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Chapter 1

Introduction

1.1 Density functional theory

In 1964, Pierre Hohenberg and Walter Kohn proved [1] that the energy and electronic
properties of atoms and molecules are uniquely determined by the electron density
p(r) = p(x,y,z). The work of Hohenberg and Kohn has become the beginning of
what is now called density functional theory (DFT), one of the most successful and
widely used methods of electronic structure calculations.

Density functional theory is an attractive alternative to conventional wavefunction-
based methods. The electronic wavefunction ¥ of a system with N electrons depends
on 3N spatial coordinates, while the density depends only on three coordinates, x, y
and z. This makes calculations involving the electron density faster than calculations
with wavefunctions. In fact, density functional theory makes it possible to study
systems with hundreds and even thousands of atoms [2].

In DFT, the total electronic energy is expressed as a functional of the density
E[p]. This functional can be written as a sum of several terms: The kinetic energy of
electrons, T'[p], the energy of electrons in the external field, V'[p], and the energy of

electron-electron interaction, Vge[p],
Elp] = Tp] + V]p] + Veelp]- (1.1)
Of these terms, only V[p| is known as an explicit functional of the density,
Vil = [ v(r)pte) (12

where v(r) is a multiplicative external potential acting on the electrons. For atoms,



molecules and solids, v(r) is simply the Coulombic potential of the nuclei with charges

Z 4 at positions R4,
ZA
v(r) = - —=—. (1.3)
a1 ’I‘ — RA|

Using Eq. (1.2), the total energy functional of Eq. (1.1) can be expressed as

Elpl = Flol + [ vlwp(r)dr. (1.4)

where the functional F[p] = T'[p] + Vie|p]. The leading contribution to the term Vo[p]

is the classical Coulomb electron-electron repulsion
1 p(r)p(r’)
== [d ———dr. 1.
Hol = [ ar [BEE T ar (15

Using Eq. (1.5), the functional F[p] may be rewritten as
Flp| = T[p] + J[p] + a non-classical term, (1.6)

where the non-classical term describes the quantum-mechanical effects of electronic
exchange and correlation [3]. The functional Fp] is universal in that it is the same
for any chemical system. All system-specific information is contained in the external
potential v(r), provided that the number of electrons N is fixed.

Hohenberg and Kohn also proved [1] that the total energy functional Elp] of
Eq. (1.4) is variational, that is, for any trial N-electron density p it gives an en-
ergy that is above the exact ground-state energy Ey, or E[p] > FEy. Therefore, the
trial density that minimizes the value of the functional E[p] is the true ground-state

density. In order to make this result practical, we need to know the functional F[p].

1.2 Kohn—Sham method

The crucial part of the functional F[p| is the electron-electron interaction energy
Veelp]. Suppose we want to apply the Hohenberg—Kohn theory to a system of non-
interacting electrons moving in a field of external potential v(r). For this system
(denoted by a symbol “s”), the many-electron Shrodinger equation can be solved

exactly; the solution is an antisymmetrized product of orbitals ¢; determined from



the single-particle Shrodinger equations
-

Because the electrons in this fictitious system do not interact, the term V,.[p] vanishes,

so the functional F[p] becomes simply

Flpl =5 3 (9 V?16:) = Tl (18)

with the electron density given by

plr) = > o). (19

Formally, T[p] is a functional of the orbitals ¢;. However, for non-interacting systems,
Ts[p] = Fs|p], which means that Tg[p] is a universal functional of the density p alone.

For the real (interacting) system, the functional F'[p] can now be written as
Flp] = Ti[p] + J[p] + Excll, (1.10)

where the term Exc[p] includes the effects of exchange and correlation. The functional
Exc|p] is unknown; formally, it is defined as Exc|p] = Flp] — Ts|p] — Jp].

Minimization of the total energy functional

EMIEM+/MW®m+%/w/%%%%w+&Wﬂ (111)

with respect to p yields a set of one-electron Hartree-like equations known as the

Kohn—Sham equations,
|:_%V2 + U5<I'):| le(r) = €z¢z(r) (112)

The Kohn—Sham potential vs(r) is the effective potential energy operator defined as

a functional derivative of the functional E[p] — Ts[p]. It can be written as
vs(r) = v(r) + vaxc(r), (1.13)

where v is the potential of the nuclei and vyxc is the effective electronic Hartree-



exchange-correlation potential. The vyxc subsumes all electron-electron interactions

of the real system and is itself partitioned as

Uch(I') = UH(I‘) + ch(r), (114)

where the Hartree potential vy is the functional derivative of the electrostatic repulsion

functional J[p],

v (r) = / p(f)ﬂ dr, (1.15)

v
and the exchange-correlation potential vxc is the functional derivative of the exchange-

correlation functional Fxc[p],

dExcp)
oxelr) = 5y

(1.16)
Comparison between Eqgs. (1.7) and (1.12) suggests the following interpretation of the
potential vg(r): It is the external potential of a fictitious system of non-interacting
electrons that has the same density p(r) as the real (interacting) system [4]. The
density constructed by Eq. (1.9) from the orbitals obtained by solving the Kohn—
Sham equations is the density that minimizes the total energy functional E[p] of the
system of interacting electrons. But the potential v, itself depends on the electron
density, so the Kohn—Sham equations need to be solved iteratively. The self-consistent
procedure involves the following steps: (i) start with an initial guess for the density;
(ii) construct vy and vxc, and solve the Kohn—Sham equations; (iii) update the density
using the new orbitals ¢;. This procedure is repeated until self-consistency, i.e., until
the Kohn—Sham equations return the input density.

The simplicity and formal exactness of the Kohn—Sham density functional theory
come with a price. The exact exchange-correlation functional Ex¢|p] is unknown and
must be approximated for any practical application. There is no systematic proce-
dure for the improvement of density-functional approximations, and developers often
include empirical parameters to achieve good agreement with experiments. As a re-
sult, most density-functional methods existing today occupy an intermediate position

between semiempirical and ab initio theories.



1.3 Functionals and functional derivatives

1.3.1 Definition of functionals and functional derivatives

In this section we present a brief discussion of the properties of functionals and func-
tional derivatives by comparing them to the familiar concepts from the ordinary cal-
culus. Recall that a function is a rule assigning a number to another number. A

functional is a rule assigning a number to a function,

F(r) 2 P (1.17)

In simple terms, a functional can be thought of as a function whose argument is a

function. Examples of functionals include:

e A definite integral over a continuous function f(z):

F[f] = /m2 f(z)dx. (1.18)

e A prescription which associates a function with the value of this function at a

particular point zq:
F[f] = [ (o). (1.19)

This functional can be represented as an integral with the Dirac delta function

(refer to Appendix A for details):
T2
Flf] = / F@)5(x — z0) dz, a1 < 30 < 5. (1.20)

Approximate density functionals often depend on the density p and its first and

sometimes second derivatives through the gradient Vp and the Laplacian V?p, re-

Fiol= [[[ 160.90.9%0) ar. (1.21)

where the integration volume V' is the entire coordinate space. Usually the triple

spectively,

integral sign [[,, is reduced to a single [ with the implied integration limits. Func-
tionals of the type of Eq. (1.21) are called explicit because they are constructed from
the density-dependent ingredients alone. By contrast, orbital-dependent functionals
such as Ti[p] of Eq. (1.8) include the Kohn—Sham orbitals and are thus implicit func-

tionals of p. The simplest explicit functionals are the Coulomb repulsion of the density



given by Eq. (1.5) and the local-density approximation (LDA) for exchange energy of

the uniform electron gas,
EXM o) = ~Cic [ o) dr, (1.22)

where Cx = (3/4)(3/7)'/? is a non-empirical constant.

Similar to the ordinary calculus, there exists calculus dealing with the functionals
[5-7]. The central quantity to the calculus of variations is the concept of a functional
derivative. Let F'[p] be a density-functional approximation for some kind of electronic
energy. For a given p(r) and an arbitrary integrable function h(r), consider the

functional defined by

DF|p,h] = lim

t—0 t

Flp+th] — Flp] _ {%F[p+th]} (1.23)

If this functional exists and is linear in h, then it is called the Gateaux differential at

p in the direction h. Usually, it may be written as a linear (in h) integral operator

DF(p,h] = / o((pl; 1)(r) d, (1.24)

where v([p];r) is a function independent of h(r). The distribution v([p];r) is called

the functional derivative of F[p], and it is itself a functional of p at every point r,

wlloim) = 58,

(1.25)

For a particular choice of h = dp, the differential DF[p, h] becomes the classical

variation of the functional F'[p],

IF[p| = / 55/];([5)] dp(r)dr, (1.26)

which implies that the total change in F' upon variation of the function p(r) is a linear
superposition of the local changes summed over the entire range of r values. In light
of this discussion, Eq. (1.26) can be interpreted as an extension of the total differential

of a function of several variables

aof
ox,,

N
flzy,29,...,2n) — df:Z dz,. (1.27)
n=1



to the case of an infinite number of variables [5, 7].

1.3.2 Calculation of functional derivatives

In order to calculate the functional derivative of F'[p], one has to evaluate the differ-
ential DF[p, h] using Eq. (1.23), convert the result into the form of Eq. (1.24) and
then identify the functional derivative dF'[p]/dp(r). As an example, consider the local
density approximation for exchange energy defined by Eq. (1.22). The first differential

of that functional is given by

DER ] = Ol g [lotrsen) P i} =G [ wnm ar. (12s)

t=0

Comparing this expression with Eq. (1.24) we conclude that the functional derivative

of the LDA exchange functional, called the LDA potential for exchange v%P4, is

oA, _ OB o] 4 1/3
v (r) = o) —3Cxp P(r). (1.29)

Before we proceed further, let us show how the calculation of functional derivatives can
be simplified with the help of Dirac’s delta function (Appendix A). Let h(r) = §(r—1').
Substituting §(r—r’) into Eq. (1.24) and employing the definition of the delta function,

DE[p, ] = / f;f([rp)] 5(r — 1) dr ng(L’j%, (1.30)

and the functional derivative is simply equal to the first differential DE|p, ],

we obtain

S E[p]
op(r’)

— {%E[p(r) +to(r — r')]}tzo (1.31)

Let us illustrate this by differentiating the electrostatic repulsion functional J[p] given
by Eq. (1.5). We can rewrite J[p] as

Jp] = %/dr’/%dr”. (1.32)

r//‘



Application of Eq. (1.31) yields

e f {dt/ / )+ to(r —|11:/)]_[p£/1/'r) +t6(r" —1)] dr,,}tzo

/ ) 1 }i( /> /
- L L.
|/ |dr—|— | //’dr /|/ |dr, (1.33)

//| _

where we have used the fact that |[r—r |r” —r| and changed the dummy integration
variable from r” to r’.
In a similar fashion one can derive a general functional differentiation formula for

explicitly density-dependent functionals of the type of Eq. (1.21):

-G () ) e

where 0f/0Vp is a shorthand for a vector with three components df/dp.,, in which
ph. = 0p/0a and a = z,y, 2.

Finally, let us derive a useful expression for the derivative of a functional with
respect to a parameter. Consider the functional F[p], in which the function p(r,t) in

turn depends on a parameter t. The variation of F[p| is defined by

SFlp] = / 5‘;@,";(5[)(1«, ) dr. (1.35)

Suppose the function p(r,t) is varied by changing the parameter ¢ only. Then

Sp(r, 1) = 5’,0((91; D . (1.36)
and
SF[p] = 5(;{3);) Op ((;; D v at (1.37)

Observe that F' does not involve integration over ¢, and may thus be treated as a
function of t. The variation of F(t) is then simply equal to §F(t) = (0F/0t)dt.
Comparing this equality with Eq. (1.37), we arrive at

OF [ 0F[p] Op(r,t)
E_/Mr’t) S dr. (1.38)




With the shorthand p,(r) = p(r,t), this last expression becomes

OF[p] _ / IF[p] Op(r)

ot dp(r) Ot (1.39)

We will employ this formula in the following Section.

1.4 Potential-driven density functional theory

In order to perform density-functional-theory calculations, one needs an approxima-
tion for the exchange-correlation functional Exc[p]. The potential vxc is then obtained
as a functional derivative of Fxc[p| using the techniques discussed in the previous Sec-
tion. Dozens of approximate exchange-correlation functionals have been proposed to
date [3, 8-10], some of them closely approaching the chemical level of accuracy of
1 keal mol™t. Unfortunately, functional derivatives of most existing density func-
tionals lack essential properties of the exact potential [11]. For example, all density-
functional approximations fail to reproduce the exact Coulombic —1/r asymptotic
decay of the potential. The result is a wrong description of molecular response prop-
erties such as ionization, electronic excitation energies, and hyperpolarizabilities. A

possible solution is to approximate the exchange-correlation potential vxc directly.

1.4.1 Model potentials

Model exchange-correlation potentials are usually designed to mimic the asymptotic
behavior [12-14], shell structure [15-18], and derivatives discontinuities [19, 20] of the
exact potential. Compared to common density functionals, potential approximations
predict very accurate molecular response properties [19-22]. In this section, we will

review some of the model potentials existing today and explain how they work.

Fermi—Amaldi potential

The Fermi—Amaldi (FA) potential is defined by

v (r) = _%UH(I'), (1.40)

where vy (r) is the electrostatic potential of Eq. (1.15) and N is the number of elec-
trons. Formally, the potential of Eq. (1.40) is a functional derivative of the Fermi-

Amaldi density functional [23-25] obtained under the assumption that N is a constant.
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The Fermi—Amaldi model has the correct —1/r asymptotic decay due to the pres-
ence of the electrostatic kernel |r' — r|~'. This follows from the multipole expansion
25, 26] of v¥A (1),

v (r) = = p(r) dr’ 1 (r — o00). (1.41)

- N It/ — 1| Ty

Taken by itself, the Fermi—Amaldi potential is a poor representation of the true
vxc. Still, it has the correct Coulombic decay and therefore can be used to tailor the
long-range behavior of other model potentials [19, 25, 27]. One of the models that
involves the Fermi-Amaldi term as an ingredient is the Umezawa potential [14].

Umezawa potential

Umezawa [14] used the Fermi-Amaldi potential to refine the asymptotic behavior of

the LDA potential. The exchange-like part of the Umezawa model (U06) is given by
v (1) = gi(r)oPA (r) + ga(r)vx (x). (1.42)

The switching functions g;(r) and gs(r) are defined as

1 2¢2.2
d =1—e %"

= 1.43
7l = 1 (1.43)
where ¢ = 2'/3 is the factor arising in the transition to the spin-unpolarized form
and v = 0.125 is the empirical parameter chosen to fit the U06 potential (combined
with the Perdew—Zunger approximation for correlation [28]) to the true vxc of the
helium atom. The quantity s is a dimensionless reduced-density gradient, a ubiquitous
component of gradient-dependent approximations [29],

Vel
The Umezawa potential employs the switching functions g; and g, to adjust the
weights of the LDA and Fermi—Amaldi terms in different physical regions of the den-
sity. The asymptotic regions of atoms and molecules (r — 00) are characterized by
the large reduced-density gradient (s — o0), so the functions g; and g, approach 0
and 1 respectively. As a result, the U06 model acquires the proper long-range decay

of the Fermi—-Amaldi potential.
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Model potential of van Leeuwen and Baerends

Another strategy for developing model exchange-correlation potentials is to specifi-
cally design analytic expressions with the correct asymptotic behavior [12, 30]. Con-
sider, for example, the model potential of van Leeuwen and Baerends (LB94) [12].
This approximation is defined as a sum of the LDA potential and a semilocal gradient

correction term. The exchange-like part of the LB94 is given by

2
s
LBIL _ LDA _ 1/3 ﬁf . (1.45)
1+ 3B¢ssinh™ (£s)

Here, s is the reduced-density gradient of Eq. (1.44), ¢ = 2'/3, and f3 is an empirical
parameter. The value of § = 0.05 was determined by fitting the LB94 potential
(combined with the LDA correlation potential of Ref. 31) to the exact exchange-
correlation potential of the Be atom.

The gradient correction term of Eq. (1.45) has the analytic form of the Becke
exchange energy density [8]. To understand why this correction exhibits the Coulom-
bic decay, consider its behavior in the limit of large s. Asymptotic expansion of the

semilocal part of LB94 yields, up to the leading term,

- P13 3¢5 N _1p1/33
1 + 33¢&ssinh ™ (€5) 3 Ins

(s — o00). (1.46)

Upon substitution of the exponential density p(r) = Ne " into the expression above,
its right-hand side becomes exactly —1/7.

Because of the proper long-range decay, well-defined shell structure, and the
computational simplicity, LB94 to this day remains one of the most popular model

exchange-correlation potentials.

Slater, Becke—Johnson and related models

So far we considered approximations to the total exchange-correlation potential.
There also exist a number of approximations to the exact exchange-only potential.

Consider the conventional exact-exchange (EXX) energy functional,

1 7\ |2
E%XX:——/dr e OF (1.47)

4 r —r/|
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where

(e, r') = Z ¢i(r) o5 (r') (1.48)

is the density matrix of the Kohn—Sham non-interacting system. The exact-exchange
functional of Eq. (1.47) is defined as the Hartree-Fock exchange energy formula writ-
ten in terms of the Kohn-Sham orbitals. Because the exact-exchange functional
explicitly depends on the Kohn—Sham orbitals, its functional derivative cannot be
obtained by techniques described in the Section 1.3.2. It can be, however, evaluated
numerically using the optimized effective potential (OEP) method [32, 33]. Due to
the ill-posed nature of the OEP problem in a finite basis set [34, 35], attempts have
been made to model the functional derivative of Eq. (1.47) directly [13, 15-18, 36].
The averaged exchange-charge potential of Slater [13] arises as a leading term in
the expression for a functional derivative of the exact-exchange functional [16]. For

closed-shell systems, this potential can be written as

oL [l
X0 =", o

dr', (1.49)
where 7(r, ') is given by Eq. (1.48). Like the model potentials we discussed before, v%
possesses the proper Coulombic asymptotic decay. But unfortunately, for a uniform
electron gas, the Slater potential is deeper than the exact-exchange potential by a
factor of 3/2 and is not a good approximation if taken alone.

The Slater potential is a starting point for many other approximations. In the
Becke—-Johnson model [17], for example, the exchange potential is represented as the

sum of the Slater potential and a correction term,

k
e =v§+%, (1.50)

where 1o
107
kpy = —— 1.51
w=(32) (151

and 7(r) = %vazl |V;(r)|? is the Kohn-Sham kinetic energy density. Inclusion of
the 7-dependent term brings the Becke-Johnson model closer to the exact-exchange
potential [17]. At the same time, kg;/27 becomes a constant for exponential densities,
and the resulting potential has a wrong —1/r + C' asymptotic decay, where C' is a
system-dependent constant.

The Becke—Johnson potential can be improved by adding to it a term that depends
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on the derivatives of 7(r) and p(r). The result is the gradient-corrected (GC) potential

of Staroverov [18], ,

vl = vg! — 28787T W:%T c (1.52)

This correction refines the shell structure of the potential but inherits the incorrect
—1/r + C behavior of the Becke-Johnson model.

Another improvement of the Becke—Johnson potential was proposed by Réasénen,

Pittalis and Proetto [36]. For real Kohn—Sham orbitals, their potential is given by

the same formula as the Becke—Johnson model of Eq. (1.50) but with kgj replaced by

107 — w 1/2
k = — 1.53
e (352) o

where Ty = |Vp|/8p is the von Weizsdcker correction to the Thomas-Fermi kinetic

krpp defined as

energy density [37]. The correction of Résédnen and co-workers vanishes at each point

r for one- and two-electron densities and has the exact —1/r asymptotic decay.

