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Abstract

The primary goal of bioinformatics is to increase an understanding in the biology

of organisms. Computational, statistical, and mathematical theories and techniques

have been developed on formal and practical problems that assist to achieve this

primary goal. For the past three decades, the primary application of bioinformatics

has been biological data analysis. The DNA or protein sequence similarity search is

perhaps the most common, yet vitally important task for analyzing biological data.

The sequence similarity search is a process of finding optimal sequence align-

ments. On the theoretical level, the problem of sequence similarity search is complex.

On the applicational level, the sequences similarity search onto a biological database

has been one of the most basic tasks today. Using traditional quadratic time com-

plexity solutions becomes a challenge due to the size of the database. Seeding (or

filtration) based approaches, which trade sensitivity for speed, are a popular choice

among those available. Two main phases usually exist in a seeding based approach.

The first phase is referred to as the hit generation, and the second phase is referred

to as the hit extension.

In this thesis, two improvements on the seeding based protein sequence simi-

larity search are presented. First, for the hit generation, a new seeding idea, namely

spaced k-mer neighbors, is presented. We present our effective algorithms to find a

good set of spaced k-mer neighbors. Secondly, for the hit generation, a new method,

namely HexFilter, is proposed to reduce the number of hit extensions while achieving

better selectivity. We show our HexFilters with optimized configurations.
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Chapter 1

Introduction to Sequence Similarity

Search

The primary goal of bioinformatics is to increase an understanding in the biology

of organisms. Computational, statistical, and mathematical theories and techniques

have been developed on formal and practical problems that assist to achieve this

primary goal. For the past three decades, the primary application of bioinformatics

has been biological data analysis. An earlier focus had concentrated on the area of

genomics involving large-scale DNA data while in recent years more attention has

been on the area of proteomics concerning large-scale proteins data. The production

of such biological data is becoming much easier and cheaper. For example, the growth

rate of the popular database, GenBank [1], in NCBI is exponential since its first release

in 1982, a rate faster than Moore’s Law. It took Human Genome Project over 10 years

and $3 billion U.S. dollars to completely sequence the first human genome by many

international researchers from multiple disciplines. Today, the same task can be done

in less than two weeks for about $1500 U.S. dollars by many companies. Enormous

volumes of biological data have been generated as a result of the rapid growth in

biological data. However, having a collection of such an amount of biological sequences

alone does not increase our knowledge on the biology of organisms. Comparing new

sequences to similar sequences with known functions can help in understanding the

new sequence.

The sequence similarity search is perhaps the most common, yet vitally impor-

tant task for analyzing biological data. Many applications, for example, the gene and

protein predications, phylogeny and evolutionary analysis, and sequences assembly



2

and annotation are based on the sequence similarity search. On the theoretical level

the problem of sequence similarity search is complex. It is not a single problem, but

a collection of different problems sharing a common base of the sequence alignment.

Traditional approaches of sequence alignment include the famous Needleman-Wusch

and Smith-Waterman algorithms. These algorithms are guaranteed to find the best

alignment between two sequences. On the applicational level, database sequence

similarity search is one of the most basic tasks today while efficiency is continually

emphasized. On a daily basis there are over 100,000 queries on the NCBI’s BLAST

server for sequence similarity searches. This increases at a rate of 10% each month.

Since the Smith-Waterman algorithms run in quadratic time of the total length of

the sequences, they become impractical when invoking large-scale sequences compar-

isons. So, a target of heuristics is to maintain reasonable high sensitivity and make

few as possible calls to the Smith-Waterman algorithm. Seeding (or filtration) al-

gorithm based tools, which trade sensitivity for speed, is a popular choice among

other approaches. The seeding based approach runs faster than the Smith-Waterman

algorithm, but misses some true homologies. Many clever ideas on the seeding al-

gorithm have been developed which helps to bring a more efficient application to

life. The FASTA program was first released in 1985; the BLAST program was first

released in 1990; and the PatternHunter program was first released in 2002. These

exemplified the evolution of seeding based approaches over the past three decades.

The BLAST perhaps is the most widely used homology search tool today. BLAST

first finds a match of three consecutive letters as a hit between two sequences. Next,

the identified hits are filtered and extended for local alignment. The spaced seed in

the PatternHunter took a leap over the consecutive seed used in BLAST. The opti-

mized spaced seed can improve the sensitivity significantly while maintaining similar

speed as BLAST. Experimental results have shown that the carefully selected multi-

ple spaced seeds on the protein coding regions can even achieve same sensitivity as
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the Smith-Waterman algorithm and run at the similar speed of BLAST. The seeding

algorithms have been an extremely active area of research.

Two main phases exist in seeding based approaches. In the first phrase, a k-

mer seed is used to find a hit. For protein sequences, a hit requires that the score of

the subsequence ungapped alignment is greater than a predefined threshold. In the

second phase, the hits are extended for finding local alignments. The seeding based

approach looks intuitive, but its impacts on sensitivity and speed are influential and

profound. Bigger values of k of k-mer result in longer seed, faster speed, and weakened

sensitivity. Larger values of the hit score threshold result in less number of qualified

hits, faster speed, and weakend sensitivity. Usually, the first phase is referred to as

the hit generation, and the second phase is referred to as the hit extension.

In this thesis, two improvements concerning both phases of seeding based pro-

tein similarity search are presented. First, for the hit generation, a new seeding idea,

namely spaced k-mer neighbors, is presented. We present our effective algorithms to

find a good set of spaced k-mer neighbors. The experimental shows that our spaced

k-mer neighbors are more efficient because better sensitivity and same selectivity

can be achieved. Secondly, for the hit extension, a new method called HexFilter, is

presented. We propose our algorithm for generating the HexFilters with optimized

configurations. The experimental results show that our HexFilter can efficiently re-

duce the numbers of hit extensions while achieving better selectivity.
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1.1 Chapter Outlines

This thesis is organized into the following Chapters:

Chapter 1 gives introduction to problem of sequence similarity search.

Chapter 2 lays down the necessary information related to preliminaries and nota-

tions used through this thesis. We review important seeding algorithms and

seeding based tools.

Chapter 3 introduces the new idea, namely spaced k-mer neighbors, for seeding

protein sequences. We paid detailed attention to reason, design, and the study

of our algorithms and related experimental results.

Chapter 4 presents the new filter, namely the HexFilter, for reducing the number

of hit extensions. Details are given to the designing of an optimized HexFilter.

Chapter 5 draws the conclusion on this thesis.
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Chapter 2

Background

A biological sequence is a series of continuous one kind of monomers in one-dimensional

ordering. A monomer is a molecule that can form a polymer by chemically binding to

another molecule. Nucleotides and amino acids are two important natural monomers.

Nucleotides are polymerized to form nucleic acids that are biological molecules of DNA

(deoxyribonucleic acid) and RNA (ribonucleic acid), which are essential for known

forms of life on Earth. Amino acids are another natural monomer that polymerize at

ribosomes to form proteins. Proteins are single chains of bounded amino acids that

fold into different forms for facilitating its biological functions. And, proteins are

essential parts of organisms that are involved in virtually every process in cells. Se-

quence analysis, a key process to study the evolution, function, and structure of new

nucleic acids and proteins, helps in understanding the biology of organisms. There

are various analytical methods used in sequences analysis. Direct experimentation

is the most reliable method. However, computational sequence analysis is far easier

and cheaper than direct experimentation. For example, some experiments are very

expensive such as those involving chimpanzees, not only does the experiment require

longer generation time, but also but also chimpanzees are endangered and expensive.

Some experiments are difficult to complete in a laboratory environment such as some

kinds of marine bacteria, etc. The Human Genome Project [2] produced more than

20,000 genes, which only a small portion had gone under direct experimentation. New

sequences are not invented but come from some existing sequences because of their

evolution. Hence, common methods of computational sequences analysis involved in
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comparing new sequences with other sequences have known functions. Prior to evalu-

ating the similarity between two sequences, a good alignment between them must be

found. Hence, sequence alignment is a crucial process to find similar regions between

two sequences. The earliest trace of the computational sequence alignment problem

can be thought of as perhaps the Edit Distance problem [3] in 1966. Three basic

edit operations of insertion, deletion, and letter substitution were defined in order

to transform one string to another string. A great, still growing, collection of liter-

ature has been developed following that. Some subsequent and strongly influential

papers including the original Needleman-Wunsch’s dynamic-programming solution [4]

for global alignment, the seminal solution on local alignment by Smith-Waterman [5],

the BLAST [6] tool in the searching of related sequences for a whole genome, and the

PatternHunter [7], have brought us to the new era of seeding based tools.

2.1 Introduction

In this Chapter, some of the necessary notations and preliminaries on sequences

alignment will be reviewed. Among many tools available today, FASTA, BLAST, and

PatternHunter have been chosen for reviews because they exemplify seeding based

tools.

2.2 Preliminaries and Notations

A sequence s of length n can be denoted as a string of letters in an alphabet, say Σ.

s = a1a2a3 . . . an

In the field of Bioinformatics, for DNA sequences, there are 4 nucleotides in

the alphabet. The names and abbreviations of the four nucleotides are in Table 2.1.
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For protein sequences, there are 20 commonly used amino acids in the alphabet. The

names and abbreviations of the 20 amino acids are in Table 2.2.

Nucleotide Abbreviation

Adenine A
Cytosine C
Guanine G
Thymine T

Table 2.1: The four nucleotides in DNA.

Amino Acid Abbreviation

Alanine A Ala
Cysteine C Cys
Aspartate D Asp
Glutamate E Glu

Phenylalanine F Phe
Glycine G Gly
Histidine H His
Isoleucine I Ile
Lysine K Lys
Leucine L Leu

Methionine M Met
Asparagine N Asn
Proline P Pro

Glutamine Q Gln
Arginine R Arg
Serine S Ser

Threonine T Thr
Valine V Val

Tryptophan W Trp
Tyrosine Y Tyr

Table 2.2: The most commonly used twenty amino acids in protein.

An alignment between two sequences is often referred to as a pairwise sequence

alignment, which can be represented as two sequences with same length appearing

in a top-down manner. For example, an alignment between sequences of TGAGATA

and TGCGAATA is in Table 2.3.

In an alignment, an exact match occurs when two letters at a same position

are exactly same, for example, the pairs at the first position of (T∼T) is a match.
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T G A G – A T A
| | | | | | | |
T G C G A A T A

Table 2.3: An example of an alignment.

A substitution occurs when two letters are not the same, for example, at the third

position, the pair of (A∼C) is a substitution.

An indel in an alignment is denoted by ‘-’, which means a letter of the sequence

aligns to nothing (‘-’) at that position. Insertion and deletion are two types of indels.

A gap is a serie of continuous either insertions or deletions. For example, in Figure 2.3

a gap is at the fifth position between (‘-’∼A).

There are two types of gap models that are commonly used, namely the linear

gap penalty and the affine gap penalty. For the linear gap penalty, a negative constant

is given for a single penalty. The gap penalty for a longer gap is simply the summation

of a single type of indel penalty at maximal length. The end result is an alignment

with less gaps; that is favoured. For the affine gap penalty, a function for the gap

penalty of length i is given as P (i) = g+hi, where g is the gap opening cost and h is

the gap extension cost. The values of g and h are used to control the length of gaps

in an alignment, for example, if g > 0, then a longer gap is likely to occur.

Optimal alignments are the best alignments that can be found between two

sequences with respect to the values of a set of parameters for the letters in Σ.

Global and local alignments are two main types of alignment. Two dynamic pro-

gramming algorithms are available for finding such optimal alignment. The Needleman-

Wunsch algorithm [4] can find the optimal global alignment. And, the Smith-Waterman

algorithm [5] can find the optimal local alignment. Gaps are allowed in both algo-

rithms. Both algorithms attempt all possible alignments between two sequences, and

the time complexity of both algorithms are O(mn) where m and n are the lengths of

two sequences.
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Global alignment assumes that similarity between two sequences is from the be-

ginning to the end of two sequences uninterruptedly. For example, between sequence

s =TGGGTACTA and sequence t =AGGTACATC, using the BLOSUM62 scoring

matrix, the gap opening cost is 10 and the gap extension cost is 0.5. The optimal

global alignment between s and t is in Table 2.4.

T G G G T A C T A –
· | | | | | · ·

– A G G T A C A T C

Table 2.4: An example of a global alignment.

Hence a global alignment may contain a segment of alignment with a lower

score that is not the best interest.

Local alignment, instead of forcing to align from the beginning to the end be-

tween two sequences, searches for any segments that are similar enough for one’s

interest. For example, using sequences s and t and the same parameters in the global

alignment, the optimal local alignment is in Table 2.5.

G G T A C
| | | | |
G G T A C

Table 2.5: An example of a local alignment.

While both algorithms can return optimal solutions, the local alignment is usu-

ally preferred over the global alignment because the region with a lower similarity

score usually can be in the global alignment. For example, the local alignment in

Table 2.5 is preferred over the global alignment in Table 2.4 because the mismatches

and gaps are not included in the local alignment.

The Needleman-Wusch and Smith-Waterman algorithms, which are quadratic

in time complexity, become impractical in involving a large-scale sequence which leads
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to the investigation of heuristic based algorithms for an efficient trade-off between

speed and sensitivity, for example, seeding based algorithms.

2.3 Seeding Based Algorithms

In this Section, three delegable heuristic approaches in sequences similarity search

will be reviewed, which are the FASTA program, the BLAST program from NCBI,

and the breakthrough of PatternHunter.

2.3.1 FASTA

FASTA is a software package developed by Lipman and Pearson. Because in 1985

the first release of the software package supported only protein to protein homology

search, it was released under the name of FASTP [8]. In 1988, DNA to DNA homology

search became supported together with other added features, so it was renamed as

the FASTA [9]. Since then, the name FASTA has been used to refer to the whole

software package.

The FASTA package is perhaps the earliest use of the approximation approach

on the seeding algorithm for local similarity search against the protein and DNA

sequences database. The FASTA uses the length k identities between two sequences

to quickly anchor a potential similar sequence. The more time-consuming Smith-

Waterman algorithm would be performed if the length of k identities are found.

Therefore, the value of k affects the trade off between the sensitivity and speed of the

program. Increasing value of k will decrease the sensitivity but increase the speed.

The default values of k for protein homology search is 2 or 3, and 5 or 6 for DNA

homology search.

The FASTA algorithm involves few steps. First, a look-up table is built for

quickly finding the positions of k-tups of the query sequence. A k-tup is the length k
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of consecutive letters. When reading a database sequence, each time a word length of

k will be read and compared to the lookup table. If the lookup table also contains the

same word, then a hit is found. The top 10 best regions of each diagonal, shown in

Figure 2.1(a), will be returned by the diagonal algorithms. The details of the diagonal

algorithms are in [10, 8]. The diagonal algorithms endorse match and mismatch but

not insertion and deletion.

Second, the FASTA uses the 250-PAM scoring matrix to re-score the diagonal

segment. The top 10 regions of all diagonals are kept. The returned regions are the

HSPs. This is shown as an example in Figure 2.1(b).

