Western University Scholarship@Western

Digitized Theses

Digitized Special Collections

1983

Hydrothermal Metamorphism And Ore Genesis At Aljustrel, Portugal

Fernando Jose Barriga

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Barriga, Fernando Jose, "Hydrothermal Metamorphism And Ore Genesis At Aljustrel, Portugal" (1983). *Digitized Theses*. 1289. https://ir.lib.uwo.ca/digitizedtheses/1289

This Dissertation is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.

The author of this thesis has granted The University of Western Ontario a non-exclusive license to reproduce and distribute copies of this thesis to users of Western Libraries. Copyright remains with the author.

Electronic theses and dissertations available in The University of Western Ontario's institutional repository (Scholarship@Western) are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited.

The original copyright license attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by Western Libraries.

The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in Western Libraries.

Please contact Western Libraries for further information: E-mail: <u>libadmin@uwo.ca</u> Telephone: (519) 661-2111 Ext. 84796 Web site: <u>http://www.lib.uwo.ca/</u>

CANADIAN THESES ON MICROFICHE

THESES CANADIENNES SUR MICROFICHE

National Library of Canada Collections Development Branch

Canadian Theses on Microfiche Service

Ottawa, Canada K1A 0N4 Bibliothèque nationale du Canada Direction du développement des collections

1.S.B.N.

Service des thèses cenadiennes sur microfiche

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche, dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. .C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE

HYDROTHERMAL METAMORPHISM AND ORE GENESIS

AT ALJUSTREL, PORTUGAL

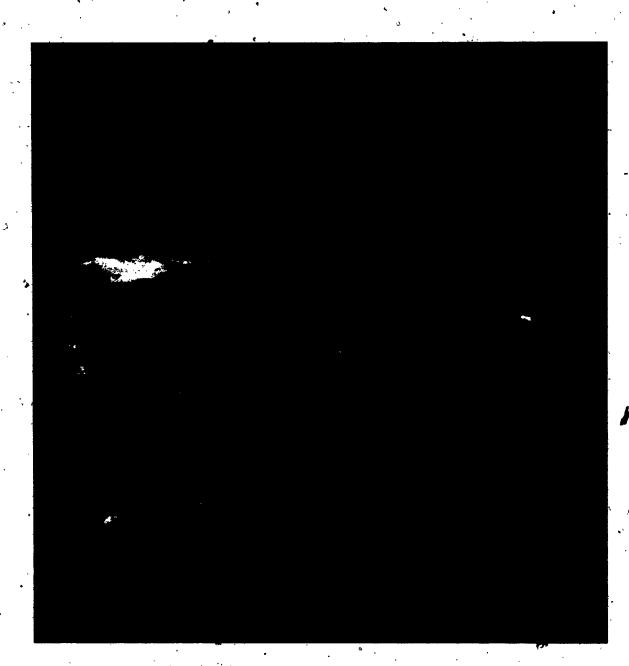
'Fernando Jose Arraiano de Sousa <u>Barriga</u>

bу

Department of Geology

Submitted in partial fulfillment

of the requirements for the degree of


Doctor of Philosophy

Faculty of Graduate Studies The University of Western Ontario

London, Ontario

June, 1983

(c) Fernando Jose Arraiano de Sousa Barriga 1983

Underground at Aljustrel mines. Stope with right rib and back. Note homogeneity of sulphides. ABSTRACT

Lower Carboniferous felsic, explosive, submarine volcanism took place at Aljustrel, creating the ores of one of the principal mining centres of the Iberian Pyrite Belt. Some 250 Mt of massive sulphide ore occur near the top of several hundred metres of pyroclastic volcanics which overly a sediment covered continental basement.

Retrographic, mineral chemical, whole rock geochemical and oxygen isotope investigation of the Aljustrel volcanic rocks remote from mineralization shows that their present quartz-keratophyric (felsic spilitic) compositions result from widespread interaction with sea water, at high water/rock ratios and temperatures ranging 0-300°C. Opaque mineralogy and textures show that iron was oxidized in rocks near the sea fillor and leached from deeper rocks, with leaching of transition metals. Jaspers and cherts present above the volcanics may have formed concomitantly, through chemical precipitation of silica, forming an impermeable cover.

Investigation of Feitais ore zone rocks suggests that are formation took place largely in open space, through almost isothermal mixing of sulphur and metal rich waters. There is clear evidence for silica and sulphide precipitation in a feeder stockwork. Cherts and phyllitic Jediments covering the ore, show clear evidence of

iv

mineralization and reduction by interaction with the ore forming fluids. Deformation of such rocks indicates that such mineralization predated regional metamorphism. The presence of a cap rock is also suggested by temperature profiles from exygen isotope systematics. Thus the Feitais orebody was not explative sensu stricto; but formed beneath a thin impermeable cap which in fact may have been floated off on rising fluids.

The ore forming process postdated sea water alteration of volcanics and involved a second stage convective system with lower water/rock ratios perhaps with a contribution from metamorphic fluids.

The Aljustrel tectonic-thermal setting is clearly one which involves the ideal set of variables producing giant deposits, orders of magnitude larger than those typical of ophiolites.

DEDICATION This thesis is dedicated to the Portuguese and Canadian peoples. May it in part justify the investment they have made.

vi

ACKNOWLEDGEMENTS

The Government of Ontario, The University of Western Ontario, INIC (Portugar), and the University of Lisbon are thanked for continuing support throughout the course of this project.

I express my sincere gratitude to Pirites Alentejanas, SARL for permission to visit and sample the Aljustrel mines, for warm hospitality and access to unpublished files and drillcores. Mine geologists L. Conde and J. C. Leitao and all the geological staff are thanked for the help they granted me. Many of the graduate students, staff and faculty of UWO, Lisbon Geology and the Geological Survey of Portugal are equally gratefully acknowledged. Special mention to J. Starkey for guidance in the use of his high resolution XRD equipment and computing programs, R. Kerrich for the oxygen isotope determinations, R. L. Barnett for keeping his microprobe in top running condition, Barbara Barnett for showing me around in the XRF and wet chemical labs, J.A.S. Barriga, J. Schubert, A. Noon and I. Craig for photolab work, R. Turgeon and B. Damaso for the difficult drafts and Grace McIntyre and Janice Morris for the excellent typing of the manuscript and tables?

Special thanks to J. Munha, D. Carvalho, R. W. Hodder, R. W. Hutchinson (the "devil's advocate" in the capped ore formation idea), R. Kerrich, A. Ribeiro, V. Oliveira, J. T. Oliveira, U. Costa, A. Kishida and M. Ferreira for

vii

valuable criticism and discussion determinant in the development of my ideas on ore genesis and/or the Iberian Pyrite Belt, and also to W. R. Church, A. MacCaig, C.R.B. Lister, A. MacDonald and Z. Haq, who contributed significantly to my knowledge of sea floor rocks and metamorphism.

The selection and definition of my thesis topic resulted from the joint efforts of L. Celestino Silva, R. Quadrado, A. Ribeiro, D. Carvalho and W. S. Fyfe. The latter and C. A. Matos Alves found the means for me to study and research in Canada. They are also thanked for contributing with various forms of essential support, encouragement and enlightening discussions.

Paraphrasing T. LaTour, I am singularly indebted to W. S. Fyfe for providing his unique style of stimulation and imaginative insight throughout the investigation. Many of the interesting points reported in this thesis result at least as much from his thoughts as from my own effort.

My wife Gabriela and my sons Gonçalo and Miguel shared from all the pain involved in the completion of this project and in return enjoyed only part of the rewards. Yet, their understanding and/or tenderness have been

viii

inexhaustible.

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION	1'l
ABSTRACT	iv
ABSTRACT	vi
ACKNOWLEDGEMENTS	V1
* TABLE OF CONTENTS	• vii
* TABLE OF CONTENTS	ix
LIST OF PHOTOGRAPHIC PLATES	xii
LIST OF TABLES	xiv
LIST OF FIGURES	XV ·
CHAPTER 1 - INTRODUCTION	1
CHAPTER 2 - THE IBERIAN PYRITE BELT AND ITS DRE 👡	
DEDACTIC DELLAND ITS DEC	· .
DEPOSITS	
2.1 Geology and tectonic evolution	. 7
2.2 Volcanism in the Iberian Pyrite Belt	25
2.3 Hydrothermal activity and mineralization	
in the Iberian Belt	36
2:4 Conclusion	· 46 °
•	
CHAPTER 3 - GEOLOGY AND ORE DEPOSITS OF THE	
ALJUSTREL AREA	'48
3.1 Introduction	
	48
3.2 Lithostratigraphy and ore deposits	
3.3 Structure	⊸ 53
 3.4 Base metal zonation in the Feitais 	
orebody	63``
3.5 Concluding remarks	69
CHAPTER 4 - THE ALJUSTREL VOLCANICS	. 74
4 1 Introduction	. 74
4.1 Introduction	、 74 75-
4.2 Petrography	
4.2.1 Quartz-eye Tuff	78
4.2.2 Mine Tuff	91
4.2.3 Paraiso Formation Tuffs	<u>,</u> 98
4.3 Geochemistry	99
4.3.1 Mineral chemistry	99
a) Feldspars	99
b) Fe-Ti oxides and sphene	101
c) Garnet	105
d) Chlorites 👞 :	107
e) Sericite	110
f) Epidotes	111
g) Stilpnomelane	111
h) Carbonates	111.
i) Synopsis of paragenetic	ſ
relations	111
4.3.2 Whole rock geochemistry	115 ·
a) Major elements	115
b) Immobile trace elements	128
c) Rare earth elements	
d) Cu, Zn, Pb	135 139 🗑
e) Oxygen isotope compositions	143
4.4 Discussion and conclusions	
	145

., ik

	, , ,
CHAPTER 5 - THE FEITAIS OREBODY OF ALJUSTREL	, ,
its associated metalliferous	
sediments and ore zone hydrother	
alteration	152
5.1 Introduction	
5.2 Petrography	
5.2.1 Stockwork zone	
5.2.2 The Feitais massive sulphide	
deposit	
	•
metalliferous sediments	
5.3 Geochemistry	
5.3.1 Mineral chemistry	
a) Chlorite	
b) Sericite	
c) Spessartine garnet	182
d) Cymrite	
e) Carbonates	
f) Sphalerite	
5.3.2 Whole rock geochemistry	
a) Stockwork rocks and massive	
sulphide ore	
al) Major elements	
a2) Immobile trace elements	
a3) Rare earth element geo	
chemistry	
b) Hanging wall siliceous and	
metalliferous sediments	
b1) Si/Mn/Fe	199
b2) Jasper reduction above	× •
sulphide ore	
b3) Fe/Mn/(Co+Ni+Cu)x10	
b4) Thorium abundances	
b5) Rare earth element geo	
chemistry	
b6) Gold abundances	• • •
c) Anomalous PS Formation roci	
above Feitais	
d) Geochemical data on Culm -	
Formation rocks	
5.3.3 Oxygen isotope geochemistry .	
5.4 Discussion and conclusions	····· 219 ·
	•
CHAPTER 6 - SUMMARY AND CONCLUSIONS	
6.1 Conclusions	
6.2 Génetic model	
6.3 Exploration implications	
and exprometon implications (((())))	

x

1:

4

...

••

•	· · · · · ·	
APPENDIX I.	SUMMARY OF ANALYTICAL TECHNIQUES	260
APPENDIX II.	MINERAL CHEMICAL ANALYSES - Aljustrel volcanics	264
APPENDIX III.	WHOLE ROCK ANALYSES - ALJUSTREL VOLCANICS	290
APPENDIX.IV.	MINERAL CHEMICAL ANALYSES - FEITAIS ORE ZONE AND OVERLYING SEDIMENTS	297
APPENDIX V.	WHOLE WOCK ANALYSES - FEITAIS ORE ZONE AND ALJUSTREL SEDIMENTS	320
APPENDIX VI.	UNDERGROUND GEOLOGY AND KEY TO SAMPLE LOCATIONS	337 3
REFERENCES VITA	•••••••••••••••••••••••••••••••••••••••	345 367

<

.

ß

LIST OF PHOTOGRAPHIC PLATES

Plate	Description	Page
1 A	Granular tuff matrix (QET)	77
1B	'Dilute greywacke' tüff matrix (MT)	77
		77
· 10	Megacryst facies of QET	77
1D .	Hydrolised igneous albite phenocryst	
.1E	Chessboard textured albite	. 77
_ 1F	Poorly developed chessboard albite	77
2A , -	Relations between feldspars	. 84
2B	Chessboard albite in K-feldspar	84
2C .	, Adularia in vein	84
2D	Almandime garnet in lithic fragment	84
.2E ~ ~	Almandine garnet in albite phenocryst	84
2F	Allanite overgrown by epidote	84
∠ F	Allanite overgiown by epidote	04
3А,В	Opaque phenocrysts in Green facies	89
30	Opaque phenocrysts in deeper seated	
	facies	89
3D	Accidental lithic fragment	· 89
3E	Frayed end of cherty lithic fragment	89
3F	Possible former glass shard	89
	10351D1e Former grass shart	
4A •	Breccia at top of Mine Tuff	95
•4B	Albite in dilatancy vein	95
4C	Peripheral ore zone alteration in Mine	95
	Tuff	-
4D	Outer stockwork rock	95
4E	Stockwork rock	95
4F ,	Corroded/reprecipitated zircon in stock-	
	work rock	95
5 A	Zoned alteration around stockwork	•
	sulphide vein	[.] 160
58	Framboids in sulphide ore	160
5C	Framboids in culm shale	160
5D,E	Polyminerallic sulphide colloform	
<i>JU</i> , L	aggregates	160
5'F	Pyrite-gangue colloform aggregates	160
71	Fyrice-yangue contorn aggregates	100
.6A .	Colloform pyrite	162
6B	Colloform radiating pyrite	162
6C	Bed of pyrite cubes adjacent to bed of	
• *	pyrite framboids	162
6D,E,F		162
7 A	Small scale slump fold	165
7B ·	Allochthonous ore, Tharsis, Spain	165
. 7C		165
	Albite partly replaced by sulphides	
7D	Stilpnomelane in unaltered jasper	165 ⁻

xii

• •

Plate	Description	Page,
7E	Stilpnomelane and magnetite in slightly	•
	altered jasper	165 -
7F	Spessartine garnet in chert	165
8	(Colour illustration of reducive alter-	,
	ation in the Feitais hanging wall	•
	Jasper unit)	172
8A	Unaltered bright red jasper	172
8B	Incipient vein controlled reduction	172
80	Breccia pipe-like vein system	172
8D	Advanced alteration of jasper	172
8E	Complete alteration of jasper	172
8F	Post alteration deformation in complete-	
	ly altered jasper	172
. ` 9A	Spessartine garnet in metalliferous	
	sediment	176
9B	Hematite + Mn oxide dust in jasper	176
9 C	Quartz + carbonate + magnetite in	•
	altered jasper	176
9D .	Texture of metalliferous sediment	176
9E	Cymrite, porphyroblast	176
_9F ·	Chert domains in metalliferous sediment	176
		I ····

xiii 🦯

LIST OF TABLES

	Table	Description	Page
*	3.1	Size and grade of the Aljustrel massive sulphide deposits	52
	4.1	Feldspar analyses	
	4.2	Composition of Green facies Fe-Ti oxides	100 102
`. •	4. , 3	Composition of Fe-Ti rich micropheno- crysts in deeper seated Aljustrel Volcanics	103
	4.4	Almandine garnet analyses	106 .
	4.5	Chlorite analyses	108
	4.6	Stilpnomelane analyses .	. 113
	4.7	Paragenetic relations of the minerals in the Aljustrel Volcanics	114
	4.8	Ranges and average abundances of major elements in the Aljustrel Volcanics	1 [^] 18 ·
	4.9	Original major element composition of the Aljustrel Volcanics	129
	. 4.10	Oxygen isotope composition of the Aljustrel Volcanics	144
	5.1	Cymrite analyses	186
• •	5.2	Gold abundances in ore zone rocks	211
· 5	5.3	Oxygen isotope composition of rocks and minerals from the Feitais-Estacao ore zone	217

xiv

LIST OF FIGURES

9

Figure	Description	Page
2.1	Paleogeographic and tectonic units in the Iberian Massif	8
2.2	Tentative correlation of main Variscan units in Middle and West Europe	9
2.3	Deep structure of the South Portuguese Zone	13
2.4	General geology of the Iberian Pyrite Belt	1,5
2.5	Diachronism of flysch and volcanism in the South Portuguese Zone -	- 17
2.6	Zonation of Hercynian regional metamorphism in the South Portuguese Zone	22
2.7	Schematic geologic section of the Tharsis North area (Spain)	33
2.8	Limits of the Iberian Pyrite Belt	37
2.9	Schematic relations between ore, siliceous sediments, ore zone alteration and litho-stratigraphy	43
3.1	Location map of Altustrel	49, `
3.2	Geology of the Aljustrel area	.50
3.3	Lithostratigraphic columns of the Aljustrel area and vicinities	55
3.4a,b	Structure of the Aljustrel area	59,60
* 3.5	Schematic lithostratigraphic of the Aljustrel Group	61
3.6a,b,	c,d Abundances of Cu, Zn, Pb and As along drillcores through the Feitais orebody	65 - 68
3.7.	Schematic pre deformation relations between the Aljustrel rocks	72
4.1	X-ray diffraction data for the alkali megacryst feldspars in the Quartz eye Tuff	85

xv

	Figure	Description	Page
	4.2	Facies in the Quartz eye Tuff	• 92
•	4.3 *	Facies in the Mine Tuff	97
¦ € . arabana	4.4	Compositional variation of the chlorites in the Aljustrel Volcanics	109
, , ,	4.5	Fe ³⁺ in epidote versus whole rock Fe ratio in the Aljustrel Volcanics	112
·····	4.6	Variation of total iron versus rock Fe ratio in the Aljustrel Volcanics	[•] 122
4	4.7a	Variation in MgO versus rock Fe ratio in the Aljustrel Volcanics	124
	4.7b `	Variation of MgO versus Loss on Ignition _(H ₂ O) in the Aljustrel Volcanics	125
,	4.8	Variation of scandium versus yttrium in the Aljustrel volcanics	, 132
	4.9	Variation of zirconium/yttrium versus yttrium in the Aljustrel Volcanics	134
. .	4.10 ⁻	REE patterns in Aljustrel volcanic rocks	136
	4.11	REE patterns in chloritized Mine tuffs	137
•	4.12	Variation of copper versus Fe ratio in the Aljustrel Volcanics	14
۰ <u>ر</u>	4.13	Variation of zinc versus Fe ratio in the Aljustrel Volcanics	142
	4.14	Molar water/rock and temperature ranges required to enrich the Aljustrel Volcanics in ¹⁸ 0	147
	5.1	Schematic spatial distribution of the various lithotypes constituting and surrounding the Feitais ore zone	155
~	5.2	Compositional variation of ore zone chlorites	179
	5.3	Variation of MnO in ore zone chlorites versus stratigraphic position	181

. -.

xvi

Figure	Description	Page
		, i .
• • 5.4	Texture of outer stockwork rock and barium distribution	184
5.5	Dominant cations in ore zone carbonates	188
5.6	Spatial distribution of barium-sericite around the Feitais orebody	191 · · ·
5.7a	Variation of scandium versus yttrium in the Feitais stockwork	194
5.7b	Variation of zirconium/yttrium versus zirconium in the Feitais stockwork and massive ore	196
5.8	REE patterns in Feitais stockwrok rocks	198
5.9	REE patterns in Feitais massive ores	200
5.10	Ratio Si/Fe/Mn in the Feitais siliceous and metalliferous sediments	201 <u>Š</u>
5.11	Schematic spatial distribution of Fe ratios along the Feitais Jasper unit	203
5.12	Ratio Fe/Mn/(Ni+Co+Cu)x10 in the Aljustrel metalliferous and siliceous sediments	205
5.13	Thorium abundances in Jasper unit rocks	206
5.14	REE patterns in jaspers showing little or no alteration	208
5.15	REE patterns in Feitais metalliferous sediments	209
• 5.16	Variation of Fe/Ti versus Al/Al+Fe+Mn in Pafaiso Siliceous Formation rocks	214
5.17	Thorium abundances in Paraiso Siliceous Formation rocks	215
5.18	Representation of the possible mode of access of unmodified sea water to a pond of ore fluid under an impervious blanket	230

ii

Figure	Description	Page
5.19	Water/rock and temperature ranges required to produce high ¹⁸ 0, sea water derived are fluids	235
:5.20	Proposed first stage of sea water hydro- thermal metamorphism at Aljustrel	·. 238
5.21	Proposed_second stage of sea water hydro- thermal metamorphism at Aljustrel	239

٢

xviii

CHAPTER 1

INTRODUCTION

The ultimate purpose of the present study is to contribute to the understanding of the genesis of massive sulphide deposits of volcanic association (this subject was recently and thoroughly reviewed by Franklin et al., 1981). Genetic models for this class of deposits have varied widely through time, but currently most authors favour a hydrothermal metamorphic model whereby convective circulation of sea water through permeable footwall rocks, driven with heat from below (magma chambers, intrusions) eventually modifies sea water into a hot, reduced, acidic, mineralized brine which, upon return flow to the ocean and given appropriate conditions at the site of discharge, may lead to the fast and ooncentrated precipitation of metal sulphides (Spooner and Fyfe, 1973; Ohmoto and Rye, 1974; Solomon, 1976; Heaton and Sheppard, 1977; Andrews and Fyfe, 1976; Hutchinson et al., 1980). The model was recently confirmed by spectacular findings of hot springs issuing mineralized brines at mid ocean ridges and precipitating sulphides upon contact with sea water (Ballard and Grassle, 1979; Francheteau et al., 1979; Corliss et al., 1979; RISE Project Group, 1980).

Convincing as the sea water convective model may be for the genesis of massive sulphide deposits, several aspects of importance are not yet properly elucidated. Some of these are as follows:

(a) The ability of sea water to leach metals from permeated lithologies has been proven mainly on experimental saline water - rock interaction investigations (Ellis, 1968; Bischoff and Dickson, 1975; Hajash, 1975; Seyfried and Bischoff, 1977; Mottl and Holland, 1978; Mottl et al., 1979; Hajash and Archer, 1980) and in some examinations of naturally altered rocks, not directly related with known massive sulphide deposits (Sigvaldsson, 1959; Wedepohl, 1978; Keays and Scott, 1976; Humphris and Thompson, 1978a,b; Munha and Kerrich, 1980). To the best of our knowledge the only study where the source rock for the metals of an actual massive sulphide deposit was identified is the recent article by MacGeehan and MacLean

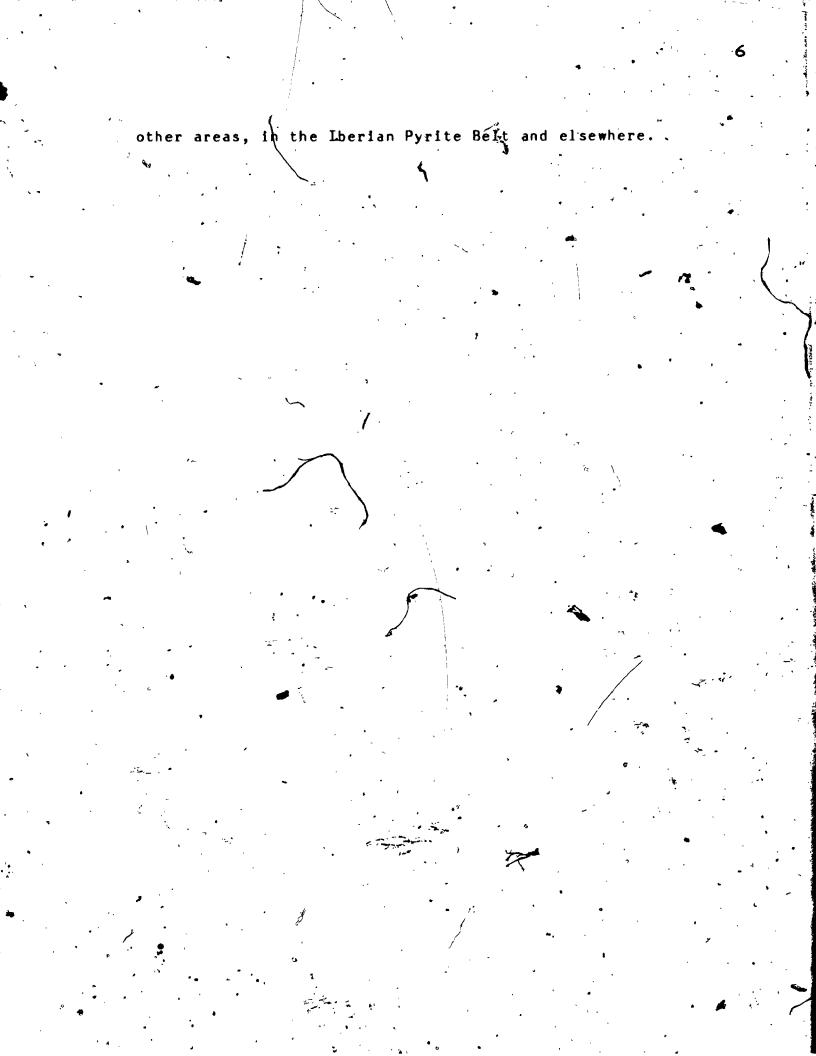
(1980) on the Garon Lake mining area of the Canadian Abitibi Belt, where systematic linear decreases of the abundances of several transition metals with increasing silica contents in volcanic rocks from basalt to rhyolite are interpreted as illustrating leaching by sea water.

(b) Sea water convection through permeable volcanic rocks is often pointed as whe most plausible mechanism conducive to massive sulphide generation, but the actual hydrodynamic constraints to the process are seldom analysed. A notable exception is Spooner's (1977) thorough analysis of the conditions of deposition of the Cyprus massive sulphide deposits (see also Taylor, 1974).

(c) Despite excellent and conclusive studies on present day sub sea floor hydrothermal activity which prove that sea water convection through oceanic rocks takes place in evolving cellular regimes, as the thermal regimes change (Lister, 1972; Anderson and Skilbeck, 1981), very little research has been directed towards understanding the evolution of convective ore forming processes (Andrews and Fyfe, 1976; Hutchinson et al., 1980).

(d) Massive sulphide deposits throughout the world are often reported to be accompanied by intense footwall Mg metasomatism. Mg is an abundant element in sea water, but experimental studies invariably indicate that Mg is almost quantitatively transferred from the fluid to the rocks in the early stages of interaction, therefore precluding-Mg

transport into the environment of ore deposition. Recent hypothesis (Costa, 1980; Hutchinson et al., 1980) explain Mg metasomatism with an ore zone shallow circulation system which would provide an adequate supply of unmodified sea water (rich in Mg) to the footwall rocks in the area of mineralizing fluid ascent. In the course of the present study an alternative possibility became plausible, namely that at least in some cases footwall Mg'enrichment may predate mineralization, in the context of evolution of the sea water convective regimes as mentioned in (c).

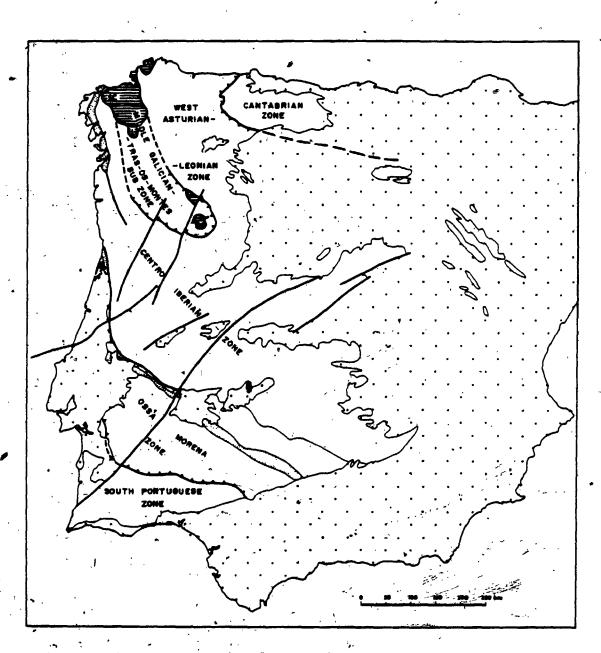

(e) After the rennaissance of syngenetic models for massive sulphide generation in the late fifties (Oftedhal, 1958) it became generally accepted that massive sulphide deposition takes place on the sea floor, in direct contact with the water of more or less restricted basins, despite ... the careful words of most authors admitting formation "at or just below the sea water - rock interface"- (Large, 1977). Hanging wall rock alteration is often present above massive sulphide deposits, sometimes with striking development such as at Sullivan, B.C., Canada (Either et al., 1976), and above the Kuroko-deposits of Japan (Ijima, 1972), where hanging wall rock alteration extends for hundreds of metres above the orebodies, with formation of alteration assemblages that include "minor mineralization scattered through the clay alteration zones...in the form of veinlets, disseminations, and small massive lenses of

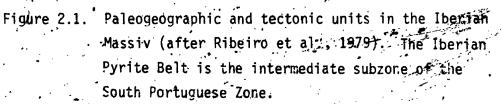
pyrite with or without the other ore minerals" (Lambert and Sato, 1974). Such hanging wall rock alteration must signify that ore related hydrothermal activity persisted after deposition of the altered hanging wall rocks. These facts require interpretation in terms of ore precipitation mechanisms and in terms of hydrothermal fluid pathways.

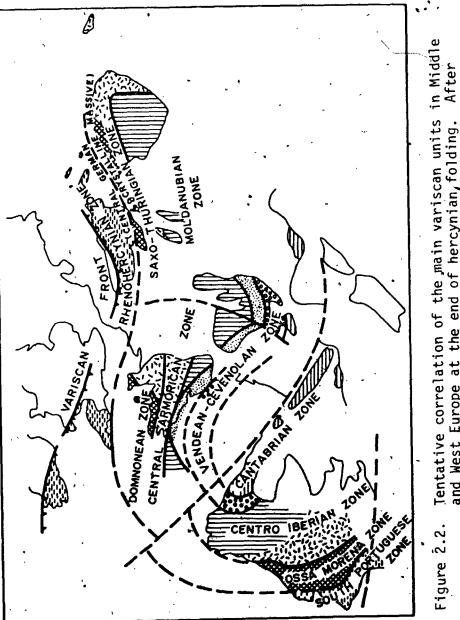
The Aljustrel area of South Portugal contains extremely large massive sulphide deposits, included in host rocks depicting clear signs of having been affected by the mineralizing agent(s). Also, the Aljustrel area is excellently geologically mapped (Schermerhorn and Stanton, 1969; Freire d'Andrade and Schermerhorn, 1971) and well exposed, not only at the surface, but principally underground, through extensive mine workings and humerous drillholes.

Aljustrel is one of the largest massive sulphide mining centres in the world, with several orebodies with combined reserves of nearly 250 million tonnes (Carvalho et al., 1976b), and it is one of the most important mines in the Iberian Pyrite Belt, Western Europe's most prominent stock of base metals, with global reserves beyond 1000 million tonnes before modern mining started (Strauss et al., 1977).

It is hoped (and believed) that some of the conclusions of the present study may be of interest to




CHAPTER 2


THE IBERIAN PYRITE BELT AND ITS ORE DEPOSITS

1 <u>Geology and Tectonic evolution of the South Portuguese</u> <u>Zone</u> with emphasis on its middle sector, the Iberian Pyrite Belt

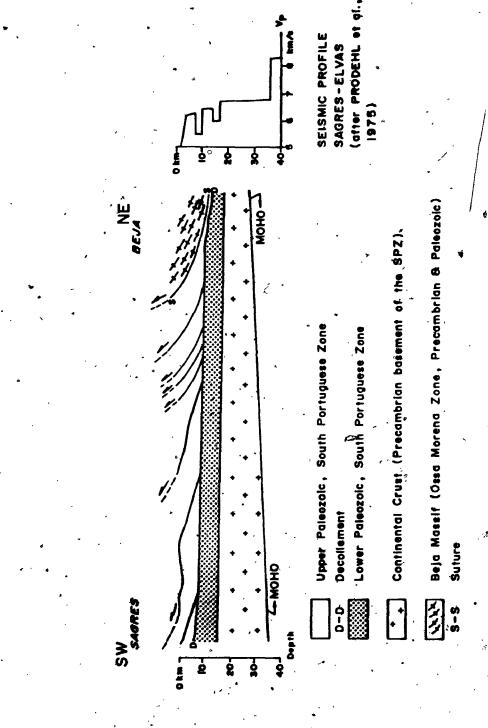
The Iberian Pyrite Belt is a heterogeneous set of Paleozoic terrains that occurs along an arcuate NW-SE area about 250 kms long and 0.30 to 60 km wide, extending from near the Atlantic Ocean in South Portugal to Seville in Southwest Spain (Fig. 2.1), and constitutes the intermediate sub-zone of the South Portuguese zone of the Iberian segment of the Hercynian Fold Belt (Lotze, 1945; Carvalho et al., 1971; Ribeiro et al., 1979). The South Portuguese Zone can be correlated (Fig. 2.2) to the

Tentative correlation of the main variscan units in Middle and West Europe at the end of hercynian, folding. After Ribeiro et al., 1979.

Devonian and Carboniferous of SW Ireland and England, to the Rhenohercynian Zone and to the Moravio-Silesian Zone of the Hercynian Orogen (Cogne, 1976; Ribeiro et al., 1979; Oliveira et al., 1979). The strongly arcuate belt defined by the above constitutes the External Hercynian Belt, internally bounded by a major thrust beyond which the Internal Hercynian Belt lies. Towards 'the periphery the External Belt contacts with Caledonian Europe through the Variscan Front in Northern Europe, but not in Southern Iberia, suggesting that the Variscan Front continues in North America, possibly in New Brunswick (Rast and Grant, 1973; Ribeiro et al., 1979).

The South Portuguese Zone is bounded to the SW by the Atlantic Ocean and to the NE by the Ficalho Upthrust (Ribeiro, 1981), that separates it from the adjacent Ossa Morena Zone (part of the Internal Hercynian Belt). The South Portuguese and Ossa Morena Zones depict marked differences with respect to age, lithologies, exposed crustal levels, tectonic style and regional metamorphic facies, raising the possibility that the Ficalho Upthrust (and its continuation in N. Europe) represents the suture from the collision of two continental blocks (Ribeiro et al., fin press).

In the Ossa Morena Zone a Precambrian polymetamorphic basement is exposed, followed by a Paleozoic sequence from Cambrian to Permian in age, where Hercynian synorogenic 1 Ů


magmatism (dominantly plutonic) is widespread. Several unconformities are present within the sequence. The lower and middle Devonian (platform facies) are separated from an upper Devonian Flysch by a major unconformity that corresponds to the first Hercynian deformation phase (Ribeiro et al., 1979). Tectonically, the Ossa Morena Zone is characterized by an internal blastomylonitic zone. limited by steep faults fanning outwards to the NE and the SW respectively, and separating asymmetric domains of opposite vergences (Ribeiro, 1981). Metamorphism in the Ossa Morena Zone is of uneven grade, attaining medium to high grades along two distinct zones: along the blastomylonitic belt it is of Barrovian type (up to the sillimanite isograd) and probably polymetamorphic, and, further South, in the Evora-Beja-Aracena massif it attained the upper amphibolite facies in a low pressure regime (Bard, 1969; Ribeiro et al., 1979).

In contrast, the oldest exposed beds in the South Portuguese Zone are of alledged Late Devonian age (platform sediments of terrigenous origin), igneous activity is almost exclusively volcanic (in the Pyrite Belt), and diachronous flysch sediments up to several km thick were deposited in a strongly subsiding basin after volcanism. Tectonically the South Portuguese Zone is a thrust belt characterized by the development of an imbricate structure that affects all exposed Paleozoic lithologies. The fact <u>ka</u>:

that even in the larger anticlines all the lithologies postdate the middle Devonian suggests the presence of large scale thrusting It the base of the thrust belt (Ribeiro et al., in press). This hypothesis is supported by deep seismic reflection profiles in the area (Mueller et al., 1973; Prodhel et al., 1975) which show a low velocity channel at the 7-10 km depth, interpreted by Ribeiro et al. as the decollement area (Fig. 2.3). Deformation was accompanied by low grade regional metamorphism that varies from the zeolite facies in the SW to the lower greenschist facies in the NE (Schermerhorn, 1975; Munha, 1976).

The South Portuguese Zone is characterized by pronounced lithostratigraphic anisotropy, with remarkable constancy along subzones roughly parallel to main structural features (NW to SE) and significant facies changes and diachronism across the structures (NE to SW, Fig. 2(1). Three lithostratigraphic groups are present (Fig. 2.4), as follows:

- a lowermost exclusively sedimentary unit (base not seen; top is upper Devonian) of phyllites, quartzites and rare limestones, at least several hundred metres thick, composed (from SW to NE) of the Tercenas Formation, Phyllite-Quartzite Group and Pulo do Lobo Group. Facies are proximal, shelf-like in the SW and more distal to the NE, indicating platform conditions and detrital supply from SW to NE (Ribeiro et al., 1979);

DEEP STRUCTURE of the SOUTH PORTUGUESE ZONE

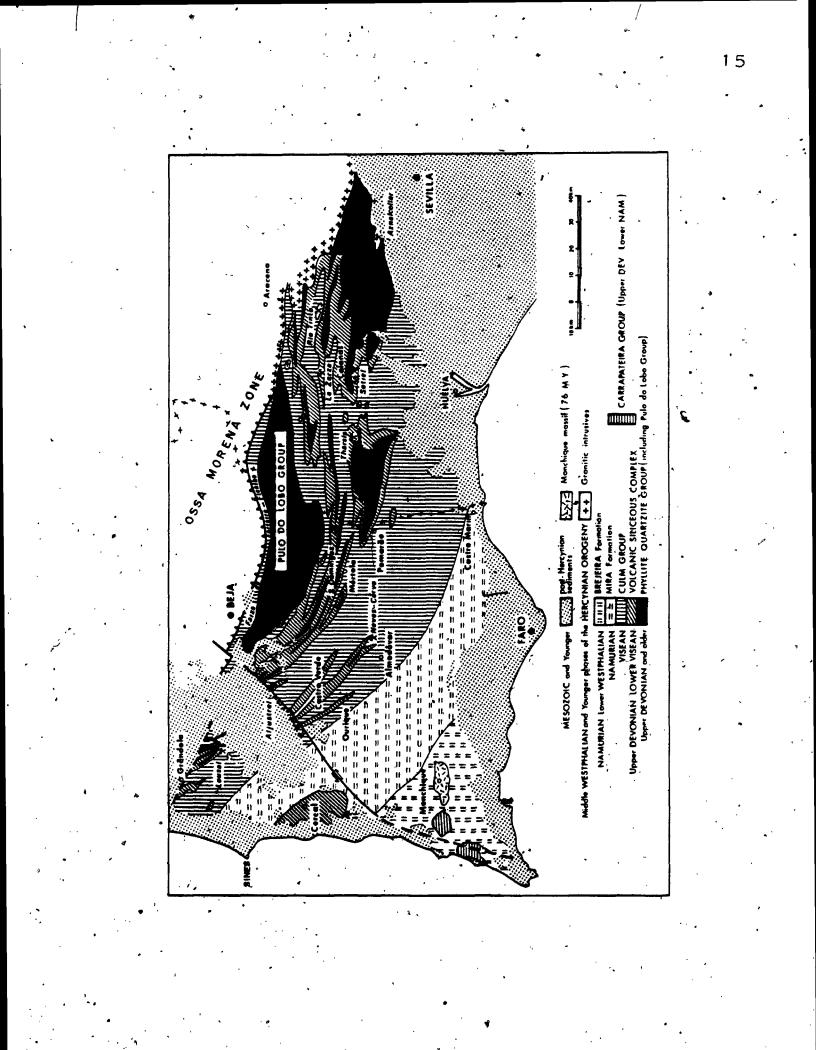

4

Figure 2.3. After Ribeiro et al., 1982.

13.

Figure 2.4. General geology of the Iberian Pyrite Belt

(after Carvalho et al., 1976, and Oliveira et al., 1979).

- an intermediate, very heterogeneous, up to at least 800 m thick, Volcanic-Sedimentary Group (sensu lato) comprising a large spectrum of stratigraphic columns, from solely sedimentary in the SW (Bordalete, Murracao and Quebradas formations) through dominantly volcanic and/or epiclastic in the Pyrite Belt (Volcanic-Sedimentary Group, sensu stricto), to distal voicanic and fine clastic sedimentary to the NE (Ribeira de Limas Formation). According to Carvalho (1976) and Ribeiro et al. (1979) volcanism is significantly diachronous, younging to the NE from upper Fammenian (Strunian) in the Cercal area to Visean close to the Ficalho Upthrust (Fig. 2.5). Lithologies can seldom be safely correlated in detail from area to area, because of the complications introduced by the volcanic activity. Volcanism is essentially bimodal, composed principally of (dominant) quartz keratophyres and (subordinate) spilites (Schermerhorn, 1970a). Mafic rocks seem to derive from heterogeneous mantle peridotite, and felsic rocks probably resulted from partial melting of continental crust (Munha, 1981). Felsic volcanism was everywhere dominantly explosive, indicating moderate or shallow water depths. Given the subject of this thesis volcanism will be discussed in more detail in section 2.2.

- an uppermost, up to 5 km thick diachronous flysch sequence, the Baixo Alentejo Flysch Group (Oliveira et al., 1979). Its base is Upper Tournaisian to Lower Visean in

	BORDEIRA	S. TEOTONIO	CERCAL	PYRITE BELT	, PULO
WESTPHALIAN	۰ ب	•			
- NAMURIAN			Ś		
VISEAN		·		T A A	1.11. 8.
TOURNAISIAN	×	,	> > > > > > > > > > > > > > > > > > >	> > > > > > > > > > > > > > > > > > >	
STRUNIAN			>>>		•

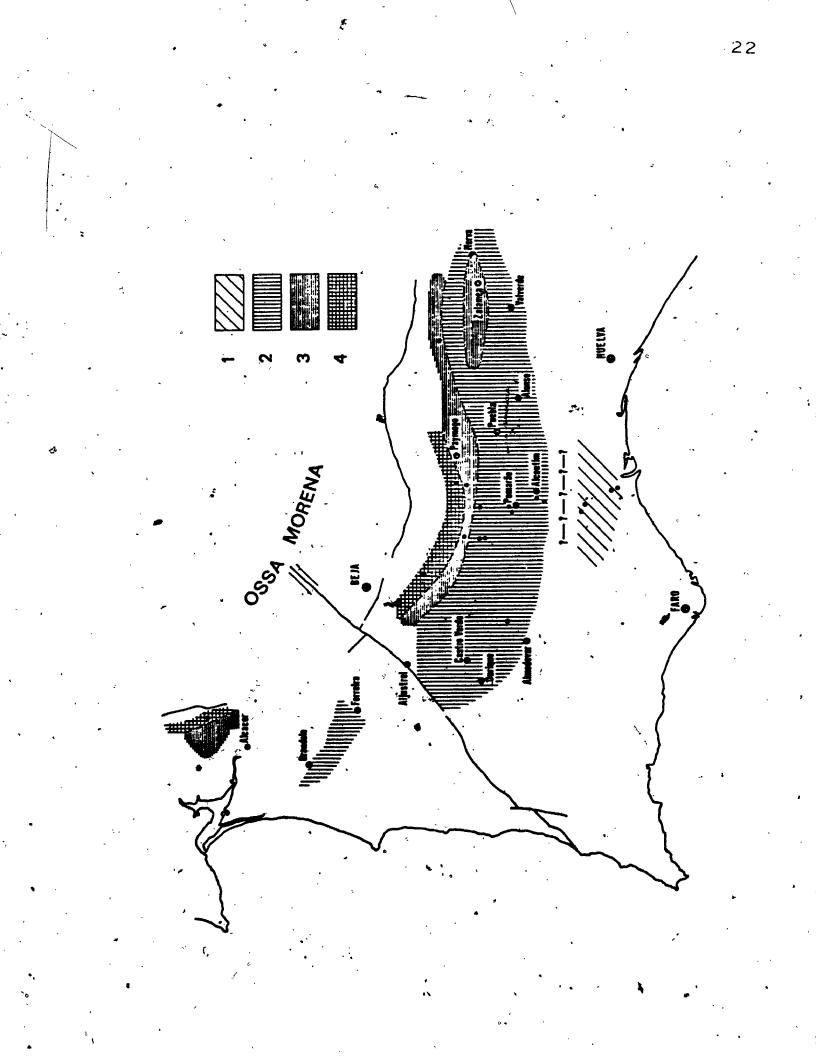
•

Diachronism on the deposition of flysch and volcanism in the South Portuguese zone. After Ribeiro et al., 1979. Figure 2.5.

the NE (Santa Iria Formation, Carvalho et al., 1976b), Upper Visean in the Pyrite Belt (Mertola Formation, Oliveira et al., i.e. Culm Group, Schermerhorn, 1971) and progressively younger to the SW, attaining lower Westphalian age in the extreme SW (Brejeira Formation; Pfefferkorn, 1968; Oliveira et al., 1979; Ribeiro, in press). Generally speaking, the Baixo Alentejo Flysch 🍭 becomes progressively more distal from the NE to the SW, and palebourrent data confirms that the source of detritus was in the Ossa Morena Zone (Boogaard, 1967; Schermerhorn, 1971a; Oliveira et al., 1979). The fact that volcanism in the area was dominantly explosive coupled with the great thickness of the Flysch Group indicates that the South Portuguese lower Carboniferous basin underwent large scale subsidence after volcanism. According to Ribeiro et al. (1979) and Oliveira (in press) subsidence propagated from ' NE to SW (that is, as expected given the sense of the . Flysch diachronism). It should be noted that volcanism progressed in time in the opposite direction (Carvalho, 1976; Ribeiro et al., 1979).

Subsidence was accompanied by major syn sedimentary deformation expressed in pre cleavage overthrusts, slump folds and possibly a major decollement of the whole basin from the pre Upper Devonian basement, as mentioned before (Ribeiro et al., 1979; Ribeiro, 1981). This represents the beginning of the Hercynian Orogeny in the area. Hercynian

÷.


tectonic activity evolved essentially continuously from the above early synsedimentary stage into a strongly compressive regime of hard rock deformation responsible for folding of the early overthrust planes (see Schermerhorn and Stanton, 1969), tightening and overturning of the early folds, often accompanied by thrusting of the reverse limbs, and development of widespread, often very penetrative cleavage, not always parallel to the folding planes. A11 but the least ductile lithorogies in the South Portuguese -Zone (coarse greywackes; quartzites; cherts; massive lavas and intrusive rocks) exhibit at least one pronounced This main cleavage dips steeply to the NE in the cleavage. NE areas and becomes progressively less steep towards the Ihere is a clear decrease in hard rock deformation ; from NE to SW; expressed in the interlimb angle of folds: folds are tight or even isoclinal in the NE and get Also, the stratigraphic progressively more open to the SW. thickness of lithologies affected by two cleavages decreases markedly from NE to SW (Carvalho et al., 1976b) In the intermediate (Pyrite Belt) subzone the net result of early (synsedimentary) and main Hercynian deformation is, at the present level of erosion, the generation of a typical imbricate structure characterized by overturned, often isoclinat folds, with thrusted reverse limbs which expose VS lithologies in the anticlines (sometimes PQ also), and Culm flysch in the synclines #

(Ribeiro, 1981). The presence of early overthrusts may in places obscure this simple pattern (see Chapter 3). Main and late stage Hercynian compression produced numerous wrench faults, trending N, NW and NE in the South Portuguese Zone, with horizontal displacements up to 5 km, both dextral and sinistral, generally related with folding and of relatively shallow nature. The largest of all faults in the area is the Messejana sinistral wrench fault; more than 500 Km long, from the Atlantic Ocean in SW Portugal to near Avila in Spain. It differs from the remaining not only in extent but also in being a much deeper seated dislocation, probably corresponding to a line of major crustal weakness.__Lateral displacement along the Messejan# Fault is variable around 3 Km, associated with ' strong drag (Schermerhorn, 1971a; Ribeiro et al., 1979). Syn and post orogenic metamorphism accompanied deformation, as mentioned before. Munha (1981; in press) defined 4 regional metamorphic zones, from NE and N to S. and SW (Fig. 2.6), based on observed mineral assemblages in the mafic metavolcanic rocks and also on illite crystallinity data on other lithologies. Regional netai morphic grade decreases from greenschist facies in the N and NW in the Pulo Formation (metamorphic zone 4), through lower greenschist and prennite-pumpellyite facies In the Pyrite Belt (zones 3 and 2), to zeolite facies on extreme South (zone 1). Still according to Munha

Zonation of hercynian regional metamorphism in the Iberian Pyrite Belt. 1-Zeolite facies; 2-Prehnitepumpelkyite facies; 3-Lower greenschist facies; 4-Greenschist facies. After Munha (1981).

Figure 2.6.

¢°

regional metamorphism was essentially isochemical, took place under low pressure and mineral assemblages are compatible with geothermal gradients in the range of 40 to 50°C/km.

Hercynian deformation eventually stopped flysch deposition, in Westphalian times, through emergence of the area.

The plate tectonic setting of the South Portuguese Zone has been a matter of considerable controversy, perhaps because the nature and significance of the volcanism present therein was not clear. At present time most authors admit that it may correspond to an intracontinental early rift situation, possibly related with back-arc crustal thinning (see Munha, 1981; Oliveira, in press; Ribeiro et al., in press).

Post Hercynian events had relatively minor effects in the South Portuguese Zone. They can be summarized as follows: (see Ribeiro et al., 1979, for a thorough review):

During the Jurassic the Messejana Fault was reactivated under tension, with uprise of tholeiitic magma generating the Messejana Dolerite along that Fault. This is an early manifestation of the opening of the North

The South Portuguese Zone is bordered to the SE, S and NW by a late Triassic molasse (Gres de Silves) representing the erosion of the Hercynian craton; the Gres de Silves is

in turn covered by Jurassic sediments related with continental subsidence associated with the early stages of opening of the Atlantic Ocean;

During Late Cretaceous times subvolcanic ring complexes were emplaced along an arcuate accident defined by the Monchique, Sines (Fig. 2.4) and Sintra intrusive complexes, possibly related to rotation of the Iberian Peninsula during opening of the Bay of Biscay;

During the Tertiary, Betic compression generated uplift in the Central area of the Iberian, Peninsula and concomitant sediment infilling in the Sado and Tagus basins, with accumulation of more than 150 m of clastic and limy sediments which still cover a significant area of the South Portuguese Zone;

Finally, during the Pleistocene several rivers were responsible for up to 20 metres of alluvium along some valleys. Quaternary uplift was responsible for the present \sim 150 m altitude of the area. Neotectonic activity is expressed in reactivation of faults, sometimes with generation of horsts and grabens, and in rather frequent, generally low magnitude intra plate earthquakes. Neotectonic activity is related with proximity of the plate boundary represented by the Azores-Gibraltar Fault, along which there is intraoceanic subduction to the West and collision of the European and African plates in the vicinity of Gibraltar.

Morphologically, the South Portuguese Zone presently corresponds to an eroded peneplain, plunging gently to the NW and SSE. The climate is mediterranean with atlantic and/or continental influences, characterized by long, dry summers, and short, mild winters. Most of the area is covered by thin soils. Natural rock outcrops are rare and weathered. The main human activities are farming (cereals, cork, olive oil) and mining of massive sulphide deposits.

2.2 Volcanism in the Iberian Pyrite Belt

As mentioned before, sulphide mineralization in the Iberian Pyrite Belt is closely associated with (felsic) volcanism which took place from upper Fammenian (Strunian) to lower Visean times (350 to 335 Ma before present). The volcanic rocks occur as accumulations up to several hundred metres thick in a sedimentary framework of "slates with varying admixtures of coarser terrigenous detritus and biogenic, chemical and volcanic components" (Schermerhorn, 1971a), the ensemble of which constitutes the Volcanic-Sedimentary (or Volcanic-Siliceous) Complex (VS). Discrete volcanic centres occur along major lineaments, particularly well defined in the Western half of the Belt (Portugal), where five such lineaments exist, trending NW-SE. According to Carvalho (1974), the location of the individual volcanic centres is near the intersection of the above structural lineaments with an intersecting, NE-SW old

system of major fractures typified by the Messejana Fault (Fig. 2.1).

Volcanism was markedly bimodal: felsic volcanic rocks constitute about 70% of the known occurrences, most of the remaining are mafic volcanic and shallow intrusive rocks, with only subordinate occurrences of volcanic rocks of intermediate (andesitic) character (Schermerhorn, 1970a; Soler, 1969; Munha, 1981). Felsic volcanic centres occur throughout the Pyrite Belt, whereas mafic occurrences are dominantly concentrated within two broad domains: the Ourique-Neves lineament of South Portugal and the Eastern area of the Pyrite Belt, in Southwest Spain (Schermerhorn, 1970a; Routhier et al., 1980). Elsewhere mafic igneous activity is either absent or restricted to minor shallow sills or extrusive bodies.

Felsic and mafic igneous activity are well separated, without lithological transitions or alternances, although both types can occur stacked, such as at S. Domingos and Rio Tinto, in which case either felsic or mafic volcanic rocks can be found at the base of VS. VS generally started with felsic volcanism in Portugal and with mafic igneous activity in Spain (Schermerhorn, 1971a). This and the discrete nature of the volcanic centres precludes the existence of a single stratigraphic column for VS applicable to all the Iberian Pyrite Belt (Carvalho et al., 1976). The only large domain where a well defined stratigraphic sequence can be followed or correlated with certainty over more than a few kilometres is within the Puebla de Guzman anticlinorium area, where the lithostratigraphy established by Boogaard (1967) in the Pomarao area can be traced to near Sotiel, about 60 kms to the East (Carvalho et al., 1976).

The base of the thicker volcanic piles (Aljustrel, Rio Tinto, La Zarza) is generally not exposed or even drilled, which probably explains the otherwise intriguing fact that no volcanic pipes (or other types of volcanic feeder channels) have as yet been found within PQ rocks (Schermerhorn, 1971a; Carvalho et al., 1976).

Volcanism in the Iberian Pyrite Belt was dominantly submarine, as evidenced by the widespread occurrence of pillow lavas with chert-filled interstices, felsic submarine flow tuffs, abundant cherts (radiolarian or not), shales (including black shales), and other subaqueous sediments. However, it is possible that some volcanic episodes were subaerial, because of transient emergence of the top of some of the individual volcanoes (Schermerhorn, 1970b).

Mafic igneous rocks in the Iberian Pyrite Belt consist of lavas, tuffs and shallow intrusive doleritic bodies, usually sills (Strauss, 1965; Rambaud, 1969; Schermerhorn, 1970a), and occur throughout the VS stratigraphic sequences (Schermerhorn, 1975). Munha (1981; see also Munha and Kerrich, 1980) proved that the present spilitic composition

of these mafic igneous rocks, is a consequence of widespread and pervasive hydrothermal metamorphism which took place shortly after emplacement of the rocks, as a consequence of sea water convection through the volcanic piles, driven with heat from within the rocks. Munha (ibid.), in a thorough geochemical investigation of these rocks distinguished primary features from hydrothermal effects, and for the purpose of petrogenetic modelling considered only the least mobile elements under conditions of hydrothermal metamorphism, and primary igneous minerals (mainly pyroxenes), concluding that the mafic igneous rocks of the Iberian Pyrite Belt were originally basaltic, tholeiitic transitional to arc tholeiites at the base of VS, and becoming progressively enriched in incompatible elements towards the top of VS, where they become typical "within plate" <u>alkaline ba</u>salts. Munha also concluded that these mafic rocks were produced from different partial melts of heterogeneous mantle, and that such magmas experienced varying degrees of fractionation.

Intermediate igneous rocks are generally rare, although they can be locally significant, especially in the northernmost areas of the Iberian Pyrite Belt. They occur both as extrusive accumulations and as shallow intrusive bodies, and are generally feldspar and pyroxene phyric (Salpeteur, 1976; Munha, 1981). Munha (1981) concluded that these andesitic rocks did not result from

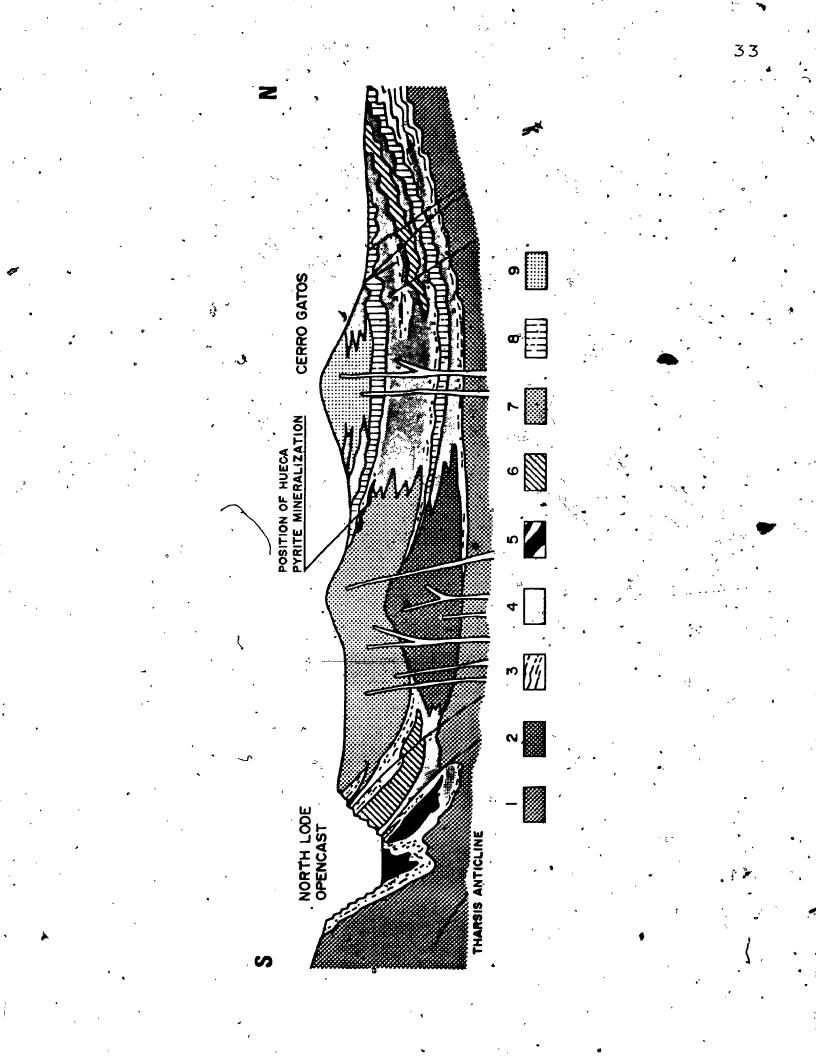
'differentiation of basaltic magmas, and suggested instead "that a suitable source for andesites could be the hydrous equivalent to [the] upper mantle periodite source of contemporaneous Group 1 [base of VS] basaltic rocks".

Felsic volcanic rocks are the most important type of igneous rocks in the Iberian Pyrite Belt, both volumetrically and because massive sulphide mineralization known to date in the area can invariably be related, more or less intimately, to felsic volcanism (Schermerhorn, 1970b; Carvalho et al., 1971b).

Felsic igneous rocks in the Iberian Belt are at present time unanimously considered to be almost exclusively composed of pyroclastic rocks, from autoclastic explosion breccias to lappili, ash and dust tuffs (Srauss, 1965; Boogaard, 1967; Schermerhorn and Stanton, 1969; Schermerhörn, 1970b; Carvalho et al., 1971b, 1976; Routhier et al., 1980). Only rarely have minor felsic intrusive occurrences been confirmed, mainly in the Chanca-Paymogo-S. Domingos border zone between Portugal "and Spain (Salpoteur, 1976; Carvalho, 1979), mainly as porphyritic dykes and small shallow intrusions producing weak contact metamorphism. Felsic lavas have been reported from several locations, but the cumulative effects of total devitrification, hydrothermal alteration and Hercynian deformation and regional metamorphism may often have . obliterated structures and textures beyond recognition of

original characteristics. Welded tuffs have been reported (Lecolle, 1974; L. Conde, personal communication, 1978), on the basis of flattened textures and on the occurrence of prismatic disjunction of some volcanic beds, and interpreted as evidence for subaerial volcanic activity in conflict with several other lines of evidence which leave little room for doubts on the generally submarine, perhaps even pelagic.nature of volcanism. Schermerhorn (1970b) reconciled these facts admitting that the uppermost portions of the volcances may have emerged, at leasttransiently. However, the occurrence of welded tuffs is not conclusive evidence of subaerial volcanism, as shown by Fiske and Matsuda (1964) and Yamada (1973); moreover, Sparks et al. (1980) have even proposed that "a subaqueous environment can be more favourable to welding than many subaerial environments".

Thick (hundreds of metres) felsic pyroclastic piles in the Iberian Pyrite Belt generally include coarse breccias and lapilli tuffs, together with the more widespread tuffs and dust tuffs, and must correspond to the areas where isolated or clustered volcanoes existed. These volcanic centres are often elongated, with original areal extents up to tens of kilometres. Given the geologic constraints outlined above detailed reconstructions of the original volcanic edifices are not always possible and often debatable. One of the most successful and complete such


reconstructions is that at Tharsis (Strauss and Madel, ⁽¹⁹⁷⁴; Madel and Lopera, 1976), in the Puebla de Guzman anticlinorium, where three superimposed felsic volcanic cycles are discernible (Fig. 2.7), each with a central domain of proximal volcanic facies (lavas, flow and tuff breccias) grading laterally and symmetrically to flów tuffs which in turn interfinger with distal volcanic and sedimentary lithologies (tuffitic slates, cherts, black slates). Each of these successions (except for the uppermost Gatos volcanic cycle) is capped by a horizon of purple red, tuffitic shales, occasionally with iron rich red jasper (discontinuous) intercalations and small manganese deposits. 2 km North of the volcanic centre (Tharsis mine area) volcanic rocks of the first cycle are restricted to beds of fine grained, well graded tuffs. Similar distal facies of 3 cycles of volcanism can be / traced along the strike of the Puebla de Guzman anticline to Pomarao in Portugal (Boogaard, 1967), as mentioned before.

Out of the Puebla de Guzman anticline superimposed volcanic cycles are less well defined. At most other large volcanic centres only one main felsic event took place, despite the occasional presence of distal fine tuffs or tuffites in the sequences, attesting slightly diachronous volcanic activity elsewhere.

Schermerhorn (1970b) proposed that isolated, generally

Schematic geologic section of the Tharsis North area (without scale; N-S extension approx. 2 km). 1-Devonian Phyllite-Quartzite Group; 2-Tharsis-I lavas, flow- and tuff-breccias; 3-Black slates, .cherts, tuffitic slates; 4-fine to medium grained bedded tuffs of different volcanic phases; 5-Massive sulphide orebodies; 6-Spilltic lavas; 7-Tharsis-II lavas, flow breccias, tuff-breccias, porphyritic iavas, flow breccias, tuff-breccias, porphyritic and tuffs. After Strauss and Madel (1974).

