0 exchange-correlation

potentials as functions of δ improves the most when about half an electron is removed

from the HOMO. To verify this assumption for the H atom, we plotted the sum of

Hartree and PBE exchange-correlation potentials for 10 values of δ varying between

0 and 0.9 (see Fig. 6.5). This figure shows that the smallest average deviation of

vHXC([ρ̃]; r) from the exact vHXC(r) occurs at δ ≈ 1/2. Similar results were obtained

for the H atom using the LDA exchange-correlation potential (not shown).

It is not difficult to see how the HOMO depopulation works. For a hydrogen
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atom, vH([ρ̃]; r) is linear in δ, whereas vXC([ρ̃]; r) scales roughly as δ1/3. As δ increases,

vH([ρ̃]; r) decreases faster than vXC([ρ̃]; r) increases, so their sum vHXC([ρ̃]; r) becomes

more negative. At δ ≈ 1/2, the potential vHXC([ρ̃]; r) is on average closest to the exact

vHXC in such a way that εHOMO becomes exact. The precise value of δ at which εHOMO

becomes exact can be determined for any one-electron system by solving the equation

〈
φHOMO

∣∣−1
2
∇2 + v + vH[ρ̃] + vXC[ρ̃]

∣∣φHOMO

〉
= −1

2
. (6.4)

In particular, within the exchange-only LDA, analytic solution of Eq. (6.4) for the

exact hydrogenic 1s orbital yields δ = 1−243
√

5/400π ≈ 0.568. For the self-consistent

LDA, PBE, TPSS, and PBE0 potentials whose eigenvalues are plotted in Fig. 6.4, the

solutions are δ = 0.522, 0.477, 0.473, and 0.470, respectively.

In many-electron systems, the asymptotic region of the electron density is domi-

nated by the HOMO, so the large-r behavior of vHXC should be improved by depopu-

lating the HOMO alone. Moreover, Fig. 6.4 suggests that the greatest improvement

of the HOMO energy should again occur at δ ≈ 1/2. To verify this conjecture we

could compare vHXC([ρ̃]; r) and vHXC([ρ]; r) to the exact Hartree-exchange-correlation

potential. However, since the effect of HOMO depopulation in many-electron systems

is very small on the scale of vHXC, it is better to compare the uncorrected vXC([ρ]; r)
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and the self-interaction-corrected potential defined by

vSIC
XC (r) = vHXC([ρ̃]; r)− vH([ρ]; r). (6.5)

The SIC potential may be alternatively written as

vSIC
XC (r) = vXC([ρ]; r) + ∆vXC(r), (6.6)

where ∆vXC(r) is the correction defined as

∆vXC(r) = vHXC([ρ̃]; r)− vHXC([ρ]; r). (6.7)

Figure 6.6 shows that the SIC-PBE (δ = 1/2) exchange-correlation potential of a Ne

atom is indeed much closer to the exact vXC than the uncorrected (δ = 0) potential,

especially in the middle-r range. Similar results are found for other systems and

density functionals.

The effect of HOMO depopulation on vXC(r) in Fig. 6.6 resembles the effect of

renormalizing the exchange-correlation charge [2, 26–29], which suggests that the

physics underlying both approaches is similar. To a first approximation, HOMO

depopulation creates a spherical layer (shell) of positive charge +δ distributed over
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the valence region of the atom. The potential of this charged shell is constant inside the

shell and decays as −δ/r outside the shell. According to this model, the asymptotic

behavior of SIC-PBE exchange-correlation potential is −1/2r. This is not the exact

−1/r decay, but it is more realistic than the exponential decay of the uncorrected

PBE potential. In any case, the shape of vXC(r) at r → ∞ matters less than at

0.5 . r . 3a0, where the SIC-PBE potential mimics the exact vXC(r) quite well.

Let us summarize. The shape of Hartree-exchange-correlation potentials is im-

proved if they are constructed from the density ρ̃ with the depopulated HOMO. Our

correction amounts to reducing the self-interaction error in vHXC(r) and leads to bet-

ter Kohn–Sham orbitals and orbital eigenvalues. In the following two sections, we will

demonstrate the practical capabilities of our approach by computing vertical ioniza-

tion energies and electronic excitation energies.

6.4 Vertical ionization energies

Our results suggest that the quality of approximate HOMO eigenvalues is at its best

when the HOMO depopulation is δ ≈ 1/2. At this δ, the HOMO eigenvalue becomes a

much better estimate of the VIE than at δ = 0. The procedure for computing the VIE

as εHOMO(δ = 1/2) is actually a very old technique known as the Slater transition-state

[8, 9] or half-ion [10, 11] method. In the usual justification of this procedure, the VIE

is written using Eq. (6.3) as

VIE = E(N − 1)− E(N) = −
∫ 1

0

εHOMO(n) dn, (6.8)

where n = 1− δ. The argument is then made that the function εHOMO(n) is roughly

linear (at least, for many-electron systems), so the integral in Eq. (6.8) must be well

approximated as

VIE ≈ −εHOMO(n = 1/2). (6.9)

Figures 6.3 and 6.4 provide an even more direct explanation of why Eq. (6.9) works—

because the plot of εHOMO(n) crosses the exact value of εHOMO near n = 1 − δ = 1/2.