Third, a jointing procedure is applied; the HSPs could join together and form

a single optimal alignment which are kept. This is shown as an example in the

Figure 2.1(c).

Fourth, a modified version of either the Needleman-Wusch or Smith-Waterman

algorithms is executed for optimal alignments. The modification is to look for the

optimal alignment within a band. The band helps to speed up the alignment process

because it constrains the alignment in a search window of interested diagonals. Only

a portion of the total length of the sequences are used to create the final alignment

result. This is shown as an example in the Figure 2.1(d).

Upon obtaining the final alignment result, FASTA uses a statistical procedure

to analyze the significance of alignment results in order to distinguish them from the

random alignments.

The FASTA program was very popular in Europe at that time. As a seeding

based tool, it was a very successful attempt to speed up the database similarity

search. The FASTA software package also contains a release of the Smith-Waterman

algorithm. It is called Ssearch and many researchers use Ssearch as the standard

implementation of the Smith-Waterman algorithm. Aside from all of the above,



12

Sequence B

S
e
q
u
e
n
c
e
 A

Sequence B

S
e
q
u
e
n
c
e
 A

Sequence B

S
e
q
u
e
n
c
e
 A

Sequence B

S
e
q
u
e
n
c
e
 A

Find runs of identities Re-score using PAM matrix

Apply "joining threshold"

Keep top scoring segments.

to eliminate segments that 
are unlikely to be part of the alignment
that includes highest scoring segment.

Use dynamic programming
to optimise the alignment in a
narrow band that encompasses
the top scoring segments.

FASTA Algorithm

(a) (b)

(c) (d)

Figure 2.1: The basic steps of a FASTA algorithm, an original Figure from the
book [11].
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FASTA is a legacy file format for data sequence which is widely used in Bioinformatics,

e.g. NCBI uses it.

2.3.2 BLAST

BLAST, the famous Basic Local Alignment Search Tool by NCBI (Nation Centre

for Biotechnology Information), was first introduced in 1990 [6] for the purpose of

quickly finding the ungapped alignments from a sequence database search. It trades

sensitivity for speed. It was driven by the high demand of fast-run applications when

the size of the biological database expanded exponentially.

BLAST is a combination of great usages of theoretical statistics and combina-

torics with many clever heuristics. BLAST was able to identify potential alignment

by first seeking a length k consecutive letters of a matched word (hit), a more time

consuming step of the hit extension is followed on the identified hits. Using the hits

and other heuristics help BLAST to stand out among other tools. The NCBI BLAST

also provides a valid measurement on whether a sequence alignment result is related.

Based on rigorous statistical analysis on random alignments, such measurement is an

important indicator if an alignment is not a random alignment.

The BLASTP program is the de facto standard database homology searching

tool used by researchers across different disciplines around the world. The BLAST

program evolved with the development of current computer technology. The first

release of BLAST was a standalone application in 1990. It lacked many important

features [12]. For example, it did not support gapped alignment. Later, in 1996 [13],

BLAST became a web service and expanded its capabilities. For example, the release

of the MegaBLAST [14] and gapped BLAST [15] contain most features of today’s

BLAST. The latest release of BLAST in 2009 [12] improved source codes flexibility

by using modular design of ADT (Abstract Data Type). It also started to use the

non-consecutive seed (spaced seed) in DNA comparisons. It optimized the usage of
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cache memory by carefully packing the lookup tables into the cache after splitting the

longer sequences. Today, BLAST is capable of comparing different kinds of sequences

against a sequences database, for example, tBLAST for translated nucleotide se-

quences against translated nucleotide database, BLASTp for protein sequence against

protein database, BLASTn for DNA sequences against a DNA database, etc.

Setup 

Read options 

Mask query 

Build lookup 

table 

Read query 
Trace-back 

Calculate improved 

score and 

insertions/deletions 

Scanning 

Find word 

matches 

Gap free 

extensions 

Gapped 

extensions 

Matches? 

Save hits 

More 

sequence? 

Y 

Y 

N 

N 

Figure 2.2: This is an original figure from paper [12]. It shows the general process
flow of the BLAST service. Many heuristics, for example, the masking sequences
during setup, hit identification (finding word matches), and hit extensions during
scanning help to speed up the application run time.

The key steps of the BLAST algorithm corresponding to Figure 2.2 are the

following:

1. Setup(Hit generation) Preparing the protein sequences is essentially the

transformation of the query sequences to a lookup table for quicker k-mer

word positions allocation. The end result is a hash table, say h, that will be
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created for the query sequences. Each entry of k-mer, say u, contains the

positions of u in the query sequences. And, the hash table of the protein

query sequence contains not only the positions of us but also the positions

of the neighbors of u. A neighbor may be any other k-mer having at least

a pre-defined score with u when a specified scoring matrix is used, and

u is a neighbor of itself. Additional care has been given to some special

regions of the data sequences. For example, the letters of a low complexity

region and interspersed repeats will be marked as X in the process of hard-

marking. Or, if soft-marking is used, these regions will simply be skipped in

the word matching step. The database sequences used by BLAST usually

are marked by soft-marking. The marking can help to eliminate spurious

results. Sequences marking is also a response to the edge-effect [16] which

occurrs in sequences comparisons.

2. Scanning(Hit Extension) While scanning a k-mer, say v, from a sequence

in a marked database, if the entry for v in h has a non-empty list of

positions of v’s neighbors, then each member of the list for v is a hit. For

example, given a query sequence, say q, and a target sequence, say t, from

a database, a hash table hq has been built for 3-mer words. When scanning

the database, a 3-mer, say AAA, has been encountered, then the list of

the entry for AAA in hq contains all the hits for this AAA from q. And,

a hit can be further denoted as a coordinate of the positions in q and t,

for example, hit = (i, j). An ungapped extension, in both forward and

backward directions starting at the hit location, will extend for a highest

scored alignment. The alignment returned by the ungapped extension is

called an HSP (Highest-Scoring Segment Pair). Based on some rigorous

mathematical theorems in [6, 15, 17, 16, 18], the significance level of an

HSP is estimated. And, the E-value, returned by the calculation of the
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theorems, is used to examine the likelihood that an HSP with a score of

at least S is a random alignment. Equation 2.2 and 2.1 are the part of the

results from the theorems. Equation 2.2 shows the formulae of obtaining

the E-value using normalized HSP score S′. The normalized score is shown

in Equation 2.1 where m and n are the effective length of search sequences

and the λ and K are constant.

S′ =
λS − lnK

ln 2
(2.1)

E = mn2−S
′

(2.2)

The gapped extension is similar to the ungapped extension, except the

gapped X-drop dynamic algorithm [19] is more complicated.

3. Trace-back The same trace-back algorithm as in the Smith-Waterman algo-

rithm will be used on the sequences to produce an optimal local alignment

between two sequences which qualifies the E-value for gapped alignments.

The ranked local alignments will be shown as the final result.

The length of k continuous letters of a matching word is used to identify a hit

that is called a consecutive seed. A consecutive seed can be denoted by a string of 1s.

And the length of the matching word is the length of the seed. For example, 111 is a

length 3 of consecutive seed. In BLASTp, the default value of k for a seed in protein

homology search is 3. And k has an optional value of 2.

Note that, for the gapped BLAST, the ungapped extension is triggered with a

more restrictive condition, namely the two-hit algorithm. The condition specifies that

two non-overlap hits need to be on the same diagonal within a pre-defined distance.

Any two hits are said to be on a same diagonal if the difference of their starting

positions in the query sequence is the same as the difference of their starting positions

in the target sequence. For example, there are hit1 = (i1, j1) and hit2 = (i2, j2)
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between sequence q and t. The diagonal of hit1 is d1 = (i1 − j1). The diagonal of

hit2 is d2 = (i2 − j2). The hit1 and hit2 are at the same diagonal if and only if

d1 = d2.

Another note is that the E-value is not a probability. The E-value, as shown

in Equation 2.2, means that the expected number of an HSP having a score of at

least S. It had been proven [16] that the number of random HSPs with a score of

at least S follows by a Poisson distribution. The mean of this Poisson distribution is

the E-value. This means that the actual probability of exactly α HSPs with a score

of at least S is given in Equation 2.3.

P (α) = e(−E) ·
Eα

α!
(2.3)

where E is the E-value of S appeared in the Equation 2.2.

E = mn2−(
λS−lnK

ln 2 ) (2.4)

The E-value can be rewritten for score S as in the Equation 2.4. And, when α = 0 as

in Equation 2.3, it means that the probability of zero number of HSPs with a score

of at least S is P (0) = e(−E). Hence, the probability of at least one HSP with a

score of at least S is P (1) = 1− e(−E). This is the P -value regarding to this score S.

Moreover, when E-value is < 0.01, an empirical study has shown that the values of

P -value and E-value are roughly the same. The choice of using the E-value over the

P -value is because E-value is easier to understand. For example, it is easier to see

the difference between the E-value of 1 and 10 than the P -values of 0.99 and 0.99995.

The choice of the value of E-value controls the number of HSPs that is returned in

BLAST. A larger E-value returns more HSPs by BLAST.

Last note is that the statistical results related to the random alignments has
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been proven for the ungapped alignment only. As for the gapped alignment, no

theories have been proven. However, empirical studies have shown that the ungapped

theories are still a good estimation for the gapped alignment.

There are different BLAST-like programs which are not owned by NCBI. For

example, the CS-BLAST [20] is derived based on six consecutive amino acids when

finding a hit. The WU-BLAST [21] by Washington University is very much a resem-

blance of BLAST. Besides BLAST-like programs, a wide variety of similar tools were

also introduced [22, 23] as the complimentary tools. Other tools, as a by-product of

BLAST, are also available, for example BLAT [24].

2.3.3 PatternHunter

When a pattern of consecutive letters is used as a seed for finding a hit, a natu-

ral question to ask is whether a more complicated pattern may also be a seed, i.e.

non-consecutive letters which are separated by spaces. The spaced seed from Pat-

ternHunter has shown greater sensitivity and at least the same speed as BLAST.

A spaced seed, as an advanced innovation of the consecutive seed, can be defined

as a binary string with two parameters: the length of a seed, say k, and the weight of

the seed as the number of 1s in the binary string, say w. For example, a spaced seed

of 1101, is a weight 3 and length 4 binary string, and often the positions of 1s are

called cared positions because of required matches on it, and 0s are the “don’t care”

positions because the match is not compulsory on it. For the purpose of a similarity

search, the first and last positions of a spaced seed are required to be 1. And, a

consecutive seed of 111 may be considered as a spaced seed with weight 3 and length

3.

The spaced seed was born in the release of PatternHunter software in 2002 [7].

These include the enhancing of the original spaced seed method, for example, [25, 26,

27, 28, 29, 30]; the developments on the optimization of spaced seeds and modified
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spaced seeds which led to the conclusion of optimization is a NP-hard problem, for

example, [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]; and applications that had

adapted spaced seeds, for example, [44, 45, 46, 47, 12]. As of today, a fairly good

mathematical understanding which was previously unknown has been obtained. It

includes added combinatorial and probabilistic studies and detailed analysis on new

algorithms and complexity researches.

Investigation on using multiple spaced seeds [26] allows several spaced seeds to

be present simultaneously which has shown more efficient trade-off between sensitivity

and speed. The vector seeds [25], can be considered a type of multiple spaced seeds,

that set less restrictive conditions on the w cared positions in the spaced seed, rather

than an exact match on the cared position. The pair with a higher than pre-defined

score is used to decide whether the cared position can be considered as a match. The

neighbour seeds [30], is another type of multiple spaced seeds, allows to seed a hit

not in the look-up table. It allows i out of w cared positions to be mismatches. At

the same time, beside the w cared positions, it brings in additional j positions which

can be considered as matched. All different types of multiple spaced seeds share a

common overhead. They all require changes to the lookup table or the hits generation

algorithm. More than one lookup table is needed because essentially each spaced seed

needs its own table. This leads to an increase of the space complexity. Multiple queries

on a single position of a k-mer in a query sequence is required because the w positions

are considered as a w-dimension vector in the vector seeds. The changes on both hits

generation and the following process of identified hits are needed for the neighbor

seeds. In neighbour seeds, the values of i and j are 1 or 2 in order to minimize such

impacts.

The advantage of the spaced seed over the consecutive seed is because the

spaced seed has low internal periodicity. Hence, the hits created by the spaced seed

are more independent. Given the same level of selectivity for both the spaced seed
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and consecutive seed implies that the total number of hits produced by the two kinds

of seeds are roughly the same. More dependent hits tend to repeat on the HSPs that

already have been hit. Then the hits will distribute over less numbers of different

HSPs, and the numbers of HSPs that can be hit is reduced, so the level of sensitivity

is lowered. Conside the event of at least one hit occurs at a random alignment. Let

X be a random variable for the total number of hits at a random alignment. Then

the expected number of hits of a random alignment is E[X ]. Given that random

alignment has been hit once, the expected number of hits to this random alignment

is E[X|X ≥ 1]. The value of E[X|X ≥ 1] for the spaced seeds are smaller than the

consecutive seeds.

Consider the case of a simple DNA alignment, given a consecutive seed 1111. If

it can hit at position i, then the chance of it hitting at a position of i+ 1 is very big

because the first 3 positions have been hit by the previous one. As for a spaced seed,

say seed 10101001, if it can hit at a position of j of the same random alignment, when

the position shifts from position of j to j+1, the probability of this spaced seed hitting

at a position j + 1 is much smaller because none of positions from previous hit can

be shared. If the chance of a nucleotide aligns to another nucleotide is independent,

say p = 0.25, then the consecutive seed 1111 hits at i is p4 = 0.0039, and the chance

of 1111 hits at i+ 1 would be p = 0.25. Then, for a spaced seed 10101001, it hits at

a position of j with a probability of 0.0039, and the chance of it hits at a position of

j + 1 is p4 = 0.0039. Therefore, when considering the normal scenario of one hit as

required for identifying an alignment, the value of E[X|X ≥ 1] for a space seed is the

expected number of hits at an alignment after it has been hit; then E[X|X ≥ 1] is

less than the value for a consecutive seed.

The idea of spaced seed is simple, but the problem of finding an optimal spaced

seed is far more complicated. For example, given fixed values on the identity level and

length of an ungapped alignment, the probability of a spaced seed hitting an HSP is
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NP-hard [31]. Calculating the probability of a spaced seed to hit the uniform Bernoulli

model is NP-hard [32]. Finding a single optimal spaced seed , or, a set of optimal

multiple spaced seeds, is NP-hard for Bernoulli model [26]. But, there are various

algorithms for constructing spaced seeds with substantial improvement on sensitivity

in exponential time in seed length, for example, [34, 48, 41, 33]. Many heuristics have

been developed to compute multiple spaced seeds with high sensitivity, for example,

[49, 50, 51]. Moreover, the specifically designed spaced seeds for the protein coding

regions can achieve the sensitivity of the Smith-Waterman algorithm while running

at the similar speed of BLAST [44].