Potentials of the localized Hartree—Fock family

A further improvement of the Slater potential is provided by the model potentials of
the localized Hartree-Fock (LHF) family [38]. The members of this family can be

represented as the Slater potential v§ plus a correction,

1

p(r > widi(r) (1.54)

1 j=1

Mz

vx(r) = U>S<

7

Different choices of w;; correspond to different models. The potentials defined by
Eq. (1.54) include the approximations of Krieger, Li, and Iafrate (KLI) [15], Della Sala
and Gorling [38], Griining, Gritsenko, and Baerends [39], and Staroverov, Scuseria,
and Davidson [40]. Very recently, the author in collaboration with Kananenka, Kohut,
Ryabinkin, and Staroverov designed a new accurate model potential [41] of the same
family. This potential was constructed with the aid of the Kohn-Sham inversion

procedure [12, 42, 43] for the Hartree—Fock equations, and is given by

Z

vx(r) = vk ([p"];r e )loi (r)f. (1.55)

=1

The whole expression, including the Slater potential v ([p'F]; 1), is constructed using

the Hatree—Fock orbitals ¢/ and the density p'F. Our model is a special case of
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Eq. (1.54) with w;; = (¢, — €7F)d;;, where ¢; are the eigenvalues of the potential vx and
HF

e, are the Hartree-Fock orbital energies. Since a potential is always determined up
to an arbitrary constant, we fixed it by requiring wyomo = 0. This choice eliminated
the HOMO from the last term of Eq. (1.55) and ensured that the potential inherits
the correct —1/r decay of the Slater model. The potential of Eq. (1.55) is computed
iteratively starting with the Hartree-Fock orbitals until the eigenvalues ¢; become
consistent between iterations. For this reason, the model of Eq. (1.55) was termed
the ‘e-consistent potential’.

Let us analyze the relation between the e-consistent potential and two potentials
proposed in Ref. 38, TLHF and TKLI. TLHF and TKLI approximations are equivalent
to the LHF [38] and KLI [15] but, similar to our model, are defined using the Hartree—

Fock orbitals. The parameters w;; that generate these potentials are:

TLHF:  wy; = (¢1F [ofMF — K [HF)
TKLL  w;; = (¢ |oTKM — K|gHF)s,;
Eq. (1.55): wij = (& — ) 6

In these equations, A is the non-local Hartree—Fock exchange energy operator [44].
The TLHF model depends on the full matrix w;;, while TKLI and Eq. (1.55) neglect
its off-diagonal part. Furthermore, w;; for the TKLI and the e-consistent models can

be brought to a similar form [41] as

Eq (155) Wij = ei(Sij — E?F5ij,
where h is the local Kohn-Sham operator with TKLI exchange potential. Thus,
the model potential defined by Eq. (1.55) amounts to a replacement of expectation
values (¢ |h|¢HF) in TKLI with eigenvalues ¢;. It has similar performance to other

potentials from the family, and is more accurate than the Slater and Becke-Johnson
models [41].
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1.4.2 Reconstruction of density functionals'

Application of the potential-driven DFT has long been hindered by several method-
ological difficulties. One of the problems is that the energy functional, corresponding
to a given model potential, is usually unknown. This means that one needs to find
a way to compute the energy corresponding to a model potential. Furthermore, the
parent functional for a model potential may not exist at all. We are going to address
these issues in more detail in the present and the following Sections.

Assume that a model potential vxc has a parent functional Exc[p]. Since the
explicit form of Exc[p] is unknown, one needs some sort of functional “integration”
procedure to compute the energy. Many texts discuss functional differentiation at
length [7, 26, 37], but very few consider the inverse problem [45].

On the basis of Eq. (1.34) it is obvious that for any local exchange-correlation po-
tential (that is, a potential that depends only on p but not on Vp or higher derivatives
of p), the exchange-correlation energy density can be found simply as an indefinite in-
tegral (antiderivative) of vxc with respect to p. For semilocal exchange-correlation po-
tentials, which also depend on Vp and higher derivatives of p, a more general method
is required. Such a method was developed by van Leeuwen and Baerends [46], who
essentially reincarnated Volterra’s result from the general theory of functional calculus
[5]. The idea of van Leeuwen and Baerends was to introduce an additional param-
eter ¢ into the density p(r) to create a path of densities p;(r). As explained at the
end of Section 1.3.2, the functional Exc[p] then becomes a function of the variable ¢,
Exclpt] = Exc(t). The derivative of this function is given by Eq. (1.39):

9Exo(t) 0 Exclpi] Opi(r) Op(r)
ot / Spp(ry ot " / vxo(lpeir) =7~ dr (1.56)
Integrating this derivative from t = A to t = B, we arrive at the following energy
difference:
P 0Exc(t B Opi(r
Exclps] = Exclpal :/ g—i()dt :/ dt/vxc([f)t];r) péi )dl“, (1.57)
A A

which holds for an arbitrary path connecting p4 and pp [46]. Equation (1.57) is the
most general form of the van Leeuwen—Baerends line integral. In particular, if the

parametrization p;(r) is such that Exclpa] = 0 and pp(r) = p(r), then Eq. (1.57)

!Reproduced in part with permission from A. P. Gaiduk, S. K. Chulkov, and V. N. Staroverov,
“Reconstruction of density functionals from Kohn—Sham potentials by integration along density
scaling paths”, J. Chem. Theory Comput. 5, 699 (2009). Copyright 2009, American Chemical
Society.
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reduces to

Bxclo] = / it [ oxcllod SKLLN (1.58)

This last expression can be used to assign an energy to a given model potential without
prior knowledge of the functional Exc[p].

Any reasonable parametrization p; can be used with the line-integral formula of
Eq. (1.58). The word “reasonable” means that the derivative dp;/0t exists for all
values of t. In practice, it is convenient to perform line integration along paths
of magnitude- or coordinate-scaled density. This allows one to have vxc([p];r) in
a closed form at any point along the integration path. We will now give several
examples of such density transformations. The first example is the linear density
scaling explored by Liu and Parr [47], Chan and Handy [48], and Nagy et al. [49].
We will call it the ¢-scaling,

Pq(r) = gp(r). (1.59)

Another example is the uniform density scaling, which we will call the A-scaling. This

transformation, extensively studied by Levy [50], is defined by
pa(r) = X’p(Ar). (1.60)

Under the A-scaling of the density, any valid ezchange potential is homogeneous of
degree one [51, 52]:
vx([palir) = Aux([p]; Ar). (1.61)

The line integral of Eq. (1.58) expressed in terms of the A-scaled exchange potential

can be evaluated in closed form; the result is the Levy—Perdew virial relation [46, 53]

Ex[p] = / ox(1)[3p(r) + 1 - Vp(r)] dr. (1.62)

Finally, consider the density scaling proposed by Perdew and co-workers [54]. We will

refer to it as the (-scaling,
pe(r) = p(¢r). (1.63)

The paths connecting the points A = 0 and B = 1 along the ¢-, A-, and (-scaled
densities are called, respectively, the Q-, A-, and Z-paths. Among these paths, only
the A-path conserves the electron number. The number of electrons along the Q-
and Z-paths changes as ¢N and (N, respectively, where N is number of electrons
in p(r). Note that the condition Exc[pa] = 0 is trivially satisfied for the Q-path.
For the A-path, p,(r) becomes infinitely dilute (vanishes locally) as A\ — 0, so that
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limy_o Exc[pa] = 0 [50, 55, 56]. For the Z-path, both p¢(r) and Exc|[p¢] vanish in the
¢ — 0 limit.

Partial derivatives of these scaled densities with respect to their scaling parameters
are readily obtained by applying the chain rule of differentiation. For future reference,

we write out the results:

(9pq(r) o
o0 p(r), (1.64)
OO 32 30(Ar) + (Ar) - VaeplAr)] (1.65)
Ope(r) (1o

— = ( |20(¢MPr) + - Vearsp(¢Pr) | (1.66)

a¢

We will now illustrate how Eq. (1.58) can be used to reconstruct exchange and

3

correlation density functionals from the corresponding functional derivatives.

Local density approximation for exchange

According to Eq. (1.29), the LDA potential for exchange is given by
LDA 4 1/3
v (lplir) = =3 Cxp(r). (1.67)

Suppose we did not know what functional generated this potential. Let us employ
the line integral method to reconstruct this “unknown” functional.

Under the ¢-scaling of the density, the LDA exchange potential transforms as

vP* ([pgliT) = ¢ PP ([p); ). (1.68)

Multiplying this potential by dp,(r)/dq = p(r) and integrating over ¢ we obtain the

Q-reconstruction

EX A = [ ook (o) (1.69)

which, in view of Eq. (1.67), is identical with EXPA[p] of Eq. (1.22).

Under the uniform density scaling, the LDA exchange potential transforms as
o ([alsr) = Ao ([l Ar). (1.70)

Inserting the A-scaled LDA potential into Eq. (1.58) we obtain the A-reconstruction:

EDMp] = / P (i) [30(r) + 1 - Vp(r)] dr. (L.71)
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which is just the Levy—Perdew relation of Eq. (1.62). It is not obvious, but can

be proved by invoking the divergence theorem, that the value of E&B\A[p] is equal

to E)IZ%A [p] for any p vanishing at infinity. Numerical evaluation of the integrals of

Egs. (1.69) and (1.71) for test densities also confirms their equivalence [57].
Consider now the (-scaling of the LDA exchange potential

vPA([pcls ) = PP ([p]; ¢ o). (1.72)

Substitution of the (-scaled LDA exchange potential into the line integral formula

yields

1 1/3
¢/e°r
ExX7 o) = /O d¢ / PP ([} ¢ ) ¢ {2p<<1/3r> 25— Veap((r) | dr.
(1.73)
After the substitution ¢'/3r — r and integration over ¢ we obtain the Z-reconstruction

of the LDA:

BN = 2 [ () [200e) + - Vo) o (174

This functional is actually a linear combination of the Q- and A-reconstructions,
namely, 2 EY%p] + $EXOp], as can be seen by combining Egs. (1.69) and (1.71).
Since each of the Q- and A-reconstructions is numerically equivalent to EXP2[p], the
value of B [p] is also equal to EXP*[p]. Thus, Eqgs. (1.69), (1.71), and (1.74) are

different but equivalent representations of the same functional.

Local density approximation for correlation

Consider now the Wigner correlation functional

ap
EX[p) = — d 1.75
e (1.75)
where r, = (3/47p)'/? and a = 0.44 and b = 7.8 are constants. The functional

derivative of E¥[p] is

W) = b 4/3)()
ve ([p)sr) RSP (1.76)

where we have used the fact that drs/dp = —rs/3p. Let us reconstruct the Wigner
correlation functional from v ([p]; r) by using Eq. (1.58) and integrating the potential
along three distinct density scaling paths.



19

The g-scaled Wigner correlation potential is

Wi 1oy 0 (4/3)g Pr(r)
ve ([pglir) = —a Ep=TE e (1.77)

The Q-reconstruction is, therefore,

! _1/37"3 ap(r
Egqlol = —a/drp(r)/o bz;fé?_’)ffgrsy dg = —/H”—ﬁs()r)dr, (1.78)

which is precisely the original functional EX [p].

Under the uniform density scaling, the Wigner correlation potential transforms as

b+ (4/3)X"1ry(Ar)
F(lpalir) = — : L.
Cle ([p)\],r) a [b—i—)\—lrs(/\r)P ( 79)
The line integral along the A-path can be written as
b+ (4/3)A\"'ry(Ar) d(Ar)
EY : - (L
== [ an [ EEBEIEC )+ () Danptn) G (150

Changing the real-space integration variable A\r — r and integrating over A we obtain

the A-reconstruction of the Wigner functional

Eg,]A[P] = —a/ {% In b ‘::57’5 + 30 _1‘_ 7"5)} [Bp(r) + 1 - Vp(r)] dr. (1.81)

Similarly, we have derived the Z-reconstruction

2 3/2
Bl = [ [1 L L tZr;wQ“b/_rS] 20(6) + £ - 0] i
(1.82)
which, unlike the exchange functionals above, does not appear to be a linear combi-
nation of the Q- and A-reconstructions. However, numerical calculation [57] proves
that the correlation energies obtained by Egs. (1.81) and (1.82) are exactly the same

as those obtained by Eq. (1.75).

1.4.3 Potentials that are not functional derivatives

Equation (1.58) was derived under the assumption that the parent functional Exclp]
for the potential vxe actually exists. For any such potential, the line integration

recovers the parent functional Exclp] in which the energy density may have been
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transformed to a new gauge determined by the choice of the integration path. It may
happen, however, that a model potential does not have a parent functional, that is,
it is not a functional derivative. In such a case, the energy obtained using Eq. (1.58)
will in general depend on the particular integration path [46].
Consider, for example, the following model potential:
[Vo(r)]
o([plir) = LS (1.83)
p(r)
Is there a functional that generates this potential? We will show that the answer to
this question is “no”.
Under the ¢-scaling, this potential is unchanged:
V4l

vm([pgliT) = o T v ([p); 1), (1.84)

Therefore, the line integral along the Q-path is

o= [ da [ologi) e de = [ (9p00) o (1.85)

Under the uniform density scaling,

vm(palir) = —= = o ([p]; Ar), (1.86)

so the line integral along the A-path is

=[x ool ®a e = [EE o) v Tl 15)

Finally, under the (-scaling

v p) = [Vpe(r)| — /3y, (13,
m([pcliT) o) ¢ om([pl; ¢F0r), (1.88)

and the line integral along the Z-path is

o= [ ac [outlpdin 28 i = 3 [ o) £ )] a9

It is easy to see that the three reconstructions are related to each other: I, = %]Q—kil A-
Numerical evaluation of the three integrals given by Eqs. (1.85), (1.87), and (1.89)
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yields different values [57]. Therefore, the quantity defined by Eq. (1.83) is not a
functional derivative of any density functional with respect to p(r).

Let us introduce new terminology. We will call the model potential integrable if
it has a parent functional. If a model potential is not a functional derivative of any
density functional, we will call it non-integrable or stray. The outcome of line integra-
tion depends on whether the potential is integrable or not. If vxc(r) is integrable, the
line integration recovers the parent functional Exc. If vxc(r) is stray, then the line
integral is path-dependent, which means that the energy assigned to that potential is
not unique.

The issue of stray potentials is closely related to the problem of incomplete dif-
ferentials from the ordinary calculus [58]. Consider a well-behaved function f(zx,y).
The total differential of f has the form

df = P(x,y)dx + Q(z,y) dy, (1.90)
where o/ ) o7 )
P(z,y) = % and Q(z,y) = % (1.91)

According to the theorem on the symmetry of second mixed derivatives, the functions
P(z,y) and Q(x,y) are related to each other via the condition
OP(z,y) _ Pf(z.y)  Pflz.y) _ 0Q(x,y)

= = . 1.92
Jy 0xdy Oyox ox (1.92)

The complete differential df of Eq. (1.90) has a special property: Line integration
of df along an arbitrary path C from (z1,y1) to (z2,y2) always yields [58]

/C af = /C P(z,y)dx + /C Qa.y)dy = f(a2,92) — flza).  (1.93)

Assume for a while that we have not derived the functions P and @ using Eq. (1.91)
but rather, approximated them directly. If the model functions P and () are such that
Eq. (1.92) does not hold, the sum P(x,y) dr+Q(z,y) dy is not a complete differential.
Line integration of this sum will depend on the particular choice of the path C' [58].

The situation described above is analogous to what happens when the model
Kohn-Sham potential is stray. Recall that the differential of a functional [Eq. (1.26)]
is a generalization of a differential of a multivariable function [Eq. (1.27)]. In this
light, the potential v(r) = §F[p|/dp(r) is equivalent to a set of partial derivatives

Of/0x;. In calculus of variations, there exists a condition for integrability similar to
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Eq. (1.92),
dv(lplir) _ du([p);r')
op(r’) op(r)

This relation was first stated by Volterra [5] and subsequently introduced into density

(1.94)

functional theory by Ou-Yang and Levy [52]. Stray model potentials do not satisfy
Eq. (1.94). As a result, expression for § F'[p] of Eq. (1.26) evaluated with stray poten-
tials is not a complete differential, and the line integral of Eq. (1.58) depends on an

integration path.

1.4.4 Problems of non-integrable model potentials

Path-dependence of the line integral is not the only problem of stray model potentials.
Recall that the Kohn—Sham equations (1.12) minimize the total energy functional
El[p] given by Eq. (1.11). If the exchange-correlation potential in Eq. (1.12) is not a
functional derivative, the Kohn-Sham equations do not represent a solution to any
implied energy minimization problem. As a result, the density constructed from the
converged Kohn—Sham orbitals ¢;(r) does not correspond to the true minimum of
the energy. This means that stray potentials cannot be used for molecular geometry
optimizations [59-61] because the point where the forces acting on the nuclei vanish
will not coincide with the energy minimum [59].

Furthermore, energies assigned to model potentials often lack translational and
rotational invariance. Consider the Levy-Perdew virial relation of Eq. (1.62), the
usual energy expression used for model exchange potentials. Integration of the virial

relation by parts yields an equivalent form

Exlo] = - / p(r)r - Vox ([o]: 1) dr. (1.95)

Suppose we displace a molecule from its original position by —R, so that the density
p(r) becomes p'(r) = p(r + R). Exchange energy evaluated for a displaced molecule
using Eq. (1.95) is

Exly) = - [ plr+ Ryr- Vaux((gir + R) . (1.96)

After the variable substitution r' = r + R — r, we can rewrite the expression above

as

Exly] = Exlp] + R - / p(£)Vox([ol; x) dr. (1.97)
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Translational invariance requires that the second term on the right-hand side of

Eq. (1.97) vanish for an arbitrary R. This is possible only if, for every p,

/ p(r) Vo ([p]; 1) dr = 0, (1.98)

or, after integration by parts,

/ ox ()i 1) Vp(r) dr = 0. (1.99)

Similar expression also exists for the invariance of the virial energy with respect to

arbitrary rotations of the molecule,

/vx([p]; r)r X Vp(r)dr = 0. (1.100)

The relations (1.98)—(1.100) are known in the literature as the “zero-force” and “zero-
torque” conditions on the density [53]. They are automatically satisfied if vx([p]; 1)
is a functional derivative of some translationally and rotationally invariant energy
functional, but are violated if the potential is stray. As a result, the virial energies
corresponding to stray model potentials depend on the position of the molecule with
respect to the coordinate axes. No such problems exist for integrable potentials that
originate from some density functional.

Finally, even when the total energy is not needed (e.g., in time-dependent density
functional theory), use of stray potentials can still result in artifacts such as spurious
self-excitations of the system [62]. Other response properties, e.g. molecular polariz-
abilities, are also affected by the integrability of model potentials [63]. All this means
that one needs to have reliable methods to detect stray potentials and to construct

integrable model potentials directly.

1.5 Objectives of the study

The purpose of my graduate research was twofold. First, we wanted to develop a
method to identify and “repair” stray model potentials (i.e., make them integrable),
and be able to construct integrable potentials directly. Second, we wanted to design
accurate potential approximations and using them, improve prediction of molecular
response properties. This thesis describes some of our results achieved to this end.