From this point of view, Slater’s transition-state method is a self-interaction correction

scheme for approximate Hartree-exchange-correlation potentials.

The dramatic effect of switching from vHXC([ρ]; r) to vHXC([ρ̃]; r) is illustrated in

Table 6.1. The mean absolute error in VIEs is reduced by more than an order of

magnitude by applying the correction. The outliers are the halogenated hydrocar-
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Table 6.1: Vertical ionization energies (in eV) determined as −εHOMO from LDA
and PBE exchange-correlation potentials with and without HOMO depopulation.
All calculations use the cc-pVQZ basis set. Some LDA calculations with fractional
occupations could not be converged (‘n/c’).

LDA SIC-LDA PBE SIC-PBE
System δ = 0 δ = 1/2 δ = 0 δ = 1/2 Expt.a

He 15.49 24.56 15.73 24.92 24.59
Li 3.16 5.58 3.22 5.66 5.39
Be 5.60 9.06 5.61 9.04 9.32
Ne 13.37 n/c 13.14 21.61 21.56
Na 3.08 5.44 3.04 5.36 5.14
Mg 4.78 7.74 4.70 7.61 7.65
Ar 10.38 n/c 10.26 15.70 15.76
H2O 7.16 13.08 7.01 12.73 12.62
CO 9.08 14.11 9.00 13.92 14.01
CH2O 6.30 10.90 6.21 10.72 10.1
HCOOH 6.83 11.38 6.64 11.07 11.5
CH4 9.47 14.05 9.45 13.96 13.6
CH2F2 8.16 12.50 8.06 12.36 13.27
CFCl3 7.84 10.98 7.70 10.81 11.76
CCl4 7.79 n/c 7.65 10.53 11.69
Acrolein 6.10 10.04 5.95 9.80 10.15
Furan 5.84 9.19 5.63 8.88 8.88
Thiophene 6.05 9.19 5.86 8.91 8.85

MAEb 4.41 0.34 4.50 0.35

aExperimental vertical ionization energies are from Ref. 32.
bMean absolute error.

bons CH2F2, CFCl3 and CCl4, for which the error is reduced only by a factor of 4

(from roughly 4 eV to about 1 eV). Ionization energies of halogenated compounds

are known to be inadequately described with standard density functionals [30, 31], so

this underperformance has more to do with the LDA and PBE functionals than with

the correction.

In terms of the effect on HOMO eigenvalues, the HOMO depopulation and

transition-state schemes are similar to another technique proposed by Slater—the

Xα method [9]. In the original (nonempirical) version of the Xα method, the LDA

exchange potential is scaled by a constant α = 3/2, which makes vHXC more attractive

and lowers the eigenvalues, just as in the transition-state scheme. The similarity be-

tween the transition state and scaling vX was pointed out by Slater himself (see p. 55
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in Ref. 9). We add that the optimal value α can be derived by solving the analog of

Eq. (6.4), namely,

〈
φHOMO

∣∣−1
2
∇2 + v + vH[ρ] + αvLDA

X [ρ]
∣∣φHOMO

〉
= εexact

HOMO. (6.10)

For the exact hydrogenic density, this gives α = 20(6π)2/3/81 ≈ 1.7488, which is not

far from 3/2.

6.5 Electronic excitation energies

One of the effects of self-interaction error is inaccurate prediction of electronic ex-

citation energies in time-dependent DFT calculations, especially for Rydberg states.

This problem is successfully resolved using model potentials with correct asymptotic

behavior [33]. Similar to model potentials, our self-interaction correction scheme im-

proves the shape of exchange-correlation potentials, and may yield accurate valence-

to-Rydberg excitation energies. We will test this assumption in the following Section.

6.5.1 Methodology

Before we begin, let us address one technical issue. In the transition-state method,

removal of a fraction of a spin-up or spin-down electron from a doubly occupied HOMO

leaves the system spin-polarized. In addition, for systems with degenerate HOMO,

fractional depopulation of only one HOMO breaks the spatial symmetry of the total

electron density. This is highly undesirable in TDDFT calculations. To preserve the

spin state and spatial symmetry of many-electron systems with δ > 0, we depopulate

the entire HOMO level rather than a single orbital. That is, if a system has m ≥ 1

occupied spin-orbitals at the highest occupied level, we replace the definition of ρ̃ in

Eq. (6.2) with

ρ̃(r) = ρ(r)− δ

m

m∑
i=1

|φHOMO,i(r)|2, (6.11)