2.4 Scoring Matrices for Protein Homology

Search

It is important to distinguish a related protein alignment from the random alignments

because the random alignments are false positive for the final result and it affects the

searching speed of a seeding based algorithm. The significance level of a related

alignment against the random alignment is used to distinguish between the different

alignments. And, a measurement on the fairness of such judgment can be enforced

by a valid scoring matrix.

A scoring matrix may also be referred to as the substitution matrix. A sim-

ple example of an alignment between two DNA sequences using a unitary matrix

(match=1, mismatch=-1) is shown in Table 2.6.

a a g t t t c t t g
a a a c t c c c t g

Individual scores: 1 1 -1 -1 1 -1 1 -1 1 1

Table 2.6: An example of simple scoring matrix.
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The accumulative score using the unitary matrix for above alignment is (6−4) =

2. A more realistic substitution matrix with a refined substitution scenario is such

that transition (−1
2) and transversion (−1) as a 4 × 4 scoring matrix as shown in

Equation 2.5.

S =























Sa,a Sa,c Sa,g Sa,t

Sc,a Sc,c Sc,g Sc,t

Sg,a Sg,c Sg,g Sg,t

St,a St,c St,g St,t
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(2.5)

The new accumulative score of the alignment in Table 2.6 becomes (6− 2) = 4.

A valid scoring matrix for the protein sequences comparison usually satisfies at

least the following three criteria:

• Scores for identical amino acids are higher than the substitutions;

• Substitution scores of the conservatives are higher than the non-conservatives;

• When comparing different homologies, different scoring matrices are available

for potential closed and divergent comparisons.

Over the past three decades a wide range of scoring matrices have been in-

troduced that are based on different rationals. Among them, two scoring matrices,

namely the PAM matrices [52] and BLOSUM matrices [53], are the most commonly

used in the protein homology search. The BLOSUM62, one matrix in BLOSUM ma-

trices family, is the de facto standard matrix used in many applications, e.g., both

BLAST and FASTA use it.
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In this Section, the basic mathematical models and fundamental algorithms

used in constructing the PAM and BLOSUM matrices are reviewed. The detailed re-

views of the PAMmatrix is in Section 2.4.1. The BLOSUMmatrix is in Section 2.4.2.

2.4.1 The PAM Matrix

The PAM scoring matrix was invented by Dayhoff and others in 1978 [52], and it

was the first scoring matrix built on a protein evolutionary model. The PAM scoring

matrix relies on three mathematical models: the Markov Chain Model to enforce

the independence of mutation of each amino acid at a site of an alignment; the

Phylogenetic Trees helps to count the mutations; and the log-odds ratio helps to

convert a PAM probability matrix to a scoring matrix.

PAM, Point Accepted Mutation, is defined as the replacement process of an

amino acid by another amino acid under the natural selection. When a mutation is

bounded by natural selection, it implies that the mutation will not change the natural

functions of the protein. PAM scoring matrices are a series of matrices extrapolated

on the multiplication of 1-PAM probability matrix. And, each PAM matrix implies

different divergent alignments.

A PAM unit refers to, over a time period, 1% of amino acids change themselves

by accepted mutations in a protein sequence. However, two protein sequences that

are 100 PAM units apart does not imply 100% difference. As in Figure 2.3, we note

that 100 PAM units show about 52% different positions in actual observation. Two

main reasons are the cause. First, the mutations are likely to happen at a single

site repeatedly. Second, the mutations could change back to its original amino acid.

Note that there is no general correspondence between PAM distance and evolutionary

time, as different protein families evolve at different rates.

By fitting each mutation into the Markov Chain Model, shown in Figure 2.4, it

helps to simplify the analysis of the mutation because it assumes that each mutation
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Figure 2.3: Y-axis is the PAM units (PAM distance) while X-axis is the actual dif-
ferences in percentage. This the original drawing from [54].

happens independently at same time at a different site.

Basic steps involved for creating a 1-PAM mutation probability matrix are as

following:

1. Select training data such that each training group contains sequences no more

than 15% divergent in terms of pair-wise sequences identities level.

2. For each group of training data, build its phylogenetic trees.

3. Collect the occurrence of each mutation along a tree branch in each tree.

4. Compute relative mutability and mutation probability for the mutation proba-

bility matrix.

The Relative Mutation, mi, for amino acid i is defined as how likely i changes

to a different amino acid over a time period that is shown in Equation 2.6.

mi =
changes

exposure to mutation
=

fi
qi ·

∑

i fi
(2.6)
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Figure 2.4: Each amino acid evolves according to one Markov Chain and is indepen-
dent from the others through time.

Where qi is the frequency of occurrence of the amino acid i, fi is the number of times

i is involved in a mutation, and
∑

i fi is the total number of changes for all amino

acids (2 times the number of mutations).

Figure 2.5: Example (from [55]) of a phylogenetic tree on 7 protein sequences in a
multiple alignment. The internal nodes are the inferred ancestors.

Once the relative mutation is known, Mij can be derived from Equation 2.7.

Mij is the probability that the amino acid j will be replaced by the amino acid i after
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a given evolutionary internal.

Mij =
λmjAij
∑

iAij
(2.7)

where Aij is the number of accepted point mutations between amino acids i and j.

Equation 2.8 shows that the probability of amino acid j changes to amino acid j after

a given evolutionary interval.

Mjj = 1− λmj (2.8)

Using the phylogenetic tree in Figure 2.5 as an example, we could calculate the

value relative mutability of amino acid A, m
A

= 2.1. Because q
A

= 10
63 = 0.15873,

the changes involve A as f
A
= 4, the total changes for all amino acids is 6 · 2 = 12.

The exposure to mutations of A is 12 · 0.15873 = 1.9047 Then the relative mutability

m
A

= 4
1.9047 = 2.1. As AAG = 3,

∑

j AAj = 4, then MAG = 0.021 · 34 = 0.01575

when λ = 1
100 . Figure 2.6 shows the 1-PAM mutation probability matrix.

Because the expected proportion of the amino acids that mutates after one PAM

unit is 1%, we can estimate the value of λ in Equation 2.9 and 2.10. Let qi
∑

j 6=iMij

be the probability at one site as i→ j. The expected proportion of mutations of 1%,

when considering all the positions, that is λ
∑

i qi
∑

j 6=iMij , shown in Equation 2.9.

0.01 = λ
∑

i

qi
∑

j 6=i

miAij
∑

j Aij
(2.9)

It is therefore that λ is given as in Equation 2.10.

λ =
0.01

∑

i qi
∑

j 6=i
miAij
∑

j Aij

(2.10)

The 1-PAM scoring matrix is converted from the 1-PAM mutation probability
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A 9876 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18

R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1

N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1

D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1

C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2

Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1

E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2

G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5

H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1

I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33

L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15

K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1

M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4

F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0

P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2

S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2

T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9

W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0

Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1

V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901

A R N D C Q E G H I L K M F P S T W Y V

Figure 2.6: Reproduction of the original 1-PAM mutation probability matrix
from [52]. Note that the matrix is not symmetric. For example, the change be-
tween amino acids A and R, A ∼ R is not equal to R ∼ A. According to [52], the
value of Mij defines the probability of amino acid in column j will be replaced by
amino acid in row i after one accepted point mutation per 100 amino acids. The
values are scaled by multiplying 10000 in this table.

matrix using the log-odds ratio. The process of converting to a scoring matrix is

explained briefly here. Assuming we have two sequences S and S′ that are given as

the following:

S : a1a2 . . . an

S′ : b1b2 . . . bn

When two sequences S and S′ are randomly generated and 1 PAM apart, let

qi be the background probability of i. Then we have two hypotheses of H0 and HA,

whereas H0: when S and S′ are not related; and HA: when S and S′ are related.

Under H0, when the letter at each position is i.i.d., we have the probability of
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PH0
as the following:

PH0
(random alignment) = (

n
∏

i=1

qai) · (
n
∏

i=1

qbi) =

n
∏

i=1

(qai · qbi)

Under HA, the letters that are at the same positions that are dependent; we

have the probability PHA
as the following:

PHA
(related alignment) =

n
∏

i=1

(qai · paibi)

Hence, the significance level of a related alignment is usually presented as the

ratio of probability of HA and H0 as a natural choice in Equation 2.11.

PHA
(related alignment)

PH0
(random alignment)

=

∏n
i=1(qai · paibi)

∏n
i=1(qai · qbi)

=
n
∏

i=1

qai · paibi
qai · qbi

=
n
∏

i=1

paibi
qbi

(2.11)

By applying a logarithm, we change Equation 2.11 to Equation 2.12.

log
PHA

(related alignment)

PH0
(random alignment)

= log

n
∏

i=1

paibi
qbi

=

n
∑

i=1

paibi
qbi

(2.12)

For any pair of amino acids a and b, the score between them is defined as in Equa-

tion 2.13 and the alignment score between S and S′ is defined as in Equation 2.14.

Sa,b = log
pab
qb

(2.13)

When a aligns to b in a position of an alignment, Pab is the same as mutation

probability Mab, and qb is the probability of b as appears in the second sequence of

the alignment. Because we apply the logarithm, we could sum up the score of each
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single position of the alignment to obtain the alignment score as in Equation 2.14.

S(alignment) =

n
∑

i=1

Saibi (2.14)

The 250-PAM mutation matrix is a result of multiplying 1-PAM mutation ma-

trix 250 times, M250 = M
(250)
1 , because of the m-steps transitions property in Markov

Chain Model.

The term of the relatedness odds between i and j is given in Equation 2.15. The

relatedness odds implies the relative odds of evolution rather than chance. Where fi

is the probability that i occurs in the second sequence of an alignment by chance.

Rij =
Mij

fi
(2.15)

Then the substitution score between i and j can be derived from Equation 2.15,

shown in Equation 2.16. The value k is a scaling factor to clear the fractional values.

And k = 10 is used for transforming the 250-PAM probability matrix to 250-PAM

scoring matrix, shown in Figure 2.7.

Sij = k
logRij + logRji

2
(2.16)

An updated PAM matrices with extensive training data had been obtained

in [56, 57].

2.4.2 The BLOSUM Matrix

BLOSUM (BLOcks SUbstition Matrix) [53] matrices were introduced in 1992. It

is the amino acid substitution matrix derived from the direct estimation of statistics

of amino acids pair from a BLOCKs database. BLOSUM62, one of the BLOSUM

matrices, is the standard matrix used in BLAST. In this section, we will briefly review
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( 9 6< 8 9 6< 69 8 ;

) 69 5 5 9 6< < 9 65 7

* 69 65 65 65 65 65 65 6< 65 ;

+ 65 6< 6< 6: 67 65 6< 6: 65 5 7

, 69 < 9 8 6; 9 8 65 8 65 6< ;

- 69 8 65 6< 6; 69 65 6< 65 5 : 8 7

. 6: 6: 6: 67 6: 6; 6; 6; 65 9 5 6; 8 =

/ 9 8 69 69 6< 8 69 69 8 65 6< 69 65 6; 7

0 9 8 9 8 8 69 8 9 69 69 6< 8 65 6< 9 5

1 9 69 8 8 65 69 8 8 69 8 65 8 69 6< 8 9 <

2 67 5 6: 6> 6? 6; 6> 6> 6< 6; 65 6< 6: 8 67 65 6; 9>

3 6< 6: 65 6: 8 6: 6: 6; 8 69 69 6: 65 > 6; 6< 6< 8 98

4 8 65 65 65 65 65 65 69 65 : 5 65 5 69 69 69 8 67 65 :

Figure 2.7: 250-PAM scoring matrix is a reproduction from [52].

the creation of the BLOCKs database, which is used as the training data for creating

BLOSUM matrices. Then, we will recap the details of creating a BLOSUM matrix.

Creation of a BLOCKs database is much involved as it needs to run in many

enumerated steps with different software as depicted in paper [58]. Here, we only

point out the general idea of making a BLOCKs database.

A BLOCKs database contains multiple entries of blocks. A block is an ungapped

local multiple alignment of amino acid sequences from a group of related proteins.

Given a group of protein sequences, a set of blocks can be created in two steps for

them using the PROTOMAT [58] program. The first step finds candidate alignments.

The second step extends the alignments and returns the best set of blocks. In the

first step, the MOTOIF [59] program is called to find the candidate alignments.

The MOTOMAT program is called in the second step to extend the alignments and
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assemble the best set of blocks.

In the process of creating a BLOCKs database, a scoring matrix is needed for

both MOTOIF and MOTOMAT programs. An iteration of refining on a scoring

matrix is employed. The first scoring matrix is a unitary matrix. Given a set of

proteins S, a unitary matrix (1=match, 0=mismatch) was used to build a database

of 2205 BLOCKs. Then each of the blocks is clustered at 60% identities level. Next

on the clustered blocks the amino acid’s frequency is counted and a scoring matrix

of SM1 is obtained; next SM1 on S is used to re-build a database of 1961 BLOCKs;

then each of the blocks are clustered at 60% identities level. Next on the clustered

blocks the amino acid’s frequency is counted and a scoring matrix of SM2 is obtained.

Finally, the scoring matrix SM2 on the actual training data T is used to generate

a training BLOCKs database. The training BLOCKs database is clustered at 60%

identities level for each individual block. And, the amino acids frequencies on this

training database will be used to generate the actual BLOSUM matrix.

The clustering inside each block at 60% identities level ensures that there are

no two sequences with more than 60% identities level in a different cluster. The

detailed procedure of clustering the sequences in a block is briefly explained here.

Upon obtaining the training BLOCKs database, inside each block, the sequences will

be clustered and weighed. This reduces the multiple contributions of amino acid

pairs from the most closely related sequences inside a block. If the sequences were

not clustered inside a block, then the computed scoring matrices will tend to be in

favour of finding highly similar homologies. These highly similar homologies can be

found easily. And, it is the distanced homologies that the biologist is most interested

in. Hence, the clustering and weighting sequences adjust the fairness among the

contributions of different amino acid pairs. At the end of the clustering at a level X ,

inside of each block, the sequences with similar level greater than or equal to X% will

form a connected graph.
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The most commonly used BLOSUM62 matrix implies that there are no two

clusters with more than 62% similarity inside of any block.

CKGC
CAGC
CVGC
CAGC
CGGC
CGGC

Table 2.7: shows an actual entry of LIM domain protein with block id of BL00478A
in Version 5.0 of BLOCKS database, where CGC is a motif.

Consider the twenty commonly used amino acids, let Cij be the total number

of amino acid (i, j) pairs (1 ≤ j ≤ i ≤ 20) for an entry in the frequency table. The

values of Cij of the block in Table 2.7 is shown in Table 2.8.

Cij A C G K V

A 0+1+0+0
C 0 15+0+0+15
G 0+4+0+0 0 0+1+15+0
K 0+2+0+0 0 0+2+0+0 0
V 0+2+0+0 0 0+2+0+0 0+1+0+0 0

Table 2.8: The frequency of each amino acid pairs. For example, pair (A,A) has
value of (0 + 1 + 0 + 0) implies the frequencies value of CAA = 1 because it occurs
0 time in the first column, 1 time in the second column, 0 time in the third column,
and 0 time in the last column.

Let w be the number of columns, and n be the number of sequences in a block;

then the normalized frequency T is given in Equation 2.17.