In Chapter 2, we propose a set of numerical tests to identify stray potentials. In
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Chapter 3, we investigate the structure of functional derivatives of density-dependent
approximations and, guided by this information, propose a practical procedure for
constructing integrable model potentials. Chapter 4 discusses a modification of this
approach to avoid the explicit reference to the density functional. In Chapter 5, we
propose a novel application of the line-integration technique for the development of
density functionals from stray model potentials. Finally, in Chapter 6, we develop
a correction scheme for functional derivatives of standard density functionals. Our

correction scheme effectively generates model potentials on the fly.
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Chapter 2

Tests for functional derivatives

2.1 Introduction

An attractive alternative to pursuing the functional Exc[p] of Eq. (1.11) is to approx-
imate the potential vxc([p];r) of Eq. (1.16) directly with the Kohn-Sham orbitals,
which gives rise to the potential-driven density functional theory. However, a model
exchange-correlation potential may be stray, that is, not a functional derivative of any
functional. Stray model potentials produce a number of unphysical artifacts discussed
in Sec. 1.4.4.

Several workers have devised analytical and numerical criteria [1-4] to test the in-
tegrability of model potentials. For example, Ou-Yang and Levy examined translation
symmetry properties of the Slater potential [5] and found that it is not a functional
derivative [2], while Karolewski et al. [4] demonstrated that the Becke-Johnson poten-
tial [6] is stray by comparing the polarizabilities of polyacetylene fragments computed
using different methods. More generally, it has been remarked that approximate
potentials are usually not functional derivatives [7].

The present work is a concentrated effort to address the problem of stray potentials
in a general way. Our approach is to identify a few necessary conditions for a functional
derivative that can be turned into straightforward numerical tests and then to apply

these tests to actual model Kohn—Sham potentials.

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “Virial exchange
energies from model exact-exchange potentials”, J. Chem. Phys. 128, 204101 (2008). Copyright
2008, American Institute of Physics.

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “How to tell when
a model Kohn—Sham potential is not a functional derivative”, J. Chem. Phys. 131, 044107 (2009).
Copyright 2009, American Institute of Physics.
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2.2 Methodology

In this section, we discuss analytic properties that distinguish functional derivatives

from stray potentials and formulate three numerical tests for stray potentials.

2.2.1 Self-consistent-field convergence test

In the functional-driven approach, the functional Exc[p] is known from the outset
while the potential vxc(r) is determined as the functional derivative of Exc[p]. The
iterative solution of the Kohn—-Sham equations with integrable vxc(r) is variational,
and the self-consistent-field (SCF) energy is strictly lower than any intermediate en-
ergy. If, by contrast, the exchange-correlation potential is stray, then the Kohn—Sham
equations do not solve any implied energy minimization problem and the orbitals ¢;(r)
do not necessarily yield the lowest energy. In practice, this means that some inter-
mediate values of E[p] during the iterative solution of Eq. (1.12) could be below the
energy at convergence.

These arguments lead us to our first test for stray potentials: If in any itera-
tion of the SCF procedure the total energy obtained from a Kohn—Sham potential is
lower than at convergence, the potential is not a functional derivative. Of course, an
abnormal convergence pattern may simply indicate that the energy converges to an
excited state (i.e., a local minimum). However, if this abnormality is not a remedia-
ble SCF convergence problem, then the trial potential vxc(r) does not have a parent

functional.

2.2.2 Line-integral test

The line-integral method provides a solution to the inverse problem of functional
differentiation [3]. In this method, the difference between two values of Exc¢|p| at
arbitrary densities p4 and ppg is obtained as a line integral along a path of parametrized
densities p; connecting ps and pp. If the parametrization is such that Exc[pa] = 0
and pp = p, then the line integral can be written as Eq. (1.58).

The value of the line integral can be easily evaluated for a given model potential
vxc([p]; r), which provides a convenient way to calculate the exchange-correlation en-
ergy corresponding to the unknown functional. If the model potential is a functional
derivative, then any reconstruction of the functional yields the same value. If, how-
ever, the potential is stray, then the line integrals along different paths yield different

energies. In this work, we employ the line-integral method as a test for stray po-
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tentials. We recover density functionals from model potentials using the formula of
Eq. (1.58) along the Q-, A- and Z-paths given by Egs. (1.59), (1.60), and (1.63), and
compare the integrals. If the values of the integrals are not the same, the potential is
stray.

The line-integral test is limited only to the potentials that explicitly depend on the
electron density and its derivatives. This leaves out a wide and important class of po-
tentials constructed from the Kohn—-Sham orbitals and eigenvalues [8, 9]. We address
this problem and propose a similar test applicable to orbital-dependent potentials in

the following subsection.

2.2.3 Virial-energy test for exact-exchange potentials

Almost all approximate exact-exchange potentials (Sec. 1.4.1) depend on the Kohn—
Sham orbitals, and it is not possible to assign the line-integral energy to them along an
arbitrary path. Luckily, under the A-scaling of the density [Eq. (1.60)], exchange po-
tentials satisfy the relation of Eq. (1.61), and the line integration can be accomplished
analytically to give the Levy—Perdew virial relation of Eq. (1.62).

This means that there are at least two energy expressions for model exact-exchange
potentials at our disposal: (i) the “parent” EXX functional given by Eq. (1.47) and
(ii) the Levy-Perdew formula of Eq. (1.62). This suggests another straightforward
test for functional derivatives: Compare the energies assigned to a model potential
using the conventional exact-exchange functional and the Levy—Perdew virial relation.
If a model potential vx(r) descends from the functional of Eq. (1.47), the energies
evaluated using these two methods will be the same. Of course, the virial-energy
test is useful only for approximate exchange potentials but not for the full exchange-
correlation potential. This does not matter in practice because the few exchange-
correlation model potentials existing today [10-12] are density-dependent, and can
be examined using the line-integral test. From our experience, virial-energy and line-

integral tests complement each other.

2.2.4 Zero-force and zero-torque tests

Any physically reasonable approximation to the exchange-correlation functional must
be invariant with respect to translation and rotation of the density. Levy and Perdew
[13] and, independently, van Leeuwen and Baerends [3] found that functional deriva-
tives of invariant functionals satisfy two static-equilibrium conditions of “no net ex-

ternal force” and “no net external torque” on the density. These conditions, also
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referred to as the “zero-force” and “zero-torque” theorems [14], are formulated as two
vector identities, [ p(r)Vuxc(r)dr =0 and [ p(r)r x Vuxe(r)dr = 0. Integration by
parts yields more convenient Eqs. (1.99) and (1.100). The zero-force and zero-torque
conditions can be derived either by invoking the Hellmann—Feynman theorem [13] or
by evaluating the line integral along the path taken as a simple translation or rotation
of the density [3].

The identities of Egs. (1.99) and (1.100) can also be used to examine the properties
of a potential vxc. It follows from the careful analysis of van Leeuwen and Baerends
that if the zero-force and zero-torque theorems do not hold for an approximate vxc,
then either (i) the potential does not have the translational and rotational invariance
or (ii) it is not a functional derivative [3]. In fact, if vxc does not explicitly depend
on the position vector r, then the possibility (i) can be safely rejected, which in turn
means that the potential is not a functional derivative.

Using these arguments, we employ the zero-force and zero-torque theorems as a
test for stray potentials. We evaluate the integrals of Eqgs. (1.99) and (1.100) with a
model potential, and if they do not vanish, we conclude that the model potential is

not a functional derivative.

2.3 Results and discussion

From the tests described in Sec. 2.2, only the zero-force theorem has been used to
identify stray potentials [2, 7] prior to this study. The other tests have been formulated
and developed in our work. We have applied our tests to the Fermi—Amaldi, Umezawa,
van Leeuwen—Baerends, Slater, Becke-Johnson, Staroverov, and the e-consistent po-
tentials described in Sec. 1.4.1. For simplicity, we did not include the LDA for correla-
tion (which is a functional derivative) in the Umezawa and the van Leeuwen—Baerends
models.

For comparison purposes, we also tested several potentials that are a priori known
to be functional derivatives. The integrable potentials were derived from the LDA,
Gill (G96) [15], and Becke (B88) [16] exchange functionals using the expression of
Eq. (1.34) for a functional derivative of explicitly density-dependent functionals.

All calculations were performed in an appropriately modified development version
of the GAUSSIAN program [17]. In all occurrences, the Slater potential was obtained
by the finite-basis-set resolution-of-the-identity technique of Ref. 18 as described in
Ref. 19. Because this method is exact only in the complete basis set limit, large

uncontracted basis sets were used to minimize numerical errors [19]. In addition,
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the potential of Staroverov required special handling because it involves a highly
oscillatory gradient V7 from |VE;|%. These oscillations are large enough to cause a
noticeable error in the potential and in the exchange energy. To reduce this error, we
used the prescription of Ref. 20 and set

N 1

0 if r<-—— 2.1
K, STV (21)

where Z is the charge of the nucleus. This cutoff introduces only a negligible error

and would be unnecessary in codes employing Slater-type basis functions.

2.3.1 SCF convergence pattern

The self-consistent-field convergence test can be applied to any potential for which
one can easily obtain the energy. In the potential-driven approach to DFT, the parent
functional is not known, so the exchange-correlation contribution to the total energy
should be evaluated as a line integral. When a potential scales like Eq. (1.61), which
is the case for the Fermi—Amaldi potential and the exchange parts of the Umezawa
and van Leeuwen—Baerends models, the line integral along the A-path reduces to the
Levy-Perdew relation of Eq. (1.62). We used Levy-Perdew relation to compute the
energy from these and other (exact-exchange) model potentials. For consistency, we
initialized all SCF calculations with converged Hartree—Fock orbitals.

Fig. 2.1 shows typical SCF convergence patterns observed during an iterative so-
lution of the Kohn—Sham equations in which the exchange-correlation potentials are
functional derivatives. The total energy approaches the minimum strictly from above
and the convergence behavior is generally monotonic. We note that monotonicity is
not a requirement for a functional derivative. It is essential that the total energy is
never below its lowest (converged) value. Conversely, Fig. 2.2 shows that the total
energies obtained from the model potentials of van Leeuwen and Baerends, Umezawa,
Slater, Becke and Johnson oscillate during the convergence and at some points are
actually below the converged values. The SCF solutions obtained with these model
potentials do not appear to be excited states because all our attempts to obtain a
lower energy and tweak the SCF procedure into the same convergence behavior as in
Fig. 2.1 (by using different initial guesses, turning on and off the DIIS, applying level
shifting and other SCF convergence controls) have been unsuccessful. The dipping
below the minimum in each of the panels of Fig. 2.2 strongly suggests that the van

Leeuwen—Baerends, Umezawa, Slater, and Becke-Johnson potentials are stray.
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Figure 2.1: Convergence of the total energy during the iterative self-consistent-field
solution of the Kohn—Sham equations with the functional derivatives of the LDA, Gill,
Becke exchange functionals, and Fermi—Amaldi model potential. All calculations are
performed for a Mg atom in the cc-pVQZ basis set starting from the HF /cc-pVQZ
density. The direct inversion in the iterative subspace (DIIS) [21] is turned off. The
convergence pattern “from above” is consistent with the fact that the potentials are
functional derivatives.

40 40
'U_J'c LB94 : Umezawa 1
E 2} 20 |
6
(2]
Corl W
uj
=20 =20
0 2 4 6 8 10 0 2 4 6 8 10
80 v 80
ur Slater - Becke-Johnson -
Ew} 40 |
[T
(@] L
i /\ A e
0 Ve 0 Vo
o - 1
40 | 40 | -

0 2 4 6 8 10 0 2 4 6 8 10
n [SCF iteration] n [SCF iteration]
Figure 2.2: Same as Fig. 2.1 but for the model potentials of van Leeuwen—Baerends,

Umezawa, Slater, and Becke-Johnson. The oscillatory convergence pattern indicates
that the tested potentials are not functional derivatives.
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2.3.2 Path dependence of the line integral

As explained in Sec. 2.2.2; the line-integral test cannot be easily applied to orbital-
dependent models such as that of Slater, Becke—Johnson, etc. For this reason, we
shall use this test only with the Fermi-Amaldi, and the exchange parts of the van
Leeuwen—Baerends and Umezawa potentials.

First, let us write out general formulas for the line integrals along the Q-, A- and
Z-paths, which hold for all three potentials. For the Q-path, we have

Bxalpl = [ drote) [ daoxiloglv). 2.2

Under the uniform scaling of the density, all the potentials tested transform as

Eq. (1.61), so the integral over the parameter X in the expression

Bxalpl = [[arisote) + v 9] [ S (1o ) 23

becomes the Levy—Perdew virial relation of Eq. (1.62). Finally, the line integral along

the Z-path can be written as

Bxalpl = [ dr 200+ 5 - Vot /Oldcvx([pd;#), (24)

where the quantity vx([p¢]; (™/3r) means the original potential vx written in terms
of the density (?p(r).

Fermi—-Amaldi potential has a simple dependence on the density p(r), so the inte-
grals over the scaling parameters in Egs. (2.2) and (2.4) can be evaluated analytically.
Assuming that NV is fixed, we get for the Q-path

EEl) = 5 [ p(e)ef @) e (25)
and for the Z-path,
EES 16 =2 [ 2000+ 5 - Volw)] oft ) (2.6)

We calculated these line integrals with the Fermi—Amaldi, van Leeuwen—Baerends,
and Umezawa potentials for several atoms and molecules. The results of our calcula-
tions are presented in Table 2.1. The line integrals evaluated with the Fermi-Amaldi

potential along different paths all have the same energy. This happens because the
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Fermi—Amaldi potential is a functional derivative of the scaled electrostatic repulsion
energy functional. We note that if the number of electrons N in the denominator of
the Fermi—Amaldi potential is treated as a functional of the density rather then a con-
stant, then the potential is not a functional derivative and the line integral becomes
path-dependent.

For the Umezawa and van Leeuwen-Baerends potentials, the line integrals over
the scaling parameters ¢ and ¢ in Egs. (2.2) and (2.4) do not lend themselves to
analytical evaluation but can be easily computed with one-dimensional quadratures
at every real-space grid point r. We have done so using 256-node Gauss—Legendre
quadratures [22]. The real-space integration was then completed using a tight GAUS-
SIAN three-dimensional grid with 299 radial shells and 974 angular points per shell.
Table 2.1 shows that line integrals along Q-, A-, and Z-paths all yield different ex-
change energies for the van Leeuwen-Baerends and Umezawa potentials, and that
the difference between the values is significant. This suggests that these two model
potentials are stray.

We note that in the previously published assessments of the van Leeuwen—-Baerends
and Umezawa potentials [10, 12, 23-25], the exchange energies were invariably ob-
tained by the Levy—Perdew virial relation which corresponds to our A-path, one of

many paths possible.

2.3.3 Virial energies from exact-exchange potentials

We apply this test only to approximate exact-exchange potentials of Slater, Becke—-
Johnson, Staroverov, and to the e-consistent model given by Eq. (1.55). For each
potential, we solve Kohn—Sham equations self-consistently and compare two values
of the exact-exchange-only total energy E: one in which Fx is found via Eq. (1.47)
and the other in which Ex is found via Eq. (1.62). The resulting total energies are
denoted by Fgxx and Fa, respectively.

Table 2.2 compares conventional and virial exact-exchange-only total energies of
14 selected atoms obtained using self-consistent potentials constructed in the univer-
sal Gaussian basis set (UGBS) of Ref. 26. The optimized effective potentials yield
almost identical energies when using the exact and the virial functionals. This is
an expected result because the OEP is a functional derivative of the exact-exchange
energy functional. The Slater potential is a zeroth-order approximation to the OEP,
and it gives the largest deviations of virial energies from the exact values. The virial
energies are too negative because the Slater potential is too deep in the energetically

important region near a nucleus [27].
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The model of Becke and Johnson yields significantly smaller discrepancies between
Frxx and Fyia than the Slater potential. Nevertheless, the differences AFE ;. are
still appreciable. Note that the Slater potential is exact for both the H and He atoms,
but v¥’(r) is exact only for the H atom. This is because the Becke-Johnson correction
term kpy/27 reduces to a constant only for exponential one-electron spin-densities
which occur in the H atom but not in He (nor in HJ).

The gradient-corrected potential of Staroverov is significantly closer to the OEP
potential than the approximation of Becke and Johnson. Still, it is exact only for
the H atom, but not for He. The e-consistent model of Eq. (1.55) yields even smaller
energy differences and in addition, is exact for two-electron systems. This property
of the e-consistent model comes from the Slater potential and is missing in both the
Becke—-Johnson and Staroverov approximations.

Table 2.3 makes similar comparisons for molecules. Here, discrepancies between
Erxx and FEya follow similar trends, although less systematically than in atoms,
possibly because the uncontracted 6-311++G(3df, 3pd) basis set used for molecules
is not large enough for accurate resolution of the identity. The Staroverov potential
is not included in this comparison because the oscillations from V7 near the nuclei
distort the results. Unfortunately, it is more difficult to remove the oscillations from
the molecules than from the individual atoms.

The results in this section indicate that the Slater, Becke—Johnson, Staroverov, and
the e-consistent potentials are not functional derivatives of the exact-exchange energy
functional. As the quality of potentials increases from the Slater to the e-consistent
model, the difference between the virial and the exact-exchange energy AFE . de-
creases. This gradual improvement of the virial energies indicates that the model
potentials in the row Slater < Becke-Johnson < Staroverov < e-consistent indeed

become closer to the functional derivative of the exact-exchange energy functional.

2.3.4 Exchange-correlation force and torque on the density

In applying the net zero-force and zero-torque tests it is necessary to keep in mind
that the integrals of Egs. (1.99) and (1.100) may vanish by symmetry [7]. Tt is always
the case for atoms and symmetric molecules. In order to avoid false positives, the
integrals of Eqgs. (1.99) and (1.100) should be evaluated using molecular densities,
preferably of low symmetry.

In Table 2.4, we compare the values of the net force and net torque for two
molecules: HyO, which belongs to the Cy, group, and HSOH (oxadisulfane), which has

no high-order symmetry elements [28]. The zero-force test is failed by all potentials
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Table 2.4: Magnitudes of the net force and net torque vectors of Egs. (1.99) and (1.100)
evaluated for various model potentials using the HF densities. Completely uncon-
tracted 6-3114++4G(3df,3pd) basis set was used for fair comparison with the Slater
(v3) and Becke-Johnson (v%?) potentials constructed by the finite-basis-set resolu-
tion of the identity. The molecules are in the standard orientation as defined in the
GAUSSIAN [17] program.

a LDA FA G96 U06 LB4 S BJ
Molecule Uy vy vy vy Y vy vx

Net exchange force (in hartrees/bohr)
Hy0 (Cyy) 0.0000  0.0000  0.0000  0.0755  0.0605  0.0256  0.0152
HSOH (Cy)  0.0000  0.0000  0.0000  0.0565  0.1432  0.1337  0.0393

Net exchange torque (in hartrees/bohr)
Hy0 (Cyy) 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
HSOH (Ch) 0.0000  0.0000  0.0000  0.0830  0.0785  0.0498  0.0487

“Geometries: HyO, 7(OH)=0.9575 A, §(HOH)=104.51°; HSOH, equilibrium MP2/6-31G* geometry.

LDA

except vE¥PA vFAand 0%

, which are functional derivatives. The zero-torque test
gives a false positive for all model potentials in the case of HoO molecule. The reason
is that HoO has two perpendicular mirror planes and the components of the vector
r x Vp(r) vanish by symmetry. When the asymmetric molecular density of HSOH is
used, the net torque vanishes only for the LDA, Fermi-Amaldi, and Gill potentials.
Based on our results, we conclude that the model potentials of van Leeuwen and

Baerends, Umezawa, Slater, and Becke and Johnson are not functional derivatives.