For example, in a Be atom we remove δ/2 spin-up and δ/2 spin-down electrons from

the 2s orbital. In a Ne atom, we remove δ/6 electrons from each spin-orbital of the

2p subshell. The procedure for SIC-TDDFT calculations is similar to TDDFT with

model potentials and consists of two steps: (1) do a self-consistent calculation for

the (N − δ)-electron system using some standard density functional; (2) set up and

solve Casida’s TDDFT equations for the all-electron system using the orbitals, orbital

energies and the functional from the first step.
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The optimal δ for the SIC-TDDFT scheme described above is not guaranteed

to be the same as for the vertical ionization energies. Vertical ionization energies

depend on the eigenvalue of a single orbital, εHOMO, while excitation energies depend

on the eigenvalue differences [34, 35], reproducing which may require a different value

of δ. To analyze how the eigenvalue differences depend on δ, we plotted energies of

the self-consistent Kohn–Sham LDA HOMO (2s) and the four lowest-lying virtual

orbitals (2p, 3s, 3p, and 3d) of a Be atom as functions of the HOMO depopulation

(Fig. 6.7). The exact Kohn–Sham eigenvalues for the Be atom are known from the

work of Savin et al. [34]. We see that the 2s and 2p orbital eigenvalues become

exact near δ = 1/2, but the 3s, 3p, and 3d eigenvalues become exact at much higher

depopulations, δ ≈ 0.8. Nevertheless, the gaps between these orbitals become exact

almost simultaneously near δ = 1/4. This suggests that the LDA should give excellent

excitation energies if the HOMO level is depopulated by about a quarter of electron.

Table 6.2 confirms that the use of δ = 1/4 to improve the Kohn–Sham orbital gaps

leads to dramatically improved Rydberg excitation energies. The uncorrected LDA

is reasonably accurate in predicting the valence excitation of the Be atom (2s→ 2p),

but Rydberg excitations are underestimated by as much as 1–1.5 eV. The SIC-LDA

(δ = 1/4) reduces this error to 0.1–0.4 eV and further improves the valence excitations.

6.5.2 Computational details

To benchmark our method, we applied it to a number of local, semilocal and hybrid

functionals on an extensive test set. Our test set consists of 31 valence and 73 Rydberg

excitation energies of three atoms (Be, Mg, and Zn) and six molecules (CO, CH2O,

C2H2, C2H4, H2O, and N2) at the experimental geometries [37]. To accommodate

transitions to high-lying states, we used the d-aug-cc-pVQZ and d-aug-cc-pVTZ basis

sets for the atoms and molecules, respectively. These are the standard aug-cc-pVQZ

and aug-cc-pVTZ Gaussian basis sets taken from the EMSL Basis Set Library [38, 39]

and augmented with one additional set of diffuse functions of each type (s, p, d,

and so on). The exponents of these additional functions were chosen to continue the

geometric progression of the two most diffuse exponents in the original basis sets and

were rounded to 3 significant figures [40].

All calculations were performed using the gaussian 09 program [41] appropriately

modified to allow for fractional occupations. In gaussian 09, Casida’s equations for a

fixed set of Kohn–Sham orbitals and orbital eigenvalues stored in a checkpoint file can

be solved using the keywords TD, Guess=Read, and SCF(MaxCyc=-1,NoVarAcc). The

latter is needed to skip diagonalization of the Kohn–Sham Hamiltonian matrix, which
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Table 6.2: Kohn–Sham eigenvalue differences (∆ε, eV) and TDDFT excitation en-
ergies (ω, eV) to valence (V) and Rydberg (R) states of a Be atom computed using
LDA and SIC-LDA with δ = 1/4. All calculations use d-aug-cc-pVQZ basis set. The
computational details are the same as in Sec. 6.5.2.

LDA SIC-LDA Exacta

State Transition ∆ε ω ∆ε ω ∆ε ω

3P 2s→ 2p (V) 3.50 2.40 3.63 2.43 3.61 2.73
1P 2s→ 2p (V) 4.85 5.19 5.28
3S 2s→ 3s (R) 5.59 5.51 6.76 6.64 6.65 6.46
1S 2s→ 3s (R) 5.62 6.85 6.78
3P 2s→ 3p (R) 5.66 5.66 7.21 7.17 7.33 7.30
1P 2s→ 3p (R) 5.66 7.23 7.46
3D 2s→ 3d (R) 6.65 6.61 7.83 7.76 7.71 7.69
1D 2s→ 3d (R) 6.52 7.69 7.99

aFrom Ref. 34.
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would otherwise alter the orbitals and orbital eigenvalues. All calculations employ the

UltraFine integration grid.