T =
∑

i≥j

Cij = w
n(n− 1)

2
(2.17)

And the T value of the sequences in Table 2.7 is 4
[

(6)(5)
2

]

= 60. Let qij be

the observed (or target) probability of occurrence of each pair (i, j), then it can be

defined in Equation 2.18.
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qij =
Cij

T
(2.18)

qij A C G K V

A 1/60
C 0 30/60
G 4/60 0 16/60
K 2/60 0 2/60 0
V 2/60 0 2/60 1/60 0

Table 2.9: The values of qij of sequences in Table 2.7.

Let pi be the probability of occurrence of the ith amino acid in all pairs, shown

in Equation 2.19.

pi = qii +
∑

i 6=j

qij
2

(2.19)

PA PC PG PK PV

1+
(4+2+2)

2
60 = 5

60
30
60

16+4+2+2
2

60 = 20
60

0+2+2+1
2

60 = 2.5
60

0+2+2+1
2

60 = 2.5
60

Table 2.10: The values of pi of sequences in Table 2.7.

Let ei be the expected (or background) probability of occurrence of the ith

amino acid in an (i, j) pair, shown in Equation 2.20.

eij =











p2i if i = j

2pipj if i 6= j











(2.20)

The derived score of an amino acid pair sij is a result of log-odds (logarithm of
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eij A C G K V

A (5/60)2

C 2(5/60)(30/60) (30/60)2

G 2(5/60)(20/60) 2(30/60)(20/60) (20/60)2

K 2(5/60)(2.5/60) 2(30/60)(2.5/60) 2(20/60)(2.5/60) (2.5/60)2

V 2(5/60)(2.5/60) 2(30/60)(2.5/60) 2(20/60)(2.5/60) 2(2.5/60)(2.5/60) (2.5/60)2

Table 2.11: The values of eij of sequences in Table 2.7.

odds) ratio from pij and eij , shown in Equation 2.21.

sij = λ log
pij
eij

(2.21)

The λ in Equation 2.21 is a scaling factor for rounding fractional numbers. The

scoring matrix derived from the block in the Table 2.7 that is shown in Table 2.12

sij A C G K V

A 3
C - 2
G 1 - 3
K 7 - 1 -
V 7 - 1 5 -

Table 2.12: The values of sij are scaled by 2, then rounded into the nearest integer
value. The symbol of ‘-’ indicates such pairs with undefined values resulting from
unobserved pairs; however such is not common in a large set of real data.

After using the BLOSUM matrices for nearly two decades, to the surprise of

many, due to a programming error in its source code, the BLOSUM matrices are

actually incorrectly calculated. And in the paper [60], Styczynski and others pointed

out such a programming error. They computed a new set of matrices from the bug-

fixed program. But the ‘fixed’ BLOSUM matrices could not perform better than the

‘incorrect’ matrices. The authors tried to exploit the cause of such phenomena. In the

end they concluded it was “nothing more than a rare set of circumstances caused by

miscalculated normalizations, low-resolution scaling, and some fortuitous rounding”.

There is no logical explanation found.
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2.4.3 Discussion

A valid scoring matrix should be in the implicit form of the log-odds ratio as the

theory in [17] suggests. The theory stated that, when a scoring matrix SM is used

for finding the optimal ungapped local alignments from the comparison of random

sequences, under the condition of at least one of the scores between i and j, namely

SMij , is positive, and the expected score of SM follows
∑

i,j qiqjSij < 0, the amino

acids i and j align with frequency pij as in Equation 2.23.

pij = qiqje
λSij (2.22)

The theory also provides an Equation, shown in 2.23, to calculate the value of λ.

1 =
∑

ij

qiqje
λSij (2.23)

Therefore, the score between i and j can be found as in Equation 2.24. This

implies that the general form of a valid scoring matrix should be a log-odds ratio.

Sij ≈
1

λ
· ln (

pij
qiqj

) (2.24)

A natural question to ask is, when using a scoring matrix, how to judge their

alignment as significant from the random alignments. The Relative Entropy of a

scoring matrix, based on rigours theorems [61], can be used to answer this question.

We only briefly explain the basic idea of creating the relative entropy. Another

theory [18] states that the expected number of the MSPs (Maximal- scoring Segment

Pairs) with a score of at least S is given in Equation 2.25.

N = Kn1n2e
−λS (2.25)
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Where an MSP is the highest-scoring local ungapped alignment between two se-

quences, and setting λ to ln 2, the Equation 2.25 can be rewritten for score s as in

Equation 2.26.

S = log2
K

N
+ log2 (n1n2) (2.26)

In [18], they found if an alignment is considered as significant, the empirical

values of K are usually less than 1 for a typical scoring matrix, and the value of N

is less than 0.01. It is therefore that the term log2 (n1n2) in Equation 2.26 becomes

dominated. For example, if we have n1 = n2 = 250 for a two sequences comparison,

then an MSP needs to have at least a score of 16 (≈ 2 log2 250) in order to be

statistically significant. Or if we have n1 = 250 and n2 = 10000000 for a database

search, then an MSP needs to have at least a score of 31 (≈ log2 2500000000) in order

to be statistically significant.

When using a scoring matrix to calculate the score of an alignment, an expected

score per residue pair with respect to the target frequency pij is defined as the Relative

Entropy (H). The Equation 2.27 shows how to derive H from Equation 2.24 when

λ = ln 2. The Table 2.13 shows the different values of λ and H for different types of

scoring matrices.

H =
∑

i,j

pijsij =
∑

i,j

pij · log2 (
pij
qiqj

) (2.27)

BLOSUM45 BLOSUM62 BLOSUM80 PAM250 PAM120 PAM70 PAM30

λ ln 10
10

ln 2
2

ln 10
10

ln 10
10

ln 2
2

ln 2
2

ln 2
2

Relative
Entropy 0.3795 0.6979 0.9868 0.354 0.979 1.6 2.57

Table 2.13: Note the changes of H on PAM and BLOSUM matrices are in the same
order. The values of λ are derived from Equation 2.24.
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H can be interpreted as the expected score per amino acid pair in an alignment

with respect to the target frequencies. The value of H in different scoring matrices

can be used to estimate the effective length of a statistically significant alignment. A

bigger value of H can help to distinguish a shorter alignment from chance. If we use

the PAM120 matrix, a statistically significant alignment from two sequences of equal

length of 250 with score of 16-bit implies its effective length is 17 (≈ 16
0.979). While

using BLOSUM62 matrix, a statistically significant alignment between a sequence of

a length of 250 and database length of 10000000 with a score of 31-bit implies its

effective length is 44 (≈ 31
0.6979).

The PAM and BLOSUM matrices were built based on each of its own assump-

tions. One of the assumptions is the mutations between two amino acids. It assumes

that the mutations are happening at the same probability rate and are reversal in

both directions. This assumption on mutation is because most protein sequences we

have obtained are from extant species, yet we have not many protein sequences being

proved as an ancestor of the others.

One problem of this assumption is ignoring the gaps have occurred in the protein

sequences evolution process. Only correctly considering the insertions and deletions

in the process, or at least in a reasonable large scale during the process, the evolution

between proteins will truly be reflected. It is especially true for two sequences that

are highly divergent.

The PAM matrix, as a by-product, explicitly introduced a protein evolution

model for understanding the changes in proteins. The BLOSUM matrix was built on

a much more broad range of data on protein sequences compared to the PAM matrix.

The BLOSUM matrix is simple and independent because it involves only the log-odds

form from the statistics. It does not need phylogenetic trees, the max parsimony, and

the Markov Chain Model. Note that tests [62] have shown that the BLOSUM matrix

is slightly better than the PAM matrix.
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Usually, the BLOSUM62 is best suited for local alignments, and 250-PAM is

best suited for global alignments. And when possible, 60-PAM, 120-PAM, and 250-

PAM matrices are recommended to be used together to generate better outcomes.



Chapter 3

Spaced k-mer Neighbors

3.1 Introduction

Sequence similarity search is vitally important for the study of DNA and proteins in

modern molecular biology and has been actively researched in bioinformatics. Due

to the large size of the DNA and protein sequence data, efficiency is a top-priority

in the development of similarity searching algorithms. A commonly used technique

is the tradeoff between speed and sensitivity by using filtration. A filtration method

quickly identifies the potential similarity regions between the query and the database

sequences; then only these similarity candidates are further examined by a more

accurate (and usually slower) algorithm.

Earlier development of filtration was exemplified by the BLAST program, which

uses a consecutive k-mer match as a seed to filter out the potential similarities between

two DNA sequences [6]. Since the finding of exact k-mer matches is relatively simple,

this seeding idea greatly improved the search speed of BLAST. However, because not

all DNA similarities have a long k-mer match, some similarities are lost due to this

filtration, resulting in reduced sensitivity. The parameter k can be used as a tradeoff

between speed and sensitivity.

For a better tradeoff, the PatternHunter [7] program first proposed the opti-

mized spaced seed algorithm. A spaced seed is represented by a binary string such as

111*11*1, where the 1 means “required match” and the * means “don’t care”. The

number of 1s in the seed is called the weight of the seed. Given a spaced seed, the

39
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algorithm will use the exact match at the required matching positions as the filtra-

tion criterion. To the surprise of many, the PatternHunter paper demonstrated that

by optimizing the configuration of the positions of the 1 and * in the spaced seed,

a weight-k spaced seed is significantly more sensitive than the weight-k consecutive

seed used by BLAST. This spaced seed idea was later implemented in the BLAST

program for the searching of distant similarities.

Since PatternHunter significant research has been carried out to find more effi-

cient ways to tradeoff search sensitivity and speed. In particular, the PatternHunter

II paper [26] studied multiple spaced seeds, where several spaced seeds with differ-

ent shapes are used simultaneously to increase the sensitivity. The vector seed and

multiple vector seeds methods [45, 25] modifies the spaced seed by allowing one or a

few of the required positions to be mismatches. An earlier review of some of these

developments can be found in [63]. Most of these developments in more efficient

seeding are designed for DNA similarity searchs and regard a mismatch between two

letters a negative evidence to the similarity. Recently, the spaced seed method has

also been adopted for efficient reads mapping for next generation genome sequencing

analysis [46].

While for DNA sequences, a mismatch between two bases is considered a neg-

ative evidence for the DNA homology, protein sequences are different. According to

the BLOSUM [53] and PAM [52] matrices that measure amino acid similarities, the

mismatch between a pair of amino acids can be scored positively. So, the seeding

methods used for DNA similarity search need to be adjusted to work on proteins.

The BLASTp program extended the consecutive seed idea by using the approximate

match of a pair of k-mers that have a matching score greater than or equal to a given

threshold as seeds. The k-mer pairs with higher-than-threshold matching scores are

pre-calculated and indexed for efficient finding of those approximate matches. Partic-

ularly, the BLASTp program builds a DFA to search for the positions of hits at the
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scanning stage. The multiple vector seeds method [45] combined BLASTp method

with multiple spaced seeds. Another approach for protein similarity search in the

literature is to classify amino acids into several classes [64] or hierarchical classes [65]

so that the spaced seeds designed for DNA sequences can work on amino acid classes.

The k-mer pairs selection by using the BLOSUM [53] score threshold is not op-

timal for protein homology search. The reasons for this sub-optimality are examined,

and a new filtration method, namely spaced k-mer neighbors, is proposed.

3.2 Preliminaries and Notations

Given a pair of query and database sequences, a hit denotes a pair of positions,

each from one of the two sequences. In a filtration method for a similarity search,

a hit indicates a possible similarity around the two positions that deserves further

examination. A seeding scheme defines the criterion that two positions of the query

and database sequences generate a hit. A spaced seed x is denoted by a binary string

over alphabet {1, ∗}, where 1 indicates the required matching positions and ∗ for

“don’t cares”. Given a spaced seed x = x0 . . . xl−1 and a sequence s, the spaced

k-mer at position i of s is defined as the string t0 . . . tl−1 such that

tj =











s[i+ j] if x[j] = 1

∗ if x[j] = ∗

For example, if the spaced seed is 11*1 and sequence is AMKMKK, then the

spaced k-mer at position 0 is AM*M and at position 1 is MK*K. Thus, in a spaced

seed method, two positions of the query and database sequences generate a hit if

their spaced k-mers at those positions are identical. A similarity matrix defines

the similarity score between two letters. For example, the BLOSUM matrix defines

the similarity between each pair of amino acids. Given a similarity matrix M , the
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score between two sequences s1 and s2 with equal length l, denoted by fM (s1, s2), is

calculated by
∑ l

j=1M(s1[j], s2[j]). A high-scoring segment pair (HSP), is a pair of

sequences such that the fM (s1, s2) have a score higher than a specified threshold. For

the sake of presentation clarity, for any given scoring matrixM , we define M [∗, ∗] = 0.

The similarity score between two spaced k-mers t1 and t2, are denoted by fM (t1, t2),

and computed as
∑ l

j=1M(t1[j], t2[j]).

For protein homology search, a sequence alignment is usually the concatenation

of several HSPs. The general procedure for a homology search algorithm first utilizes

a seeding method to detect hits. Then an extension procedure is used to check

if there is an HSP around the hit. Only when the HSP is successfully detected,

a Smith-Waterman algorithm is called to generate sequence alignment. The main

optimization goal of the seeding method is then becoming the efficient detection of

the HSPs.

The sensitivity of a seeding method is the portion of HSPs that generate at

least one hit. The selectivity of a seeding scheme is the probability that two random

positions of a query and database sequences is a hit. If two variables x and y are

linearly correlated to each other, we denote x ∝ y.

3.3 The Dependencies that May Affect

Sensitivity

If two seeding schemes have the same selectivity, they normally produce a similar

number of hits in the HSPs. The key reason that they may have very different

sensitivity is the different distributions of the hits. Since each HSP requires only one

hit for its detection, having more than one hit in an HSP is a waste. Consequently, if

one distributes hits more evenly across different HSPs, it will detect more HSPs, or

in other words, have a higher sensitivity.
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This appeared to be the main reason that the spaced seed proposed in Pat-

ternHunter outperformed the consecutive seed used by BLAST. More specifically,

consider that an HSP has a consecutive seed hit at position i. Thus the two k-mers

(aiai+1 . . . ai+k−1) and (bibi+1 . . . bi+k−1) exactly match each other. Consider the

two k-mers (ai+1 . . . ai+k−1ai+k) and (bi+1 . . . bi+k−1bi+k), they would have a high

probability to match because this second hit requires only one additional letter match

between ai+k and bi+k. Thus, when consecutive seeds are used, there is a tendency

that once an HSP is hit, it is hit multiple times. However, for spaced seeds, this

tendency is greatly reduced.

Note that the above argument still holds even if the seeding scheme only re-

quires the two k-mers to match approximately. Specifically, when the BLOSUM

matrix M is used for the protein sequences, BLASTp requires the matching score

fM (aiai+1 . . . ai+k−1, bibi+1 . . . bi+k−1) to be greater than a threshold for consider-

ing (aiai+1 . . . ai+k−1) and (bibi+1 . . . bi+k−1) as a hit. Even under this approximate

match scenario, the hit at position i will still increase the hit probability at position

i + 1. This is the first dependency one needs to get rid of in order to increase the

sensitivity. Based on this observation, the first proposed change over the BLASTp’s

seeding scheme is the following:

Change 1: Replace the k-mer high-scoring matches with spaced k-mer. This

is similar to what was proposed in the multiple vector seeds paper [45].