Figure 2.7

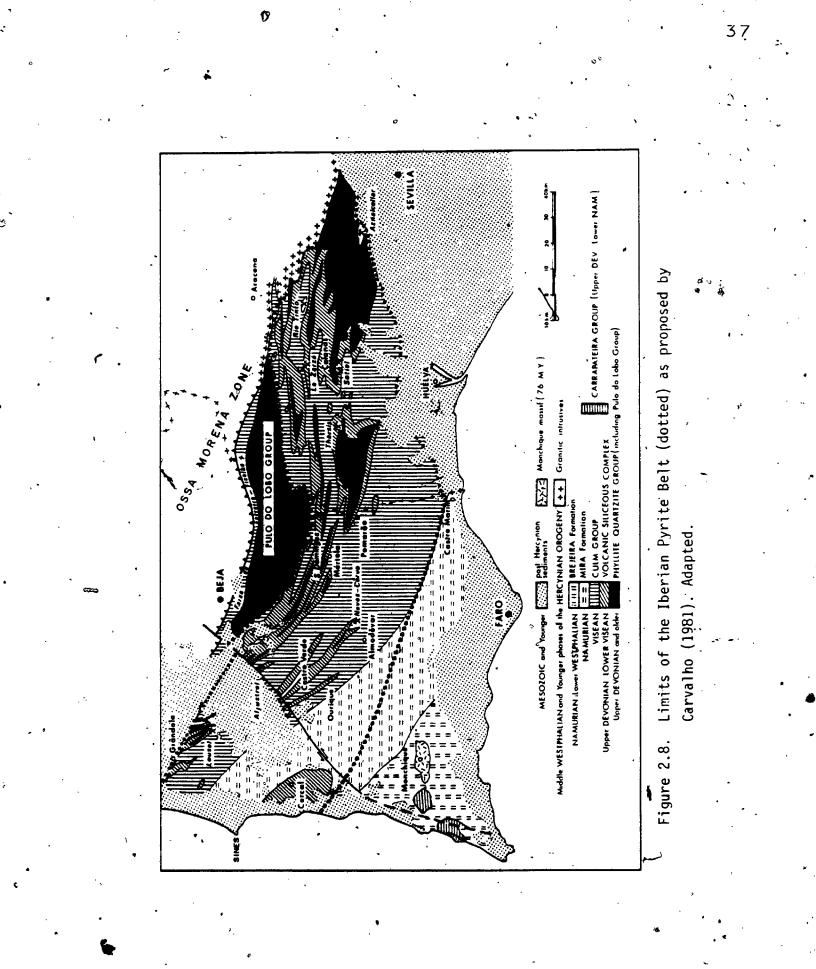
thin occurrences of felsic tuffs within dominantly shaly lithologic sequences must represent "ash flow tuffs laid down by sliding and flowing down volcanoes at the eruptive centres". Schermerhorn invokes low temperature mechanisms such as slides, mudflows and turbidity currents, excluding hot flowage (glowing avalanches; nuees ardentes) as restricted to subaerial volcanism, but we have seen above that this is not necessarily true.

Texturally, most felsic volcanic rocks in the Pyrite Belt are vitric to crystal vitric tuffs of various grain sizes. Lithic fragments are generally present, although subordinate in abundance. Cuspate, Y-shaped glass shards are exceedingly rare in these felsic tuffs, although abundant in the mafic tuffs. According to Schermerhorn (1970b) the felsic tuffs.display "a 'dilute greywacke' texture made of roughly sand-sized grains of cryst as, crystal aggregates and original glass enveloped by a sericitic or serficitic-microfelsitic groundmass (chlorite. may also be present), through which are scattered larger and smaller phenocrysts and other fragments".

Phenocrysts in felsic volcanic rocks are euhedral to anhedral (often broken) feldspars, quartz and parely chloritized biotite and garnet (Schermerhorn, 1976; Lecolle, 1976). In dacitic tuffs feldspar phenocrysts are albitized plagioclase, and clinopyroxene microphenocrysts are sometimes present (Munha, 1981). Rhyolitic tuffs are

largely dominant, however, and display albite and K-feldspar phenocrysts, often after oligoclase-andesine.

Most, if not all volcanic and hypabissal rocks in the Iberian Pyrite Belt were affected by (sea water) hydrothermal metamorphism (Munha, 1979, 1981; Barriga and Kerrich, 1981; this study) which produced marked chemical changes in the rocks. Despite undebatable textural evidence for metasomatism, this fact was not properly accounted for in the past. Most felsic rocks in the area were originally rhyolitic, often highly siliceous (Munha, 1981). Their present composition is mostly quartzkeratophyric to quartz-kalikeratophyric (Schermerhorn, 1970b, 1973), and these rather cumbersome terms obscure the fact that they are simply hydrothermally altered rhyolites (felsic spilites according to Munha et al., 1980).


Munha (1981) concluded that the felsic igneous rocks of the Iberian Pyrite Belt are not linked to the coexisting mafic and intermediate rocks by fractional crystallization, and that they rather result from crustal anatexis of rocks of granitic and/or tonalitic composition, therefore. confirming earlier similar hypothesis (Schermerhorn, 1970b, 1975; Priem et al., 1978).

2.3 <u>Hydrothermal activity and mineralization in the</u> Iberian Pyrite Belt

The Iberian Pyrite Belt is the area of the South. Portuguese Zone where massive sulphide deposits occur or °are likely to be found. This definition corresponds to common usage, based on studies in the Cercal area (Carvalho, °1976) and especially as a consequence of the recent discovery of the outStanding Neves-Corvo deposits (Albouy et al., 1981) * Carvalho (1982) recently proposed that the traditional limits of the Iberian Pyrite Belt should be widened significantly to the S and NWm, to enclose an area at least twice as large as befire (Fig. 2.8).# Two types of mineral deposits are widespread in the Iberian Pyrite Belt/ several tens of massive sulphide deposits and several hundred Manganese deposits. Associated metalliferous sediments (Fe-Mn cherts and jaspers and purple slates) are equally important with regard to genetic studies and mining exploration. In this section a brief summary of their more salient features will be presented, condensed essentially from Srauss (1965), * Rambaud (1969), Carvalho et al. (1971a, b, 1976), Schermerhorn (1970b, 1971b, 1976), Strauss and Madel (1974), Carvalho (1976, 1979), Strauss et al. (1977) and Routhier et al. (1980).

Massive Sulphide Deposits.

The Iberian Pyrite Belt massive sulphide deposits have

been known and exploited since pre Roman times, mainly as gold, silver and copper ores from the supergene enrichment zones of outcropping deposits. It is worth noting that the only deposit discovered to date away from Roman or pre Roman mines is the Salgadinho deposit (Carvalho, 1976), intersected by drilling in 1976.

About 60 mines operated during the last 100 years or so, and about 280 million metric tonnes (Mt) of massive polymetallic sulphides were extracted in the same period (Strauss and Madel, 1974), mainly for sulphur (average grade 46%), copper (0.7%) and sometimes for iron (40%), although ore nearly always contains appreciable amounts of zinc and lead (combined average 4%, Carvalho et al., 1976), precious metals (0.8 ppm Au, 30 ppm Ag, ibid.) and a host of alloy metals such as Sn, Cd, Co, Hg, Bi, Se and many others in concentrations ranging from tens to hundreds of ppm. Many of these metals (including Pb and Zn) are often not recovered because of the fine grained nature of most ores, what in turn is responsible for the expression 'Iberian Pyrite Belt' and for frequent incorrect literature quotations of these orebodies as "barren pyrite" and "pyrite orebodies".

Reserves of massive sulphide ore in the Iberian Pyrite Belt amount to about 700 Mt, essentially concentrated at seven major locations: Aljustrel (250 Mt) (and Neves-Corvo (100 Mt) in Portugal and Tharsis (130 Mt), La Zarza (60

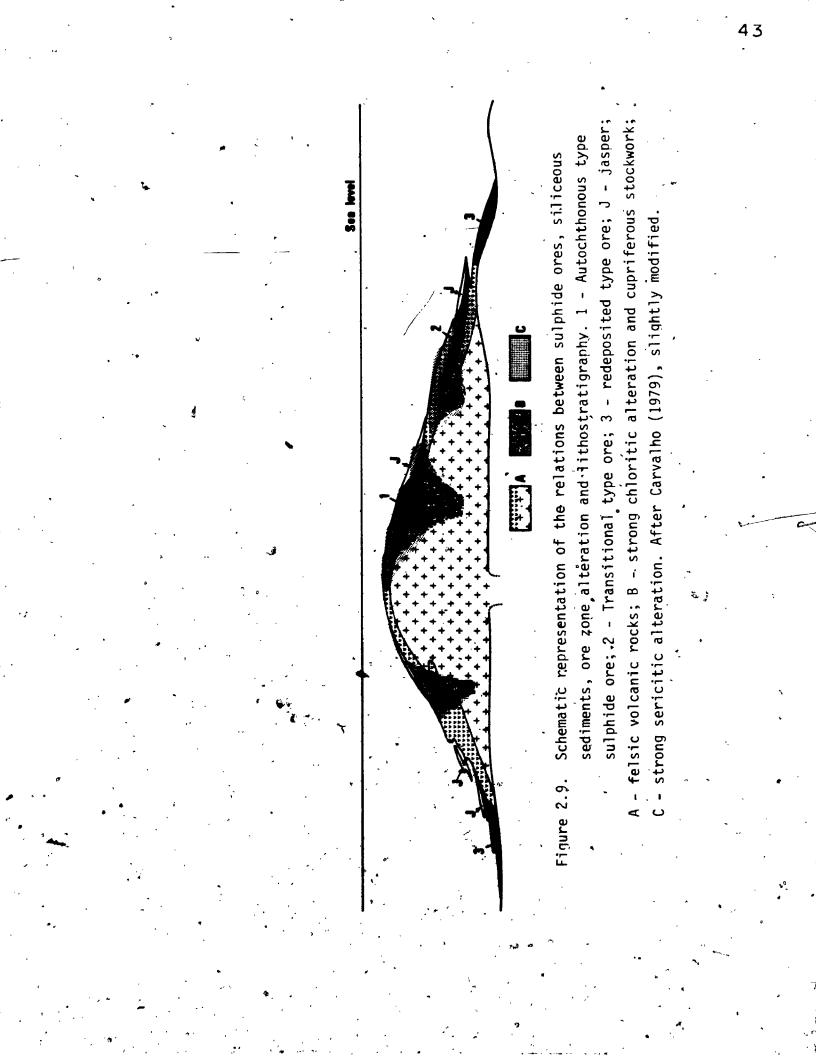
Mt), Rio Tinto (55 Mt), Aznalcollar (50 Mt) and Sotiel (40 Mt) in Spain. Exhausted or nearly exhausted other mines which were important in the past include S. Domingos (30 Mt) and Lousal (20 Mt?). A very large part of these reserves (which do not include stockwork type ores) was discovered after the early 1960's, as a consequence of widespread acceptance of the exhalative-sedimentary theory of ore genesis (Oftedhal, 1958), originally advocated by Klockman (1894), eloquently illustrating the importance of correct geologic understanding and models in mineral exploration (Strauss et al., 1977; Carvalho, 1979).

As a result of high quality geologic studies during the last two decades, under the light of the "new" exhalative-sedimentary theory several important aspects concerning the origin of the orebodies are presently well established, namely that they are <u>syngenetic</u> (sensu lato), as evidenced by the well defined horizons where they occur, the common sedimentary features they depict and also because they experienced the same tectonic and metamorphic history of the rocks that host them; <u>volcanogenic</u> in the sense that they formed in close association with the waning stages of (felsic) volcanism; <u>exhalative</u>, that is, resulted from metalliferous aqueous solutions that Taised through the footwall rocks, as shown by chemical zonation, the presence of underlying stockwork zones and by prominent hydrothermal alteration of the host lithologies in the

vicinity of autochthonous orebodies; and <u>submarine</u> from the submarine lithologies and facies that host them (mostly submarine felsic tuffs, cherts, jaspers) and from the subaqueous textures of the ores themselves.

The Iberian Pyrite Belt massive sulphide deposits occur invariably in stratigraphic horizons that correspond to the waning stages of felsic volcanism at each specific volcanic centre, or, if stacked felsic volcanic cycles occur, to the end of one or more of the volcanic periods. They can occur at or near the top of thick felsic piles, or anywhere along strike, in laterally equivalent positions, both on more distal volcanic facies or even mainly on sedimentary sequences (shales, black shales) again laterally equivalent to the volcanic rocks, as schematically illustrated in Figure 2.8. As a consequence of this range of host lithologies the orebodies can be 'found anywhere from near the base to almost at the top of VS, as they are hosted in sediments or at the top of thick felsic pyroclastic piles, respectively.

- Sulphide orebodies lying on thick pyroclastic piles are invariably underlain by stockworks of stringer and disseminated mineralization in highly altered host lithologies, whereas such stockworks are generally not found under orebodies hosted in sediments or on distal volcanic facies. Also, soft sediment deformation structures such as slumping, scour and fill,


synsedimentary breccias and even "turbidite" textures are ubiquitous in orebodies not associated with stockworks and rare or absent in orebodies rooted in stockworks.

The above facts suggest that massive sulphide deposits in the Iberian Pyrite Belt formed from metalliferous aqueous s additions rising through the footwall rocks, and precipitating sulphides at or near the coeval sea floor. Slope instability and thixotropic behaviour of the sulphide "muds" precipitated on the hydrothermal vents may in some cases have induced sliding down volcance flanks with redeposition in deeper waters, among distal volcanic beds or even within sediments (Schermerhorn, 1970b, 1971b). Much in the same way as Carvalho (1979) we will use autochthonous to describe massive sulphide deposits rooted in stockworks and allochthonous or redeposited for sulphide accumulations on unaltered footwalls and depicting evidence of significant soft sediment deformation, hence avoiding the confusing "proximal" and "distal" denominations (see Large, 1979; Jambor, 1979). Clear cut examples of autochthonous orebodies fare Rio Tinto and Perrunal-La Zarza in Spain and Feltais-Estacao (Aljustrel) in Portugal. Good examples of allochthonous orebodies are Filon Norte and S. Guillermo (Tharsis) in Spain and Lousal (Portugal). The Salgadinho disseminated deposit, hosted in felsic tuffs depicting stockwork type alteration (Carvalho, 1976; Plimer and Carvalho, 1982) probably represents the roots of an ore

forming system, and massive mineralization (not yet found in the area) may have moved downslope from its top. It is interesting to note that this ore deposit was found partly as result of alteration studies (Carvalho, 1976). The relations between the various types of sulphide deposits, siliceous sediments, ore zone alteration and lithostratigraphy are schematically illustrated in Figure 2.9.

Hydrothermal alteration

Apart from the already mentioned regional, widespread sea water hydrothermal alteration responsible for the present spilitic and quartz_keratophyric compositions of most igneous rocks in the Iberian Pyrite Belt, stockwork mineralization in the area is hosted in rocks that are intensely hydrothermally altered, often to such extreme degrees that the original texture and mineralogy are lost, and the rocks become aggregates of exclusively alteration minerals, usually guartz, chlorite and sulphides (chalcopyrite, pyrite, minor pyrrhotite and sphalerite); sometimes with significant sericite and/or carbonates. Oxygen isotope determinations in minerals from the stockworks of several sulphide deposits in the Pyrite Belt (Rio Tinto, Chanca, Salgadinho and Feitais-Estacao, Barriga and Kerrich, 1981; Munha and Kerrich, 1981) indicate that ore fluids were generally isotopically similar to sea water $(0^{\circ}/_{00} \delta^{18}0 \text{ SMOW})$, although significantly ¹⁸0 enriched

fluids were detected at Salgadinho and Feitais-Estacao. The study of hydrothermal alteration associated with the Feitais-Estacao orebody of Aljustrel is a significant part of the present thesis.

Manganese deposits and other metalliferous sediments

Hundreds of small manganese deposits are known from within the VS Complex of the Iberian Pyrite Belt, and were object of minor mining operations in the past. They occur within various lithologies, namely tuffites, siliceous slates (often red or purple, hematitic), and cherts and jaspers. The ensemble of Mn concentrations and their immediate host lithologies constitute mappable units, and invariably lie on volcanic rocks, both mafic and felsic, or on their lateral equivalents. In the field, they constitute good evidence of a late or post volcanic environment, but cannot be considered true "marker horizons" in exploration for massive sulphide deposits, as they occur associated with both productive and nonproductive volcanic episodes (at least as far as is known). Notwithstanding with this limitation, the occurrence of Fe-Mn formations can be an indication of ore proximity, as, some such Fe-Mn rich horizons are indeed related with massive sulphide deposition (Srauss, 1965; Strauss and Madel, 1974; Carvalho et al., 1976). Jaspers are particularly significant. According to Carvalho (1979) ... jaspers are perhaps the most typical rocks of the

Iberian Pyrite Belt. Several types are known, which can occur at one or more levels of the volcanic sequences. The facies more closely related with sulphide mineralization stands out as it is generally light grey and contains scattered pyrite crystals. At Feitais [Aljustrel] these jaspers contact directly with the sulphide orebody. They grade laterally into another type of jaspers, predominantly red, with hematite and manganese oxides" (translated from Portuguese).

Munha (1981) analysed Fé and Mn rich cherts from one of the Pyrite Belt Manganese mines (Lagoas do Paco, Portugal) and, on the basis of their Lanthanide element patterns and on their low minor metals (Ni, Co, Cu) contents concluded that they resemble present day sea floor hydrothermal metalliferous deposits (Bonatti, 1981; Fyfe and Lonsdale, 1981).

If the present is still the key to the past ancient sea floor surfaces now recorded in the Iberian Pyrite Belt metalliferous sedimentary horizons should represent hydrothermal metalliferous deposits near ancient hydrothermal vents and hydrogenous metalliferous concentrations away from such sites (i.e., away from stockwork sulphide mineralization and alteration). In the course of the present work we will try to elucidate this aspect as well.

2.4 Conclusion

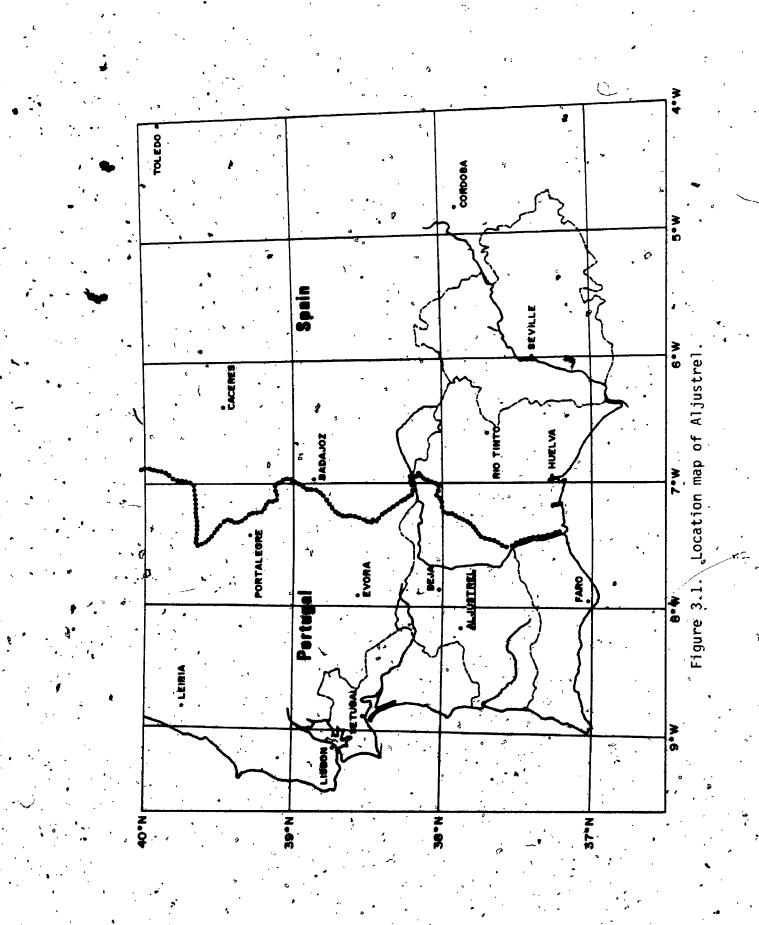
The Iberian Pyrite Belt is located in South Portugal and Southwest Spain, and constitutes Western Europe's most prominent stock of base metals. Extremely large massive sulphide deposits occur associated with the waning stages of (felsic) explosive volcanism which 'took place in early Carboniferous times, on a Phyllite-Quartzite, shelf facies, conformable basement, Subordinate mafic volcanism accompanied the felsic volcanic activity, producing a bimodal association in which the two types of igneous rocks are not related by magmatic differentiation; basaltic rocks seem to derive from heterogeneous mantle peridotite and felsic rocks resulted from partial melting of crustal material. Volcanic rocks were affected by widespread sea water hydrothermal metamorphism responsible for the present spilitic and quartz-keratophyric (felsic spilitic) compositions of the 'rocks, for the massive sulphide deposits and also for abundant volcanogenic sediments such as manganese accumulations, Fe-Mn cherts, purple and red slates genetically equivalent to present day sea floor Fe-Mn hydrothermal and hydrogenous metalliferous ' concentrations.

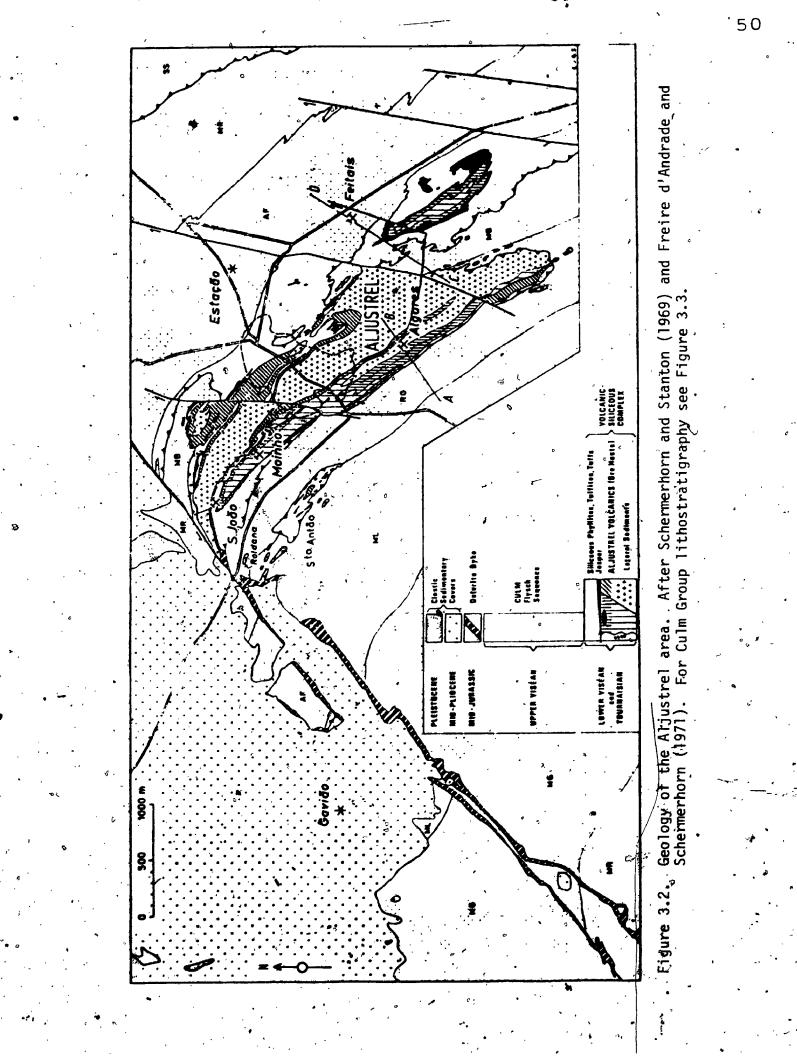
Volcanism took place along lineaments of discrete volcanic centres in a framework of detrital, biogenic and chemical sediments, generating a widely variable (ore hosting) Volcanic-Sedimentary Complex. After volcanism the

area experienced pronounced subsidence, with deposition of a conformable, several km thick Flysch Group (base Visean 👘 to Westphalian). During the time of Flysch deposition large scale synsedimentary deformation took place, enhanced . by probably continuous, subsequent tectonic compression, generating a complex imbricate structure of tight folds and folded overthrusts where VS anticlines are exposed between, and often thrusted on, Flysch synclines. Deformation was accompanied (and followed) by low grade (zeolite-lower greenschist) and low pressure regional metamorphism of essentially isochemical nature. On the basis of the above we favour that the plate tectonic setting of the Iberian Pyrite Belt probably corresponds to an early continental rifting situation, or to a back arc basin associated with subduction further North, in which case the Flysch phase of the basin and the tectonic activity would be related to closure of an adjacent ocean and continental collision. Aljustrel is one of the main mining centres of the

47

Iberian Pyrite Belt.


CHAPTER 3


GEOLOGY AND ORE DEPOSITS OF THE ALJUSTREL AREA

3.1 Introduction

est sector

Aljustrel is located in the Beja district of South Portugal (Fig. 3.1). The geology of the Aljustrel area (Fig. 3.2) has been described by Schermerhorn and Stanton (1969), Freire d'Andrade and Schermerhorn (1971) and Carvalho et al. (1976). Ribeiro et al. (1982) recently commented on the structural evolution of the area and the geological staff of Pirites Alentejanas, S.A.R.L., the Aljustrel mining company, produced a number of detailed geologic cross sections of the area (unpublished mine reports, 1978, 1979; L. Conde, J. C. Leitao, personal communications, 1978, 1978, 1980). Pirites Alentejanas,

S.A.R.L. is owned by the Portuguese Government (93%) and by Belgian private interests (7%).

3.2 Lithostratigraphy and ore deposits

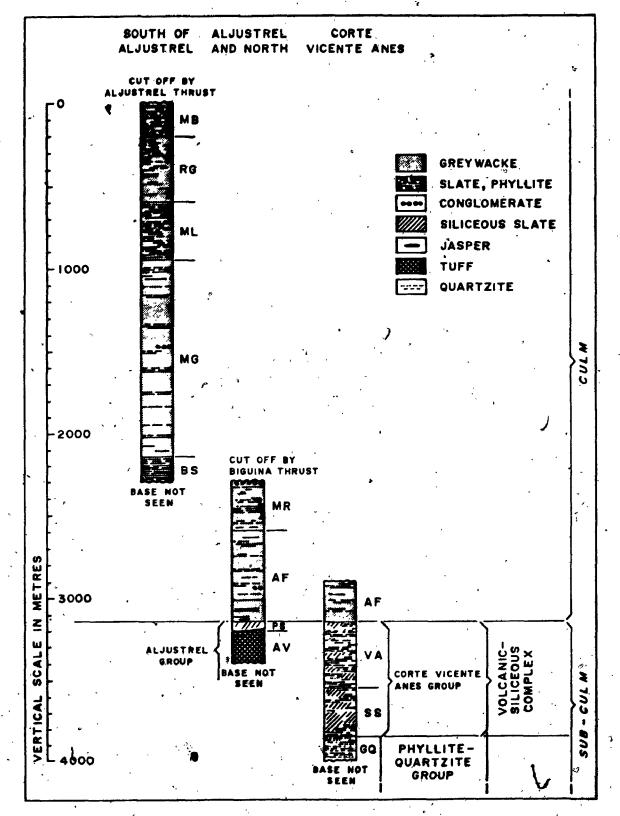
At Aljustrel the base of the ore bearing VS Group is not seen, nor does the regionally underlying PQ Group outcrop. VS (locally named Aljustrel Group) is composed of a thick (>250 m - base not seen) succession of felsic pyroclastic rocks (Aljustrel Volcanics)^o conformably overlain by a ~50 m thick unit of siliceous sediments, tuffites and rare tuffs (Paraiso Siliceous Formation, PS). At or near the contact between the Aljustrel Volcanics and PS several massive sulphide deposits occur, totalling nearly 250 Mt (Table 3.1), accompanied by prominent lenses and strata of chert and jasper and several small manganese deposits.

Aljustrel Group rocks outcrop within an elongated, ~ 1.5 by 5 km area (Fig. 3.2), surrounded by Upper Visean turbidites (Culm Group, up to 3000 m thick), except to the NW, where the Aljustrel Group is truncated by a major accident, the Messejana Fault, beyond which Paleozoic formations are buried under 60 to 100 m of Tertiary clastic and limy sediments (Sado Basin Formation) filling a major graben limited in the area by the Messejana Fault. The contact between Aljustrel Group and Culm Group rocks is conformable along the NE boundary of the latter (Feitais

Table 3.1. Quantities and compositions of the Aljustrel massive sulphide deposits, not including stockwork type ores. Tentative compilation after Freire d'Andrade (1967), Freire d'Andrade and Schermerhorn (1971), Carvalho et al. (1976), Montes and Silva (1979) and unpublished data from Pirites Alentejanas, S.A.R.L. Other elements present in potentially recoverable quantities include Au (0.7 ppm), Ag (35 ppm), Sb (1000 ppm), Hg (95 ppm), Bi (150 ppm), Cd (60 ppm), Se (35 ppm), Te (50.ppm), Co (200 ppm) and Mo (35 ppm). Significant stockworks are known at Feitais and Moinho.

·	Quantities of massive ore (10 ⁶ metric tonnes)				Composition (%)				
	Mined to date	Proven	RESERVES Indicated+Infer.	[`] S	Fe	Cu	Zn	Pb	
Algares	}	•	<5	*	\		1	1	
Moinho	6	16	45	1		0.55 to	3.5	1.2	
S. Joao	0	. 3	." 15 "	45	. 38	1.7		. .	
	г		· · ·	≻to	>to				
Gaviao	-	16	15.	47	41_	1.5 ·	3.0	.1.0	
Feitais	1	30	5 0 ،			0.6	3.0	1.3	
Estacao	۰ د	· •	- 40	J	ノ	0.3	3.6	1,1	

anticline). Elsewhere this contact is tectonic, through generally low angle thrust planes (Schermerhorn and Stanton, 1969; Ribeiro et al., 1982).

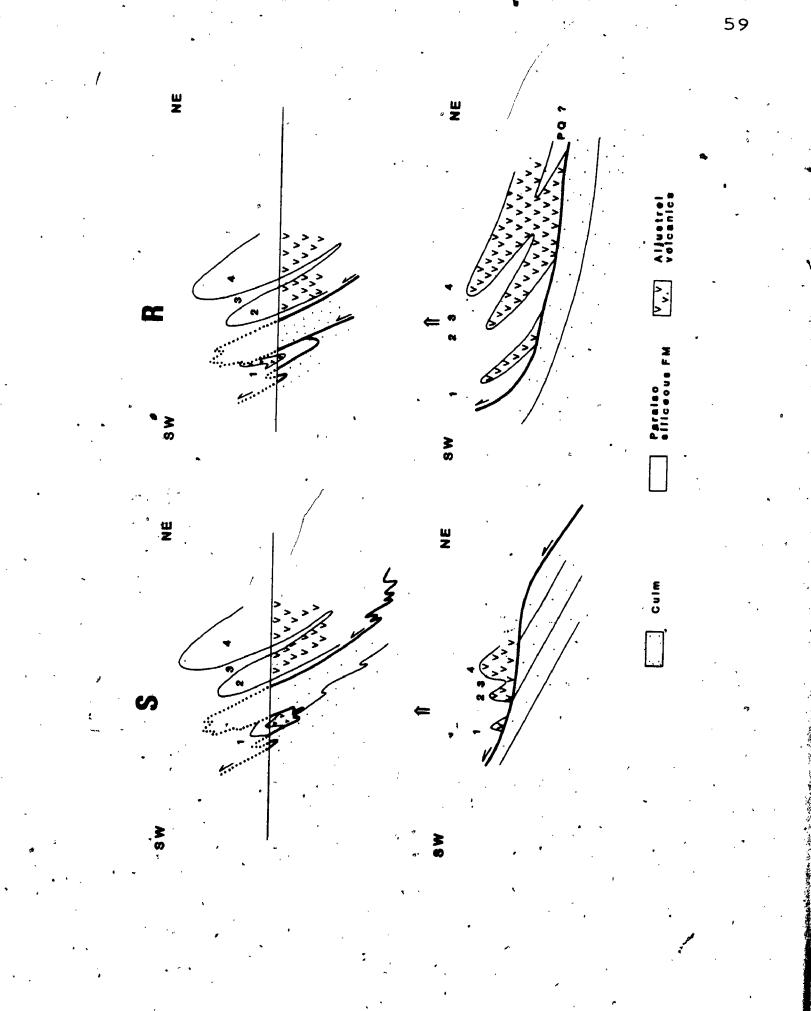

To the South and Southwest vicinities of Aljustrel VS Group rocks do not outcrop. 5 km Northeast of Aljustrel, near Corte Vicente Anes, VS is again exposed, this time conformably underlain by PQ rocks, as a \sim 700 m thick sedimentary and distal volcanic sequence (dust tuffs, tuffites). The Aljustrel and Corte Vicente Anes lithostratigraphic columns are represented in Figure 3.3. To the Northwest the Aljustrel Group continues under the Sado Basin cover (\sim 3 km offset by the Messejana Fault) for another 2 km, until it interfingers with fine grained slates and dust tuffs (Gaviao Formation) and also with mafic pillow lavas and diabase sills related with a mafic volcanic centre near Milhouros, 7 km NW of Aljustrel.

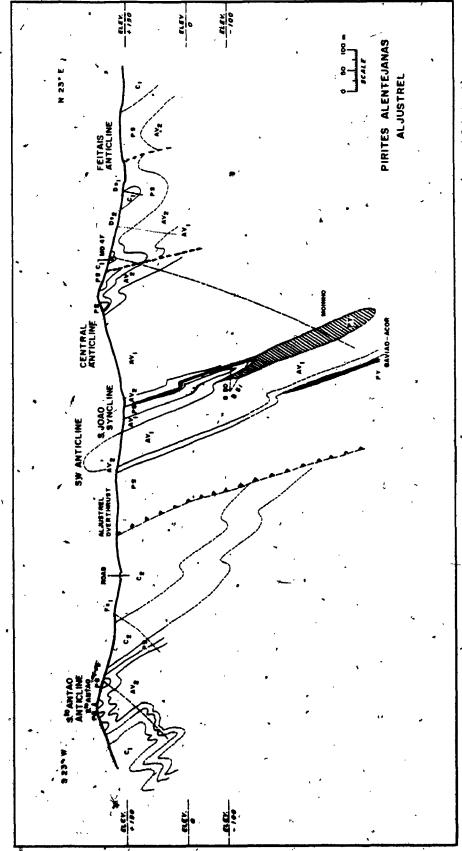
3.3 Structure

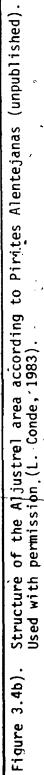
Aljustrel Group rocks occur as a series of tight to isoclinal anticlines trending NW-SE, separated by intervening synclines and/or thrust faults. Axial planes dip steeply to the NE. From NE to SW the anticlines are named the Feitais Anticline, Central Anticline and Southwest Anticline, with the much smaller, Santo Antao Anticline still further SW (Fig. 3.2). In each it can be seen that the Aljustrel Volcanics are conformably overlain

Figure 3.3.

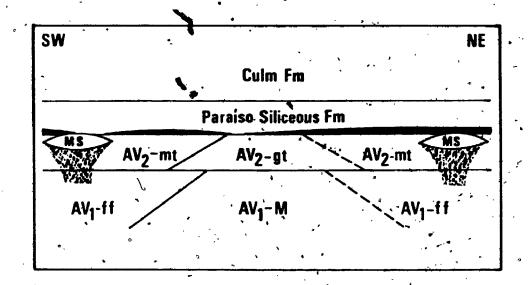
Columnar sections showing lithostratigraphic divisions of the Paleozoic of the Aljustrel area. GC, Gomes Quartzite; AV, Aljustrel Volcanics; PS, Paraïso Siliceous Formation; SS, Seixo Siliceous Formation; VA, Vale de Agua Formation; AF, Agua Forte Greywackes; MR, Monte Ruas Slates; BS, Brunheiras Slates; MG, Maroicos Greywackes; ML, Mau Ladrao Slates; RG, Represa Greywackes; MB, Monte da Broca Slates. After Schermerhorn and Stanton (1969).


by the PS Formation. All but the least ductile Aljustrel Group rocks (cherts, massive felsites) display strong schistosity (main cleavage) striking NNW, at a smallangle with the axial planes of the folds, with vertical or steep-NE dips. According to published reports two major low angle overthrusts brought the Alfustrel Group and Corte Vicente Anes Group rocks to rest on a several hundred metre. thick monoclinal sequence of Culm rocks, implying lateral displacements (NW to SE) of the order of many kilometres. These are respectively the Aljustrel and Biguina⁴ overthrusts, active at the onset of the Hercynian Orogeny, and representing the earliest deformation events in the area. "Movement along these thrust planes took place prior to the development of cleavage, and generated gentle, open folds. The Aljustrel and Biguina overthrusts were therefore probably synsedimentary thrusts (Ribeiro et al., 1979; Ribeiro, 1981; see Chapter 2).**


The main phase of Hercynian compression followed the above early deformation stage, and was approximately coaxial with it, tightening all structures, and folding the early overthrust planes (Schermerhörn and Stanton, 1969), or produced later thrusting of the inverse flanks of the now overturned anticlines (Ribeiro et al., 1982). The final result of these two main successive phases of (probably continuous) deformation is that the Central, Southwest and Santo Antao anticlines are believed to float


on many hundred metres of (younger) Culm rocks which constitute a monoclinal sequence. The Feitais Anticline is in conformable contact with Culm, and its core (not seen) could still rest on a VS "basement" (Fig. 3.4a). Aljustrel mine geologists defend a substantially different interpretation (Fig. 3.4b), essentially based on their own Culm Group stratigraphy and style of deformation. The main point of immediate concern to the present report is that the Feitais Anticline is the least deformed structure in the Aljustrel grea (Figs. 3.2 and 3.4), and was therefore selected as the more favourable area for field work and sampling.

The Central Anticline (or anticlinorium) is occupied by a thick (>250 m - base not seen) sequence of coarse, quartz and feldspar phyric tuffs, the Megacryst tuff (AV1-M, below, >200 m thick) and the Green Tuff (AV2-gt, above, 0-50 m thick). The SW, Santo Antao and Feitais Ganticlines contain a mutually equivalent but different pyroclastic sequence, of finer grained tuffs consistently devoid of quartz phenocrysts, the felsitic facies tuffs (AV1-ff, below) and the mine tuffs (AV2-mt, above). The massive sulphide deposits occur as two lineaments within the SW and Feitais anticlines, at or near the top of the mine tuffs. The spatial relationship between the different tuff facies has been observed at various locations, and is schematicaily illustrated in Figure 3.5. AV2-gt and AV2-mt Early overthrusting folding of the overthrust plane (S, Schermerhorn and After sequence of younger Culm turbites (lower sections), followed by Stanton, 1969) or, alternatively development of tectonic thrusting (R, Ribeiro $et_{a}^{s}al.$, 1982). of Aljustrel Group rocks on a monoclinal Structure of the Aljustrel area. gure 3.4a


Ribeiro et al. (1982).

•60

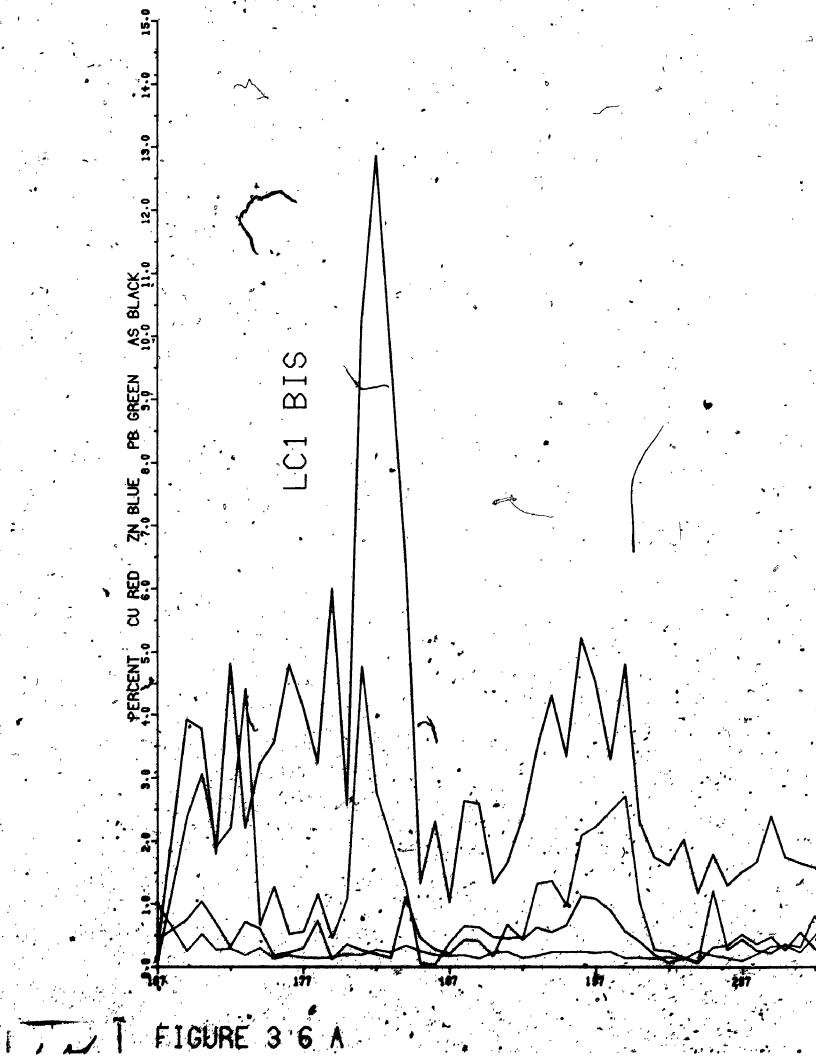
• Figure 3.5.

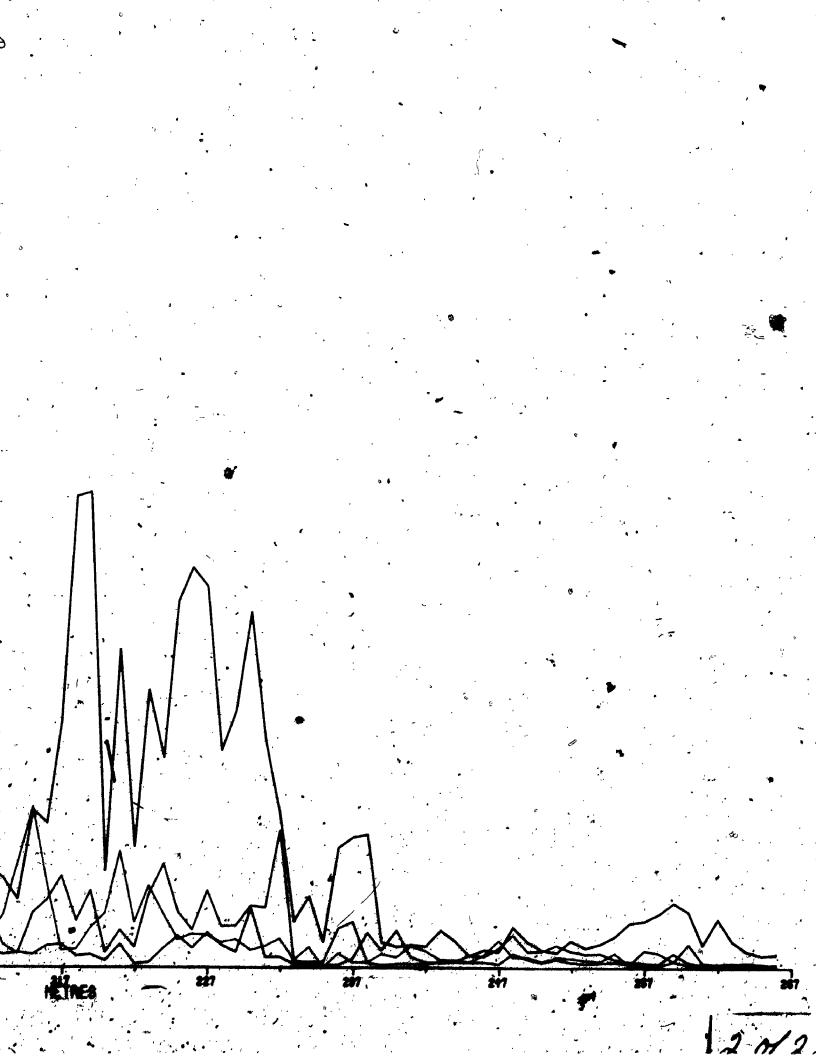
Schematic lithostratigraphy of the Aljustrel Group (overlying Culm Group also shown). AV, Aljustrel Volcanics. MS, massive sulphide deposits. Jasper unit shown in black. AV₁-M+AV₂-gt: Quartz-eye Tuff Formation (this study). AV₁-ff+AV₂-mt: Mine Tuff Formation (Carvalho et al., 1976). Modified after Freire d'Andrade and Schermerhorn (1971). 61

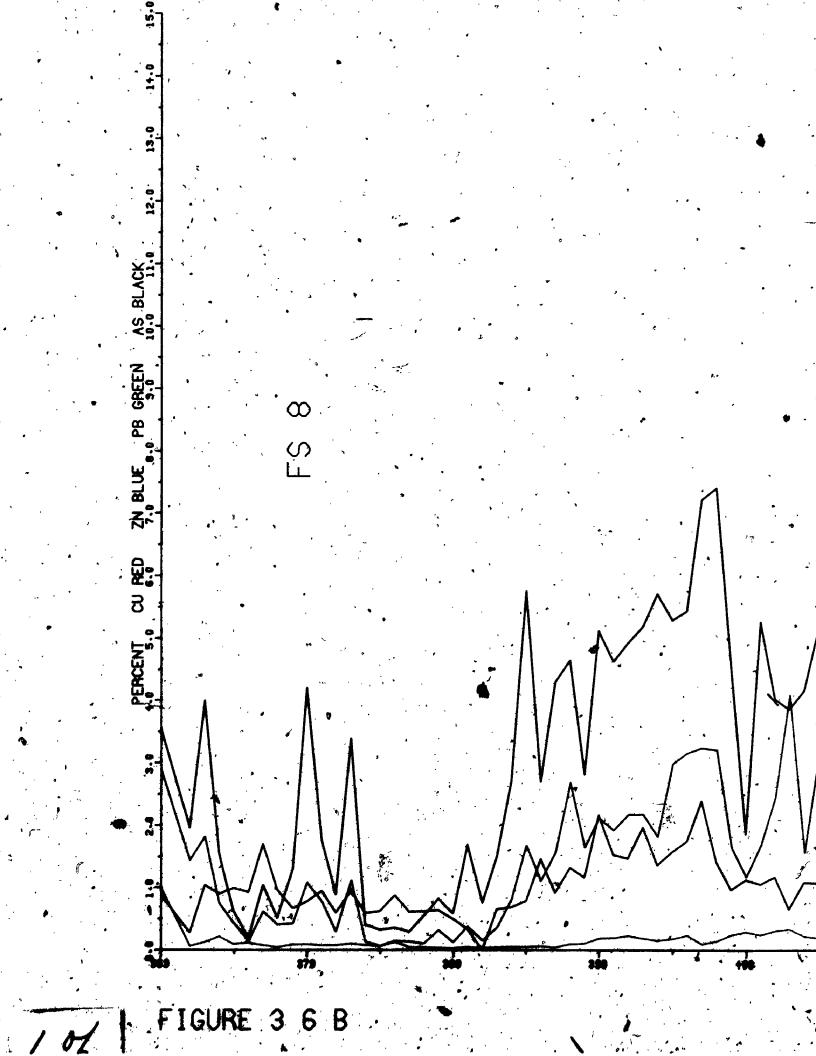
are laterally equivalent, whereas AV_1-M and AV_1-ff are partly so; AV_1-M has been found under AV_2-ff at several locations. AV_2 -mt and AV_1-ff interfinger peripherally with the Gaviao (SW) and Seixo^a (NE) Formations, which are dominantly sedimentary with minor dust tuffs and tuffites.

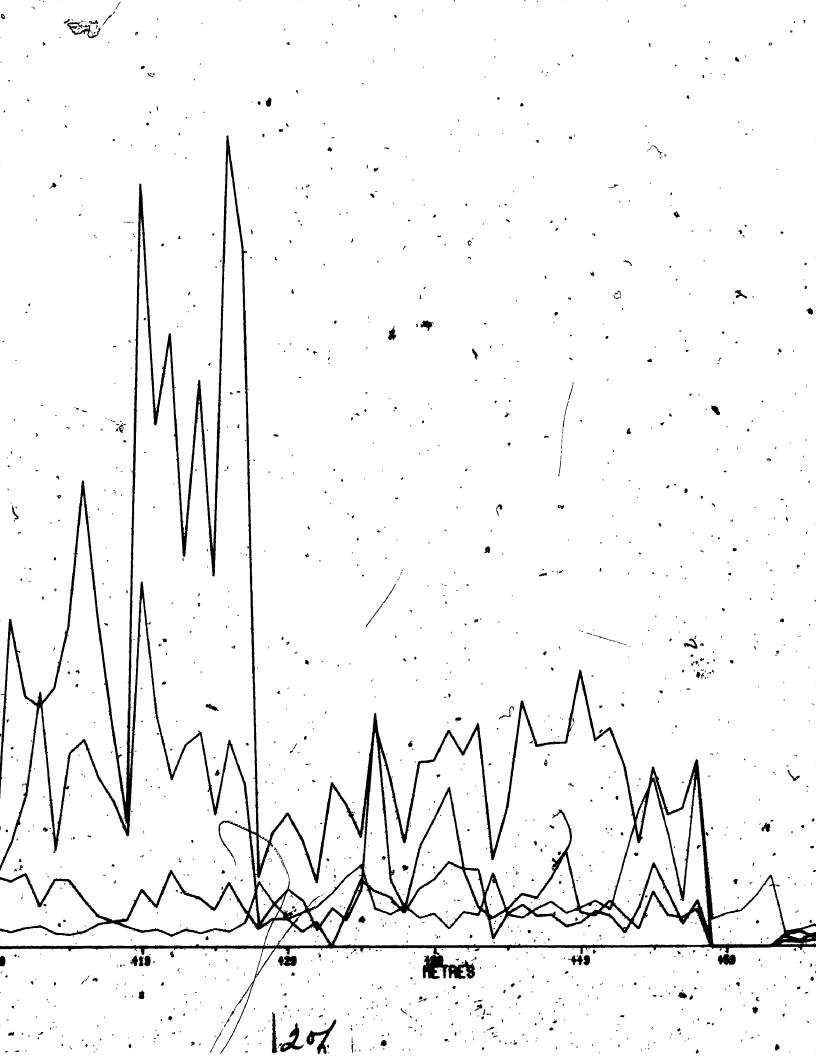
The SW Anticline is an isoclinal, asymmetric structure, linked to the Central Anticline through an equally tight syncline, the S. Joao Syncline. Mineralization (Algares, Moinho, S, Joao do Deserto and Gaviao) extends for about 4 500 m in the SE-NW direction of the structures, with an 800 m gap between Algares and Moinho Elsewhere along this lineament mineralization is essentially continuous, occurring on both flanks of the S. Joao syncline; intense deformation folded the sulphide lenticular bodies. Their original peripheral areas are presently close together, as subparallel vein Tike bodies dipping steeply to the NE and coalescing at depth. Hanging wall rocks are markedly tectonically displaced and This SW lineament of orebodies is therefore not, thinned. appropriate for detailed genetic studies.

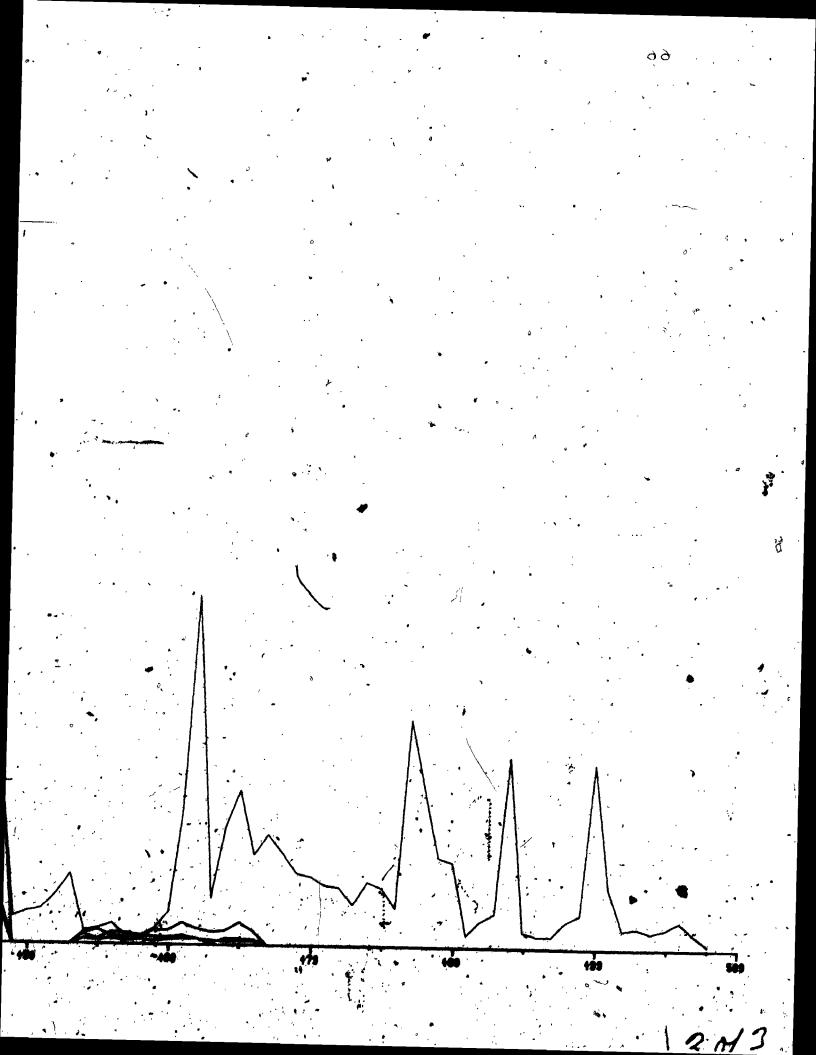
In contrast, the Feitais Anticline contains an elongated, once continuous ore zone nearly 1 700 m long (minimum length), the Feitais and Estacao orebodies lying on the normal, NE flank of the anticline, on top of a thick succession (~ 200 m, base not seen) of Mine Tuff, overlain by prominent bedded cherts and jaspers in turn overlain by the PS phyllites and tuffites.

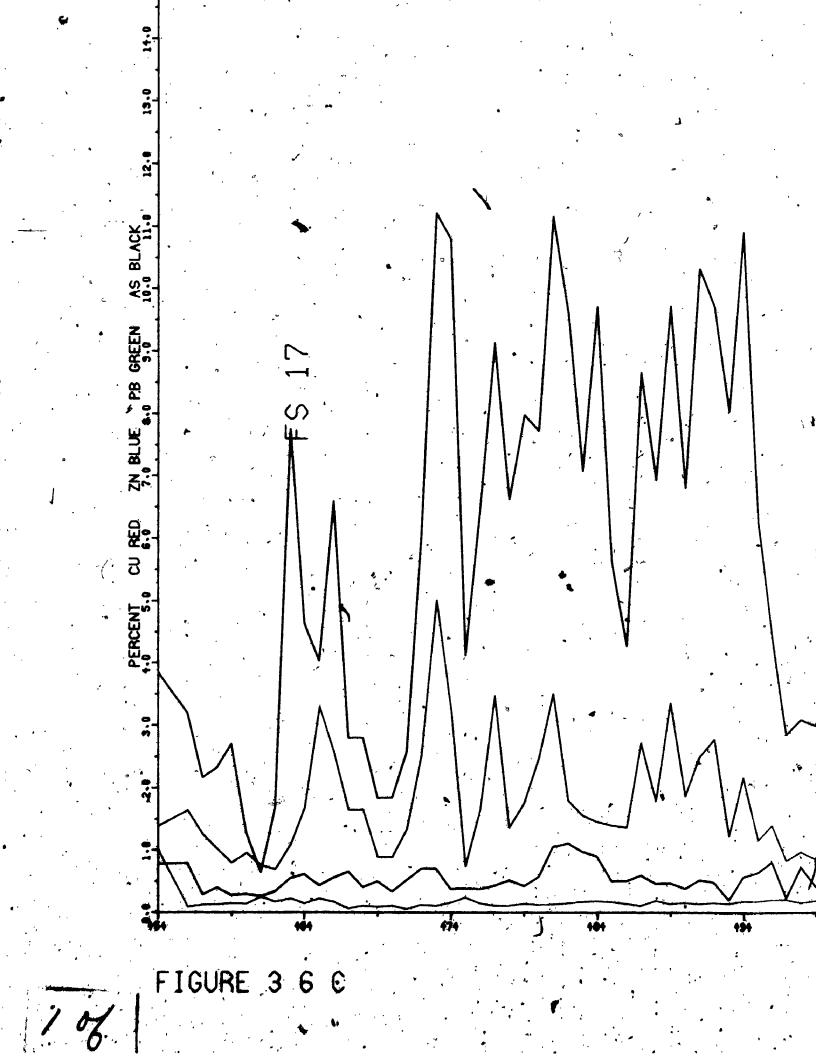

3.4 Base metal zonation in the Featuris orebody.

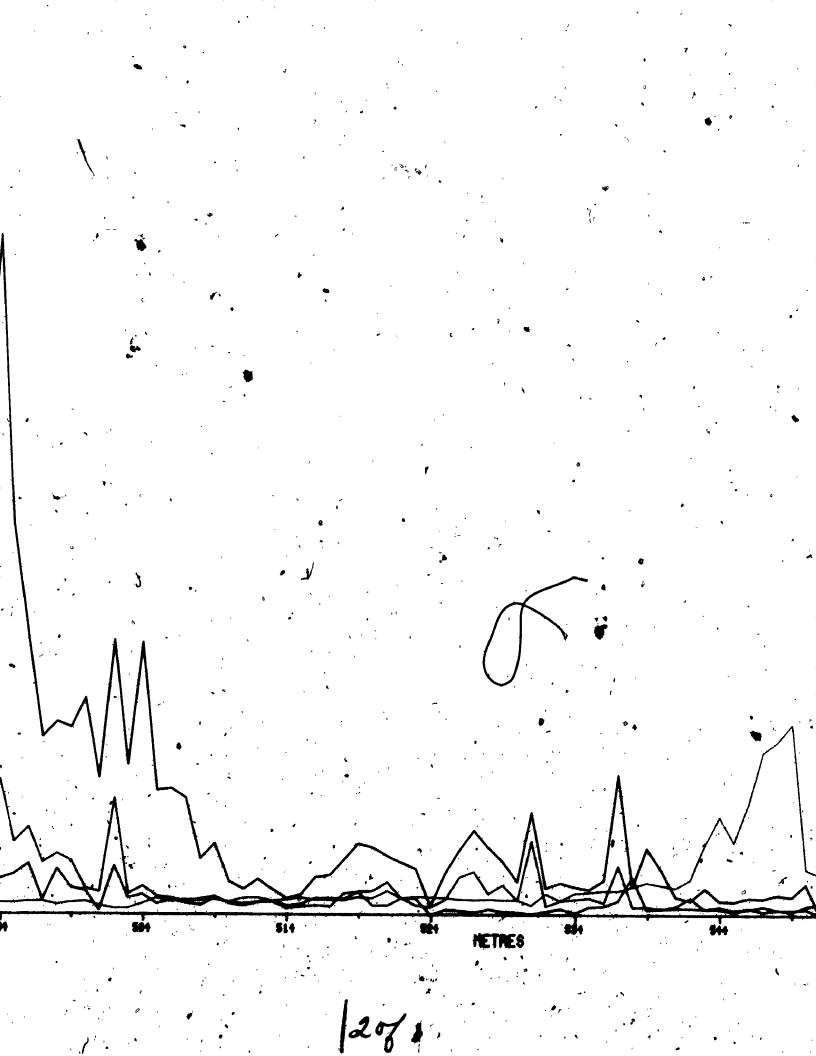

63

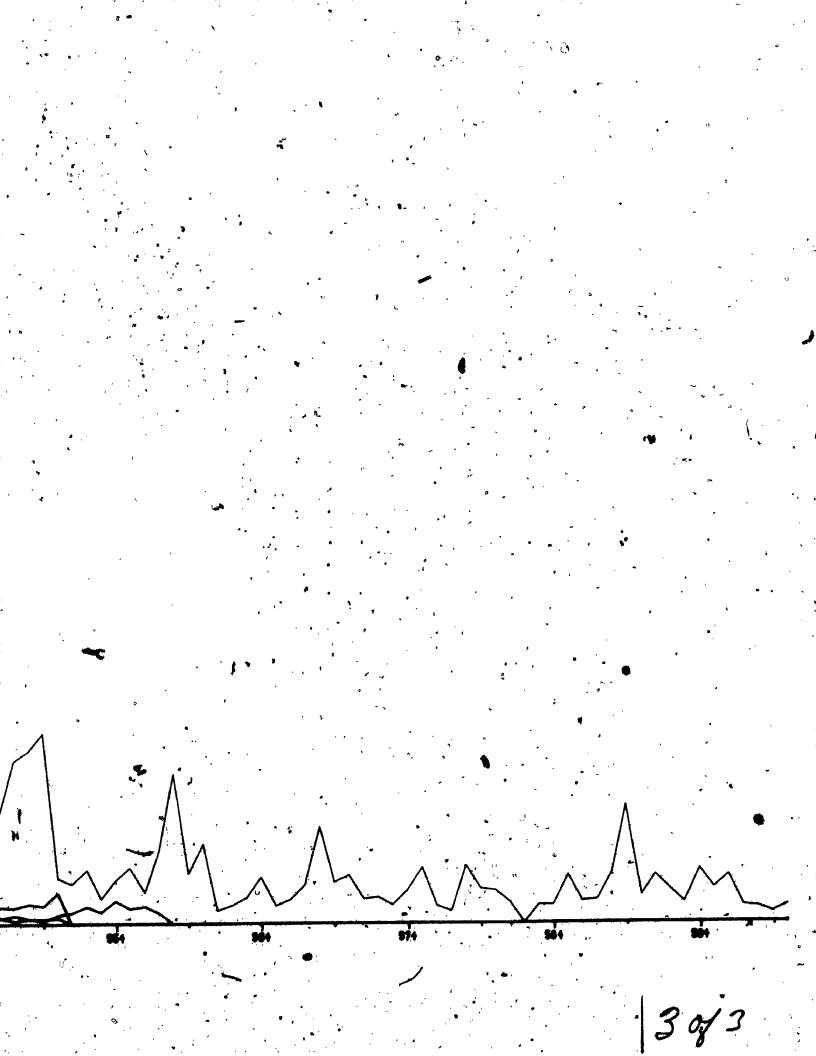

The Feitais massive and stockwork sulphide orebody and its associated lithologies will be described in detail in Chapter 5 of this thesis; Figures 3:6 a to d illustrate the Cu, Zn, #Pb and As. abundances along 4 drillholes which transect the deposit (data from unpublished drillhole logs, Pyrites Alentejanas, 1963 to 1971). It is apparent that metal abundances vary widely, and that high grade domains 'are frequently intercalated in essentially massive pyrite. Zn and Pb are strongly covariant, Zn + Pb concentrations frequently exceed 15%, especially near the stratigraphic. top of the massive orebody. Cu is generally low within massive ore, although locally abundant (as ore shoots)-near its base, and especially within the footwall stockwork zone, where drillholes have often intersected many tens of metres of disseminated and stringer mineralization containing 3% Cu, intercalated in equally long barren domains. Stockwork Cu rich mineralization is invariably hosted in chlorite - quartz or chlorite - quartz sericite rock, and the unmineralized intercalated sections are occupied by islands of volcanic rocks (Mine Fuff) indistinguishable from those occurring away from the . sulphide orebody.