The optimal δ for each density-functional approximation was determined by fit-

ting calculated excitation energies to 14 experimental excitation energies of the CO

molecule. This gave the following values: δ = 0.24 for the LDA; 0.26 for the PBE

approximation; 0.28 for the BLYP approximation; 0.23 for TPSS; 0.18 for the B3LYP

hybrid functional [42–45]; 0.16 for the PBE0 hybrid; and 0.19 for the TPSS hybrid

[31, 46]. Note the consistency with which functionals of the same type have similar

δ values, and that hybrid functionals require smaller corrections. Also note that the

fitted LDA value of δ = 0.24 is almost exactly equal to the estimate δ = 1/4 made in

the previous Section for the optimal orbital gaps. Such an excellent agreement be-

tween two independent determinations of the optimal δ value justifies our assumption

that the HOMO depopulation is an inherent characteristic of a given functional and

is largely system-independent.

6.5.3 Results

Results of TDDFT calculations are summarized in Table 6.3 for four representa-

tive density functionals: LDA, BLYP, B3LYP, and TPSS. Without our correction,

these functionals give good results for valence excitations (MAE = 0.26–0.35 eV),

but severely underestimate the energies of Rydberg transitions (MAE = 0.97–1.63

eV). Our method reduces the MAEs for Rydberg excitations to 0.18–0.25 eV while

preserving the already good performance for valence excitations. These trends appear

statistically stable for all systems and functionals we tested (see Tables 6.4–6.12).

It is instructive to compare our method with long-range-corrected hybrids such

as LC-ωPBE [47] and sophisticated empirical functionals such as M06-2X [48], which

was specifically recommended for calculations of valence and Rydberg excitations.

The LC-ωPBE functional has a low MAE for Rydberg excitations, but performs

significantly worse than standard functionals for valence transitions. M06-2X is more

accurate than any of the standard functionals for Rydberg excitations, but the same

standard functionals corrected by our method outperform M06-2X by a wide margin.

6.6 Conclusion

Most existing schemes for reducing the self-interaction error in Kohn–Sham potentials

correct energy functionals [57, 58] or orbital eigenvalues [59, 60], but approaches that
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directly correct Kohn–Sham potentials [2, 29, 33, 61] are also becoming popular.

In this Chapter, we described a simple and effective scheme of the latter type. Our

method is based on the observation that an approximate Hartree-exchange-correlation

potential vHXC(r) of a fractionally ionized system is a better representation of the

exact vHXC(r) at intermediate and large r than the vHXC(r) constructed with the

all-electron density. The HOMO depopulation method is applicable to any local,

semilocal, or global hybrid density-functional approximation. If it were applied to

the exact vHXC([ρ]; r), the resulting vHXC([ρ̃]; r) would still predict the exact HOMO

energy because, in the exact Kohn–Sham DFT, εHOMO remains a constant for all

0 < δ < 1 [17, 20].

Our findings point to the physical reason behind the success of Slater’s transition

state method for calculating vertical ionization energies. Namely, the HOMO eigen-

value of a Slater transition state is a good approximation to the exact HOMO energy

because the quality of HOMO eigenvalues from approximate Kohn–Sham potentials

peaks at δ ≈ 1/2. The HOMO depopulation method also works well in adiabatic

TDDFT by improving Kohn–Sham orbital gaps. The optimal HOMO depopulation

necessary to reproduce orbital gaps and excitation energies is about half of what is

required to reproduce ionization energies. Our correction scheme lowers errors of Ry-

dberg excitations from more than 1 eV to sub-eV values, and rivals the accuracy of

the cutting-edge functionals such as LC-ωPBE and M06-2X.

To conclude, it appears that accurate response properties for a system of interest

can be obtained by applying approximate density functionals to the same system with

partially depopulated HOMO. The need for an auxiliary system reflects the limited

accuracy of existing approximations, and their main problem, self-interaction error.
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Å
,

r
(C

H
)

=
1.

06
3

Å
.

C
2
H

2
U

n
co

rr
ec

te
d

p
ot

en
ti

al
s

C
or

re
ct

ed
p

ot
en

ti
al

s

L
D

A
B

L
Y

P
B

3L
Y

P
T

P
S
S

L
D

A
B

L
Y

P
B

3L
Y

P
T

P
S
S

S
ta

te
T

ra
n
si

ti
on

δ
=

0
δ

=
0.

24
δ

=
0.

28
δ

=
0.

18
δ

=
0.