2.4 Conclusion

Model Kohn—Sham potentials are usually designed to have at least a few basic prop-
erties of the exact potential such as proper scaling behavior, atomic shell structure,
correct asymptotic decay, recovery of the gradient expansion to some order, and so
on. The property of being a functional derivative may be more difficult to impose but
it is actually very important for practical calculations with model potentials.

First, if a potential does not have a parent functional, then the energy assigned
to it by the van Leeuwen and Baerends line integral formula is path-dependent and,
therefore, ambiguous. Differences between energies evaluated along different inte-
gration paths may be as large as several hartrees. Next, stray potentials generate
spurious forces and torques on the density. Energies obtained from such potentials

are not invariant with respect to translation of the density and may depend on the
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orientation of the molecule. Finally, if the potential is not a functional derivative, the
Kohn—Sham equations do not represent a solution to any implied energy-minimization
problem. This is relevant to geometry optimizations, because the point where the en-
ergy gradient is zero will not coincide with the energy minimum [24].

In this work, we have selected three properties of functional derivatives that are
especially convenient for detecting stray potentials. Of these, the SCF convergence
test is the most straightforward but also the least rigorous because the “dipping below
the minimum” may indicate that the energy converges to an excited state, which is
a local minimum. The line-integral test is more reliable, but it can only be applied
to the potentials expressed exclusively in terms of the density. The virial-energy
test complements the line-integral test, but is useful only for approximations to the
exact-exchange potential. The zero-force and zero-torque tests appear to be the most
general and useful, because they are very easy to implement and can be applied to
any potential. Passing all our tests, however, is not sufficient to guarantee that the
trial potential is a functional derivative, although in practice a false positive would
be extremely unlikely.

Using these tests, we have demonstrated that the model potentials of van Leeuwen
and Baerends, Umezawa, Slater, Becke and Johnson, and Staroverov, as well as the
e-consistent potential, are not functional derivatives. Some of these approximations,
namely, the Slater, Becke—Johnson, and van Leeuwen—Baerends potentials have been
identified as stray by other workers [2, 4, 24] prior to this study. Our results fully

support those conclusions.
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Chapter 3

Analytic structure of functional

derivatives

3.1 Introduction

An attractive alternative to development of density-functional approximations is to
model the exchange-correlation potential vxc without recourse to functional differ-
entiation [1-4]. This approach makes it easier to impart vxc with essential analytic
properties such as Coulombic (—1/r) asymptotic decay, shell structure, and deriva-
tive discontinuity [1, 5-9]. Unfortunately, potentials approximated directly are not
likely to be functional derivatives of some density functionals on their own accord,
which leads to numerous problems in density-functional calculations [3, 4]. To make
the potential-driven DFT a viable alternative to the functional-driven approach, one
needs to be able to directly construct integrable model potentials.

In this Chapter, we propose such a method based on direct examination of the
analytic structure of functional derivatives. We start by deriving a suitable ana-
lytic representation for functional derivatives of generalized gradient approximations
(GGA), the simplest class of semilocal density functionals. Using this expression we
demonstrate that the functional derivative of every GGA consists of a few simple
terms such that the knowledge of any one of these terms is usually sufficient to re-
construct the entire functional derivative. After presenting the working equations of
our method we illustrate their use by constructing a first integrable semilocal model

exchange potential.

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “Construction of
integrable model Kohn—Sham potentials by analysis of the structure of functional derivatives”, Phys.
Rev. A 83, 012509 (2011). Copyright 2011, American Physical Society.
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3.2 Methodology

3.2.1 Functional derivatives of GGAs

The term GGA refers to density-functional approximations of the form

Flo] = / f(p,g)dr. (3.1)

where g is the norm of the density gradient,
9= Vol = (03 + 0} + 0", (3.2)

in which p, = dp/0z, p, = 0p/dy, and p, = dp/Jz. Functional derivatives of GGAs
can be evaluated using a standard formula of calculus of variations [10, 11], a special

case of Eq. (1.34) with no dependence on the Laplacian of the density V?p:

_6F[p] of of
= 5w T Y (a_w) ’ (33)

where 0f /0OVp is a shorthand for a vector with the components df/dp,, 0f/0p,, and
df/0p,. Taken alone, Eq. (3.3) does not provide much insight into the structure of

functional derivatives. The scalar product of the operator V and 9f/0Vp in Eq. (3.3)
needs to be evaluated for every particular functional, which makes this formula not
very convenient for practical applications.

Let us obtain a more revealing representation of v(r). Using the chain rule of
differentiation and the fact that dg/0Vp = Vp/g, we cast the second term of Eq. (3.3)

as
0\ _ (g20).Ye o (. %
v (o) - () 5w ) .

Further differentiation on the right-hand side yields

2 2 . .
v(af)_ *f . 0’[Vp vg+g(£_vp Vg))

= 3.5
oVp 009" T 0 g dg \g 9° (3:5)
where [ = V?p. Observe that the three Cartesian components of the vector Vg =
(9, 9y, 9-) can be written as g; = g_lzj piipj, where i,j = x,y,z and p;; are the

components of the Hessian tensor of the density. This permits us to write

1 w
Vp-Vg= Ezpipijpj = (3.6)

i
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where we define w as
iJ

The quantity w is identical to the density-dependent function (Vp)'(VVTp)(Vp) dis-

cussed earlier by Jemmer and Knowles [12-14]. Combining Eqs. (3.3)-(3.7), we write
2 l 2

Lo g ont (1 e o

the result as

T 00 opog? " g9 \og Yo ) g
Note that this formula is given completely in terms of density-dependent ingredients
p, g, I, and w, and does not involve explicit differentiation with respect to the real-
space coordinates, so it is more practical than the original Eq. (3.3). We refer to the
quantities p, g, [, and w as the variables of functional derivatives of GGAs.
For the purpose of development of model Kohn—Sham potentials with the proper
scaling behavior, it is more convenient to use dimensionless derivatives of the density.

The dimensionless counterparts of g, [, and w are

g l

w
SZW’ q:m, u = p13/3' (39)
To obtain a formula similar to Eq. (3.8) for the functional
Flp] = /f(/% s) dr, (3.10)
we use Eq. (3.9) and the following transformation rules
00 %0 0 450 -
dp Op Opds Op 3pis
9 050 590 (3.12)
dg 0gds gO0s
After some manipulations we arrive at the final result
492f &2 2 2
po O A0S O OFa  (OF L O u (3.13)
dp 30s*>p 0Opds s ps 0s 0s? ) ps3

Note that in this formula, the variables p and s are formally independent, and the
derivative of f with respect to p refers only to the explicit dependence of f on p. The
implicit dependence on p through s is taken into account by Eq. (3.11).

Expressions similar to Egs. (3.8) and (3.13) have been derived earlier by other



51

100 T T T 20
4Trr2p(r)

50 1 10

2000 t

1 2 3 0 1
r [ag] r [ag]

Figure 3.1: The four ingredients of functional derivatives of GGAs evaluated at the
HF /UGBS density of the Kr atom.

workers [1, 3, 15, 16] and used for analyzing the capabilities and limitations of
GGAs. In the present work, we emphasize a different perspective in which Eqs. (3.8)

and (3.13) are viewed as a means of constructing integrable model potentials.

3.2.2 Ingredients of functional derivatives of GGAs

Equation (3.13) tells us that the functional derivative of any GGA depends on at
most four ingredients: p, s, ¢, and u, and that the dependence on ¢ and w is linear.
Figure 3.1 compares the plots of these quantities for the electron density of the Kr
atom computed by the Hartree—Fock (HF) method using the universal Gaussian basis
set (UGBS) of Ref. 17. In order to rationalize these plots we make use of the fact that
atomic densities are approximately piecewise exponential [18]. Consider a spherically

symmetric N-electron exponential density

N
p = 8—7Ta?’e’”. (3.14)

For this p it is straightforward to show that

8T 1/3
s = <F) eV = ap1/3, (3.15)
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8\ %3 2 252
— - 1 _ = 2&7‘/3 — 2 =2 1
¢ <N) ( ar) © s ar’ (3.16)
8\ /3
u= <N7T) elar/3 = g, (3.17)

These equations reveal that the shell structure of exponential densities is transferred to
s, q, and u, and that the maxima of s, ¢, and u for such densities occur simultaneously
at the same values of r. Eqs. (3.14)—(3.17) also show that s, ¢, and u diverge at large
r because these quantities are proportional to negative powers of the density, and
that ¢ diverges at the nucleus because it contains a term proportional to 1/r. One
can even estimate the value of s at the nucleus. In a many-electron atom, the density
near 7 = 0 is essentially two-electron exponential [19]. For N = 2, Eq. (3.15) gives
s(r = 0) = (4m)'/3 ~ 2.325 regardless of the value of the exponent. This result is in
excellent agreement with Fig. 3.1.

It is appropriate to remark here that the dimensionless quantities ¢ and u are more
well-behaved than their dimensional counterparts [ and w. In particular, plots of [
and w (not shown here) would exhibit spurious oscillations near the nucleus which
are well-known artifacts of cuspless Gaussian-type basis functions [20, 21].

Equation (3.13) tells us that any model potential constructed only from p and s
is not a functional derivative. According to Eq. (3.13), the only way to avoid ¢- and
u-dependence of the potential is to have df/ds = 0, a requirement that no GGA can
satisfy by definition. However, dependence on wu is not necessary. The potential v
does not involve u when

s— — —=0. (3.18)

Integrating this equation twice, we find the energy-density function that satisfies this

condition:
f(pa S) = 8261(p) + €2<p)7 (319)

where €;(p) and es(p) are arbitrary functions of p. We conclude that the functional
derivative of a GGA does not depend on u only if the energy density is of the form of
Eq. (3.19). Functionals of this type include second-order density gradient expansions
for exchange and correlation, as well as the Thomas—Fermi—Weizséacker kinetic energy

functional [11].
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3.2.3 Analytic structure of functional derivatives of exchange
GGAs

Let us now focus on functional derivatives of GGAs for exchange. The energy-density
function f(p, s) of exchange functionals can be written as a sum of the local-density

approximation term and a gradient-dependent correction,

fx(ps) = [P (p) + p'G (), (3.20)

where fkPA(p) = —Cxp?? with Cx = (3/4) (3/7)Y? [¢f. Eq. (1.22)] and G(s) is
a function of the reduced density gradient s only. Such analytic form of energy
density ensures that the exchange energy has correct scaling behavior Ex |[p,] = AEx|[p]
under the uniform transformation of the density of Eq. (1.60). Substituting f from
Eq. (3.20) into Eq. (3.13), we arrive at the following formula for functional derivatives

of exchange-only GGA functionals,

vx = v¥PA + p P R(s) + Q(s)q + U(s)ul (3.21)
where
8fLDA 4
U)IiDA == aLp = _gcxpl/?; (322)
and 4 (2G , dG
_ (& e Y
R(s) = 3 (d52 8= —-s+ G) : (3.23)
1dG
Q(s) = T ds’ (3.24)

Us) = — (E - SW) . (3.25)

These equations show that each of the functions R(s), Q(s), and U(s) uniquely de-

termines G(s) and, hence, the entire functional derivative vx. Let us elaborate.
Suppose that we know R(s). Then G(s) can be obtained by solving Eq. (3.23)

using the method described in sections 9.5 and 9.6 of Ref. 10. The general solution is

G(s) = sIo(s)Ins — sIi(s), (3.26)

where Iy(s) and [;(s) are antiderivatives given by

3 [R
Jn(s):Z/ S(j) In"sds+C,, n=0,1, (3.27)
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and C,, are integration constants. Once R(s) is known, the components Q(s) and U(s)
of the functional derivative immediately follow from Eqs. (3.24) and (3.25). Similarly,
if we know the function Q(s), then G(s) is given by

G(s) = —/SQ(S) ds+ C. (3.28)

Finally, if we start with the function U(s), then G(s) may be obtained by integrating
Eq. (3.25) using the method of section 9.2 of Ref. 10 to give

G(s) = —/ [s </SU(3) ds + clﬂ ds + C. (3.29)

Thus, the problem of developing an integrable exchange potential reduces to con-
structing any of its components p'/2R(s), p'/3Q(s)q, or p*/*U(s)u. To devise such
functions, we need to know what they may look like. We take some clues from stan-
dard exchange GGAs. As an example, consider the functional derivative of Becke
(B88) [22], Perdew, Burke and Ernzerhof (PBE) [23], and Gill (G96) [24] exchange
functionals. Factors G(s) corresponding to these functionals are as follows:

bEs?

B88 .\ _ _
@) = 1 + 6bssinh ™ (&s)’ (3:30)

where b = 0.0042 and ¢ = 23 is a factor which arises in the conversion to the
non-spin-polarized form;
C 2
GPBE(5) = — XK (3.31)
1+ pus?/k

where p = 0.21951/4(37%)%® and x = 0.804; and
G9(s) = —ns*/2, (3.32)

where v = 21/6/137.

We evaluated functional derivatives of the above functionals using Eq. (3.21) and
plotted their components in Fig. 3.2. The figure shows that distinct GGA exchange
potentials have very similar composition: The shell structure almost entirely comes
from the terms p'/*Q(s)q and p'/3U (s)u, whereas the term p'/3R(s) is relatively small.
Overall, the shape of the contributions to vx is very similar for different approxima-

tions.
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Figure 3.2: Decomposition of vx — v¥P4, the semilocal part of functional derivatives

of the B88, PBE, and G96 exchange functionals. The components are defined by
Egs. (3.21)—(3.25) and evaluated at the HF /UGBS density of a Kr atom.
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Figure 3.3: Component p'/3R(s) defined by Eq. (3.23) for functional derivatives of the
B88, PBE, and G96 exchange functionals, and the semilocal part of the LB94 model
potential scaled by 0.06. All quantities are evaluated at the HF /UGBS density of a
Kr atom.

3.3 Application

It follows from our discussion that to develop an integrable model potential of the
GGA type, one needs to approximate any of the terms of vy identified in the previous
section. Let us take a closer look at the terms v%¥P* and p'/3R(s) of Eq. (3.21).
Their sum has the same analytic structure as the exchange part of the van Leeuwen—
Baerends model potential defined by Eq. (1.45). Our idea is to use the LB94 model to
construct an integrable potential vx. Observe that the semilocal part of LB94 must
be scaled by approximately 0.06 to be a valid representation of the p'/3R(s) term
(Fig. 3.3). But for now, let us use the unscaled LB94 potential.

Having identified the R(s) function as the gradient correction of the LB94 po-
tential, we use Eq. (3.26) to recover the function G(s) and then set Cyp = C; = 0.
Finally, we insert G(s) into Eqs. (3.24) and (3.25) to obtain Q(s) and U(s). This
leads to the following functional derivative, called fd-LLB94, recovered from the stray
LB94 potential:

1/3

1/3 d.J,
PILBOL _ LB P (JO Ins —J; + Jo)Q + £ ( 0
s

5—3 Jo Ins — Jl — SE) u, (333)
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where Jy(s) and Ji(s) are given by

N B
JIn(s) = 4/0 T 30t sinh 1 (&) dt, n=0,1. (3.34)

The corresponding energy functional is
EE ) = BN+ [ %5 L) Ins = (5] dr. (3.35)

The fd-LB94 potential of Eq. (3.33) and the associated density functional of Eq. (3.35)
are unusual in that they involve nonelementary functions Jy(s) and J;(s) defined by
Eq. (3.34). These functions do not pose any difficulty in numerical calculations and
may be readily evaluated using one-dimensional quadratures for every value of s. In
this paper, we computed the integrals J,(s) using Gauss-Legendre quadratures with
100 nodes per integral. The added computational cost of these integrals is very small.

To verify that the fd-LB94 potential is indeed a functional derivative, we used
the zero-force and zero-torque tests discussed in Chapter 2. We calculated the net
exchange force [vx(r)Vp(r)dr and torque [ vx(r)rx Vp(r)dr with the LB94 and fd-
LB94 potentials and found that the integrals vanish for asymmetric density of HSOH
molecule [25] for the fd-1.LB94, but not for the LB94 potential. This confirms that the
repaired potential is indeed a functional derivative (for details, see Sec. 2.3.4).

As seen in Fig. 3.4, the LB94 and fd-LLB94 potentials differ considerably. Compared
to LB94, the fd-LLB94 potential is too negative near the nucleus. Whereas the LB94
potential has an underdeveloped shell structure, the fd-L.LB94 potential exaggerates it.
In addition, the fd-LB94 potential has a singularity at » = 0 introduced through the
Laplacian-dependent term—a feature common to GGA-based potentials (see Fig. 3.2).
Also, although Fig. 3.4 does not show this, the LB94 potential decays asymptotically
as —1/r, whereas the fd-LB94 potential increases without bound as r — oo. This
behavior hardly matters in practice because it occurs well outside the energetically
important region and is much slower than that of the G96 potential.

It is easy to see why the fd-LB94 potential is too negative and exaggerates the
shell structure. According to Fig. 3.3, the gradient correction in the LB94 is a valid
representation of the term p'/3R(s) of GGA potentials only when it is scaled down
roughly by a factor of 0.06. The fd-LB94 approximation, however, uses the unscaled
LB94 potential as a source. In other words, although the term p'/3R(s) in the fd-LB94
potential has a qualitatively correct shape, it is about an order of magnitude larger

than it should be. The possible remedies are (i) to scale down the semilocal part of
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Figure 3.4: Stray model potential LB94 and integrable model potentials fd-L.LB94
and fd-revLB94. The latter are given by Eq. (3.33) with 5 = 0.05 and § = 0.004,
respectively. All potentials are constructed using the HF /UGBS density of a Kr
atom. Fully self-consistent LB94 and fd-revLB94 potentials are not shown but are
very similar.

LB94 potential or (ii) to vary the empirical parameter 3. We found that changing
( from 0.05 to 0.004 gives a realistic integrable potential. The functional derivative
recovered from the revised LB94 potential (revLB94), in which 5 = 0.004, is called
here fd-revLLB94 and is depicted in Fig. 3.4. Its shape between r = 0 and 10 bohr is
very similar to that of the PBE and B88 potentials.

To extract exchange energies from our model potentials we employed the Levy—
Perdew virial relation [26] of Eq. (1.62). For the functional derivatives fd-LB94 and
fd-revLLB94, the Levy—Perdew formula yields the same energy as the density functional
given by Eq. (3.35). As follows from Table 3.1, the fd-revLLB94 potential predicts very
accurate exchange energies. The energies from fd-revLB94 are significantly closer to
the exact values than the LB94 results and are on par with other exchange functionals
such as PBE. The fd-LB94 energies are too low due to the reasons discussed above.

There is one property of the LB94 potential which has not been passed to the
fd-revLB94 model. The function R(s) of the LB94 model is such that the complete
functional derivative “grown” from it no longer has the —1/r decay. Conceivably, the
asymptotic behavior of fd-revLB94 might be improved by fine-tuning the integration
constants Cy and C; appearing in Eq. (3.27).
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Table 3.1: Exchange energies obtained from the LB94, fd-LB94, fd-revLB94 po-
tentials, and the PBE functional. The fd-LLB94 and fd-revLB94 are both given by
Eq. (3.33) with § = 0.05 and § = 0.004, respectively. All energies are evaluated
by the Levy—Perdew relation of Eq. (1.62) at the HF /UGBS densities. Fully self-
consistent values are not shown but are within 1.9% for LB94 and within 0.4% for
fd-revLLB94.