The second dependency we examine is the dependencies between amino acids

within a k-mer. For an amino acid a, let P (a) be the probability that a occurs

in the query and database sequences. For two amino acids a and b, P (a, b) is the

probability that they occur at the same position in the two sequences of an HSP.

According to [53], the BLOSUM matrix M is such that

M [a, b] ∝ log
P (a, b)

P (a)P (b)
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Thus, for two k-mers a and b, if the amino acids at different positions of a k-mer

are independent to each other, then

fM (A,B) ∝ log

k
∏

i=1

P (a[i], b[i])

P (a[i])P (b[i])
= log

P (A,B)

P (A)P (B)

Here P (A,B) is the probability that the k-mer pair (A,B) occurs in the HSPs,

and P (A)P (B) is the probability that the k-mer pair occurs randomly at two random

positions of the query and database sequences. By using the high-scoring k-mer

matches as hits, BLASTp essentially requires that the hitting k-mer pairs to have a

high ratio between its occurring frequency in HSPs and in random sequence positions.

As a result, the seeding scheme can maximize both the sensitivity and the selectivity

simultaneously.

However, the above argument required the independence between the amino

acids at different positions of a k-mer, which may not hold in reality. To illustrate

this, the following experiment is carried out and the result is shown.
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Figure 3.1: The two values of 2 log2
∏k

i=1
P (a[i],b[i])

P (a[i])P (b[i])
(Y-axis) and 2 log2

P (A,B)
P (A)P (B)

(X-axis) may be different in reality.
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On real HSPs between human and mouse proteins, for k = 3, Figure 3.1

shows the differences between 2 log2
∏k

i=1
P (a[i],b[i])

P (a[i])P (b[i])
(Y-axis) and 2 log2

P (A,B)
P (A)P (B)

(X-axis), and Figure 3.2 shows the distribution of 2 log2
P (A,B)

P (A)P (B)
for 3-mer pairs

with BLOSUM62 score greater than or equal to 11.
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Figure 3.2: The distribution of values of 2 log2
P (A,B)

P (A)P (B)
for 3-mer pairs with BLO-

SUM62 score >= 11 used in BLAST

Because of these discrepancies, the simple use of BLOSUM scores as selection

criteria for k-mer pairs is not anymore optimal. Instead, the real
P (A,B)

P (A)P (B)
should be

used.

Change 2: Instead of using the BLOSUM score as hitting criterion, a set S

of k-mer pairs are pre-selected. Based on the real
P (a,b)

P (a)P (b)
, the match of a pair of

k-mers is a hit if and only if it belongs to S.

The choice of using a pre-selected set of k-mer pairs also enabled the removal

of another type of dependencies between k-mer pairs. We illustrate the situation

using consecutive seed first. Consider two k-mers pair (a1 . . . ak) ∼ (b1 . . . bk) and

(a2 . . . ak x) ∼ (b2 . . . bk y). Each of these two pairs can detect their own set of HSPs.
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However, the two detected HSP sets intersect each other and share all the HSPs that

were detectable by the (k+1)-mer pair (a1 . . . ak x) ∼ (b1 . . . bk y). Thus, having one

of the two k-mer pairs in S reduces the benefit of including the other.

This phenomena is illustrated in the following experiment. Consider the three

3-mer pairs:

I: (a1a2a3) ∼ (b1b2b3), II: (a2a3x) ∼ (b2b3y), and II
′: (xa2a3) ∼ (yb2b3)

!

!!

!

!!"

Figure 3.3: Comparison of I: (LSC)∼(LAC); II: (SCS)∼(ACA); II′: (SSC)∼(AAC).
I and II

′ share 3 HSP; I and II share 10,517 HSPs while I can hit 70,376 HSPs
alone.

In Figure 3.3, the Venn Diagram of the HSPs hit by the three pairs indicate

that I and II share a significant portion of HSPs.

Note that this dependency will be reduced by using spaced seed as two adja-

cent hits share a fewer number of positions. However, the further consideration of

dependencies between (spaced) k-mer pairs will further reduce this dependency.

Change 3: The selection of k-mer pair set S should take into account of

dependencies between different pairs.
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3.4 Spaced k-mer Neighbors Method

In this section we propose the spaced k-mer neighbors method for increasing the

similarity search sensitivity. A simple algorithm to optimize the k-mer pairs is also

proposed.

3.4.1 Hit Generation

Algorithm 1 HitGeneration

Input: A set S of k-mer neighbors; a query sequence P , and a database sequence T
Output: A list of hits (i, j) such that the P ’s i-th k-mer and T ’s j-th k-mer form a
neighbor in S
for each position i in P do
let mi be the k-mer at position i of P
for each k-mer mj such that (mi, mj) ∈ S do
add the 2-tuple 〈mj , i〉 in a hash table H

end for
end for
for each position j in T do
let mj be the k-mer at position j of T
find each integer i such that 〈mj , i〉 in H
output (i, j)

end for

For a given positive integer k and a spaced seed s, the algorithm pre-selects a

set S of spaced k-mer pairs. S is used to guide the hit generation in the similarity

search. For each spaced k-mer pair (u, v) ∈ S, u and v are called neighbors of each

other. We further restrict our selection so that neighborhood relation is symmetric.

With the pre-selected set S, the algorithm can perform the hit generation as

follows. First, for each sequence P in the query, the algorithm calculates all the

neighbors of all the spaced k-mers of P , and indexes the neighbors in a hash table H .

Secondly, the algorithm scans through the database sequence T . For each position i in

T , let mi be the spaced k-mer at the position. The hash table H is looked up to find

all the k-mers in P that are neighbors of mi. The position of each neighboring k-mer
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in the query sequence P provides a hit with the position i of the database sequence

T . The hit generation algorithm is shown in Algorithm 1. Each hit generated is

further examined by other methods (such as the Smith-Waterman algorithm) to verify

whether there is a similarity around the hit.

3.4.2 Weighted Minimum Hitting Set Problem

3.4.2.1 Introduction

A good set of k-mer neighbors should hit the most of HSPs. Intuitively, if we have

a set H of fine sampling of the real HSPs, then we can find a good set (according

to some criteria) of k-mer neighbors to hit all the HSPs in H. Since each HSP can

be viewed as a set of k-mers, the problem of selecting a good set of k-mer neighbors

becomes a hitting set problem.

As for the criteria of selecting hitting k-mer neighbors set, a good set S of k-mer

neighbors should have high sensitivity. This means that each individual s = (A,B) ∈

S should hit many HSPs implying that P (A,B) should be relatively high. At the

same time, a good set S of k-mer neighbors should not produce too many random

hits. This means that P (A) · P (B) should be low. Therefore for an individual k-mer

neighbor s, the ratio
P (A,B)

P (A)·P (B)
should be high. However, this will not solve the

problem of k-mer pairs dependencies. Consider the situation that there is another

s1 = (A1, B1) with a high
P (A1,B1)

P (A1)·P (B1)
ratio. Its detected HSPs have a large overlap

with the detected HSPs of s. Including both s and s1 will not increase much the

ability to hit HSPs but will increase the probability of producing random hits. If

there is a third k-mer pair s2 = (A2, B2) such that its detected HSPs cover the non-

overlapping part of detected HSPs of s1 and P (A2) · P (B2) < P (A1) · P (B1), then

including s and s2 is a better choice.

Therefore, the criteria should be to find a hitting set S of k-mer neighbors

that hits all HSP sets and minimizes
∑

s∈S w(s), where w(s) = P (A) · P (B). With
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this criteria, random hits will be minimized and the amount of dependencies will be

reduced.

3.4.2.2 Weighted Minimum Hitting Set Problem

The Hitting Set Problem is a well studied NP-hard problem. A broad range of

problems can be reduced into either minimum hitting set problem or its close sibling

minimum set cover problem. In this section, we will review the definition of minimum

weighted hitting sets problem and a popular greedy solution for this problem.

A hitting set H is a set that intersects every set in a collection of sets C. H

is further defined as a Minimum Hitting Set if no elements can be removed from H

without violating above hitting set property.

Given a finite set U as universe with |U| = m, and a collection C = {Si|i ∈ I ⊆

N}, then a hitting set is a set S ⊆ U and Si ∩ S = ∅ ∀i ∈ I. That basically means S

contains at least one element from the entire sets of C. Let HS(C) be a collection of

all hitting sets of C, then MHS(C) be a collection of HS(C) with minimal cardinality.

In addition to the above definition, we add another constrain, a weight function

w : U → ℜ+. Hence, determining a minimal cardinality element of MHS(C) with

minimal w(S) =
∑

s∈S w(s) is called the Weighted Minimal Hitting Set (WMHS)

problem.

For example, Given

C =
{

{a,b,c,d}, {a,b,d}, {a,b}, {c}, {d}
}

and w(a) = w(b) = w(c) = w(d) = 1. Then both {a, c, d} and {b, c, d} are a correct

solution of WMHS(C).

For the sake of completeness, the original algorithm of the Greedy algorithm

is shown in Algorithm 2. This greedy algorithm has a known approximation ratio of
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O(lnm). Because in paper [66], it had shown that the approximation factor of set

cover problem is bounded by O(lnn).

Algorithm 2 GreedyWMHSP

Input: A finite set U = {1, . . . , m}, A collection C = {S1, . . . , Sn} of subsets of U .
A set {w1, . . . , wm} of weights associated with the elements of U

Output: A hitting set H for C
1: H = φ and temp = C
2: while temp 6= φ do
3: Compute T = {H1, . . . , Hm} s.t. Hi is the number of subsets in temp hit by i

and i ∈ U
4: Choose i s.t. Hi/wi is the maximum
5: H = H ∪ {i}
6: temp = temp \ {Sj : i ∈ Sj}
7: end while
8: return H

As in Algorithm 2 which is reviewed in paper [67], at each iteration, the al-

gorithm only concerns the remaining elements. It greedily picks the element which

maximizes the ratio between the number of hit sets and the associated weight.

3.4.2.3 Reduction of WMHS problem

The problem of selecting a good set of k-mer neighbors becomes a weighted minimum

hitting set problem as follows:

Let K be the set of all the k-mers over a finite set alphabet Σ, such that:

K = {u|u is a k-mer}

In case of protein homology search, Σ is the twenty commonly used amino acids.

Let U be a finite set contains all the spaced k-mer pairs, such as:

U =

{

(u, v)| ∀ u, v ∈ K

}

(3.1)
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Consider an HSP P of two sequences of t1 and t2 with length l, then P ⊆ U

can be represented as a set of k-mer pairs as following:

P =























(u, v)

∣

∣

∣

∣

∣

u ∈ t1[i . . . i+ k − 1]

v ∈ t2[i . . . i+ k − 1]

∀i = {1, . . . , l − k + 1}























(3.2)

Given an HSP p which is from two sequences, shown in Table 3.1.

ARSYDGDFVFDDEF
ARDLEEDFVYEDEF

Table 3.1: An example of two sequences.

where p is derived from two length of 14 amino acids sequences, and p can be

considered as a set of 12 of 3-mer pairs when using seed 111, hence p can be translated

into its 3-mer pairs representation as following:

p = {(ARS∼ARD), (RSY∼RDL), (SYD∼DLE), (3.3)

(YDG∼LEE), (DGD∼EED), (GDF∼EDF),

(DFV∼DFV), (FVF∼FVY), (VFD∼VYE),

(FDD∼YED), (DDE∼EDE), (DEF∼DEF)}

And given a set H which contains a finite number of HSPs such as:

H = {P1,P2, . . . ,Pn} (3.4)

Whereas to find a k-mer neighbors set S ⊆ U to hit each HSP inH at least once,

or S ∩ Pi 6= ∅, ∀i = 1, . . . , n, such that the selectivity
∑

s∈S w(s), where s = (A,B)

and w(s) = P (A) · P (B), is minimized.
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The above described problem of finding a set S with respect to a weight function

w : U → ℜ+ is the well-known Weighted Minimum Hitting Set (WMHS) problem.

Since comparisons are made against the high scoring matches methods having selec-

tivity M , further constrain is needed such that S also has a selectivity less than or

equal to M , i.e.
∑

s∈S w(s) ≤ M . In reality, with an iterative incremental process of

constructing S, k-mer neighbors will be added to S until the weight reachs M .

Finding an optimal set S is not feasible because WMHS is a known NP-hard

problem [68]. Hence the proposed algorithm of finding a good set S is the result of

adopting the popular greedy solution, which is reviewed in paper [67], of the WMHS

problem.

3.4.3 Selection of a Good Spaced k-mer Neighbors

The k-mer neighbors set S is greedily selected by using a training set H of HSPs. Let

FH(m1, m2) be the total counts of the k-mer pair (m1, m2) in H, and f(m) be the

frequency of a k-mer m in a protein sequence. The selection algorithm greedily selects

the k-mer pair that maximizes
FH(m1,m2)
f(m1)f(m2)

, and dynamically updates FH(m1, m2) by

removing the HSPs that are hit by the currently selected k-mer pairs.

The detailed algorithm is given in Algorithm 3. Notice that FH(m1, m2) is a

counter of each k-mer pair that occurs in a training set of HSPs, and f(m) is fixed

and calculated using all the protein sequences released in July 2011 from the NCBI

Refseq [69] database. In the actual implementation of Algorithm 3, each HSP in H

has been indexed with a unique id, and for each k-mer pair with counter FH, we need

to maintain a list of ids of the contributing HSPs. Because of maintaining such list,

in the update process, we could decrease the value of counter FH and remove the

corresponding HSPs directly from the list rather than scanning though H for it.

Notice that SelectNeighbor can be implemented efficiently. When executed for

the first time, steps 3-5 require the enumeration of every HSP in H to calculate
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Algorithm 3 SelectNeighbor

Input: A set H of HSPs, a positive integer k, a spaced seed s, and a targeted
selectivity M

Output: A set S of spaced k-mer neighbors
1: S ← φ; t← 0
2: repeat
3: for all k-mer pair (m1, m2) do

4: count the frequency
FH(m1,m2)
f(m1)f(m2)

occurring in H

5: end for
6: Let (m1, m2) be the pair that maximize

FH(m1,m2)
f(m1)f(m2)

7: S← S ∪ {(m1, m2)} and t← t+ f(m1)f(m2)
8: Remove all HSPs that are hit by (m1, m2) from H
9: until H is empty or t ≥ 1

M

FH. This takes O(N) time and N is the total length of the HSPs. However, in

the future repetition, FH does not need a complete recalculation and can be updated

dynamically. When an HSP is being removed fromH in Step 8, we only need to reduce

the counter FH(m
′
1, m

′
2) by 1

f(m′
1,m

′
2)

for each pair of k-mers (m′1, m
′
2) occurring in

H. A priority queue data structure is used to store all the counters and efficiently

find the optimal (m1, m2) in Step 6. Each update of a counter takes only logN

time because the size of the queue is at most N . So there are at most N updates.