23
L

C
-ω

P
B

E
M

06
-2

X
E

x
p
t.

a

3
Σ

+ u
π
u
→

π
g

5.
52

5.
22

5.
02

4.
95

5.
69

5.
39

5.
03

5.
08

4.
63

5.
35

5.
2

3
∆
u

π
u
→

π
g

6.
21

5.
77

5.
70

5.
76

6.
43

6.
00

5.
75

5.
94

5.
50

6.
54

6.
0

1
∆
u

π
u
→

π
g

7.
02

6.
76

6.
79

6.
96

7.
35

7.
15

6.
93

7.
27

6.
95

7.
11

7.
2

3
Π
u

π
u
→

3s
σ
g

7.
16

6.
68

7.
22

6.
98

8.
41

8.
11

8.
01

8.
18

8.
11

7.
60

8.
07

1
Π
u

π
u
→

3s
σ
g

7.
17

6.
71

7.
26

7.
02

8.
44

8.
16

8.
08

8.
24

8.
25

7.
64

8.
16

3
Π
g

π
u
→

3p
σ
u

7.
37

6.
87

7.
43

7.
19

8.
53

8.
16

8.
14

8.
30

8.
55

7.
88

8.
90

3
Σ

+ g
π
u
→

3p
π
u

7.
71

7.
23

7.
87

7.
49

9.
15

8.
89

8.
81

8.
87

8.
84

8.
27

8.
98

1
Π
g

π
u
→

3p
σ
u

7.
42

6.
94

7.
55

7.
26

8.
70

8.
37

8.
35

8.
51

8.
75

7.
99

9.
00

3
∆
g

π
u
→

3p
π
u

7.
73

7.
24

7.
89

7.
53

9.
20

8.
91

8.
84

8.
92

8.
95

8.
33

9.
08

3
Π
u

π
u
→

3d
σ
g

7.
81

7.
36

8.
15

7.
65

9.
34

9.
05

8.
98

9.
17

9.
29

8.
67

9.
17

1
Σ

+ g
π
u
→

3p
π
u

7.
78

7.
31

8.
01

7.
60

9.
30

9.
06

9.
03

9.
06

9.
21

8.
59

9.
21

1
Π
u

π
u
→

3d
σ
g

7.
82

7.
37

8.
18

7.
67

9.
46

9.
19

9.
14

9.
26

9.
47

8.
76

9.
24

b

M
ea

n
ab

so
lu

te
er

ro
rs

w
it

h
re

sp
ec

t
to

ex
p

er
im

en
t

V
al

en
ce

(3
)

0.
24

0.
23

0.
30

0.
24

0.
35

0.
08

0.
23

0.
08

0.
44

0.
26

R
y
d
b

er
g

(9
)

1.
32

1.
79

1.
14

1.
49

0.
23

0.
22

0.
27

0.
19

0.
15

0.
68

A
ll

(1
2)

1.
05

1.
40

0.
93

1.
18

0.
26

0.
19

0.
26

0.
16

0.
22

0.
57

a
A

ll
ex

pe
ri

m
en

ta
l

va
lu

es
ex

ce
pt

fo
r

th
e

1
Π

u
st

at
e

ar
e

fr
om

R
ef

.
52

.
b
R

ef
.

53
.



111

T
ab

le
6.

10
:

V
er

ti
ca

l
ex

ci
ta

ti
on

en
er

gi
es

(i
n

eV
)

fo
r

th
e

C
2
H

4
m

ol
ec

u
le

(X̃
1
A
g
)

ca
lc

u
la

te
d

b
y

T
D

D
F

T
w

it
h

va
ri

ou
s

d
en

si
ty

-
fu

n
ct

io
n
al

ap
p
ro

x
im

at
io

n
s.

T
h
e

b
as

is
se

t
is

d
-a

u
g-

cc
-p

V
T

Z
.

M
ol

ec
u
la

r
ge

om
et

ry
:

r
(C

C
)

=
1.

33
9

Å
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Chapter 7

Summary and outlook

Most approximations in density functional theory predict accurate total electronic

energies but fail for response properties such as electronic excitations, ionization en-

ergies, and molecular polarizabilities. These properties are highly sensitive to the

quality of the Kohn–Sham potential; thus, their description can be improved by di-

rectly approximating the exchange-correlation potential [1–4] and imparting it with

the essential analytical properties such as the exact Coulombic decay [5], shell struc-

ture, and derivative discontinuities [6, 7].

A model exchange-correlation potential is unlikely to be a functional derivative of

any functional unless explicitly constrained to be one. Non-integrable potentials do

not have a unique energy associated with them and lack the translational and rota-

tional invariance, which leads to artifacts such as energies dependent on molecular

orientations, and causes problems with geometry optimizations [2, 8]. As a result,

applications of stray model potentials have long been limited to calculations of molec-

ular response properties [7, 9]. To be useful for a wider range of applications, model

potentials must be integrable.

Before our work, there existed only scattered results related to the integrability

of model potentials [2, 10, 11]. We have proposed numerical and analytical tests to

detect non-integrable potentials, as well as several methods to construct integrable

potentials directly. Our work laid the foundation for the development of universal

potential approximations in density functional theory that can perform equally well for

computing both energies and response properties. We also proposed a self-interaction

correction scheme that improves the shape of standard exchange-correlation potentials

and, in this sense, amounts to generating model potentials on the fly. What remains

to be done is to learn how to improve the accuracy of potential approximations. We

will now discuss several strategies for designing better model Kohn–Sham potentials.
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One of the big open questions is how to develop accurate approximation to the

entire exchange-correlation potential. The vast majority of model potentials existing

today are exchange-only [4, 12–14], and even the few exchange-correlation approxi-

mations such as the LB94 [3] and U06 [15] actually have the exchange-like behavior.