Ex (units of Ey)

Atom LB94 {d-LB94 fd-revLB94 PBE Exact*

He —0.9847 —2.4390 —1.0602 —1.0136 —1.0258
Be —2.6363 —5.9871 —2.7113 —2.6358 —2.6669
Ne —12.9909 —22.1584 —12.1579 —12.0667 —12.1083
Mg —17.2787 —28.4425 —15.9862 —15.9147 —15.9943
Ar —32.5402 —50.3845 —30.0590 —29.9960 —30.1850
Ca —38.2234 —58.0148 —35.0470 —35.0156 —35.2112
Zn —77.2639 —106.2587 —69.4627 —69.5280 —69.6413
Kr —103.7220 —138.9071 —93.3204 —93.4250 —93.8560

*HF /UGBS values.

3.4 Conclusion

We have shown that functional derivatives of generalized gradient approximations
have a strong inner structure which can be exploited for designing integrable model
Kohn—Sham potentials. We have identified several characteristic terms present in ev-
ery functional derivative of a GGA and derived the equations which relate these terms
to one another. Using these relations one can take any particular term and recon-
struct the entire functional derivative along with the associated density functional.
Existing model potentials such as LB94 may be used as sources of the component
p'R(s), but they need to be modified to ensure that the resulting approximation
yields accurate properties.

The method outlined in this Chapter represents a distinct approach to developing
density functional approximations via model Kohn—Sham potentials. It goes beyond
conventional GGA construction in the sense that it naturally leads to potentials and
functionals involving unconventional integral expressions such as those appearing in
Eq. (3.33). We expect that by putting the emphasis on the potential it should be easier
to incorporate into density-functional approximations the important exact constraints

such as the proper asymptotic behavior and the shell structure.
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Chapter 4

Integrability conditions for model

potentials

4.1 Introduction

Development of practical exchange-correlation potential approximations has long been
hindered by two methodological challenges: (i) how to obtain the energy from a Kohn—
Sham potential and (ii) how to ensure that a model potential actually corresponds to
some density functional. The first problem was addressed by the line integral method
of van Leeuwen and Baerends [1]. The second problem has not been tackled so far
in general (a special case of the exchange-only GGAs has been solved in Chapter 3),
but it cannot be ignored if one wants to use model potentials to calculate observable
physical properties. Given that a model potential is not likely to be integrable by
itself, one must find a way to impose this property as a constraint.

The basic condition of integrability for model potentials based on the symmetry
of second functional derivative was derived by Ou-Yang and Levy [2] and by van
Leeuwen and Baerends [1]:

du([plir) _ ov([p]ir') (4.1)

dp(r’) op(r)

(For more detail, refer to Chapter 1.) Although this condition is both necessary
and sufficient, it is too general to be exploited as a constraint or even to serve as

a convenient test. Here we transform Eq. (4.1) into a set of convenient analytic

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “Explicit construction
of functional derivatives in potential-driven density-functional theory”, J. Chem. Phys. 133, 101104
(2010). Copyright 2010, American Institute of Physics.
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integrability conditions which enable one not only to identify, but also to construct
functional derivatives. This method complements and generalizes the approach of the

previous Chapter exploiting the structure of functional derivatives.

4.2 Methodology

In this section, we will obtain a practical equivalent of Eq. (4.1) in terms of second
differentials. Consider the second differential D?F[p, h, k] obtained in a similar way
to DF[p, h] of Eq. (1.23). For fixed p and h,

d

D*Flp, h,k| = { —DF|p + tk, h] (4.2)
dt —0

where k(r) is an arbitrary normed function. The second differential is a bilinear

functional of h and k, so it may be written as [3]

D*F[p, h, k] = /dr/dr'K([p];r,r')h(r)k(r'). (4.3)

The kernel of this operator is called the second functional derivative of F'[p], and it is

customary to write

PF__ sullpir)

Blleler) = 5o = o)

(4.4)

According to the condition (4.1), the proper kernel K([p];r,r’) is symmetric in r
and r’. Referring to Eq. (4.3), this implies that the second differential D*F|p, h, k]
is symmetric in h and k. As we will see, this leads to an integrability condition
equivalent to Eq. (4.1).

Let us express the second differential of F[p] in Eq. (4.3) using the Gateaux dif-
ferential of the potential v. The potential v([p];r) is a functional of p at each point

r, so its first differential along an arbitrary direction k is given by

Dup.ir) = { Gollo + k1) } (45)
t=0
Let us rewrite Eq. (4.2) by casting the first Gateaux differential in the form of
Eq. (1.24), moving the d/dt operator inside the integral, and invoking Eq. (4.5).
The result is

D2F{p, b, k] = / Do([p, H: 1)h(r) dr. (4.6)
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Relating this equality to the symmetric kernel condition, we see that for a trial po-
tential v([p];r) to be integrable, it is necessary and sufficient that the right-hand side
of Eq. (4.6) be symmetric in h and k for every h, k, and p:

/Dv([p, kl;x)h(r) dr = /Dv([p, hl;r)k(r) dr. (4.7)

A complete formal proof of this result may be found in Ref. 4 as Theorem 5.1. Con-
dition (4.7) is equivalent to Eq. (4.1).

We thus have two alternative ways to check the integrability of a potential v([p]; r):
(i) directly through the symmetry of the kernel [Eq. (4.1)]; (ii) using the symmetry
condition on the second differential [Eq. (4.7)]. We will now show that the second
approach is more practical by applying these two methods to a simple case of explicitly

density-dependent potential v([p],r) of the form

v=1(p,Vp,V°p). (4.8)

4.2.1 Integrability from the symmetry of the kernel

Let us evaluate both sides of Eq. (4.1) using the Dirac delta function é(r — ') as
prescribed by Eq. (1.31). For the left-hand side dv([p];r)/dp(r') we have

du(lp], )
20— Doy, a)v) (4.9
With the particular choice of density-dependent ingredients of v given by Eq. (4.8),
the differential Dv([p, d];r) can be computed simply as the differential of a function,

Du([p,d];r) = {% v(p(r)+t8(r—1'), Vp(r) +tV(r —r'), V’p(r) + tV>5(r — r’))}

=0
(4.10)
where all the gradients V are with respect to r. Taking the derivative d/dt and setting

t = 0, we obtain the left-hand side of Eq. (4.1):

du([p],r)  Ov , v , ov
—5p(r’) = a—p(r)(S(r —r')+ avp(r)vr(S(r —r')+ v

The right-hand side of Eq. (4.1) has all the variables r and r’ interchanged:

(r)V3(r —1').  (4.11)

([pl,r') Ov ov v

5p(1) = a—p(r)é(r —r)+ avp(r)VrI(S(r —r)+ v

(X )\VZ5(r' —r). (4.12)
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Let us simplify these expressions before attempting to compare them. We introduce
shorthand notation P = dv/dp, G = v/0Vp, and L = dv/IV?p. We also change the
arguments of delta functions in Eq. (4.11) from (r — ') to (r' — r) using Eqgs. (A.15)
and (A.17) from Appendix A, and change the variables of differentiation in Eq. (4.12)
from r’ to r using Eq. (A.18) from the same Appendix. The result is

50—(['0]71‘) = P(r)o(r' —r r r —r r)\V3(r' —r
Sp(r) P(r)o( )+ G(r)V( )+ L(r)V74( ), (4.13)
doller) _ r)o(r' —r) — G(r r —r )V (r' —r
Sp(r) P(x)o( ) — G(r)Vi( )+ L(x")V=( ), (4.14)

where the subscripts r in V are suppressed for brevity. Taking the difference of the

two functional derivatives, we obtain

ov([plir)  du((el;r') : : N D25 (4
- = |G(r)+ G(")|Vi(r'—r)+ [L(r) — L(r")] V(r' —r). (4.15
i) SR — (6(e) + GO V(' 1)+ [L(r) — L)) V5 —x). (4.15)
To evaluate this expression, we multiply it by an arbitrary function f(r’) and integrate

over r’. The right-hand side of the identity above becomes
/[G(r) + G Vo —r)f(r)dr' + / [L(r) — L(r)] V*5(x' — 1) f(x') dr’. (4.16)

Observe that functions G(r) and L(r), as well as the operators V may be moved
outside the integrals. With this, the last equation can be easily evaluated using the
definition of the delta function. Switching back to the explicit expressions instead of
P, G and L, we obtain

ov ov ov _, o [ Ov
— . 4.1
GWW v (Wpf) i W%V f=v (0V2pf> @17

Expanding this equation and canceling out identical terms yields

RN P TR N P

For the kernel of Eq. (4.1) to be symmetric with respect to r and r’, the expression

above needs to vanish. This is possible for an arbitrary f(r) only when

ov ov
oVp v oV2p

(4.19)
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We have a strong result: a trial potential of the type (4.8) is a functional derivative if
and only if it satisfies Eq. (4.19). In particular, this implies that any model potential
that depends on p and Vp, but not on V?p, is stray. We obtained this result in a
different way in Chapter 3. The derivation here is more general and robust, because

it is valid for any potential involving p, Vp and V?p.

4.2.2 Integrability from the symmetry of second differential

Let us evaluate the second differential with the potential v. Using Eq. (4.5), the
left-hand side of Eq. (4.7) for v is

ov ov ov
—k -VEk 2L ) hdr. 4.2
/(@p +0Vp v +5‘V2pv ) ' (4:20)

We integrate the last term of this expression by parts. Since p, h, k are normed

(vanish at infinity), we get

ov ov ov ov
— — . - . ) 4.21
/ L%hk + <8V,0 V8V2p) hVk 8V2pVh Vk] dr ( )

We now interchange the functions h and k in Eq. (4.21) and subtract the result from
the original integral. According to Eq. (4.7), v is a functional derivative only if the

difference is zero for every acceptable h, k, and p,

ov ov
— . — = 0. 4.22
/ (8Vp v8V2p> (hVk — kVh) dr =0 ( )

By the fundamental lemma of the calculus of variations, the latter is possible only if
Eq. (4.19) is true.

The present derivation yields the same result as the direct evaluation of Eq. (4.1)
discussed in the previous section, but is much simpler. We will now use the approach

described here to derive integrability conditions for a broader class of model potentials.

4.3 Analytic integrability conditions

Consider a formal expression of the type

v=v(p,{pi},{pij}), (4.23)
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where p; = 0;p and p;; = 0,0;p, in which the operator 0; stands for differentiation
with respect to the ith Cartesian real-space coordinate (i = x,y,z). To simplify
our derivation, we will treat p;; and pj;; as distinct variables. The left-hand side of
Eq. (4.7) in this case is

/( k+ Z k+zz )hdr, (4.24)

where k; = 0;k and k;; = 0,0;k. Integrating by parts each term containing k;; with

respect to j we obtain

/{ —hk + Z—hk ZZ{ ( >hk +aapwhki}}dr. (4.25)

This integral is symmetric in A and k only if

ov v
oo~ Zaj (%) — 0. (4.26)

The system of equations (4.26) is the general integrability condition for expressions
of the type (4.23).

Of course, physical density-functional approximations and Kohn—Sham potentials
depend on p; and p;; only through their rotation-invariant combinations. Consider,
for example, potentials associated with generalized-gradient approximations. The
functional derivative of a GGA was computed in Sec. 3.2.1 and is given by Eq. (3.8).
It involves four rotation-invariant variables: p, g, [, and w. Therefore, we can express
the partial derivatives of v in Eq. (4.26) in terms of these variables to obtain the
following integrability condition

Qu¥p _ a—;’] (IVp— gVg) = v?l’ + (vg—” w) Vp. (4.27)
This condition may be applied to any analytic expression involving no variables other
than p, g, [, w, and is always satisfied by the functional derivative of a GGA.

Let us look closer at GGA potentials. According to Eq. (3.8), derivatives dv/0l
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and Ov/O0w in Eq. (4.27) do not depend on either [ or w, so we may write

ov 0% 0%v

— = 4.2
o = apon " agal VY (4.28)
ov 0%v 0%v

(4.29)

ow dpow Vot dgow V9.

If we substitute these expressions into Eq. (4.27), we can cast the result in the form
PVp = GVg, where P and G are scalar functions. This condition must hold pointwise
for every p. However, since the vectors Vg and Vp are related through a tensor
(=g 1> ; Pijpj), they cannot in general be scalar multiples of each other at every
r. Therefore, in order for the condition PVp = GVg to be satisfied at every r, both
P and GG must vanish, that is,

1ov v d* s *v w %

09 ‘0w " 9pol ¥ Bpdw  gogow

ov 0™

9gol

(4.30)

Integrability conditions such as Eq. (4.30) are entirely in the (p, g,, w)-space and so

are very convenient for constructing functional derivatives in the following manner.

4.4 Direct construction of integrable potentials

Suppose we have an expression of the type vy(p, g). Expressions that depend on g,
but not on [ or w, do not satisfy Eq. (4.30) and hence are stray. Let us assume that vg
can be made a functional derivative of some GGA by introducing linear dependence

on [ and w. We write

v(p: g, L, w) =wo(p, 9) + X(p,9)l + Y (p, g)w, (4.31)

where X and Y are unknown functions to be determined from the requirement that
v be integrable. Substitution of Eq. (4.31) into Eq. (4.30) yields a system of two

equations
1
_81)0 . 8 (X+92Y) :O7
0X '
gy ——=0



70

We integrate the first of these equations with respect to p and use the second equation

to write the result as

0X 1 P 8@0
— + X =- —dp+C 4.33
95g + X =1 [ Grdr+Cilo) (1.33)
where ('1(g) is an arbitrary function of proper dimensionality. The general solution
of Eq. (4.33), obtained by the method of section 9.2 in Ref. 5, is

Xzé/g(é/p%—?dp)dg%—é{/gCl(g)dg—l—Cz(p) : (4.34)

where Cy(p) is another arbitrary function of appropriate dimensionality. Once X
is obtained from vy by Eq. (4.34), Y may be found by the second equation of the
system (4.32). Let us illustrate this with specific examples.

As a warm-up, consider the expression vy = g2 /8p* which is clearly not a functional
derivative. If we assume that vy is an incomplete functional derivative of a GGA,
Eq. (4.34) yields X = —1/4p+ g~' [[? Ci(g) dg + Ca(p)]. Setting C; = Cy = 0 in

this solution, so that Y = 0, we obtain the expression
V== — ——. (4.35)

One may instantly recognize in this result the functional derivative of [(g®/8p)dr,
the Weizsacker gradient correction to the Thomas—Fermi kinetic-energy functional.
Our second example involves the expression vy = g/p briefly discussed in Sec. 1.4.3.
In this case Eq. (4.34) gives X = g7' [(Inp)Ing+ [? Ci(g) dg + C2(p)]. Choosing
Cy, = Cy = 0, we obtain Y = —g~3[(Inp)Ing — Inp|. Thus, a functional derivative

“grown” from vy = g/p is
l
U:g+—lnplng—%(lnplng—lnp). (4.36)
P g g

Model Kohn—Sham potentials for exchange and correlation are usually developed
in terms of p and dimensionless counterparts of the variables g, [, w given by Eq. (3.9).

It is straightforward to show that with the dimensionless variables s, ¢ and u, and



71

under the assumption that v is linear in ¢ and u, Eq. (4.30) becomes

1ov 50v  ov (17, v , 0% Pv (4, u
§%+§a_q+%(53 —Q>—Papaq—5f’m+asau (53 7)20’
v v

S% B dsdq

(4.37)
Let us now show how one can design integrable exchange potentials using the vari-
ables p, s, ¢, and u. Exchange potentials are homogeneous of degree one [Eq. (1.61)]

/3 From

under the uniform density scaling of Eq. (1.60), which implies that v ~ p
Eq. (3.8) we also know that if v descends from a GGA, it must be linear in ¢ and w.

The general form of v that satisfies these requirements is
v(p, s,q,u) = p'° [R(s) + Q(s)g + U(s)u] (4.38)

where the functions R, (), U are at our disposal. Note that this formula is equivalent
to Eq. (3.21) that we derived in Chapter 3. Suppose the function R is known. To find
@ and U we insert Eq. (4.38) into Eq. (4.37) and get

1dR 4 16 4 . dU
S+ -Q+ U+ =s*— =0,
s ds 3 3 3 ds
(4.39)
1dQ
U—--—=0
s ds

d*Q dQ 3 dR
2 oy __sgan
s s— +Q o e (4.40)

Integrating Eq. (4.40) as explained in sections 9.5 and 9.6 of Ref. 5 we write the

general solution as
1
Q(s) = - lc1 +colns — I1(s) + (Ins + 1) Io(s)], (4.41)

where ¢; and ¢y are integration constants and

3 [P R(s). ,
L,(s) = Z/ 2 In"sds, n=0,1. (4.42)
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The function U is then found from Eq. (4.39) to be

1 3 R(s
U(S):g Cl_CQ+CQIHS—[1($)—|—IO(S)1HS_ZL i)

(4.43)

The constants ¢; and ¢ may be employed to satisfy known exact constraints. For
instance, to recover the correct second-order gradient expansion of the exact exchange

potential [6], one should choose ¢; = ¢y = 0.

4.5 Conclusion

The general strategy for developing integrable model Kohn-Sham potentials that
emerges from this work is as follows: (i) choose a set of explicitly density-dependent
ingredients of the approximation (p, Vp, V?p,...) and use Eq. (4.7) to derive the
corresponding integrability conditions; (ii) assume some general analytic form of v and
construct one term; (iii) use the integrability conditions to derive the other terms. In
particular, for exchange potentials of the GGA type, one can start with the function
R(s) and then use Eqs. (4.41)—(4.43) to obtain Q(s) and U(s).

In Chapter 3 we proposed a method for developing integrable Kohn—Sham poten-
tials by analyzing the structure of functional derivatives. Integrability conditions pro-
vide an equivalent solution to this problem. For example, we could apply Eqgs. (4.41)
and (4.43) to the model potential of van Leeuwen and Baerends [7] and construct
the fd-LB94 and fd-revLLB94 approximations discussed in that Chapter. Unlike the
approach proposed before, the integrability conditions involve only the derivatives of
the potential and, formally, at no point use the functional explicitly.

Clearly, when designing integrable model potentials one implicitly designs den-
sity functionals. This raises the question of whether approximating potentials makes
possible anything that is not afforded by approximating functionals. Our answer
is yes because working in terms of integrable potentials is equivalent to working in
terms of energy expressions containing integrals such as Eq. (4.42) which may not
be expressible in elementary functions but clearly go beyond conventional forms of

density-functional approximations.
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Chapter 5

Energy functionals based on model

Kohn—Sham potentials

5.1 Introduction

When the Kohn—Sham potential is approximated directly, there arises the question
of finding the energy corresponding to that potential. The usual way to assign an
energy to model exchange potentials is via the Levy—Perdew virial relation given by
Eq. (1.62) [1, 2]. The problem with this approach, clearly recognized before us [3-5], is
that the functional Ex|[p] constructed from vx([p]; ) is not assured to be translation-
ally and rotationally invariant. (For an explanation refer to Sec. 1.4.4.) The energies
assigned to stray potentials by the Levy—Perdew relation are position-dependent. No
such problems exist for integrable potentials that originate from some density func-
tional. This means that the Levy—Perdew virial relation is an acceptable way to
assign energies only to integrable exchange potentials. Almost all model potentials
existing today are stray (Chapter 2). This calls for a method that yields properly
invariant energy expressions from arbitrary potentials. The aim of this Chapter is
to propose such a method. As an example, we construct a competitively accurate

density functional from the model potential of van Leeuwen and Baerends [3].