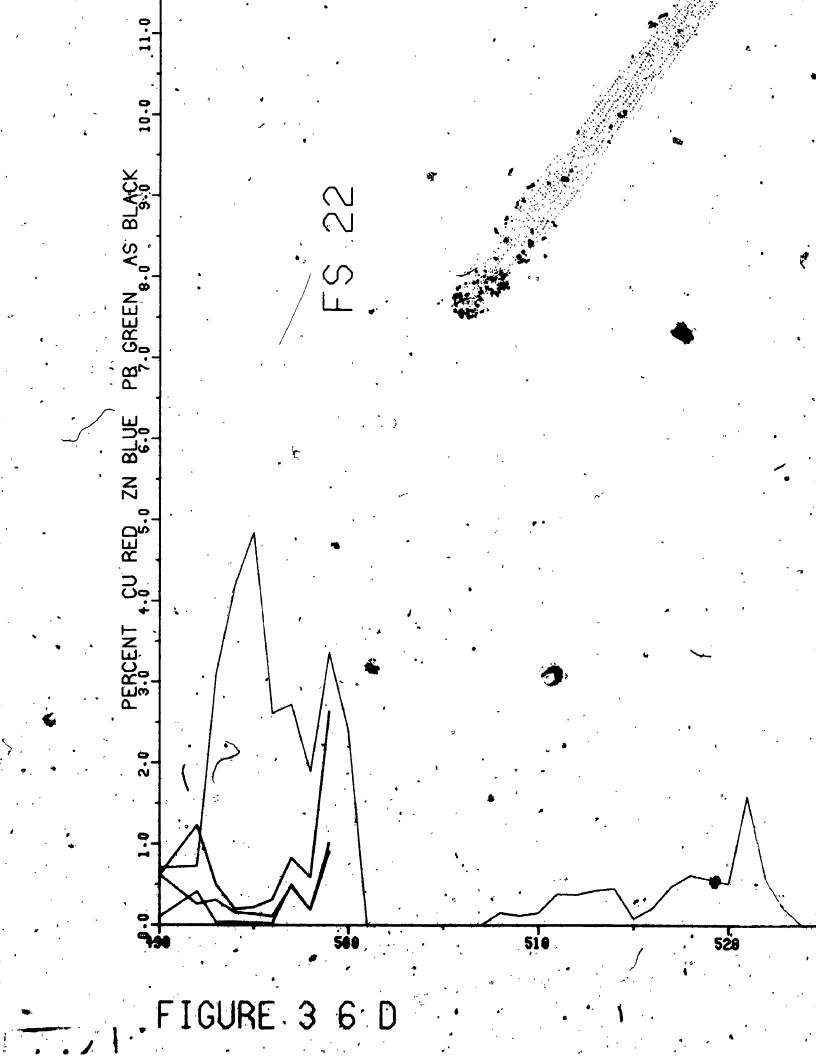

The data briefly outlined above shows that the

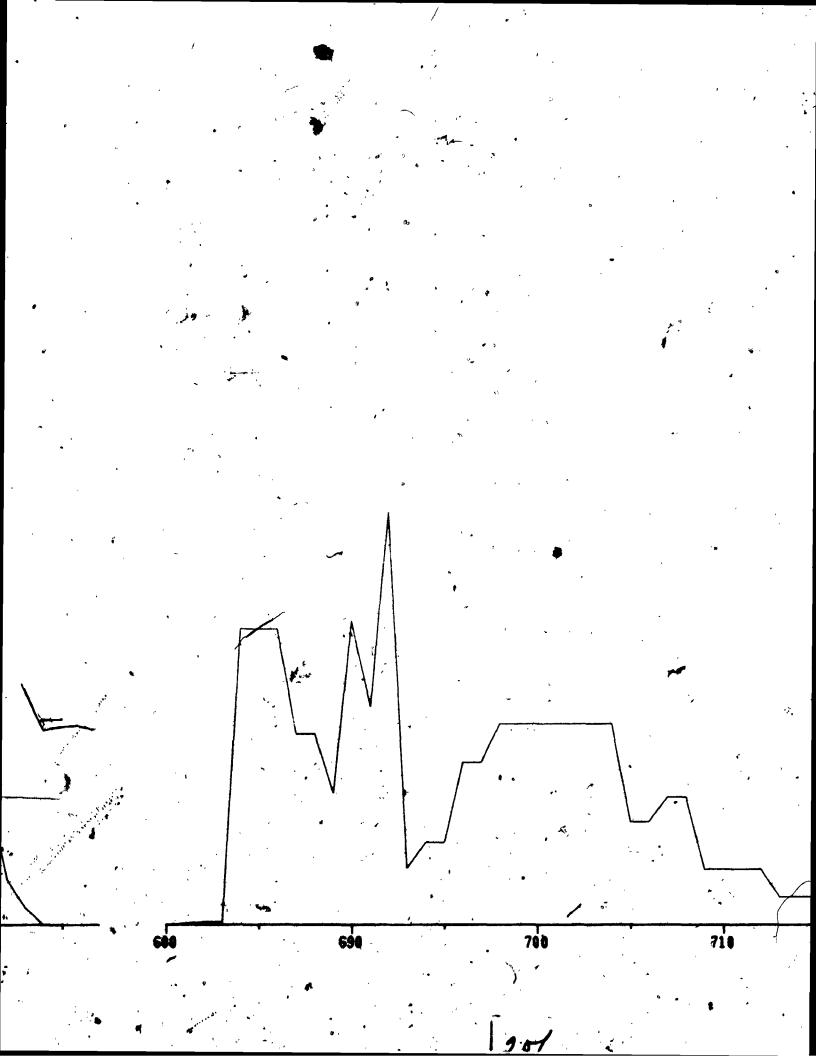

Figure 3.6a to d. Diagrams illustrating the variation of Cu, Zn, Pb and As abundances along drillholes transecting massive and stockwork ore, nearly at right angles with the massive ore lens. Zones where only Cu is reported are stockwork. Feitais orebody.

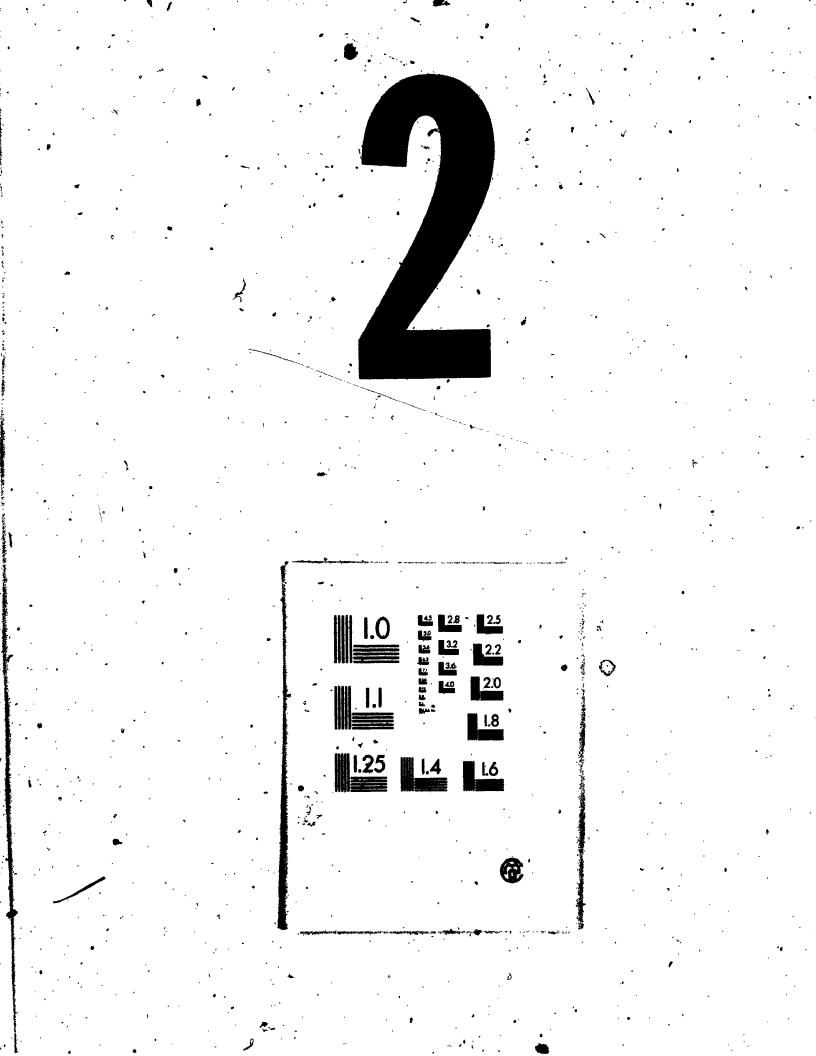











89 ---ie METRES 750 . 738 740 ٢, ¥, 3013

relatively low base metal grades listed in Table 3.1 are a consequence of averaging medium and even high base metal grades with the low base metal contents of vast pyritic domains of the sulphide deposit, which would not be considered ore in most other metallogenic provinces. Regarding the Cu rich stockwork zone, it is located mainly 400 to 700 metres below surface (see Appendix VI), and at the present time is not properly surveyed with regard to size and grade.

The prominent base metal zonation outlined above compares well to similar features of many other massive sulphide deposits (Hutchinson, 1973; Franklin et al., 1981) and is of particular interest to this study, as it shows that the metals were deposited along well defined physicochemical gradients (see Chapter 5).

3.5 Concluding remarks

The Aljustrel Group rocks (including ores) were formed in the course of felsic, submarine, explosive volcanism which took place in Visean times and produced >10¹ km³ of pyroelastic rocks. These can be gaouped as follows: a central unit of coarse quartz-eye tuffs (Megacryst Tuff and Green Tuff), flanked on oither side by finer grained felsic tuffs devoid of quartz phenocrysts (fels(thic, and feldspar phyric tuffs, named Felsitic facies and Mine tuff, and together Mine Tuff Formation). At the waning stages of 6,9

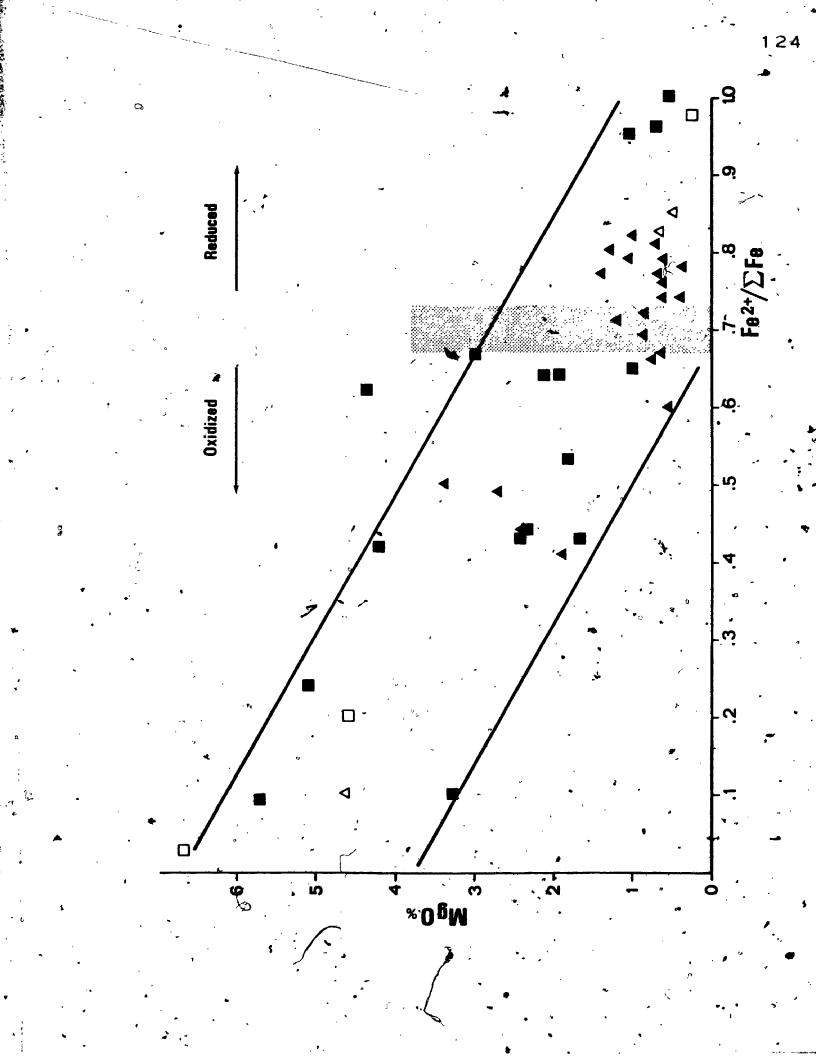
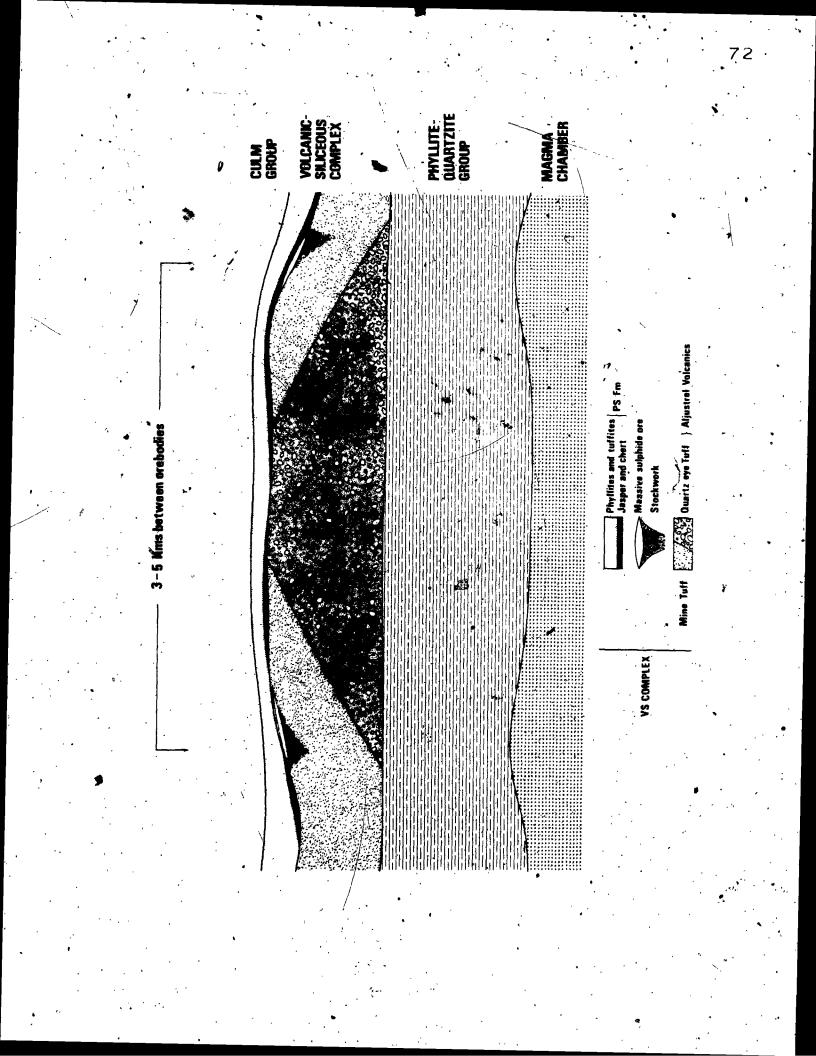



Figure 3.7. Schematic representation of the possible pre deformation relations between the various Aljustrel rocks. Magma chamber and Phyllite-

Quartzite Group not seen.

restricted to one of the symmetrical halves of the system, given the structural differences previously outlined. For the sake of clarity Aljustrel volcanic rocks markedly affected by ore forming fluids will be described as part of the ore system (Chapter 5).

THE ALJUSTREL VOLCANICS

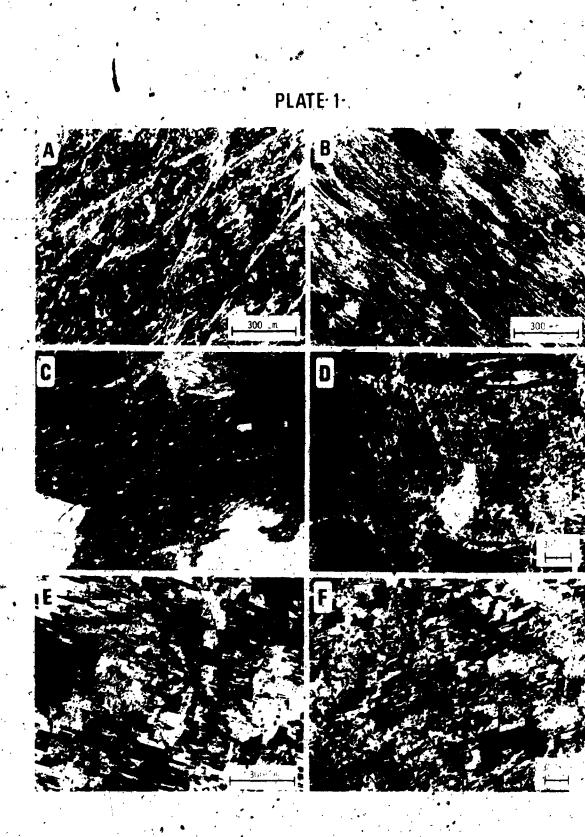
CHAPTER

4.1 Introduction - 1

The main purpose of the present study of the Aljustrel Volcanic rocks was to find out whether or not had they been affected by sea water hydrothermal metamorphism and, if so, to evaluate the nature and extent of such phenomena and to delineate the history of the possible Aljustrel paleo hydrothermal system. In the course of work it became clear that the Aljustrel volcanic rocks had been far more metasomatized than anticipated. Part of the diversity detected by previous work in the area (see Chapter 3) does not reflect primary differences, it rather derives from large scale interaction with convectively circulated sea

water through the highly permeable submarine pyroclastic rocks. The data reported here supports a model for the origin and relations of the various Aljustrel Volcanic facies which is more detailed and somewhat different than those proposed by earlier authors, although rooted in their excellent geologic observations.

4.2 Petrography


The Aljustrel volcanic rocks are mostly composed of granular tuffs (Schermerhorn, 1975, 1976), characterized by a fragmental matrix composed of felsitic grains enclosed in an almost submicroscopic framework of sericite and felsitic matter <u>+</u> chiorite (Plate 1A, 1B). Felsitic grains vary in size (mostly 0.05 to 1 mm), shape (more or less rounded or lensoid) and composition (generally quartz-feldspar, sometimes feldspar <u>+</u> sericité), and can be closely packed together with only minor intersticial sericitic-felsitic "cement", or inversely this cement can predominate, generating a "dilute greywacke" texture (Schermerhorn, 1970b). Sericite in the cement depicts marked preferred orientation, parallel to the main cleavage (invariably present except in massive felsites). Recognizable cuspate shards are rare.

The granular matrix described above usually contains, variable amounts of crystals and crystal fragments of several minerals, lithic fragments and larger devitrified

(all scale bars $300 \,\mu$ m)

PLATE 1

- A. Tuff matrix (Quartz-eye tuff) dominated by grains of felsitic matter cemented by sericite. Crossed nicols.
- B. "Dilute greywacke" texture in tuff matrix (Mine tuff), dominated by a sericite-quartz-feldspar cement with sparse grains of felsitic matter: Crossed nicols.
- C. Megacryst facies of Quartz eye Tuff. Note preferred orientation of alkali feldspar megacrysts. Pen is 15 cm long.
- D. Igneous albite phenocryst, intensely hydrolised into sericite and minor_calcite, surrounded by metasomatic chessboamd albite (QET). Crossed nicols.
- E. Chessboard textured albite (QET). Crossed nicols.
- F. Poorly developed crystal of chessboard albite, at the expense of tuff matrix. Green facies of QET. Crossed nicols:

glass fragments. Variations in the nature, size and relative abundance of all these components distinguish the various Aljustrel tuffs. Carvalho et al. (1976) and Schermerhorn (1976) grouped the Aljustrel Volcanics in two main divisions, the Megacryst Tuff and Green Tuff "sequence" and the Mine Tuff Formation. We propose the designation "<u>Quartz-eye Tuff</u> (QET) <u>Formation</u>" to the former "sequence", and will use the designation Mine Tuff (MT) Formation in the same sense as those authors.

4.2.1 Quartz-eye Tuff

Quartz-eye tuffs are known to occur at Aljustrel in the Central Anticline, and under the Mine Tuff Formation rocks in the S. Joao Syncline and SW anticline (see Chapter 3), occupying a minimum volume of 2 km³. Schermerhorn (1976) described the petrography of these tuffs (Megacryst Tuff and Green Tuff), which are grouped here in view of their marked similarities, and on the conviction that many of the differences between the two main types (Megacryst Tuff and Green Tuff) are not primary igneous (see below). Quartz-eye tuffs from Aljustrel are characterized by the invariable presence of abundant, randomly distributed quartz phenocrysts in a relatively coarse granular matrix (felsitic grains averaging 0.5 mm). These Quartz-eye tuffs always contain crystals of other minerals as well, especially alkali and plagioclase feldspars, but these

occur also in the Mine Tuff rocks; whereas quartz phenocrysts are rare or absent in Mine tuffs.

Quartz phenocrysts are subhedral to rounded, often broken, and attain. 6 mm in diameter. In hand specimen they are somewhat bluish, and under the microscope they generally depict undulose extinction, deformation bands or even subgrains which do not affect the continuity of frequent fluid inclusion rows. Another prominent feature of these quartz phenocrysts is that they frequently contain corrosion embayments filled with microcrystalline quartz and felsitic matter. Quartz phenocrysts in the top layers of the QET (Green Facies, see below) often show partial replacement by chlorite and chlorite-sericite aggregates.

Féldspar crystals of various sizes, habits and compositions are also very frequent in Quartz-eye Tuff rocks. Some are true phenocrysts formed at the magmatic stage of the history of the rocks, but others are believed to have formed after emplacement of the rocks, during metasomatic, subsolidus events. We diverge from Schermerhorn (1976), who suggested that K feldspar megacrysts in the Quartz-eye tuffs of Aljustrel are an intratellyric phase.

<u>Feldspar phenocrysts</u> include Albite and/or Carlsbad twinned albite up.to 8 mm in size, and less frequent (sometimes perthitic), microcline crystals, seldom larger than 2 mm. Feldspar phenocrysts are very often fragments.

of euhedral crystals, and are nearly always mottled with unoriented or mosaic sericite inclusions; sometimes epidote (<u>+</u> carbonate) inplusions are present, with or instead of sericite , Feldspar phenocrysts are often completely replaced by sericite flakes.

<u>Alkali feldspar megacrysts</u> are a frequent and striking feature of the Aljustrel Quartz-eye tuffs, as they can attain 4 cm in length and occur only a few cms apart from each other, with weak preferred orientation, often parallel or subparallel to rock cleavage (Plate 1C). Larger megacrysts are nearly always euhedral, and no isolated megacryst fragments were found; when disrupted by brittle deformation the resulting fragments lie close together. Smaller (down to a few millimetres) alkali feldspar megacrysts are usually more or fess rounded, or globular elongated. They are composed of invariably fresh (apart from sporadic late stage replacement by coarse cristalline calcite) albite, K-feldspar, or both.

Alkali feldspar megacrysts often contain inclusions, of both tuff matrix and igneous phenocrysts. Tuff matrix inclusions vary in shape: they can be elongated, globular or irregular. Albite (igneous) phenocrysts included in alkali-feldspar megacrysts are invariably sericitized and/or epidotized, with or without, accompanying calcite (Plate 1D). Albite megacrysts are crystal-clear, frequently chessboard textured (Plate 1E). According to

Smith (1974, Vol. II, p. 278) "Chessboard albite is characterized by crystals containing many Albite twins whose lamellae consist of short plates on (010) which either wedge out or are abruptly truncated by (010). The plates are not of equal size and are not stacked in a lattice array. Nevertheless the parallelism of the (010) $_{0}$ faces and the elongation along c tend to produce a . rudimentary pattern which led to the name of chessboard albite". There is considerable controversy regarding the origin of chessboard albites (see Smith, op. cit.). 0u r observations suggest that chessboard albite megacrysts in the Aljustrel Quartz-eye tuffs are due to hydrothermal porphyroblastic growth, much in the same way as proposed by Battey (1955) for the chessboard albites in the New Zealand' keratophyres. Plate IF illustrates the development of chessboard albite from isolated patches of a fullecrystal, with remnants of tuff, matrix left within the chessboard albite. Albite megacrysts not depicting chessboard textures (i.e., apparently untwinned) also occur. It is not known whether the lack of chessboard texture is real of simply hidden by orientation (sections parallel to 010).

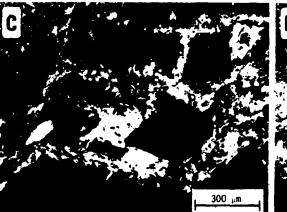
Equivalent K-feldspar megacrysts also occur in the Quartz-eye Tuff, although they are much less abundant than albite megacrymts. They are morphologically indistinguishable from their albite counterparts, and under

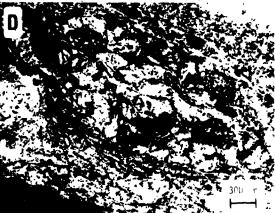
the microscope they can easily be mistaken for non-chessboard albite, and vice-versa. In the course of the present study 43 samples of Quartz-eye tuffs including about 50 alkałi feldspar megacrysts were studied under the optical microscope and extensively analysed by electron microprobe (see below). About 70% of the megacrysts are albite, 20% K-feldspar and only 4 samples contain intergrowths of both. At the scale of hand specimen these , three types were never seen to coexist, and intergrowths in, different crystals from the same sample, when present, contain approximately constant proportions of albite and K-feldspar. Intergrowths are due to replacement, K-feldspar replaces albite (Plate 2A), although the inverse cannot be ruled out (Plate 2B). Some of these replacement textures resemble patchy perthites. No true perthites were Adularia (in the textural sense of the word) is seen. sometimes present, both within veinlets and scattered in the tuff matrix (Plate 2C).

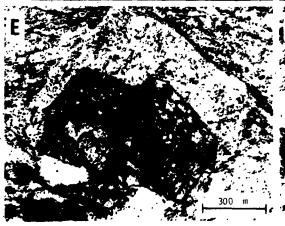
82

Alkali feidspar megacrysts were also studied by the 3 peak X-ray diffraction method (Wright and Stewart, 1968; Wright, 1968).- Results are plotted in Figure 4.1, and show that the alkali feldspar megacrysts are composed of low albite and maximum microclific end members, in good agreement with the textural evidence for (hydrothermal) metasomatic origin. The paragenetic relations among the various feldspars are as follows:

PLATE 2


101


(all scale bars 300μ m)


- A. Deeply altered igneous albite (lower right) surrounded by hydrothermal albite (AB) in turn partly replaced by K-feldspar (FK). QET. Crossed nicols.
- B. "Islands" of chessboard textured albite in K-feldspar megacryst (FK). QET. Crossed nicols.
- C. Adularia (black) in vein in QET. Same sample as A. Crossed nicols
- D. Almandine garnet-bearing lithic fragment in QET. One nicol only.
- E. Euhedral almandine garnet (partly replaced by chlorite) hosted in albite (igneous) phenocryst (QET). One nicol only.
 - F. Allanite (dark) overgrown by Glear radiating epidote. Green facies of QET, one nicol only.

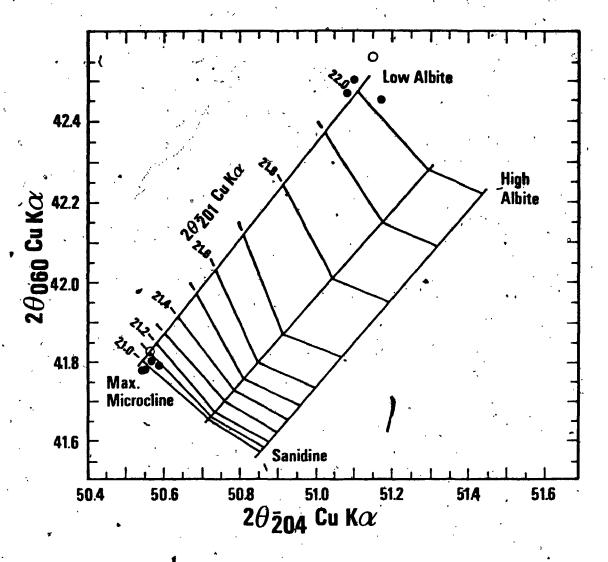


Figure 4.1. X-ray diffraction data for alkali-megacryst feldspars in the QET, illustrating that these are low temperature feldspars. Solid circles, coexisting albite and Kfeldspar; open circles, one feldspar only in megacrysts.

Original (igneous)

Abundant albite phenocrysts

Minor microcline phenocrysts

Abundant albite and (?) K-feldspar in the matrix (or their glassy precursors)

Metasomatic

Early alteration of igneous albite (sericite, epidote, calcite)

Subsequent formation of metasomatic albite Subsequent formation of metasomatic K-feldspar

Much smaller and scarcer crystals of biotite (?), garnet, zircon, apatite, allanite and Fe-Ti oxides (containing sphene) also occur, as well as interstitial, poikilitic and overgrown secondary sericite, chlorite, epidote, calcite in often important amounts and very rare greenish brown stilpnomelane, sphene, pyrite, chalcopyrite and sphalerite. Fluorite occurs sporadically, especially as millimetric veins particularly abundant within the stratigraphic top of the Quartz-eye Tuff formation (vein spacings in the order of tens of metres).

Biotite (?) microcrysts are rare and completely altered into anomalous, mottled chlorite and opaque dust. Infrequent microcrysts of garnet occur mostly in lithic fragments (Plate 2D) and are totally or partially replaced by chlorite; fracture controlled partial replacement leaves angular fragments of completely fresh garnet (Plate 2E).

Allanite occurs as rounded or irregular rare microphenocrysts up to 0.7 mm in size, often overgrown by post tectonic euhedral radiating epidote (Plate 2F). Euhedral apatite (up to 0.5 mm long) and zircon are also frequent in QET rocks.

Fe-Ti oxides are also frequent accessories, both as microphenocrysts and as Ti-hematite minute scattered flakes. Their distribution varies strikingly from top to bottom in the Quartz-eye Tuff Formation, being one of the main causes of chemical zonation in the unit (see below). Thus in the uppermost tens of metres of the QET Formation (Green Tuff of previous authors) Fe-Ti rich phases occur as Ti-hematite + Teucoxene + pseudobrookite microphenocrysts and also as abundant minute Ti-hematite flakes. Deeper seated QET rocks do not contain Fe-oxide flakes, and microphenocrysts do not include Ti-hematite or magnetite; instead, they are composed of ilmenite + sphene + leucoxene. Magnetite was not found in any Quartz-eye tuff, despite extensive, electron microprobe assisted searches.

Textural relations of the various Fe-Ti minerals in the QET are illustrated in Plate 3A, B and C. They are interpreted as representing primary igneous exsolution of Ti-magnetite, ilmenite and rutile, followed by oxidation in the top layers of the QET and Fe leaching in deeper seated domains, perhaps with recrystallization of immobile Ti as sphene through reaction with Ca and Si either directly from

PLATE .3

- A,B. Opaque microphenocrysts found exclusively in Green facies rocks (uppermost QET and MT): ultra fine grained intergrown Ti-hematite + leucoxene + pseudobrookite (Fe203.TiO₂) rimmed by Ti-hematite. Note also minute flakes of Ti-hematite scattered in tuff matrix. It is believed that these minerals represent oxidation of primary igneous Ti-magnetite, rutile and ilmenite. QET, reflected light (oil immersion), one nicol only. Scale bars 100 µm.
- C. Typical opaque microphenocrysts occurring in Aljustrel volcanic rocks other than Green facies (deeper seated): leucoxene (white) + ilmenite (light grey) + sphene (dark grey). Note also the absence of opaque flakes in matrix. It is believed that this assemblage was obtained through Fe leaching of original igneous opaques identical to those of Green facies rocks. QET, reflected light (oil immersion), one nicol only. Scale bar 100 µm.
- D. Accidental lithic fragment composed of finely banded quartz and hematite QET, one nicol only. Scale bar 300 μm.
- E. Frayed end of "cherty quartz" lithic fragment, possibly formerly pumice. QET, one nicol only. Scale bar 300
- F. Sericite (+ minor chlorite, medium grey) inclusion in QET, possibly a flattened former cuspate glass shard. Subhedral white crystals are apatite. One nicol only. Scale bar 300 μm.

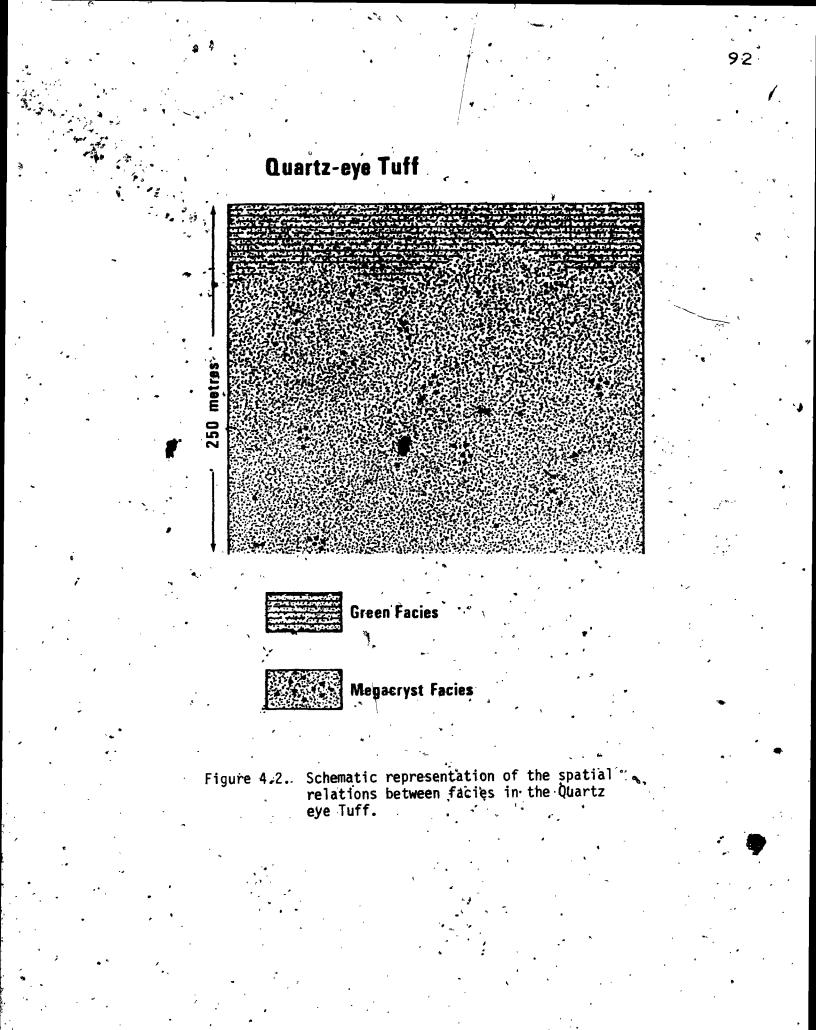
solution or from neighbouring mineral phases. These

changes can be summarized as follows:

Quartz-eye tuffs: Opaque Mineralogy

Top (Green facies, oxidized)	Original	• Deep zones (reduced)
Ti-Hem flakes	Ji-Mag flakes	(Leached out)
Ti-hem + lcx <u>+</u> pseudobr inter- g∎owths	Ilm + TI-Mag <u>+</u> Rut intergrowths	Ilm + Sph <u>+</u> Lcx intergrowths
	(Pyrite?)	Pyrite (sea water sulphur fixation)
	•	Fe oxides total- ly absent

Lithic fragments of sizes up to 10 cm are of frequent occurrence. They are mostly volcanic, although red chert fragments are also present. Finely banded quartz-Tihematite fragments of unknown origin were found in several samples (Plate 3D; compare with Ross and Smith, 1461, figure 87). Locally abundant irregularly len's shaped "cherty quartz" inclusions up to 5 cms long may corréspond to former pumice fragments (Plate 3E; note frayed ends). Rarely some sericite-chiorite-felsitic matter aggregates stand out from the granular matrix of the tuffs, and resemble cuspate glass shards (Plate 3F).

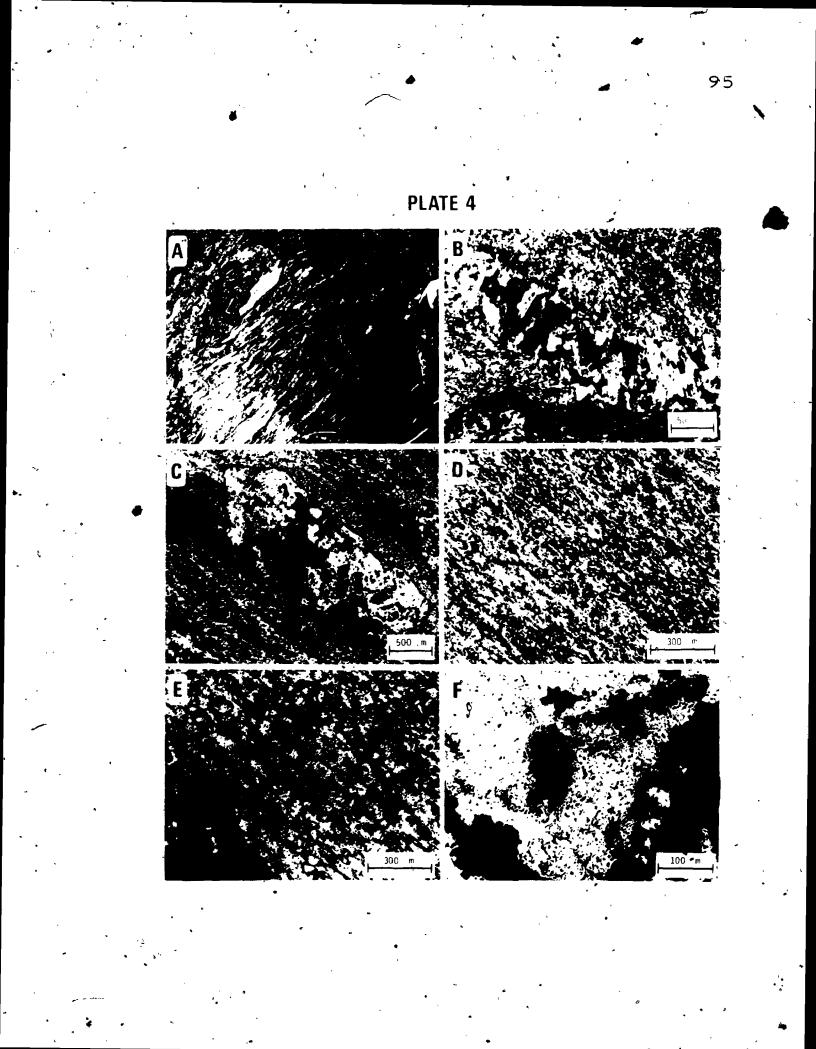

Megascopić zonation in the Quartz-eye Tutf Formation Three varieties of Quartz-eye tuffs exist, defined essentially on the proportion of sericito + chlorite in the matrix and on the abundance of alkali-feldspar megacrysts. One of these varieties, the Green facies, could even be mapped separately from the remaining Quartz-eye tuffs (Schermerhorn and Stanton, 1969; Freire d'Andrade and Schermerhorn, 1971; See Figure 3.2) as its occurrence is restricted to a 0-50 m thick layer at the stratigraphic top of the Quartz-eye Tuff Formation.

The Green facies is characterized by very abundant sericite and chlorite in the tuff matrix, and by the presence of scattered minute flakes of Ti-bematite. It may or may not contain feldspar megacryst.

The Megacryst facies is characterized by a dominantly felsitic matrix and by the occurrence of abundant alkalifeldspar megacrysts. Ti-hematite flakes are absent. A third variety (unnamed) corresponds to the same rock as the Megacryst tuff when alkali feldspar megacrysts are absent. These two latter varieties occur intimately mixed. The spatial relationships of the various facies in the Quartz-eye Tuff Formation are schematically illustrated in Figure 4.2.

4.2.2 Mine Tuff Formation

Mine Tuff, Formation rocks occur as two mutually


equivalent units flanking the Quartz-eye Tuff symmetrically to the SW and to the NE (see Chapter 3). Study of the Mine tuffs is complicated by the presence of the massive sulphide pre systems, with their striking and voluminous haloes of ore zone hydrothermal alteration, which extend far beyond the limits of sulphide mineralization itself. Ore zone hydrothermal effects are superimposed on earlier metasomatism markedly similar to that affecting Quartz-eye tuffs, and will be described separately (Chapter 5).

Large (metasomatic) alkali-feldspar megacrysts are also absent, although non-sericitized chessboard albite Erystals (up to 0.5 cm) are sometimes present in Mine tuffs' also. Furthermore, the granular matrix of Mine tuffs is generally finer grained than that of Quartz-eye tuffs and, probably as a consequence, the main cleavage is far more penetrative in Mine tuffs than in Quartz-eye tuffs (sometimes a second crenulation cleavage is also present in Mine tuffs). The Mine Tuff Formation is often well bedded, and includes layers (up to ${\sim}3$ m thick) of massive felsites , and felsophyres intercalated in the highly schistose, largely dominant granular tuffs. Bed thicknesses lie normally in the range of 0.5 to a few metres, but vary from a few centimetres to > 20 m,. Gradded bedding was not Thin horizons of slabby breccias are known from observed. near the top of the Formation (Plate 4A). Phenocrysts in Mine tuffs are essentially restricted to feldspar minerals,

93-

PLATE 4

- A. "Slabby" breccia at the top of the Mine Tuff (Feitais mine).
- B. Tectonic dilatancy vein filled with albite crystals elongated normal to the vein walls. MT, crossed nicols. Scale bar 500 μm.
 - Peripheral ore zone alteration in Mine tuff. Phenocryst is albite. Note high degree of alteration. There is abu<u>ndant</u> sericite both in phenocryst and in matrix, replacing formerly felsitic matter grains. One nicol only. Scale bar 500 µm.
- D. Outer stockwork rock, composed of sericite + quartz + sulphides (feldspar completely absent). Crossed nicols. Scale bar 300 μm.
 - E. Stockwork rock, composed of chlorite + quartz + sulphides. Note chalcopyrite (black)-quartz-chlorite vein (lower left). One nicol only. Scale bar 300 µm.
 - Zircon surrounded by pleochroic haloes in chlorite. Both euhedral and anhedral (as an aggregate of extremely small individual grains) zircon is visible. Stockwork rock, one nicol only, scale bar 100 µm.

dominantly albite with sporadic K-feldspar, always non-perthitic. Albite is often Albite and/or Carlsbad twinned, and almost invariably highly sericitized or epidotized, except when it occurs within tectonic dilatancy veins (Plate 4B), where it is believed to have . reprecipitated after local diffusion of its components through pore fluids in the course of syntectonic pressuresolution.

Microphenocrysts and accessory small intratelluric crystals include Fe-Ti oxides, allanite and zircon rather similar to those occurring in Quartz-eye tuffs (section 4.2.1). Fe-Ti oxides are markedly less abundant than in Quartz-eye tuffs. Biotite, garnet and apatite were not observed./ Scattered and vein fluorite is present in lesser amounts than in the Quartz-eye Tuff.

Lithic fragments are restricted to ubiquitous small (from 2 cm down to matrix size) lenses of "cherty" quartz (probably former pumice), and to sporadic large (up to 20 cm) slabby fragments of Mine tuff cemented by Mine tuff itself, forming thin (up to ~ 1 m) autobreccias (Plate 4A), which may have formed through disruption of the top of ash-flow beds caused by slope instability movements. Accidental lithic fragments were not observed. Zonation in the Mine Tuff Formation

Two zonation patterns can be distinguished in the Mine Tuff Formation (Fig. 4.3): lateral zonation caused by the

Mine Tuff

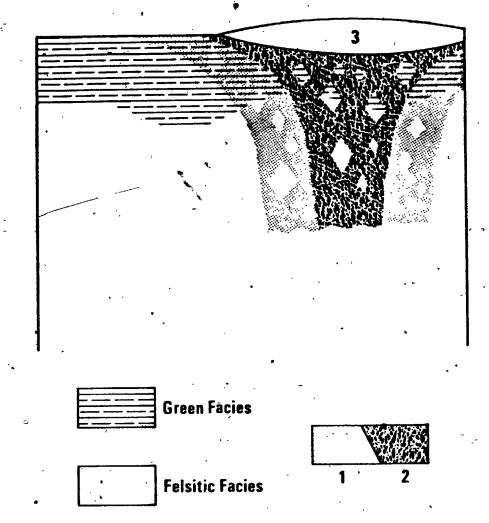


Figure 4.3. Schematic representation of the spatial. relations between facies in the Mine Tuff. sulphide ore systems (Chapter 5) and an earlier vertical zonation strikingly similar to that previously described in the Quartz-eye Tuff Formation, with an upper Green facies of Mine Tuffs approximately 0-50 m thick, also characterized by extremely abundant sericite and chlorite in the matrix of the tuffs. The Mine Tuff Green facies (the mine tuff rock of previous authors) is laterally equivalent to the Quartz-eye Tuff Green facies, and the two rock types are often closely similar, except for the absence or presence of quartz phenocrysts. Deeper seated Mine tuffs, however, are not strictly lateral equivalent to corresponding Quartz-eye tuffs, as Quartz-eye tuffs are frequently found stratigraphically under the Mine Tuff.

4.2.3 Paraiso Formation tuffs

Rare felsic and intermediate pyroclastic rocks are sometimes found intercalated within the (dominant) phyllites and tuffites, as discontinuous metric horizons. Apart from a few whole rock analysis (Appendix V-3), they were not studied in detail. Their occurrence indicates that weak proximal volcanic activity at Aljustrel persisted until PS times. The intermediate (andesitic) nature of some of these last erupted, volumetrically insignificant volcanic rocks probably reflects the development of important compositional zoning within the magma chamber (see Cox et al., 1979).

4.3 Geochemistry

4.3.1 Mineral chemistry

Comprehensive tables of representative electron microprobe analyses of the minerals discussed in this section are presented in Appendix II; selected analyses or averages are presented within the text.

a) Feldspars (Table 4.1)

Igneous phenocrysts are composed of albite with significant calcium contents (An 3-8 mole %), whereas (metasomatic) albite megacrysts are invariably almost pure albite (generally 0-1 An %), in good agreement with the textural and X-ray diffraction data indicative of different origins for each type. Matrix albite is generally very similar in composition to albite phenocrysts, suggesting that it may derive from glass devitrification.

K-feldspars replacing albite megacrysts or forming its own megacrysts are chemically indistinguishable and very similar also to typical vein adularia (of sporadic occurrence), or from (rare) matrix K-feldspar. BaO contents are generally significant, up to \sim 5 Celsian mole % (hyalophane).

The evidence presented here indicates that both albite and K-feldspar "megacrysts" are metasomatic porphyroblasts. The designation "megacrysts" is maintained, however, in view of the fact that it has been widely used in the Iberian Pyrite Belt literature to identify the

			·				
Unit Sample	QET 2-GF-87 ↓1	QET GF-A 2	QET 4-GF-W 3	QÈT 4-6F-17 4	∙QET 4-GF-₩ 5	QET [,] 4-GF-W 6	QET 2-FS-87 7
\$10 ₂	66.90	67.07	68.6 8	63.86	63.37	64,60	64.57
A1203	20.25	20.83	19.64	18.28	18.45	18,89	17.62
Fe0	0.00	0.24	0.00	,0.00	0.01	0.04	0.04
CaO	1.74	1.34	0.09	0.04	0.03	0,05	0.00
BaO .	0.05	0.07	0.14	0.28	2.79	2.77	< 0.21
Na ₂ 0	10.91	10,50	11.24	0.12	0.32	0.30	0.20
к ₂ 0	0.07	0.08	0.14	16.39	14.99	14.93	16,93
TOTAL	99.92	100.14	99.86	98.96	99.96	101.67	99.57
۰. ۰. •		I	ons on th	e basis of	32 Oxygen	S .	•
Si	11.755	11.737	11.999	11.969	11.902	11.898	12.05
Al	4.194 、	4,296	4.044	4.035	4.08 2	4.121	3.87
Fe	0.000	0.035	0.000	0.000	0.004	. 0.004	0.00
Ca	0.328	0,251	0.017	0.008	0.008	0.012	0.000
Ba	0.003	0.005	0.010	0.020	0,207	0.199	0.01
Na	3.717	3,562	3.807	0.043	0.117	0.109	D.07 2
K	0.006	0.018	0.013	3.918	3.590	3,508	4.032
Σ -	20.012	19.904	19.890	19.992	19.910	19.852	20.05
An%	8.09	6.54	0.44	0.20	0.20	0.31	0.00
Ċś%	0.07	0.05	0.26	0.50	5.28	5.20	0.36
АЬ%	91.69	92.86	98.96	: 1.08	2.98	2.85	_ 1.75
0r%	0.15	0.47,	0.34	9 8 .22	'91.5 3	91.64	97.89

Table 4.1. Selected analyses of feldspars (see also Appendix I).

1: Igneous Albite phenocryst. 2: Igneous Albite in tuff matrix. 3.: Chessboard Albite megacryst (hydrothermal). 4: K-feldspar megacryst. 5: Barium rich K-feldspar megacryst (hyalophane). 6: Coexisting Ba-rich vein adularia. 7: Vein adularia.

e7,

alkali feldspar porphyroblasts of the Quartz-eye Tuff Formation. 101

b) Fe-Ti Oxides and Sphene

Microphenocrysts composed of various Fi and/or Fe oxide minerals with or without closely associated sphene are of widespread occurrence within the Aljustrel Volcanic rocks (see section 4.2), being particularly abundant in Quartz-eye tuffs. A detailed electron microprobe investigation of these microphenocrysts was undertaken in order to clarify the reason for the marked whole rock variations in iron abundances and the remarkable constancy of TiO₂ within each of the Quartz-eye Tuff and Mine Tuff (see section 4.4).

Representative electron microprobe analyses of Fe-Ti oxides (\pm Sphene) are presented in Tables 4.2, 4.3 and Appendix II-3.

Ti-hematite occurs exclusively in Green Facies rocks, both as scattered minute flakes and as part of microphenocrysts, with the latter intergrown with leucoxene and possibly with pseudobrookite (Fe₂O₃.TiO₂), and also rimming these intergrowths. Ti-hematite + leucoxene \pm pseudobrookite intergrowths are so fine grained that it was not possible to obtain electron microprobe analyses of any of the phases alone (typical electron beam diameter 5-10 µm). However, summations of the analyses of composite material approximate 100% when Fe is expressed as Fe₂O₃,

Sample No.	(a) PMTV-1	(a)` PMTV-1	(_a) PMTV-1	(b) PMTV-1
S102	0.50	0.76	0.57	1.05
T102	44.84°	51.29	60.02	7.24
A1203	0.17	0.32	• 0.08	0.56
Cr203	0.08	0.24	0,05	0.04
Fe203 ^{tot}	53.42	45.32	37.62	89.33
Mn0	0.00	0.15	0.00	0.02
Mg0	0.02	0.01	0.04	0.05
Ca0	0.00	0.06	0.00	0.03
TOTAL	99.03	98.15	98.3 8	98.32
				ions on the basi of 3 oxygens
•		*		UXygens
Si				0.027
Ti	F			0.142
A1 .		. •		0.017
Cr			۰	0.000
Fe ³⁺				1.755
Mn		•	۰.	0.000
Mg				0.002
Ca		· ·		0.001

Table 4.2. Composition of Green Facies Fe-Ti Oxides. See Plate 3A, B, and Appendix II-3.

(b) Ti-hematite

	• •
Table 4.3.	Representative composition of
	Ti-Fe rich microphenocrysts in
,	Alfustrel Volcanic rocks (exclud-
	ing Green facies). The analyses
,	were obtained from the crystal in
~ '	Plate 3C.
	1

	•		·
Sample no.	3-GF 1	3-GF 2	3-GF 3
si02	29.12	0.64	0.50
Ti02	33.60	52.60	99.1 3
A1203	3.41	0.01	· 0.20
Cr203	0.00	0.11	0.07
FeOtot '``	1.97	43.36	0.00
Mn0	0.00	• 3 . 59 °	- 0.00
Mg0,	0.07	0.09	0.04
Ca0	28.27	0.57	0.19
TOTAL	96 . 45	100.97	. 100.14
Ions on the basis of	4 S i	3 oxýg.	∙2 oxyg.
Si	(4)	0.016	0, 007
Ti	3.471	0.984	0.989
Al	0.552	0.000	0.003
Cr	0.000	0.002	0.000
Fe ²⁺	0.226	0.902	0,000
Mn	0.000	0.076	0.000
Mg	0.014	0.003	0.001
Ca	4.161	0.015	0.003
•	• • •	1.999	1.003

(1) Sphene; (2) Mn-Ilmenite; (3) Leucoxene

strongly suggesting that essentially all Fe present in these intergrowths is Fe³⁺, in good agreement with the fact that Green Facies rocks are invariably characterized by low whole rock Fe²⁺/ Σ Fe ratios (section 4.4).

104

In Aljustrel Volcanic rocks other than those belonging to the Green facies (i.e., all but the uppermost tens of metres of the Aljustrel Volcanics) there is no counterpart to the Ti-hematite dust scattered within the matrix of Green facies rocks, and Ti-rich microphenocrysts, morphologically indistinguishable from their Green facies counterparts are composed of leucoxene, Mn-ilmenite and/or sphene (Table 4.3). The internal texture of these microphenocrysts is more varied than that found in Green Facies tuffs, and lamellar, coarser exsolution textures are often found; this difference (if real: most rocks studied are not Green Facies tuffs) may be due to quenching of the upper levels of volcanic rocks.

MnO contents in ilmenite are remarkably high, up to 13.46 (see Appendix II-3). Sphene shows considerable substitution of Ti by Fe and especially Al, up to \sim 30% Al occupancy of the Ti structural sites. The chemistry of the Aljustrel sphenes is similar to that of sphenes from mafic volcanic rocks elsewhere in the Iberian Pyrite Belt (Munha, 1981), and their occurrence is also similar, both replacing Fe-Ti oxídes microphenocrysts and as anhedral, often vein contained aggregates. Regarding "leucoxene", it is not known which TiO₂ polymorphs are actually present. The occurrence of leucoxene + sphene (without Fe rich phases) totally replacing former Fe-Ti oxides microphenocrysts suggest that leucoxene in these rocks may result from Fe leaching, and reprecipitation of immobile Ti as sphene and leucoxene (perhaps directly from rutile). Finally it is noteworthy that despite much effort magnetite was not found in any Aljustrel volcanic rocks (except when related to sulphide mineralization).

c) Garnet (Table 4.4 and Appendix II-4)

Garnet relicts occurring in Quartz-eye tuffs are rather constant in composition: they are almandines with 10-15% pyrope mole % and minor amounts of spessartine and . grossular. Structural formulas were calculated taking into consideration that $M^{4+} = 3/2 M^{3+} = M^{2+}$. This procedure suggests that all Fe is present as Fe²⁺. The occasional introduction of small amounts of H₄ is probably not real, rather reflecting the possible presence of small quantities of Ti (not analysed). End member molecules were subsequently computed following the procedures of Rickwood (1968).

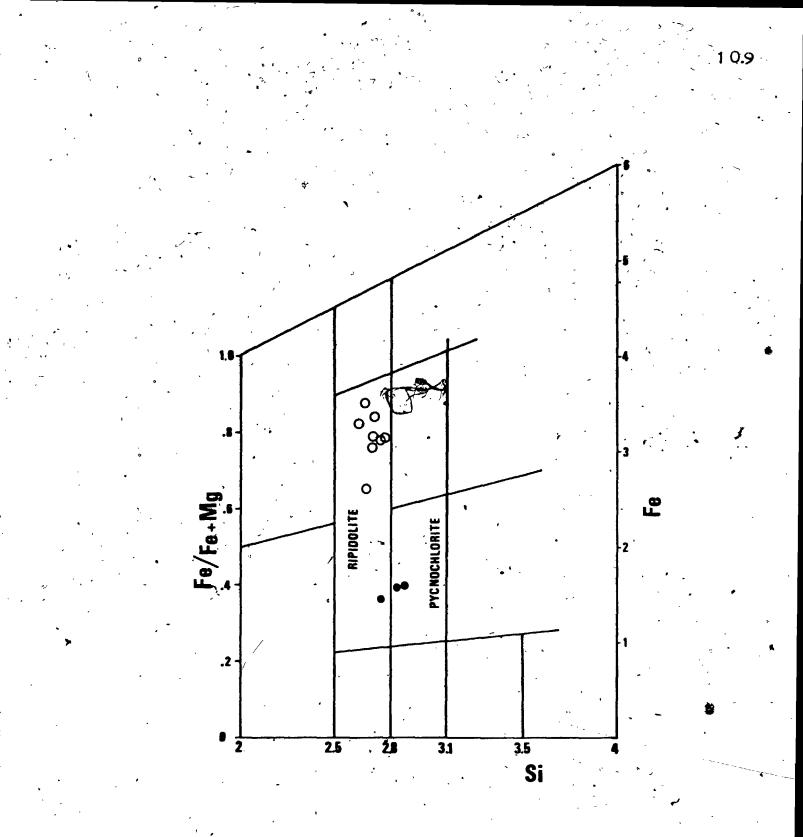
The composition of these garnets is compatible with either an igneous or high grade metamorphic origin (see Meagher, 1980). No high grade (amphibolite or granulite facies) metamorphic event affected the Aljustrel Volcanics, but the almandine garnet may have survived the partial

Table 4.4.	Averages of analyses of closely similar almandine garnets from Quartz eye tuffs.					
Sample no. of	GF-15.8	3-GF	4-GF.W			
analyses	7	9	6,			
Si0 ₂	36,95	36,93	36.77			
A1203	20.99	21.26	21.35			
Fe0	36.67	35.33	36.34			
Mn0	1.72	1.12	1.68			
Mg0	2.27	3.69	2.32			
Ca0	0.99	1.06	1.02			
,	۰.	•				
TOTAL	99.59	99.39	· 99.4 8			
	T	, basta of	24 0000000			

	Ions on	the basis of	24 Oxygens,
Si	6.009	5.931	5,954
H4(calc.)	0.000	0.069	0.046
Aİ	4.023	4.024	4.075
Fe ³⁺	0.000	0.000	0.000 -
Fe ²⁺ ,	4.987	4.745	4.921
Mn	0.237	0.152 -	0.230
Mg	0.550	0:883	0.560
Ca .	0.173	0.182	0.177
Σ	15.979	15.988	15.963
Pyrope %	9.36	, 15.05	9.41
Spess.	3.94	2.43	3,96
Hydrogros.	0.00	· 0.97	• 0,99
Grosselar	2.96	1.94	1, 98
Almandine	83.74	79.61	83,66
% Cati.		· ·	4
allocated	99.33	99.46	98.50

melting event that probably generated the Aljustrel magmas (see below). This hypothesis is somewhat supported by the occurrence of the almandine crystals within lithic fragments.

d) Chlorites


Electron microprobe analyses of the chlorite minerals from the Aljustrel volcanic rocks are presented in Table 4.5 and Appendix II-5 and plotted in Fig. 4.4. They are almost exclusively ripidolites, as a consequence of relatively constant Si and Al contents. Fe-Mg variations are much more pronounced, with FeO contents ranging from nearly 41 to 18 wt % and MgO contents varying correspondingly from less than 5 to more than 19°wt %. Despite the fact that individual chlorite analyses were performed in grains from the matrix, and replacing garnet, feldspars and biotite, no significant compositional variations were found at the scale of the hand specimen.

Green facies rocks of both the Quartz-eye Tuff and the Mine Tuff invariably contain the more magnesian chlorites analysed. Thus Mg in chlorite is generally proportional to the abundance of chlorite in the rocks (section 4.2) and to the whole rock absolute abundances of <u>both</u> Mg and Fe, and also to the relative abundance of Fe^{3+} in the rocks (see section 4.3.2). No obvious primary igneous petrologic reasons exist for this stratigraphically controlled systematic variation in the Fe-Mg ratio in chlorites. The

1.0.7

					(Green facio	es ·
Unit	QET 2-GF-87	QET 6-GF-17	QET GFA	√QET MD4F	◦ QET PMTV-1	MT bis-330	MT bis-341.
Sample no. of anal.	3		3 3	4	6	6	4
Si07	23,54	23.06	24.08	24.36	26,51	27.68	27.93
T102	0.02	0.01°	,0.00	0.00	0.00	0.00 '	0.00
Al 203		20.75	19.87	21.26	21.74	19.61	19.07
Fe0	40.74	37.22	35.64	30.69	18.03	20.14	20.17
MnO	0.38	0.29	0.27	0.43 [·]		0.40	0.71
Mg()	4.71	5.54	7.87	10.37	19.12	19.30	19.38
CaO	0.02	0.06	0,02	0.02	0.00	0.02	0.00
BaO "	0.04	0.05	0.05	0.00	0.00	- `	0.06
Na20	0.06	0:00	0.01	0.00	0.03	0.00	0.00
- K20	0.00	0.00	0.00	0.00	0.01	0.01	٥.00 «
TOTAL	89.38	86.98	87.81	87.13	85,60	87.16	97.32
			Ions	s per 14	Oxygens		
Si	2.663	2.653	2.695	2.668	2.745	2.849	2.876
A1	1.337	1.347	1.305	1.332	1.255	1.151	1.124
A1	. 1.312	1.447	1.316	1.413	1.398	1.228	1.190
Ti ·	0.002	0.001	0.000	0.000	0.000	0.000	0.000
Fe	3.855	3.556	3.336	2.811	1,561	1.734	1.737
Mn	0.036	0.028	0.026	0.040	0.014	0.035	0.062
Mg	0.794	0.943	° 1. 313	1.693	2.951	° 2 . 961	2.975
Ca	0,002	⁴ 0.007	0.000	0.002	0,000	0,002	, 0, 000
Ba	0.002	0.002	0.002	0.000	0.000	-	0.002
Na	0.013	0.000	0.002	0.000	0.006	0.000	0.000
K	0.000	0.000	0.000	0.000 Ø	0.001	0.001	0.000
Σ	10.017	9.967	9.995	9.959	, 9.93 2	9.962	9.967

Table 4.5. Averages of the compositions of closely similar chlorites from representative Aljustrel Volcanics (see also Appendix II-5).

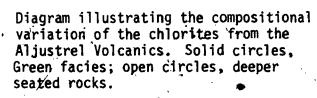


Figure 4.4.

only magnesian igneous mineral actually known to have been present in the Aljustrel Volcanics is biotite, in minute amounts, and there is nothing to suggest that biotite might have been particularly abundant at the stratigraphic top of the Aljustrel Volcanics. Moreover, the fact that chlorites replacing various phenocrystic minerals or occurring in the tuff matrix are chemically indistinguishable at the scale of the hand specimen also contraindicate a primary igneous cause for the megascopic compositional zonation of chlorites.

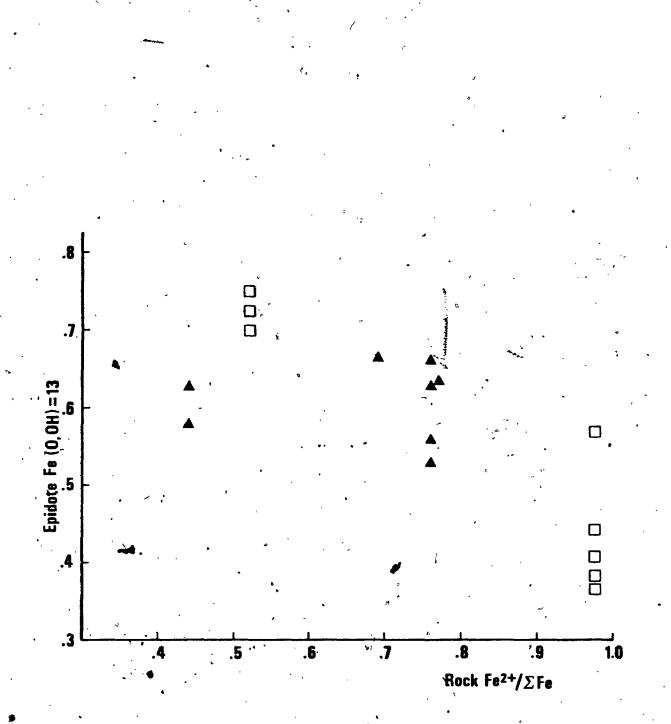
e) Sericite

Electron microprobe analyses of sericites (i.e. K-rich phyllosilicates) from the Aljustrel Volcanics are presented in Appendix II-6. Most analyses obtained from matrix sericites depict high Fe contents (up to 6 wt % FeO). It is not known whether all the iron reported in the analyses is actually in illite or muscovite structures, or some corresponds to submicroscopic amounts of other minerals, given the extremely fine grained nature of matrix sericites (individual crystals are often less than 1 micron wide). Sericite replacing igneous albite phenocrysts typically contains only about 1 wt % FeO. MgO contents in, sericite usually range from 1 to 2 wt %. Small amounts of Ba were occasionally detected (up to 0.35% BaO), especially in samples containing Ba-rich K-feldspars.