The true correlation potential is more difficult to approximate because its properties

are studied less than the properties of the exchange potential. Perhaps, one might

get a better idea of what to approximate by analyzing exact correlation potentials

extracted from highly-correlated densities of various systems [16–18].

One could get additional flexibility for the development of model potentials by

constructing them from the Kohn–Sham orbitals. Numerous exchange potentials such

as the Becke–Johnson [4], Räsänen-Pittalis-Proetto [13], and the recently proposed

ε-consistent potential (Sec. 1.4.1) use Kohn–Sham orbitals as a basic ingredient. It

would also be interesting to design the entire exchange-correlation potential from the

orbitals. Note that the energy from orbital-dependent potentials can be computed

by line-integration along the Λ-path [Eq. (1.60)] but not along the Q- [Eq. (1.59)] or

Z-paths [Eq. (1.63)] because the scaling of Kohn–Sham orbitals is known only under

the λ-transformation of the density. One could try to extend the line-integral method

of Ref. 19 to orbital-dependent potentials. For example, it should be possible to take

the derivative of the exchange-correlation functional with respect to the Kohn–Sham

orbitals φi(r) [2, 20, 21]
δEXC[ρ]

δφ∗i (r)
= vXC([ρ]; r)φi, (7.1)

and rewrite the van Leeuwen–Baerends line integral in terms of the derivatives

δEXC[ρ]/δφ∗i (r) rather than δEXC[ρ]/δρ(r). It would also be interesting to study the

scaling of the Kohn–Sham orbitals under the q- and ζ-density transformations.

Another important problem is to design models with exact Coulombic decay. So

far this proved to be quite difficult because the electron density falls off exponentially,

and any approximation that uses only the density and its derivatives will inherit the

exponential decay [17, 22, 23]. We envision at least three different ways to capture

the exact asymptotic behavior of the potential. One possibility is to extract r from

quantities like ln ρ or ln s. In fact, the LB94 model [3] does just that because it

contains the term sinh−1(s) = ln(s+
√

1 + s2). Unfortunately, the logarithmic function

increases too slowly, so the LB94 potential reaches the correct asymptotic decay too

late [15]. Another possibility is to get the term −1/r from the Laplacian of the density
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[Eq. (3.16)]. This idea was implemented in the functional of Engel and Vosko [24],

EX[ρ] = −1

2

∫
ρ4/3(r)s(r) dr. (7.2)

The corresponding potential has the correct asymptotic decay but is too negative

in the region near the nucleus. Furthermore, this approximation does not recover

the density-gradient expansion of the slowly varying electron gas and is therefore not

very accurate. Still, one might employ this idea to design simple gradient-dependent

functionals with the correct long-range behavior of the potential.

Probably, the most promising approach is to develop potentials in the form of the

electrostatic integral, as pointed out by Li, Ayers, and Parr [25, 26], and by Görling

[27],

vXC(r) =

∫
qXC(r′)

|r′ − r|
dr′. (7.3)

The potential vXC becomes asymptotically correct if the exchange-correlation charge

qXC integrates to −1 [28, 29]. The development of model potentials then reduces to

finding a suitable representation of qXC. One of the possible choices is qXC = −ρ/N ,

which gives rise to the Fermi–Amaldi model of Eq. (1.40). The success of the approach

focusing on exchange-correlation charge has been recently demonstrated by Andrade

[30] and Gidopoulos [31], who designed new potentials with correct long-range decay

by normalizing approximate qXC. Even our self-interaction correction scheme dis-

cussed in Chapter 6 partially recovers the correct normalization of the underlying

exchange-correlation charge, and thereby improves the shape of the potential.

There are many other interesting problems one could address. I finish this thesis

in the hope that the potential-driven approach will soon play a prominent role in the

development of density functional theory.
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Appendix A

Properties of the delta function

The Dirac delta function δ(x) is defined by its two properties:

δ(x) =

{
0 for x 6= 0

∞ for x = 0
and

∫ ∞
−∞

f(x)δ(x) dx = f(0), (A.1)

where f(x) is some probe function. As a special case,
∫∞
−∞ δ(x) dx = 1. The delta

function may be interpreted as an infinitely sharp spike at the origin with a total area

of one under the spike. Dirac delta is not a function in the usual sense: It belongs to

a class of generalized functions, or distributions, and is meaningful only as part of an

integral. In this spirit, the linear operator
∫
dx δ(x) acts on f(x) to yield f(0).