Reprinted in part with permission from A. P. Gaiduk and V. N. Staroverov, “A generalized gra-
dient approximation for exchange derived from the model potential of van Leeuwen and Baerends”,
J. Chem. Phys. 136, 064116 (2012). Copyright 2012, American Institute of Physics.
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5.2 Methodology

Our starting point is to realize that the Levy—Perdew relation is not the only way to go
from potentials to the functionals. In fact, it is a special case of a more general method
based on the line integrals [6, 7] which was discussed in Chapter 1. According to this
method, a density functional can be obtained from the potential vxc([p];r) by taking
an integral given by Eq. (1.58) along a line (path) of a parametrized density p;(r).
If vxc([p];r) is a true functional derivative of some Fxc/[p], then Eq. (1.58) recovers
the parent functional in one of its equivalent forms [8], and functional differentiation
of that functional returns vxc([p];r). But if vxc([p];r) is stray, its parent functional
does not exist and Eq. (1.58) predicts different energy values for different paths.
Nevertheless, one can lend a meaning to this unphysical result by saying that the line
integral of a stray potential taken along a particular path p,(r) defines a new energy
functional. Of course, functional differentiation of any functional constructed in this
manner will not recover the original stray potential.

Any “reasonable” parametrization of the density can be used with Eq. (1.58), such
as scaling [7, 8], spatial redistribution of p(r) [7] or even filling the density electron-
by-electron in accordance with the Aufbau principle [9]. From a practical point of
view, a convenient choice of parametrization is density scaling. A number of scaling
transformations has been discussed in the literature [10-17]. The most well-known of
them is, perhaps, the uniform density scaling [10, 11] of Eq. (1.60), termed the A-path

in Sec. 1.4.2. Here, we write it with the scaling parameter ¢ instead of A,
pie(r) = t3p(tr), 0<t<1 (5.1)

Application of this path to Eq. (1.58) yields

Bxclp] = / i 3plo) +- V)] [ Dose (101:5). (5.2)

In the particular case of exchange potentials, this line integral becomes the Levy—
Perdew relation of Eq. (1.62). Note that it is the coordinate scaling that is responsible
for the presence of r in Eq. (1.62), and ultimately, for the lack of translational and
rotational invariance of Levy—Perdew relation when applied to stray model potentials.

Consider now the density scaling [13, 14] of Eq. (1.59) called the Q-path in

Sec. 1.4.2. We rewrite it here as

pi(r) =tp(r), 0<t<L (5.3)
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The energy expression corresponding to this path is

Exclp] = / dr p(r) / dtvxc(pd: ). (5.4)

This functional does not depend on the position vector r explicitly, so it is transla-
tionally and rotationally invariant as long as vxc([p]; r) is itself invariant. Our idea is
to assign energies to model potentials using Eq. (5.4) rather than Eq. (5.2). Note that
if vxc([p];r) is a functional derivative, then the functional of Eq. (5.4) is equivalent
to the functional of Eq. (5.2) up to a gauge transformation of the energy density. For
a stray potential, the functionals of Eq. (5.2) and (5.4) are different.

5.3 Application

5.3.1 A-LB94 and Q-LB94 functionals

To put our idea to practice, we chose a model potential of van Leeuwen and Baerends
3], a gradient-dependent approximation designed to mimic the Coulombic (—1/r)
asymptotic behavior of the exact potential. The exchange-like part of the LB94
potential is given by Eq. (1.45). Let us rewrite it as

o = AP — g1 G(s), (55)

where v%P4 is the local density approximation for exchange given by Eq. (1.29) and

B BEs?
1+ 30¢€ssinh™!(€s)

G(s) (5.6)
Recall that 5 = 0.05 is an empirical parameter, £ = 2'/3 is a factor arising in transition
to the spin-unpolarized form, and s is the dimensionless reduced density gradient of
Eq. (3.9).

Consider now two exchange functionals constructed from the LB94 as line inte-
grals. The first functional, which we call A-LB94, is obtained by integrating the LB94
along the A-path, that is, by Eq. (5.2). It is defined as

BB = / PN (1) (3p 4 1 Vo) dr, (5.7)
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or, equivalently,
E)/}_LB%[p] _ E}L{DAM _ /p1/3G(3)(3p+ r-Vp)dr. (5.8)

The second functional, called Q-LB94, is obtained by integrating the LB94 potential
along the Q-path, that is, by Eq. (5.4). We write that functional as

BB = FLDA[) — /p4/3Q(3) dr, where (5.9)
1

as) = aes* |

0

dt
t1/3 + 33¢ssinh ™ (t-1/3¢s)

(5.10)

The LB94 potential is not a functional derivative, so the functionals of Egs. (5.8)
and (5.9) yield different energy values (Chapter 2).

To obtain the functional derivative of the A-LB94 functional, we use Eq. (B.20)
derived in the Appendix B. The result is

hiBot _ imon _ uys [APGS® 5dGs dG g (dG &G\ u
X 3ds? p 3dsp dsps ds ds* ) ps3
d
X (3p+r-Vp) + 2p1/3d—fr - Vs, (5.11)

where G(s) is given by Eq. (5.6), and ¢ and u are density-dependent variables defined
in Eq. (3.9). Note that v{1B% turns out to be the original 1L.B94 plus a correction.
This correction completes stray LB94 to a functional derivative, so that LB94 and

A-LB94 yield the same energy via the Levy—Perdew relation:

/U>L<B94(3p +1-Vp)dr = /UQ'LBM(Bp +1 - Vp)dr,

the result which we verified numerically.
The functional derivative of the Q-LB94 functional can be obtained using
Egs. (3.20)—(3.25). Explicitly,

U}(?-LB94 = kDA _ pl/3 [4 (612_@ 2 _ @s +Q) _ ng + (dQ d2Q) U

— S —_— _— [ —
ds? ds s3]

3 ds s ds S ds?
(5.12)

where Q(s) is given by Eq. (5.10).
We implemented the functionals of Egs. (5.8) and (5.9) in the development version
of the GAUSSIAN program [18]. To evaluate the function Q(s) and its derivatives we
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Figure 5.1: Exchange part of the LB94 potential and functional derivatives of the
A-LB94 and Q-LB94 exchange functionals. The potentials are evaluated using

HF /UGBS density of the Kr atom.

used the 256-point Gauss-Legendre quadrature formula [19]. The large number of
points was chosen to ensure an accuracy of at least 107° F}, in the total energy.

Figure 5.1 compares the functional derivatives of A-LB94 and Q-LB94 function-
als to the original LB94 potential. All three curves here are clearly different, which
reflects the fact that LB94 is not a functional derivative. The A-LB94 has a pro-
nounced oscillatory behavior, which might explain why the self-consistent-field (SCF)
procedure with this potential was difficult to converge. Both A-LB94 and Q-LB94
are singular at the nucleus, a feature that is common to functional derivatives of
generalized gradient approximations (cf. Fig. 3.2).

To test translational properties of the A-LB94 and Q-LB94 functionals, we calcu-
lated the total energy of an HyO molecule in two different positions relative to the
coordinate axes. The results are reported in Table 5.1. This test shows that the
A-LLB94 functional is not translationally invariant, but the Q-LB94 functional is. The

difference between the A-LB94 energies for the initial and the displaced positions in

Table 5.1 is precisely equal to

AE=R- / v (r)Vp(r) dr, (5.13)

in agreement with Eq. (1.97).
To get an idea of the accuracy of the A-LB94 and Q-LB94 functionals we compared

the above values to the HF /cc-pVQZ energy, which is a good approximation to the
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Table 5.1: Tests of translational invariance of the A-LB94 and Q-LB94 functionals.
All energies are evaluated using the cc-pVQZ basis set at the HF /cc-pVQZ density of
the H,O molecule. Symmetry was disabled with the NoSymm keyword.

Total energy (E},)
Position A-LB94  Q-LB94 HF

Initial® -76.45904 -79.48049 -76.06374
Displaced” -75.92645 -79.48049 -76.06374

“Initial position: the oxygen is at (0,0, 0); the hydrogens are at (0, 40.763208, —0.596582) A.
bDisplaced position: the molecule is translated by —R, where R = (0,0, 5) A.

exact exchange-only value. As seen from Table 5.1, the A-LB94 energy evaluated at
the initial position is quite reasonable, but varies at a rate of about 0.1 Ey,/ A as the
molecule is moved. The Q-LB94 energy of HyO is already too low by 3.4 F,.

This leads us to a choice: Q-LLB94 functional is invariant with respect to molecular
orientation but yields the energies that are too low. The A-LB94 functional is reason-
ably accurate but has problems with molecular translations and an unphysical behav-
ior of functional derivative. An attempt to solve the problem of position-dependence
was made by Kurzweil and Head-Gordon [5], who imposed the zero-force [Eq. (1.99)]
and zero-torque [Eq. (1.100)] conditions on model potentials (which, in turn, make
Levy—Perdew energies invariant with respect to translation and rotation). We will
show that instead of trying to salvage the A-LB94 energy expression it is easier to
repair the Q-LB94 functional.

5.3.2 Refinement of the Q-LB94 functional

To understand why the Q-LB94 functional gives unphysically low energies, let us
consider its behavior in the uniform-gas limit, s — 0. The Q-LB94 functional belongs
to a class of GGAs for exchange. It is well known [20] that in the s — 0 limit, GGAs
reduce to density-gradient expansion (DGE),

Exlp) = B = [ 05 de o (5.14)

where 7 is a parameter. The non-empirical value of v that makes Eq. (5.14) exact for
a slowly varying electron gas is ypgr = (10/81)[3/167(37%)1/?] ~ 0.0023817 [21]. In
order for a GGA to be accurate for atoms and molecules, Perdew and coworkers [16]

demonstrated that the parameter v must be approximately twice as large, v =~ 29pag-
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For example, the Perdew—Burke-Ernzerhof GGA [22] has v = 0.0042348, while the
Becke exchange GGA [23] has v = 0.0052917.

We will now show that the Q-LB94 functional recovers the DGE up to the second
order but its coefficient v is very different from the exact result. In the limit of small
s, the function Q(s) of Eq. (5.10) becomes

Q(s) = %552 b (s—0). (5.15)

It has the desired quadratic behavior in s, but the second-order gradient expansion
coefficient of the Q-LB94 is v = 33/2%/3 ~ 0.094494, a value 40 times greater than
Ypge! Since v is too high, the function Q(s) is too large, and the energies are too low.
Physically, there is no reason why the value of 3 in the Q-LLB94 functional should
be the same as in the original LB94 potential. First, the LB94 potential is not the
functional derivative of the Q-LB94 functional. Second, the value of 3 in the LB94
potential is an empirical parameter that was fitted to reproduce the correct shape of
the exchange-correlation potential, not accurate energies. The argument of Perdew
and coworkers [16] applied to Eq. (5.15) suggests that, in order to make the Q-LB94
functional accurate for chemically relevant systems, we should revise the value of (3
from 0.05 to 023
Brev = T(ZvDGE) ~ 0.0025. (5.16)
We call the functional utilizing the updated value of § Q-revLLB94. To be clear,
the Q-revL.LB94 functional is given by the same Eq. (5.9) as the Q-LB94, but uses

Brev = 0.0025 instead of § = 0.05.

5.3.3 Performance of the Q-revLB94 functional

Table 5.2 compares the total energies computed using A-LB94, Q-LB94, Q-revL.LB94
functionals with the energies from standard exchange-only density-functional approx-
imations, B88 and PBE. All calculations were performed in a post-SCF fashion using
HF /UGBS densities. This was done for fair comparison with A-LB94 and Q-LB94,
which are difficult to converge for certain atoms. There were no convergence prob-
lems with the Q-revLLB94 functional. One can see that the energies from the A-LB94
functional are not very accurate, with a mean absolute percentage error (MAPE)
of 1.07%. The Q-LB94 energies are even worse, with MAPE = 6.35%. But the Q-
revLB94 (MAPE = 0.070%) is a dramatic improvement over the A-LB94 and Q-LB94

approximations. In fact, it is comparable in accuracy to the B88 and PBE function-



81

1¢30@X0,
2y il

vy =
T

swm = HJVIN :10110 9Fejusdtad ainjosqe wesayy,

T "JoY WOIJ SOIZIoU0 [R10) A[UO-03URYIXD JORX,

0020 6500 0200 Ge’9 L0'T (%) (IdVIN

1ev0'c4Le— 6ECITGLC— v0L0°C4LC— 8LER'TGLC— 1EVY 6LLC— 6006 T9LC— 13
GPER LLLT— 8VEL LLLT— V0LO'8LLT— 6616°LLLT— I89C°66L1T— 90LV"G8LT— uz
0¢GL"9L9— GC95°9L9— €6€L79L9— 0069°9L9— G4vS'889— €0LL76L9— ®D
€CI8'9¢S— G8¢9°9¢S — 648L°9¢5— VE€4L9¢q— €ca0LEG— LCLT 665 — v
TGTL0vE— 96L5°0VE— 6869°0VE— ¢S89 0VE— G649 8VE— 0907 cve— d
9119661 — 16€9°66T— 80¢9°66T— 8619°66T— 6¢0¥" 00— 0668°00C— SN
L9G8° 19T — 0C6L 19T — 8TL8TIT— VLL8 19T — ¢G86°991— ¢6498°CIT— BN
GGya8cl— 7G098CT— 99L.4°8¢T— 7G848CT— 7E€40€CT— L6CV 66T — °N
Veov ¥a— 004€¥4— 0v6E¥4— Q1Y v4— 699694 — €965 14— N
VeLSvI— 6IvSvI— 0V9S¥1— LG VI — L90L°GT— Vevavi— °od
GcevL— 8807°L— 89¢v'L— 6EVY L— 0L61°8— 6549€°L— Il
L198°C— G6¥8°¢c— V198°C— LCLSC— 6E1E€€— 90¢8°¢c— °H
000G°0— ve6v 0— €L6V 0— 600G°0— 0T€9°0— 7997°0— H
0 }OBXH ddd s8¢ P6LTA01-0) 7610 P61V woyy

A[uo-o8ueyoxo

“Aysuep SO/ H 92U} 1940 924D )G 9[3UIS ® oIk suonRmMO[ed [[y ‘suoljewixoidde

snotrea gursn paoynduwod swoje (eonards Jo 39s © Jo (W7 JO S)jun ur) solSIous 9)eIS-PUNOIS [RIO], :Z°G 9[qR],



82

als. Compared to the A-LB94 energy expression, the Q-revLB94 functional is not
only more accurate but also gives energies that are position-independent. This makes
the Q-revLLB94 approximation suitable for calculating forces acting on the nuclei and

for performing geometry optimizations.

5.3.4 The Q-revLB94 exchange potential

The functional derivative of Q-revLLB94 has a shape similar to that of other popular
approximations for exchange, as Fig. 5.2 shows. The exchange-only GGA potentials
B88, PBE, and Q-revLLB94 are almost indistinguishable on the scale shown. This is
due to the like behavior of accurate exchange functionals for slowly varying densities,
which makes their functional derivatives similar near the nucleus, where s is small.
Compared to the GGA potentials, LB94 is more negative almost everywhere and does
not have a singularity at the origin. The differences in the large-r behavior of the
four potentials examined here are emphasized by plots of rvx(r), which are shown in
Fig. 5.3. It is seen from this figure that the L.B94 potential decays roughly as —1/r,
whereas the other three potentials decay much faster.

To deduce the asymptotic behavior of Q-revLLB94 potential we need to analyze its
s — oo limit (because s becomes infinitely large as r — oc). From Eq. (5.10) we have
Q(s) ~ 85(£s)3E1(31In2¢s), where Ey(z) is the exponential integral [25]. Using the
asymptotic expansion formula for F(z) (identity 5.1.20 in Ref. 25), we obtain

1 s

Qls) ~ 31n 2€s

(s — 00), (5.17)

which is similar to the asymptotic behavior of the B88 gradient correction, except that
the B88 analog of Q)(s) has a prefactor 1/6 instead of 1/3. (This occurs because the
Q-revLB94 functional is based on the LB94 potential which in turn uses a B88-style
gradient correction.) Finally, substituting an exponentially decaying density p = e=*"
into Egs. (5.12) and (5.17), we find that

5)
pQILBO O o), (5.18)

ar?

where a is a constant. For comparison, the B88 exchange potential decays as —5/2ar?
(see Ref. 26), and PBE as —ce~®/3, where c is another constant.

Because the LB94 potential is more negative almost everywhere and decays more
slowly than the Q-revLB94, B88, and PBE potentials, the quality of the highest
occupied molecular orbital (HOMO) energies obtained with the LB94 potential is
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Figure 5.2: Exchange part of the LB94 model potential compared with functional
derivatives of the Q-revLLB94, B88, and PBE exchange functionals. All potentials are
constructed for the Kr atom using the HF /UGBS density. The Q-revL.B94, B88, and
PBE curves are barely distinguishable at a given scale.
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Figure 5.3: Same as Fig. 5.2 but with the potentials multiplied by r to emphasize the
asymptotic region of the atom. The correct asymptote is a horizontal line at —1.
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Table 5.3: Negative of the HOMO energy (in units of eV) obtained from various
exchange-only approximations. All calculations are self-consistent and use the UGBS.

Atom A-LB94 Q-revLB94 B88 PBE Exact®

H 11.32 7.39 7.41 7.37  13.61
He 21.62 15.02 15.08 15.05 24.98
Li 4.77 2.96 297 297 5.34
Be 7.67 4.90 494 494 8.41
N 12.94 7.64 7.74 7.74 1554
Ne 19.69 12.21 12.37 1239 23.15
Na 5.04 2.74 2.79 2.79 4.96
Mg 6.86 3.99 4.05  4.06 6.88
P 9.21 5.66 5.71 5.72  10.66
Ar 14.36 9.20 9.30 9.32  16.08
Ca 5.61 3.09 3.15 3.15 5.32
Zn 9.22 5.03 0.15 5.16 7.97
Kr 13.05 8.21 8.30 8.32 14.24
MAE® 1.46 5.32 2.24  5.24

“Exact exchange-only HOMO eigenvalues from Ref. 24.

bMean absolute error.

better than from the other three approximations (Table 5.3). This means that the
Q-revLLB94 potential will not perform better than the B88 and PBE approximations
in calculations of response properties such as polarizabilities and excitation energies

in time-dependent density functional theory.

5.4 Relation to other methods

Application of our method to the LB94 potential produces a competitively accurate
exchange GGA. In Chapter 3 we described the construction of another GGA from
the same model potential, using a different approach. In that case, we started with
the LB94 potential, completed it to a functional derivative, and then recovered the
parent functional. Here, we first assign a functional to the LB94 potential and then
use that functional to obtain the functional derivative. Since neither completion to a
functional derivative nor line integration is unique for stray potentials, the Q-revL.LB94
functional and the functional of Chapter 3 are different. The approach based on line
integrals is more flexible.

Our method is also related to the procedure for constructing the “unambiguous

energy density” proposed by Burke et al. [27, 28]. For exchange potentials, Burke’s
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method amounts to defining the functional,

EX[P] _ _% dr’/dr V- [p(T)vaqp];r)]' (519>

r—r|

This expression is essentially a gauge transformation of the Levy—Perdew virial en-
ergy density carried out using the Helmholtz decomposition. Burke and co-workers in-
tended Eq. (5.19) to be used with functional derivatives of standard density-functional
approximations (such as LDA, PBE, and BLYP) as a way of eliminating the ambigu-
ity of conventional energy densities. But, of course, their method may be also used to
construct energy functionals from stray model potentials. Unfortunately, Eq. (5.19) is
not very practical because it requires real-space integration over r for each grid point
r’. Our method involves only a one-dimensional quadrature at every real-space grid

point, so it is easier to implement and has a lower computational cost.