Therefore, the total execution time is O(N logN) if the algorithm is implemented as

described above.

Theoretically, our algorithm of SelectNeighbor works on selection of good neigh-

bors for any k-mer. However when k increases and the training data size becomes

large, due to the limitation on the available computational resource, SelectNeighbor

may not run effectively. For example, in order to greedily select a good k-mer neigh-

bor, at each round of the loop at steps 3-5 in SelectNeighbor algorithm we have to

consider 202k k-mer pairs, which alone may exceed the available memory space. In

addition to that, when increasing k by 1, there are roughly 400 time more k-mer pairs

available to choose from; we have to use relative large data set to train a good k-mer

set S. Loading these data and maintaining the list of ids of the contributing HSPs
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of each k-mer pair would easily consume a large amount of memory space. Under

such circumstance, running SelectNeighbor for k- mer neighbors becomes not feasi-

ble. Therefore, another algorithm has been developed as a work-around solution. As

it will be shown in next section, SelectKmerNeighbor produces adequately positive

results.

Algorithm SelectKmerNeighbor scans each HSP h ∈ H one by one, and if no

existing neighbors in S could hit h then it will look for the k-mer pair (m1, m2) with

highest BLOSUM62 score, such that

fM (m1, m2) = MAX(fM (mi, mj) ∀(mi, mj) ∈ h).

Then pair (m1, m2) will be added to S as a new neighbor and the selectivity of S

will be updated accordingly. SelectKmerNeighbor stops when either all HSPs H have

been examined or target selectivity is reached.

Algorithm 4 SelectKmerNeighbor

Input: A setH of HSPs, |H| = N , a weight k spaced seed s, and a targeted selectivity
M

Output: A set S of spaced k-mer neighbors
1: S ← φ; t← 0 ; i = 0
2: repeat
3: Let k-mer pair (m1, m2) be the highest scoring pair in H[i]
4: if H[i] ∩ S = ∅ then
5: S← S ∪ {(m1, m2)} and t← t+ f(m1)f(m2)
6: end if
7: i = i+ 1
8: until i ≥ N or t ≥ 1

M

In SelectKmerNeighbor, since we scan the HSPs in H only once, the total run

time is proportional to the size of H. Therefore, the total run time is O(N) when N

is the total length of the HSPs.
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3.5 Experiments and Results

Four different seeding schemes were compared in our experiments. The first seeding

scheme is BLASTp’s default scheme. That is, with a consecutive seed 111, all 3-

mer pairs that have BLOSUM62 score greater than or equal to 11 are regarded as

neighbors. The second scoring scheme is similar to the first one, except that a spaced

seed 11*1 is used. The third and fourth schemes all use the SelectNeighbor algorithm

to train the 3-mer neighbors from training HSPs. But they use a consecutive seed

111 and a spaced seed 11*1, respectively.

The protein sequences used in the study are the complete proteomes of human,

mouse, drosophila (fruit fly), cow, and pig from the Uniprot [70] database. The

sequences were downloaded from the Uniprot database on April 18, 2012. The five

proteomes contain 65,481, 46,439, 17,516, 26,588, and 19,572 proteins, respectively.

To compare the performances of different seeding methods, we restricted each

method’s selectivity to be approximately the same, and compared their sensitivity on

the HSPs between a pair of the above-mentioned five proteomes. On SHARCNET,

SSearch program [71], which is an efficient implementation of the Smith-Waterman

algorithm, was used to generate the benchmark HSPs. Computing the local align-

ments results from SSearch program is actually a very time consuming task because

the Smith-Waterman algorithm runs in quadratic time and tens of thousands of pro-

teins sequences are used. However, we were able to simultaneously run many SSearch

programs by spreading it on different nodes across the SHARCNET clusters after

efficiently splitting the task into smaller ones; we reduced our wait time for the same

results by ten folds.

The sensitivity of each seeding method is measured by the percentage of the

benchmark HSPs detected by the method. The selectivity of a set S of k-mer neigh-

bors is calculated by 1
∑

(mi,mj)∈S
P (mi)P (mj)

. This is the reciprocal of the probability

that two random positions of a query and database sequences produce a hit.
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Figure 3.4: Sensitivity of each method in comparison on HSPs of human versus mouse
with BLOSUM62 score ≥ X .

For each such comparison, half of the protein sequences are randomly selected

for parameter training for the seeding methods, and the remaining half are used for

testing the performance. Figure 3.4 shows the experiment we conducted on the com-

plete proteome of human and mouse. There are 38,982,312 and 38,891,790 HSPs

generated by SSearch from the training and testing proteins, respectively. The sensi-

tivity curves clearly indicate that the spaced k-mer neighbors selected by Algorithm

SelectNeighbor has a much better sensitivity. The same experiment with the human

and drosophila produced a similar result (Figure 3.5). There are 19,807,012 HSPs in

the training data and 19,908,095 HSPs in the testing data from the protein sequences

of human versus drosophila generated by SSearch.

Figure 3.8 shows the experimental result of training data from 2.165×108 HSPs

from 134,065 protein sequences of human, mouse, drosophila, and half of the randomly



57

!" #" $" %" &" '"

"()

"()!

"()$

"()&

"())

"(*

"(*!

"(*$

"(*&

"(*)

+

,-./012/34567081198//:1++"+;

,-./012/3456708198//:1+++;

<34518=703241>?308198//:1++"+;

<34518=703241>?308198//:1+++;

<@A1@=70/

@
/
2
8
3B
3C
3B
D

Figure 3.5: Sensitivity of each method in comparison on HSPs of human versus
drosophila with BLOSUM62 score ≥ X .

selected sequences from pig and cow respectively. Testing with 11,781,836 HSPs are

from 12,248 and 9,897 unselected protein sequences from pig and cow respectively.

In the above experiments, the training and testing are on different sets of pro-

teins from the same organisms. We have further studied the performance of spaced

k-mer neighbors when the training and testing were on different pairs of organisms.

The same set of k-mer neighbors trained using the training HSPs of human versus

mouse was used. Figure 3.6 shows the results with the testing HSPs of human ver-

sus drosophila; and Figure 3.7 shows the testing with 995,423 HSPs generated with

1,957 randomly selected pig proteins versus 2,659 randomly selected cow proteins.

Both figures suggest that the spaced k-mer neighbors still work very well even if the

training data and testing data are from different organisms.

The above experiments shows the 3-mer neighbors on a moderate set of training
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Figure 3.6: Sensitivity of each method in comparison on HSPs of human versus
drosophila with BLOSUM62 score ≥ X .

data on a few species using SelectNeighbor. Now developing a good neighbor set on

the complete protein sequences is the next goal. Then a larger set of training data

from the entire curated protein sequences of the December 2010 release of the Pro-

tein Clusters Database [72] from NCBI had been obtained. The protein sequences

indexed to the July 2011 release of the RefSeq database had been downloaded. There

are 793,848 curated proteins, when using all of them as training data, SSearch pro-

gram generated billions of HSPs literately which occupy over 3 TB of hard drive

space. Consider the memory requirement on this training data when using Select-

Neighbor and currently the computational resource we have available; we opted to

use SelectKmerNeighbor for finding good 4-mer neighbors.

Similar to the approach of 3-mer neighbors experimental results comparison, we

used four different seeding schemes in our 4-mer neighbors comparison to BLASTp.
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Figure 3.7: Sensitivity of each method in comparison on HSPs of pig versus cow with
BLOSUM62 score ≥ X .

The first seeding scheme was consecutive seed 1111 with BLASTp’s 4-mer high scoring

pairs with BLOSUM62 score greater than or equal to 12. Next scheme, we used spaced

seed 11*11 instead of 1111. The last two schemes we used the 4-mer neighbors from

SelectKmerNeighbor algorithm with consecutive seed 1111 and spaced seed 11*11,

respectively.

The selectivity was set to match the BLASTp’s 4-mer high-matching pairs with

BLOSUM62 score greater than or equal to 12.

Figure 3.9 shows the experimental results on the testing data between two sets

of protein sequences of 1,000 each, and the testing data were randomly selected pro-

teins sequences not occurring in the training data from the same RefSeq release;

there are 552,411 HSPs generated from the testing data by SSearch. It shows Selec-

tKmerNeighbor algorithm produced 4-mer neighbors outperforms the program using
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Figure 3.8: Sensitivity of each method in comparison on HSPs of randomly selected
testing data with BLOSUM62 score ≥ X .

high scoring pairs as shown in the Figure 3.9.
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Figure 3.9: Sensitivity of each method in comparison on HSPs of randomly selected
testing data with BLOSUM62 score ≥ X .
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3.6 Applying Spaced k-mer Neighbors on the

Two-hit Method

In this section, the experimental results of our spaced k-mer neighbors on the two-hit

method will be shown. The two-hit method was introduced in BLAST to control

the quality of the hits and the execution of the hit extensions. The two-hit method

requires the existence of two non-overlapped hits within a pre-defined distance on a

same diagonal. The hit extensions will not be triggered prior to satisfy the conditions

of the two-hit method. Our experiments are the comparisons of applying the two-

hit method between the hit identified by the spaced k-mer neighbors and the hit

identified by the high-scoring pairs with BLOSUM62 matrix. For each experiment,

the selectivity of each method is matched.
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Figure 3.10: Sensitivity of each method in comparison on HSPs of randomly selected
testing data with BLOSUM62 score ≥ X .
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In Figure 3.10, the testing data is the 38,891,790 testing HSPs that are generated

from the randomly selected human and mouse proteins in the RefSeq database. And,

the set of spaced 3-mer neighbors are trained by the training data of human and

mouse proteins.
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Figure 3.11: Sensitivity of each method in comparison on HSPs of randomly selected
testing data with BLOSUM62 score ≥ X .

In Figure 3.11, the testing data is the 552,411 testing HSPs that are generated

between 1,000 randomly selected testing protein sequences in the RefSeq database.

And, the set of spaced 4-mer neighbors are trained by 793,848 curated proteins when

using SelectKmerNeighbor algorithm.

Our spaced k-mer neighbors on the 2-hit method work very effectively as the

results have shown.
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3.7 Conclusion

A new spaced k-mer neighbor method is proposed for more efficient tradeoff between

the sensitivity and selectivity in protein similarity search. An efficient heuristic al-

gorithm is provided to pre-select the spaced k-mer neighbors from a large set of

training HSPs. Experiments showed that the method can significantly increase the

search sensitivity at the same selectivity for both single-hit and 2-hit methods.
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Chapter 4

HexFilter

A perfect protein homology search method aims to be both sensitive and fast. Un-

fortunately, in practise, sensitivity and speed are always two competing factors in the

design of a homology search method. A good method should provide good tradeoff

efficiency between the two factors. In Chapter 3, we introduced a new way to quickly

generate a hit that indicates a potential homology. In this Chapter we focus on the

next step after the hit generation, before the use of the local alignment algorithm

(such as the Smith-Waterman algorithm) to construct the alignment. This step is

usually called a “hit extension”, which aims to further filter out the random hits

before the costly local alignment. For the hit extension, BLASTp performs an un-

gapped alignment around the identified hit to recover a maximal scored HSP. And,

local alignment is only conducted if the HSP score is above a threshold. Since the

ungapped alignment can be done in linear time, comparing to the quadratic time of

the local alignment, this step significantly reduces the time needed for local align-

ment. However, since the hit generation step produces a significant number of hits,

the hit extension is still expensive. For example, the hit extension steps could take

up more than 90% of the execution of the original BLASTp [15]. Therefore it is

beneficial to reduce the number of hit extensions. In this Chapter, a new method will

be presented, namely HexFilter, which aims to reduce the number of hit extensions.

The HexFilter method is introduced in Section 4.1. Background-related reviews

are in Section 4.2. The method for quickly counting the number of identities is in
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Section 4.3. The detailed experimental results on selectivity, sensitivity, and running

time are in Section 4.5. At last conclusions and discussions are in Section 4.6.

4.1 Introduction

In a seeding based program, after a hit has been successfully identified, the Smith-

Waterman algorithm usually will be triggered for finding the optimal local align-

ment. But, when many hits are identified, there will be too many calls of the Smith-

Waterman algorithm. The performance of the application will be greatly weakened

because the Smith-Waterman algorithm is very time consuming. Due to such case,

the BLASTp introduced a heuristic method, namely the hit extension, to speed up

the searching time by reducing the number of calls to the Smith-Waterman algorithm.

The hit extension is executed before the Smith-Waterman algorithm. And, the heuris-

tic of hit extension returns a maximal scored HSP around the identified hit. If the

returned HSP scores higher than the pre-defined threshold, then the Smith-Waterman

algorithm will be triggered. Calling the hit extensions helps to filter out some unnec-

essary calls to the Smith-Waterman algorithm. The hit extension runs faster than the

Smith-Waterman algorithm because it is a linear time algorithm. When many calls

to the Smith-Waterman algorithms are replaced by the hit extension, the searching

speed of the BLASTp will be improved. But the hit extensions lose some sensitivity

because the hit extension may not be successful if the hit is within a short ungapped

segment of the final alignment.

As tested in [15], the time involved on the heuristic of hit extension could take

up 90% of total running time of BLASTp. Hence, it is necessary to reduce the num-

bers of the hit extensions. For the HSPs returned by the heuristic of hit extension, it

tends to have a high similarity rate and contains many identities. Intuitively, around

an identified hit, rather than calculating accumulated BLOSUM62 scores and finding
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a maximal scored HSP, seeking for identities seems an attractive alternative. We

propose a new heuristic method, namely HexFilter, to efficiently filter out potential

HSPs by quickly counting the number of identities over a region around the identified

hit. Special considerations need to be given to account for the similar but not iden-

tical amino acid pairs, as well as to count the number of identities efficiently. Our

experimental results show that our HexFilter is efficient and can effectively reduce

the number of hit extensions.

4.2 Preliminaries and Notation

4.2.1 Hit Extension

In this subsection, we will explain the algorithm of the hit extension used in BLASTp.

The heuristic of hit extension in BLASTp is a process of finding an ungapped

HSP with maximal score around the initial hit. An ungapped hit extension will

extend the hit along the forward and backward directions on the same diagonal. A

popular solution of the hit extension is the X-drop greedy algorithm developed in [19].

The X-drop greedy algorithm sets a threshold value for the maximum allowance that

the accumulative alignment score can drop. In other words, it defines the maximal

difference between the current alignment score and highest alignment score that has

been seen. And, the X-drop algorithm stops when the current alignment score has

dropped more than the given threshold. Usually, the extension stops before reaching

the full length of the sequences.

An example of an ungapped hit extension is shown in Table 4.1.

F S F L K D S A G V V D S P K L G A H A E K V
F G D L S N P G A V M G N P K V K A H G K K V

Table 4.1: The identified hit is blue coloured pair of AHA and AHG, the X-drop
algorithm extends in forward for 3 positions and backward for 17 positions.



68

4.2.2 The Two-hit Method

BLASTp uses the hit extensions to improve searching speed, but loses some sensitivity.