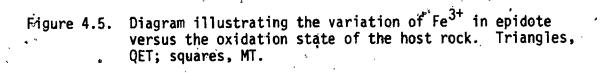
f) Epidotes

Analyses of (igneous) allanite and of (hydrothermal and regional) metamorphic epidotes (sensu 3 stricto) are presented in Appendix II-7. The main chemical variation among the latter is the pronounced substitution of Al by Fe³⁺, ranging from 0.366 to 0.750 Fe³⁺ ions per formula (12.5 0). This substitution correlates well with whole rock Fe²⁺/ Fe (Fig. 4.5), suggesting that Fe³⁺ accommodation in the epidote structure may be controlled by oxygen fugacity (Liou, 1973), as already observed for other Pyrite Belt metamorphic rocks (Munha, 1981).

g) Stilpnomelane


Analyses of stilpmomelane from one Quartz-eye tuff sample are presented in Table 4.6. They correspond to low Mg, Ba-bearing stilpnomelane. The Ba content is higher than that of coexisting K-Feldspar (0.75 against 0.25 Ba0 wt %, respectively).

h) Carbonates


The only carbonates analysed in Aljustrel Volcanic rocks (except for ore zone carbonates) are those occasionally found replacing alkali-feldspar megacrysts and phenocrysts in the Quartz-eye Tuff. They are mostly pure calcite, occasionally ferroan-calcite (up to 6% FeCO3; see Appendix II-8).

i) Synopsis of paragenetic relations

Petrographic observations, X-ray diffraction and

a k

× 1

24 44.93 6.55 0.00 33.00 1.61 2.39 0.16 0.63	25 45.02 6.50 0.00 33.92 1.70 2.52 '0.11	QET 2-GF-87 35 45.15 6.68 0.04 35.68 1.70 2.63	36 45 [°] .23 6.77 0.01 [°] 34.53 1.70 <i>∞</i> 2.33	37 44.78 6.47 0.07 34.33 1.74
44.93 6.55 0.00 33.00 1.61 2.39 0.16	45.02 6.50 0.00 33.92 1.70 2.52	45.15 6.68 0.04 35.68 1.70 2.63	45 [°] .23 6.77 0.01 [°] 34.53 1.70 <u></u> ∡	44.78 6.47 0.07 34.33 1.74
6.55 0.00 33.00 1.61 2.39 0.16	6.50 0.00 33.92 1.70 2.52	6.68 0.04 35.68 1.70 2.63	6.77 0.01' 34.53 1.70∡	6.47 0.07 34.33 1.74
0.00 33.00 1.61 2.39 0.16	0.00 33.92 1.70 2.52	0.04 35.68 1.70 2.63	0.01` 34.53 1.70∡	0.07 34.33 1.74
33.00 1.61 2.39 0.16	33.92 1.70 2.52	35,68 1.70 2.63	34.53 1.70,∞	34.33 1.74
1.61 2.39 0.16	1.70 2.52	1.70 2.63	1.70 <u></u>	1.74
2.39 0.16	2.52	2.63	-	•
0.16			2.33	2 2
	'0.11			2.28
0.63		0.05	• 0.04	. 0.05
~ ~ ~ ~ ~	0.75	0.82	0.66	0.81
0.31	0.35	0.44	0.72	0.57
1.01	0.78	1.53	0.57	0.85
90.60	91.66	94,77	, 92.57	91.96
_ Num	ber of ions	per 7.5 (Si+/	Al+Cr+Fe+Mg+	Mn) '
3.978	3.936	3.861	3.915	3.917
0.684	0.670	0.673	0.691	0.667
0.000	0.000	0.003	0.001	0.005
2.444	2.480	2.552	2.500	2.511
0.212	0.222	0.217	0.219	. 0.227
(0.179	0.187	0.190	0.171	0,169
) 0.015	0.010	0.005	0.004	0.005
0.022	0.026	0.027	0.022	0.028
0.053	0.059	0.073	0.121	0.097
0.114	0.0 8 7	0.167	0.063	0.095
	1.01 90.60 Num 3.978 0.684 0.000 2.444 0.212 0.179 0.015 0.022 0.053	0.63 0.75 0.31 0.35 1.01 0.78 90.60 91.66 Number of ions 3.978 3.936 0.684 0.670 0.000 0.000 2.444 2.480 0.212 0.222 0.179 0.187 0.015 0.010 0.022 0.026 0.053 0.059	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Analyses of stilpnomelane from the Quartz-eye Taff formation. Table 4.6.

~

.

Table 4.7.	Paragenetic	relations.	of t	he	minerals	in	the Aljustrel
	Volcanics.			٠	•		

	Primary Igneous	· ·	Regional letamorphic
•		Early Late	-
Matrix albite	• X (a)	,	
Matrix K-feldspar	X (a)	1	•
Matrix quartz	X (a)	•	• .
Sericite		Low-grade -	→ X
Chlorite '	``````````````````````````````````````	phyllosilicates -	→ X.
Ti-hematite flakes 🕻	(Ti-magnetite) -	→ ,X ·	
Albite (Ang) phenocrysts	x	х	
Poikilitic sericite, epidote, calcite		x 📫	2
Albite (Ang.3)) _
K-feldspar ² megacrysts			
vein K-feldspar (adularia)			
↔ Ti-hematite	(Ti-magnetite) -	→ X -	•
	(rutile) -	→ X	•
드 은 Pseudobrook- 날 은 ite(?)	(ilmenite)	X	r I
Sphene	•	X	Χ?
- Timonito	X - * *	•	· · · ·
Ellmenite			
Zircon, apatite, almandine garnet, biotite, allanite	• X	•	
Zircon, apatite, almandine garnet,	• . X	×	x
Zircon, apatite, almandine garnet, biotite, allanite	• X X ?	x • x ?	x

(a) Products of devitrification of volcanic glass

mineral chemistry suggest that the minerals presently found in the Aljustrel Volcanic rocks were formed in three main successive stages (Table 4.7), in good agreement with the geologic history of the Iberian Pyrite Belt (Chapter 2).

4.3.2 Whole rock Geochemistry

Whole rock analytical data pertaining to 47 Aljustrel Volcanic rocks is presented in Appendix III. Samples are representative of all the variations detected in both the Quartz-eye Tuff and the Mine Tuff. Mine Tuff samples were collected mostly in the Feitais Anticline (for the reasons outlined in Chapter 3), and do not include rocks markedly affected by ore fluids (Chapter 5). Appendix III-1 and III-2 contain the abundances of major elements, 16 selected trace elements and, for some samples (15), lanthanide element concentrations in Quartz-eye Tuffs and Mine Tuffs, respectively. The results of 13 whole rock öxygen isotopic analyses of Aljustrel Volcanic rocks are presented in Table 4.10.

a) Major elements

Inspection of major element abundances in the Aljustrel Volcanics shows that these rocks constitute a typical quartz-keratophyric suite (see Schermerhorn, 1973) in which variability is perhaps the most prominent feature. From the petrologic and mineral chemical data presented in previous sections there can be little doubt that major post depositional metasomatism affected the Aljustrel Volcanics. Thus major element abundances do not represent solely primary igneous compositions but rather (and principally) the results of major mass transfer of several components and the apparent changes in other elements which stem from such transfers.

An important aspect of the apparent changes produced by metasomatism in immobile elements is that their percentual abundances will be changed proportionally to their relative abundances, e.g. 3 wt % hydration of 100 g of a rock initially with 70% Si02, 18% Alp03 and 0.50% Ti02 will produce 103 g of a rock containing 67.96% SiO₂, 14.55% Alo₃ and 0.49 TiO₂. This factor, too often disregarded when metasomatized rocks are studied, constitutes a problem that has been obviated by several methods of mass balance evaluation, among which "the general metasomatic equation derived by Gresens (1967) supersedes all others because of its general applicability to all conditions of metasomatism and through its introduction of corrections for differences between specific gravities of samples and for volume changes during alteration" (Appleyard, 1980). Gresens (and all other) mass balance computations are a means of estimating the gains and losses necessary to obtain a metasomatized rock composition from a parental rock composition.

Unfortunately, data indicates that formal mass balance

calculations cannot be performed on the Aljustrel Volcanics with realistic results, because no unaltered, parental rocks exist. Furthermore, Hercynian deformation is likely to have produced significant porosity reduction in the rocks, easily in the order of 10%, given that the Aljustrel Volcanics were originally submarine felsic pyroclastic rocks, probably similar to coarse sand (see Bear, 1972). Under these conditions the mass balance considerations presented here are essentially qualitative and oriented towards elucidation of parental compositions from metasomatized rocks that show textural, mineral chemical and whole rock geochemical evidence for various, often opposite geochemical gains and losses.

The ranges of variation and some averages of the abundances of major elements in the Aljustrel Volcanics are presented in Table 4.8. The Quartz-eye Tuff (QET) and Mine Tuff (MT) formations are chemically very similar, differing essentially in their TiO₂, Fe and P₂O₅ contents (higher in the QET), and in generally higher SiO₂ values in MT. These differences are in good agreement with petrographic characteristics, with Fe-Ti oxide (\pm sphene) microphenocrysts more abundant in QET rocks, apatite occurrence restricted to QET and the QET quartz phenocrysts compensated by a much more quartz rich matrix in MT.

Ti and Al are generally immobile elements (on a scale of cms) in most metasomatic processes, given the narrow

-	ladie	.	ome averages (brack the Aljustrel Volca	A	abundances	of	major
•		Quartz-eye Tuff	Mine Tuff-	Remarks	•	•	J
	S102	65~73(70.8)	60-79(72)	(dry basis)		•	
	Ţ102	0.44-0.73(0.51)	0.10-0.32(0.19)	variations	believed t	່າ	reflect ·

Ca0 0-3.9

1.5-6.8

0.07-1.25(0.26)

1.5-5

0.37-4.62*

Al 203

 $Fe^{2+}/\Sigma Fe$

Fe

Mn0 [°]

Mg0

K20

P205

LOI

Ba0 0.03-0.38 Na₂0 1.2-4.5 • 0-6.5

0.81-7.41

¹ 12-20(15.5)

0.09-1.00

0.02 - 0.17(0.04)

0.5-3

0.56-5.81

0.2-6.8

<0.02

Strongly enriched in Green Facies

to a large extent losses and

Higher values in Green facies

Green facies strongly oxidized

gains in other components

Strongly enriched in Green

Facies

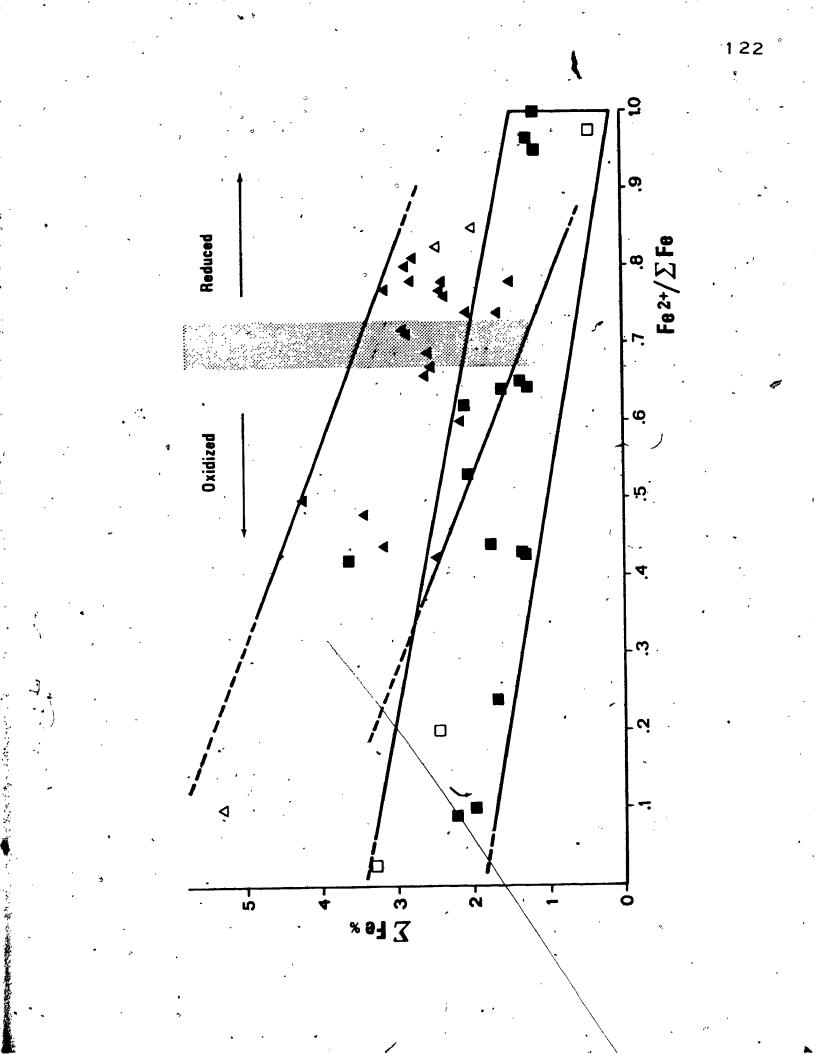
LOI (Loss on ignition) is mainly H_{20} , as indicated by petrography. (*) MgO content of the QET Green facies analysis in Schermerhorn (1976).

limits of their solubility under normal physicochemical conditions (see Garrels and Christ, 1965; Ferry, 1979). In both the QET and the MT rocks Ti and Al are markedly covariant (correlation coefficients 0.79 and 0.73, respectively) and their variations (especially Al) far more pronounced than those found in recent, unaltered zoned felsitic tuffs (see Hildreth, 1979, 1981). A significant proportion of the Ti and Al variations in the Aljustrel Volcanics must simply reflect pronounced metasomatic losses and gains of other elements.

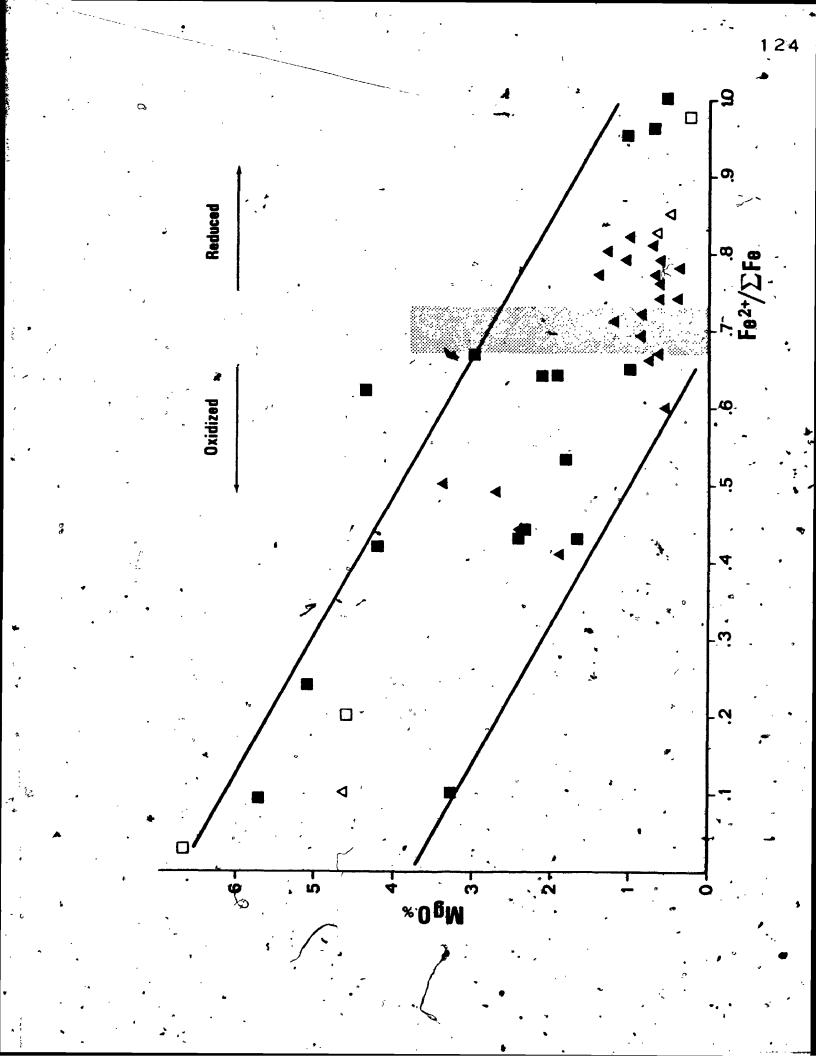
Total Fe variations show markedly good correlation with the Fe-Ti oxide mineralogy, being higher in rocks containing Ti-hematite + leucoxene <u>+</u> pseudobrookite (the Green Facies rocks of both QET and MT), and decreasing progressively as opaque grains and microphenocrysts are partially replaced by sphene, with removal of a significant proportion of the iron originally present. Jhe higher Fe concentrations are compatible with Fe-rich rhyolitic and high silica rhyolitic original compositions of QET and MT, respectively.

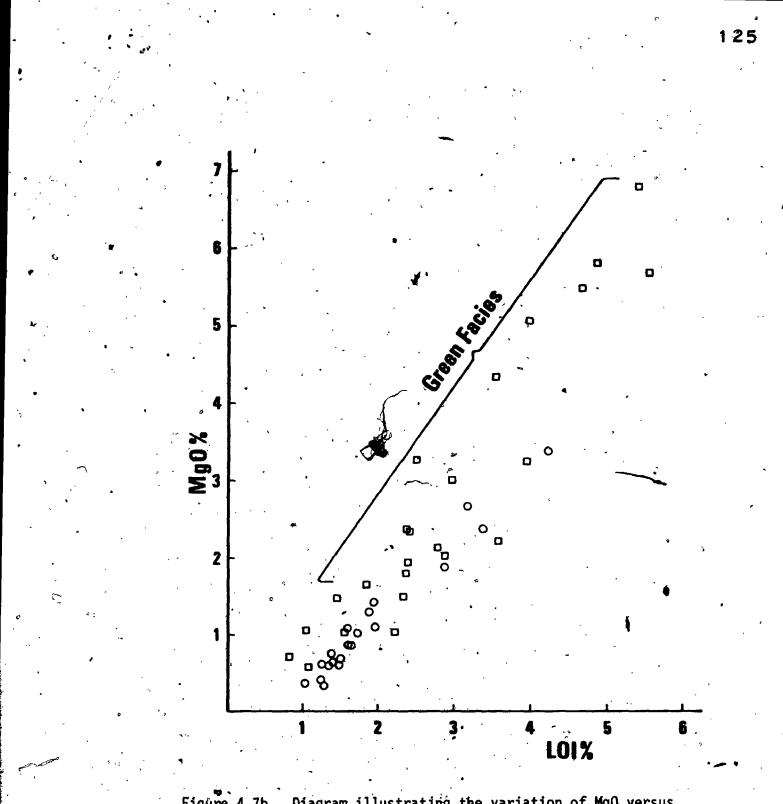
Variations of the oxidation state of iron in altered rocks are often a sensitive indicator of both the degree of alteration and the nature of the intervening fluid or fluids (Spooner, 1977; Fyfe et al., 1978). The Aljustrel Volcanic rocks show almost as large as possible variation in Fe²⁺/ Σ fe (Fe ratio), from 0.09 to 1.00. Green facies

11.9


rocks are invariably oxidized, whereas deeper seated rocks get progressively relatively enriched in Fe²⁺, despite the concomitant decrease in Fe, as illustrated in Fig. 4.6. Mn shows identical general behaviour, but most MnO determinations (0.01 to 0.06 Mn %) are too close to detection limit to be reliable. Higher MnO values (0.17%) were found in two highly oxidized samples (Appendix III-2).

Not surprisingly, LOI (i.e., H₂0) covaries with the Fe ratio; strongly suggesting that at least parts of the vertical zonation of the Aljustrel Volcanics is due to oxidation and hydration at the top layers by an aqueous, oxidized fluid. Deeper seated rocks are much less hydrated, not oxidized (often markedly reduced) and Fe depleted. These facts are readily explained considering downflow of an originally oxidized fluid which becomes progressively reduced upon reaction with rocks.


The variations in the Mg abundances of the Aljustrel volcanic rocks are particularly striking. Fig. 4.7 shows unequivocally that Mg abundances are strongly covariant with both LOI and the oxidation state of iron, a feature that cannot be likely explained either by magmatic processes or by numerical artifices. Mg in the Aljustrel Volcanics occurs mostly in chlorite (scattered within the matrix and replacing various minerals, including phenocrystic quartz in the QET, see section 4.2). If the oxidized fluid that may have been responsible for the Fe


Figure 4.6.

Total iron versus whole rock Fe ratio in the Aljustrel Volcanics. Triangles QET; squares MT. Open symbols correspond to analyses in Schermerhorn (1976). Mineralogy and textures indicate that the higher iron contents correspond to original abundances (see text).

123 Figure 4.7a. Diagram illustrating the variation of MgO versus Fe ratio in the Aljustrel Volcanics. Symbols as in Fig. 4.6. It is believed that wthe variation corresponds to fixation of sea water Mg (see text).

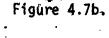


Diagram illustrating the variation of MgO versus LOI (essentially H_2O : one carbonate rich sample excluded). Circles, QET; squares, MT.

and Fe ratio variations in these rocks was also Mg-rich, its Mg would be transferred to solid phases upon initial interaction with rocks, as shown by all experimental sea water (1 300 ppm Mg²⁺). - rock interaction studies (Bischoff and Dickson, 1975; Hajash, 1975; Mottl, 1976; Hajash and Archer, 1980; Mottl and Seyfried, 1980). Furthermore, the composition of the sea water derived hydrothermal fluids exiting from the Iceland geothermal systems are also very Mg depleted (Bjornsson et al., 1972).

126

Variations in alkalies are another striking feature of the Aljustrel Volcanics. Textural, X-ray diffraction and mineral chemical data presented before indicates complex and evolving behaviour of the alkalies, eloquently reflected in the whole rock abundances. No defined megascopic zonation on the occurrence of the alkalies was Given that K₂O occurs in sericite, matrix K* detected. feldspar (primary?), vein adularia and in metasomatic megacrysts (in QET), data is not conclusive with respect to the initial K abundances in the Alfustrel Volcanics. Munha et al. (1980) have shown that the Cercal rhyolites (Iberian -Pyrite Belt, see also Carvalho, 1976 and Chapter 2) are strongly depleted in Na and enriched in K, forming adularia that was seen replacing plagioclase, and attributed adularia formation to high water/rock interaction of the Cercal rhyolites with sea water, at temperatures below 150°C (see also Munha, 1981).

Data presented so far in this study proves that the

Aljustrel-Volcanics were affected by major post depositional metasomatism which requires interaction with an oxidized, Mg rich fluid. The only likely available fluid reservoir with these characteristics is sea water, given that the Aljustrel Volcanics are submarine rocks.

As outlined in Chapter 2, Munha (1981; see also Munha and Kerrich, 1980) also concluded that see water was responsible for major spilitization of the mafic igneous rocks of the Iberian Pyrite Belt. Under such circumstances the highly variable alkali abundances in the Aljustrel Volcanics are interpreted as reflecting marked variations in temperature and water/rock of the metasomatic events. Textural evidence (section 4.2) clearly indicates that the physicochemical conditions responsible for the various stages of feidspar formation did not remain constant during metasomatism, rather indicating complex and evolving behaviour of the alkalies. According to the conclusions of Munha et al. (1980), temperatures both above and below 150°C may have prevailed during alkali metasomatism of the Aljustrel Volcanics.

From the above discussion it is obvious that a significant proportion of the variation in the percentage abundances in SiO₂ in the Aljustrel Volcanics simply reflects variation in other species, namely H₂O, Fe, Mg and alkalies. However, some of the samples depicting lower SiO₂ abundances are also high in Al₂O₃ and TiO₂, indicating

that large scale silica removal may have taken place locally, as sporadically confirmed by textural data. Some of this silica removal may have taken place concomitantly with the major metasomatic episode, as will be seen later, but it is also likely that some of the low silica samples reflect late tectonic, pressure-solution removal of SiO₂, as indicated by the frequent occurrence of syn and late tectonic quartz (\pm calcite) veins within the Aljustrel Volcanics; these can be locally > 2 m wide.

Table 4.9 is a tentative compilation of the likely primary compositions of the Aljustrel Volcanics, based on the above considerations. The Quartz-eye Tuff would have been originally a high iron rhyolitic unit, whereas the Mine Tuff seems to have been a high silica rhyolite. These presumed original major element compositions are sufficiently similar to suggest that the Aljustrel Volcanics may derive from a common source.

b) Immobile trace elements

Widely scattered trace element concentrations (particularly those of LILE, see Appendix III-1 and III-2) further confirm the high degree of metasomatism experienced by the Aljustrel volcanic rocks. Some high field-strength elements (Sc; Y, Zr, Hf and Nb) do show, however, relatively constant abundance ratios within each of the QET and MT formations, in accordance to their normally immobile behaviour during alteration processes affecting volcanic

	Quartz-eye Tuff	Mine Tuff	Remarks
Si02	70-73	71-75]
T102	0.50	0.20	Actual averages
A1203	13-15	12-14	Probably lower on MT given sample representativity considerations
Fe203`	1.80	1.00	Based on Fe $^4.5$ and $^2.5$
.∶ ⊂ Fe0	4.20	2.30	and on Fe ²⁺ /∑Fe ∿0.7 (see Fig. 4.6
Mn0	?	?	· .
Mg0	<0.5	<0.5	See Figure 4.7
CaO	1?	1?	Given the low An component in igneous albite (section 4.3)
Na20	3-5	3-5	
K ₂ 0	3-5	3-5	
P205	0.25	<0.02	· · · · · · · · · · · · · · · · · · ·
H ₂ 0	0-1.5	1 0-1.5	

Table 4.9. Probable original major element composition of the Aljustrel Volcanics (see text).

rocks (see Alderton et al., 1980).

Figures 4.8 and 4.9 represent the variations of Sc against Y and Zr/Y against Zr for the analysed rock samples. On both diagrams there is a clearly defined discrimination between the QET and MT formations, with lower Sc abundances and Zr/Y in the MT.

Although aware of the difficulties met when attempting to model quantitatively igneous processes in high-silica volcanic rocks (see Mahood and Hildreth, 1983) it seems that at least some of the observed compositional variations could be accommodated by variable degrees of partial melting of a common garnet-bearing source followed by varying degrees of shallow level crystal fractionation (compare Pearce and Norry, 1979). Moreover, some of the geochemical characteristics of the MT formation are closely similar to those of modern high-silica rhyolites (Bacon et al., 1981; Hildreth, 1981; Smith and Johnson, 1981). It thus seems possible that the MT formation could represent a somewhat more evolved stage (with respect to the QET) on the differentiation history of the magma chamber feeding the Aljustrel volcanic centre.

The above hypothesis is compatible with field relations, as the QET apparently erupted slightly earlier than the MT. However, it does not properly explain the marked bilateral symmetry of the Aljustrel Volcanics (Fig. 3.6), nor the absence of Green facies Quartz-eye tuffs at

Figure 4.8. Diagram illustrating the variation of Sc

4

versus Y in the Aljustrel Volcanics.

Triangles, QET; squares, MT.

•

ľ.

۰. ۱۰

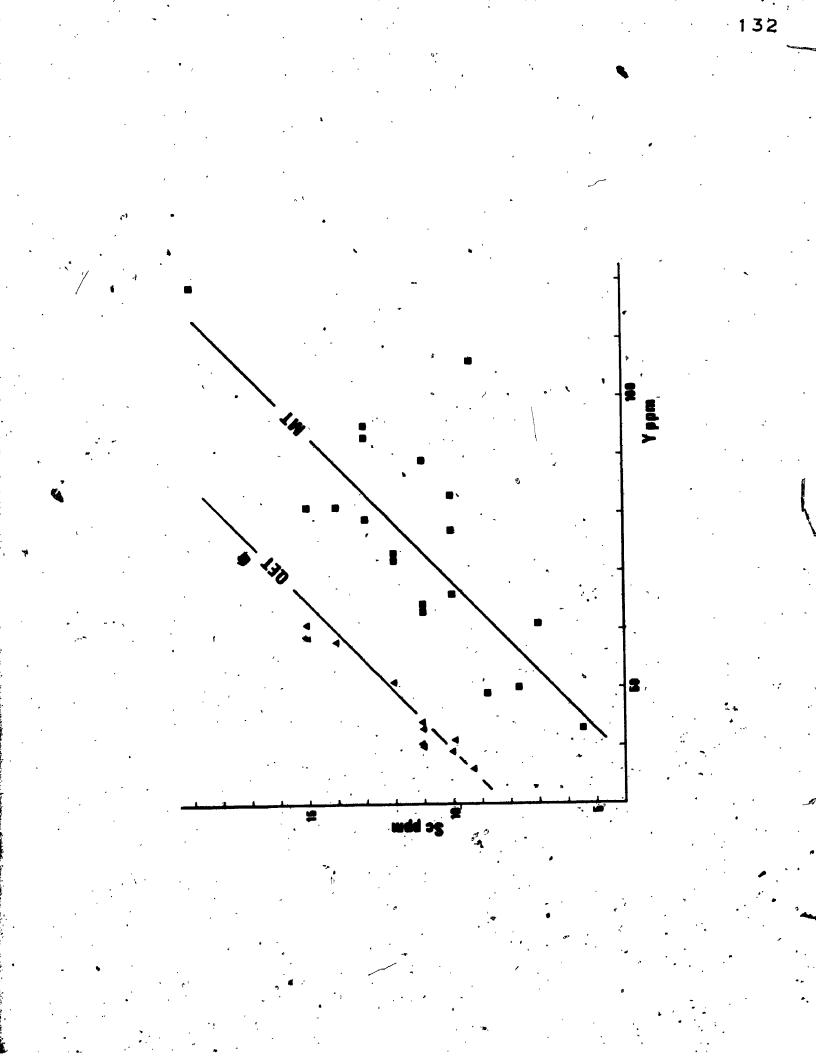
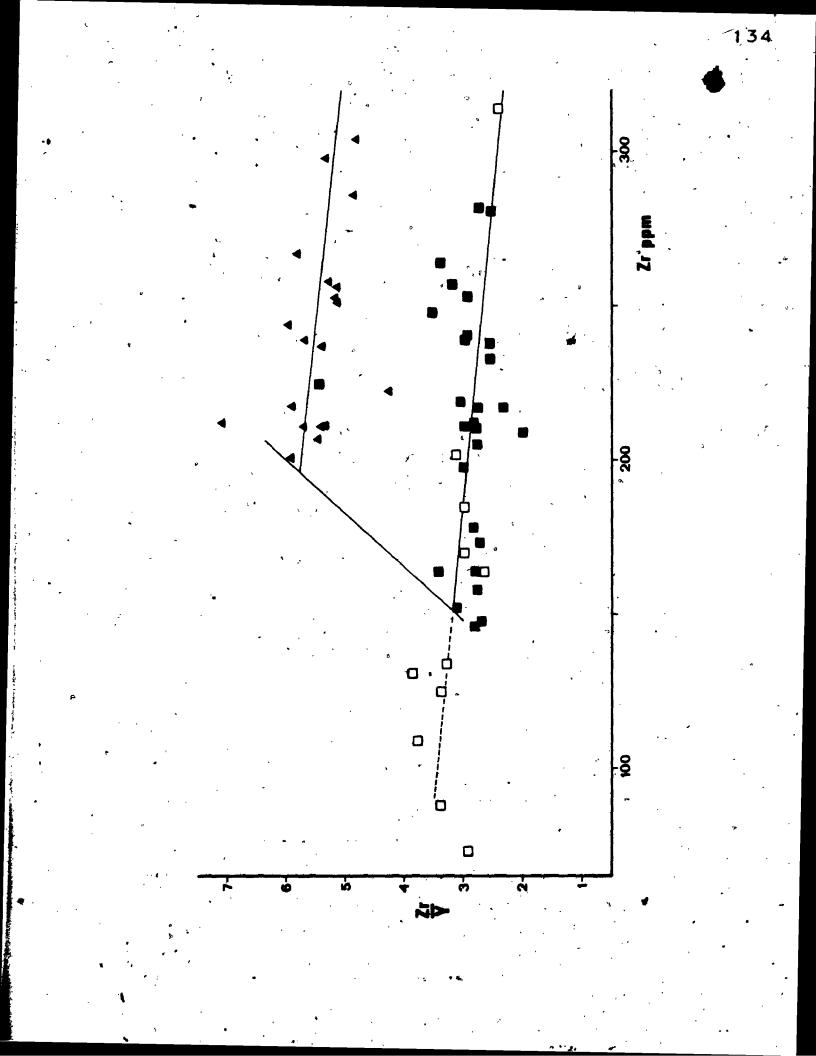
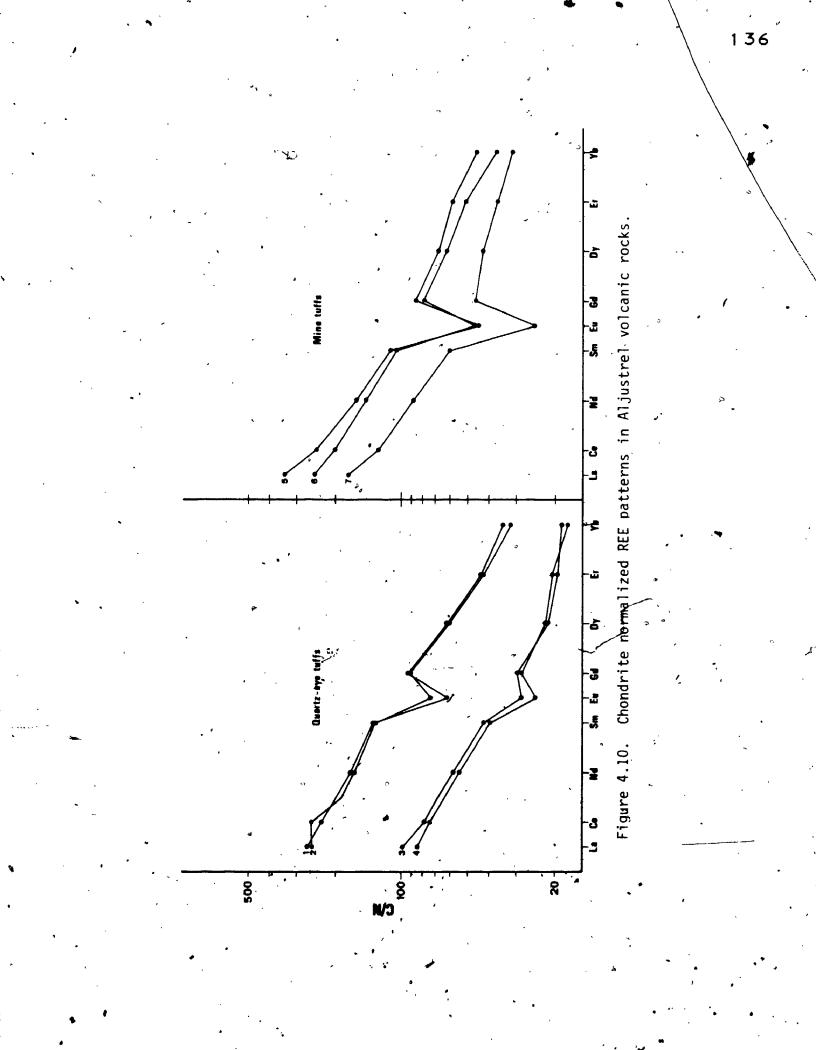
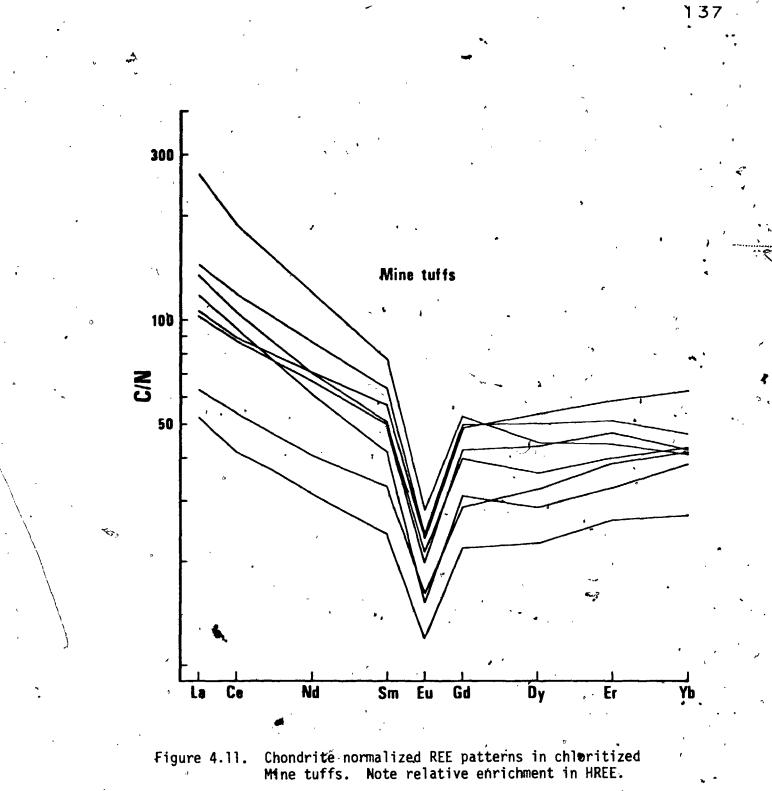
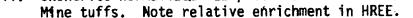



Figure 4.9. Diagram illustrating the variation of Zr/Y versus Y in the Aljustrel Volcanics. Triangles, QET; solid squares, MT; open squares are Mine tuffs depicting ore zone (stockwork) alteration. See Chapter 5.




the deeper contacts between the QET and the MT, to be -expected if a significant timespan separated the eruption of the two formations. These objections, coupled with the fact that the MT is finer grained and much better bedded than the QET could mean that, alternatively to the above igneous genetic hypothesis the differences between the Quartz-eye Tuff and the Mine Tuff could simply represent physical zonation between proximal (QET) and distal (MT) facies of a zoned volcanoe. Within this hypothesis the geochemical differences detected would represent lateral physical separation between most igneous crystals and larger glass fragments from finer particles, deposited farther away from the central eruptive zone. But more detailed field studied are needed.


c) Rare earth elements

Rare earth elements are usually considered to be immobile during all but the most intense metasomatic processes (eg. Nance and Taylor, 1977; Jahn et al., 1978), and their coherent geochemical behaviour makes them particularly useful in petrogenetic modelling of the origin of igneous rocks. However, recent studies (Hellman and Henderson, 1977; Nesbitt, 1979; Ludden and Thompson, 1979; Martin et al., 1978; Alderton et al., 1980) clearly show that REE are significantly mobile in the course of many supracrumatal processes.

Figures 4.10 and 4.11 represent chondrite normalized

diagrams of 15 samples from the Aljustrel Volcanics (see Appendix III for data). About half of the samples (Fig. 4.10) display patterns very similar to that of average shales (Haskin and Haskin, 1966; Haskin et al., 1968), whereas the remaining (Fig. 4.11) show similar light REE distributions and heavy REE enrichment with respect to the shale-like group. The simplest interpretation of these data is that the Aljustrel Volcanics derive from anatexis of grustal materials, and that in many cases hydrothermal alteration produced significant changes in the distribution of REE, particularly HREE.

This conclusion is in good agreement with Sr isotopic data for the Quartz-eye Tuff (Priem et al., 1978), which show extremely high Sr⁸⁷/Sr⁸⁶ initial values (0.7135), and also with the studies of Munha (1981) on the felsic rocks of the Iberian Pyrite Belt, who also produced REE data and interpreted it similarly:

Regarding the metasomatic effects on the REE patterns of the Aljustrel Volcanics, there is general agreement with the conclusions of Alderton et al. (1980) concerning the effects of sericitization in REE distributions. Thus the differences in Eu anomalies in the patterns in Figure 4.10a correlate well with the degree of sericitization, whereas the HREE positive shifts depicted in Figure 4.11 can be attributed to the marked chloritization exhibited by most

of these rocks

. . .

139

d) Ċu, Zn, Pb

The variations in the abundances of Cu, Zn and Pb in the Aljustrel Volcanics are of particular importance to the main purpose of this thesis, given the high abundance of these transition metals in the Aljustrel massive sulphide deposits.

Cu concentrations are extremely low, below detection. limit (10 ppm) for most samples. Figure 4.12, although based on insufficient data, suggests a positive correlation between intermediate degrees of whole rock Fe ratio $(0.5-0.6 \ Fe^{2+}/\Sigma Fe)$ and the higher Cu concentrations. The corresponding variation diagram for Zn (Fig. 4.13) reveals very similar Zn depletions in extremely oxidized or reduced rocks. Cu and Zn variations are similar, but not identical, to those detected for Fe (and perhaps Mn), as Fe was seen to vary linearly with Fe ratio whereas Cu and Zn covary with-both extreme reduction and oxidation.

It is of paramount importance to the present study that the variations detected in the Cu and Zn abundances in the Aljustrel Volcanics can be explained as those found for Fe (and Mn?), as being due to leaching of metals by an initially oxidized fluid. These data therefore indicate that the Aljustrel Volcanics may have been the source material for a metal rich, potentially ore forming fluid.

Regarding Pb, data is inconclusive: PB concentrations do not show any clear correlation, except perhaps that it

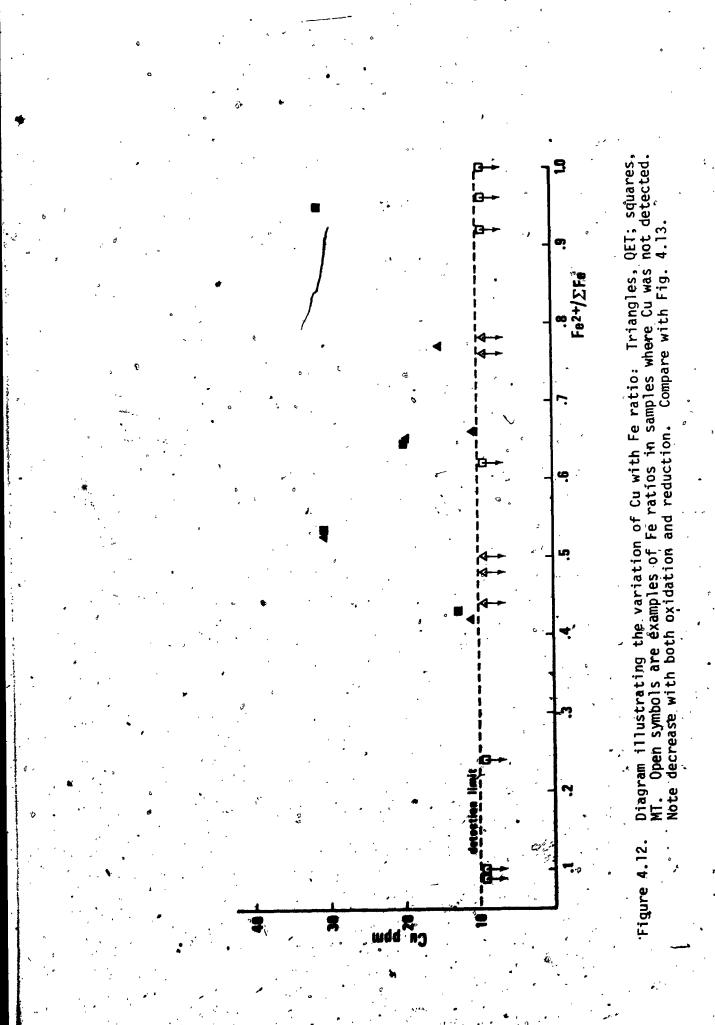
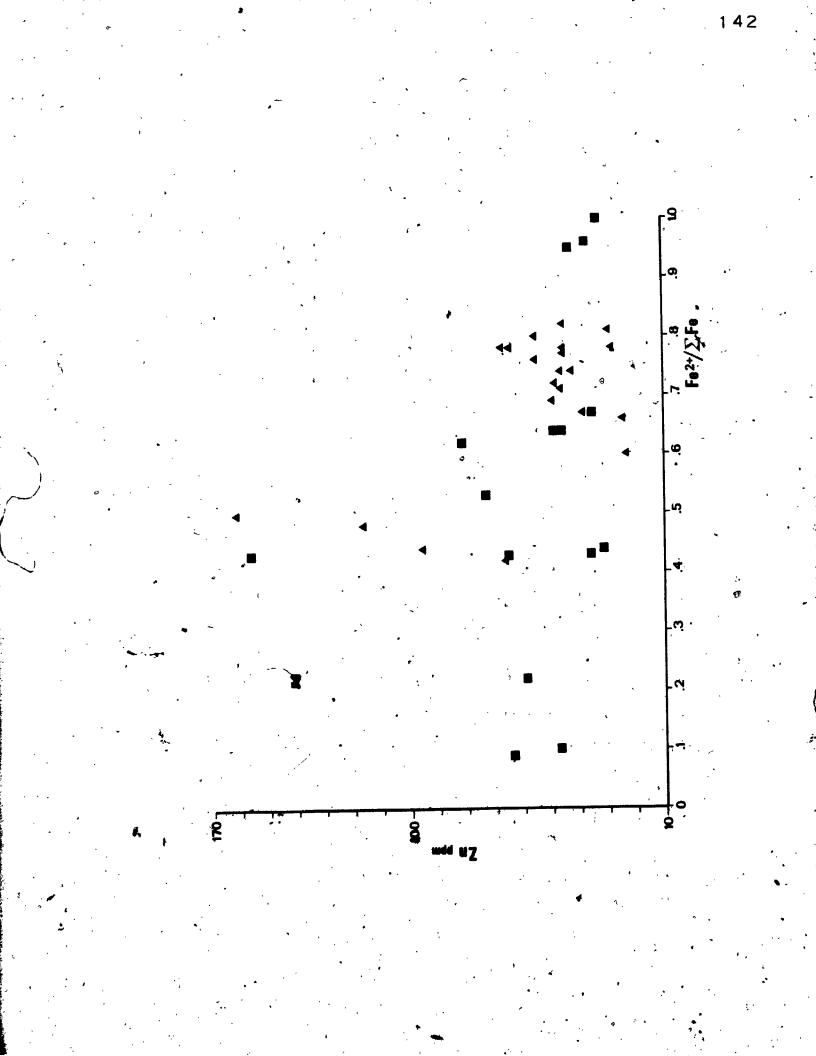



Figure 4.13. Diagram illustrating the variation of Zn

versus Fe ratio in the Alfustrel Volcanics. Triangles, QET; squares, MT. Note decrease of ^s Zn abundances with both oxidation and reduction, believed to correspond to leaching by sea water to generate a mineralized, potentially ore forming fluid.

was not detected (< 15 ppm) in the more reduced samples analysed, such as samples bis-283.5, bis-289 and bis-296.5 (Fe?+/ Fe 0.91, 1.00 and 0.96, respectively, see Appendix III-2).

e) Oxygen, isotope compositions

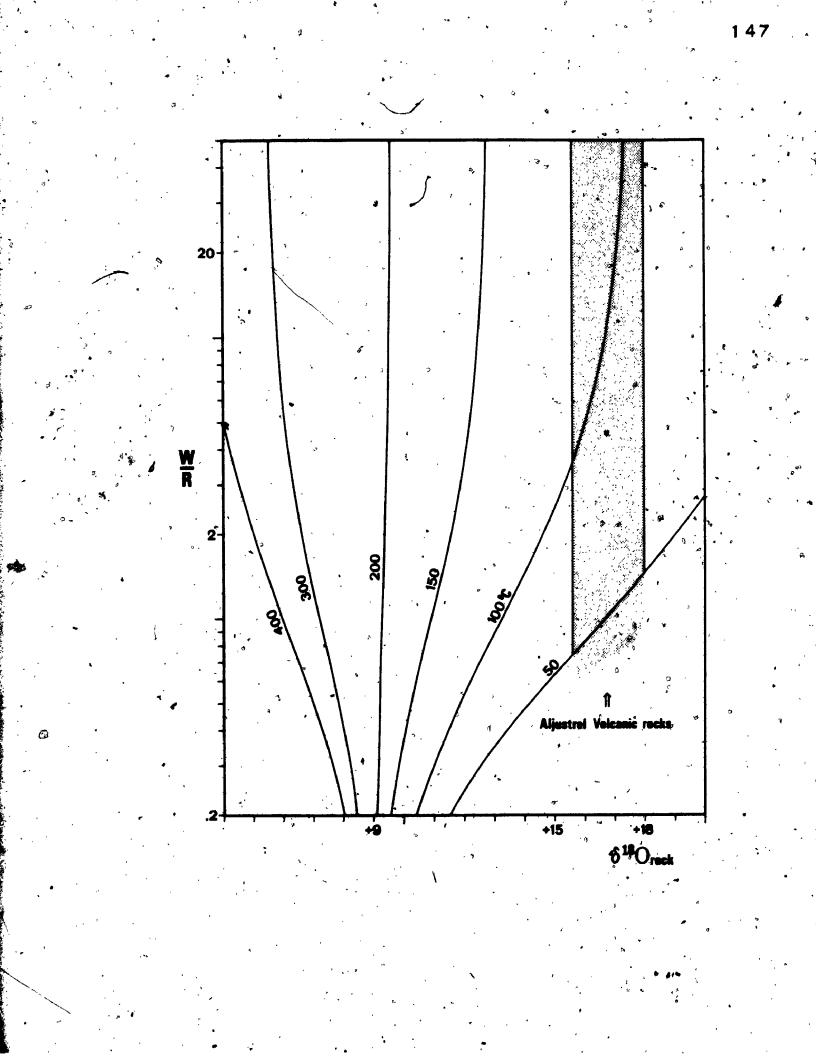
With the exception of rocks affected by the Feitais-Estacao ore fluid (Chapter 5) oxygen isotope compositions of the Aljustrel Volcanic rocks are listed in Table 4.10. δ^{18} 0 values are very homogeneous, between 15.7 and δ^{-1} $18.1^{\circ}/_{00}$, with a mean value of $16.7 + 0.7^{\circ}/_{00}$ (f) = 13). These values are far from normal for igneous rocks (even felsic, see Taylor, 1974, 1978), which usually vary within +6 and +100/ $_{00}$ δ^{180} . Given the geologic constraints' outlined above the only likely explanation for the measured values is pervasive and widespread exchange with a large it fluid reservoir under conditions of low temperature and high water/rock. It is of significance that several samples correspond to islands in the Feitais-Estacao stockwork unaffected by the mineralizing fluid. This fact shows that the Alfustrel Volcanics experienced an early, pre mineralization hydrothermal alteration stage which shifted the oxygen isotope composition of the rocks the unusually high values. The Alfustrel Volcanics are submarine, pyroclastic rocks, likely to have been deposited at low temperature (< 200° C) and to have had extremely high initial permeability, easily similar to that of coarse sand, in the range of 10-8 cm² (see Bear, 1972). Under

43

.

¥

Table 4.10. Oxygen isotope composition of the Aljustrel Volcanics (exclusive of samples affected by the Feitais-Estacao ore fluid).


Unit and Sample	δ ¹⁸ 00/00'	Remarks
Quartz-eye tuffs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>1 km along strike from orebodies , ' '
PMTV2-CR	+16.51	Green facies (Mg-rich)
GFA	+16.18	No Feldspar megacrysts
1-GF	+15.63	
GF - 84 '	+16.85	Albite megacrysts
2-GF-87	+16.42	
6-GF-17	+15.7	K-Feldspar megacrysts
Felsitic tuffs		
	• •	•
SM-11	+16.0	
SM-11 GF-89.5D _*	+16.0 +16.68	Green facies
		Green facies
GF - 89.5D 📲	+16.68	
GF - 89 . 5D ₃ GF - 93	+16.68	
GF - 89 . 5D ₃ GF - 93	+16.68	
GF - 89.5D * GF - 93 GF - 113	+16.68 +17.37 +17.6	

these circumstances the initial cooling of the pyroclastic. pile must have taken place through vigourous sea water convection driven with heat from within. The Rayleigh number must not only have exceeded the critical value necessary for convection to take place (see Lapwood, 1948) but, given the extremely high initial permeabilities inferred from geology and petrography, the second critical Rayleigh number must also have been exceeded. Above this value convection is non steady state (Straus, 1974; Combarnous and Le Fur, 1969), and drifting, irregular convection cells are thus likely to have formed. This explains the homogeneity of oxygen isotope data, as no fixed water recharge and discharge sites exist in a The final isotopic result is drifting convective system. everywhere the result of the prevailing physicochemical conditions, low temperature and high water/rock. The latter condition is required by the pronounced difference between original and final 180 contents, illustrated in Fig. 4.14. This figure also shows that temperatures must have been (or decreased to) below 100°C during this pre' mineralization stage.

4.4 Discussion and conclusions

As far as can be seen through major metasomatic changes, the Aljustrel Volcanics were originally constituted by two units of submarine pyroclastic rocks.

Figure 4.14. Diagram illustrating the molar water/rock and temperature ranges required to enrich the Aljustrel Volcanics in. 180 from an initial value of $\delta^{180} \sim +9^{\circ}/_{00}$ (assumed) to +15.6 to 18.1°/₀₀ (measured) through exchange with sea water (0°/₀₀ δ^{18} 0). Rock (alkali feldspar)water fractionation äfter 0'Neil and Taylor (1967).

A high iron rhyolite (the Quartz-eye Tuff) may have erupted first, followed almost immediately thereafter by a high-silica rhyolite (the Mine Tuff). The tuff formations can be envisaged as derived from variable degrees of partial melting of a common (high-grade metamorphic?) crustal source, followed by varying degrees of shallow level crystal fractionation, or, alternatively, the QET may represent proximal volcanic facies and the MT more distal associated flow tuffs.

The main metasomatic changes experienced by the Aljustrel Volcanics seem to have been as follows:

- Major hydration, oxidation and Mg fixation in the uppermost 50 m or so of each of the QET and the MT;

- Progressive Fe (and perhaps Mn) leaching downwards in both tuff sequences;

- Progressive leaching of Cu and Zn in samples either

- Significant Si leaching;

- Complex and evolving behaviour of the alkalies, with early widespread hydrolysis of igneous feldspars followed by hydrothermal growth of low temperature albite megacrysts which were subsequently partially or totally replaced by low temperature K-feldspar. Alkali feldspar megacrysts occur almost exclusively in the Quartz-eye Tuff (the central core of the Aljustrel Volcanics); - General, homegeneous $^{18}\mathrm{O}$ enrichment to extreme values around $17^{\mathrm{O}}/_{\mathrm{OO}}$ $\delta^{18}\mathrm{O}$.

Hercynian low grade regional metamorphism (up to lower greenschist facies and essentially isochemical, Munha, 1981; in press) may have obliterated in part the hydrothermai mineralogy, namely producing the presently observed chlorite, sericite and epidote from hydrothermal lower grade phyllosilicates such as smectite and celadonite and zeolites, respectively.

Conclusions regarding the origin of the Aljustrel Volcanics are in good agreement with previous hypothesis both for the Aljustrel Volcanics (Schermerhorn, 1976; Priem et al., T978) and in general for the felsic volcanic rocks of the Iberian Pyrite Belt (Schermerhorn, 1970a; Soler, 1969; Hamet and Delcey, 1971; Munha, 1981).

Several aspects of the metasomatic changes detected in the Aljustrel Volcanics indicate that the fluid involved was initially oxidized, Mg bearing and very abundant. Given that these rocks were deposited in a submarine environment, the only available fluid reservoir with such characteristics is sea water.

Sea water simply trapped in the voids of the Aljustrel tuffs could not account for the high water/rock required at least during part of the metasomatic events, and the temperatures required were in the range 0-300°C (and possibly over). The grain size of the Aljustrel Volcanics was of the order of millimetres: initial permeabilities easily exceeded 10^{-8} cm² (Chilingar, 1963; Bear, 1972; Freeze and Cherry, 1979). Under these circumstances, and given also that metasomatism clearly predated regional metamorphism, metasomatism must have been caused by seawater convection through the initially hot (200°C) Aljustrel Volcanics, immediately after emplacement, as a result of the high heat contents of the rocks and possibly to high regional thermal gradients generated by a (presumed) magma chamber at depth. Fluid convection is the typical mechanism of heat extraction from hot permeable rocks in the presence of large amounts of fluids, as well known by students of geothermal areas (see Elder, 1965, 1967; Fyfe et al., 1978).

The complex and evolving behaviour of alkalies suggests that physicochemical conditions prevailing during the sea water hydrothermal alteration events changed markedly from the beginning to the end of hydrothermal activity. Textural relations indicate that alteration of igneous feldspars took place at an early stage, as it predates growth of hydrothermal albite. Given that experimental data shows that Mg is rapidly extracted from sea water upon interaction with rock, it is reasonable to presume that most Mg enrichment in the Green Facies rocks of both the QET and the MT also took place early in the history of the Aljustrel paléohydrothermal system.

At least 2% Mg was in average added to Green Facies rocks, and the volume of these is of the order of 0.8 x 10^9 m³, corresponding to $_{0}4.5 \times 10^{10}$ kg of Mg extracted from sea water. Quantitative extraction of Mg implies that a minimum volume of sea water of the order of 45 km³ "circulated through the Aljustrel Volcanics (probable total volume 5-20 km³), suggesting water/rock 100:1 - 25:1. For such values of w/r oxygen isotope data implies prevailing temperatures somewhat in excess of 100°C (Fig. 4.14).

Hydrothermal albite postdates early alteration of igneous feldspar, and the conclusions of Munha et al. (1980) indicate that temperatures for hydrothermal albite formation exceed 150°C. Thus temperature seems to have increased instead of decreasing in the course of sea water convection, suggesting the presence of a large magma chamber below.

We have also seen that hydrothermal alteration produced a reduced, Fe-Mn(?)-Cu-Zn-Pb(?)-Si bearing fluid, clearly potentially an ore forming fluid. Thus a likely candidate to generate the Arjustrel massive sulphide deposits.

THE FEITAIS OREBODY OF ALJUSTREL, ITS ASSOCIATED METALLIFEROUS SEDIMENTS AND ORE ZONE HYDROTHERMAL

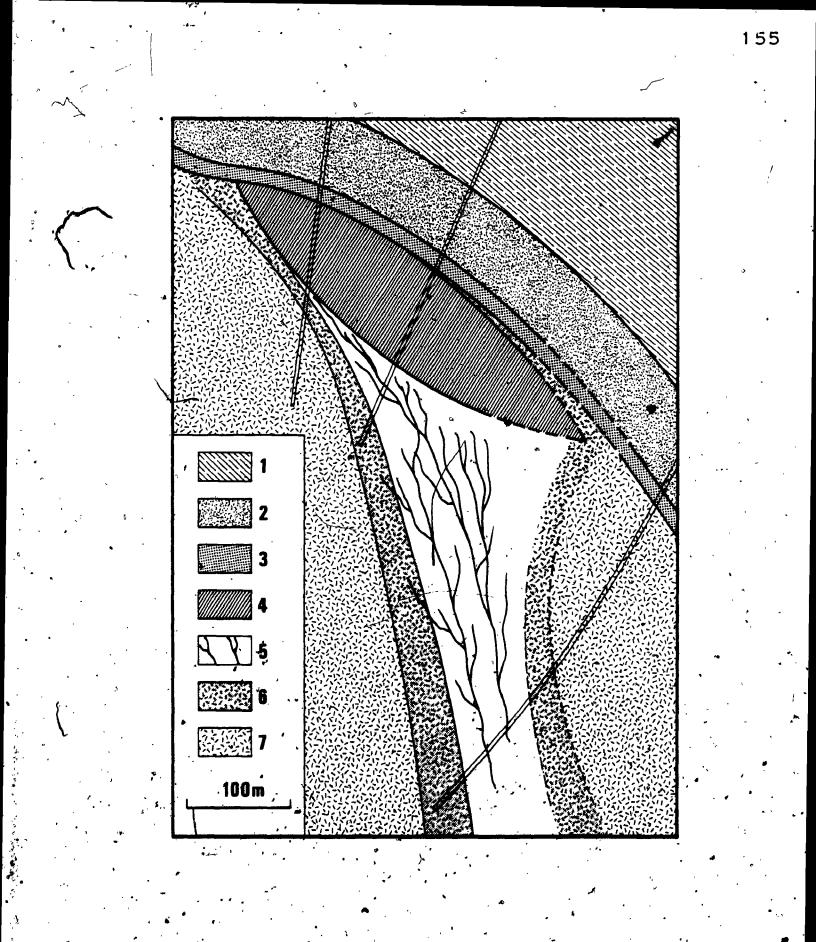
CHAPTER 5

ALTERATION

5.1' Introduction

From detailed study of the Aljustrel Volcanics we concluded that these have been affected by major sea water, hydrothermal metamorphism which transformed rhyolites into quartz-keratophyres, and that in the course of the process sea water was modified into a Mg poor, transition metal rich brine (given the hydration of the Aljustrel Volcanics). It was not possible to estimate the alkali metal content of this brine, in view of the complex and evolving behaviour of alkali metals in the Aljustrel Volcanics.

In this chapter we report on the study of the Feitais orebody and associated siliceous and metalliferous sediments, and on the prominent wall rock alteration that surrounds the ore zone. Much attention was dedicated to hanging wall rock alteration, part cularly prominent at Feitais when compared to other orebodies, both at Aljustrel and elsewhere.


The spatial distribution of the various lithotypes constituting (and surrounding) the Feitais ore zone are schematically represented in Figure 5.1, including the approximate location of 4 drillholes from which most footwall and massive ore samples were collected. More detailed information with regard to field relationships and sample locations is presented in Appendix VI.

5.2 Petrography

5.2.1 Stockwork zone

The Feitais massive sulphide orebody is underlain by zone of crosscutting stringer and disseminated sulphide mineralization (pyrite and/or chalcopyrite <u>+</u> sphalerite). This stockwork mineralization is hosted in rocks composed escentially of chlorite-quartic, sericite-quartz or sericite-chlorite-quartic. Minor amounts of carbonate are often present, and carbonates may locally become volumetrically dominant. The relative amounts of phyllosilicates (sericite, chlorite, or both) and quartz Figure 5.1.

Schematic spatial distribution of the various lithotypes constituting and surrounding the Feitais ore zone, with approximate projection of the location of several drill holes in.a plane normal to the elongation of the Feitais-Estacao orebody. (Drill holes are, from left to right, LC1-bis, FS-8 and FS-21.) See also Appendix VI. 1-Culm Group; 2-Paraiso Siliceous Formation; 3-Jasper unit; 4-Feitais massive sulphide orebody; 5-Stockwork rock (quartz-chlorite- sulphides); 6-Outer stockwork rock (quartz-chlorite-sulphides); 7-Mine Tuff.

are widely variable, from sericite and/or chlorite dominated to quartz with only minor amounts of the other silicates. The absolute abundance of sulphide minerals is also widely variable, with a few metres of gradual transition to massive ore.

Chlorite + quartz + sulphides constitute an asymmetric crosscutting pipe-shaped body which occupies the core of the footwall zone of stockwork mineralization (Fig. 5.1). Barriga and Carvalho (1983) have proposed the name; "stockwork rock" to this lithotype. Stockwork rock is often very rich in chalcopyrite, and grades into sericite-quartz-sulphides assemblages which in turn grade into Mine Tuff invariably depicting earlier regional hydrothermal alteration (described in Chapter 4). In other words, quartz-keratophyre grades into stockwork rock through an intermediate zone of sericite-quartz-sulphide rock which will be named "outer stockwork rock".

Plate 4C to E illustrates the textural variations mentioned above. Plate 18 is a Green Facies Mine Tuff collected away from mineralization, although perfectly equivalent textures can often be seen in intercalations of rock unaffected by mineralizing fluids but surrounded by stockwork rock. Plate 4C illustrates the effect of incipient stockwork alteration on a porphyric Mine Tuff: note the extreme degree of alteration of albite phenocrysts and the abundance of sericite, corroding the grains of

felsitic matter in the tuff matrix. Plate 4D portrays a sericite rich outer stockwork rock. Note that feldspar is now completely absent and that the sericite aggregates are texturally very similar to the matrix of the Mine Tuff. Outer (sericitic) stockwork rock grades into (chloritic) stockwork rock; illustrated in Plate 4E.