5.5 Conclusion

Assigning energy to stray model potentials always involves some degree of arbitrari-
ness. Exchange energies computed via the Levy—Perdew virial relation (i.e., by line
integration along a path of uniformly scaled density) are quite reasonable, provided
that a model potential has a realistic shape. However, Levy—Perdew energies are not
invariant with respect to molecular translations and rotations. By choosing an inte-
gration path that does not involve coordinate scaling, one can ensure proper invariance
of the energies obtained from a stray model potential, but often at the expense of the
accuracy of the resulting energy expression.

In this work, we adopt a different view of line integration as an instrument for de-
signing new density-functional approximations using stray model potentials as start-
ing points. The resulting functionals are not expected to automatically yield good
energies and may require fine-tuning. The modification may be as simple as adjust-
ing a parameter to satisfy an exact constraint. This strategy proved quite effective
in deriving the Q-revLLB94 functional starting with the LB94 model potential. This
new functional is properly invariant and yields better energies than the Levy—Perdew

relation.
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Chapter 6

Self-interaction correction scheme

for Kohn—Sham potentials

6.1 Introduction

In the Kohn—Sham density functional theory, electrons move in an electric field de-
scribed by a multiplicative Kohn—Sham potential vg(r). The electronic part of v,
is the Hartree-exchange-correlation (HXC) potential vgxc given by Eq. (1.14). The
vaxc describes interaction of each electron with the field created by the remaining
N — 1 electrons in the system, and behaves asymptotically as (N — 1)/r. The vpxc
is further partitioned into a sum of the Hartree vy [Eq. (1.15)] and the exchange-
correlation vxc potentials [Eq. (1.16)]. Of these two, the Hartree term includes the
spurious self-interaction of each electron with itself and has the N/r asymptotic de-
cay. This implies that the exact exchange-correlation potential should fall off as —1/7.
Unfortunately, most approximations to vxc decay faster than —1/r and hence do not
cancel out the self-interaction part of vy completely. The resulting error in wvgxc,
termed self-interaction error, causes the effective Kohn—Sham potential to be more
repulsive than it should be at intermediate and large r [1, 2]. One immediate conse-
quence of this aberration is a collapse of the virtual Kohn—Sham orbital eigenvalue
spectrum, which translates into poor description of response properties [3—6].

In this Chapter, we propose a self-interaction correction (SIC) motivated by a

Reprinted in part with permission from A. P. Gaiduk, D. Mizzi, and V. N. Staroverov, “Self-
interaction correction scheme for approximate Kohn—Sham potentials”, Phys. Rev. A 86, 052518
(2012). Copyright 2012, American Physical Society.

Reprinted in part with permission from A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, “Im-
proved electronic excitation energies from shape-corrected semilocal Kohn—Sham potentials”, Phys.
Rev. Lett. 108, 253005 (2012). Copyright 2012, American Physical Society.
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fractional charge perspective on density functional theory [7]. We demonstrate appli-
cation of our method to the calculation of vertical ionization and excitation energies.
We also emphasize a unifying point of view according to which our method, the Slater
transition-state technique [8-11], and the Xa approximations [9] are all different forms

of self-interaction correction for approximate exchange-correlation potentials.

6.2 Self-interaction error in Kohn—-Sham poten-

tials

Consider the ground-state hydrogen atom. For this system, vpxc(r) must vanish
identically because a single electron does not interact with itself. Most approximate
exchange-correlation potentials, however, violate the condition vpxc(r) = 0. This
is illustrated in Fig. 6.1 for the local density approximation with the Perdew—Wang
parametrization of the correlation energy [12].

In many-electron atoms and molecules, the exact vgxc is of course no longer zero,
but the symptoms of the self-interaction error are similar: a typical approximate
vaxc is not sufficiently negative at medium and large r, and decays too fast. This is
illustrated in Fig. 6.2 by the example of an LDA calculation on the Ne atom. Note
that here vyxc is dominated by the Hartree potential, while the contribution of vxc
is relatively small. Generalized gradient approximations such as the Perdew—Burke—
Ernzerhof exchange-correlation functional [13] yield similar curves (not shown), except
that vxc and vgxce tend to —oo at the nucleus.

A useful measure of how strongly an approximate Hartree-exchange-correlation

potential deviates from vl is the corresponding HOMO eigenvalue, egomo. From

Egs. (1.12) and (1.13) we have

enomo = (dnomo |—3 VZ 4 v + vuxc | dnomo) - (6.1)

For the H atom, the exact vgxc = 0 with the exact 1s hydrogenic orbital ¢(r) =
e™"/\/m yields the exact eigenvalue egoyo = —0.5 FEy, whereas the self-consistent
LDA and PBE potentials give egono = —0.269 and egomo = —0.279 Ey, respectively.
Differences between exact and approximate egono values for many-electron atoms are
of similar magnitude.

The self-interaction error in Kohn—Sham potentials can be also analyzed by con-

sidering the behavior of egono as a function of the HOMO occupation number. When
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Figure 6.1: Self-consistent Hartree and LDA exchange-correlation potentials for the
hydrogen atom. Here the entire difference between vpxc and vHeS is the self-
interaction error. The potentials depicted in this figure were calculated using the
universal Gaussian basis set of Ref. 14.
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Figure 6.2: Self-consistent Hartree and LDA exchange-correlation potentials for the
neon atom. The exact exchange-correlation potential is from Ref. 15.
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a fraction § of an electron is removed from the HOMO, the density becomes

p(r) = p(r) — d|¢nonmo(r)[*. (6.2)

Here and below, we call the parameter 6 the HOMO depopulation. To study egomo
as a function of J, we construct the potential vgxc([p];r) using the electron-deficient
density p(r) and then solve the Kohn—Sham equations self-consistently. Recall that
in the fractional occupation formalism, egonmo and the total electronic energy F are
related by the Slater—Janak theorem [16],

OE(n)

cnono(n) = — . (63)

where n = 1—¢. In the exact Kohn—Sham DFT, F is a linkage of straight-line segments
between consecutive integer electron numbers [7, 17-19]; the slope of each segment
between J — 1 and J is the vertical ionization energy (VIE) of the J-electron system.
By Eq. (6.3) this implies that a plot of the exact egonmo as a function of § (0 < 6 < 1)
should be a horizontal straight line drawn at egoyo = —VIE. It is known that nearly
all approximate density functionals violate this constraint [20-23], as illustrated in
Figs. (6.3) and (6.4) by the examples of the LDA, PBE, Tao-Perdew—Staroverov—
Scuseria (TPSS) [24], and hybrid PBE (PBEO) [25] functionals. The deviation of
egomo(n) from the exact horizontal line or, equivalently, the deviation of E(n) from
linearity have been termed the many-electron self-interaction error. Now let us show

how this error can be reduced.

6.3 Self-interaction correction for Kohn—Sham po-

tentials

Observe that each curve in Figs. 6.3 and 6.4 crosses the exact straight line near § = 1/2.
This suggests that the shape of the LDA, PBE, TPSS, and PBEO exchange-correlation
potentials as functions of ¢ improves the most when about half an electron is removed
from the HOMO. To verify this assumption for the H atom, we plotted the sum of
Hartree and PBE exchange-correlation potentials for 10 values of § varying between
0 and 0.9 (see Fig. 6.5). This figure shows that the smallest average deviation of
vaxc([p];r) from the exact vpxc(r) occurs at § ~ 1/2. Similar results were obtained
for the H atom using the LDA exchange-correlation potential (not shown).

It is not difficult to see how the HOMO depopulation works. For a hydrogen
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Figure 6.3: HOMO (1s) eigenvalue for a hydrogen atom as a function of the HOMO
depopulation §. All eigenvalues are from self-consistent potentials including exchange

and correlation.
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Figure 6.4: HOMO (2p,) eigenvalue for a neon atom as a function of the HOMO
depopulation §. All eigenvalues are from self-consistent potentials including exchange

and correlation.
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Figure 6.5: The sum of self-consistent Hartree and PBE exchange-correlation poten-
tials of a hydrogen atom for 10 values of the HOMO depopulation from § = 0 to
0 = 0.9 with a step of 0.1.

atom, vy ([p]; r) is linear in §, whereas vxc([f]; r) scales roughly as §'/2. As § increases,
v ([p]; r) decreases faster than vxc([p]; r) increases, so their sum vyxc([p]; r) becomes
more negative. At § & 1/2, the potential vpxc([p];r) is on average closest to the exact
vaxc in such a way that egonmo becomes exact. The precise value of § at which egonmo

becomes exact can be determined for any one-electron system by solving the equation

(dromo |—3 VZ + v + v [p] + vxclpl| dromo) = —3- (6.4)

In particular, within the exchange-only LDA, analytic solution of Eq. (6.4) for the
exact hydrogenic 1s orbital yields 6 = 1—2431/5/4007 =~ 0.568. For the self-consistent
LDA, PBE, TPSS, and PBEO potentials whose eigenvalues are plotted in Fig. 6.4, the
solutions are § = 0.522, 0.477, 0.473, and 0.470, respectively.

In many-electron systems, the asymptotic region of the electron density is domi-
nated by the HOMO, so the large-r behavior of vgxc should be improved by depopu-
lating the HOMO alone. Moreover, Fig. 6.4 suggests that the greatest improvement
of the HOMO energy should again occur at § ~ /2. To verify this conjecture we
could compare vpxc([p]; r) and vpxc([p];r) to the exact Hartree-exchange-correlation
potential. However, since the effect of HOMO depopulation in many-electron systems

is very small on the scale of vgxc, it is better to compare the uncorrected vxc([p];r)



96

Ne atom
.'-'_J.s | Basis: aug—cc—-pvVQZ
0
= =30 ¢ exact —— ]
PBE ----------
-4.0 | SIC—P?,E |
correction ------
-5.0 L . ) . .
0 1 2 3 4 5 6

r [ao]

Figure 6.6: Self-consistent PBE exchange-correlation potential for the Ne atom with
and without fractional depopulation of the spin-up 2p, orbital (§ = 1/2). The curve
labeled SIC-PBE is the spin-up potential plotted along the z axis. The exact vxc
is from Ref. 15. The ‘correction’ is the difference between the SIC-PBE and PBE

curves.

and the self-interaction-corrected potential defined by

vR6 (r) = vaxe ([l ) — v ([l ). (6.5)

The SIC potential may be alternatively written as

VR (1) = vxe((pl; 1) + Avxe(r), (6.6)

where Avxc(r) is the correction defined as

Avxc(r) = vaxc([p]; ) — vaxc([p]; T)- (6.7)

Figure 6.6 shows that the SIC-PBE (6 = 1/2) exchange-correlation potential of a Ne
atom is indeed much closer to the exact vxc than the uncorrected (§ = 0) potential,
especially in the middle-r range. Similar results are found for other systems and
density functionals.

The effect of HOMO depopulation on vxc(r) in Fig. 6.6 resembles the effect of
renormalizing the exchange-correlation charge [2, 26-29], which suggests that the
physics underlying both approaches is similar. To a first approximation, HOMO

depopulation creates a spherical layer (shell) of positive charge 44 distributed over
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the valence region of the atom. The potential of this charged shell is constant inside the
shell and decays as —d/r outside the shell. According to this model, the asymptotic
behavior of SIC-PBE exchange-correlation potential is —1/2r. This is not the exact
—1/r decay, but it is more realistic than the exponential decay of the uncorrected
PBE potential. In any case, the shape of vxc(r) at r — oo matters less than at
0.5 < r < 3ag, where the SIC-PBE potential mimics the exact vxc(r) quite well.

Let us summarize. The shape of Hartree-exchange-correlation potentials is im-
proved if they are constructed from the density p with the depopulated HOMO. Our
correction amounts to reducing the self-interaction error in vyxc(r) and leads to bet-
ter Kohn—Sham orbitals and orbital eigenvalues. In the following two sections, we will
demonstrate the practical capabilities of our approach by computing vertical ioniza-

tion energies and electronic excitation energies.

6.4 Vertical ionization energies

Our results suggest that the quality of approximate HOMO eigenvalues is at its best
when the HOMO depopulation is § ~ /2. At this ¢, the HOMO eigenvalue becomes a
much better estimate of the VIE than at 6 = 0. The procedure for computing the VIE
as egomo (0 = 1/2) is actually a very old technique known as the Slater transition-state
8, 9] or half-ion [10, 11] method. In the usual justification of this procedure, the VIE
is written using Eq. (6.3) as

VIE = E(N — 1) — B(N) = — /0 ' cono(n) dn. (6.8)

where n = 1 — 0. The argument is then made that the function egomo(n) is roughly
linear (at least, for many-electron systems), so the integral in Eq. (6.8) must be well
approximated as

VIE = —egomo(n = 1/2). (6.9)

Figures 6.3 and 6.4 provide an even more direct explanation of why Eq. (6.9) works—
because the plot of egono(n) crosses the exact value of egonmo near n =1 — 0 = /2.
From this point of view, Slater’s transition-state method is a self-interaction correction
scheme for approximate Hartree-exchange-correlation potentials.

The dramatic effect of switching from vgxc([p];r) to vaxc([p];r) is illustrated in
Table 6.1. The mean absolute error in VIEs is reduced by more than an order of

magnitude by applying the correction. The outliers are the halogenated hydrocar-
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Table 6.1: Vertical ionization energies (in eV) determined as —egomo from LDA
and PBE exchange-correlation potentials with and without HOMO depopulation.
All calculations use the cc-pVQZ basis set. Some LDA calculations with fractional
occupations could not be converged (‘n/c’).

LDA SIC-LDA PBE SIC-PBE
System d=0 o0=1 =0 o0=12 Expt*

He 15.49 24.56 15.73 24.92 24.59
Li 3.16 5.58 3.22 5.66 5.39
Be 5.60 9.06 5.61 9.04 9.32
Ne 13.37 n/c 13.14 21.61 21.56
Na 3.08 5.44 3.04 5.36 5.14
Mg 4.78 7.74 4.70 7.61 7.65
Ar 10.38 n/c 10.26 15.70 15.76
H,O 7.16 13.08 7.01 12.73 12.62
CO 9.08 14.11 9.00 13.92 14.01
CH»O 6.30 10.90 6.21 10.72 10.1
HCOOH 6.83 11.38 6.64 11.07 11.5
CHy 9.47 14.05 9.45 13.96 13.6
CHyF, 8.16 12.50 8.06 12.36 13.27
CFCl; 7.84 10.98 7.70 10.81 11.76
CCly 7.79 n/c 7.65 10.53 11.69
Acrolein 6.10 10.04 2.95 9.80 10.15
Furan 5.84 9.19 2.63 8.88 8.88
Thiophene  6.05 9.19 .86 8.91 8.85
MAE? 4.41 0.34 4.50 0.35

“Experimental vertical ionization energies are from Ref. 32.
®Mean absolute error.

bons CHyF,, CFCl3 and CCly, for which the error is reduced only by a factor of 4
(from roughly 4 eV to about 1 eV). Ionization energies of halogenated compounds
are known to be inadequately described with standard density functionals [30, 31], so
this underperformance has more to do with the LDA and PBE functionals than with
the correction.

In terms of the effect on HOMO eigenvalues, the HOMO depopulation and
transition-state schemes are similar to another technique proposed by Slater—the
Xa method [9]. In the original (nonempirical) version of the Xa method, the LDA
exchange potential is scaled by a constant a = 3/2, which makes vyxc more attractive
and lowers the eigenvalues, just as in the transition-state scheme. The similarity be-

tween the transition state and scaling vx was pointed out by Slater himself (see p. 55
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in Ref. 9). We add that the optimal value a can be derived by solving the analog of
Eq. (6.4), namely,

LDA

(dromo |—3 V? + v + valp] + avg™*[o]| dromo) = €ionio- (6.10)

For the exact hydrogenic density, this gives a = 20(67)%/3/81 a2 1.7488, which is not

far from 3/2.

6.5 Electronic excitation energies

One of the effects of self-interaction error is inaccurate prediction of electronic ex-
citation energies in time-dependent DFT calculations, especially for Rydberg states.
This problem is successfully resolved using model potentials with correct asymptotic
behavior [33]. Similar to model potentials, our self-interaction correction scheme im-
proves the shape of exchange-correlation potentials, and may yield accurate valence-

to-Rydberg excitation energies. We will test this assumption in the following Section.

6.5.1 Methodology

Before we begin, let us address one technical issue. In the transition-state method,
removal of a fraction of a spin-up or spin-down electron from a doubly occupied HOMO
leaves the system spin-polarized. In addition, for systems with degenerate HOMO,
fractional depopulation of only one HOMO breaks the spatial symmetry of the total
electron density. This is highly undesirable in TDDFT calculations. To preserve the
spin state and spatial symmetry of many-electron systems with § > 0, we depopulate
the entire HOMO level rather than a single orbital. That is, if a system has m > 1
occupied spin-orbitals at the highest occupied level, we replace the definition of p in
Eq. (6.2) with

p(r) = p(r) — %Z |dromo.i(r)[?, (6.11)

For example, in a Be atom we remove §/2 spin-up and §/2 spin-down electrons from
the 2s orbital. In a Ne atom, we remove 0/6 electrons from each spin-orbital of the
2p subshell. The procedure for SIC-TDDFT calculations is similar to TDDFT with
model potentials and consists of two steps: (1) do a self-consistent calculation for
the (N — d)-electron system using some standard density functional; (2) set up and
solve Casida’s TDDF'T equations for the all-electron system using the orbitals, orbital

energies and the functional from the first step.
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The optimal § for the SIC-TDDFT scheme described above is not guaranteed
to be the same as for the vertical ionization energies. Vertical ionization energies
depend on the eigenvalue of a single orbital, egono, While excitation energies depend
on the eigenvalue differences [34, 35], reproducing which may require a different value
of 9. To analyze how the eigenvalue differences depend on §, we plotted energies of
the self-consistent Kohn—-Sham LDA HOMO (2s) and the four lowest-lying virtual
orbitals (2p, 3s, 3p, and 3d) of a Be atom as functions of the HOMO depopulation
(Fig. 6.7). The exact Kohn—-Sham eigenvalues for the Be atom are known from the
work of Savin et al. [34]. We see that the 2s and 2p orbital eigenvalues become
exact near § = 1/2, but the 3s, 3p, and 3d eigenvalues become exact at much higher
depopulations, § ~ 0.8. Nevertheless, the gaps between these orbitals become exact
almost simultaneously near ¢ = 1/4. This suggests that the LDA should give excellent
excitation energies if the HOMO level is depopulated by about a quarter of electron.

Table 6.2 confirms that the use of 6 = 1/4 to improve the Kohn—Sham orbital gaps
leads to dramatically improved Rydberg excitation energies. The uncorrected LDA
is reasonably accurate in predicting the valence excitation of the Be atom (2s — 2p),
but Rydberg excitations are underestimated by as much as 1-1.5 eV. The SIC-LDA

(0 = 1/4) reduces this error to 0.1-0.4 eV and further improves the valence excitations.