To recover some of the sensitivity, BLASTp has to lower its hit score threshold to

generate more hits. Lowering the hit score threshold helps to increase sensitivity, but

many unwanted false hits are created at the same time. The unwanted hits waste

the application’s running time and induce false positive results. Therefore, BLASTp

introduced another heuristic, called two-hit method, to filter out the unwanted hits.

The two-hit method requires that two non-overlapped hits on the same diagonal

within a predefined distance must be found prior to executing the hit extensions.

The hit extension is invoked on the second hit found in the two-hit method. The two-

hit heuristic was first adopted in BLASTp when the gap penalty was allowed [15].

As the examples had been illustrated in paper [15], when using different hit score

thresholds, the evaluation results of the one-hit and two-hit methods show that they

share roughly the same sensitivity, and the numbers of calls to the hit extension are

reduced, the speed of BLASTp is not slower.

The idea of examining multiple hits on the same diagonal within a search win-

dow space first appeared in 1983 [10]. The two-hit heuristic was based on the fact that

on the same diagonal an HSP usually contains more than one hit within a reasonable

short distance. A position of a hit h is defined as a coordinate as (i, j) between two

sequences x and y if the hit occurs at the i-th position of x and the j-th position of

y. The diagonal of h is the value of i− j. Another hit h1 from (i1, j1) is considered

on the same diagonal of h if and only if i− j = i1 − j1. The distance between h and

h1 is the value of i− i1.

To implement the two-hit method efficiently, a hit look-up table is needed for

storing the newest hit in a diagonal. Because the database is scanned in the order

of increasing values of indexed positions of the sequences, so only the newest hit of

a diagonal needs to be saved to the look-up table. Whenever a new hit is found,
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comparing with the old hit in the look-up table will return the distance of the two

hits in the same diagonal. So we only update the old hit with the new hit when

either two hits are overlapped or two hits are further away than the pre-defined

distance threshold. However, the overheads in terms of tracking the hits in the two-

hit method and maintaing the look-up table are often not properly analyzed for the

related running time estimation.

In BLASTp, the default seed of the two-hit method is 111, the hit score thresh-

old is 11 by the BLOSUM62 matrix, the maximal distance allowed between two hits

is 40, and two hits are required to be non-overlapped.

4.2.3 Amino Acids Clustering

To build an efficient HexFilter, we need to quickly count the pairs of similar amino

acids between two sequences. Also, regardless of the types of algorithms being used

for comparing two data sequences, the data sequences need to be loaded into mem-

ory first. Finding identities between two sequences are realized by comparing each

memory block containing the sequences. And, each of the amino acids are compared

while scanning the memory blocks. Most of the current computer systems are 64-bit.

This means a 64-bit long word is a primitive block in the computation. Therefore, it

is beneficial to store multiple amino acids in one long word and carry out the com-

parison at once. For the 20 commonly used amino acids in Bioinformatics, a 64-bit

long word can store at most 12 amino acids because each of them takes up 5 bits. So,

in a 64-bit long word, 60 bits are used, but the last 4 bits will be wasted.

While counting for identities between two amino acid sequences, we also like

to include some highly similar pairs. If amino acids are clustered into 16 groups,

some groups may contain more than one amino acid. The amino acids were not

identities but currently in the same clustered group will be considered as new identity.

Therefore, some highly similar pairs become identities when using the clustered amino
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acids. Using the clustered 16-group amino acids can also help to compare more amino

acids in a primitive block of memory. And no bits in the memory block will be wasted.

If we opt to a clustered 16 groups of amino acids, then we will encode 16 amino acids

in a 64-bit of long word because each clustered group of amino acids only requires 4

bits.
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Figure 4.1: This is a rearranged BLOSUM 62 Scoring Matrix. The clustered 16-group
of amino acids are in yellow coloured background. The clustered 16-group amino acids
are {{C}, {G}, {A}, {T}, {S}, {N}, {D}, {E}, {Q}, {K, R}, {V, I}, {L, M}, {W},
{F, Y}, {H}, {P}}

Here, we use the classification algorithm directly from our earlier research re-

sults [64, 73]. Figure 4.1 shows the 16 groups of amino acids returned by our algo-

rithm. The main idea of the algorithm is, initially considering each amino acid as

an individual group, then clustering two amino acid groups into one if they have the

highest BLOSUM62 score in the matrix, and updating the new scores between this

new group and other groups. We have shown that the classification of amino acids
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helps to increase the sensitivity while maintaining the same selectivity if using the

same spaced seeds. Our classification algorithm also respects the natural properties

of different amino acids, e.g. aromatic for both F and Y, aliphatic for both V and I.

Intuitively, the 16 groups of amino acids will help to increase the identities rate of an

alignment over the 20 groups of amino acids. Each individual group of (K, R), (V,

I), (L, M), (F, Y) will be considered as an identity if they appear in a same position

of an alignment. For example, conside the case of pair (K, R), in addition to identity

of the pairs (K∼K) and (R∼R), the pair (K∼R) will also be treated as identity.

4.3 Counting The Identities

Algorithm 5 countIdentities

Input: x as a 64-bit long word for 16 amino acids from one sequence, y as a 64-bit
long word for 16 amino acids from another sequence

Output: Integer value of i as the number of identities between x and y
1: let value = ∼(x ∧ y)
2: value = value & (value ≫ 1)
3: value = value & 0x5555555555555555LL
4: value = value & (value ≫ 2)
5: value = value & 0x1111111111111111LL
6: return i= POPCNT(value)

Clustering the amino acids into smaller groups can also help to quickly count

the identities between two sequences. The detailed steps of counting the identities

between two clustered 16 groups of amino acids are described in Algorithm 5. For

the clustered 16 groups of amino acids, each encoding of an amino acid takes 4 bits,

a total of 16 amino acids can be stored in a 64-bit long word. In a long word, the

i-th of the 16 amino acids starts at the index positions 4i. Any of two amino acids

are an identity if and only if their 4-bit encodings are the same. The XOR(∧) bit

operation turns the same bits into 0 and others into 1. Given two long words of x

and y with exactly 16 amino acids inside of each, if we XOR the two long words,
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then the encoding of the identities will be 4 bits of 0s. As in step 1 of Algorithm 5,

after negate(∼) the XOR results, in value, the bits of 1s represent the identity bits.

Starting at the index positions of 4i in value, 4 consecutive 1s imply an identity of

two amino acids. If two amino acids are not identity, in their encodings they may

still share a few bits but not all 4 bits. Hence, in value, the bits with value 1 in

non-identity amino acids need to be removed. And, we want only bit 4i in value to

be 1 if it is an identity. This is achieved by the bits manipulation from step 2 to

step 5 in Algorithm 5. After the bits manipulation, only the 4i-th positions are 1 if

and only if the amino acids are identity at the i-th positions from x and y. And, all

other bits are 0. At last, we count the number of 1s in value to induce the number

of identities with the POPCNT. The CPU machine instruction of POPCNT was first

introduced in 2008 when Intel released its Nehalem-based Core i7 processor. The

POPCNT instruction is the extension of the SSE4.2 instruction set. The POPCNT

machine instruction counts the total number of bits with value 1 in a 64-bit long

word. Because POPCNT is a native machine instruction, it runs very fast. And, the

bit-wise operations from steps 2 to 5 in Algorithm 5 are also very fast. So, when

we load the encoding of 16 clustered amino acids into one long word, we can quickly

count the identities between two long words using the POPCNT after transforming

the identities information into one long word. Hence, the identities between two

lengths of 16 amino acids can be found quickly.

4.4 An Efficient HexFilter

In this Section, we propose the HexFilter algorithm for reducing the number of hit

extensions. A simple algorithm to optimize the configuration of an HexFilter is also

proposed.

As mentioned in paper [15], in order to retain reasonable sensitivity on the
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weaker alignments, the hit extensions are configured to run very intensively, so that,

more than 90% of the computational time of BLASTp are resulted from the hit

extensions. The HSP needs to have some positive scored pairs in order to get a

higher accumulated score. Because only the identities and similar amino acids have

positive BLOSUM62 scores, the short length and higher scored HSPs usually have

higher identities rate. Therefore counting the identities in the HexFilter is a desired

method. An HexFilter is invoked on the identified hits. Then, around the hit, the

HexFilter seeks the least required number of identities inside a search window. Only

after the conditions on the HexFilter are satisfied, the hit extensions will be triggered.

Hence, the HexFilter helps to reduce the number of calls to hit extensions. The

HexFilter also runs faster than the hit extensions, whereas the searching time can be

improved.

A HexFilter has two parameters: i as the number of required identities, w as

the search size. Our HexFilter has a fix search window size, w = 16. Hence a region

of the length of 16 around the initial hit will be further examined. Setting w = 16

allows us to take advantage of the 16 groups of clustered amino acids, and effectively

use the native POPCNT CPU instruction [74], so that similar amino acids between

two segments of length of 16 can be found very quickly. If a hit is identified at i-th

position of x and the j-th position of y, then the most common of a search window

covers a space of [i− 8, i+ 8] of sequence x and [j − 8, j + 8] of sequence y.

Because the positions that were initially hit had been evaluated through the

hit generation step, they do not need to be checked again. So, it is only the other

positions that were not hit will be the ones to be checked in the HexFilter. The

parameters of our HexFilter for 3-mer are (i, w = 13) when ignoring the identities at

the 3 positions from the hit. For 4-mer, our HexFilter has parameters (i, w = 12)

when ignoring the identities at the 4 positions from the hit.

Our HexFilter is an outcome of iterations of empirical testing on the values of
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the parameters. So the tradeoff between sensitivity and selectivity is optimized. For

both 3-mer and 4-mer, we test the values of i = {3, 4, 5, 6, 7}.

4.5 Experimental Results

In this Section, we present the related experimental results of the comparisons between

our HexFilters and the BLASTp’s methods.

4.5.1 Comparisons With the 2-hit Method

In this subsection, we test our HexFilters to benchmark selectivity and sensitivity.

Both the HexFilter and the 2-hit method can be regarded as filters to the single-

hits so that only a portion of the single-hits are used for the ungapped extension.

The probability of a HexFilter (i, w) can be estimated as its selectivity if we

assume that the probability of each amino acid is independent. For a hit score thresh-

old t, the probability of a HexFilter implies that the probability of finding a hit and

the probability of finding at least i identities out of w positions besides the hit.

Let Σ be the alphabet of all amino acids. The Table 4.2 shows the background

probability of the amino acids in the RefSeq database.

The probability of finding an identity at a position of an alignment is shown in

Equation 4.1.

Pid =

|Σ|
∑

i∈Σ

P 2
i (4.1)

Given a finite number k, let S contain all k-mers; then the probability of a

k-mer in an alignment, say α, is the product of the background probability of each

amino acid in α, say Pα, as shown in Equation 4.2.
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Amino Acid Background Probability

A 0.089414978
R 0.055770873
N 0.040195758
D 0.054208358
C 0.012022210
Q 0.039021419
E 0.063014797
G 0.071312787
H 0.021813064
I 0.059396702
L 0.098792183
K 0.052934061
M 0.024139023
F 0.039662204
P 0.046659939
S 0.065496184
T 0.054787207
W 0.012224589
Y 0.030423743
V 0.068605104
B 0.000000069
Z 0.000000023
X 0.000104353

*(U,O,J) 0.000000372

Table 4.2: The background probability of each of amino acid occurring in the RefSeq
database.

Pα =

k
∏

i

Pα[i] (4.2)

The probability of finding any pair of k-mer, say (α ∼ β), is P (α ∼ β). This im-

plies that the probability of α and β can be found at a same position in an alignment,

as shown in Equation 4.3.

P (α ∼ β) = Pα · Pβ (4.3)
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When using a scoring matrix SM , the score of a k-mer pair (α ∼ β) can be

defined as SM(α, β). For a hit score threshold t, a hit of a k-mer pair occurs when

they have a score of least t; the probability of finding a hit from the k-mer pairs, say

ptk. This implies that the summation of the probability of each of k-mer pair has a

score of at least t, as shown in Equation 4.4.

P t
k =

∑

α,β∈S

P (α ∼ β) if SM(α, β) ≥ t (4.4)

The probability of finding i identities within a region of w amino acids implies

the following: the number of ways to choose i out of w positions, the probability of

i identities out of w positions, and the probability of (w − i) non-identities out of w

positions, as shown in Equation 4.5.

P(i,w) =

(

w

i

)

· P i
id · (1− Pid)

w−i (4.5)

For a region of 16 amino acids, the probability of a HexFilter (i, w) on k-mer,

say P k
HF(i,w)

, is the probability of a k-mer hit in the region of 16 amino acids for a

hit score threshold t and the probability of finding at least i identities out of a region

of w amino acids, shown in Equation 4.6. And, this probability can be used as its

selectivity for a HexFilter.

P k
HF(i,w)

= P t
k ·

w
∑

j=i

P(j,w) (4.6)

The selectivity of a filter can also be estimated using the probability if the k-

mer pair could pass it. Consider the total number of k-mer pairs between any two

sequences as the product of the lengths of two sequences. For a database search, the
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total number of k-mer paris becomes the product of lengths of query sequences and

total database sequences. Let Lq and Ld be the total lengths of query and databases

sequences, shown in Equation 4.7 and 4.8 respectively.

Lq = Total length of query sequences (4.7)

Ld = Total length of database sequences (4.8)

The selectivity of a filter can be estimated as a ratio of the number of k-mer

pairs passing though a filter over the total number of k-mer pairs, as in Equation 4.9.