It is of significance that zircon is a frequent accessory of stockwork rocks (Plate 4F), usually enclosed in chlorite and with pleochroic haloes due to radiation damage. Zircon is generally anhedral, corroded and/or reprecipitated, although occasionally euhedral zircons indistinguishable from those of the Mine Tuff also occur. Allanite, when present, is always anhedral and also surrounded by pleochroic haloes when enclosed in chlorite.

There is weak zonation in the distribution of the various sulphides in the stockwork zone. Thus chalcopyrite occurs mainly in chloritized rocks, whereas sphalerite (with very minor galena) is particularly abundant in outer stockwork rocks (sericitized). Pyrite occurs throughout the stockwork volume, either accompanying chalcopyrite or 'sphalerite or as the only sulphide, and extends beyond the outer stockwork zone, into weakly ore zone altered Mine tuffs.

Mineralogical zonation in the Feitais stockwork is present at two scales: megascopically it is clear that stockwork rock (chloritic) predominates largely in the core

157.

of the alteration pipe, and is enveloped by a relatively well defined halo of outer stockwork rocks (sericitic) before feldspar-bearing rocks are found. At the scale of individual sulphide-rich veins chlorite-quartz rock is sometimes surrounded by sericite-quartz rock (Plate 5A) which sometimes grades into Mine Tuff unaffected by ore zone alteration.

Stockwork zone mineral chemistry is best reported together with mineral chemistry of the remaining ore zone rocks (massive ore and hanging wall sediments, section

5.2.2 The Feitais massive sulphide deposit

5,3.1).

The Feitais Estacão massive sulphide deposit is a truly gigantic prebody, with total reserves substantially in excess of 100 million metric tonnes, comparable in size to only a few other deposits in the world (see Franklin et al., 1981). A thorough study of sulphide mineralogy and textures was not attempted given the length of such a task and also in wiew of the fact that much relevant information could be obtained from unpublished mine reports and drillhole logs.

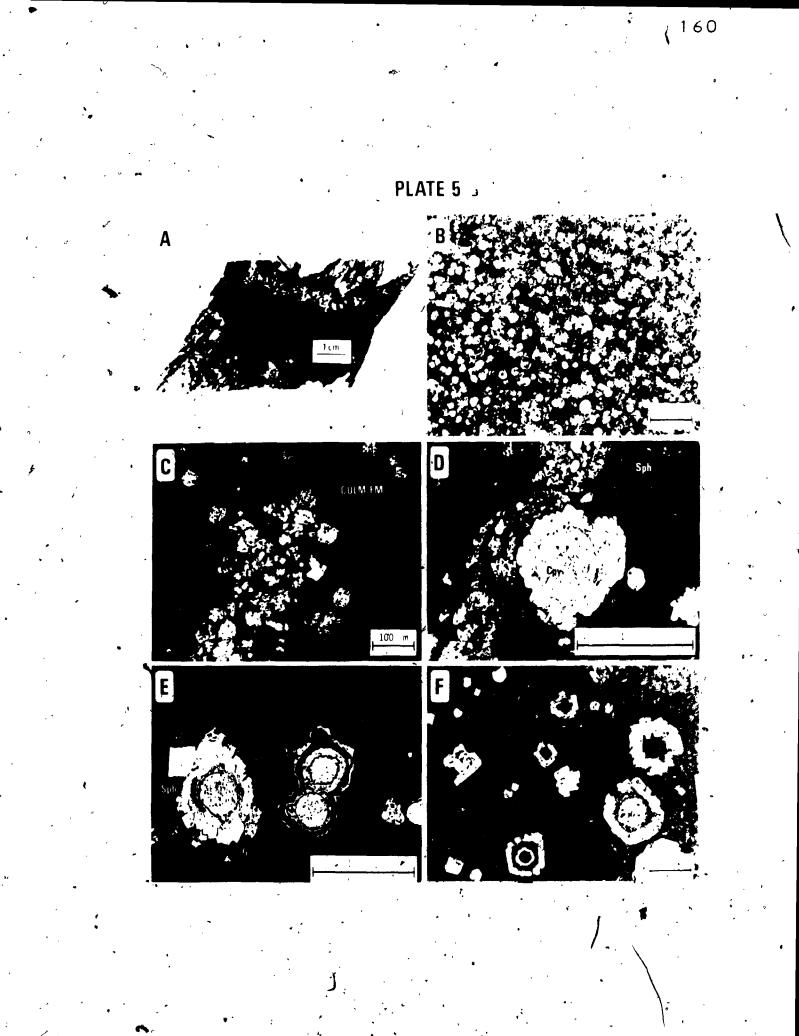

Pyrite is the most abundant sulphide mineral in massive ore. Sphalerite, chalcopyrite, galena and arsenopyrite are the remaining common sulphide minerals. Many other metallic minerals occur in minute quantities,

PLATE 5

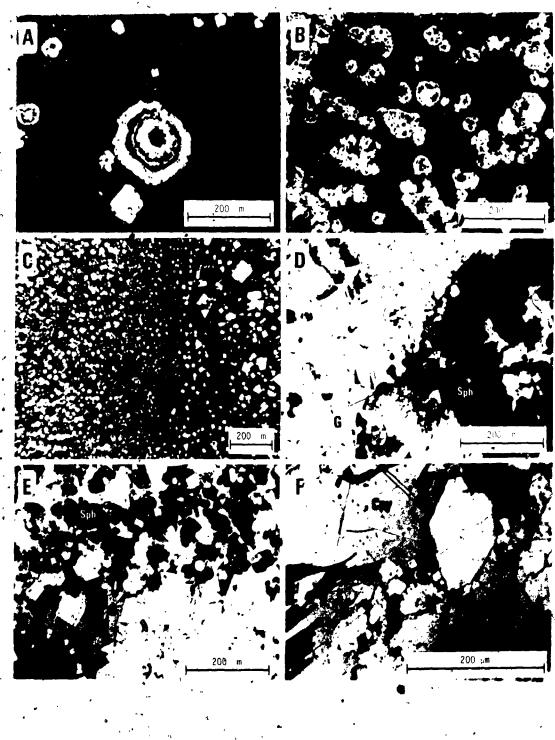
(all scale bars (except A) 100 μ m)

- Chalcopyrite + pyrite vein immediately surrounded by chlorite-quartz-chalcopyrite alteration (black) which is in turn surrounded by sericite-quartz-sulphide alteration (grey, at upper and lower edges of specimen). Note deformation. From stockwork under massive ore.
- B. Framboids in sulphide ore, composed of spherical aggregates of anhedral pyrite spotted with silicates.
 Reflected light, one nicol only.
- C. Framboids in Culm Group shale bed, composed of tiny pyrite <u>cubes</u> hosted in silicates + graphite (grey). Reflected light, one nicol only.
- D. Colloform aggregate composed of alternating bands of pyrite and chalcopyrite (cpy), hosted in massive sphalerite (sph). Reflected light, one nicol only.
 - Colloform aggregates, including a ring composed of sphalerite (sph), chalcopyrite (cpy) and galena (G). Note euhedral pyrite in left aggregate. Reflected light (oil immersion), one nicol only.

Partly recrystallized pyrite-gangue colloform aggregates. Réflected light, one nicol only.

PLATE 6

(all scale bars 200 μ m; reflected light, one nicol only)


- A. Colloform pyrite. Note coalescence of pyrite rings.
- B. Pyrite aggregates exhibiting delicate cellular
 - structures defined by radiating pyrite

all photographs.

C. Bedding (vertical, in the middle of photo) separating sharply a domain of exclusively euhedral pyrite from an adjacent bed of exclusively framboidal pyrite.

D,E,F. Recrystallized massive sulphide ore, with idiomorphic pyrite (depicting brittle deformation) and plastically deformed sphalerite (sph), galena (G) and chalcopyrite (cpy). Pyrite is the lightest mineral in

such as tetrahedrite, bournonite, tennantite, pyrrhotite,
 cobaltite, stannite(?) boulangerite, greenockite, and still
 others (Gaspar and Conde, 1978). The more abundant
 non-sulphide minerals are quartz, chlorite, sericite,
 several carbonates and barise.

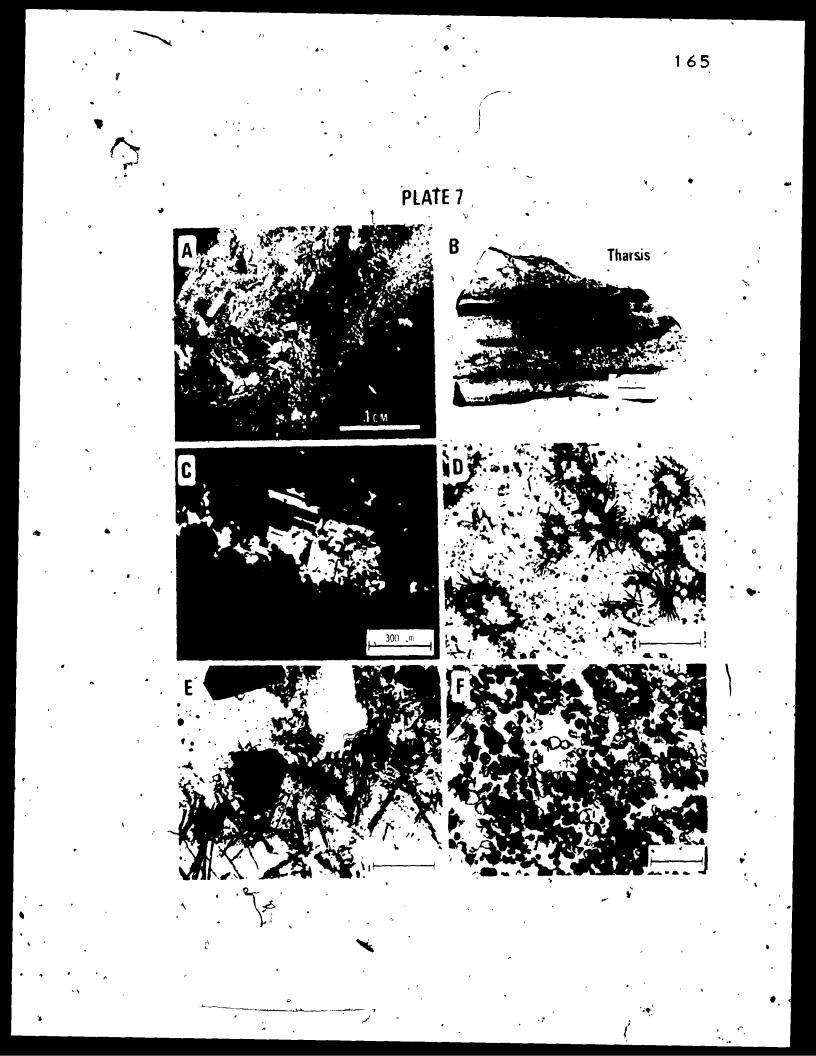
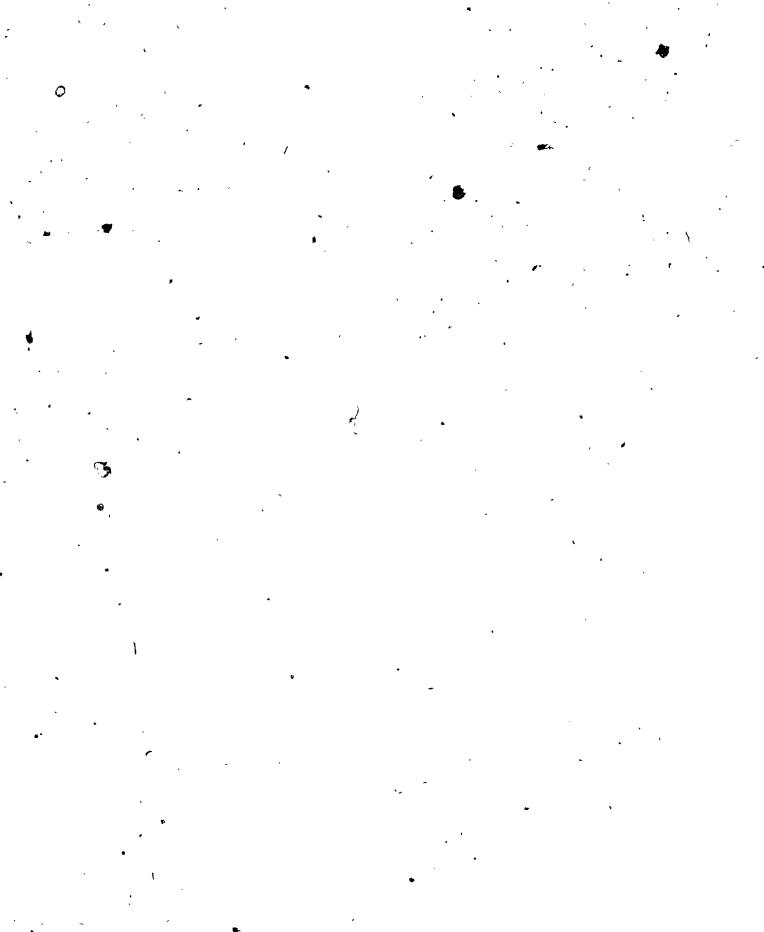

Textures are extremely variable, as usual in slightly metamorphosed massive sulphide ores (Rockingham and Hutchinson, 1980, The more pyritic and massive ore varieties are defen completely featureless, with only minor amounts of interstitial minerals in a continuous aggregate of pyrite. Etching (air) of this type of pyrite sometimes produces regularly spaced and sized globular figures of the same size range (15 μ m) of the ubiquitous framboids (sensu lato, see Love and Amstutz, 1966) seen in less massive ore varieties (Plate 5B). It is interesting to note that framboids composed of tiny pyrite cubes (framboids sensu stricto) were not observed in the Feitais massive or stockwork ores, despite their frequent occurrence in the occasional sedimentary pyritic beds of the overlying Culm turbidites (see Chapter 2), illustrated in Plate 5C. Colloform textures are often seen, sometimes as beautiful concentric overgrowths of various sulphides and quartz, sometimes, including polyminerallic single rings (Plates, 5D to F and 6A. 'In other cases colloform aggregates/ include radiating pyrite (Plate 6B). Recrystallization produces fortification-type zoned aggregates as those

PLATE 7

Small scale slump fold, composed of pyrite (white) and quartz. Reflected light, non polarized light. Scale bar 1 cm.

Β.


- "Turbidite textured" ore, typical of allochthonous massive sulphide deposits in the Iberian Pyrite Belt, with thinning upwards individual beds of clastic pyrite and black shale fragments in a fine grained matrix of pyrite + sphalerite + chalcopyrite + silicates. Tharsis mine, Spain. Scale bar 2 cm.
- C. Albite partly replaced by pyrite + sphalerite (black). Crossed nicols. Scale bar 300 μm.
- D. Radiating aggregates of stilpnomelane in unaltered jasper. One nicol only. Scale bar 300 $\mu\,\text{m}.$
- E. Stilpnomelane and magnetite (black) in slightly altered jasper. One nicol only. Scale bar 300 μm.
- F. Spessartine garnet hosted in chert (both clear and dark). Sample 8-358.1. See Appendix IV-3. One nicol only. Scale bar 100 µm.

described by Ostwald and England (1977, 1979).

Euhedral pyrite (usually cubes, rarely pentagonal dodecahedrons) is Nowever the more common form of occurrence of this mineral, and also that of arsenopyrite. (pseudo-monoclinic prisms). Some euhedral pyrite seems to be primary/diagenetic, given that beds of pyrite cubes often occur adjacent to beds of framboidal pyrite (Plate 6C), and also because pyrite cubes often define pressure-shadows where parallel fibres of quartz developed during Hercynian deformation. Deformation also produced textures such as those depicted in 'Plate 6D to F, where idiomorphic (perhaps recrystallized) pyrite (and arsenopyrite) suffers brittle deformation whereas chalcopyrite, sphalerite and galena deform plastically, occupying intra and interspaces with respect to the non plastic sulphides (pyrite, arsenopyrite).

Massive ore is sometimes banded, this is particularly visible in base metal rich ore varieties. Sedimentary *** features such as small scale slumps (Plate 7A), convolute iamination and scour and fill occur 'sporadically. Brecciated ore also occurs. All soft sediment deformation features observed can be explained by a few metres of movement (see Blatt et al., 1980). Evidence for large scale ore redeposition such as that present in allochthonous deposits elsewhere in the Pyrite Belts (Chapter 2; Plate 7B) is completely absent.

.

Mineralogical zonation is a prominent feature of the Feitais massive orebody. Thus chalcopyrite and chlorite are clearly concentrated towards the footwall of the massive body, in continuity with the occurrence of these minerals in the underlying stockwork zone, whereas sphalerite, galena and barite are abundant near the hanging wall and in peripheral zones. Sericite is more widespread in occurrence than chlorite, and seems to be concentrated towards the footwall and periphery of the orebody. Pyrite, arsenopyrite, quartz and carbonates are scattered throughout. Sulphide minerals are thus hosted in chlorite and/or sericite + quartz <u>+</u> carbonate towards the footwall and in a quartz <u>+</u> sericite <u>+</u> carbonate matrix elsewhere.

Tuff intercalations are occasionally found within the Feitais massive ore, always with gradational contacts with ore, and are particularly abundant towards the footwall, whereas near the top of the orebody highly siliceous inclusions (often quartz with minor sericite and carbonate) are dominant, in good agreement with the massive ore mineralogical zonation described above.

Ore textures indicate that the orebody was deformed and partly recrystallized during the Hercynian Orogov (Chapter 2). Pre tectonic textures (framboids, colloform textures) are largely inconclusive: their occurrence within altered tuffs, both as inclusions in the massive orebody and in the stockwork confirms Roedder's (1968) observations

1.67

that colloform textures cannot be regarded as evidence for strictly sedimentary deposition. The origin of framboids is a matter of controversy; they are often considered evidence for biogenic processes (see Love and Amstutz, 1966), but Rickard (1970), based on physical and crystal chemical arguments concluded that framboids form through pseudomorphism of previous spherical bodies, and Berner (1969), Farrand (1970) and Sweeney and Kaplan (1973) reported on the inorganic laboratory synthesis of framboids, sometimes from earlier sulphides thus suggesting a diagenetic origin for such structures.

Mineral banding (convolute or undeformed) is believed to represent largely local bedding due to settling of sulphide particles precipitated in open space, thus contraindicating a replacement origin for a large proportion of the orebody. However, at least some replacement of previous existing rocks must have occurred, , as proven by the occurrence of sulphides replacing earlier albite phenocrysts in ore zone weakly altered tuffs (Plate 7C) and as suggested by the gradational contacts of (a) the orebody as a whole (especially at the footwall) and (b) the. lithic inclusions within massive ore.

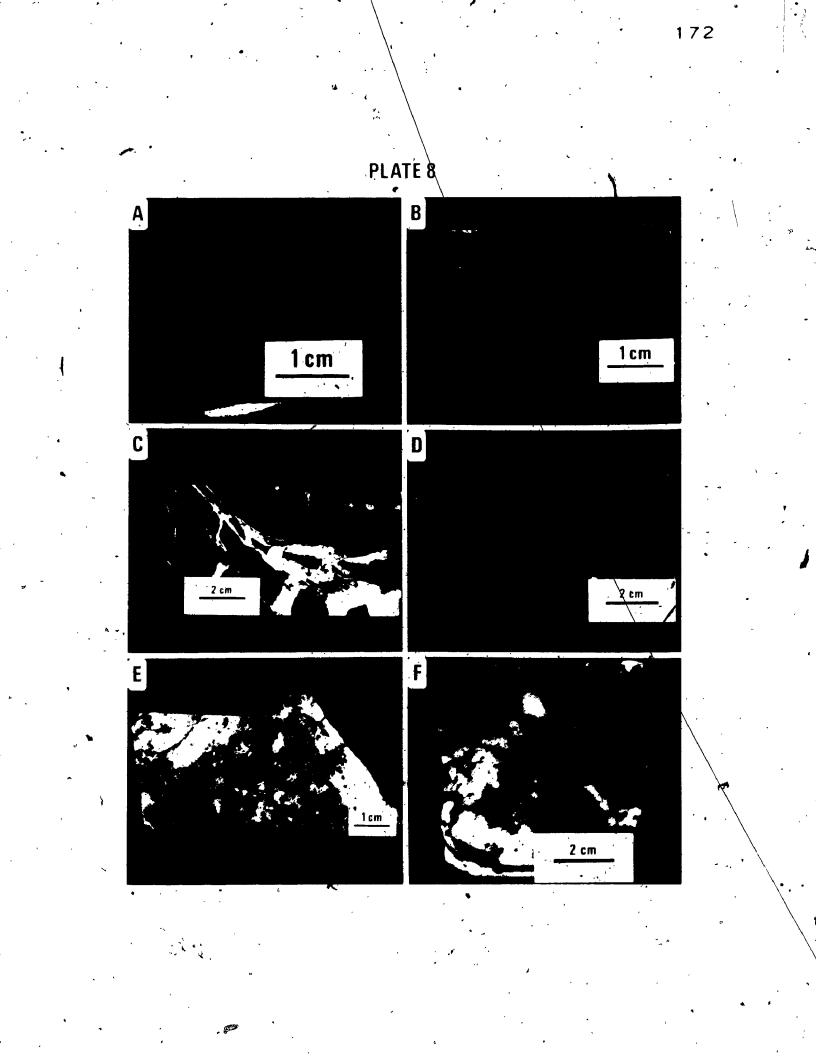
Finally, it is worth noting that massive ore is conspicuously free of crosscutting veins of any kind (see frontispiece), in marked contrast with both the stockwork zone and the hanging wall Jasper unit (see next section).

5.2.3 <u>Hanging wall siliceous and metalliferous sediments</u> Cherts, jaspers and Mn concentrations constitute a well defined horizon immediately above the Aljustrel Volcanics, mapped by Schermerhorn and Stanton (1969) as constituting the base of the Paraiso Siliceous Formation (see Chapter 3). For the sake of clarity we will call these siliceous and metalliferous sediments the Jasper unit.

At the scale of the Feitais Anticline the Jasper unit is a stratiform, up to 15 m thick continuous bed (except where tectonically disrupted), that outcrops extensively at the Feitais hill (Fig. 3.2) and that can be seen in most appropriate located drillholes, although sometimes as thin 20 cm. Given that the Feitais-Estacao orebody occurs as at the top of the Alfustrel Volcanics the Jasper unit is the hanging wall rock of the sulphide deposit. A few metres of ore zone altered volcanic rocks are sometimes present between massive ore and the Jasper, although this may be caused by post depositional movements, either synsedimentary or tectonic in origin, given the geological history of the area, the occurrence of hundreds of minor faults with diverse orientations, and given also the fact that the Jasper unit is often seen repeated by folding and/or small scale thrusting.

Jasper (hematitic red chert) is the predominant lithotype of the Jasper unit laterally away from the

Feitais-Estacao orebody, often accompanied by black manganiferous chert and by Mn-oxide (+ rhodonite and rhodocrosite) concentrations that have justified small open pit exploitations in the past.


A few samples of cherts and jaspers were etched with hydrofluoric acid and observed under the scanning electron microscope, but primary textures are obliterated by recrystallization. We note however that a similar SEM study of cherts and jaspers from other areas in the Iberian Pyrite Belt (F. Barriga, unpublished data), less affected by regional metamorphic recrystallization evidenced the presence of radiolarians in the cherts occurring laterally away from sulphide mineralization (> 500 m), but not in samples directly overlying massive sulphide ores, suggesting that above hydrothermal vent areas silica may have precipitated simply as a consequence of sharp temperature decrease upon contact of a Si-rich hydrothermal solution with cold sea water.

In the immediate vicinity and especially above the orebody the jasper is partially or totally altered into predominantly bluish grey pyritic chert, with reduction of hematite to magnetite and pyrite, as eloquently illustrated in Plate 8. Bright red jasper immediately above massive " sulphide ore is restricted to relics of various sizes, up to a few tens of centimetres, with gradational contacts to chert of various shades of grey, containing magnetite,

PLATE 8

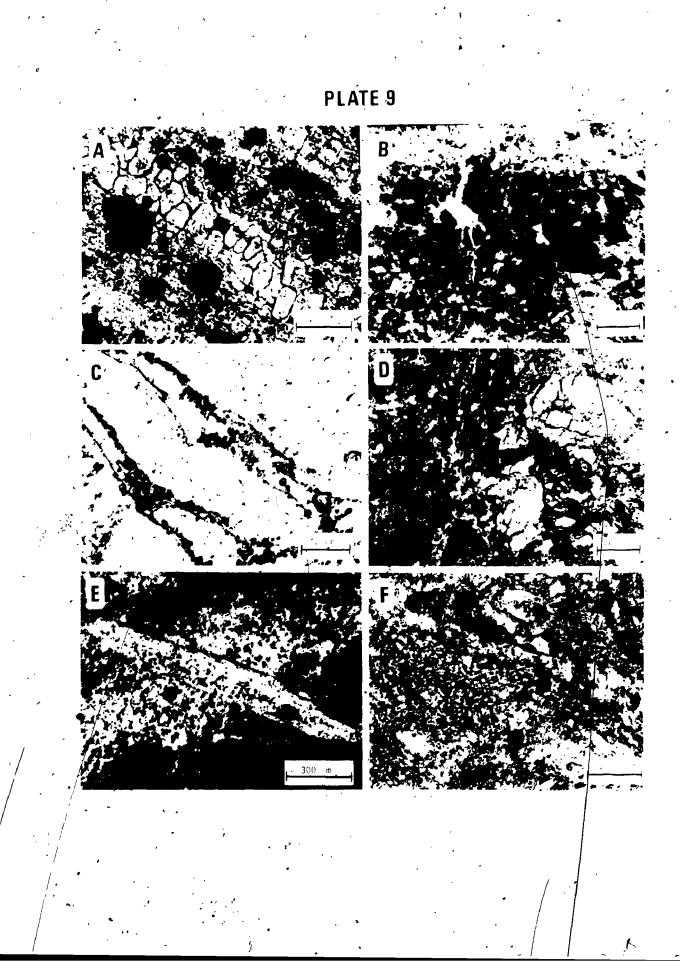
Illustration of reductive alteration in the Feitais

- A. Unaltered bright red jasper collected several hundred metres away from known sulphide mineralization (drill hole S-3, Esteval da Serra). Subsequent photographs collected near (<100 m) and immediately above massive sulphide ore.
- B. Incipient vein controlled reduction of hematite to magnetite. Drill hole FS-15.
- C. Breccia-pipe like quartz + carbonate + magnetite + chalcopyrite vein system in slightly altered jasper, with magnetite ribbons in a slightly iron depleted jasper matrix. Drill hole FS-11.
- D. Advanced alteration of jasper (unaltered "island" left on lower left side) with generation of magnetiticpyritic dark grey chert. Drill hole FS-15.
 - E. Complete alteration of jasper into bluish-grey pyritemagnetite chert. Drill hole LC1-bis.
 - F. Completely altered jasper (equivalent to E) depicting - prominent post alteration deformation. Drill hole FS-14.

pyrite and even chlorite replacing hematite. Vein controlled reducing alteration can often be seen, from the vein wall grey chert to unaltered red jasper. In other cases a network or a subparallel set of closely spaced veins leaves no unaltered relics, transforming the jasper into completely reduced pyritic and/or chloritic chert. From detailed study of the Jasper unit in 11 drillholes which also intersect sulphide mineralization (below) it is concluded that pretectonic veins responsible for access of the reducing fluid that altered the jasper amount to about 5% of the present volume of the Jasper unit above Feitais-Estacao. Minerals in these veins can include the following, singly or in combination: quartz, carbonates, chlorite, pyrite, magnetite, chalcopyrite, sphalerite, barite and cobaltite (cobaltite identified by X-ray diffraction). Within the chert and jasper groundmass the mineralogy does not exactly match that of crosscutting veins. Thus carbonates, magnetite and pyrite/ are common scattered in a recrystallized quartz matrix/ whereas chlorite is less frequent, restricted to rare crystals (< 0.1 mm) associated with pyrite, magnetite/ or stilpnomelane, a mineral not observed in pretectonic veins crosscutting cherts but a frequent accessory of the/cherts themselves, sometimes forming striking aggregates/ (Plate 7D; E). Spessartine garnet occurs sporadical/ly as subhedral crystals up to 0.01 mm in diameter/hosted in quartz,

rhodochrosite and/or chlorite, and both scattered throughout the cherk or restricted in occurrence to discrete elongated domains (veins? beds?), as illustrated in Plates 7E and 9A. Hematite is ubiquitous within jaspers, of course, and is sometimes seen partly replaced by magnetite or pyrite. Some black cherts are manganiferous, because of the presence of Mn oxide dust, sometimes still depiction the original form of globular aggregates, despite recrystallization of the host quartz. Typical chert and jasper textures are illustrated in Plate 9B and C.

High grade Mn <u>oxide</u> concentrations were not observed in any subsurface samples. Instead, unweathered zones of the Jasper unit frequently include veins, pods and breccias mainly composed of various Mn rich <u>carbonates</u> (see section 5.3), accompanied by smaller amounts of magnetite (<u>+</u> minor Mn oxides), stilpnomelane, chlorite, barite and, in one case, <u>cymrite</u>, a rarely reported hydrated barium Al-silicate. The textures of these Mn carbonate rocks are widely variable, but a matrix of carbonate + magnetite <u>+</u> stilpnomelane <u>+</u> chlorite is often seen hosting clear, rounded or irregular aggregates of coarse carbonate (sometimes spotted, with chalcopyrite), up to several mm in diameter (Plate 9D to F):


Cymrite, clearly porphyroblastic, occurs as unoriented prisms (up to 0.8 mm) scattered in a rhodochrosite-

magnetite matrix cut by frequent millimetric veins of

- A. Spessartine garnét + chlorite elongated domains (veins?, beds?) in rhodochrosite-magnetite metalliferous sediment. One nicol only, scale bar 100 um.
- B. Hematite + Mn oxide dust in fasper.

F.

- Quartz + carbonate + magnetite veins in deeply altered jasper. One micol*only. Scale bar 2 mm.
- D. Typical texture of metalliferous sediment, with clear domains of calcic rhodochrosite (MnCO₃ 75%) spotted with chalcopyrite in a matrix composed of manganocalcite (MnCO₃ 25%) + magnetite + stilpnomelane + chlorite. One nicol only. Scale bar 500 μm.
- E. Large symmite porphyroblast, partly replaced by Mn-calcite (grey), spotted with magnetite (black) and rimmed by stilpnomelane (hardly visible, fibrous) in a 'rhodochrosite + magnetite + stilpnomelane. One nicol only. Scale bar 300 μm.
 - Chert domains (finely recrystallized quartz) in metalliferous sediment suggesting either replacement or injection of metal rich fluid in soft siliceous sediment. Crossed nicols. Scale bar 100 µm.

stilpnomelane, dusted with magnetite-after-hematite and partly replaced, by Mn-calcite (Plate 9E). Cymrite was previously identified at one location in the Iberian Pyrite Belt (Aye and Strauss, 1975), within the stockwork rock underlying the La Zarza orebody (Spain), associated with quartz-chlorite rock containing lesser amounts of Fe-carbonate and sericite (plus sulphides and relic igneous minerals). It is interesting to note that La Zarza is the massive sulphide deposit in the whole Pyrite Belt which .most closely resembles Feitais, and that cymrite can thus occur both in footwall and hangingwall rocks. Cymrite electron microprobe analyses are presented in section 5.3. Mn-carbonate rocks often include small, irregular areas of chert (Plate 9F) suggesting replacement of jasper (or manganiferous chert) by Mn-carbonates or, alternatively, that a Mn rich fluid "intruded" the chert prior to lithification.

Paraiso. Formation phyllites and tuffites (and rare , tuffs) in compact with the Jasper unit immediately above Feitais-Estação are often (but not always) intensely veined, chloritized and carbonatized, sometimes to such extreme degrees that the rocks can become composed solely of alteration products (chlorite, carbonates, sulphides). Schermerhorn, (1978) noted the presence of these rocks and denominated them "upper chloritite". Alteration of PS aluminque rocks extends from 0 to ~10 metrges above the

Jasper unit, similar to descriptions by Carvalho (1976) and Plimer and Carvalho (1982) for the hanging wall alteration above the Salgadinho deposit (see Chapter 2).

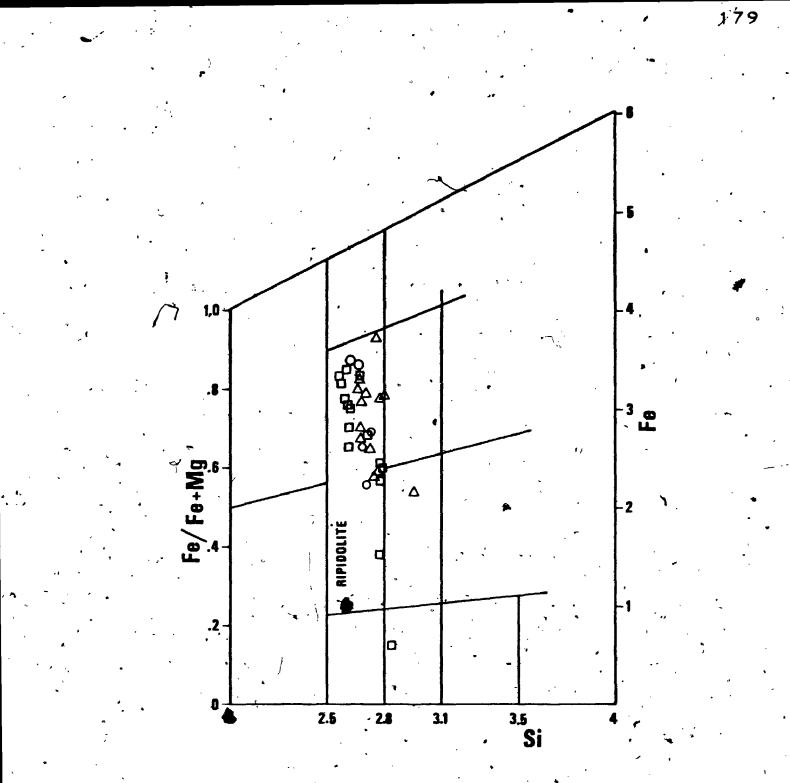
5.3 Geochemistry

5.3.1 Mineral Chemistry

a) Chlorite

Electron microprobe analyses of chlorites from the various rocks that host the Feitais-Estacao orebody are presented in Appendix IV-1, and plotted in Figure 5.2. It is apparent that ore zone chlorites do not show any well defined stratigraphic or lithologic control with respect to Fe/Mg. With one exception, stockwork and massive ore chlorites are identical to chlorites occurring in Aljustrel Volcanics not affected by ore fluids (see Fig. 4.4 and Appendix II-5); they are mostly iron rich ripidolites. Chlorites veining and scattered in Jasper unit rocks are very similar to the above, although slightly more variable, as they include the higher Si contents detected, up to 2.95 Si ions per 14 0, and also the more ferroan chlorites analysed, up to 45% FeO with only v2.5% MgO.

The Mn content of ore zone chlorite shows marked stratigraphically controlled variations around the Feitais orebody, as illustrated in Fig. 5.3. Stockwork and Cu-rich massive ore chlorites contain the least Mn, averaging about 0.35% MnO, whereas Zn-Pb rich massive ore and the base of



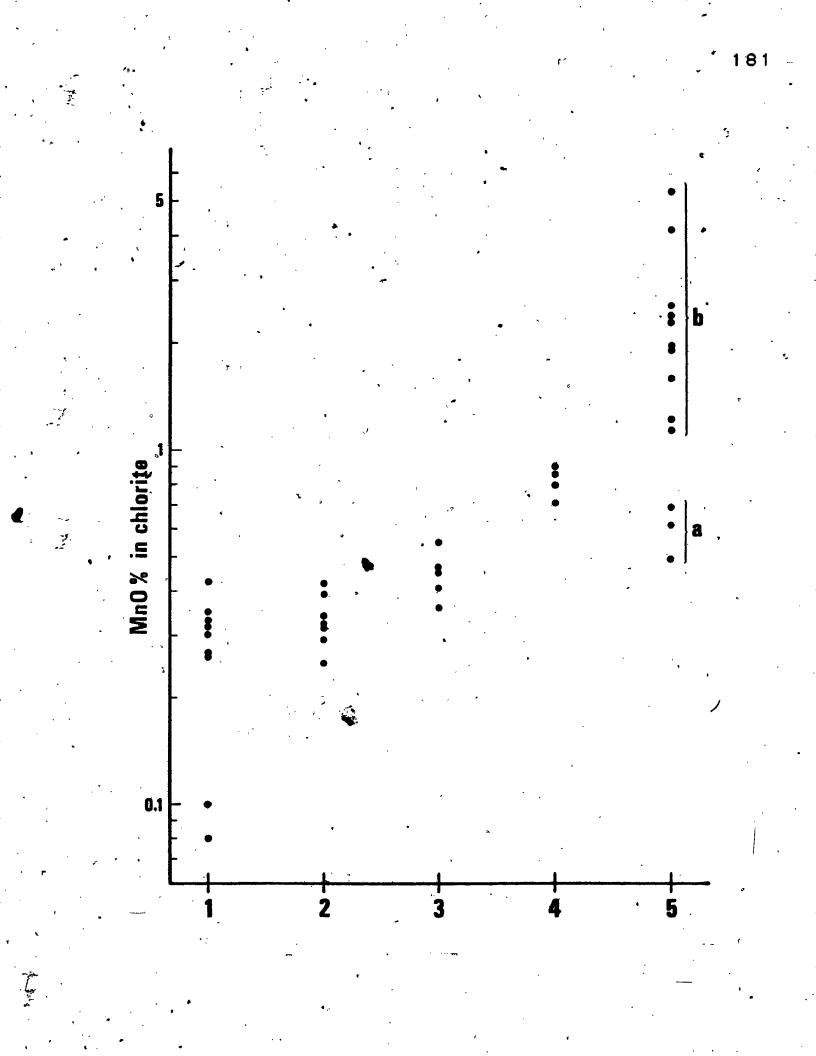


Diagram illustrating the compositional variation of chlorites from the Feitais ore zone with respect to Fe, Mg and Si. Triangles, hanging wall rocks; circles, massive ore; squares, stockwork rocks (Mine tuffs). Compare with Fig. 4.4.

MnO abundance in the Feitais ore.zone chlorites. 1-Stockwork rocks; 2-Cu rich massive ore; 3-outer stockwork rocks; 4-Zn (Pb) rich massive ore; 5-Jasper unit (a, base; b, top).

Figure 5.3:

Stratigraphically controlled variation of the

the Jasper unit contain chlorites with $\sqrt{0.6\%}$ MnO, and chlorites occurring near the stratfgraphic top of the Jasper unit or laterally away from sulphide mineralization contain 1.1 to 5.3% MnO. These variations are strongly suggestive of a redox gradient, with low PO₂ in the core of the ore system, and progressively less reducing conditions away from it, as expected in such an environment (see Whitehead, 1973).

b) Sericite

Ore zone sericite is often so fine grained and intimately mixed with quartz that it could not be successfully analysed in most peripheral stockwork rocks. Electron microprobe analyses (Appendix IV-2) show striking BaO contents in ore zone sericites, up to >9% BaO, especially in samples and zones where barite was not seen under the optical microscope. Figure 5.4 shows that Ba is indeed in the phyllosilicate structure, as it illustrates the Ba distribution detected by high definition electron microprobe analysis (electron beam diameter $\sim 0.5 \,\mu$ m) in more than 1300 closely spaced spots (rectangular grid of 5x3 μ m).

. c) Spessartine garnet

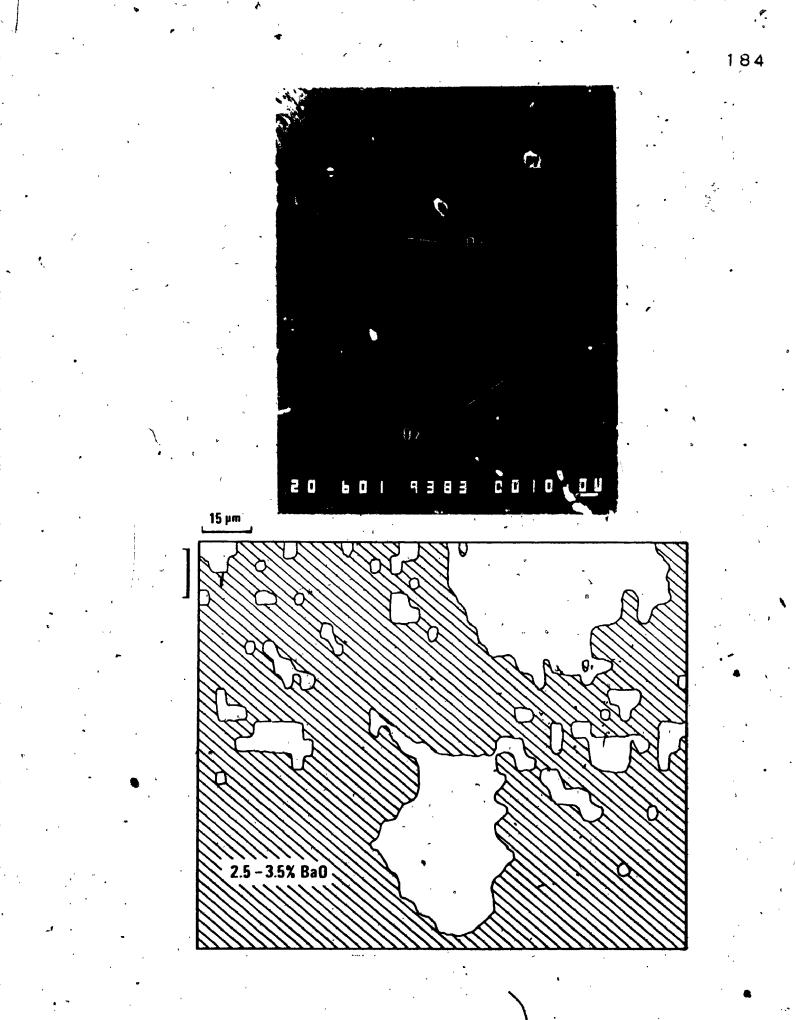

Electron microprobe analyses (Appendix IV-3) show that the spessartine garnet that occurs in the Jasper unit is composed of nearly 84% spessartine end member, with \sim 10 to .13% grossular end member molecule and small amounts of

Figure 5.4.

SEM photograph of outer stockwork rock, composed of Ba-sericite (note ultra fine grain size of individual crystals), quartz and pyrite. More than 1300 closely spaced spot analyses for Ba were performed within the area indicated (rectangular grid of 3 x 5 μ m), using a cymrite mineral standard (electron beam diameter 0.5 μ m), revealing the

distribution represented below (white areas < 0.01% BaO). Sample 8-365.4, compare with Table IV-2. Scale bar in photograph (lower right) 10 μm, in map 15 μm.

Data obtained with the newly installed Jeol JX-733 Super Probe of the Department of Geology, University of Lisbon.

either andradite or almandine. It is not known whether this mineral was generated in the course of hydrothermal activity or is a product of subsequent regional metamorphism (see Deer et al., 1962).

d) Cymrite

Cymrite electron microprobe analyses are presented in Table 5.1, recalculated on the basis of 8 oxygens, according to the formula proposed by Carron et al. (1964.) and Essene (1967). Structural formulae depict a slight excess of Si and the presence of significant amounts of Ca and K substituting Ba. Again it is not known whether cymrite is hydrothermal or regional metamorphic in origin. Cymrite is now known to occur in various environments and host rocks and it is interesting to note that no other Ba minerals have been reported to coexist with cymrite in the same mineral assemblage (see Smith et al., 1949; Runnels, 1964; Essene, 1967; Eroelich and Sandrea, 1973; Aye and Strauss, 1975; Soong and Olivecrona, 1975). e) Carbonates

e) Carbonates

Electron microprobe analysis of (97) carbonates occurring in ore zone rocks are tabulated in Appendix IV-4. Calcites are the only carbonates found within stockwork and massive ore samples, usually with only minor proportions of Mn or Fe, and sometimes significant zinc (up to \sim 4% ZnO or \sim 6% ZnCO3 equivalent), when in contact with sphalerite. Carbonates scattered in chert and jasper

40	4 <u>2</u>	29	30	60	Average of 5	Stoich- cymrite
91.63	32.76	29.48	29.53	30.39	30.76	30.51
25.26	26.01	24.50	24.12	24.44	24.87	25.90
0.57	0.86	0.95.	0.64	0.92	0.79	
0.22	0.16	0,29	0.24	0.31	0.24	
0.06	0.12	0.11	0.07	0.05	0.08	
0.32	0.24	0.37	0.39 .	0.28	0.32	
4.73	36.20	35.00	36.30	[*] 37.60	35.97	39.00
0.23	0.28	0.17	0.09	0.30	0.21	
Q.55	0.64	0.18	`0.13	0.27	0.35	
3.57	97.27	91.05	91.51	94.56	93.59	95.41

Table 5.1. E10

÷.

Anal.

S102

Al 203

, Fe0_t Mn0

Mg0[.]

Ca0 Ba0

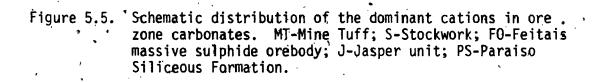
Na₂0

K20

TOTAL

no.

Si 2.054 2.053 2.001 2.013 2.028 2.000 2.016 AL 1.933 1.921 1.960 1.938 1.911 2.000 1.933 Fe 0.031 0.045 0.054 0.036 0.051 0.044 0.012 0.008 0.014 0.017 0.013 0.017 Mn 0.005 0.007 0.008 Mg 0.006 0.011 0.011 Ca 0.020 0.023 0.022 0.016 0.027. 0.028 1.000 0.929 Ba 0.884 0.889 0.931 0.970 0.977 0.029 0.022 0.027 Na 0.034 0.012 0.038 0.046 0.016 0.023 0.029 0.051 0.011 Κ 5.038 5.029 5.034 5.017 5.030 5.059 5.000 Σ ions

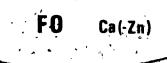

include not only calcite but fominantly siderite (sometimes slightly magnesian - sidéroplesite), whereas a wide variety of Mn-Ca-Fe carbonates characterizes the carbonate rich keins, 'pods' and breccias found within the siliceous sediments, where up to 5 different carbonate minerals were analysed within areas of a few square millimetres. The more abundant carbonate species in these rocks are highly manganoan calcite, Mg-poor ankerites and rhodochrosite. The distribution and nature of the various carbonates within Mn-rich carbonate rocks of the Jasper unit suggests that the variab Nity detected is due to/immiscibility gaps in the solid solutions within the system FeO-MnO-CaO-CO2 (see Deer et al., 1962) and thus to variations in the local proportions of Fe, Mn and Ca at the time of carbonate formation.

Carbonates are also locally abundant within the aitered PS Formation phyllites and tuffites, chemically different from all other ore zone carbonates essentially because Mg is here a frequently abundant component of ankerites (up to 15% MgO) and even of siderite. No dolomite or magnesite were found, however.

The spatial distribution of the dominant cations in ore zone carbonates is schematically represented in Figure 5.5.

f) Sphalerite

Eleptron microprobe analyses of sphalerites from


° S

Mn-Fe-Mg-Ca.

3.1

Fe-Ca

Ca

Mn-Fe-Ca

P\S'

stockwork, massive ore and Jasper unit samples are tabulated in Appendix IV-4, and show undetected or very low Mn abundances (generally <0.04% Mn), and also low Cd contents (up to 0.23%) in good agreement with the occurrence of greenockite within massive su phide ore (Gaspar and Conde, 1978). The FeS mole % content of sphalerites varies from 1 to 11. Low Fe sphalerites are a the lighter brown coloured, and no correlation way found between Fe content and stratigraphic position, lithologic type, ore type or degree of recrystallization.

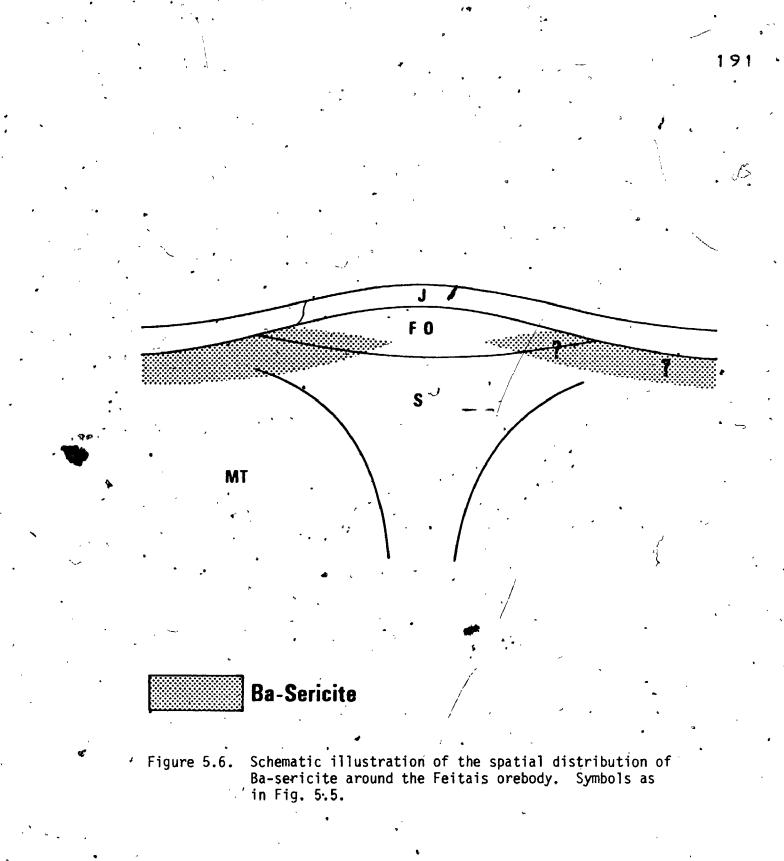
5.3.2 Whole rock geochemistry

Extensive whole rock geochemical determinations were performed in samples from stockwork rocks, the hanging wall Jasper unit and also in altered and unaltered PS phyllites, tuffites and tuffs (Appendix V) in order to

- document as many as possible zonations around the sulphide orebody, especially those of genetic significance and/or potentially useful in mineral exploration;

- gain insight into the pre mineralization nature of altered lithologies, namely stockwork rocks;

- elucidate the composition and origin of the ore forming fluid(s)


- reconstruct as far as possible the history of the Aljustrel paleo hydrothermal system.

a) Stockwork rocks and massive sulphide ore

a1) Major elements

Major element abundances in stockwork rocks from the footwall of the Feitais orebody closely reflect the mineralogical composition and zonation described in previous sections. Thus rocks showing the least ore zone alteration are closely similar to other Mine tuffs (Chapter 4), but variably enriched in S, Fe and Bà, and sometimes depleted in Na, reflecting the presence of pyrite and Ba-sericite and partial corrosion of albite.

Outer stockwork rocks, apart from containing widely variable proportions of Fe/and S reflecting the heterogeneous distribution of pyrite described before show . relatively constant ratios of (K₂O + BaO)/Al₂O₃, around 0.2 to 0.3, expressing clearly the predominance of sericite and Ba-sericite over the other aluminosilicates, namely feldspar or chlorite. High BaO concentrations occur at the stratigraphic top of outer stockwork rocks, and reflect the spatial distribution of Ba-sericite; the only Ba mineral found in stockwork rocks. Thus Ba-sericite occurs mainly near (and within) peripheral massive sulphide ore, as schematically illustrated in Figure 5.6. Additional characteristics of outer stockwork rocks are extremely Tow Na (given the absence of feldspars), and widely variable Al/Si, a consequence of the equally variable relative modal proportions of sericite and quartz. The average SiO₂ abundance of outer stockwork rocks is $\sim 62\%$ (70% on a

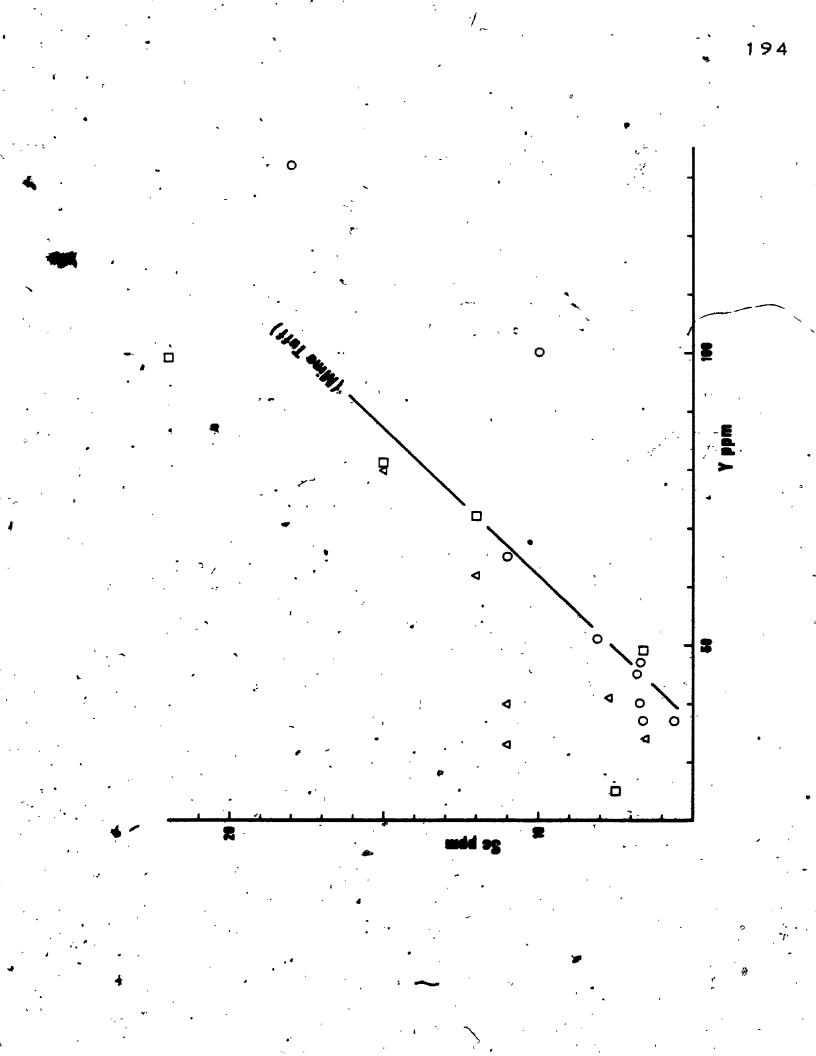
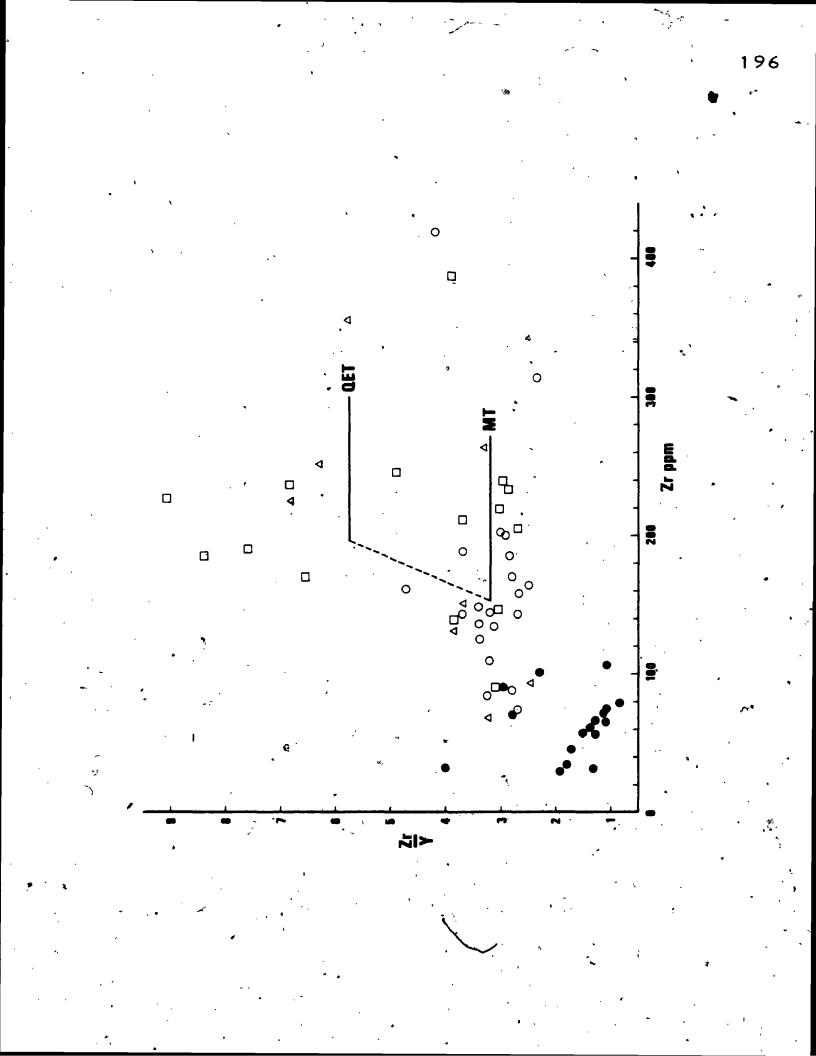
sulphide free basis).

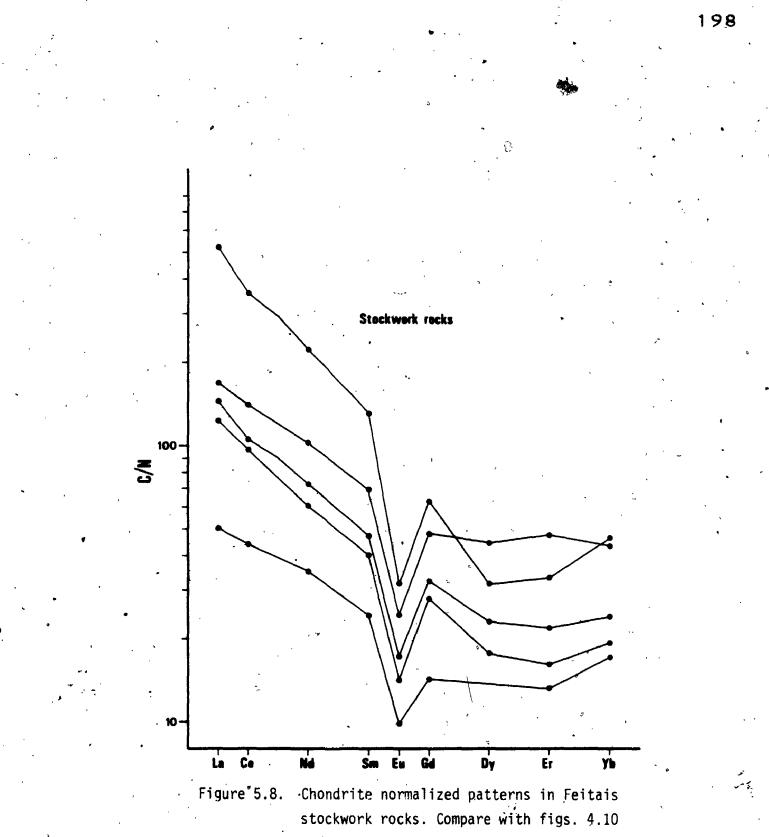
Regarding stockwork rock (sensu stricto, quartzchlorite-sulphides) the major element analyses are remarkable especially with respect to MgO contents generally comparable to those of Green facies Mine tuffs. The approximate weighted average of the MgO abundance in the Feitais stockwork rock is $\sim 4.5\%$, given that the higher MgO values in Appendix V-1c, up to >27%, correspond to volumetrically insignificant samples. Average SiO₂ in stockwork rock is $\sim 59\%$, equivalent to 62.8% on a sulphide free basis. Undetected (or very low) Na, K and Ba reflect perfectly the absence of feldspar and sericite.

Abundances and ratios of <u>high field strength elements</u> in stockwork rocks (sensu lato) depict a considerably higher scatter than detected in Mine tuffs not affected by ore zone alteration but, nevertheless, the majority of stockwork samples analysed are indistinguishable from Mine tuffs with respect to ratios of high field strength elements; illustrated in Figure 5.7 a and b for the case of Sc versus Y and Zr/Y versus Zr (see Appendix V for the analyses). These data show that the Feitais stockwork rocks are indeed ore zone altered Mine tuffs, and suggest that this type of alteration was accompanied by extreme variations in major element relative abundances (given the marked differences in the ranges of absolute concentrations

192.

Figure 5.7a. Diagram illustrating the variation of Sc versus Y in the Feitais stockwork. Mine Tuff line shown for comparison (see Fig. 4.8). Circles, stockwork rock (chlorite-quartz); squares, outer stockwork rock (sericitequartz); triangles, weakly ore zone altered Mine tuffs.


Figure 5.7b. Zr/Y versus Zr diagram for stockwork and massive ore (solid circles) samples. Other symbols as in Fig. 5.7a. Note the degree of scatter of data, much more pronounced than that found in Mine tuffs proper (see Fig. 4.9).

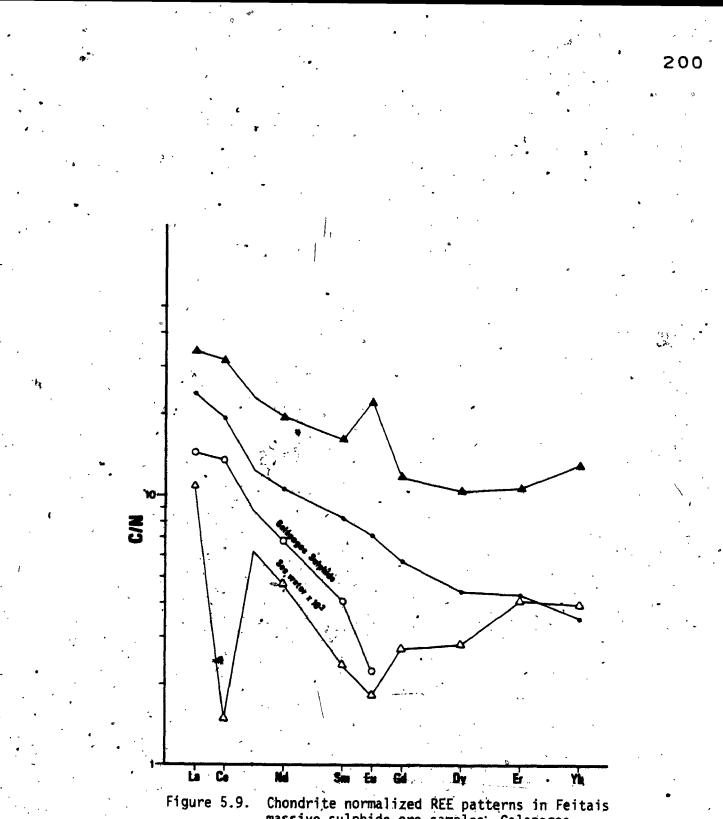
of Zr and Y). Larger scatter in the ratios between these elements also suggest that Zr, Y, Sc (and others) were at least locally mobile in the course of ore zone rock alteration, in agreement with textural evidence for corrosion and/or reprecipitation of minerals such as zircon (see section 5.2). However, some of the scatter in "immobile" element data from stockwork rocks may partly reflect the presence of wider primary compositional variations than those detected in Mine tuffs proper, given that some of the samples depicting marked deviations from typical Mine tuffs with respect to Sc/Y and Zr/Y are only incipiently affected by ore zone rock alteration:

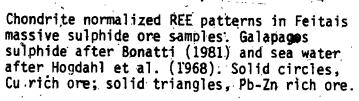
Zr/Y versus Zr plots of massive sulphide ore samples are also included in Figure 5.7, for comparison (analyses in Appendix V). Data are insufficient, but show that most ore samples are markedly different from Mine tuffs with respect to Zr and Y abundances and ratios. However, some samples plot clearly within the range of stockwork rocks, confirming the hypothesis raised by textural evidence (see section 5.2) that part of the Feitais massive ore may have formed through almost complete replacement of previous Mine tuffs.