Here we review the properties of δ(x) relevant to the present work. Let δ(x− x′)
be delta function shifted by x′ along the coordinate axis. To evaluate the integral

with δ(x−x′), we change the variable to y ≡ x−x′ and use the definition [Eq. (A.1)]

to write ∫ ∞
−∞

f(x)δ(x− x′) dx =

∫ ∞
−∞

f(y + x′)δ(y) dy = f(x′), (A.2)

Thus, the function δ(x) is a special case of δ(x− x′) with x′ = 0.

Dirac delta is an even function, i.e., δ(x−x′) = δ(x′−x). To see this, consider the

integral with δ(x′ − x) multiplied by a test function f(x). We change the integration

variable from x to y ≡ x′ − x so that dy = −dx, and get∫ ∞
−∞

f(x)δ(x′ − x) dx = −
∫ −∞
∞

f(x′ − y)δ(y) dy =

∫ ∞
−∞

f(x′ − y)δ(y) dy = f(x′),

(A.3)

the same result as Eq. (A.2).

To evaluate derivatives of the delta function, we insert d
dx
δ(x−x′) into the integral
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with f(x) and perform integration by parts,∫ ∞
−∞

f(x)
d

dx
δ(x− x′) dx = −

∫ ∞
−∞

d

dx
f(x)δ(x− x′) dx = −

{
df(t)

dt

}
t=x′

(A.4)

In a similar way, ∫ ∞
−∞

f(x)
dn

dxn
δ(x− x′) dx = (−1)n

{
dnf(t)

dtn

}
t=x′

(A.5)

There are two important properties of the derivative of the Dirac delta. First, the

operator d/dx can be replaced by d/dx′, but this operation changes the sign of the

derivative,
d

dx
δ(x− x′) = − d

dx′
δ(x− x′). (A.6)

Second, the first derivative of δ(x− x′) is an odd function,{
dδ(t)

dt

}
t=x−x′

= −
{
dδ(t)

dt

}
t=x′−x

(A.7)

The first statement is proved by moving the differential outside the integral sign:∫ ∞
−∞

f(x)
d

dx′
δ(x− x′) dx =

d

dx′

∫ ∞
−∞

f(x)δ(x− x′) dx =

{
df(t)

dt

}
t=x′

(A.8)

The second statement requires a clarification. Since the operations of taking the

derivative and changing the sign of the argument of a function do not commute, the

result will depend on their order. In Eq. (A.7), differentiation precedes changing the

argument of the derivative function. On the other hand, if differentiation is performed

after replacing (x − x′) by (x′ − x), the sign of the derivative does not change. To

distinguish between the two (potentially confusing) cases, we indicate the order of the

operations using square brackets:[
dδ

dx

]
(x− x′) = −

[
dδ

dx

]
(x′ − x), but (A.9)

d

dx
[δ(x− x′)] =

d

dx
[δ(x′ − x)] . (A.10)

The Dirac delta function is easily generalized to the case of three dimensions:

δ(r− r′) ≡ δ(x− x′)δ(y − y′)δ(z − z′). (A.11)
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All properties derived for the one-dimensional delta function also apply to the three-

dimensional function. Let us write out the results:∫
f(r)δ(r− r′) dr = f(r′) (A.12)

∫
f(r)∇rδ(r− r′) dr = −∇r′f(r′) (A.13)∫
f(r)∇2

rδ(r− r′) dr = ∇2
r′f(r′) (A.14)

δ(r− r′) = δ(r′ − r) (A.15)

[∇rδ](r− r′) = −[∇rδ](r
′ − r) (A.16)

∇r[δ(r− r′)] = ∇r[δ(r
′ − r)] (A.17)

∇rδ(r− r′) = −∇r′δ(r− r′). (A.18)



Appendix B

Functional derivative of the

Levy–Perdew energy expression

Here we derive a convenient formula [Eq. (B.20)] for evaluating functional derivatives

of functionals of the form

F [ρ] =

∫
v(ρ, g)(3ρ+ r · ∇ρ) dr, (B.1)

where g ≡ |∇ρ| and v(ρ, g) is some gradient-corrected Kohn–Sham model potential.

Equation (B.1) belongs to a class of functionals of the type

F [ρ] =

∫
f(r, ρ,∇ρ) dr. (B.2)

Functional derivatives of such quantities are given by the general formula of the cal-

culus of variations,
δF

δρ
=
∂f

∂ρ
−∇ ·

(
∂f

∂∇ρ

)
, (B.3)

in which ∂f/∂∇ρ means a vector with the components (∂f/∂ρx, ∂f/∂ρy, ∂f/∂ρz) with

ρi ≡ ∂ρ/∂i (i = x, y, z). Applying formula (B.3) to Eq. (B.1) one has

δF

δρ
=
∂v

∂ρ
(3ρ+ r · ∇ρ) + 3v −∇ ·

[
∂v

∂∇ρ
(3ρ+ r · ∇ρ) + rv

]
. (B.4)

We observe that

∇ · (rv) = 3v + r · ∇v (B.5)
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and use this identity to rearrange Eq. (B.4) as follows