Selectivity =
# of k-mer pairs passing a filter

Lq · Ld
(4.9)

The Figures 4.2 and 4.3 in this subsection plot the results between selectivity

and sensitivity of different methods at different hitting score thresholds, namely t,

for spaced seeds 1101, and 11011, respectively. Sensitivity is estimated using the

38,891,790 testing HSPs found between randomly selected protein sequences from

human and mouse in the RefSeq database when using the Ssearch. The selectivity

of a HexFilter is calculated using Equation 4.6. The selectivity of a single-hit and

2-hit method is estimated using a query sequence and a database. For estimating

the selectivity, the query sequence is a length of 335 sequences which is randomly

generated according to the background probability in Table 4.2. The length of the

query sequence is 335 which represents the average length of sequences in RefSeq

database. The database is 3.6 millions randomly selected protein sequences from the

RefSeq database. The total length of the randomly selected database sequences is

1,202,486,163. The threshold values of t are ranged as {9, 10, 11, 12, 13, 14, 15}. And,

the value of t is an accumulative BLOSUM62 score of 20 groups of amino acids as



78

per spaced seeds.
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Figure 4.2: The sensitivity-selectivity curves when spaced seed 1101 is used. X-axis
is the − log10(Selectivity) , Y-axis is the sensitivity of the HSPs with score ≥ 40.
For each plotting of different heuristics, the value of hit score threshold, t, increases
from left-top to right-bottom (from t = 9 to t = 15). As the value t increases, the
sensitivity decreases, while the selectivity increases. Note that at roughly the same
sensitivity level of 90%, HexFilter (4, 13) with t = 12 has better selectivity than the
single-hit method with t = 14 and 2-hit method with t = 11.
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Figure 4.3: The sensitivity-selectivity curves when spaced seed 11011 is used. X-axis
is the − log10(Selectivity), Y-axis is the sensitivity of the HSPs with score ≥ 40.
For each plotting of different heuristics, the value of hit score threshold, t, increases
from left-top to right-bottom (from t = 9 to t = 15). As the value t increases, the
sensitivity decreases, while the selectivity increases. Note that at roughly the same
sensitivity level of 90%, HexFilter (4, 12) with t = 13 has a better selectivity than
the 2-hit method with t = 12.
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Figure 4.4 and Figure 4.5 show the sensitivity on HSPs with different score

comparisons between our HexFilter and both the 2-hit and single-hit methods when

using spaced seed 1101 and 11011 respectively. All methods use the same hit score

threshold value of 11 for spaced seed 1101, and 12 for spaced seed 11011.
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Figure 4.4: When spaced seed 1101 and hit score threshold 11 are used, the curves
plot the sensitivity of each method in comparison to HSPs of human versus mouse
with BLOSUM62 score ≥ X .
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Figure 4.5: When spaced seed 11011 and the hit score threshold score 12 are used,
the curves plot the sensitivity of each method in comparison to HSPs of human versus
mouse with BLOSUM62 score ≥ X .
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4.5.2 Application Running Time

After examining the sensitivity and selectivity of the HexFilter method, the running

time of the HexFilter method is investigated in this subsection. One large set of testing

data has been used to compare the running time between our implementation of the

two-hit method and HexFilter. The computer environment used for our experiments

is a distribution of Debian 2.6.32-5-amd64 on an Intel i7 CPU with 24G ram.

The values of hit score threshold are ranged from 9 to 15. The spaced seeds of

1101 and 11011 are used.

The testing database has 3.6 million of randomly selected protein sequences

from the RefSeq database. One randomly selected sequence, not in the testing

database, of a length of 469 has been used as the testing query sequence.

No. of Sequences 3,600,000
Length of database 1,202,486,163

Table 4.3: Testing database statistics.

In general, compared to our implementation of the two-hit method, our HexFil-

ter method triggers less number of ungapped hit extensions but can find more HSPs.

When running under a similar amount of time, our HexFilter can find more HSPs

than the two-hit method. The HSPs from the query sequence and anyone of the

database sequences under the comparison have no repeats. An HSP is an alignment

with length l and score s between two sequences x and y, say h(i, j, l, s), that starts at

position i in x and position j in y. It is a repeat of another HSP also between x and y,

say h1(i1, j1, l1, s1), if and only if (i = i1, j = j1, l = l1, s = s1). The HSPs returned

by successful hit extensions that will go through a process to remove repeated HSPs.

The comparison details are as follows.

When using the spaced seed 1101 and different of hit scoring threshold, Ta-

ble 4.4, 4.5, and 4.6 show the detailed breakdown of the number of hits identified,
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the number of the hit extensions attempted and succeeded, and the number of HSPs

found by our HexFilters and the two-hit method respectively. And, Table 4.7, 4.8,

and 4.9 show similar information for spaced seed 11011.

When using the spaced seed 1101 and different of hit scoring threshold, Fig-

ure 4.6 shows the number of hit extensions attempted and succeeded by our HexFil-

ters and the 2-hit method respectively. Figure 4.7 shows the number of hit extensions

attempted and HSPs found by our HexFilters and the 2-hit method respectively.

Figure 4.8 shows the running time and number of successful hit extensions by our

HexFilters and the two-hit method respectively. Figure 4.9 shows the running time

and number of HSPs found by our HexFilters and the two-hit method respectively.

And, Figure 4.10, 4.11, 4.12, and 4.13 show similar information when spaced seed

11011 is used.

Extensions

Hit Score Time (sec.) Single Hits Attempted Succeeded HSPs Found

9 297 3,267,230,634 281,104,457 10,999,707 3,728,155
10 197 1,905,858,653 163,790,793 8,063,930 3,370,786
11 130 1,062,232,329 91,615,508 5,694,890 2,896,533
12 92 582,334,570 50,039,676 3,934,811 2,351,943
13 61 310,454,664 26,504,876 2,638,956 1,800,352
14 42 161,765,976 13,825,558 1,713,342 1,297,870
15 25 86,963,181 7,459,236 1,133,301 922,296

Table 4.4: For our HexFilter (3, 13) method, when using the testing sequences and
spaced seed 1101 for different hit score thresholds, the table shows the application’s
running time and the number of single hits, hit extensions attempted, hit extensions
succeeded, and HSPs found.
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Figure 4.6: When spaced seed 1101 is used, the curves plot the number of hit
extensions attempted and the number of the hit extensions succeeded for the two
methods. The values of the hit score threshold are ranged from 9 to 15. A smaller
value of t results in more hit extensions.

Extensions

Hit Score Time (sec.) Single Hits Attempted Succeeded HSPs Found

9 243 3,267,230,634 61,146,590 6,670,331 2,714,636
10 163 1,905,858,653 35,653,115 4,796,452 2,310,091
11 108 1,062,232,329 19,987,388 3,308,657 1,867,763
12 69 582,334,570 10,922,117 2,224,986 1,428,802
13 44 310,454,664 5,771,765 1,439,234 1,027,184
14 30 161,765,976 3,019,927 899,286 696,696
15 22 86,963,181 1,644,013 574,309 471,653

Table 4.5: For our HexFilter (4, 13) method, when using the testing sequences and
spaced seed 1101 for different hit score thresholds, the table shows the application’s
running time and the number of single hits, hit extensions attempted, hit extensions
succeeded, and HSPs found.
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Figure 4.7: When spaced seed 1101 is used, the curves plot the number of hit
extensions attempted and the number of HSPs found for the two methods. The
values of the hit score threshold are ranged from 9 to 15. A smaller value of t results
in finding more HSPs and more hit extensions.

Extensions

Hit Score Time (sec.) Single Hits Attempted Succeeded HSPs Found

9 221 3,267,230,634 455,549,558 5,587,640 3,625,581
10 131 1,905,858,653 172,219,789 3,665,965 2,825,000
11 79 1,062,232,329 58,217,427 2,118,053 1,830,530
12 49 582,334,570 18,568,282 1,094,338 1,007,225
13 32 310,454,664 5,508,789 499,401 474,121
14 22 161,765,976 1,533,252 202,674 193,837
15 18 86,963,181 457,880 84,294 79,748

Table 4.6: For the 2-hit method, when using the testing sequences and spaced seed
1101 for different hit score thresholds, the table shows the application’s running time
and the number of single hits, hit extensions attempted, hit extensions succeeded,
and HSPs found.
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Figure 4.8: When the spaced seed of 1101 is used, the curves plot the running time
and the number of the hit extensions succeeded for the two methods. The values of
the hit score threshold are ranged from 9 to 15. A smaller value of t results in finding
more successful extension but longer running time.

Extensions

Hit Score Time (sec.) Single Hits Attempted Succeeded HSPs Found

9 383 4,007,364,658 284,599,138 13,924,051 3,922,558
10 285 2,499,036,149 177,610,930 10,917,844 3,632,502
11 208 1,530,784,354 108,872,646 8,404,428 3,274,159
12 147 920,608,930 65,442,477 6,337,265 2,847,144
13 99 546,517,642 38,877,228 4,683,704 2,392,426
14 70 318,406,868 22,669,895 3,377,204 1,930,269
15 51 180,854,182 12,890,650 2,369,008 1,499,270

Table 4.7: For our HexFilter (3, 12) method, when using the testing sequences and
spaced seed 11011 for different hit score thresholds, the table shows the application’s
running time and the number of single hits, hit extensions attempted, hit extensions
succeeded, and HSPs found.
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Figure 4.9: When the spaced seed of 1101 is used, the curves plot the running time
and the number of HSPs found for the two methods. The values of the hit score
threshold are ranged from 9 to 15. A smaller value of t results in finding more HSPs
but longer running time.

Extensions

Hit Score Time (sec.) Single Hits Attempted Succeeded HSPs Found

9 320 4,007,364,658 56,151,803 7,626,898 2,801,172
10 241 2,499,036,149 35,099,368 5,848,095 2,447,767
11 168 1,530,784,354 21,552,902 4,383,741 2,065,414
12 124 920,608,930 12,977,741 3,205,096 1,778,912
13 81 546,517,642 7,718,309 2,282,815 1,314,621
14 56 318,406,868 4,509,646 1,580,632 993,874
15 41 180,854,182 2,579,638 1,057,844 718,863

Table 4.8: For our HexFilter (4, 12) method, when using the testing sequences and
spaced seed 11011 for different hit score thresholds, the table shows the application’s
running time and the number of single hits, hit extensions attempted, hit extensions
succeeded, and HSPs found.
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Figure 4.10: When spaced seed 11011 is used, it plots the number of hit extensions
attempted and the number of hit extensions succeeded for the two methods. The hit
score thresholds are ranged from 9 to 15. A smaller value of t results in more hit
extensions.

Extensions

Hit Score Time (sec.) Single Hits Attempted Succeeded HSPs Found

9 357 4,007,364,658 479,222,047 6,074,062 3,902,753
10 287 2,499,036,149 213,148,909 4,538,522 3,387,131
11 210 1,530,784,354 89,619,309 3,176,588 2,652,328
12 131 920,608,930 35,598,974 2,045,020 1,694,458
13 96 546,517,642 13,508,145 1,194,407 1,115,321
14 70 318,406,868 4,889,215 636,523 606,068
15 54 180,854,182 1,666,229 306,884 293,512

Table 4.9: For the 2-hit method, when using the testing sequences and spaced seed
11011 for different hit score thresholds, the table shows the application’s running time
and the number of single hits, hit extensions attempted, hit extensions succeeded, and
HSPs found.
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Figure 4.11: When spaced seed 11011 is used, it plots the number of hit extensions
attempted and the number of HSPs found for the two methods. The hit score thresh-
olds are ranged from 9 to 15. A smaller value of t results in finding more HSPs and
more hit extensions.
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Figure 4.12: When spaced seed 11011 is used, the curves plot the running time
and the number of hit extensions succeeded for the two methods. The hit score
thresholds are ranged from 9 to 15. A smaller value of t results in finding more
successful extensions but longer run time.
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Figure 4.13: When spaced seed 11011 is used, the curves plot the running time and
the number of HSPs found for the two methods. The hit score thresholds are ranged
from 9 to 15. A smaller value of t results in finding more HSPs but longer run time.
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4.6 Conclusion and Discussion

The new HexFilter method is highly effective to reduce the number of ungapped

hit extensions while achieving better selectivity. We used the clustered 16 groups of

amino acids in our HexFilter; it allows us to include highly similar pairs as identities.

And, our HexFilter could quickly count the number of identities between the two

sequences using the POPCNT machine instruction.

In theory, our HexFilter can be combined with the two-hit method to create a

more efficient filter. More specifically, after the two-hit method suggests an extension,

our HexFilter would be used on the second hit to determine if the extension is really

necessary. The ungapped hit extension will only be triggered if the HexFilter has also

passed. Hence, even fewer ungapped hit extensions will be attempted. As a result,

the running time will be further reduced.

The combination of spaced seeds, two hit, and HexFilter will provide a great

deal of flexibilities in fine tuning the performance of a practical homology search

system. Such fine tuning flexibilities can be very powerful when the concerned protein

database, the type of search, and the similarity level of homology are specific.
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Chapter 5

Conclusion and Future Work

Almost half a century has passed since the initial publication of the sequence align-

ment algorithm by Levenshtein [3] in 1965. Yet the sequence similarity search is still

an actively researched problem in bioinformatics. Two reasons keep this problem

active. First of all, sequence similarity serves as the foundation of function similarity,

which provides an essential research method for genetic and proteomic researchers.

Secondly, as the production of the data is getting cheaper and easier, huge quantities

of data are generated on a daily basis. However the growth of computer technology

is slower than the expansion of the database. Therefore, new or improved algorithms

are in constant demand to accommodate the growth of data.

In this thesis, we have proposed two new ideas, the spaced k-mer neighbors and

the HexFilter, to help improve the speed and sensitivity of sequence similarity search.

Computer programs have been implemented to test out the ideas.

The spaced k-mer neighbor aims to improve the seed generation phase of a

homology search method. In the protein homology search, seeding controls the overall

sensitivity of the final results and speed of application. We have shown that the

spaced k-mer neighbors method is an efficient tradeoff between sensitivity and speed.

Our proposed algorithms are simple and effective in finding a good set of spaced k-

mer neighbors. When comparing to the BLASTp, as the experimental results have

shown, our set of spaced k-mer neighbors can significantly increase the sensitivity

while maintaining same level of selectivity. Moreover, the spaced k-mer neighbors

are easy to adapt because it involves very little modification of existing codes. For
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example, BLASTp can use our set of spaced k-mer neighbors to directly replace its

k-mer high-scoring pairs.

The HexFilter method aims to improve the seed extension phase of a homology

search method. Our HexFilter has better selectivity and can effectively reduce the

number of ungapped hit extensions. Our HexFilter takes advantage of our previously

published amino acids clustering. It also takes advantage of the fast CPU native

instruction, POPCNT. The HexFilter method compares favourably with the 2-hit

method that had been used for the same purpose. In addition to that, our HexFilter

can be potentially used in combining with the 2-hit method to achieve even more

efficient tradeoff between sensitivity and speed.

As for future works, we envision that better spaced k-mer neighbors can be

produced from a larger training data set when the required computational resources

become available with sufficiently large memory. We would also like to produce a set

of spaced 5-mer neighbors.
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[20] A. Biegert and J. Söding, “Sequence context-specific profiles for homology search-

ing,” Proceedings of the National Academy of Sciences, vol. 106, no. 10, pp.

3770–3775, 2009.

[21] R. Lopez, V. Silventoinen, S. Robinson, A. Kibria, and W. Gish, “Wu-blast2

server at the european bioinformatics institute,” Nucleic acids research, vol. 31,

no. 13, pp. 3795–3798, 2003.

[22] S. Schwartz, W. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison, D. Haussler,

and W. Miller, “Human-mouse alignments with BLASTZ,” Genome Research,

vol. 13, pp. 103–107, 2003.

[23] W. Gish and D. J. States, “Identification of protein coding regions by database

similarity search,” Nature Genetics, vol. 3, no. 3, pp. 266–272, 1993.

[24] W. J. Kent, “BLAT–the BLAST-like alignment tool,” Genome Research, vol. 12,

no. 4, pp. 656–664, 2002.

[25] B. Brejova, D. G. Brown, and T. Vinar, “Vector seeds: an extension to spaced

seeds,” Journal of Computer and System Sciences, vol. 70, no. 3, pp. 364–380,

2005.



98

[26] L. Ming, M. Bin, D. Kisman, and J. Tromp, “Patternhunter ii: Highly sensi-

tive and fast homology search,” Journal of Bioinformatics and Computational

Biology, vol. 2, no. 03, pp. 417–439, 2004.
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