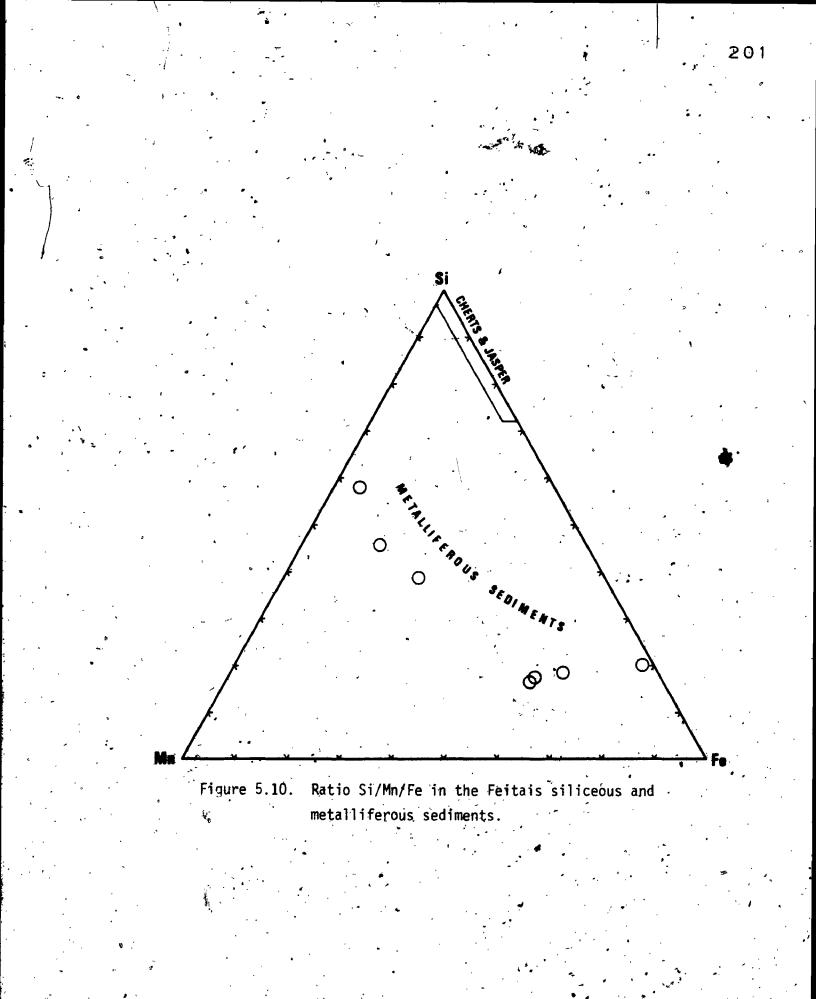
a3) <u>Lanthanide element</u> (REE) abundances in stockwork rocks (Appendix V; Figure 5.8) further confirm that these rocks are altered Mine tuffs, given the similarity in absolute and relative abundances of LREE (compare with Figures 4.10

and 4.11.

- 2 -


and 4.11). HREE are variably enriched (especially Yb and Er), as expected given the relative mobility of HREE in alteration processes (Alberton et al., 1980), similarly as found for many regionally altered (but not ore zone . altered) Aljustrel volcanic rocks (Figure 4.11).


REE abundances in one Pb-rich and one Cu-rich massive sulphide ore samples are plotted (chondrite`normalized) in Figure 5.9. The Pb-rich sample is similar to those analysed by Munha (1981), with a sea water like pattern except for the lack of a Ce anomaly and for a positive instead of negative Eu anomaly. Munha suggested that the REE distributions in Pb-rich ore (containing barite) can be explained as largely reflecting the REE content of barite" (see Guichard et al., 1979), precipitated from a sea water derived fluid possibly enriched in Eu^{2+} through interaction with felsic footwall volcanic rocks rich in feldspars. Alteration of these feldspars would have released Eu^{2+} preferentially to other REE, given the high relative concentration of Eu^{2+} in feldspar minerals. The Cu-rich sample (Fig. 5.9) is very similar to recent sea floor hydrothermal sulphide material with respect to LREE (including Ce, Bonatti et al., 1976).


b) Hanging wall siliceous and metalliferous sediments

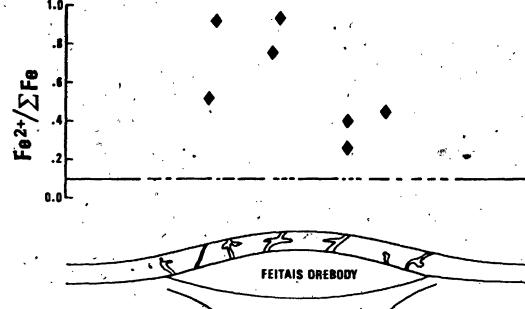
(Jasper unit)

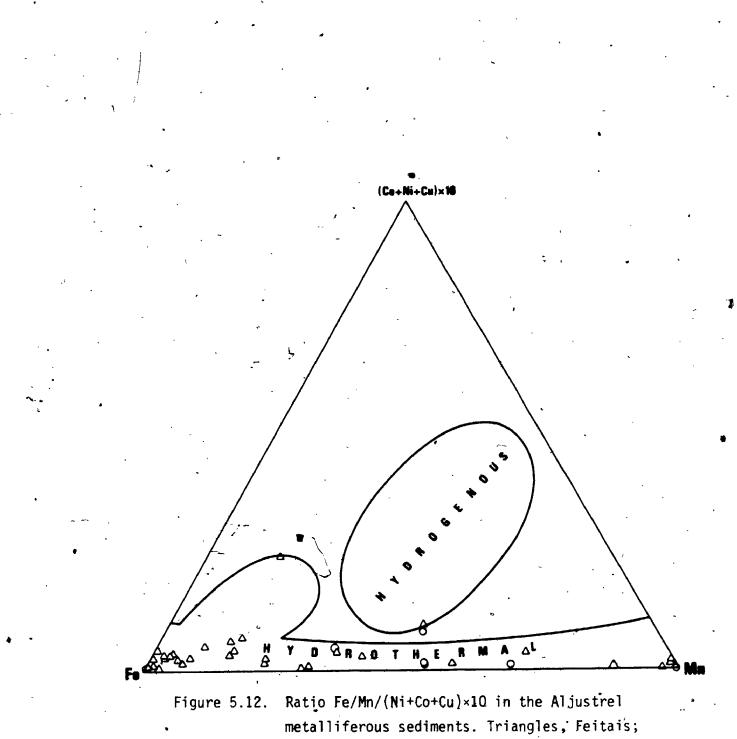
b1) Si/Mn/Fe ratios (Figure 5.10) illustrate well the more significant variations found in the Feitais hanging wall

siliceous and metalliferous sediments (analyses in Appendix V-2). It is apparent from this figure that great variations exist in Fe/Mn ratio and also that there seems to exist a clear compositional gap between these and the high silica samples, confirming the petrographic observations previously reported. Also, chemical analyses of cherts and jaspers often depict relatively high iron contents (up to $\sim 12\%$ Fe), but the higher metal abundances correspond mostly to the presence of Fe rich pre tectonic veins crosscutting the material analysed (that is, to <u>alteration</u> of the Jasper).

b2) Jasper reduction above sulphide ore is a prominent characteristic of the Feitals ore zone. Thus Fe-rich silfceous sediments occurring laterally away from the Feitals orebody are exclusively red hematitic jasper, with whole rock Fe ratios (Fe²⁺/ Σ Fe) <0.1 (Plate 8 and Appendix V-2), whereas in the vicinity and directly above the sulphide orebody jaspers are partly or totally altered into Fe²⁺ rich minerals, as described in section 5.2.3. These changes are eloquently reflected in ore zone jasper and chert Fe ratios up to >0.9, schematically illustrated in Figure 5.11.

b3) Jasper unit sediments compare well with present day sub sea floor <u>hydrothermal</u> metalliferous sediments, that is, those formed through precipitation of metals extracted from the oceanic igneous rocks in the course of sub sea floor




Figure 5.11.

Schematic representation of the spatial distribution of Fe ratios along the Feitais Jasper unit. Diamonds are cherts (reduced jasper). Horizontal line represents Fe ratio of unaltered jaspers. See also Appendix V-2 for data. sea water convection through the permeable, hot oceanic crust, especially near mid ocean ridges (Arrhenius and Bonatti, 1965; Bostrom and Peterson, 1966; Bonatti and Joensu, 1966; Bonatti et al., 1972; Fyfe and Lonsdale, 1981). Thus the Aljustrel Jasper unit rocks plot clearly within the hydrothermal field in the Fe/Mn/(Co+Ni+Cu)x10 diagram (Figure 5.12) proposed by Bonatti et al. (1972; see also Bonatti, 1981) as a simple means of distinguishing hydrothermal from <u>hydrogenous</u> recent sub sea floor metalliferous deposits.

b4) The <u>Thorium</u> abundances of Jasper unit rocks are also in the same range of the Th abundances in recent hydrothermal metalliferous sediments, as illustrated in Fig. 5.13 (compare Bonatti et al., 1972).

b5) Chondrite-normalized REE abundances of Jaspers showing little or no alteration are plotted in Figure 5.14. It is apparent that they follow a concave upwards v-shaped pattern, and that Ce is markedly depleted generating a negative Ce anomaly in all the patterns. These characteristics are very similar to the REE pattern of seawater (Hogdahl et al., 1968), strongly suggesting that the jaspers formed in equilibrium with a fluid indistinguishable from sea-water with respect to REE abundances.

REE patterns for Mn ores (carbonate and oxide) are presented in Figure 5.15. They are clearly distinct from

circles, Moinho.

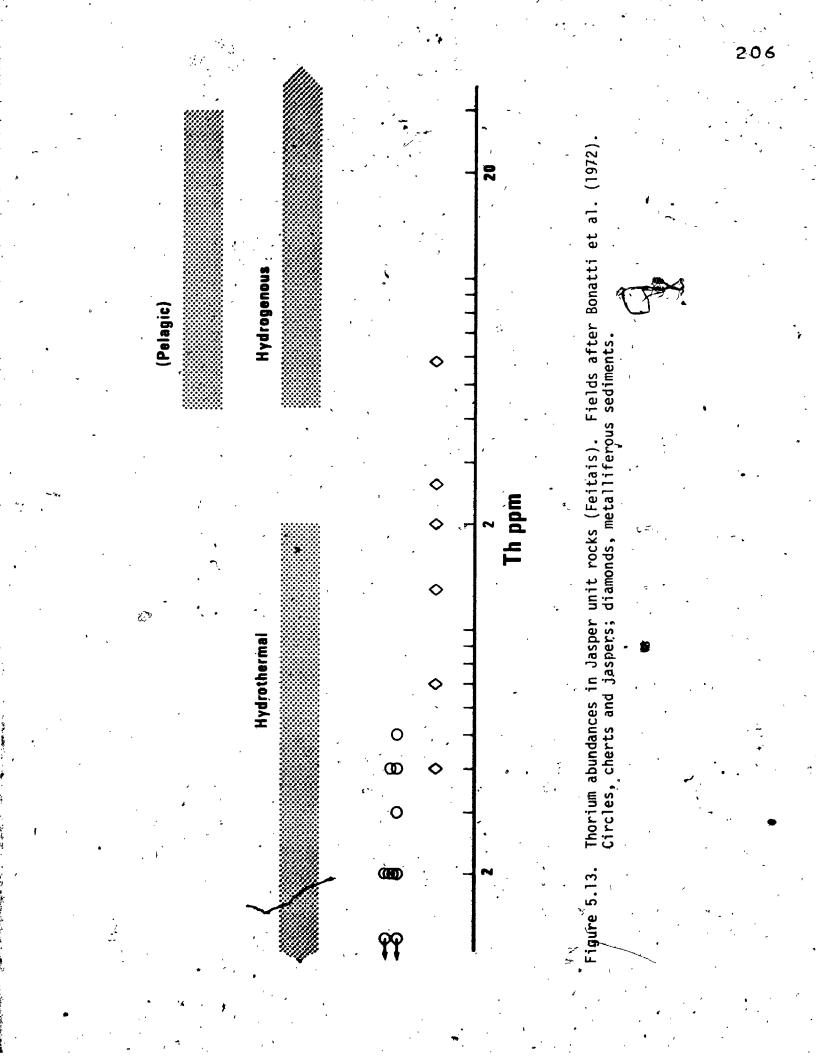
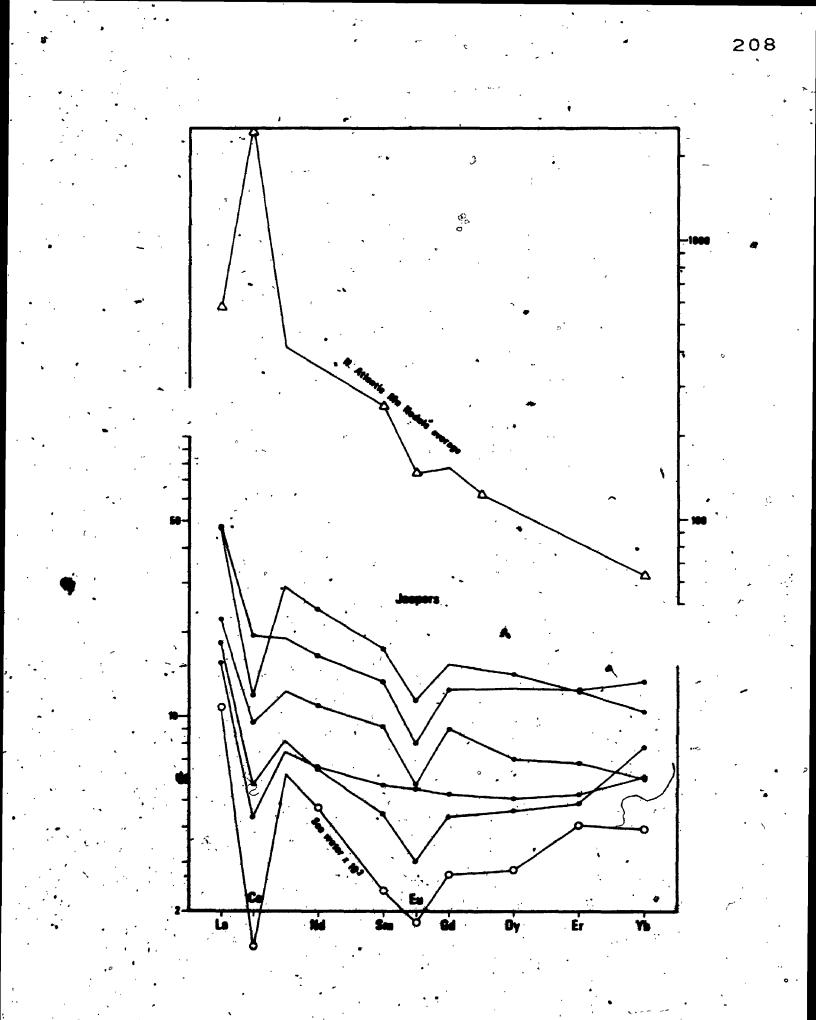
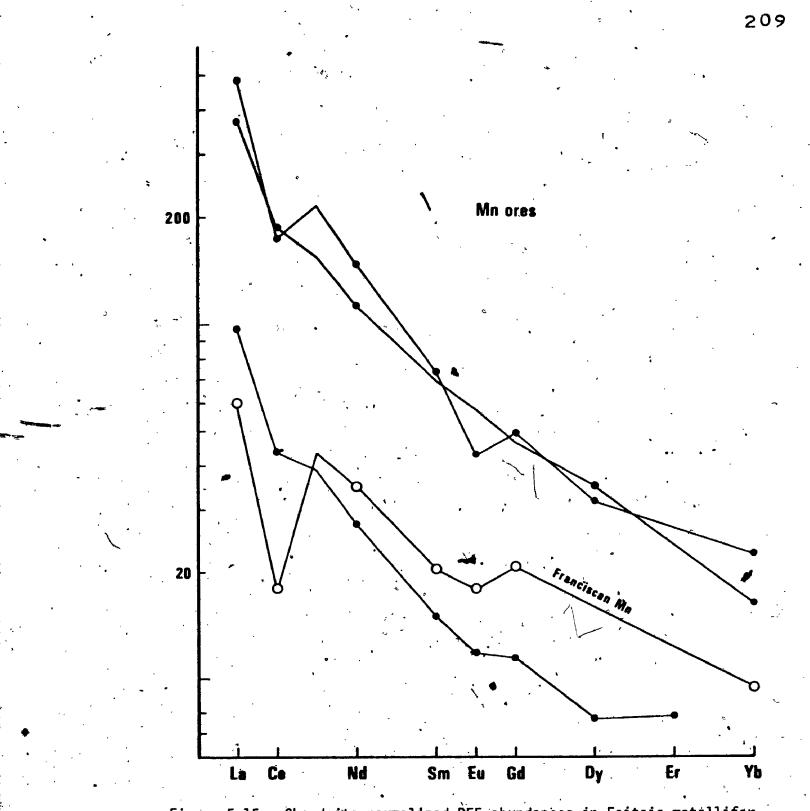
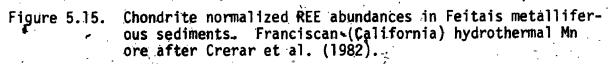





Figure 5.14. Chondrite normalized REE abundances in Jaspers showing little or no alteration. Sea water after Hogdahl et al. (1968) and N. Atlantic nodule average after Addy (1979).

those of jaspers (Fig. 5.14), closely resembling those of the Mn-ores of the Franciscan assemblage (Crerar et al., 1982), attributed to a sea floor hydrothermal origin. Recent hydrothermal Mn deposits on the sea floor usually contain lower concentrations of LREE (Toth, 1980), expressed in chondrite-normalized patterns that are less steep than those of the Aljustrel or Franciscan Mn ores. Recent hydrogenous Mn deposits (Mn nodules) are clearly distinct from the Aljustrel Mn ores with respect to REE (see Fig. 5.13) not only on the markedly higher absolute REE abundances but also on their characteristic positive Ce anomaly (Piper, 1974; Addy, 1979).

b6) Gold abundances in the Jasper unit

Gold abundances in rocks from the Feitais Jasper unit are presented in Table 5.2, together with some determinations of Au in other ore zone rocks. It is apparent that the feitais massive sulphide orebody is surrounded by a halo of anomalous Au concentrations (see Wedepohl, 1978; the massive sulphide ore itself contains in average ~800 ppb Au, Carvalho et al., 1976). Particularly anomalous Au concentrations (>50 ppb) are present in stockwork rocks and especially in the Jasper unit, where Mn rich metalliferous sediments containing up to 350 ppb Au exist, at considerable distances from sulphide mineralization (>500 m along strike). These data suggest that Au abundances in other metalliferous sediments in

	Au ppb	Remarks
JASPER UNIT		• •
Cherts and Jaspers		4
15-315	20	• • • • • • • • • • • • • • • • • • •
15-319.3*	29	
Ì1-351.9	. 51	
bis-160.2	11	on or near massive sulphide ore
bis-161	14	8
bis-166	15	•
14-133.4	110	
SF-41 (*)	1	>500 m along strike from massive
SM-13-D' (*)	8	sulphide ore
Metalliferous sedimer	nts	
9-285	21	1
6-103.4	15	on or near massive sulphide ore
6-106.9	51	
SF-22 (*)	350]>500 m along strike away from massiv
SM-13-B' (*)	240	sulphide ore
STOCKWORK ROCKS	• .	
8-358.1	· 82	
8-370	140	Qz-ser outer stockwork rocks
8-479.5	100	1
8-504.4	32	Qz-chl stockwork rocks
WEAKLY ALTERED PS TUFFITES		•
bis-143.1	19	1
8-346	30	Above massive sulphide ore

Table 5.2. Au abundances (ppb) in selected Alfustrel ore zone rocks.

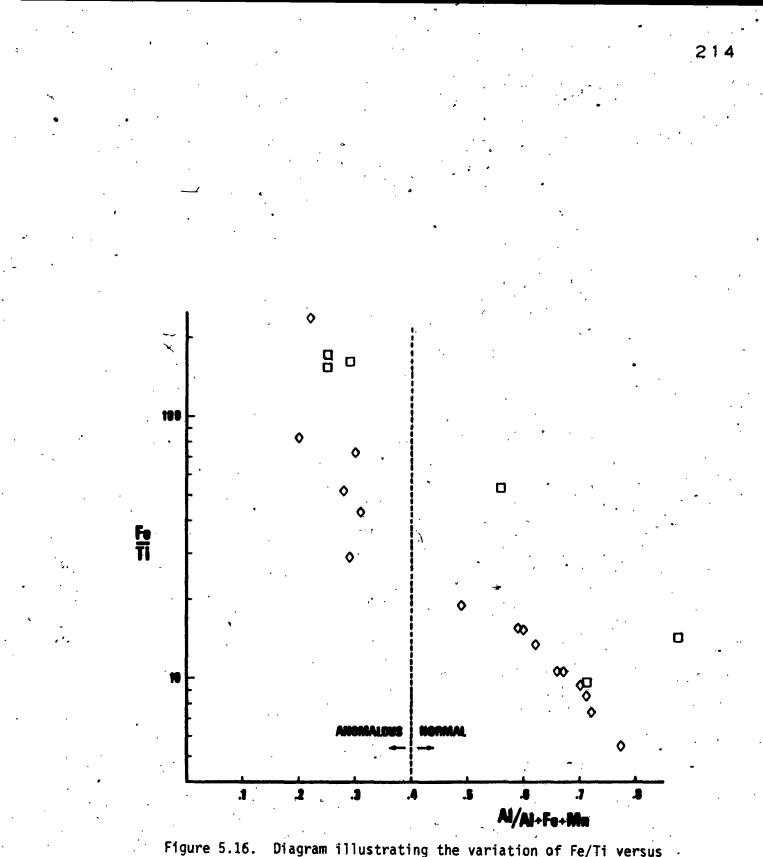
(*) Weathered jaspers and Mn oxide metalliferous sediments

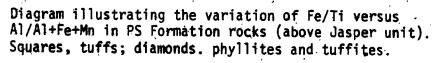
the Pyrite Belt and elsewhere are at least potentially of importance in exploration for massive sulphide deposits. c) Anomalous PS Formation rocks above Feitais

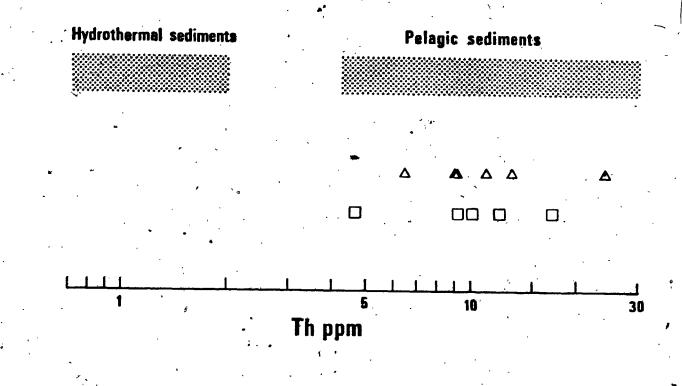
The Jasper unit of Aljustrel is conformably overlain by a 50 m thick sequence of phyllites, tuffites and rare tuffs (PS Formation) that represent the sedimentary and volcaniclastic infilling of the Iberian Pyrite Belt basin in the Alfustrel area, concomitantly with the last pulses of local volcanism (see Chapter 3). Above the Feitais orebody the base of the PS Formation (in contact with the Jasper unit) is characterized by the occurrence of irregular wand discontinuous bodies of very unusual rocks which include pyritized and carbonatized phyllites and deeply chloritized tuffs and tuffites, generally pervasively, pre tectonically veined by quartz-pyritecarbonates (see sections 5.2 and 5.3). On the basis of field relations and textural studies it was concluded that these anomalous PS rocks result from-alteration of formerly normal PS phyllites, tuffites and tuffs.

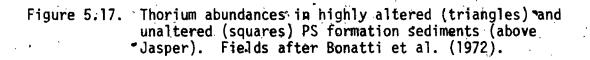
Whole rock analyses of PS rocks are presented in Appendix V-3. It is apparent that anomalous rocks (App. V-3a) are highly enriched in Fe and/or Mn, and that their abundances in alkaline and alkaline earth elements are widely variable, particularly so for Mg and Ca. The anomalous group contrasts markedly with the "normal" PS rocks (App. V-3b), in which the only striking anomaly is 2 **1 2**

the sporadic presence of very high Ba concentrations up to $\sim 2\%$ BaO. Figure 5.16 illustrates the variations of Fe/Ti versus Al/Al+Fe+Mn in PS formation rocks. It is apparent that unaltered PS rocks are very similar to normal recent pelagic sediments and that the altered rocks resemble Bonatti's (1981) "diluted" metalliferous sediments (see also Bostrom, 1970). Co+Ni+Cu abundances in PS rocks are consistently low, precluding any significant hydrogenous contribution to the genesis of the anomalous group.


Thorium abundances in PS rocks are all remarkably similar to those of normal pelagic sediments (Bonatti et al., 1972; Figure 5.17), irrespective of the degree of Fe-Mn enrichment, again in good agreement with a hydrothermal alteration origin for the anomalous rocks, given the exceedingly low Th abundances that characterize hydrothermal metalliferous deposits.


d) Geochemical data on Culm rocks


The PS Formation is conformably overlain by the Culm Formation, a thick (<3 km) sequence of turbidites (see Chapters 2 and 3), including frequent pyritic black shale beds. Appendix V-4 lists the results of major element and selected trace element analyses of Culm greywackes and shales, and shows that Culm rocks are normal terrigenous sediments without any noticeable hydrothermal or hydrogenous metalliferous concentration.


- 12

2.13

5.3.3 Oxygen isotope geochemistry

Oxygen isotope data for whole rocks and some mineral separates from the various levels of the Feitais-Estacao ore environment are listed in Table 5.3. Stockwork whole rock δ^{18} 0 values are relatively uniform at 11.6 to $12.5^{\circ}/_{00}$. Tuffs partly transformed into stockwork rocks (less intensely affected by mineralizing solutions) have $\delta^{18}0$ 13.9 and 14.40/00, intermediate between those of stockwork rocks proper and the even higher values of the Aljustrel Volcanics, islands of which occur as remnants within the stockwork itself. These relations signify that ore formation postdates the early hydrothermal event that enriched the Aljustrel Volcanics in 180 as described before (Chapter 4). The present $\delta^{18}0$ values of $\sqrt{12^{0}}/\sqrt{12^{0}}$ of the stockwork rocks are therefore believed to have been reached through two successive stages of hydrothermal alteration: early 180 enrichment to values near 170/00 followed by 180loss to around $12^{\circ}/_{\circ\circ}$.

Quartz-chlorite fractionations from stockwork rocks indicate that the hydrothermal ore fluid was at ambient temperatures of 220 to 270°C, and had δ^{180} spanning +1.4 to $5.7^{\circ}/_{00}$. Within massive ore quartz-chlorite fractionations correspond to temperatures of 200 to 220°C and δ^{180} +5°/₀₀ (Table 5.3). In the absence of triply concordant oxygen isotope fractionation between three cogenetic minerals, it is not possible with the present data to confer total

rock	Quartz	Chlorite δ^{180} fluid	• t°C
	• • • • • • • • • • • • • • • • • • •	•	
	+18.66		130
· .	+19.6	0 1	120
	+17.9		130
	4 +19.0	· · · · · · · · · · · · · · · · · · ·	120
	+20.1		110
	•		
. a.	^{-'} +17.1	+6.8 5.0	220
	+18.3	+7.3 4.9	200
	+13.55	+3.19 +1.4	216
1 ,	+13.72	+3.44 +1.7	.218
•	+13.87	+5.00 +4.3	266
· ·	+15.40	+6.06 +5.0.	249
+12.4	+14.90	+5.80 +5.0	258
+11.6	+15.10	+6.30 +5.7	269
	+13.33	· ·	
+12.5	· ·	••••	
+11.9			•
+11.7	۵ -		• • • • •
ن .			
113 °O	· • ·	some of	
•	•	۷.,	•
	+11.6 +12.5 +11.9	+17.9 +19.0 +20.1 +17.1 +17.1 +18.3 +13.55 +13.72 +13.87 +15.40 +12.4 +14.90 +11.6 +15.10 +13.33 +12.5 +11.9 +11.7 +13.9	$ \begin{array}{c} +19.6 \\ +17.9 \\ +19.0 \\ +20.1 \\ \end{array} \\ \begin{array}{c} +17.1 \\ +18.3 \\ +13.55 \\ +18.3 \\ +7.3 \\ \end{array} \\ \begin{array}{c} +13.55 \\ +3.19 \\ +1.4 \\ +13.72 \\ +3.44 \\ +1.7 \\ +13.87 \\ +5.00 \\ +4.3 \\ +15.40 \\ +6.06 \\ +5.0 \\ +12.4 \\ +14.90 \\ +5.80 \\ +5.0 \\ +11.6 \\ +15.10 \\ +6.30 \\ +5.7 \\ +13.33 \\ \end{array} \\ \begin{array}{c} +12.5 \\ +11.9 \\ +11.7 \\ \end{array} \\ \begin{array}{c} +13.9 \end{array} $

Table 5.3. Oxygen isotope composition of rocks and minerals from the Feitais-Estacao ore environment.

(a) after Munha and Kerrich (1981). Jaspers temperatures calculated assuming precipitation from $1.5^{\circ}/_{00} \delta^{180}$ fluids. Oxygen isotope ; fractionations after Wenner and Taylor (1971), chlorite mater, and Clayton et al. (1972), quartz-water.

reliability on the estimated temperatures and δ^{180} fluid. . However, the positive covariance of δ^{180} quartz with δ^{180} fluid, plus preservation of a systematic disparity between the δ^{180} of quartz in stockwork and ore, collectively suggest an absence of complete isotopic homogenisation, and that the observed variations in mineral δ^{180} may reflect real variations in the hydrochermal system. Furthermore, the minerals analysed are believed to have crystallized during the hydrothermal episode, as opposed to being earlier phases isotopically modified by hydrothermal activity, in which case mineral pairs would be clearly insufficient° for reliable temperature and δ -fluid estimates.

Quartz separates from the overlying jaspers range from 17.9 to $20.1^{\circ}/_{00}$. Such δ -values could correspond to deposition temperatures of $140 \pm 20^{\circ}$ C assuming precipitation in equilibrium with a mixture of .50% sea water ($0^{\circ}/_{00}$, 0° C) plus 50% ore fluids ($3^{\circ}/_{00}$, 250°C). It is noteworthy that the oxygen isotope composition of the Feitais-Estacao cherts and jaspers is low compared to Phanerozoic marine cherts (cf. Knauth and Lowe, 19,78). The relatively high temperatures inferred from such values are good evidence that they are hydrothermal sediments, as postulated by Carvalho (1979), formed where geothermal discharge perturbed ambient ocean bottom water temperatures.

Overall, the calculated temperatures are rather normal

for massive sulphide environments (see Franklin et al., 1981; Costa et al., 1983), with a steep thermal gradient from stockwork (220-270°C) through massive ore (200-220°C) to the overlying cherts (140 \pm 20°C), the result of heat loss from an uprising hot buoyant fluid undergoing conductive heat loss and/or progressive mixing with marine water beneath and at the sea floor.

(5.4 Discussion and conclusions

The Feitais-Estacao orebody of Aljustrel is composed of a massive sulphide lens shaped body underlain by a crosscutting zone of stringer and disseminated mineralization hosted in chlorite-quartz and sericitequartz rock that are the product of alteration of the surrounding Mine Tuff formation rocks. The orebody is capped by a laterally extensive bed of jaspers and Fe-Min sediments with prominent alteration immediately above the orebody. Hanging wall rock alteration is also present in the lowermost metres of the Paraiso Siliceous formation aluminous sediments and (rare) pyroclastic.rocks that overlie the jasper unit.

Petrography, mineral chemistry, whole rock geochemistry and oxygen isotope compositions leave little room for doubt that the Feitais sulphide ores and associated lithologies and ore zone alteration are the product of interaction of a hot, reduced, metalliferous

brine with sea water, at or near the sea floor, as almost unanimously proposed for other massive sulphide deposits throughout the world (see Franklin et al., 1981).

Stockwork

Riverin and Hogdson (1980) recently reported on the nature, zonation and origin of stockwork wall rock alteration at the Millenbach massive sulphide deposit (Noranda), concluding that alteration pipes initially had a quartz-chlorite core which graded laterally and vertically into a sericite rich outer zone and finally to unaltered rocks; similar zoning was found to be present on the selvadges of individual sulphide veins within the alteration pipes. Stockwork alteration at Feitais and in the Noranda camp are thus strictly comparable, and differ significantly from the alteration that accompanies stockwork pipes in the Kuroko deposits, where quartzsericite are the principal non sulphide minerals in the pipes (alteration zone IV; see Ijima, 1974; Shirozu, 1974; Lambert and Sato, 1974), and chlorite predominates immediately around massive ore only, although present also in a more peripheral alteration aureole (zones III and II, respectively, see Shirozu, 1974). Kuroko deposits are surrounded by a further broad external halo of weak alteration characterized by the presence of minor amounts of montmorillonite, zeolites and cristobalite, without

equivalent in older massive sulphide deposits, possibly because these minerals will react promptly under conditions of even very low grade (prehnite-pumpellyite facies) later regional metamorphism to minerals such as sericite, quartz and epidote, which are common accessories of "unaltemed" rocks around older massive sulphide deposits.

22:

Regarding geochemical losses and gains it is generally accepted that stockwork alteration is characterized by a major loss in sodium and by equally important gains in sulphur, iron and magnesium (e.g. Roberts and Reardon,/ 1978; Costa, 1980; Riverin and Hogdson, 1980). Stockwork rgcks are usually rich in quartz, which has been variably interpreted as silicification or as quartz formation and/or reprecipitation at the expense of local precursors. At Feitais, ore formation was indeed accompanied by 'Na loss and Fe and S gains, but the geochemical evidence presented in this study does not require bulk Mg enrichment in stockwork rocks at the time of ore formation, given that the uppermost 50 metres or so of the Mine Tuff were markedly enriched in Mg prior to mineralization, as shown in Chapter 4, as the result of downflowing of sea water through the pyroclastic rocks in the course of early cooling of the volcanic piles. Significant redistributions seem to have taken place, however, expressed firstly on the stockwork zonation in chlorite rich and chlorite foor (sericitic) assemblages and secondly on the chlorite-quar

.

ratio in chloritic rocks, variable from quartz with less than 5% chlorite to almost monomineralic chlorite aggregates (chloritite, Schermerhorn, 1978); chlorite. compositions (with one exception) match closely the compositions of chlörites in Aljustrel volcanic rocks unrelated with mineralization.

Ore zone

The Feitais-Estacao orebody is markedly zoned, with sphalerite, galena, several sulphosalts and barite concentrated the ards the top, whereas chalcopyrite, sericite and chlorite predominate towards the footwall. Pyrite, guartz, carbonates and arsenopyrite are scattered throughout. Microprobe data revealed that the MnD content of ore zone chlorites varies significantly with stratigraphic position, increasing from stockwork and Cu rich massive ore to the overlying jaspers and metalliferous sediments. Oxygen isotope compositions indicate that the ore fluid was at 250°C in the stockwork and cooled to 200°C within massive ore, and finally to ~ 130 oc at the ocean \sim These together with the extreme Fe/Mn fractionation floor. on passing from sulphide ores to the overlying Mn sediments suggest that the hydrothermal mineralizing solutions moved upwards through the footwall pyroclastic rocks along a thermal gradient acquiring progressively higher oxidation potential, as the result of mixing with

unmodified sea water (Krauskopf, 1957; Lovering, 1961; Helgeson, 1970; Large, 1977).

Hanging wall rocks and alteration

The Feitais-Estacao orebody is capped by a laterally continuous bed of jasper which immediately above sulphide ore is markedly altered by reducing fluids which were injected in the jasper shortly before lithification, producing marked vein-controlled reduction of the jasper into predominantly bluish grey magnetitic and pyritic Frequent veins, pods and breccias dominantly chert. composed of a host of Mn bearing carbonates are possibly part of the hanging wall alteration episode, as they seem to have, formed from fluids injected through the unconsolidated jasper in the same manner as the remaining pre tectonic veins. Hanging wall alteration persists in the lowermost ten metres or so of the detrital sediments (phyllites, tuffites) and rare tuffs that occur above the jasper as discontinuous, irregularly shaped areas of intense pyritization, chloritization and carbonatization.

The Feitais jaspers are largely hydrothermal chemical précipitates, and not radiolarian cherts with a hydrogenous component, as evidenced by REE patterns, low Ni+Co+Cu abundances, low Th abundances and oxygen isotopic compositions indicating formation temperatures ~130°C (microtextures are inconclusive because of later

[§]223

recrystallization).

Crerar et al. (1982) have recently reported on the manganiferous cherts of the Franciscan assemblage, concluding that Mn mineralization was formed through injection of pre tectonic veins into unconsolidated siliceous sediment producing a characteristic bleached and pseudobrecciated texture, and proposed that the sediment/Mn chert sequences developed as a result of sea floor spreading over a series of deep hydrothermal sea water convection cells paralleling a spreading centre and spaced 5-10 km apart. Crerar et al. have also shown that the Franciscon Mn ores are strictly comparable to the Galapagos hydrothermal mounds (Lonsdale, 1977; Corliss et al., 1978, 1979). Mn occurs mainly as oxides in both situations. The absence of calcite has been interpreted as the result of water depths below the carbonate compensation level (Crerar et al., 1982).

At Aljustrel the sediments which were brecciated by the Mn bearing fluid were the unconsolidated precursor of hydrothermal jaspers, most probably still in the form of silica gel, given the lack of evidence or even indications of a biogenic origin. Recent authigenic sea floor silica (cherts and porcellanites) has been generally attributed to replacement or alteration of original, primary biogenic amorphous silica (Kastner, 1981). However, inorganic opal occurs in hydrothermal sea floor siliceous precipitates; it⁴

has been found by Bertine and Keene (1975) together with barite in the Lau Basin (NE of Australia), and also in the East Pacific Rise 21°N hydrothermal site, where silica gel itself seems to occur (Haymon and Kastner, 1981). Bertine and Keene (1975) point out that inorganic opal-A is difficult to distinguish from organic opal-A (see Jones and Segnit, 1971), which may in part explain the apparent scarcity of its reported occurrence.

Robertson (1977) described a siliceous matrix in the Troodos (Cyprus) radiolarian cherts that cannot be attributed to diagenesis of the radiolaria, given their excellent state of preservation, and admitted that direct chemical precipitation of the matrix silica is indeed a likely possibility. Matrix silica is also present in the Ligurian cherts (Italy), where the degree of preservation of the radiolaria is poor (Thurston, 1973). The conclusions of Robertson suggest that at least part of the Ligurian siliceous chert matrix may also be due to direct chemical precipitation. These considerations suggest that the chert intersected by DSDP hole 504B (Costa Rica rift) may have lithified through inorganic direct chemical precipitation of hydrothermal silica (see Anderson et al., 1982).

The hydrothermal contribution to the silica budget in the oceans may result from leaching of fractured basaltic rocks, whereas at Aljustrel hydrothermal silica derives

from highly permeable rhyolitic and even high silica rhyolitic pyroclastic rocks (the Mine Tuff, see Chapter 4), clearly capable of supplying large quantities of silica to sea water convectively circulated through them. --

Timing of hydrothermal events

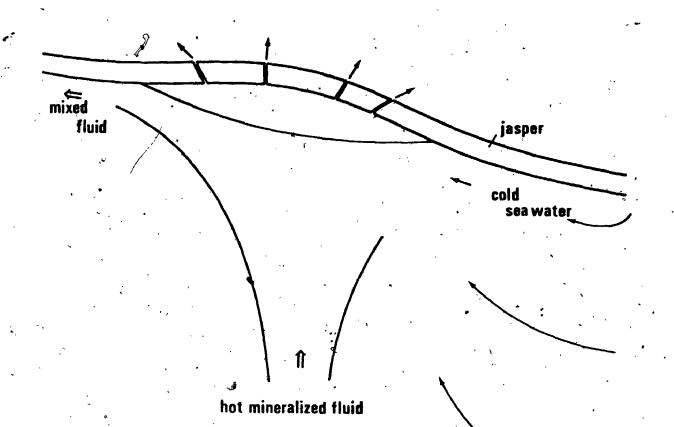
We have shown that the Feitais jaspers were originally highly oxidized, even immediately above the Feitais massive sulphide deposit. Given that the sulphide ore forming fluid was strongly reduced, jasper preciditation could have taken place either before or after the sulphide ores. The fact that the jasper was altered by reduced fluids shortly after its formation indicates that the fluid responsible for the alteration was the sulphide ore forming fluid, or a mixture of this fluid with unmodified sea water, as these are the only fluids known to have ever vented in the area. This thus raise's the interesting hypothesis that jasper' formation may predate sulphide mineralization. The sulphide orebody may consequently have formed under a blanket of unconsolidated siliceous sediment, probably a. silica gel. Silica gel is a lightweight (d 1.3) material comparable to a sheet of rubber - rubber itself is a gel. (Note, freshly precipitated SiO2 gels can float in water but as they polimerize the density change is considerable, as the OH- groups are expelled and the structure approaches silica glass). Space for sulphide precipitation may have

been created principally through floating of the jasper, given that sulphide ore geochemistry and textures indicate that most sulphide precipitation took place in a fluid medium, with only minor replacement phenomena. It is interesting to note that "silica is unique among the inorganic jellies in possessing, when freshly formed, an elasticity of the same order of magnitude as gelatin jelly. Moreover, silica jellies vibrate like a rigid body under certain conditions" (Weiser, 1949, pg. 317).

The average thickness of the jasper is of the order of ten metres, corresponding to a load of the order of 3×10^3 $g \text{ cm}^{-2}$. The mineralizing fluid had to be less dense than sea water, or it would not have risen through the sea water immersed highly porous Aljustrel volcanic rocks (see Sato, 1972; Turner and Gustafsson, 1978; Solomon and Walshe, , Within the Feitais stockwork zone the ore fluid was 1979). at >250°C. Assuming that its salinity was $\sqrt{2}$ m NaCl (see Sato, 1972) implies that it was $\sim 10\%$ less dense than sea water, or that its buoyancy (negative apparent weight) was 10.1 g cm^{-2} . Under these circumstances a >300 m long column of ore fluid would readily lift the silica gel blanket immediately above the ore fluid column, with generation, of a sill shaped pond of mineralizing fluid at the interface between the volcanic rocks and the jasper. Hanging wall alteration in the jasper would then represent minor leakage of one fluid through the otherwise impervious

blanket.

We wish to note here that subsurface sulphide precipitation has just been observed in the Guayamas Basin, Gulf of California, believed to be caused by interaction of an uprising mineralized fluid with sediment "groundwater" (Edmond and Von Damm, 1983). According to these authors "the overwhelming proportion of the ore-forming elements are precipitated <u>in</u> the sediment pile to form a sediment hosted massive sulphide. At Guayamas and in the geologic record these are very much larger than the ophiolite deposits since little is lost as "black smoke".


Sulphide precipitation

Theory (Barnes and Czamanske, 1967; Krauskopf, 1967; Helgeson, 1970), and experiments (Hajash, 1975; Bischoff and Dickson, 1975; Bischoff and Seyfried, 1978; Mottl and Holland, 1978) and observation of natural hydrothermal solutions (Salton Sea brine, White et al., 1973; Red Sea brine, Craig, 1966; Galapagos springs, Corliss et al., 1979; East Pacific R‡se "black smokers", RISE Project Group, 1980) strongly suggest that metal transport in massive sulphide forming systems is as chloride or mixed halide complexes (see also Andrews and Fyfe, 1976; Hutchinson et al., 1980; Plimer and Carvalho, 1982), which seems to preclude significant amounts of reduced sulphur in the mineralizing solution (Barnes and Czamanske, 1967, pg.

355). Given that the latter is known to be reduced (from ore zone alteration assemblages) it cannot transport SO_4^{2-} either. A separate sulphur source is therefore indicated. This hypothesis was first postulated by Lovering (1961), and study of the Red Sea and East Pacific Rise ore systems shows that in the case of massive sulphide deposits the sulphur source is unmodified sea water. Reduction of sea water sulphate can be accomplished by inorganic high (>200°C) temperature mechanisms or by biogenic activity (indicated in some important deposits, such as Kidd. Creek, Ontario, where abundant graphite is found in the ore zone, Walker et al., 1975). For details on this aspect see Hutchinson et al. (1980) and Fyfe and Lonsdale (1981).

The above requires that unmodified sea water must be available at the site of sulphide ore deposition (see also Munha and Kerrich, 1980; Munha, 1981). At Feitais pristine sea water may have reached the ore zone through flow subparallel to bedding immediately below the jasper layer, driven by dominantly lateral escape of the mineralized fluid upslope (the Feitais orebody formed on the flank of a submarine volcano), as schematically illustrated in Figure⁴² 5.18.

A further aspect of importance is the degree of purity of a large ore mass such as the Feitais-Estacao orebody, which requires open system, free volume, essentially isothermal precipitation. This suggests that the key ore

Schematic representation of the possible mode of access of unmodified sea water to a pond of ore fluid under an essentially impervious blanket. Figure 5.18.

7

forming process is mixing S-- with M++.

***** 25

Origin of mineralizing fluid: evolving convective regimes

The origin of ore forming fluids specifically in volcanic associated massive sulphide deposits has been a matter of great controversy (see Franklin et al., 1981). However, most authors currently favour a hydrothermal metamorphic model whereby convective circulation of sea water through footwall rocks, driven by heat released from within the rocks themselves and from below (magma chambers, intrusions) eventually modifies sea water into a hot (250-450°C), reduced, acidic, mineralized brine which upon focussed return flow to the ocean and given appropriate conditions at the site of discharge may lead to the fast and concentrated precipitation of metal sulphides (Spooner and Fyfe, 1973; Ohmoto and Rye; 1974; Solomon, 1976; Heaton and Sheppard, 1977; Andrews and Fyfe, 1976; Hutchinson et al., 1980; Franklin et al., 1981).

This general model was recently shown to be applicable to the genesis of the Iberian Pyrite Belt sulphide ores in general (Munha and Kerrich, 1980; Munha et al., 1980; Munha, 1981), and the data presented in the present study also supports well that the Feitais-Estacao orebody. specifically may have formed through sea water hydrothermal metamorphism of the Aljustrel Volcanics. Thus we have shown in Chapter # Shat the Aljustrel Volcanics interacted

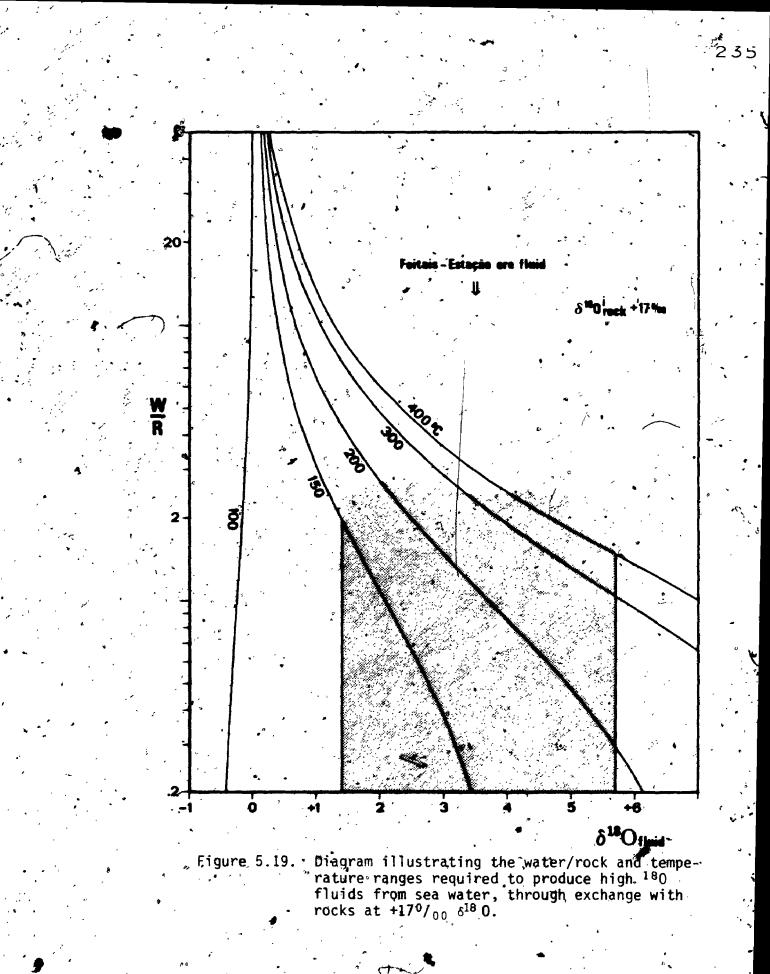
°231

with convectively circulated sea water which extracted Fe - Mn(?) - Cu - Zn - Pb(?) and Si from them. These elements are most of those defining the gigantic geochemical anomaly represented by the Feitais-Estacao ore environment (including the various alteration products that surround the ore zone).

Barium and gold deserve special mention, as they are two further elements found to be markedly concentrated in the ore zone. There is some evidence that Ba could also have been leached from the Aljustrel Volcanics, as away from sulphide mineralization (see Chapter 4) Ba occurs. sporadically concentrated in hydrothermal minerals (K-feldspar and sericite): this suggests that Ba was present in the modified sea water from which the Ba bearing minerals formed, causing local reprecipitation within the source rocks themselves. Regarding Au, the Aljustrel massive sulphide deposits contain $\sim 2 \times 10^8$ g Au. If this amount was leached from the Aljustrel Volcanics withbackground concentrations of the prder of parts per billion it follows, that the total mass of protolith involved was of the order of 10^{16} - 10^{17} g (6 to 60 km³); this estimate is compatible with local geological constraints (see Chapter

We have seen that the composition and size of the Aljustrel sulphide deposits are compatible with a sea water, hydrothermal metamorphic origin for the ore fluid. The

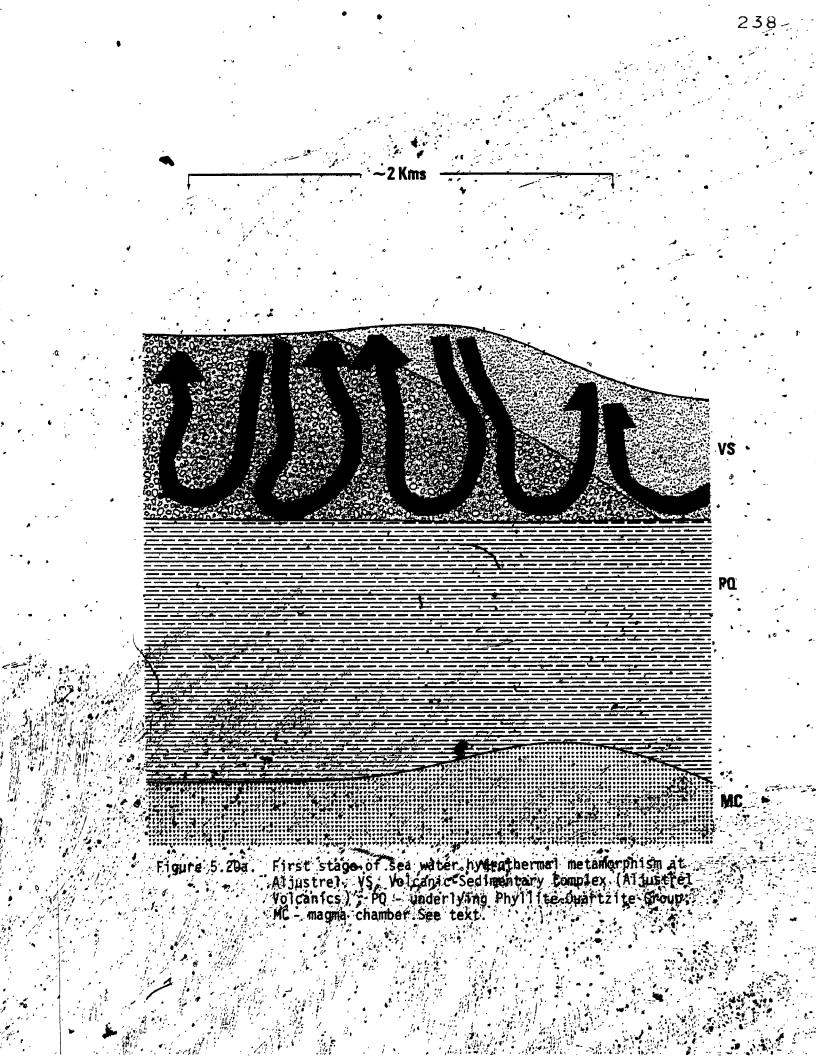
3).

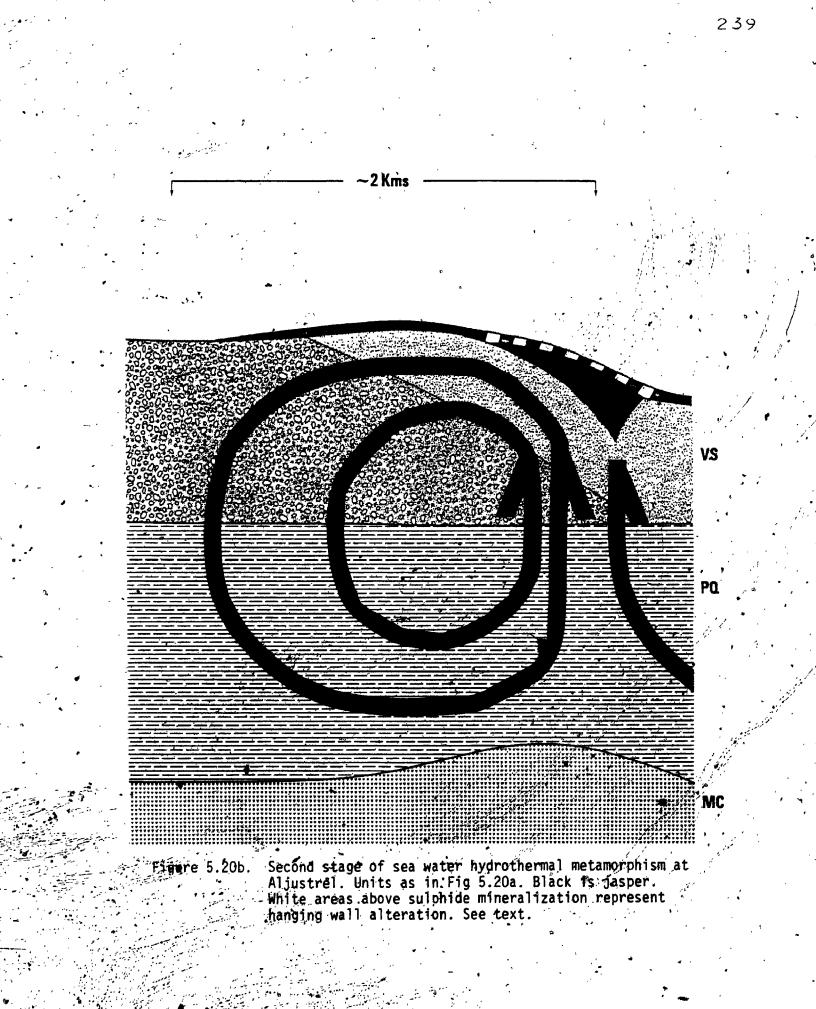

oxygen isotopic composition calculated for the Feitais-Estação ore forming fluid varies from ~ 1.5 to $\frac{60}{00} \delta \frac{180}{5}$, thus including compositions significantly heavier than those of fluids involved in most volcanogenic massive sulphide deposits, in which $\delta^{18}0$ is $0 \pm 2^{\circ}/_{00}$ and sea water implicated as the dominant fluid reservoir (Ohmoto and Rye, 1974; Sakal and Matsubaya, 1974; Heaton and Sheppard, 1977; Hattori and Sakai, 1979; Hattori and Muelenbachs, 1980; "Pisutha-Arnond and Ohmoto, 1980; Costa et al., 1980; Beaty and Taylor, 1972). But Feitais is not the only exception to this apparent rule. Isotopic studies on the Raul (Ripley and Ohmoto, 1979) and Kidd Creek (Beaty et al., 1980) mines have also indicated ¹⁸0 enriched ore forming fluids. Within the Iberian Pyrite Belt itself preliminary, data from the Rio Tinto and Chanca deposits indicate near $0^{\circ}/_{00}$ fluids whereas Salgadipho (Cercal) seems to be related with ¹⁸0-prich fluids (Munha and Kerrich, 1981). In all cases it was suggested that the ore fluid might have been sea water which was modified in some way.

Given the complex and evolving hydrothermal history of the Aljustrel Volcanics described in Chapter 4, which, includes early sea water Mg fixation and hydrolysis of igneous feldspars with extreme, homogeneous ¹⁸0 envictment of the volcanic rocks, followed by stabilization of arbite in turn followed by formation of K-feldspar, suggesting early convective cooling of the volcanic rocks followed by

reheating (see Chapter 4), and given also the relations. Between hydrothermal jasper, massive sulphide formation and hanging wall rock alteration described in this chapter propose that the Feitals-Estacao mineralizing fluid may also have been evolved sea water; enriched in 180 by convective circulation through the Aljustrel Volcanics when these were already enriched in 180 (as measured, \$180 v 170/00), that is, through a second stage of convective circulation. Figure 5.19 shows that fluids enriched in 180could readily evolve through interaction of sea water (δ^{180} $= 0^{\circ}/_{00}$) with $+17^{\circ}/_{00}$ rocks if temperatures are above. 100°C and low water/rock/prevails (this condition requiredto preserve high ¹⁸0 in the rocks, as measured). Thus sea water convection would have been initially water dominated (to enrich the rocks in ¹⁸0), evolving to rock dominated conditions towards later stages. This change in water/rock could be explained by progressive permeability reduction from hydration accompanied by rock expansion (Fyfé and Lonsdale, 1981). However, the presence of the jasper bed above the Alfustrél Volcanics suggests that jasper formation, which took place during the hydrothermal events, may have switched fluid convection in the volcanic rocks from an early free discharge regime (high w/r) to a subsequent stage of more or less perfect closed system recirculated flow, effectively reducing the bulk water/rock to the proportions of porosity/volume of rock. An average

234


ć



porosity of 10% corresponds to the permeability and grain size estimated before (Chapter_4) and to a molar water/rock of ∿0.075. The impervious barrier constituted by the jasper would also greatly reduce heat loss from the system, as this would then be largely limited to heat conduction through the impermeable cover, thereby explaining the reheating indicated by oxygen isotope and mineral chemical data: the heat dissipated from an underlying magma chamber would in fact have a larger residence time within the volcanic rocks in the presence of a cover restricting fluid flow between the Aljustrel Volcanics and the basin waters. Fluid convection is possible under thermal gradients in excess of the adjabatic gradient, and the vigour of fluid convection is appropriately described by a dimensionless parameter that relates the various factors influencing thermally driven fluid motion (the Rayleigh humber, 'see Lapwood, 1948; Spooner, 1977; Fyfe et al., 1978; Fyfe and Lonsdale, 1981). The critical Ra for free discharge porous medium convection is 0.27 (Lapwood, 1948), and for the same situation the second critical Ra (Straus, 1974) above which convection is non steady is around 240-280 (about ten times Racrit, Combarnous and Le Fur, 1969; Caltagirone et al., 1971). The early sea water convective regime (free discharge) invoked in Chapter 4 to explain the 180, Mg and H₂0 enrichment of the Aljustrel Volcanic's must have had $Ra >> Ra_c \times 10$, given the extreme

permeabilities inferred from geology and petrography. Under these conditions drifting, irregular convection cells will be generated (Figure 5.20a), thus explaining the homogeneity of the δ^{180} data on the Aljustrel Volcanics, as no fixed recharge or discharge sites exist in a drifting convective system. Given the discussion above we propose that the jasper bed may have formed concomitantly with this early non steady state convective regime. Most of the silica and part of the iron and manganese extracted from the Aljustrel Volcanics are thus thought to have reprecipitated just above the volcanic pile, as a. consequence of cooling (Si) and oxidation (Fe, Mn).

Within the framework of the above model the second sea water convective stage (closed system recirculated flow under the jasper) must have proceeded at Ra < Ra_c x 10, to account for the stable geometry required by the presence of the well defined hydrothermal discharge sites (Fig. 5.20b) fossilized by the stockworks. It is indeed likely that Ra became less than Ra_c x 10 during the second convective stage, firstly because of Ra decrease caused by permeability reduction (precipitation of hydrothermal minemals in the voids off the volcanic rocks, Fyfe and Lonsdale, 1981) and secondly because Ra_c for closed system convection is ~40 (Lapwood, 1948) and therefore stable convection will take place up to Ra ~400, instead of ~270 in the free discharge situation. In other words, the

formation of an impervious cover will contribute to stabilize the geometry of the convective regime. This second convective stage would thus be responsible for the generation of the Feitais-Estacao massive sulphide deposit (and possibly the remaining Aljustrel sulphide orebodies) and also for the ore zone wall rock alteration, both above and below sulphide mineralization.

Origin of mineralizing fluid: other hypotheses

Our preferred model of evolving regimes of sea water convection through the Aljustrel Volcanics has perhaps the merit of explaining both the genesis and nature of the mineralizing fluid and all the metasomatic changes described in the Aljustrel Volcanics and ore zone rocks. However, the origin of the Feitais-Estacao mineralizing fluid can be explained by other mechanisms, as follows:

(1) <u>Magmatic fluid contribution</u>. Although minor amounts of magmatic fluid are perfectly compatible with the data and the model proposed above, it is considered unlikely that magmatic solutions were the dominant metal transporting medium, as the sulphide deposit is associated with the waning stages of volcanic activity, which must have postdated any significant magma degassing (cf. Ohmoto and Rye, 1974; see also Williams and McBirney, 1979). Also, sulphide orebodies at Aljustrel contain more than 100 million tonnes of transition metals, and there are neither

firm data nor indications that such metals could be concentrated in a volatile phase of appropriate mass by purely igneous processes from a reasonably sized plutonic body (see for example Krauskopf, 1967, pg. 484).

(2) Sea water convection through Phyllite-Quartzite Group rocks. It was mentioned above that the late stages of sea water convection in the Aljustrel area were driven by heat from below, probably from a shallow magma chamber (see also Campbell et al., 1981). Large local thermal gradients were therefore produced, and convective sea water circulation must have taken place through whatever permeable rocks were present above the heat source. At Alfustrel the two orebody lineaments mentioned in Chapter 3 had a pre deformation spacing of 3 to 5 km (L. Conde; J. T. Oliveira; V. Oliveira; A. Ribeiro, personal communications, 1981), corresponding to a convection halfcell width of 2 km. Even if a third, interposed ore zone exists, as suspected by mine geologists (L. Conde; J. C. Leitao, personal communications, 1981), convection halfcell Widths would still be near 1.5 km. If a normal aspect ratio of these convection cells prevailed the depth of sea water circulation must have been 1 to 2 km (see Lapwood, 1948; Ribando et al., 1976). The known thickness of the Aljustrel Volcanics is only 250 m (base not seen), and from the thickness of the VS Group elsewhere it is unlikely that* it exceeds 500 m. It is therefore quite possible that the

lowermost (and hotter) portions of the convection cells were through PQ sediments, which include frequent quartzite beds (see Chapter 2). Detrital quartz is a high permeability, often high ¹⁸0 material (Hoefs, 1980), and interaction at moderate water/rock and elevated temperatures will increase the $\delta^{18}0_{\rm fluid}$. Oxygen isotope data for PQ rocks is needed.

(3) <u>Connate water from underlying formations</u>. Pore water can be trapped, heated, modified, and later expelled by burial, compaction and seismic pumping in such a manner as to conform with most of the available data on massive sulphide deposits (see Hutchinson et al., 1980; Lydon, 1981; Franklin et al., 1981). The main objection against such a model for Aljustrel specifically and the Iberian Pyrite Belt in general is the fact that in these examples sulphide mineralization is invariably related with felsic volcanism, despite the fact that solely sedimentary stratigraphic sections are ubiquitous between the various volcanic centres (Schermerhorn, 1971; Carvalho et al., 1976).