6.5.2 Computational details

To benchmark our method, we applied it to a number of local, semilocal and hybrid
functionals on an extensive test set. Our test set consists of 31 valence and 73 Rydberg
excitation energies of three atoms (Be, Mg, and Zn) and six molecules (CO, CH,O,
CyHs, CoHy, HoO, and Ny) at the experimental geometries [37]. To accommodate
transitions to high-lying states, we used the d-aug-cc-pVQZ and d-aug-cc-pV'TZ basis
sets for the atoms and molecules, respectively. These are the standard aug-cc-pVQZ
and aug-cc-pVTZ Gaussian basis sets taken from the EMSL Basis Set Library [38, 39]
and augmented with one additional set of diffuse functions of each type (s, p, d,
and so on). The exponents of these additional functions were chosen to continue the
geometric progression of the two most diffuse exponents in the original basis sets and
were rounded to 3 significant figures [40].

All calculations were performed using the GAUSSIAN 09 program [41] appropriately
modified to allow for fractional occupations. In GAUSSIAN 09, Casida’s equations for a
fixed set of Kohn—Sham orbitals and orbital eigenvalues stored in a checkpoint file can
be solved using the keywords TD, Guess=Read, and SCF (MaxCyc=-1,NoVarAcc). The

latter is needed to skip diagonalization of the Kohn—Sham Hamiltonian matrix, which
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E -0.2 e J/
w -

Be atom
LDA / d-aug-cc—pVQZ

3.0 3.2 3.4 3.6 3.8 4.0

Figure 6.7: LDA orbital energies in a Be atom as functions of the HOMO depopu-
lation. The crosses (+) mark the points where each € becomes exact. The vertical
arrows are drawn at those § values for which the corresponding eigenvalue differences
become exact. Note that the crosses are scattered whereas the arrows are clustered
near § = 1/4. The exact eigenvalue of the 2s HOMO (—0.3426 E}) was calculated as
a negative of the non-relativistic fixed-nucleus ionization energy of a Be atom [36];
the exact eigenvalues of 2p (—0.2099 Ey), 3s (—0.0982 Ey,), 3p (—0.0732 Ey), and
3d (—0.0593 Ey) virtual orbitals were computed from the orbital energy differences
reported in Ref. 34.

Table 6.2: Kohn—Sham eigenvalue differences (Ae, eV) and TDDFT excitation en-
ergies (w, eV) to valence (V) and Rydberg (R) states of a Be atom computed using
LDA and SIC-LDA with § = /4. All calculations use d-aug-cc-pVQZ basis set. The
computational details are the same as in Sec. 6.5.2.

LDA SIC-LDA Exact?®

State  Transition Ae w Ae w Ae w

3P 25— 2p (V) 350 240 3.63 243 3.61 2.73

P 25— 2p (V) 485 5.19 5.28
3 2s—3s(R) 559 551 6.76 6.64 6.65 6.46
1S 25— 3s (R) 5.62 6.85 6.78
5P 25 —3p(R) 566 566 7.21 7.17 7.33 7.30
1P 25— 3p (R) 5.66 7.23 7.46
3D 2s—3d(R) 665 661 7.83 7.76 7.71 7.69
D 2s—3d (R) 6.52 7.69 7.99

%From Ref. 34.
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would otherwise alter the orbitals and orbital eigenvalues. All calculations employ the
UltraFine integration grid.

The optimal § for each density-functional approximation was determined by fit-
ting calculated excitation energies to 14 experimental excitation energies of the CO
molecule. This gave the following values: 6 = 0.24 for the LDA; 0.26 for the PBE
approximation; 0.28 for the BLYP approximation; 0.23 for TPSS; 0.18 for the BSLYP
hybrid functional [42-45]; 0.16 for the PBEO hybrid; and 0.19 for the TPSS hybrid
[31, 46]. Note the consistency with which functionals of the same type have similar
0 values, and that hybrid functionals require smaller corrections. Also note that the
fitted LDA value of § = 0.24 is almost exactly equal to the estimate 6 = /4 made in
the previous Section for the optimal orbital gaps. Such an excellent agreement be-
tween two independent determinations of the optimal § value justifies our assumption
that the HOMO depopulation is an inherent characteristic of a given functional and

is largely system-independent.

6.5.3 Results

Results of TDDFT calculations are summarized in Table 6.3 for four representa-
tive density functionals: LDA, BLYP, B3LYP, and TPSS. Without our correction,
these functionals give good results for valence excitations (MAE = 0.26-0.35 eV),
but severely underestimate the energies of Rydberg transitions (MAE = 0.97-1.63
eV). Our method reduces the MAEs for Rydberg excitations to 0.18-0.25 eV while
preserving the already good performance for valence excitations. These trends appear
statistically stable for all systems and functionals we tested (see Tables 6.4-6.12).

It is instructive to compare our method with long-range-corrected hybrids such
as LC-wPBE [47] and sophisticated empirical functionals such as M06-2X [48], which
was specifically recommended for calculations of valence and Rydberg excitations.
The LC-wPBE functional has a low MAE for Rydberg excitations, but performs
significantly worse than standard functionals for valence transitions. M06-2X is more
accurate than any of the standard functionals for Rydberg excitations, but the same

standard functionals corrected by our method outperform M06-2X by a wide margin.

6.6 Conclusion

Most existing schemes for reducing the self-interaction error in Kohn-Sham potentials

correct energy functionals [57, 58] or orbital eigenvalues [59, 60|, but approaches that
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directly correct Kohn—Sham potentials [2, 29, 33, 61] are also becoming popular.
In this Chapter, we described a simple and effective scheme of the latter type. Our
method is based on the observation that an approximate Hartree-exchange-correlation
potential vyxc(r) of a fractionally ionized system is a better representation of the
exact vgxc(r) at intermediate and large r than the vyxc(r) constructed with the
all-electron density. The HOMO depopulation method is applicable to any local,
semilocal, or global hybrid density-functional approximation. If it were applied to
the exact vpxc([p];r), the resulting vpxc([p]; r) would still predict the exact HOMO
energy because, in the exact Kohn—-Sham DFT, egomo remains a constant for all
0<0<1][17,20].

Our findings point to the physical reason behind the success of Slater’s transition
state method for calculating vertical ionization energies. Namely, the HOMO eigen-
value of a Slater transition state is a good approximation to the exact HOMO energy
because the quality of HOMO eigenvalues from approximate Kohn—Sham potentials
peaks at 0 ~ /2. The HOMO depopulation method also works well in adiabatic
TDDFT by improving Kohn-Sham orbital gaps. The optimal HOMO depopulation
necessary to reproduce orbital gaps and excitation energies is about half of what is
required to reproduce ionization energies. Our correction scheme lowers errors of Ry-
dberg excitations from more than 1 eV to sub-eV values, and rivals the accuracy of
the cutting-edge functionals such as LC-wPBE and M06-2X.

To conclude, it appears that accurate response properties for a system of interest
can be obtained by applying approximate density functionals to the same system with
partially depopulated HOMO. The need for an auxiliary system reflects the limited

accuracy of existing approximations, and their main problem, self-interaction error.
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Chapter 7
Summary and outlook

Most approximations in density functional theory predict accurate total electronic
energies but fail for response properties such as electronic excitations, ionization en-
ergies, and molecular polarizabilities. These properties are highly sensitive to the
quality of the Kohn—-Sham potential; thus, their description can be improved by di-
rectly approximating the exchange-correlation potential [1-4] and imparting it with
the essential analytical properties such as the exact Coulombic decay [5], shell struc-
ture, and derivative discontinuities [6, 7].

A model exchange-correlation potential is unlikely to be a functional derivative of
any functional unless explicitly constrained to be one. Non-integrable potentials do
not have a unique energy associated with them and lack the translational and rota-
tional invariance, which leads to artifacts such as energies dependent on molecular
orientations, and causes problems with geometry optimizations [2, 8]. As a result,
applications of stray model potentials have long been limited to calculations of molec-
ular response properties [7, 9]. To be useful for a wider range of applications, model
potentials must be integrable.

Before our work, there existed only scattered results related to the integrability
of model potentials [2, 10, 11]. We have proposed numerical and analytical tests to
detect non-integrable potentials, as well as several methods to construct integrable
potentials directly. Our work laid the foundation for the development of universal
potential approximations in density functional theory that can perform equally well for
computing both energies and response properties. We also proposed a self-interaction
correction scheme that improves the shape of standard exchange-correlation potentials
and, in this sense, amounts to generating model potentials on the fly. What remains
to be done is to learn how to improve the accuracy of potential approximations. We

will now discuss several strategies for designing better model Kohn—Sham potentials.
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One of the big open questions is how to develop accurate approximation to the
entire exchange-correlation potential. The vast majority of model potentials existing
today are exchange-only [4, 12-14], and even the few exchange-correlation approxi-
mations such as the LB94 [3] and U06 [15] actually have the exchange-like behavior.
The true correlation potential is more difficult to approximate because its properties
are studied less than the properties of the exchange potential. Perhaps, one might
get a better idea of what to approximate by analyzing exact correlation potentials
extracted from highly-correlated densities of various systems [16-18].

One could get additional flexibility for the development of model potentials by
constructing them from the Kohn-Sham orbitals. Numerous exchange potentials such
as the Becke-Johnson [4], Résénen-Pittalis-Proetto [13], and the recently proposed
e-consistent potential (Sec. 1.4.1) use Kohn—Sham orbitals as a basic ingredient. It
would also be interesting to design the entire exchange-correlation potential from the
orbitals. Note that the energy from orbital-dependent potentials can be computed
by line-integration along the A-path [Eq. (1.60)] but not along the Q- [Eq. (1.59)] or
Z-paths [Eq. (1.63)] because the scaling of Kohn—Sham orbitals is known only under
the A-transformation of the density. One could try to extend the line-integral method
of Ref. 19 to orbital-dependent potentials. For example, it should be possible to take
the derivative of the exchange-correlation functional with respect to the Kohn—Sham

orbitals ¢;(r) [2, 20, 21]

"t xellpismon (7)
and rewrite the van Leeuwen—Baerends line integral in terms of the derivatives
dExc[p]/d¢;(r) rather than 0 Exc|p]/dp(r). It would also be interesting to study the
scaling of the Kohn—-Sham orbitals under the ¢- and (-density transformations.

Another important problem is to design models with exact Coulombic decay. So
far this proved to be quite difficult because the electron density falls off exponentially,
and any approximation that uses only the density and its derivatives will inherit the
exponential decay [17, 22, 23]. We envision at least three different ways to capture
the exact asymptotic behavior of the potential. One possibility is to extract r from
quantities like Inp or Ins. In fact, the LB94 model [3] does just that because it
contains the term sinh™*(s) = In(s++/1 + s2). Unfortunately, the logarithmic function
increases too slowly, so the LB94 potential reaches the correct asymptotic decay too

late [15]. Another possibility is to get the term —1/r from the Laplacian of the density
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[Eq. (3.16)]. This idea was implemented in the functional of Engel and Vosko [24],

1

Bxlo) = = [ o*ws(e) v (7.2)

The corresponding potential has the correct asymptotic decay but is too negative
in the region near the nucleus. Furthermore, this approximation does not recover
the density-gradient expansion of the slowly varying electron gas and is therefore not
very accurate. Still, one might employ this idea to design simple gradient-dependent
functionals with the correct long-range behavior of the potential.

Probably, the most promising approach is to develop potentials in the form of the
electrostatic integral, as pointed out by Li, Ayers, and Parr [25, 26], and by Gorling

[27]’

vxe(r) = T—’fc_(rri dr', (7.3)

The potential vxc becomes asymptotically correct if the exchange-correlation charge
gxc integrates to —1 [28, 29]. The development of model potentials then reduces to
finding a suitable representation of gxc. One of the possible choices is gxc = —p/N,
which gives rise to the Fermi—Amaldi model of Eq. (1.40). The success of the approach
focusing on exchange-correlation charge has been recently demonstrated by Andrade
[30] and Gidopoulos [31], who designed new potentials with correct long-range decay
by normalizing approximate gxc. Even our self-interaction correction scheme dis-
cussed in Chapter 6 partially recovers the correct normalization of the underlying
exchange-correlation charge, and thereby improves the shape of the potential.

There are many other interesting problems one could address. I finish this thesis
in the hope that the potential-driven approach will soon play a prominent role in the

development of density functional theory.
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Appendix A

Properties of the delta function

The Dirac delta function §(z) is defined by its two properties:

0 forx#0 oo
5(1;):{ 70 / F(@)5(x) dz = (0), (A1)

oo forx=0

where f(x) is some probe function. As a special case, ffooo d(z)dx = 1. The delta
function may be interpreted as an infinitely sharp spike at the origin with a total area
of one under the spike. Dirac delta is not a function in the usual sense: It belongs to
a class of generalized functions, or distributions, and is meaningful only as part of an
integral. In this spirit, the linear operator [ dz d(z) acts on f(x) to yield f(0).

Here we review the properties of §(z) relevant to the present work. Let d(z — )
be delta function shifted by 2’ along the coordinate axis. To evaluate the integral
with 6(xz —2'), we change the variable to y =  — 2’ and use the definition [Eq. (A.1)]

to write

/ " f@)d(a — o) dx = / "yt () dy = (), (A2)

Thus, the function 6(z) is a special case of 0(z — 2’) with 2’ = 0.
Dirac delta is an even function, i.e., §(z — ') = §(2’ — ). To see this, consider the
integral with §(z’ — z) multiplied by a test function f(x). We change the integration

variable from x to y = 2’ — x so that dy = —dx, and get

| @i —yae =~ [ g ity = [ 6 - i) dy = 1)
- h - (A.3)
the same result as Eq. (A.2).

To evaluate derivatives of the delta function, we insert % d(z—2') into the integral

127



128

with f(x) and perform integration by parts,

| sty =— [ 2w - W:_{dfd_@}t:x, (A4)

In a similar way,

/ flz —5w—x)dm:(—1)”{%£t)}tx/ (A.5)

There are two important properties of the derivative of the Dirac delta. First, the
operator d/dz can be replaced by d/dx’, but this operation changes the sign of the

derivative,

d d

Second, the first derivative of §(x — ') is an odd function,

A an

The first statement is proved by moving the differential outside the integral sign:

/: f(x)%é(x ) / F@)5(x — ') d = {Cbﬂd—?}t:x/ (A3)

The second statement requires a clarification. Since the operations of taking the
derivative and changing the sign of the argument of a function do not commute, the
result will depend on their order. In Eq. (A.7), differentiation precedes changing the
argument of the derivative function. On the other hand, if differentiation is performed
after replacing (r — z’) by (' — z), the sign of the derivative does not change. To
distinguish between the two (potentially confusing) cases, we indicate the order of the

operations using square brackets:

[%] (x—2a') = - {Z—i} (' —x), but (A.9)
% [0(z — 2')] = dci 6(z' — )] (A.10)

The Dirac delta function is easily generalized to the case of three dimensions:

d(r—r)y=d(x—2)o(y—y)i(z— 7). (A.11)
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All properties derived for the one-dimensional delta function also apply to the three-

dimensional function. Let us write out the results:

/f(r)é(r —r)dr = f(r) (A.12)
/f(r)Vré(r —r')dr = -V, f(r') (A.13)
/f(r)Vfé(r —1')dr = V3 f(r) (A.14)
d(r—r)=46("—r) (A.15)
[Veo](r — ') = —[V,0](r' — 1) (A.16)
Ve[o(r —1")] = V. [6(r' —1)] (A.17)
Ved(r —1') = =Vpd(r — ). (A.18)



Appendix B

Functional derivative of the

Levy—Perdew energy expression

Here we derive a convenient formula [Eq. (B.20)] for evaluating functional derivatives

of functionals of the form
Fiol = [ v(p.9)(3p+ 1 Vo), (B.1)

where g = |Vp| and v(p, ¢g) is some gradient-corrected Kohn-Sham model potential.
Equation (B.1) belongs to a class of functionals of the type

Flol = [ fe.p.Vp)ar. (B.2)

Functional derivatives of such quantities are given by the general formula of the cal-

oF _0f o (91
% op " (aw)’ ()

in which 0f/0V p means a vector with the components (0f/0p,, 0f/0p,, 0f /0p.) with
pi = 0p/0i (i = x,y,z). Applying formula (B.3) to Eq. (B.1) one has

culus of variations,

0F  Ov v
5—p—a—p(3p+r-Vp)+3v—V-{M(Sijr-Vp)—l—rv}. (B.4)
We observe that
V:(rv)=3v+r-Vo (B.5)
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and use this identity to rearrange Eq. (B.4) as follows

5F_[8v V‘(av

ov
R e : . ) —r-Vuv. (B.
5 o avp)} (Bp+1r-Vp) V3p+r-Vp)—r-Vu. (B.6)

oVp

Let us elaborate each of the three terms on the right-hand side of Eq. (B.6),

starting with the last. Using the chain rule of differentiation for v(p, g) we have
r-Vv:—r-Vp—i——vr-Vg. (B.7)

The dot product r- Vp can be evaluated trivially. To evaluate r- Vg, we observe that
each of the three components of the Cartesian vector Vg = (g,, gy, g-) can be written
as g; = g ! Zj pijpj, where ¢, = x,y,z and p;; are the components of the Hessian

tensor of the density. This gives the following ready-to-program formula
1 . o
r-Vg= gzzmm (6,5 = =,9,2). (B.8)
]

Now for the second term of Eq. (B.6). Using the chain rule of differentiation for
v(p, g) we have

dv  Ov g _@@

= — = ) B.9
OVp 0g0Vp 0Og g (B.9)
This allows us to write the second term of Eq. (B.6) as
ov v Vp-V(r-Vp)
-V (3 -Vp)=— 13 . B.10
ov, VBT Vo) =5 130+ J (B.10)
Here 9 .

g g

where we have used the definition of r - Vg by Eq. (B.8). Substitution of Eq. (B.11)
into Eq. (B.10) yields

ov v

— V(Bp+r-Vp) = 99

v, (4g+r-Vyg). (B.12)

Next consider the quantity inside square brackets in the first term of Eq. (B.6). Ex-
pressions of this type were worked out in Sec. 3.2.1. Referring to Egs. (3.3) and (3.8),
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we can immediately write

v v ov 0% ov V?p ov v
— -V g — —— 4+ —
dp oVp

where w =3, pipijp; [cf. Eq. (3.7)].
Finally, we substitute Eqgs. (B.7), (B.12), and (B.13) into Eq. (B.6) and write the

result as

oF ov ov
 =3p——2(2 . - _
5 3pap (29 +1-Vyg) 99 {

0% ov V?p (81} 0%
g+
dpdg”  dg g

w
— ——=¢g ) = |Bp+r-Vp).
(B.14)
Equation (B.14) is not easy to use unless the potential v is specified in terms of the
reduced (dimensionless) density gradient s rather than g. To adapt our formula to

functionals of the type

Flp] = /v(,o, s)(3p+r-Vp)dr, (B.15)

we change variables in Eq. (B.14) from (p, g) to (p, s) using the following transforma-

tion rules from Sec. 3.2.1

ov ov 40vs

- el (B.16)
g_z . %g (B.17)
9 9 2. .2

aigg - 61;82_2%;_9_2%:_9’ o
2 2 2
g_;; . %;_2 (B.19)

The result may be written as

sp  Op 30s% p  Opds 30sp Osps ds 0s*> ) ps3 P P
v

—2—r- B.2
st Vs, (B.20)

where ¢ and u are given by Eq. (3.9) and

r.vsz(r'vg_‘_“'vp>s. (B.21)
g 3 p

The dot product r - Vg is computed using Eq. (B.8). In Eq. (B.20), as in Eq. (3.13)
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of Sec. 3.2.1, the derivatives of v(p, s) with respect to p refer only to the explicit
dependence of v on p; the implicit dependence on p through s is taken into account

by the variable transformation.
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