δF

δρ
=

[
∂v

∂ρ
−∇ ·

(
∂v

∂∇ρ

)]
(3ρ+ r · ∇ρ)− ∂v

∂∇ρ
· ∇(3ρ+ r · ∇ρ)− r · ∇v. (B.6)

Let us elaborate each of the three terms on the right-hand side of Eq. (B.6),

starting with the last. Using the chain rule of differentiation for v(ρ, g) we have

r · ∇v =
∂v

∂ρ
r · ∇ρ+

∂v

∂g
r · ∇g. (B.7)

The dot product r ·∇ρ can be evaluated trivially. To evaluate r ·∇g, we observe that

each of the three components of the Cartesian vector ∇g ≡ (gx, gy, gz) can be written

as gi = g−1
∑

j ρijρj, where i, j = x, y, z and ρij are the components of the Hessian

tensor of the density. This gives the following ready-to-program formula

r · ∇g =
1

g

∑
ij

iρijρj (i, j = x, y, z). (B.8)

Now for the second term of Eq. (B.6). Using the chain rule of differentiation for

v(ρ, g) we have
∂v

∂∇ρ
=
∂v

∂g

∂g

∂∇ρ
=
∂v

∂g

∇ρ
g
. (B.9)

This allows us to write the second term of Eq. (B.6) as

∂v

∂∇ρ
· ∇(3ρ+ r · ∇ρ) =

∂v

∂g

[
3g +

∇ρ · ∇(r · ∇ρ)

g

]
. (B.10)

Here
∇ρ · ∇(r · ∇ρ)

g
=
g2 +

∑
ij iρijρj

g
= g + r · ∇g, (B.11)

where we have used the definition of r · ∇g by Eq. (B.8). Substitution of Eq. (B.11)

into Eq. (B.10) yields

∂v

∂∇ρ
· ∇(3ρ+ r · ∇ρ) =

∂v

∂g
(4g + r · ∇g) . (B.12)

Next consider the quantity inside square brackets in the first term of Eq. (B.6). Ex-

pressions of this type were worked out in Sec. 3.2.1. Referring to Eqs. (3.3) and (3.8),
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we can immediately write

∂v

∂ρ
−∇ ·

(
∂v

∂∇ρ

)
=
∂v

∂ρ
− ∂2v

∂ρ∂g
g − ∂v

∂g

∇2ρ

g
+

(
∂v

∂g
− g∂

2v

∂g2

)
w

g3
, (B.13)

where w =
∑

ij ρiρijρj [cf. Eq. (3.7)].

Finally, we substitute Eqs. (B.7), (B.12), and (B.13) into Eq. (B.6) and write the

result as

δF

δρ
= 3ρ

∂v

∂ρ
−2 (2g + r · ∇g)

∂v

∂g
−
[
∂2v

∂ρ∂g
g+

∂v

∂g

∇2ρ

g
−
(
∂v

∂g
− ∂2v

∂g2
g

)
w

g3

]
(3ρ+r ·∇ρ).

(B.14)

Equation (B.14) is not easy to use unless the potential v is specified in terms of the

reduced (dimensionless) density gradient s rather than g. To adapt our formula to

functionals of the type

F [ρ] =

∫
v(ρ, s)(3ρ+ r · ∇ρ) dr, (B.15)

we change variables in Eq. (B.14) from (ρ, g) to (ρ, s) using the following transforma-

tion rules from Sec. 3.2.1

∂v

∂ρ
→ ∂v

∂ρ
− 4

3

∂v

∂s

s

ρ
, (B.16)

∂v

∂g
→ ∂v

∂s

s

g
, (B.17)

∂2v

∂ρ∂g
→ ∂2v

∂ρ∂s

s

g
− 4

3

∂2v

∂s2

s2

ρg
− 4

3

∂v

∂s

s

ρg
, (B.18)

∂2v

∂g2
→ ∂2v

∂s2

s2

g2
(B.19)

The result may be written as

δF

δρ
= 3

∂v

∂ρ
ρ+

[
4

3

∂2v

∂s2

s2

ρ
− ∂2v

∂ρ∂s
s− 4

3

∂v

∂s

s

ρ
− ∂v

∂s

q

ρs
+

(
∂v

∂s
− ∂2v

∂s2
s

)
u

ρs3

]
(3ρ+ r · ∇ρ)

− 2
∂v

∂s
r · ∇s, (B.20)

where q and u are given by Eq. (3.9) and

r · ∇s =

(
r · ∇g
g
− 4

3

r · ∇ρ
ρ

)
s. (B.21)

The dot product r · ∇g is computed using Eq. (B.8). In Eq. (B.20), as in Eq. (3.13)
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of Sec. 3.2.1, the derivatives of v(ρ, s) with respect to ρ refer only to the explicit

dependence of v on ρ; the implicit dependence on ρ through s is taken into account

by the variable transformation.
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