(4) <u>Metamorphic water</u>. We have repeatedly invoked the presence of a large, **B**hallow level magma chamber under the AljustreI Volcanics (presumably within the pre volcanic "Rhyllite-Quartzite Group) to account for the large volume of volcanic rocks present in the area and also to act as a major heat source required to drive sea water convection

beyond the early stage of dissipation of heat from the volcanic rocks themselves.

Campbell et al. (1981) have recently documented the 🏒 presence of sill-shaped magma chambers stratigraphically under massive sulphide deposits in the Sturgeon Lake and Kam-Kotia areas of the Canadian Precambrian Shield, and cited many other examples of the same association in such important massive sulphide camps as Matagami, Flin Flon and Noranda. They (ibid.) state that "Precambrian massive" sulphide deposits..., are commonly turned on their side by postore tectonic processes expesing the underlying rock sequence for inspection". At Aljustrel not even the base of the volcanic rocks is exposed, but given the above considerations it is not unreasonable to admit that the Aljustrel magma chamber may also be sill-shaped, in good agreement also with magma density considerations (see Herzberg et al., in press). If so, magma uprise to shallow evels and lateral spreading will create a large volume where the rocks surrounding the magma conduit(s), possibly wet PQ sediments, will be subjected to very high thermal gradients, with consequent dehydration metamorphic fluids, which would likely have $\delta^{180'}$ 6°/00 (Taylor, 1974) and, if metamorphic degassing temperatures exceeded 500°C, a likely to contain significant amounts of gold (Henley, 1973; Fyfe, 1974). If, there ds a contribution from deeply derived metamorphic water, it could explain gold enrichment

and CO₂ contribution and could generate transient conditions of $P_{fluid} > P_{load}$.

Séa floor metamorphism

Despite the possible applicability of some of the mechanisms of ore fluid generation briefly discussed above, our preferred model of evolving sea water convective regimes through the Aljustrel Volcanics does not require fluid contributions from other sources, and furthermore, is comparable to present day sea floor metamorphism.

Evidence accumulated during the last decade or so leaves little room for doubt that present day oceanic lithosphere coels principally through sea water convective circulation (Elder, 1965; Lister, 1972, 1977; Williams et al., 1974), and that oceanic hydrothermal metamorphism is the net result of sea water - rock interaction, with formation of the spilitic rocks and serpentinites that occur in the sea floor and in ophiolites, as well as the massive sulphide deposits present within the volcanic portions of both rock suites (Spooner and Fyfe, 1973; Andrews and Fyfe, 1976; Spooner et al., 1974, 1977a,b; Spooner, 1977; Francheteau et al., 1979; Moody, 1979; McCulloch et al., 1980; Hutchinson et al., 1980; Fyfe and Lonsdale, 1981).

Sub sea floor marine water convection persists in time, and space to tens of millions of years and hundreds of

kilometres from the origin of these rocks at mid ocean ♥ridges (Anderson et al., 1977, 1979, 1981; Lawrence and Gieskes, 1981), and takes place through different cellular regimes that evolve as the sea floor thermal conditions change. At mid ocean ridges the young hot crust lacking sediments, cools through free discharge convection driven initially with heat from within the permeated lithologies. As the crust cools, ages and is transported away from ridges, convection switches to that driven by heat from below, and formation of a low permeability sediment cover generates more or less perfect closed system recirculated flow; heat loss becoming dominated by conduction through the sediment cap (Lister, 1972, 1974; Ribando et al., 1976 Davis and Lister, 1977; Anderson et al., 1981; Fyfe and Lonsdale, 1981; Barriga et al., 1983). Thermal gradients through the impermeable cap can be very steep as demonstrated for the Juan de Fuca ridge system by Davis and Lister (1977), who have reported temperatures up to 200°C at the sediment-basalt interface. This suggests that the sediment-basalt interface may also be a good site of ore deposition, in agreement with recent observations of metal rich muds in the Juan de Fuca region (Geotimes, Dec. 1981, 25-26). Closed cell convective ore generation under sediments in the sea floor environment has been advocated by Fyfe and Kerrich (1976), Fyfe et al. (1978), Hutchinson et al. (1980) and Barriga ét al. (1983).

The similarities between the evolution of the sea floor metamorphic regime, briefly outlined above, and the hydrothermal history proposed in this study for the 350 Ma old Aljustrel sea floor area are obvious.

CHAPTER 6

SUMMARY AND CONCLUSIONS.

The purpose of the present study was to contribute to the understanding of the genesis of massive sulphide deposits associated with volcanism. The Feitais-Estacao massive sulphide_deposit of Aljustrel, South Portugal was chosen as a suitable object of study.

Aljustrel is one of the most important mining centres of the Iberian Pyrite Belt, with massive polymetallic sulphide ore reserves beyond 200 million metric tonnes. The Iberian Pyrite Belt is located in South Portugal and Southwest Spain and constitutes western Europe's most prominent stock of base metals. Extremely large massive sulphide deposits occur associated with the waning stages of felsic explosive volcanism which took place in early Carboniferous times, on a phyllite-quartzite (PQ), shelf facies, conformable basement. Subordinate mafic volcanism accompanied the felsic volcanic activity, producing a bimodal association in which the two types of igneous rocks are not related by magmatic differentiation; basaltic rocks seem to derive from heterogeneous mantle peridotite and felsic rocks resulted from partial melting of crustal material. Volcanic rocks were affected by widespread sea water hydrothermal metamorphism responsible for the present

spilltlc and quartz-keratophyric (felsic spilltlc) compositions of the rocks, for the massive sulphide deposits and also for abundant volcanogenic sediments such as manganese accumulations, FerMn cherts, purple and red slates genetically equivalent to present day sea floor Fe-Mn hydrothermal and perhaps hydrogenous metalliferous concentrations.

Volcanism took place along lineaments of discrete volcanic contres in a framework of detrital, biogenic and chemical sediments, generating a widely variable force hosting) Volcanic-Sedimentary Complex. After volcanism the area experienced pronounced subsidence, with deposition of a conformable, several km thick Flysch Broup (base Visean to Westphalian). During the time of Flysch deposition. large scale synsedimentary deformation took place, enhanced by probably continuous, subsequent tectonic compression, generating a complex imbricate structure of tight folds and folded overthrusts where VS anticlines are exposed between, and often thrustod on, Flysch synclines. Deformation was accompanied (and followed) by low grade (zeolite - lower greenschist) and low pressure regional metamorphism of essentially isochemical nature. The plate tectonic setting of the Iberian Pyrite Belt thus probably corresponds to an early continental rifting situation, or to a back arc associated with subduction (further, North), in which case the Flysch phase of the basin and the tectonic activity would be related to closure of an adjacent ocean and continental collision.

At Aljustrel exclusively felsic, submarine, explosive volcanism took place ~330 Ma before present (Visean) and produced >5 km³ of pyroclastic rocks. These can be grouped into a central unit of coarse quartz and feldspar phyric tuffs, the Quartz-eye Tuff (Megacryst Tuff and Gréen Tuff), flanked on either slde by finer grained felsic tuffs devoid of guartz phenocrysts (felsitic and feldspar phyric tuffs, the Mine Tuff). At the waning stages of volcanic activity nearly 250 Mt of massive sulphides were deposited on the two symmetrical units of the Mine Tuff. Prominent siliceous and metaldiferous sediments cap and surround the sulphide deposites footwall rocks contain stockwork ores

in variably altered lithologies, attesting that mineralized ore forming fluids penetrated to enear the coeval sea floor

and that the sulphide deposits are thus exhalative. After deposition of a few tens of metres of fine grained epiclastic and tuffitic sediments on top of the ores and associated metalliferous sediments the area underwent major subsidence, with concomitant deposition of the several kilometre thick Culm Group turbidites. Hercynian deformation took place in subsequent phases, from early subsidientary deformation producing major overthrusts and gentle folding, through a main (nearly coaxial) compressive phase responsible for tightering and overturning of folds with cleavage generation and thrusting of the inverse_ flanks of the anticlines: Late stage compression generated a set of dextral wrench faults and provoked large scale movement along the major Messejana wrench fault.

6.1 Conclusions

The main conclusions of this study, based on field relations, petrography, mineral chemistry, rock geochemistry and oxygen is ope geochemistry are as follows:

1. As Par as can be seen through major metasomatic changes, the Aljustrel Volcanics originally consisted of two units of submarine pyroclastic rocks. A high iron rhyolite (the Quartz-eye Tuff) may have exupted first, followed almost immediately thereafter by a high silica rhyolite (the Hine Tuff). The two tuff formations derive

from partial melting of a common crustal source, possibly high grade metamorphic. Their differences can be explained either by different degrees of partial melting of their source followed by variable degrees of shallow level crystal fractionation or, alternatively, the QET may represent proximal volcanic facies and the MT more distal associated flow tuffs.

2. The main metasomatic changes experienced by the Aljustrel Volcanics seem to have been as follows:

major hydration, exidation, and Mg fixation in the uppermost 50 m or so of each of the QET and the MT;
 progressive Fe (and perhaps Mn) leaching downwards in both tuff sequences;

- progressive leaching of Cu and Zn in samples either markedly reduced or oxidized (Pb values all low);

- significant Si leaching;

- complex and evolving behaviour of the alkalies, with early widespread hydrolysis of igneous feldspare followed by hydrothermal growth of low temperature albite megacrystswhich were subsequently partially or totally replaced by low temperature K-feldspar. Aikali feldspar megachysts occur almost exclusively in the Quartz-eye Tuff (the core of the Aljustrel Volcanics);

- General, homogeneous 180 enrichment to extreme alues around 170/00 δ^{180} .

3. Hercynian fow grade regional metamorphism (up t

lower greenschist facies and essentially isochemical) has overprinted the rocks and may have obliterated in part the Avdrothermal mineralogy, namely producing the presently observed chlorite, sericite and epidote from hydrothermal lower grade phyllosificates such as smectite and celadonise and zeolites, respectively.

4. The Feltais-Estaceo orebody of Aljustrel (100 Mt) is composed of a massive sulphide lens shaped body underlain by a crosscutting zone of stringer and

disseminated mineralization hosted in chlorite-guartz and sericite-quartz rocks that are the product of alteration of the surrounding-Mine Tuff Formation rocks. The orebody is capped by a laterally extensive bed of jaspers and Fe-Min sediments showing prominent alteration immediately above the orebody. Hanging wall rock alteration is also present in the lowermost metres of the Paraiso Siliceous formation aluminous sediments and (rare) pyroclastic rocks that overlie the jasuer unit. The Feffais sulphide ores and associated lithologies and ore zone alteration are the product of interaction of a het, reduced metalliferous.

Starkmork alteration at Peltais is characterized by the formation of a crosseutting pipe of mainly quartzblorite-sulphide rock surrounded both megascopically and at the peale of individual bein aureoles by quartzsericite sulphide is carbonated rock, strictly comparable to stockwork Alteration in the Archean Noranda massive sulphide deposits. Stockwork alteration clearly postdates the early mode responsible for the conformable regional alteration mentioned in 2.

6. The main ore zone metasomatic changes produced in Mine Tuff rocks by the mineralizing process were large scale fe and S and lesser Ba enrichment and almost quantitative extraction of Na. Mg enrichment at the time of ore formation is not required, given that the top layers of the Mine Tuff were markedly enriched in Mg prior to mineralization.

7. The Feitais-Estacao orebody is markedly zoned, with sphalerite, galena, several sulphosalts and bariteconcentrated towards the top, whereas chalcopyrite, serifies and chlorite predominate towards the footwall. Pyrite, quartz, carbonates and argenopyrite are scattered throughout. Microprobe data revealed that the MnO content of ore zone chlorites varies significantly with stratigraphic position, increasing from stockwork and Cu rich massive are to the overlying jaspers and metalliferous sediments. Gxygen isotope compositions indicate that the ore fluid was at 250°C in the stockwork and cooled to 200°C within massive ore, and finally to \sim 130°C at the ocean floor. These together with the extreme Fe/Mn iractionation on passing from sulphide ores to the averlying Mn sediments suggest that the hydrothermal

mineralizing solutions moved upwards through the footwall pyroclastic rocks along a thermal gradient acquiring progressively higher oxidation potential, as the result of mixing with unmodified sea water.

8. The oxygen isotope composition calculated for the Feitais-Estacao ore forming fluid varies from +1.5 to $+6^{\circ}/_{\circ\circ} \delta^{28}$.

9. The Feitais-Estacao orebody is capped by a laterally continuous bed of jasper (hematitic chert) which immediately above sulphide ore is markedly altered by reducing fluids which were injected in the jasper shortly before lithification, producing marked vein controlled reduction of the jasper into predominantly bluish grey magnetitic and pyritic chert, as well as frequent veins, pods and breccias dominantly composed of a host of Mn bearing carbonates. Hanging wall alteration persists in the lowermost ~10 metres of the detrital and volcanogenic sediments (phyllites, tuffites) and rate tuffs that occur above the jasper, as discontinuous, irregularly shaped areas of intense pyritization, chloritization and carbonatization.

10. The Aljustrel jaspers are largely hydrothermal chemical precipitates, as evidenced by REE patterns, low Ni+Co+Cu abundances, low thorium abundances, oxygen isotopic compositions indicating formation temperatures ~130°C and lack of fossil radiolarians.

1.1. The clear evidence for deformation of mineralized structures in the hanging wall sediments clearly shows that this mineralization occurred pre-deformation and was not simply a result of dispersion during later regional metamorphism (see Plate 8).

6.2 Genetic model

The Aljustrel Volcanics are submarine pyroclastic rocks, likely to have been deposited at low temperature (>200°C) and to have had extremely high initial permeability, similar to that of coarse sand, in the range of 10⁻⁸ cm². Under these circumstances and given also that the fluid responsible for early metasomatism was initially, oxidized, Mg rich and very abundant, initial cooling of the pyroclastic pile must have taken place through vigorous sea water convection driven by heat from within. The Rayleigh number must not only have exceeded the critical value necessary for convection to take place but, given the extremely high initial permeabilities inferred from geology and petrography, the second critical Rayleigh number may also have been exceeded. Above this value convection in non-steady state and drifting, irregular convection cells are thus likely to have formed. This would explain the relative homogeneity of oxygen isotope data for the volcanie rocks, as no fixed water recharge and discharge sites exist in a drifting convective system. The final

isotopic result is everywhere the result of the prevailing physicochemical conditions, low temperature and high water/rock.

We propose that the Aljustrel jasper may have formed concomitantly with this early non steady state convective regime. Most of the silica and part of the Fe and Mn leached by sea water from the Aljustrel Volcanics are thus thought to have reprecipitated just above the volcanic pile, as a consequence of cooling (Si) and oxidation (Fe, Mn).

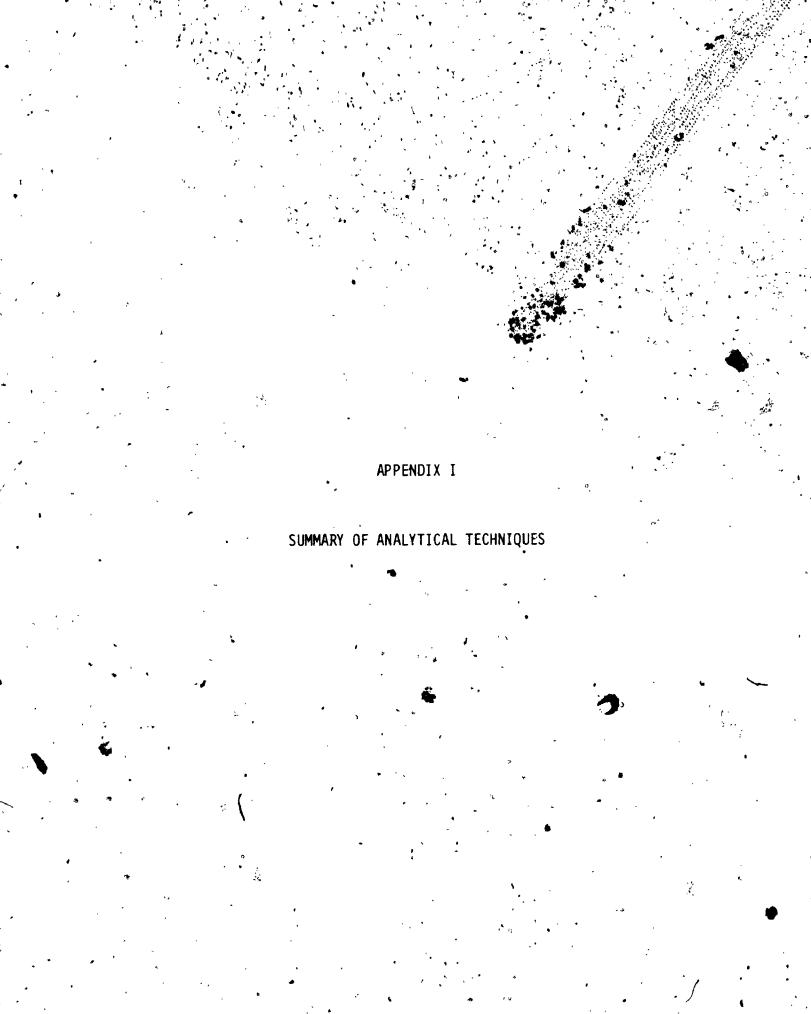
Given the complex and evolving hydrothermal history of the Aljustrel Volcanics, suggestive of early cooling. followed by reheating and concomitant metal extraction from the rocks, and given also the relations between hydrothermal jasper, massive sulphide formation and hanging wall rock alteration at Feitais, we propose that the Feitais-Estacao mineralizing fluid may also have been evolved sea water, enriched in base metals and 180 by convective circulation through the Alfustrel Volcanics when these were already enriched in ¹⁸0, that is, through a second stage of closed system recirculated flow under the impermeable blanket represented by the jasper and perhaps also by some of the fine grained, low permeability sediments (now phyllites) of the Paraiso Siliceous Formation. Both permeability decrease in the course of vdrothermal activity because of precipitation of,

hydrothermal minerals in rock voids and closed system convection will favour stable convective cell geometries during this second stage of sea water circulation and under an impermeable cap heat dissipation will be markedly reduced, thus explaining the reheating indicated by the data. The second convective stage will be characterized by low bulk water/rock, limited to the proportions of porosity/volume of rock, appropriate to enrich the fluid in ¹⁸0, as measured.

Within the framework of the above model massive sulphide precipitation may have taken place under a blanket of unconsolidated siliceous sediment, probably a silica gel, a substance comparable to a sheet of rubber. Space for sulphide precipitation may have been created principally through floating the jasper, given that sulphide ore geochemistry, textures and gangue mineralogy indicate that most sulphide precipitation took place in an essentially isothermal fluid medium, with only minor replacement phenomena. A simple calculation indicates that the buoyancy of a 300 m Fong column of hot mineralizing fluid 10% less dense than sea water would be sufficient to lift the jasper (10 m thick) above the hot plume of fluid. Hanging wall alteration would then ... represent minor leakage of ore fluid through the otherwise impervious blanket.

Our preferred model of evolving regimes of sea water

convection through the Aljustrel Vgicanics has perhaps the merit of explaining both the genesits and nature of the . mineralizing fluid and all the metasomatic changes described in the Aljustrel Volcanics and ore zone rocks. However, the ore fluid could possibly derive from other mechanisms, namely sea water convection through "basement" (PQ Formation) rocks, or through discharge of connate waters from underlying formations through burial. compaction and Weismic pumping and, above all, throughdischarge of metamorphic water produced by emplacement of a large shallow level magma chamber under the Alfustrel area, not observed at the present level of erosion but indicated by the large volume of volcanic rocks present and by " theoretical considerations. A metamorphic fluid contribution is attractive also in view of the large total amount of gold present in the Alfustrel orebodies (and around them), of the order of 2×10^8 g: Au geochemistry suggests that its transport is facilitated at higher temperatures than those implicated in the purely sea water convective model.*


6.3 Exploration implications

Some of the geochemical features that characterize the ore forming hydrothermal activity at Aljustrel suggest that lithogeochemical exploration may provide insight into the nature of potential ore targets in the Iberian Pyrike Belt,

2,5**8**

once good geologic control exists and in addition to the exploration methodologies currently in use.

Firstly, the degree of regional hydrothermal alteration, as expressed by petrography, transition element geochemistry (in rocks, not soils) and oxygen isotope geochemistry may contribute to define the more attractive volcanic centres (those more intensely affected by hydrothermal metamorphism). Secondly, reduced volcanic rocks depicting Ba and/or Au anomalies may indicate proximity to ore. Thirdly, and perhaps above all, the detailed study of cherts and jaspers, with emphasis on transition and RE element distributions and oxydation states (and microtextures where possible) may prove capable of distinguishing various origins in such sediments, and distance to ore in the case of hydrothermal sediments.

- 1 Structural state of alkali feldspars

Alkali feldspar megacrysts were extracted from the rocks by diamond sawing, subsequent light crushing and hand picking of millimetric fragments free from other minerals. These were subsequently manually comminuted to <200 mesh in an agate mortar, and the resulting powder was used to diffract Fe $K\alpha_1$ radiation, in a Guinier-Jagodzinski double cylinder camera with precision monocromator produced by Rich. Seifert & Co., Rontgenwerk (2070 Ahrensburg B?, Hamburg, F.R.G.), which "consists of a double cylinder of high resolving power designed on the principles of the Seemann-Bohlin focusing method (for transmission and back-reflection exposures) in combination with a precision quartz crystal monocromator based on the Johansson principle" (from the camera manual). Film intensities were read in an automated densitometer, and subsequently interpreted and plotted using a-set of appropriate computer programs developed by Prof. J. Starkey (U.W.O). The precision and accuracy of the Bragg angle obtained by this method are within ± 0.002 $^{0}20$.

I - 2 Electron microprobe mineral analyses

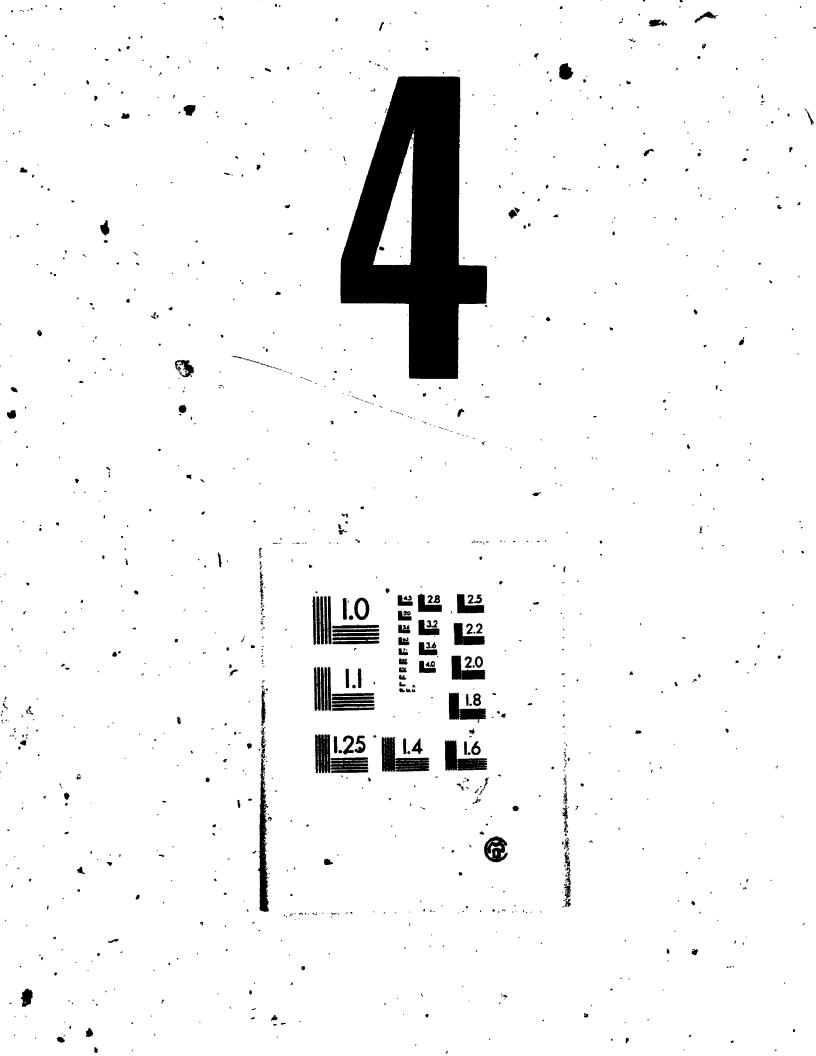
With the exception of data presented in Figure 5.4 (see figure caption), mineral chemical analyses were obtained on 25 mm diameter polished thin sections coated with carbon, using a Materials Analysis Company model 400 electron microprobe equiped with three diffractometers and KRISEL automation. Working conditions were 15 to 20 kV excitation voltage and 0.25 to 0.5 μ A beam current (depending on the mineral being analysed), at counting conditions of 30 seconds or 20000 counts. The standards used were well analysed natural minerals and

synthetic glasses, selected to minimize necessary corrections (MAGIC corrections were used throughout). Replicate determinations indicate a precision generally better than 2% of the amount present, for major elements.

- 3 Whole rock geochemistry

Whole rock samples were diamond cut into several slabs $\sqrt{0.5}$ cm thick, subsequently grinded with AI_2O_3 abrasives to eliminate brass contamination, and thoroughly washed and dried, and lightly hammered between cloths to avoid any contact with metal, and the resulting fragments subsequently split to about 50 g. This amount was in turn powdered for $\sqrt{30}$ seconds in a Bleuler mill.

Major elements (with the exception of Na) were determined by X-ray fluorescence spectrometry, in a Philips PW 1450 spectrometer fitted with a Cr tube, using the heavy absorber fusion technique of Norrish and Hutton (1969), where a glass disk is made, composed of 2.0000 g of flux (lithium tetraborate, lithium carbonate and lanthanum oxide), 0.0267 g of sodium nitrate and 0.3733 g of sample. Samples with high concentrations of Fe (>20%) and/on S (>2%) were diluted with 50.0000%, specpure SiO₂. Calibration monitor samples FS-94 and FS-84 (supplied by Dr. K. Norrish, CSIRO, Australia) were used for calculation of the concentrations in the samples. Na and S were determined in pressed pellets of rock powder, with reference to calibration lines defined by intermational (Na) and departmental (S) standards.


Most trace elements were determined on pressed pellets, by X-RF spectrometry (W tube) with reference to selected international standards. Data were reduced using interference and matrix calculations

through program TRACE'developed by G. Barker, H. Hunter and T. LaTour (unpublished, U.W.O.).

Opternational standards and duplicate unknown samples were run for accuracy check, and results indicate that major element determinations are generally accurate within 1-2% of the amount present, and trace elements accurate within 10% (20% for Nb and Cu).

Sc, Hf, Ta, Au and Th were determined by instrumental neutron activation analysis at Neutron Activation Services, Hamilton, Ontario.
Results of duplicate analyses indicate precisions better than 5%.
Rare earth elements were determined by a modified version (Fryer, 1977)* of the thin-film X-ray fluorescence (W tube) procedure of Eby (1972). The REE were separated as a group by ion-exchange chromatography and transferred onto Reeve Angel SA-2 fon-exchange paper circles (#=25 mm). Prior to separation, 50 µg of Tm were added as an internal yield standard, Precision is generally better than 10%.

Ferrous iron was determined after the method of Wilson (1955). International standard SY-3 was analysed as an unknown with each batch, and results indicate that accuracy and precision are better than 5% of the amount present. Volatiles were determined by weight loss on rock powder following heating at 1100°C.

• APPENDIX II

REPRESENTATIVE MICROPROBE ANALYSES OF MINERALS FROM THE ALJUSTREL VOLCANIC ROCKS

II-1.[?]Igneous feldspars

II-2: Hydrothermal feldspars

Į,

.II-3. Fe-Ti oxides and sphene

II-4. Almandine marnet 4

II-5. Chlorites (averages)

II-6. Sericites

II-7. Epidotes

II-& Calcites

Table II-1. Igneous feldspar analyses from the Ajustrél Volcanic rocks.	Igneous fo	e I dspår	analyse	s from th	ie Ajustre	el Volcani	ic rocks.	-				•	
Sample Anal. no.	. (a) 6F-A 28		- (a) GF-A 31	(a) GF-A 33	(a) GF-A 32	(b) GF-A 38	(b) GF-A 39	(b) GF-A 40	(a) 4-GFM . 9	(a) 4-6FW k3 -	(a) 4-GFW 17	(a) 4-GFW 45	(a) 4-6FW 49
sto ₂	Ŭ	65.43	67.39	67.42	67.53	. 67,62	67:07		66.92	67.98	67.95	67.87	68.03
A1203	3	22.04	20.82	21.08	20.86	19.95	20.83	21.64	20.62	20.13	20.73	20.52	20.34
Fe0	U	0.48	0.04	0.05	0.14	0.07	0.24		0.17	0.09	0.13	0.27	0.00
CaO	,	1.25	J.06	1.47	1.42	0.42	1.34		0.77	0.61	0.67	0.61	0.73

ñ

	-		3	1	1.75	11.0	t)	1.00	2	10.2	10.0	0.0	0.13
BaO	0	0.14	0.00	0:11	0.09	0.11	0.07	0.04	0.03	0.09	0.09	0.02	0.04
Na ₂ 0	01	10.07	·10.52	10.42	10.23	9.84	10.50	10.56	11.14	10.97	10.41	11.20	11.39
×	D	0.95	80	0.08	0.08	1.20	0.08	0.54	0.20	0.11	0.20	Ó.09	60.0
TOTAL	-	00.36	ι <u></u> 6.96	100.63	100.36	99.21	100.14	101.96	99.83	66. 66	100.16	100.58	100.62
ſ	•			Numbe	Number of ions on the basis of	s on the l	basis of	32 0		`			
St		1.504	11.783	11.730	117.11	11.931	11.737	11.676	11.753	11.886	11.841		
A1	4	4.566	4.291	4.322	4.285	4.149		4.391	4.268	4.148	4.258		
f.e		0.070	0.006	0.007	0.020	0.010	0.035	0.051	0.025	0.013	0.019	0.039	0.000
Ca S		0,234	0.199	0.274	0.265	0.079		0.188	0.145	0.114	0.125		
Ba		0.008	0.001	0.007	0.006	0,008		0.004	0.002	0.006	0.006		
N.a.	£	3.434	3.566	3.515	3.457	3.366		3.523	3.793	3.719	3.517		
¥.	D .	0.215	0.018	0.018	0.018	0.270		0.121	0.045	0.025	0.044		
 •			,				`						
(a)	a) Albite phenocrysts		•			(P) A	lbite in	Albite in tuff matrix					/

Table II-1. Continued (Igneous feldspars)

										•		
Sample Anal. no.	(a) 6F-15.8 4	(a) 6F-15.8 6	(a) GF-15.8 17	(a) GF-15.8 12	(c) GF-15.8 19	(c) GF-15.8 ·20	(a) GF-62 32	(a) 2-GF-87 22	(a) 2-6F-87 21	(a) 2-6F-87 20	(a) 2+6F-87 19	(a) 2-GF-87 17
\$10 ₂	67.61	67.59	68.03	68.39	65.59	65.18	68.28	67.32	67.71	.99	67.70	67.68
Algo	20.86 -	20.16	20.43	20.05	17.71	18.47	20.37	20.50	20.21	20.25	20.69	20.47
Fe0	00	0.00	0.00	0.00	0.23	0.00	0.00	0.14	0.31	0.00	0.26	0.00
Ca0	1.07	1.10	1.23	0.79	0.00	0.00		1.33	1.24	1.74	1.16	. 1.27
Ba0	0.00	0.00	, 0.00	0.00	0.21	0.04	0.00	0.05	0.02	0.05	0.04	0.05
Na ₂ 0	10.38	-11.34	10.90	10.92	0.16	0.20	10.11	10.83	10.19	10.91	10.27	10.45
K 20	0.11	0.05	0.05	0.07	16.13	16.52	0.07	0.07	0.24	0.07	0.08	0.05
TOTAL	100-03	100.24	100.64	100.42	100.04	100.41	99.82	100.25	99.92	99,92	100.19	99.97
			N	mber of i	ons on th	Number of tons on the basis of	F 32 0	•				. •
Si .	11.798	11.817	11.824	11.898	12.117	12.004 .	Υ 06-Γ1	11.772	11.854	11.755	11.809	11.828
A1	4.290	4.154	4.184	4.113	3,859	3-879	4.187	4.225	4.170	4.194	4.254	4.216
Fe	000 0	0.000	0.000	0.000	0.035	0.000	0.000	0.020	0.045	0.000	0.039	0.000
	0.200	0.206	0.230	0.184	0.000	0.000	0.187	0.249	0.233	0.328	0.219	0.238
Ba	0.000	0.001	0.000	0.000	0.016	0.004	0,001	0.003	0.001	0°-003	0.004	0.003
Na .	3.512	3.844	3.672	3.684	0.055	0.070	3.418	. 3.672	3.459	3,717	3.473	3.541
¥	0.024	0.011	0-012	0.016	3.801	3,879	0.016	-0.016	0.054	0.016	0.020	110-0
(a). Albite phenocrysts	henocrys ts				(c) K	K-feldspar phenocrysts	phenocry	sts				
•						-	•	•				

. 266 .

Table II-1. Continued (Igneous feldspars)

			: . • :			t					-			
Sample Anal.r	le . no.	(a) M04F 15	(a) MD4F 16	(a) M04F 18	(a) MD4F 19	(a) MD4F 25	(b) MD4F 47	(a) bis-330.25 1 1	(d) 515-330.25 4	(a)° bis-330.25 8	(a) bis-330.25 t 9	(a) (a) (a) bts-330.25 bts-330.25 11 13	(a) bis-330.25 13	
10,		68.80	67.63	67.82	68.39	68.21	68.08	67.54	*67.94	67.29		6 8.02	67.28	
مرالا		19.59	20.48	20.16	19.56	19.98	20.17	19.61	19:92	20.09	19.97	19.59	20.25	
1.0 1.0		0.08	. 0.15	0.07	0.04	0.09	0.20	,	•	•	1	·	•	
, OE		0.68	- 1.33	1.27	0.70	0.94	0.89	ó.51	0.10	0.68	0.47	0.35	0.81	
08	1	0.06	0.11	0.04	0.04	0.06	0.13	ı	1	1		1	•	
a_0		11.37	10.11	11.08	11.25	10.84	10.69	11.29	11.62	11.34	11.42	11.27	11.36	
к, 20,		0.04	0.78	0.04	0.12	0.03	0.07	0.05	0.02	0.06	0.19	0.35	90°0	
TOTAL		100.62	100.59	100.48	100.10	100.14	100.23	99.00	99.60	99.46	99.29	99.30	99.75	
	•	, Ş	•			Numbe	r of ions	Number of ions on the basis	s of 32 0 🔸				•	
		71.957	11.802	11.828	11.949	11.902	11.879	11.922	11.914	11.840	11.855	11 957	11.813	
		4.016				4.109			4.117	4.166	4.152	4.059	4.188 °	•
e.		0.012	•	0.012	0.008	0.012		•	•	<i>′</i> 1	ı	•	t	
		0.125		0.238	0.129	0.176		0.098	0.020	0.128	060'0	0.066	0.152	
	•	0.004	0.008	0.004	0.004	0.004	0.008	. ,		•	1	•	1	
		3.832	3.421	3.746	, 3.813	3.668	3.617	3.863	3.949 %	3.869	3.906	3.844	3.867	
	 . .	0.008	0.174	⁴ 0.008	0.027	0.008	0,016	0.012	0.004	0.013	0.043	0.020	0.016	
	Albite	Albite phenocrysts		,	-		-feldsnar	K-feldsnar nhenocrysts		3			, , , , , , , , , , , , , , , , , , ,	••
	Albite	Albite in tuff matrix	trix		`	(P)	lbite in	Albite in tectonic dilatancy vein	atancy vein			•		
,		-			,				י ה		•	•		
	· · ·		•			,		*	I			•		

Table II-2a) Hydrothermal albite analyses from the Aljustrel Volcanic rocks.

~

.

Anal. no.	8	10	14	15	23	26	27	41	8	۵ ⁴
sio,	68.95	67.47	68.58	68,68	68.41	68.13	67.59	68,75	67.98	67.56
Al ₂ 01	19.39	19.95	19.59	19.64	19.45	19.70	19.13	19.16	19.39	20.16
Fe0	0.00	0.00	0.00	0.00	00.0	0.00	00;0	0.00	0.0	0.0
CaO	0.12	0.05	0.17	0.09	0, 23	0.26	0.31	0.25	0.02	0.85
Ba0 -	0.00	0.05	0.02	0.14	. 0.05	0.00	0.00	0.00	0.02	00 ²⁻ 00
Na ₀ 0	11.89	11.61	11.78	11.24	11.43	10.65	11.46	11.30	11.93	11.68
κ20 .	0.08	0.05	<u>,</u> 0.10	0.14	0.09	0.05	0.04	0.05	0.09	0.07
TOTAL	100.43	99.17	100125 -	99.86	29.64	98.79	98.53	99.50	99.43	99, 53 °
, .	-	1	, nu	Number-of tons		on the basis of 32	× 0 ت			•
Sł	11.937	11.891	11.962	11.999	11.988	11.997	11.984	12.047	11:960	11.867
Al	4.066	4. 144	4.027	4.044	4.017	4.088	4.000	3.957	4.020	4.173
Fe.	00.000		0.000	0.000	000.0	0.000	0,000	0.000	0.000	0.000
Ca	0.022	0.009	- 0.032	0.017	0.043	0.049	0.059	0.047	0.004	0.009
Ba	0.000	0.003	0.001	0.010	0.003	0.000	0.000	0.000	0.001	0.000
Na	166.6	3.967	· 3.984	3.807	3.883	3.636	3.941	3.840	4.069	3.978
×	0.018	0.011	0.022	0.013	0.020	0.011	0.008	0.012	0.020	0.016

ble II 2a) Continued (Hydrothgrmal albites)

Samp le	. M04F	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(q) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(9) 10 10 10 10 10 10 10 10 10 10 10 10 10	M04F	(b) M04F	6) MO4F MO4F	(b) M04F	MD4F 104F
Mat. no.	1 63	8	8	۶ ۲	, P	•	42	64	25
510,	68.75		68.04	68.52	68.03	. 68.32	68.54	69.13	67.66
1,203 U	19.50		19.33	19.37	19.47	19.68	19.64	79.44]9.4 3
	0.10		0.09	. 0.08	0.14	0.04	0.04	0.06	0.0
	0.57		0.23	0.40	0.37	0.38	0.41	0.21	0.36
ka () 1	0.05	a.	0.07	0.04	0.03	0.10	0.12	0.07	0.0
la_0	/ 11.25	11,41	11.43	.11.48	10.99	11.32	nt.n	11.61	11.57
_{k2} ō	1 0.01	۰,	0.05	0.03	0.04	0.03	0.03	° 0.04	0.08
TOTAL.	100.30	99.20	99.25	99.92	90.0 6	99.86	99.88	100.54	99,2 0
	· ··		Num	Number of ions		on the basis of 32			
-	11.980		11.980	11.984	11.980	ت. 11.896	11.977	12.008	11.93
, 1	4,004		4.012	3.992	4.043	4.114	4.047	3,980	4.04
.œ	. 0.016		0.012	.0.012	0.020	0.006	0,008	0.008	0.0
	0,109		0.047	0.074	0,070	0.072	0.078	0.039	0.06
	0.004	•	0.004	0.004	0.004	0.007	0.008	0.004	0.0
	3.801	3.895	3.902	3.895	3.754	3.893	3.762-	3.910	3.961
	0.016		0.012	0 008	0 008	0 007 ~	0 008	0 008	0 0

Table II-2b). Hydrothermal K-feldspar analyses from the Aljustrel Volcanic rocks.

Sample . Anal, No.		GF-A .50 'e	GF-Á 51	GF-A 53	- GF - A. 57	6F-A 41	3-GF 49	3-GF 50	.3-6F 51	3-GF 52	3-6F 53	3-6F 54
S10,9	•	63.45	65.01	64.20	63.80	65.00	65.11	-65.20	₀64 . 46	64.28	63.80	63.58
A1,03		18.25	18.42	18.24	18.02	18.06	17.77	17.79	18:19	18.35	18.86	19.08
Fe0		0.00	0.00	0.00	0.30	0.19	0.07	, 0.09 <u>,</u>	0.00	0.04	0.04	0 .0
CaO	. t -	0.00	0.00	0.00	0.00	0.00	0.11	0.03	0.06	0.03	0.04	0.05
BaO	•	0.67	0.91	0.75	0.23	0.38	0.71	0.82	, J.04	1.89	1.98	2.24
Na ₂ 0		0.24	0.14	0.15	0.52	0.16	0.07	0.13	0.05	0.10	0.12	0.17
ĸ2 ⁰		16.00	15,74	15.64	15.90	15.5J	17.71	15.90	15. <i>71</i>	15.40	15.68	15.05
TOTAL	,•	98.61	100.22	98.98	98.78	96 .36	. 100. 15	, 99.97	99.57	100.09	100.50	100.17
•		•		· *	Number of	fons on	the basis of	of 32.0	•			
St	•	11.953	12.016	12008	11.97	12.070	12.074	12.092	12.016	11.978	11.876	11.855
VI		4.051	4.012	4.020	3.988	3.953	3.883	3.888	3.996	4.030	4.138	4.195
Fe		0.000	000	000 0	0.047	0.030	0.012	0.014	0.000	0.006	0.006	0.000
3	·	0.000	0.000	0.000	0.000	0.000	0.023	0.006	0.012	0.006	0.008	0.012
Ba	•,	0.051	0.066	0.055	0.016	0.028	0.051	0.060	0.074	0.138	0.144	0.164
Na N		0:090	0.051	- 0.055	0.191	0.058	0.027	0.047	0.020	0.036	0.043	0.063
×	τ.	3.848	3.711	3.734	3.809	3.688	3.859	3.762	3.750	3.611	3.723	3.582

Table II-2b) Continued (Hydrothermal K-feldspar)

5

S10 64.82 64.60 63.22 63.37 63.29 63.03 64.35 64.12 64.11 63.41 64.11 63.34 64.11 63.34 64.11 63.36 63.37 63.29 63.03 64.35 64.13 64.11 63.36 63.34 63.29 63.37 63.29 63.30 0.00	Samp] Anal.	. No.	- j #		(c) 4-6Fi 32	(a) 4-6FW 34	(a) 4-GF ₋ W 37	(a) 4-6F-N 40	(a) 4-GF-W 41	(a) 4-GF-N 42	(b) GF-15.8, 	(d) GF-15.8 9	(d) GF-15.8 11	(d) (e) GF-15,8 * G-GF-17 11 58	(e) 6-6F-17 59
3 19.26 18.38 19.01 18.76 18.45 19.09 19.02 18.16 18.56 18.36 19.36 0.06 0.04 0.09 0.01 0.01 0.01 0.01 0.00	105			4.82	64.60	63.22	63.56	63.37	63.29	63.03	.64.35 °	64.52	64.13	64.11	63.83
0.06 0.04 0.09 0.01 0.01 0.13 0.10 0.00 <th< td=""><td>2.10</td><td></td><td>-</td><td>9.26</td><td>18.98</td><td>19.01</td><td>18.76</td><td>18.45</td><td>60°61</td><td>19.02</td><td>18.10</td><td>17.91</td><td>18.56</td><td>18.36</td><td>18.00</td></th<>	2.10		-	9.26	18.98	19.01	18.76	18.45	60°61	19.02	18.10	17.91	18.56	18.36	18.00
0.00 0.05 0.03 0.02 0.03 0.00 0.02 0.04 0.00 2.14. 2.77 2.46 2.84 2.79 3.13 3.08 0.46 0.35 0.48 0.37 0.18 0.30 0.36 0.37 0.32 0.30 0.28 0.25	FeÓ			0,06	0.04	0.09	0.09	0.01	0.01	0.13	⁻ 0.10	00.0	0.00	0.00	0.06
2.14. 2.77 2.58 2.94 2.79 3.13 3.08 0.46 0.35 0.48 6.37 0.18 0.30 0.36 0.37 0.32 0.30 0.25		٩	2	0.00	0.05	0.03	0.02	0.03	0.02	0.03	00.0	0,02	0.04	0.00	0;0
0.18 0.30 0.35 0.37 0.32 0.30 0.26 0.25 <th0.25< th=""> 0.25 0.25 <th0< td=""><td>Bað</td><td></td><td></td><td>2.14.</td><td>2.77</td><td>2 -58</td><td>2.84</td><td>2.79</td><td>3.13</td><td>, 3.08 [`]</td><td>0.46</td><td>0.35</td><td>0.48</td><td>0.37</td><td>0:23</td></th0<></th0.25<>	Bað			2.14.	2.77	2 -58	2.84	2.79	3.13	, 3.08 [`]	0.46	0.35	0.48	0.37	0:23
14.71 14.54 14.36 14.59 14.69 14.69 14.69 14.69 14.69 14.69 16.15 16.49 16.15 16.49 16.13 1 101.18 101.67 99.83 100.00 99.96 100.52 100.36 99.55 99.23 99.94 99.22 9 Number of ions on the basis of 32 Number of ions on the basis of 32 Number of 11.801 11.902 11.813 12.000 12.043 11.926 11.973 1 111.912 11.891 11.902 11.827 11.813 12.000 12.043 11.973 1 111.912 14.121 4.121 4.199 4.137 4.082 4.203 3.977 3.941 4.043 10.73 10.73 10.73 10.73 10.73 11.973 1 10.95 10.000 0.000 <t< td=""><td>Na.0</td><td></td><td>-</td><td>0.18</td><td>0.30</td><td>0.36</td><td>- 0.37</td><td>0.32</td><td>0.30</td><td>0.28</td><td>0.22</td><td>0.29</td><td>0.25</td><td>0.25</td><td>t d</td></t<>	Na.0		-	0.18	0.30	0.36	- 0.37	0.32	0.30	0.28	0.22	0.29	0.25	0.25	t d
Iol. 18 101. 67 99.83 100.00 99.96 100.35 190.23 99.94 99.22 9 Mumber of ions on the basis of 32 0 Mumber of ions on the basis of 32 0 Mumber of ions on the basis of 32 0 99.94 99.25 99.23 99.94 99.22 9 Number of ions on the basis of 32 0 Mumber of ions on the basis of 32 0 Mumber of ions on 32 0 Mumber of ions on 32 0 Mumber of ions on 33.97 3941 99.94 99.23 4 11.912 11.898 11.899 11.902 11.813 12.000 12.043 11.926 11.973 4 0.009 0.004 0.012 0.004 0.002 0.020 0.006 0.000 <t< td=""><td>K V V</td><td></td><td>,</td><td>4.71</td><td>14.93</td><td>14.54</td><td>14.36</td><td>14.99</td><td>14.69</td><td>14.78</td><td>32</td><td>16.15</td><td>16, 49</td><td>16.13</td><td>16.06</td></t<>	K V V		,	4.71	14.93	14.54	14.36	14.99	14.69	14.78	32	16.15	16, 49	16.13	16.06
Number of ions on the basis of 32 0 Number of ions on the basis of 32 0 11.912 11.898 11.691 11.902 11.827 11.813 12.000 12.043 11.926 11.973 1 4.171 4.121 4.199 4.137 4.082 4.203 3.977 3.941 4.043 0.009 0.004 0.012 0.016 0.004 0.002 0.020 0.000 0.000 0.000 0.012 0.016 0.004 0.003 0.002 0.020 0.004 0.000 0.000 0.012 0.004 0.003 0.004 0.003 0.000 0.154 0.199 0.191 0.207 0.229 0.227 0.035 0.027 0.154 0.199 0.117 0.109 0.102 0.036 0.000 0.003 0.064 0.109 0.117 0.109 0.102 0.027 0.035 0.027 0.064 0.129 0.133 0.117 0.109 0.102 0.035 0.027 0.064 0.103 0.102 0.102 0.035	TOTAL	· .	.2	11.18	•	• 99.83	100.00	, 3 9.96	100.52	100.36	<u>3</u> 99.55	99.23	99.94	99.22	98.29
11.912 14.898 11.801 11.902 11.827 11.813 12.000 12.043 11.926 11.973 4 4.171 4.121 4.121 4.199 4.137 4.082 4.204 ⁴ 4.203 3.977 3.941 4.066 4.043 0.009 0.004 0.012 0.016 0.004 0.006 0.000		-	•		·		Number	of tons of	i the bas		0		5		- 1
4.171 4.121 4.199 4.137 4.082 4.204 4.203 3.977 3.941 4.066 4.043 0.009 0.004 0.012 0.016 0.004 0.000 0.000 0.000 0.000 0.000 0.012 0.004 0.008 0.006 0.000 0.000 0.000 0.000 0.104 0.191 0.207 0.207 0.229 0.227 0.025 0.027 0.003 0.000 0.154 0.199 0.191 0.207 0.207 0.227 0.032 0.027 0.003 0.154 0.199 0.191 0.207 0.207 0.227 0.032 0.027 0.035 0.027 0.064 0.109 0.117 0.109 0.102 0.032 0.026 0.036 0.029 3.448 3.508 3.477 3.426 3.502 3.531 3.883 3.914 3.944 8eplacing hydrothermal albite megacrysts (c) Adularia (in veins, often with rhombic sections) (d) Hydrothermal megacrysts (d) Hydrothermal megacrysts (d)	5			219.11	, 14,898	11.844	. 1891 .	11.902	11.827	11.813	12.000	12.043	11.926	_	12.016
0.009 0.012 0.016 0.004 0.002 0.020 0.000 <th< td=""><td></td><td>•</td><td>•</td><td>171.4</td><td>4, 121</td><td>199</td><td>4.137</td><td>4.082</td><td>4.204</td><td></td><td>3.977</td><td>3.941</td><td>4.066</td><td></td><td>3,992</td></th<>		•	•	171.4	4, 121	199	4.137	4.082	4.204		3.977	3.941	4 .066		3,992
0.000 0.012 0.004 0.008 0.008 0.000 0.004 0.008 0.000 0.154 0.199 0.191 0.207 0.207 0.229 0.227 0.035 0.035 0.027 0.154 0.199 0.191 0.207 0.207 0.229 0.227 0.035 0.025 0.027 0.064 0.109 0.129 0.117 0.109 0.102 0.082 0.105 0.090 3.448 3.508 3.477 3.426 3.590 3.513 3.883 3.914 3.944 Replacing hydrothermal albite megacrysts (c) Adularia (in veins, often with rhombic sections) (c) Adularia (in veins, often with rhombic sections)	<u>,</u> 2		•	0,009	0,004	0.012	0.016	0.004	0.002		0 016	0.000	0.000		0.008
0.154 0.191 0.207 0.229 0.227 0.035 0.027 0.035 0.027 0.064 0.109 0.117 0.109 0.117 0.109 0.105 0.090 0.090 3.448 3.508 3.477 3.426 3.590 3.502 3.531 3.883 3.914 3.844 Replacing hydrothermal albite megacrysts (c) Adularia (in veins, often with rhombic sections) (d) Hydrothermal megacrysts (d) Hydrothermal megacrysts (d) Hydrothermal megacrysts		*		000.0	0.012	0.004	0.004	0.008	0.004	0.008	0.000	0.004	0.008		0.000
0.064 0.109 0.133 0.117 0.109 0.102 0.082 0.105 0.090 0.090 3.448 3.508 3.477 3.426 3.530 3.531 3.883 3.844 3.914 3.844 Replacing hydrothermal albite megacrysts (c) Adularia (in veins, often with rhombic sections) (d) Hydrothermal megacrysts (d) Hydrothermal megacrysts	Ba			0,154		0.191	0.207	0.207	0,229	0.227	0.035.	0.027	0.035	0.027	0.016
3.4483.5083.4773.4263.5903.5023.5313.8833.8443.9143.844Replacing hydrothermal albite megacrysts(c) Adularia (in veins, often with rhombic sections)Replacing igneous albite phenocrysts(d) Hydrothermal megacrysts	N			0.064		0.129		0.117	.0.109	0.102	0.082	0.105	060.0	060.0	0.043
Replacing hydrothermal albite megacrysts (c) Replacing igneous albite phenocrysts (d)	1 1 1		, •	3.448		3.477		3.590	3.502	3.531	3.883	3.844	3.914	3.844	3.859
Replacing hydrothermal albite megacrysts Replacing igneous albite phenocrysts (d)						-				ion ut) e	ne often	with who	mhir ser	fins)	
Replacing igneous albite phenocrysts (d)	(a)	Replaci	úpáy byj	otherma	aibite	megacryst	CS								
	(q)	Replaci	ing tgnei	ous alb		crysts		(P)		nermal meg	Jacrysts				

(e) In tuff matrix

Table II-2b). Continued (Hydrothermal K-feldspar) ć

0

Sample Anal. No. SiO ₂ Al.O													
sto ₂		(d) 6-6F-17 55	(d) G-GF-17 56	(c) GF-62 46	(a) GF-62 36	(a) GF-62 34	(å) GF-62 40	(a) GF-62 42	(a) GF-62 39	(d) 2-GF-87 4	(d) 2-GF-87 6	, (d) 2-GF-87 7	(c) 2-6F-87
A1_0_	· ·	64-17	63.86	63.65	64.20	65.30	64.05	65.51	65.37	65.56	65.68	65.18	64.57
E C		18.35 .	18.28	18.21	18.79	17.58	06.14	17.89	18./30	18.13	18.11	18.22	17.62
Feo		0.00	0.00	0.04	0. OO	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.04
Ca0		0.03	0.04	00.00	0.02	0.04	0.03	0.02	0.0	0.00	0.00	0.00	0.00
BaO	•. •	. 0.34	0.28	1.13	1.71	۱.52 را	1.22	1.20	1.39	0.24	0.16	0.31	0.21
Na ₂ 0	••	-0.16	. 0.12	0.18	0.25	0.26	ð. .18	0.45	0.30	0.14	0.13	0.18	0.20
. K20 .	ſ	16.65	, 16.39	15,89	15.36	15.58	15.46	14.74	15.63	16.88	16.91	16.72	16.93
TOTAL		17.99	98.96	99.11	, 100.32	100.29	98.84	99.80	100.99	100.95	101.00	100.61	; 99.57
Ň		· · ·			Number	r qf ions	qfions on the basis of 32	asis of 3	; 5 0				•
si 🤇	- 4	11.958	11.969	196'11.	11.920	12.113	. 12.035	. 12.121	12.029	12.047	12,055	12.020	12.065
W		4.030	4.035	4.031	4.112	3.844	3,965	3.898	3.969	3.926	3.918	3.961	3.877
e.		0.00	0.000	0,008	.0.000	0,000	. 0.000	0.000	0.000	0.000	0.000	000 0	0.006
3		0006	0.008	0.000	0.004	0.008	0.008	0.004	0.000	0.000	0.000	0.000	0.000
Ba Ba		0.025	0.020	0.082	0.124	0.109	0.090	0.086	0.100	0.020	0.012	0.023	0.015
Na N		, 0.058	0.043	0.066	060:0	0.94	0.006	0.160	0.107	0.051	0.047	0,063	0.072
¥	_	3.958	3.918	3.809	3.638	3.688	3.707	3.480	3.669	3.957	. 3.961	3.934	4.032
(a) (b) Repi	Replacing h Replacing 1	Replacing hydrothermal al Replacing igneous albite	· · · ·	bite megacrysts phenocrysts.		(c) (d)	Adularia (in v Hydrothermal m In tuff matrix	Adularia (in veins, oft Hydrothermal megacrysts In tuff matrix	Adularia (in veins, often with rhombit sections) Hydrothermal megacrysts In tuff matrix	with rhom	bit secti	(suo	

272`

Table II-3a) Analyses of coexisting Fe-Ti oxides in Green facies rocks.

					,
	(a)	(a)	(a)	(b)	(b)
Anal. no.	6	8	15 *	T3 -	14
sio ₂	1.30	1.50	1.05	1.32	1.62
Ti0 ₂	5.96	4.81	7.24	0.59	0.99
A1203	0.54	0.52	0.56	0.50	0.96
Cr203	0.00	0.01	0.04	0.06	0.00
Fe ₂ 0 ₃	90.48	90.98	. 89.33	95.11	93.03
MnŌ	0.00	0.00	0.02	0.00	0.02
Mg0	0.07	0.08	0.05	0.10	0.38
CaO ,	0.00	0.00	0.03	• 0.53	0.10
TOTAL	98.35	97.90	98.32	98.21	97.10
·~ ·	N	umber of ior	ns on the bas	is of 3 0	
Si ·	0.034	0.039	0.027	0.035	0.043
Ti	0.117	0.095	0.142	0.012	0.020
ΓA	0.017	0.016	0.017	0.016	0.030
Cr	0.000	-	- , ,	-	-
Fe ³⁺	. 1.780	1.802	1.755	.1.909	1.873
Mu	0.000	0.000	0.000	0.000	0.000
Mg · ·	0.000	0.003	0.002	0.004	Ö.015
Ca	0.000.	0.000	- 0.001	0.015	0.003

(a) Ti-hematite rimming opaque microphenocrysts and scattered in rock matrix

4,

(b) Hematite in lithic fragments

273

.

•	• •			5 71 -	•	• '	•	•	* * #	•
Table II-3a).	Continued	(Fe-Ti	oxi ^t des,	Green facies	acies)	ور م	•		•	• •
Anal. no.	(c) 4 •	(c) •5	. (c) 9	- (c) 11	. (c) . 12	(c) 17	(c) 19	(c) . 21	(c) 30	€ (c)
510 ₂ .	. 0.50	0.58	0.53	0.71	0,57	0.63	0.73	0.57	0.76	. 0.71
ci0_2	44,84	50.34	58.82	48.25	58,00	52.23	56.80	£0.02	51.29	54.27
1203	0.17	0.24	0.17	0.21	0.29	0.29	≁ 0.41	0.08	0.32	0.24
$r_2 0_3$	0.08	0.06	0.02	0.00	0.04	0.04	0.02	0.05	0.24	0.33
Fe ₂ 0 ₃	53.42	46.26	37.63	50.40	39,50	44.04	39.51	37.62	45.32	41.36
Mn0	0.00	0.00	, 0.00	0.00	0.00	0.00	0.00	. 0. ÓO	0.15	0.14
Mg0	0.02	0.05	0.05	0.08	0.11	•0.04	0.06	0.04	0.01	0.00
Ca0	0.00	0.00	0.01	0.05	0.00	0.01	0.02	0.00	0.06	0.04
TOTAL	99,03	97.53	97.23	•99,70	98.51	97.28	97.55	98.38	98.15	<u>97</u> .09

',•

.

Il-hematite rimming opague microphenocrysts and scattered in rock matrix. (a) Il-nematite rimming opaque mi(b) Hematite in lithic fragments

み

Ultra fine grained leucoxene + hematite ± pseudobrookite microphenocrysts. • (c)

ţ

ĉ

				, ° ,	
	0	'ne crysta]		- one cry	/stal—
Anal. no.	(a) 50	(a) 51 •	(a) 52	Ilm 53	(b) 54
Si0 ₂	16.90	10.67	14.76	0.39	2.22
Ti02	46.44	49.21	50.54	52.31	93.75
A1203	4.06	0.60	. 3.93	.0.14	0.29
$Cr_2^0_3$	0.13	0.04	0.10	0.32	0.00
FeO	15.80	27.38	7.43	44.06	0.00
MnO ,	0.89	2.17	0.54	3.83	0.00
Mg0	0.04	0.07	10.03	0.07	0.03
Ca0	17.94	10.77	21.81	0.08	0.76
TOTAL	102.24,	100.92	99.14	101.20	97.04
Si			,	0.010	°
Ti .	ی د ۲	`		0.980	· ·
A1		·	6 -	0.004	•
Cr	., *			0.006	
Fe ²⁺	•	\$ •		0.918	
Mn	`		.•	0.081*	
Mg		,		0.003	•
'Ça 🐂	• • •		•	0.002	· .

Table II-3b). Analyses of coexisting Ti-Fe oxides and sphene (sample 3-GF).

(a) Ultra fine grained Ilmenite + sphene composite materials

(b) Leucoxene + sphene

(c) In vein

Ilm, ilmenite; Lcx, leucoxene; Sp, sphene

Number of ions on the basis of 4 Si (sphene) and 3 O (ilmenite)

Table II-3b). Continued (Fe-Ti oxides and sphene) .

	on	e crystal		— one cr	ystal —
Anal. no.	Ilm 57	Lcx 58 ~	Sp 59	11m 60	Lcx 61
Si0 ₂	4.84	3.40	. 29. 78	6.68	1.07
Ti02	51.57	94.04	28.82	51.45	98. 10
A1203	0.29	0.55	6.53	0.15	0.30
Cr203	0.29	0.17	0.14	0.69	0.00
feð	39.03	0.00	2.53	35.68	0.02
Mn0	4.07	0.00	0.00	ີ 3.52	0.00
Mg0	0.03	0.15	0.83	0.09	*Ó.04
Ca0	0.57	2.41	25.68	0.67	• 0,51
TOTAL	100.69	100:72	94.32	98.92	100.04
Si	· . 0.116	* a	(4)	. 0.160	
Ti ,	0.932		2.911	. 0.925	·).
A1 ,	0.008	;	1.034	0.004	
Cr;	0.006	· .	• 0.015-	0.013	•
Fe ²⁺	0.784	• 1 •	0.284	0.713	•
Mn	0.068	ب ج	0.000	-0.071	'
Mg, , `	0.001	,	0.166	0.003	,
Ca	0.015		· 3.696 '	0.017	

•		one crysta]	🗋 🕂 one c	rystal—
Anal. no.	Sp 62	Ilm 63	Lcx 64	Lcx 65	Sp(c) 69
Si0 ₂	29.12	0.64	0.50	0.70	38.27
Ti0 ₂	33.60	52 .6 0	99.13	96.74	19.75
A1203	3.41	0.01	0.20	0.22	8.14
Cr _z o ₃	0.00	0.11	0.07	0.31	0.00
FeO	1.97	[^] 43.36 [•]	,0.00	0.00	0.11
Mn0	0.00	3.59	0.00	0.00	, 0.00
MgO	0.07	0.09	[•] 0.04	0.04	0.27
CaO '	28.27	0.57	0.19	0.13	21.69
TOTAL	96.45	100.97	100.14	98.13	88.23
Si	(4)	0.016	J.		
Ti	3.471	0.984		, .	
A1	0.552	0.000		•	,
Cr	. , 0.000	0.002	٠.	s.	
Fe ²⁺	0.226	.0.902	ر	•	• 4
Min 1	0.000	0.076	•		
Mg	0.014	0.003		B .	•
Ca	4.161	0,015 		•	

Table II-3b). Continued (Fe-Ti oxides and sphene)

(c) In vein

Table II-3c). Analyses of leucoxene, timenite and sphene in Aljustrel Volcanic rocks. 題

Sample Anal. no	P	34	35	36	37	œ,	39 -	- 24	26	27 .	74	75	78
510,		60.0	0.24	0.00	0.30	0.32	0.40	Į.	48	0.68	• 27.03	6.26	2.68
rio,		95.16		98.45	96.68	ŧ			89.08	77_90	54.96	91.87	94.97
Alga		0.17		0.13	0.16	- <i>F</i>			0.15	10.14	2.25	2.43	0.40
cr_0		0.21	0.10	0.05	0.05				0.00	0.00	0.00	0.00	0.00
FeÓ	0	0.11	0.26	D .07	0:06	•			7.80	17.26	0.00	0.23	0.00
UN C	. • •	0.03	0.00	0.02	0.04				0.59	1.80	0.00	0.00	- 0.00
NgO		0.05	0.04	0.03	0.09			-	0.06	0.05	0.00	0.19	0.05
CaO ,		0.08	0.13	0.03	0.31	0.50	0.06	0.23	00.0	0.00	17.06	0.27	2.89
TOTAL	-	95.89	97.83	98, 78	6 9.69	98.44	97.68	98.88	. 98.16	97.83	101.30	101.24	101.00

Lcx, leucoxene

Table II-3c). Continued (Leucoxene, ilmenite and sphene)

Sample Anal. no.		Mn-11m **MD4F 80-	Mn-Ilm MD4F 81	Sp MD4F 79	Sp 2-GF-87 26	Sp 2-GF-87 27	Sp 2-GF-87 28	Sp 2-GF-87 29	Sp 2-GF-8 30
S10,		0.68	0.34	29.38 ·	31.26	31.24	31.27	30.94	30.88
T102		56.01	52.92	37.67	29.06	33.96°	29.18	34.44	34.00
A1203		0.65	0.07	1.69	8.48	4.45	7.77	4.24	4.30
Cr203		0.00	_ [™] 0.03	0.00	0.01	0.09	0.01	0.04	0.03
Fe0		29.59	41.12	1.00	0.34	0.38	0.48	0.40	0.09
MnO	•	13.46	5.92	0.00	0.01	0.00	0.05	0.02	0.02
Mg()		0.10	0.03	0.05	0.05	0.06	0.11	0.03	0.03
CaO	,	0.62	0.10	28.73	28.93	29.36	27,82	28.36	29.16
Na ₂ 0		•	-	-	0.07	0.09	0.09	0.09	0:10
к ₂ 0,		-	-	-	0.29	0.24	0.68	0.08	0.00
TOTAL	· •	101.11	100.55	98.52	98.50	99.87	97.46	98.64	98.61
(•	3	Number	of tons	on the ba	sis of 3	0 (I1m) a	ind 4 51 (sp)
S1		0.016	0.009	' (4)	· (4)	(4)	(4)	· (4)-	(4)
Tİ		1.021	0.995	3.857	2.796	3.270	2.807	3.348	3.31
A1	•	0.019	0.002	0.271	1.279	0.672	1.171	,0.646	0.65
Cŕ	•	0.000	0.000	0.000	0.001	0.009	0.001	ີ້0.004	0.00
Fe ²⁺		0.600	0.860	0.144	0.036	0.041	0.051	0,043	0.01
Min		0.276	0.125	0.000	0.001	0.000	0.005	0.002	0.00
Mg	· .	0.004	0.001	0.010	0.010	0,011	0.021	0.006	0.00
		0.016	0.003	4.191	3.966	4.028	3.813	3.928	4.04
Ća									
	*	-	-	-	0.017	0.022	0.022	0.02 3	0.02

Ilm, ilmenite; Sp, sphene

Table II-4. Analyses of almandine garnet from QET rocks (this page sample GF-15.8).

Anal. No.	7	8	9 .	10	11	12	13
Si0 ₂	37.29	37.12	37.04	37.62	36.16	36.35	37.05
A1203	21:02	20.89	20.90	20.85	21.03	20.92	21.35
Fe0	36.41	36.35	.36.87	36.89	37.00	36.70 [°]	36.44
Mn0	1.67	1.67	1.66	1.71	1.79	1.76	1.80
Mg0	2.27	2.31	2.23	2.21	2.28	2.21	2.40
Ca0 .	1.02	-0 .94	0.98	1.00	1.00	1.00	1.02
TOTAL	-99.67	99.28	99.67	100.28	99.25	98.94	100.07
٢	•	Number of	ions on	the basis	of 24 O	دي ۽	
Si	6.044	6.042	6.021	6.069	^{5.855}	5.932	5.97
H ₄ Calc	, ~0.000	0.000	0.000	0.000	0.145	0.068	0.02
Ai	4.015	4.009	4.004	3.964	4.013	4.024	4.058
Fe ³⁺	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe ²⁺	4.935	4.949	5.012	4.977	5.011	5.008	4.915
Mn	0.229	0,230	0.229	0.234	0.246	0.243	0.24
Mg	0.548	· 0.560	0.540	0.531	0.550	0,538	0.57
Ca .	0.177	0.164	0.171	0.173	0.173	0.175	0.176

• • •

Table II-4. Continued (alm. ga	arnet. sample 3-GF)	٠.
--------------------------------	---------------------	----

•

Anal. no.	14.	15	16	17	25	26	27	28	29
S10,	36.65	3737	36.07	37.01	37.44,	36.93	36.73 [']	37.07	37.10
A1208	20.98	20763	21.09	21.18	21.73	21.38	21.,68	21.48	21.15
Fe0	34.92	35.03	35.17	35.01	35.62	35.65	35.90	35.37	35.30
MnO	1.04	1.17	1.02	1.11	1,19	1.08	1.07	- 1.16	1.24
MgO	3.82	3.74	3.64	3.63	# .77	3.68	· 3.71 ·	3.56	3.64
Ca0 ,	1.09	1.10	1.02	1.06	1.07 ू,	1.07	1.10	1.00	
TOTAL	98.51	99.04	98-81	98.99	100.82	99. 78	່1 00. 17	99.73	99. 52
ć		ł	, Nu	mber of i	ons on the	a basis o	f 240	•	
'Si j	5.940	6.050	5.843	5.985	5.914	5.896	5.804	5.929	5.97
H4 Calc 1	0.060	0.000	0.157	0.015	. 0.086	° 0,104	0.196	0.071	0.02
A1 .	4.008	3.936	4.027	4.036	4.046	4.023	4.038	4.049	4.01
Fe	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.00
Fe ²⁺	4.734	4,743	4.746	4.735	4.705	4.760	4.745	4.732	4,75
Mn	0.143	0.160	0.140	0.152	0.159	0.146	0.143	0.1,57	0.16
Mg	0.923	0.902	0.879	0.875	0.888	0.876	0.874	-0.849	0.87
Ca	0.189	0.191	0.177	0.184	0.179	0.183	4 0.181	0.189	0.17

Anal. no.	18	20	21	22	23	24	62	<u> </u>
sio ₂	36.89	36.88	36.78	36.63	36.92	36.51	37,25	37.16
A1203	20.77	21.40	20.97	21.81	21.64	21.48	20.14	20.55
Cr ₂ 03	· •	 ,	-	-	-	-	0.08	0.05
Fe0	35.91	36.90	35.85	36.66	36.45	36.26	36.14	3 6 - 9 8
Mn0	1.57	1.71	1.73	1.63	1.73	1.71	1.52	1.65
MgO `	2.34	2.33	2.11	2.35	2.47	2.34	2.52	2.54
CaO	ີ 1.04	1.03	1.04	1.02	0.98	1.02	1.06	1.07
TOTAL	. 98.51	100.25	98.48 ⁽	100.09	100.20	99.31	98,77	100.03
		Number	r of ions	on the b	asts of 2	4 0	-	-
Şi	6.045	5.923	6.032	5.846	` 5.912	5.894	6.098	5.02
H _d Calc	0.000	0.077	0.000	0.154	0.088	0.106	0.000	0.00
AÎ .	4.011	4.051	4.053	4.102	4.084	4.087	3.886	3.92
Cr	- ·	-	-	-	•	-	0.010	0.00
Fe ³⁺	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Fe ²⁺	4.921	4.956	4.917	4.893	4.882	4.896	4.948	5.01
Mn .	0.218	,0.233	0.240	0.220	0.235	0.234	0.211	0.22
Mg	• 0.572	. 0.558	0.516	0.559	0.590	0.563	0.615	0.61
Ca	0.183	0.177	0.183	0.174	0.168	0.176	0.186	0.18

Table II-4. Continued (alm. garnet, sample 4-GFW)

Unit Sample No. of anal.	СЕТ. Э-СЕТ. Э.	061 3-6F	96T 4-6FW 2	QET GF-A 3	QET GF-15.8 3	QET 6-GF-17 3	QET GF-50 6	0ET 2+6F-87 3	QET MD4F 4	QET(*) PMTV-1 6 •	MT(*) bis 330.25 6	MT(*) bis-341.8
sto,	24.04	24.16	24.58	- 24.08	23.82	23.06	24.49	23.54	24.36	26.51	27.68	
T102 .	0.01	0,02	0.00	0.00	0.06	0.01	0.00	0.02	0.00	0.00	0.00	0.00
A1203	19.80	19.61	19.04	19.87	19.05	20,75	19.62	19.87	21.26	21.74	19.61	19.07
Cr_0,	•	٠	ı	۰	ı	1	۰.	ı	ŀ	,	م ا ر	
Feo	38.86	36.49	36.33	35.64	40.82	37.22	35.90	40.74	30.69	18.03	20.14 🕊	20.17
04	0.27	0.60	0.47	0.27	0.27	0.29	0.50	0.38	0.43	0,16	0.40	0.71
MgO	5.54	6.84	7.17	7.87	5.77	5.54	7.02	4.71	10.37	19.12	19.30	19.38
Ca0	0,00	0.02	0.01	0.02	0.01	0.06	0.00	0.02	0.02	0.00	0.02	0.00
BaO	0,07	0.04	0.04	0.05	i	0.05	0.04	0.04	0.00	0.00	,	0.06
Ma ₂ 0	, 0.01	0.00	0.03	0.01	0.00	0.00	0.00	0.06	0.00	0.03	0.00	00.0
κ ₂ 0	0.01	0.00	0.00	0; 00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0,00
ETOTAL	88, 51	87.98	87.67	87.81	89.81	86.98 ,	87.57	89.38 •	87.13	85.60	87.16	87.32
1		-		Nun	Number of tons	s on the b	on the basis of 14.0	1.0		•,	•	ž
5	2.712	2.714	2.767	2.695	2.681	2.635	2.752	2.663	2,668	2.745	2.849	2.876
, I	0.000	0, 002	0.000	0.00	0.005	0.001	000.0	0.002	0.000	0.000	0.000 *	0.000
۲۱ ۱۷	2.632	2.623	2.527	2.621	2.527 🛊	2.794	2,598	2.649	2.745	2.653	2.379	2.314
ະ ເ	,	۱	۷.	ı	۰,	· 1	'	•	J	ŧ	•	• : •
Fe ²⁺	3.666	3.428	3.421	3,336	3,842	3.556	3.374	3.855	2.811	1,561	1,734	1.737
£	0.026	0.057	0.045	0.026	0.026	0.028	0.048	0.036	0.040	0.014	0.035	0.062
<u><u></u></u>	.0.93	1.145	1.203	1.313	0.968	0.943	1.176	0.794	1 693	2.951	2.961	2.975
Ca .	0.000	0.002	0.001	0.000	0.001	0.007	000.0	0.002	0.002	0.000	0.002	0.000
Ba .	0, 003	0.002	0.002	0.002	,	- 0 , 002	0,002	0.002	0.000	0.000	, 1 1	0.002
Na .	0.000	0.000	0.00)	0. 002	000;0	0.000	0.000	0.013	0.000	0.006	0.000	0.000
, X	0.001	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000

Averages of closely similar chlorite analyses from Aljustrel Volcan

ie II-6. Analyses of sericites from the Aljustrel Volcanic rocks $\dot{\mathcal{K}}$

ą

	6	GFA - 8	1-GF 73	1-GF, .73	4-GFW 66	4-GFV (67	MD4F °	* MD4F * 20	104 24 24
510,	51.70	52.52	50.33	50.35	49,44	48.20	50.12	51.54	53.82
110,	0.00	0.00	I	ı	ı	ľ	0.00	0.00	0.00
Al ₂ 03.	° 28.09	28.68	28.57	28.69	28.37	27.9]	31.20	30.92	30.50
Fen	4.54	4.27	4.29	4,78	4.97	4.75	1.80	1.73	١.6]
Mnd	0.00	0.0	0.06	0.00	0.00	0.00	0.00	0.0	0.00
Mg0	2.18	. 2.25 .	1.64	1-61	1.82	1,72	.1.54	1.63	1.86
CaO ,	00.0	0.00	0.00	0.0 8	.0. .0.	0.00	0.20	0.01	0.0
Bal	0.00	0.00	0.42	0.13	, 0.35	0.3f 🕊	0.09	0;07	0.05
Na.0	0.00	0.05	0.00	0.0	0.05	0.02	0.0 9	0.16	0.07
k 20	10.80	10.68	10.09	10.45	10.29	10.67	9.73	9.58	10.74
TOTAL	97.32	98.45	95.13	96.02	95.30,	93.59	94.77	95.64	98.65
1	, .	Numit	er of to	Number of lons on the basis of	basis of	22 0	, .		
S1 .	6.811	6.816	6.763	6.732	6 . 685	6.660	6.653		6.859
Ц	0.00	,0,000	ı	ł	·	ı	0.000		0.000
Al	4,361	4.387	4.524	4.521	4.521	4.545	4.881	4.774	4.581
۴e ِ	0.500	0.463	0.482	0.535	Ô.562	0.549	0.200	0.190	0.172
£	0.000	0.000	0 007	0.00	0.000	0.000	0.000	0.000	0.000
- Fi	0.428	0.435	0.328	0.321	0.367	0.354	0.305	-0,318	0.353
5	0.000	000 0	0.000	0.000	0.000	0.000	0.028	0.001	0.000
Ba	0.000	0.000	0.006	0.007	0.019	0.017	0.005	0.004	0.002
Na 🕺	0.000	0.013	0.000	0.000	0.013	0.005	0.023	0.041	0.017
*	1.815	1.768	1.729	1.782	1.775	1.881	1.648	1.601	1.746

6-6f-17 24 51.19 0.00 31.55 3.66 0.00 1.14 0.00 97.16 Number 8.661 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(Sericites)			۴			
. no. 22 23 24 . 50.43 48.73 51.19 0.000 0.000 0.00 0.00 27.04 24.47 31.55 5.70 4.71 3.66 0.00 0.00 0.00 0.00 3.79 2.75 1.14 0.04 0.23 0.00 0.04 0.20 0.00 0.04 0.20 0.00 0.04 0.20 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.05 0.04 0.00 0.06 0.000 0.000 0.053 0.559 0.398 0.053 0.563 0.000 0.055 0.582 0.221 0.050 0.000 0.000 0.050 0.000 0.000 0.050 0.000 0.000 0.000 0.000	6-GF-17 6-GF-17	6-GF-17	2-GF-87	2-6F-87	2-GF-87	2-GF-87	2-6F-87
50.43 48.73 51.19 0.000 0.000 0.00 0.00 27.04 24.47 31.55 5.70 4.71 3.66 0.00 0.00 0.00 0.00 3.79 2.75 1.14 3.66 0.04 0.23 0.00 0.00 0.04 0.23 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.054 90.42 97.16 1 4.261 4.092 4.839 0.0537 0.559 0.368 0.308 0.0500 0.000 0.000 0.000 0.755 0.563 0.563 0.221 0.0500 0.000 0.000 0.000 0.0100 0.000 0.000 0.000		26	39	9	4	44	ر 55 45
3 27.04 24.47 31.55 5.70 4.71 3.66 0.00 0.00 0.00 3.79 2.75 1.14 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.20 0.02 0.04 0.00 0.02 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.05 0.42 97.16 1 1 9.54 9.56 8.44 9.50 4.839 0.053 0.050 0.000 0.637 0.559 0.398 0.637 0.559 0.398 0.755 0.582 0.221 0.050 0.000 0.000 0.010 0.000 0.000		47.43	49.26	49.64	52.23	50.71	51.77
3 27.04 24.47 31.55 5.70 4.71 3.66 0.00 0.00 0.00 3.79 2.75 1.14 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.20 0.00 0.04 0.00 0.00 0.04 0.00 0.00 8.44 9.50 9.60 8.44 9.50 9.60 8.44 9.50 9.60 0.00 0.00 0.00 0.000 0.000 0.000 0.637 0.559 0.398 0.6637 0.559 0.221 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	•	0.00	0.00	0.0	0.01	0.00	0.00
5.70 4.71 3.66 0.00 0.00 0.00 3.79 2.75 1.14 0.04 0.23 0.00 0.04 0.23 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 8.44 9.50 9.60 95.49 90.42 97.16 Number 6.743 6.914 6.61 0.000 0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.336 0.0500 0.000 0.000 0.755 0.582 0.221 0.755 0.582 0.221 0.000 0.000 0.000 0.010 0.000 0.000		29.73	33.54	34.0	26.92	,28.33	29.27 +
0.00 0.00 0.00 3.79 2.75 1.14 0.04 0.23 0.00 0.04 0.00 0.02 8.44 9.50 9.60 8.44 9.50 9.60 0.000 0.00 0.00 0.000 0.00 0.00 8.44 9.50 9.60 8.44 9.50 9.60 95.49 90.42 97.16 1 0.000 0.000 0.000 0.1637 6.914 6.661 1 0.000 0.000 0.000 0.637 0.559 0.398 0.637 0.559 0.398 0.000 0.000 0.000 0.055 0.582 0.221 0.056 0.035 0.000 0.000 0.000 0.000		3.99	1.37	-	5.96	5.37	5.57
3.79 2.75 1.14 0.04 0.23 0.00 0.04 0.20 0.00 0.04 0.00 0.02 8.44 9.50 9.60 8.44 9.50 9.60 8.44 9.50 9.60 0.04 0.00 0.02 0.154 9.64 9.50 95.49 90.42 97.16 Number 4.261 4.092 4.839 0.000 0.000 0.000 0.000 0.637 0.559 0.398 0.637 0.559 0.398 0.221 0.000 0.000 0.000 0.000 0.755 0.582 0.221 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000		0.0	0.00	6	0.02	0.04	0.00
0.04 0.23 0.00 0.00 0.00 0.00 0.04 0.00 0.02 8.44 9.50 9.60 8.44 9.50 9.60 95.49 90.42 97.16 0.000 0.000 0.000 0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.637 0.559 0.398 0.755 0.582 0.221 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		00.1	0.69	0.75	1:45	1.45 1.45	-1.50
0.00 0.00 0.00 0.04 0.00 0.02 8.44 9.50 9.60 95.49 90.42 97.16 1 95.49 90.42 97.16 1 0.000 0.000 0.000 1 0.000 0.000 0.000 1 0.000 0.000 0.000 1 26.37 6.914 6.661 1 0.000 0.000 0.000 1 26.37 0.559 0.338 0.637 0.559 0.563 0.221 0.755 0.563 0.358 0.000 0.755 0.582 0.221 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000	•	0.00	0.00	0.00	0.00	,00.00 •	0.00
0.04 0.00 0.02 8.44 9.50 9.60 8.44 9.50 9.60 95.49 90.42 97.16 1 0.000 0.000 0.000 6.743 6.914 6.661 0.000 0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.637 0.559 0.308 0.637 0.553 0.221 0.000 0.000 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.010 0.000 0.000		00''0	0.00	0.00	0.0	0.00	0.00
8.44 9.50 9.60 95.49 90.42 97.16 Number Number 6.743 6.914 6.661 0.0000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.6537 0.553 0.308 0.755 0.582 0.221 0.755 0.600 0.000 0.7000 0.000 0.000 0.0000 0.000 0.000 0.010 0.000 0.000		0.04	0,12	0.04	01.0	0.10	0.29
95.49 90.42 97.16 Number 6.743 6.914 6.661 0.000 0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.000 0.000 0.000 0.755 0.582 0.221 0.755 0.582 0.221 0.000 0.000 0.000 0.010 0.000 0.000	۹	10.02	, 11.37	10.37	10.74	10.96	. 10.03
Kumber Kumber 6.743 6.914 6.661 0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.000 0.000 0.000 0.755 0.582 0.221 0.755 0.582 0.221 0.000 0.000 0.000 0.010 0.000 0.000	97,16 96.35	92.21	.96.35	95.59	97.44	96,95	8.4 3
6.743 6.914 6.661 0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.755 0.569 0.398 0.755 0.562 0.221 0.755 0.582 0.221 0.700 0.035 0.000 0.700 0.035 0.000 0.000 0.000 0.000	Number of tons on	on the ba	n the basis of 22 0		• ,	* *	•
0.000 0.000 0.000 4.261 4.092 4.839 0.637 0.559 0.398 0.755 0.563 0.200 0.755 0.582 0.221 0.755 0.582 0.221 0.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	•		6.475	1	6,915	6.750	. 6. 745
4.261 4.092 4.839 0.637 0.559 0.398 0.000 0.000 0.000 0.755 0.582 0.221 0.706 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000	``		0.000	0.000	100-0	0.000	0.000
0.637 0.559 0.398 0.000 0.000 0.000 0.755 0.582 0.221 0.006 0.035 0.000 0.000 0.000 0.000 0.010 0.000 0.000			5.196		4.200	4.444	4.495
0.000 0.000 0.000 0.755 0.582 0.221 0.755 0.355 0.000 0.000 0.000 0.000 0.010 0.000 0.005			0.151		0.660	0.598	0.607
0.755 0.582 0.221 0.006 0.035 0.000 0.000 0.000 0.000 0.010 0.000 0.005			0.000		0,002	0.005	0.000
0.006 0.035 0.000 0.000 0.000 0.000 0.010 0.000 0.005			0.135		0.286	. 0.288	0.291
			0.000		0,000	0-000	0.000
0.010 0.000 0.005			0.000		0.000	0.000	0,000
	•14		0.031	-	0.026	, 0.026	0.073
1.719.1.594			1.907		1.814	1.861	1.667
				-	•	-	

ample Inal. no.		3-6F 8	. 3-GF 9	PNTV-1 32	PMTV-1 33	bis-315.15 37	bis-315.15 38,	bis-315 15 39	bis-315.15	bis-315.15
sto, .		51.84 `	51- 95	46.52	50.80	47.01	48.05	47°.93	47.73	47.79
rio, ,		0.00	0.0	0.00	00:00	۰. ۹ ۱	•	·	ور	·
11,01		28.99	28.49	33.82	31.64	29.97	30.58	30.76	30.89	30.82
e0		4.23	. ,3.82	2.57	1.96	1.28	1.10	1.24	1.38	1.02
- Ou		0.02	G. 00	0.00	00.00	0.00	0.0	0.00	0.02	0.02
Mg0	•	2.05	1.98	1.56	1.46	2.04	,2.24	2.15	2.01	2,25
cao '		0.00	0.00	0.00	0.00	0.41	0.0	. 00.0	, 00.0	0.00
la0 -		0.09	0.01	0.00	, 00.00	· 0.22	0, 30	0.37	0.30	0.21
la_0	•	0.00	0.00	0.65	0.61	-24 -24	0.26	ِ 0.29 ·	0.24	0.28
к, к20		10.16	10.20	7.50	8.89	10.93	11.19 .	10.99	u.u	, ĥ1, 25
TOTAL	¥	97.37	96.45	92.63	95.36	- 92.14	93.84	ِ 93.81 ْ	93.76	93.71
		• •		Number	Number of tons	an the basis	óf 22-0	•		-
· · · · · · · · · · · · · · · · · · ·		6.786	6.847	6.290	6.668		6.523	6.507	.491	6.494
E		0.000	0.000	0.000	000 0	۰,	ŀ	·	ı	ı
. 11	•	4.473	4.425	, 5. 389	4.895	4,890	4 :892	4.922	4.951	4.936
a		0.463	0.421	0.291	0.215	0.148	0.125	0.141	0.157	0.116
		0.002	0.000	0.000	000 0	0.000	0.045	0.000	0.002	0.002
6		0.400	0.389	0.314	0.286	0.421	0.453 '	0.435	0.407	0.456
		0.000	0.000	0.000	0.000	0.061	0.000	0,000	0.000	0;000
å "		0.005	0.001	0.000	0.000	0.012	0.016	0.020	- 0.016	110.0
(a		0.000	0.000	0.170	0.155	0.064	-0.068	0.076	0.063	0.074
		1 607.	1,715	1 204	1.4000				100 1	11 050

sa

Sample 🍾 🔭	29	PHTV-1 . 34	b1s-341.8 41	61s-341.8 42	bis-341.8 43	3-GF 7	GF-50 55	GF-50 56
s10 ₂	37.55	37.66	38.10	38.61	38.95	33.55	34-60	34.41,
T10 ₂ .	0.12	0.16	0.05	0.00	0.07	0.14	0.07	`0.07
A1203	24.50	25.23 ·	23.08	°22,83	23,20	21.78	22.26	22.68
Fe ₂ 03	10.38	`9.60	12.61	12.09	11.84	9.66	9.81	`9.3 7
MnÖ	0.16	0.14	.0.20	0.37	0.48	0.41	0.24	`0.23
Ng0 Í	0.02	_ 0.01	0.01	0.00	. ő.o1	0.07	0.11	0.06
CaO	23.30	23.16	24.72	23.66 +	24.80	18.09	18.16	19.07
3a0 -	0.02	0.04	0.14	0.15	0.10	0.13	10.14	0.08
Nat ₂ 0	0.02	0.00	^ 0. 00	0.00 🔨	0.00 ~	0.04	0.09	0.12
K ₂ 0	0.00	`0.00	0.00	0.00	0.04	0.00	ົ0.00 ັ≉. <u>≸</u>	ຸ 0.00
TOTAL	96.05	96.00	98.91	97.71	99.49	83.83	85.48	86 .09
· .	,	N	umber of ic	ms on the l	Dasis of 12.5	i 0 -	• •	
st ·	3.016	3.015	3.010,	3.072	4 3.050	ໍ່ 3.0 66 ູ	3.093	3.059
11	0.007	0.010	0.003	0.000	0.004	• 0.010	0 ∠ 005	0.00
N1	2.319	2.381	2,149	2,14b	2.141	2.346	2.345	2.377
Fe ³⁺	0.627	0.578	0.750	- 0.724	0.698 ·	0.664	0 .66 Q	
Hina 👘 🖓	0.011	0.009	0.013	0.025	0.032	ò.032	0.018	្តំ០.០ំ17
1g '	0.002	0.001	0.001	0.000	0.001	0.010	0.015	0.008
Ca	2.005	1.987	2.093	2.017	2.081	1.771	1.739	1.817
Ba	0.001	0.001	0.004	0.005	0.003	. 0. 905	* 0.005	0 .003
Na	0.003	0.000	0.000	0.000	0.000	0.007	0.016	0.021
(• 0.000	0.000	9.000	0.000	0.004	0.000	0.000	0.00
dhole /					3		, , ,	

۶.

5

Table II-7. Continued (Epidotes)

Sample Anal. no.		GF+50 57	9F-50 58	MD4F 22	(a) bis=315.15 - 34	(a) b1s-315.15 35	(a) bis-315.15 36	b1s-315.15 42	b1s-315.15
5102	,	36.07	37.63	36.43	38.18	37.90 .	37.91	- 39.82	36.87
T102 .		0.04	0.15	` 0.0 1	0.05	0.08	0.05	0.07	0.09
A1203		24.35	25.12	25.45	28.20	27.26	27.66	26.89	24.57
Fe ₂ 03		8.73	* 8.67	10.39	6.19-1	6.43	6.88	7.50	. 9.17
MnÕ		0.25	0.12	0.14	0.50	-0.19-	0.11	0.20	0.17
MgQ		ັ 0 .08 `	0.07	´1.06	0.07	0.02,	0.06	0.25	0.09
CaO		20.18	22.73	21.28	23.34	24.01	23.62	21.30	21.42
Baŭ		0.09	0.03	0.00	0.14	0.10	0.10	0.22	0.25
Na ₂ 0		0.01	0.00	0.01	0.02	. 0.'04	0.02	0.30	0.07
ĸ ₂ ō	1	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.75	0.00
TOTAL	•	89.80	94.52	94.77	96.69	96.03	96.41	97.30	92.70
•	-	•	••••	Number	of ions on i	the basis of	12.5 0	,	•
si • •		³ .062	3.046	2.952	3 _00 1	3.007	2.994	3.109	3.048
T1 -		AL 0.003	0.009	Ô.001	0.003	0.005	0.003	0.004	0.006
A1		2,436	× 2,397	2,431	2.612	- 2.549	2.575	2.474	2.394
Fe ³⁺		0.558	0.528	0.634	0.366	0.384	0,409	0.441	0.570
Mn		0.018	0.008	0.010-	0.033	1013	0.007	0.013	· 0.012
Mg		0.010	0.008	0.128	0.008	0.002 .	· 0.007	0.029	0.011
Ca		1,836	1.971	1.848	1.965	2.041	1.999	1.782	1.897
Ва		0.003	0.001	0.000	0.004	0.003	0.003	0.007	_ 0,008
Na		0.002	0.000	0.002	0.003	0.096	0.003	0.045)	0.01
K.		ó.000	0.000	0.000	0.000	0.000	0.000 -	0.076	0,000
Whole					Ū				•
Fe ²⁺ /EFe			0.76	0.77		•	- 0.97 -		

- `
- •
- •

	-							•			
Sample Anal. no.		-	(a) GF-15.8 3	(b) 6-GF-17 27	(b) GF-50 .54	(b) MD4F+ 14	(b) bis-303.3 38	(b) b1s-303.3 37	(a) b1s-303.3 41	(a) b1s-303.3 34	
MgO			0.43	0.00	0.05	0.00	0.11	0.36	0.96	1.32	
Ca0			51.41	56.21	56.02	55.97	55.40	54.77	53.17	52.30	
Fe0			3.83	0.00	0.00	0.05	0.15	0.25	1.40	2.02	
Mn0			0.53	0.00	0.13	0.16	0.25	0.27	0.23	0.23	
BaO			-	-			0.00	- 0.03	0.00	0.00	
TOTAL		•	56.20	56.21	56.20	56.18	55.91 °	- 55.68	55.76	55.88	
MgCOa			0. 90	0.00	0.10	0.00	0.23 '	0.75	2.01	2.77	
CaCO3		Ϋ.	91.77	100.33	100.00	99.91	98.89	97.76	94.91	93.36	
FeCO3	•	•	6.18	0.00	0.00	0.08	0.24	0.40	2.26	3.26	
MnCO			0.86	0.00	0.21	0.26	0.41	0.44	0.37	0.39	
BaCO3			-	- ·	-	-	0.00	0.04	0.00	0.00 -	
Σ			99. 70	100.33	100,31	100.25	. 99, 77	99.40	99.55	99.77	
					Numb	er of ion	Is on the ba	sis of 2 ca	tions	c	
Mg		5	0.022	0.000	0.002	0.000	0.005	0.018	0.048	0.066	•
Ca			1.855	2.000	1.994	1.994	1.983	1.967	1.906	1.871	
Fe			0.1 08	· 0.000	0.0 00 -	0.001	0:004	0.007	0.039	0.056	
Min		/	0.015	0.000	0.004	0.005	0.007	0.008	0.007	0.007	
Ba			-	-		, - ,	0.000	0.000	0.000	0.000	

Table II-8. Analyses of carbonates from the Aljustrel Volcanic rocks.

(a) Ferroan calcites(b) Calcites

APPENDIX III

WHOLE ROCK GEOCHEMICAL DATA ON THE ALJUSTREL VOLCANICS

III-1. Quartz eye Tuff

• III-2. Mine Tuff

•	"(a) 7-6F-19	1- 9 F	HD4F-A	(a) 85-A	6-67- 17	GF-538	6F-53	" HD4F-L	(a) GF-50N -	er-500
5102	64,,68	70.91	68.20	69.10	72.54	72.35	72.00	69.07	70.64	70.70
T102	0.62	0.51	0.53	0.50	0.45	0.44	0,44	0.55	0.50	0.42
A1203	17.70	14.37	15.70	15.06	13.75	14.12	14.26	14.84	15.07	15.30
Fe ₂ 0	, 0 .9 0	0.74	0.80 1	0.84	0.47	. 0.75	0.80	1.04	0.81	Q.75
Fe0	3.68	2.54	.2.95	2,67	1.47	2.35	2.36	3.09	2.25	• 1.95
MinO	0.03	0.02	0.05	0.03	0.92	0.04^	··· 0.04	0.06	0.04	Q. 04
NgC	1.01-	0.71	1.30	1.07	0.37	0.62	0.69	Ē.42	0.64	0.63
CeO	0.80	0.86	1.83	i.16	Ø.70	0.85	0.83	- 1. b .	¥.13	1.05
lle0	0.05	0.07	0.04	o.07	0.09	0.15	0.18	0.04	0.09	0.10
Na ₂ 0	3.21	3.47	4.45	2.00	2.19		3/19	, 3.46	4.22	4.57
ĸzō	5.08	3.85	, 1.47	4.95	· 6.79	3.01	2.81	1.68	2.30	2.23
'z ⁰ 5	0.39	0.28	0.25	0.33	0.24	0.19	0.18	0.25	0.21	0,18
LOI	1.73	1.42	1.87	1,69	1.03	1.37	1.52	1.94	1.40	1.25
TOTAL	19.79	100.10	99.44	99.47	100.11	99.33	99.24	99.23	99.30	99.17
55 🗶	ND	ND	0.01	10	10	0.2 8	. 0.24	0.01	, 0.01	`0.01
No	190	146	91	163	156	137	135	,⊲104	128	118
Sr .	91 %	92	216	89,	75	113	108	181	114	់ អេ
la 👘	464	n 1 608	328 .	586	789 -	1394	1196 🧋	367	785	853
Sc	-	- معر	-15.0 /	- '	-	• îo.o	11.9	14.0	11.0	, 11.0
Y	46 *	50	61	52 ·	· •	39 .º	40	5 8 -	44 '	40
Ur	267	` 256	· 286	222	215	211	218	289	239	207
H	-	. .	7	-	• •	6	6	. 8	7	16
Nb	-		27	-		18	19	;27 ¹	26	26
Ta	-	•••	11	-	•	3	· 5 ·	/ 8	12	12
Cr. 1	17	12	11	18	11	7 /	ា ដ	17	_ 1 5	15
^ر ه	20	24	36	24	3	26 .	29	30	36	- 33
N1 -	XD	6	13	ND .	80	23	21 ·	12	27	27
Cu	ÎND -	10	ND *	XD	ND	1 📫 🗋	10	15	- ND - 1	' ND ʻ
Zm	45	29	55 [°]	67	28	45	45 .1	64	55	42
Pb 、	ND	, ND -	41	10	ND	x , '	" 29 1	33	27	39
Th	•	-	- 15.0	- *	-	13.0	13.0	14.0 1	15.0	14.,0
La	•	•	· -			30.9				
са Са	`	•				63.7				
	4					34.7	ø			
na Sa				1		., 8.0	•		•	
		. '	•	•		•.u 2.1			•	
Eu .	·					7.8				·
94			,		•	· 7.1			-	
Dy		-	ł	• •	• .					
и				• . •	· ·	4.2	,	-		
19	د			•		3.9		•		¢
Fe ²⁺ /2Fe	0.62	0.63		0.78	0.78	0.75	· 0.77	0 77	0.76	0.74

able III-1. Major and selected trace element abundances in Quartz-eye Tuff Formation rocks.

Total Iron

a) Alhali fuldspar megacrys

(b) Grate factes

(c) After Schetmerhorn (1976)

2	9	2
---	---	---

Table III-1: Com	itinued (Quâi \	rtz eye Tu	iffs)	•	Ť		•	-		
	2-6F-87		GF-68	3-6F		GF-848	(a) GF-23	(a) GF-43	(a,b) MTV-2H	(b) PHTV-
5102		67.46	69.94	70,00	73.08	72.27	72.27	71.65	60.01	65.3
								0:47		
1102	0.46	0.50	0.56	0.50	0.44	0.46	0.48		0.73	0.9
N1203	14.70	17.17	15.47	15.50	13.78	14.09	13.62	12.76	20.61	18.1
⁶ 2 ⁰ 3	0.61	1.15	1.14	1.11	1.17	3.59*	1.26	1.21	3.02	2.1
FeQ	1.54	2.65	Z.52	2.26	2.150		2.17	1.63	2.70	2.0
9n0 _	0.02	0104	> 0.04	0.04	0.05	0.05	0.05	0.04	0.04	0.0
190	0.41	0.96	1.20	0.86	0.63	0.62	0.75	0.54	3.37	2.6
, 0a	1.H	1.27	0.45	1,06	0.67	0.74	1.53	2.35	1.02 、	1.0
, Del	0.07	0.12	0.04	0.14	0.05	0.06	0.03	, 0.06	0.04	0.0
le ₂ 0 * .	2.18	3.88	3.03	2.40		3.56	4.01	4.48	2.24	2.9
ړه	5.62	3.03	2.79	3.95	1, 91	2.10	1.48	1.56	2.61	1.8
205	0.24	0.25	0.18 .	.0.24	0.17	0.18	0.24	1.25	0.11	0.1
.01	1.24	1.70	1.96	1.64	1.49	1.39	1/38	1.27	4.21	3.1
TOTAL	99.77	100.09	99.32	99 .70	99.56	99. 11	99.2 7	99.25	ຳໝ.ອາ	100.4
11	NO	0.08	Ъ ND	· 0.03	0.01	ND	ND	0.03	NO '	ND
th .	209	157	192	191 - 1	120	127	94	. 83	110	83
ir	101	104	52 ്	` 63	95	96	225	132	217	194
la '	595	1064	386 ,	1282	478	523	305	549	342	261
ic ⁻		-	. 11.0	• ·	9.3	9.9	12.0	9.4	- *	-
r '	- 30	44 1	43	-	36	41	51	58 -	61	49 ′
le e	212	237 🤇	244	227	201	211	253	207	304	251
ef yr	- `	•	7	-	. 5	6	8	5	-	-
15 ·			22	•	21	20	24	18	-	-
na e se			5,		· _1	5	7	6	•	-
ж ¹	. 12	6 .'	16	•		12	12	20	22	26
.	. 36	20	19	28	23 [,]	17	25	15	36	39
is •	· · · · · · · · · · · · · · · · · · ·	NÓ.	21	NQ. e	21	22	25	11	12	8
20		۱ 💼 ۱	. 10	. mo`*	1 NO	Ж	ND .	`но	ND	ND
Crit	*	48	46	-49	38	41	24	35	161	116
N	17	16	16	17	`3\$,	30	20	23	28	, 18
FN,		-	14.0	•	12.0	13.0	14.0	12.0	-	
#		J				26.7	,			
		1*			•,	60.3	•			,
			in di s	í. • .	• 4. ,	32.7				
					1	7.6			:	
				;·				•		
Ele	the second					1.77	· · ·			
		• •		. ·	•	1 • • • • • •	i i sa		÷_	
by in the second s		N 94			•	7.3	1	•		•
				3.4		€ .₽.°	112	•	· .	- '
	•			» (9		3.0			•	
Fe ²⁺ /2Fe	· · · ·				•.					

TRM 6 717.1	Contri sund		
TABLE ITT.1.	Continued	(Quarti eye tuffs)	

	(a,b) PHTY-IM	(b) Phtv-ic	(b,c) MES-7
510 ₂	67.04	69. 1Z	65.6
TIOZ	Q. 57	0.45	0.50
A1201	17.35	16,73	15.4
Fe203	2.50	2.00	7.56
FeD	1.76	1.31	*
Xn0	0.03	0.03	-
Hyū	2.39	1.88	4.6
Ca0 +	1.15	1.16	2.03
5a0	0.03	0.03	-
Ne ₂ 0	2.48	3.41	1.2
Kyū · · · ·	2.04	1.72	2.40
205	0.12	0. TZ	0.0
LOI	3.38 -	2.88	-
TOTAL	100.84	100.84	
58 a	10	iiD	
Rb	93 [`]	77	
Sr	205	198	
Ba 👘 👘	303 .	267	
Sc	- '	•	• *
Y. e	49 *	39	
Z r	258	211	
HF 🕻 👘 🕵	` -	-	
No , '-	-	· -	•
Ta , ,	•	•	
Cr	31	• 6 °	
Co . •	29	36	
NT (13	10	
Cu	10	ND	
Zn . ''	95	66	
Pb .	19	21	
Th	-	-	
u i	85. 1	81.2	
Ce -	118.8	~ 210.9	
M t	102.1	96.1	
Sm	' 26.2 ,	25.5	
Eu	24.2	23.5	
64	24.2	23.5	
0y	200	20.1	
Er all	9.2	8.3	
¥₽ '	7.1	6.5	
Fe ²⁺ /IFe	0.44	0.42	

293

ر آ ا

· · · · · · · · · · · · · · · · · · ·	bis- 283.5	bis- 289	(291.15	bis- 296.5	bis- 303.3	b1s- 309.6	b1s- 310.8	b1s- 330.25	b1s- 341.2	bis- 341.8
510 ₂	69. 11	75.16	72.15	78.26	69.29	74.64	65.68	76.45	74.86	65.68
T102	0.91	0.13	0.16	0.11	0.19	0.12	0.06	0.10	0.15	0.21
A1,0,	f 15.92	12.52	14.95	11.35	17.20	÷11.72	15.09	12.27	13.15	17.46
Fe203	0.21	. ND	2.18*	0.07	2.53*	1.79*	0.63	0.08	0.67	1.35
Fe0	2.02	1.51		1.53	•		1.01	1.40	1.13	١.37
MinO	0.04	0.02	0.03	0.03	0.02	0.03	0.04	0.03	0.03	0.04
MgO	2.23	0.56	1.50	0.71	2.03	1.48	2.12	1.06	1.02	1.80
CaO	0.80	0.88	0.45 *	0.27	ND	2.79	1.40	0.29	0.17	0.34
Ba0	0.10	0.00	0.09	0.01	0.13	0.01	0.06	0.01	0.04	0.11
Na ₂ 0 .	1.95	6.55	1.79	5.67	1.93	4.80	3.19	5.57	3.'65	1.29
ĸzó	2.90	0.19	3.56	0.30	3,71	0.25	2.11	0.91	2.48	5.63
P2 ⁰ 5	ND	ND	r ND	ND	ND	ND	ND	ND	ND	ND
LOI	3.56	Tw08	2.32	0.81	2.86	1.45	2.77	• 1.02	1.56	2.36
TOTAL	99 .03	98.6 1	99.18	99. 12	99.89	99.08	99 .52	9 9. 19	98.88	98.63
58	0.41	0, 31	0.12	0.21 '	0.50	0.15	0.25	0.16	0.23	0.21
R5.	, 198	22	301	31	285	32	163	63	156	366
Sr	74,	187	90	142	67 '	194	160	124	82	83
Ba	884	; 77	807	104	1124	105	509	129	323	981
Sc	15.0	11.0	12.0	8.8	11.0	10.0	13.0		13.0	
Y	81,	63	73	49	64	66	93	54	7 9	103
Zr	257	178	211	152	252	173	217	- 148	217	282
HF.	10 ິ	7	8	5	. 9	6	8	•	8	
ND	24	25	21 ·	25	24	23	23	23	20	21
Ta .	6	7	5	12	5	7	4		5	
Cr ì	13	9	- 12	5	3 ്	7	8	8	6	9
Co	38	55	28	58	24	35	19	63	30	38
N1 +	12	6	23	7	14	5	15	16	10	20
Cu .	· ND	ND	ND	NÔ	NO	ND	ND	32	19	31
Zn	· ´• 71	33	42	37	54	38	48	43	42	73
Pb	ND	ND	21	ND	44	· 21	23	37	ND	43
Th _	17.0	13.0	15.0	11.0	18.0	12,0	. 16.0	•	15.0	
La -	79.5	42.7		37.1			108.2		20.0	·.
Ce	153.1	85.9		76.6			200.5		43.9	
Nđ	70.6	42.0		36.2	•		95.6		24.3	
Sm ,	14.7	9.8		- 8.0			21.4		6.4	,
Eu	2.0	1.53		ī.1			3.2		1.1 /	
6d .	13.7	10.3	•	8.0	•	•	22.4		7.5	
Dy	14.4	. 11.8	,*	9.4	• •		22.1	-	10.5	
Er .	9.3	8,5	•	7.0			12.5		8.1	
¥Ъ	8.3	8.9		8.0		-	9.4		8.7	
Fe ²⁺ /IFe	0.92	1.00		0.96			0.64	0.95	0. 65	0.53

Table III-2. Major selected trace element abundances in Hine Tuff formation rocks.

* Total Fe expressed as Fe₂03.

		P			
Tai	hie	111-2.	Continued	(Hine	tuffs

	6-145,2	7-249.85	8-533.8	21-607.2	21-621.3	21-642	21-648.4	GF-89.50	GF-90	GF-9 3
\$10 ₂	61.91	70.95	55.03	72.06	72.92	63.73	70.92	69.06	59.04	73.02
7102	0.25	0.18	0.27	0.27	0.22	0.21	0.18	0.18	0.24	0.19
A1203	20.10	15.20	23.24	14.21	13.42	19.19	16.05	16.06	19.51	14.65
Fe ₂ 03	2.36*	0.32	3.01	1.37	2.52	1.14	0.69	1.81	2.89	1.03
Fe0		2.15	1.94	0.99	0.25	1.64	1.28	0.51	0.25	0.70
MnO	. 0.06	0.03	0.04	0.03	0.02	0.02	0.01	0.17	0.17	0.05
Ngû	5.49	3.25	4, 18	2.34	3.26	4.35	3.01	5.07	5.69	2.36
Ca0	1.43	ND	ND	1.50	* 0.16	0,94	0.25	0.70	3.90	. 2.11
5a0	0.04	0.05	0.04	0.04	0,04	0.03	0.02	0.27	0.38	0.04
Na ₂ 0	2.45	1.00	ND	1.18	1.22	3.45,	2. 66	2.18	2.45	3.15
K _Z Õ	1.13	2.58	6.80	2.31	2.15	3.80	Z.01	0.85	1.22	0.80
P205	0.01	HD:	0.02	NÛ	ND	ND	ND	ND	ND	0.01
LOI	4.55	3.95	5.40	2.42	2.50	3.54	3, 96	3.97	5.55	2. 38
TOTAL	99.9 1	99.67	99.9 7 -	98.82	98.68	99.96	100.04	100.83	101,27	100.49
SX	ND ·	1.36	ND	ND	HD	ND	ND	ND	0.01	ND
Rb	91	166	354	171	165	133	128	81	110	85
Sr	385	90	22	132	50	151	110	207	250	460
84	356	504	372	329	347	300	199	2457	3391	357
Sc .	10.0	12.0	19.0		5.5 .		13.0	7.7	9.3	7.0
۲	17	, 72 ,	119		43	114	95	50	106	61
Zr	211	248	341	2 52	225	281	238 F	164	209	164
HT	9	9	12		7		8	6	7	6
No	22	22	24	15	16	22	24	17	14	17
Ta	4	3	3		6		5	2	2	4*
Cr	8	_ 8	1	1	2 '	8	3	3	ND	13
Co	16	9	14	21	25	15	17 .	11	6	25
N1	23	11	23	11 ,	9	10	្15	13	24	5
Cu	ND	340	ND	ND	ND	N D	ND	, ND)D	ND
Zn	69	38	176	31	47	81	35	59	64	36
Ph _	28	18	2	21	10	25	18	15	31	25
Th	20.0	14.0	23.0		10.0		16.0	15.0	19.0	14.0
ίa.			33.8	,	16.4			45.4		
Ce		•	72.8		33:9			97.0		
ÌNd			41.9		18.7			51.4		•
Sin	•		10.8	•	4.6			12.2		
Eu			1.73		0.86			1.71		
64			12.7		5.7			12.9		
Dy			17.4		7.4		-	16.3		
Er			12.5		5.6			10.9	•	
¥Þ.			13.1		5.6			9.8	,	
Fe ²⁺ /1Fe	•	0.86	~ 0.42	0.44	0.10	0.62	0.67	0.24	0.09	0.43

> Table III-2. Continued (Mine tuffs)

į

-	GF-100	GF-113	SH-11	SH-12
510 ₂	72.13	75.66	66	· 72.09
T102	0.19	0.15	0.32	0.23
A1203	15.01	13.13	18.25	15.12
Fe203	1.34	1.04	0.98	2,21
Fe0	0.84	0.72	2.27	
MnO	0.04	0.03	0.06	0.02
MgQ	1.97	1.65	5.81	19.03
CaO	0.86	1.00	0.62	ŃO
BaQ	- 0.05	0.06	0.04	, 0.03
Na ₂ 0 .	1.60	2.08	2.54	4.09
K ₂ Õ	3.40	2.14	0.74	2.22
P205	ND	NC	ND	ND.
LOI	2.39	1.85	4.86	2.23
TOTAL	99. 71	99.51	100.15	99.2 7
52	0.10	ND	'ND	ND
Rb .	241	145	68	153
Sr	° 130	155	373	88
8a	460	551	365	308
Sc	11.0	10.0	10.0	
Y	89	77	.83	
Z r	253	212	240	232
HT	7 -	1	9	
Nb	21	22	22 、	18
Ta	4	7	3	
Cr	4	8	4	6
Co	9	5,	20	15
N1	17	11	15	7
Cu	ND	15	ND	ND
Zn	46	65 17	86	56
Ph	17		. 17 .	18
Th	13.0	12.0	22.0	
La	د	32.4	54.8	
Ce		71.5·	103.3	
Net		39.9	52.7	
Sm		9.7	1.76	
Eu		1.44	1.76	
Gd .	0	10,8	12.0	
Dy	f	14.0	13.8	
Er		10.1	7.8	
Yb .	•	6.8	6.5	
Fe ²⁺ /IFe	0.64	0.43	· 0.12	

APPENDIX IV

REPRESENTATIVE MICROPROBE ANALYSES OF MINERALS

- IV-1. Chlorites

IV-2. Sericite and Ba-sericite

IV-3. Spessartine garnet

IV-4. Carbonates

IV-5. Sphalerites

Table IV - [1a] Averages of closely similar chlorite analyses from footwall stockwork rocks and from massive sulphide ores. •

	D15-234.3	bts-240.6 7	bts-249.1 3	8-511.3 18	15.330.2	(0) bis-246 5	8-460•2 8	(0) 8.466	(0) 8-479 6	. 8-502.8- 16	21-716.3 6
sto ₅	27.28		23.00	23.27	23,87	23.01	23.77	26.25		24.19	
1102	. 0.01	0.05	0.05	0.06	0.04	→ 0.05 ·	0.05	0.00	0.0	0.03	0.02
A1203	21.29	21.98	21.73 °	23.41	19.41	21.22	22.68	21.53	° 21.55	23.23	20.53
cr_0,	, 1 ,	0.07	,	ı	1	•	ı	· ì	,		1
660	19.17	37.62	38.63	37.31	39.44	38.56	34.22	28.65	28.50	06.96	27.71
M hÓ	, 0.55	0.47	0.42	0.45	0.36	0.45	0,32	0.08	, 0.27	0.33	o,ìo
. OfM	. 19.,32	5.53	5.27	- 4.75	. 6.13	4.84	6.63	11.69	11.32	9.51	13.52
CaQ	0.00	0.03	00.0	0.01	0.07	0.00	0.01	0.01	0.02	0.02	0.00
BaÛ	• •	ı	ı	,	/	•	•	•	•	, •	
Ma ₂ 0	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.05	0.01	0.05	0.0
	0.00	0.03	, 0.05	0. 02	0.00	0.01	0.02	0.03	0.01	н.о	0.00
Total	87.61	86.91	89.23	89.28	89.32	88.14	87.69	88.30	87.71	8 7.78	88.14
			Numbe	Number of tons	on the basts	is of 14 0					
. 15	2 77R	2 581	2 574	2 571	, 7 697	, £UQ	0 6 30	0 100	, 770	212 6	når c
, H	100 0				2001		, 100 m	0.000		200.0	201.2
	2.554	2.893	2.866	3.048	2.569	2.836	2. 05B	00000	011 2	COU.V	100.00 (26)
ა	,	0.007		•	4	. ,				· ·	
Fe ²⁺	1.632	3.514	3.615	3.448	3.705	3.657	3.167	2.539	2.545	2.741	2,453
£	0.048	0.044	0.040	0.042	0.034	0.043	0.030	0.007	0.025	0.030	600.0
·. £	2.932	0.921	0.879	0.782	1.026	0.818	- 1.093	1.846	1.801	. 1.532	2.133
5	0.000	0.004	0.000	0.001	0.008	0.000	0.001	0.002	0.0J	€00.03	0.000
2	• •	•	•	ı	£7 1	1 ,	۰.	,	•	,	ı
	0.000	0.000	0.017	0.000	0.001	0.000	0.000	0.011	0.002	0.010	0.000
, , ,											

(a) Outer stockwork rocks, dominantly sericitic
 (b) Stockwork rocks (Chlorite + quartz + sulphides)

ż

298 2

and the second s

e∜ 13 •`; rt.

Table IV - la) Continued (Ore zone chlorites)

.

.,

.¦

Sample No. of Anal.	(b) 21-722.8 7	(b) 21-735.9 6	21-238 5	21-761.2 5 5	(b) 21-800.5 5	(c) 10.350 9	(d) bis-168.5 7	(e) b1s-187.2 2	(e) .7-225.6 4	(e) 3.446 3
sto,	- 24.73	23.51	23.44	23.8M		23.14	25.21	25.46		23.72
T10.	0.0	0.03	0.02	0.0	0 0	0.07	0.02	0.04	0.04	0.03
Also	-21.12	22.29	21.38	21.59	21.43	20.90	19.63	22.09	21.93	21.56
cr,0,	• • 1	•	•	•	1	0.10	٠	•	0.05	ı
Feda	31.17	35,55	35.02	33,44	7.78	39.72	32.99	31.59	26.66	38.49 /
044	0.26	0.74	0.61	0.27	0.30	0.32	0.86	0.79	0.89	0.71
	. 9.33	6.65	7.33	9.0M	27.54.	4:35	10,16	10,33	12.82	4.14
CaO ,	0.00	0.01	0.01	0.00	0.00	0.04	00,0	0.00	0.02	0.06
Bao	•	,	, •	1	•	•		•	•	٠
Na ₂ 0	0.00	0.00	0,00	0.00	0.00	0.0)	0.03	0.07	0.00	0.03
K_0	0.01	0.00	8.0	0.00	00.0	0.02	0.00	60.0	10.0	0.02
Total	87.22	88.78	87.81	88.19	. 86.33	88.57	88.89	90.46	87.88	88.76
	•	•)				
SI .	2.715	2.597	2.616	2.617.	2.842	2.623	2.744	2,687	2.702	2.663
'n	0.000	0.002	0.002	0.001	0.000	0.006	100.0	0.003	0.003	0.002
VI V	2.733	2.902	2.812	2.793	2.451	2.793	2.517	2.748	2.743	2.853
ت. ت	•		, 1	ı		0,009	•	,	0.004	•
Fe ²⁺	. 2.917	3.284	3.268	3.070	0.631	3.766	3.002	2.788	2.366	3.615
£	 0.024 	0.069	0.058	0.025	0.025	0.031	0.080	0.071	0.080	0.068
2	1.527	1.095	1.219	1.479	3.984	0.735	1.648	1.625	2.028	0.694
3	0.000	100'0	0.001	0.000	0.000	0.005	0.000	0.000	0.002	0.008
	• *	- ,	•		•	ı		• •		•
2	0.000	0.000	0,000	0.000	0.000	0.002	0.005	0.014	0.000	0.00 <u>7</u>
¥	00.01	0.000	0.000	0.000	0.00	0.003	0.000	0.012	0.001	0.003
-	Cu rich massive sulphide ore			•					-	
(d) Zn-Pb ric (e) Zn-rich.s	Zn-Pb mich massive sulphide ore Zn-mich massive sulphide one	de ore	ر ۲					1	,	- :
			•			•				

suiphide ore

ŧ,

Table IV - 1 b). Averages of closely similar^(*) chlorite analyses from hanging wall rocks.

1)

	7-159 3	(a) 7-161.8 11	(a) 8-358 5	(b) 11-322- 1 11	(b) 15-319.3 12	(b) 19-200 7.	(c) 6-103 6	(c) 6.106.9 ,11	(d) b1s-158.6 5	(d) 6-105 8	(d) 15-285.6 7	(d) 15-305-8 6
5 t0,	25.66	26.11	27.73	25.0 <i>1</i>	24.76	24.21	23.81	23.58	24.29	24.40	24.48	23.55
rio_	0.00	0.00	0.00	0.06	0.08	0.05	0.02	0.06	0.04	0.03	0.09	0.05
11 ₂ 03	20.83	20.85	18.16	20.98	17.83	19.76	19.73	19.61	21.25	20.81	20.02	20.48
2°03	,	ł	1	١	•	ı	ı	0.11	ı	,	•	,
	27.98	28.57	23.99	33.86	33.89	41.50	38.22	35.08	31.15	31.97	3039	36.44
04	0.59	0.61	2.57	1.95	1.97	0.69	1.22	2.30	0.62	2.38	1.60	1.14
05	11.83	13.20	14.48	5.56	9.11	2.76	6.04	6.05	, 9 . 56 ·	8.82	10.29	5.97
CBO	- 0.02	0.0	, 0.03	0.01	0.00	. 0.02	0.20	0.13	0.02	0.02	0.00	0.41
	,	 1	•	. '	•		•	,	0.10	• •	٠	•
H _0.	0.00	0.00	0.04	0.02	0.02	0.05	0.06	0.00	. 0.00	0.02	0.07	00.00
² و،	0,00	8, 6	0.22	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	10.0
TOTAL	86.91	B9.34	87.21	87.51	87.66	89.03	89 , 29	86.92	87.03	88.44	86.94	88.05
	ð				Ions on t	the basis	of 14 0		* q			
· •=	2.769	2.745	2.950	2.794			2.671	2.695	2.676	2.678	2.706	2.655
	0.000	0,000	0.000	0.005	0.007	01004	01002	0.005	0.003	0.003	0.007	0.004
بر	2.650	2,583	2.277	2.755	2.258	2.652	2.608	2.642	2.759	2.691	2.607	2.721
	'	,	ì	ı	•	`''		0.009	۱	ı	,	,
e ²⁺	2.526	2.512	2.134	3.156	3.179	3.953	3.585	3.353	3.870	3.934 -	2.809	3.436
2	0.054	0.054	` 0.231	0.184	0.187	0.067	0.116	0.223	0.058	0.221	0.150	1.109
- 	1.903	2.068	2.297	0.924	1.523	0.469	1.010	1.031	1.570	1.443	1.695	1.003
	0.002	0.000	0.003	0.001	0.000	0.002	0.023	0.016	0.002	0.002	0.000	0.050
	1	,	•	,	<u>۔</u> ۱	•		•	0.004	٠	·	,
	0.000	000.0	- 0.0 07	0.005	0.004	0.010	0.013	0.000	0.000	0.004	0.015	0.000
	0.000	0.000	0.030	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	100'0
(*) .Except for		sample 6-106.9.	Individual	analyses	Individual analyses in table IV-1 c}	IV-1 c).		(c) M e	Metalliferous sediment	sedimen		
a) . Hanging wa		tuffs depi	l Mine tuffs depicting stockwork type alteration	:kwork typ	e alterati	ion.		(d) De	Deeply altered PS Fm aluminous rocks	f PS Fm al	uminous roc	ks
(b) Cherts and	and jaspers			•	,						•	

Table IV - lc). Representative chlorite analyses from metalliferous sediment 6-106.9 (*)

1

	5	8	6	8	50	5	ζ	2	5	5	:
S10,	24.44	23.58	22.89	23.90	23.51	24.68	• 23.73	22.58	23.37	23.45	23.28
110,	0.02	0.10	60.0	đ. 05	0.08	90.0¢	0.04	0.06	0.05	0.08	0.04
Al ₂ 0,	20.59	17.52	19.34	20.39	19.97	19.58	20.34	18.98	20.02	19.91	70.01
cr_0,	0.11	0.11	0.17	0.13	0.13	0.07	0.05	0.06	0.06	0.08	0.12
Fe0 J	36.19	37.12	37.07	35.66	35.35	34.68	34.57	32:27	33.44	34.08	35.40
MiO	0.98	2.75	2.42	1.30	1.31	1.61	1.02	5.33	4.18	3,09	1.29
MgO	5.83	5.11	5.77	5.89	6.14	7.35	5.30	6.38	6.26	6.02	6.51
CaO	0.07	0.20 🧹	0.19	0.07	0.0 6	0.07	0.09	0.37	0.13	0.09	0.13
Na ₂ 0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K 20 .	0.02	0.00	0.02	0.01	0.00	0.01	0.02	0.01	0.00	0.01	0.02
TOTAL	88.25	86.50	87.96	87.50	86.55	88.09	85.21	86.07	87.50	86.79	85.84
				•			•				
•					lons on		the basis of]4 (•		•	
St	2.730	2.758	2.621	2.699	2.688	2.754	2.723	2.629	2.656	2.680	2.691
Ti	0.004	0.008	0.008	0.004	0.008	0.004	0.004	0.004	0.004	Ô.004	0.004
,	2.711	2.418	2.613	2.711	2.691	2.574	2.750	2.602	2.680	2.684	2.602
C.	0,012	0.012	0.016	0.012	0.012	0.008	0.004	0.008	0.004	0.008	0.012
Fe ²⁺	3.379	3.633	3.551	3.367	3.379	3.234	3,30	3.141	3.176	3.258	3.426
£	0.094	0.273	0.234	0.125	0.129	0.152	0.098	0.523	0.402	0.301	0.125
Ĩ	0.973	0.891	0.984	1.008	1.047	1.223	0.906	1.105	1,059	r. 027	1.121
5	.0.008	0.027	0.023	0,008	0.008	0.008	0.012	0.047	0.016	0.012	0.016
4	0,000	0.000	0,000	0.000	0.000	0.000	0.014	0.000	0.000	0.000	0.000
×	0.004	0.000	0.004	0.004	0.000	0.000	0.004	0.004	0.000	0.004	0.004

(*) The only sample where significant variations in chlorite composition were found.

Table IV-2. Analyses of sericites and Barium-sericites.

٠

.

Ļ

Sample Anal. no.	(a) 8-511.3 (a) 49 50	(a) 8-511.3 50	(a) 8-511.3 53	(a) 8-511.3 52	(b) 9 bts-229 40	(b) \$15-229 42	(b) bis-229 43	-(b) 8-365.4 46	(b) 8-365.4 47	(b) 8-365.4 48
510 ₅	46.32	44.57	46.13	45.23	43.64	43.94	44, 87	45.12	46.35	44.85
Al , Da	39.02	38.71	37.81	39.61	37.54	38.30	38.69	36.22	36.95	36.16
cr ₂ 0,	0.00	0.01	0.18	0.19	0.11	0.0	0.00	0.00	0.00	0.00
FeO	0.71	1.43	0.65	0.61	0.86	1.04	0.81	0.27	0.33	0.51
0440	00,0	0.11	01	0.17	0.10	0.0	0.00	0.16	0.13	0.35
• 06M	0.21	0.21	0.26	0.09	0.77	0.71	0.74	2.02	1.90	1.91
Ca0	0.00	, 99 .0	0.0	0.00	0.0	00.00	0.00	0.00	0.0	0.0
BaO	0.11	0.10	0.03	0.11	3.55	3.25	3.60	3.45	3.61	3.29
Ne ₂ 0	0.94	2.32	1.06	0.49	0.65	0.61	0.53	0.66	0.52	0.66
۲ ₂ ΰ	8.95	7.77	8.01	9.16	8.49	8.29	8.41	7.93	7.97	8.00
TOTAL	96.26	95.24	94.20	95.67	95.71	96.14	97.64	95.84	11.19	95.74
	,	,	Mun	ber of lo	Number of ions on the	e basis of	22 0			
51	6.023	168.3	6.098	5.926	5.883	5.871	5.902	6.027	6.059	6.008
Al	6.980	6.03	5.891	6.117	· 5.965	6.03)	6.000	5: 703	5.695	5.707
cr	0.000	0.000	0.020	0.020	0.012	0.000	0.000	0.000	0.000	0.000
Fe	0.078	0.160	0.070	0.066	0.098	0.117	0.090	0.031	0.035	0.059
£	0.000	0.012	0,008	0.020	0.012	0.000	0.000	- 0.020	0.016	0.039
Ъ,	0.043	0.043	0.051	0.020	0.156	0.145	0.145	0.402	0.371	0.383
3	0000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000
Bå	0.004	0.004	0.000	0.004	0.188	0.172	0.188	0.180	0.184	0.172
Ā	0.238	0.598	0.273	0.125	0.172	0.156	0.137	0.172	0.133	0.172
¥	1.484	1.309	1.352	1.531	1.461	1.414	1.410	1.352	1.328	1.367

(a) Sericite-chlorite-quartz-sulphide stockwork rock 30 m below massive sulphide ore.
 (b) Sericite-quartz-sulphide outer stockwork rocks near the contact with massive sulphide ore.

,

Si02 40.28 41.59 42.11 41.82 42.11 41.82 42.11 41.82 42.11 41.82 42.13 37.10 R1203 37.70 36.14 33.63 34.74 37.99 35.21 39.81 36.20 36.63 37.70 Re0 0.00	Anal. no.	-	(c) 8-369 23	(c) 8-369 26	(c), 8–369 27	(ċ) 8-369 28	(c) 8-369 29	-(c) 8-446 30	(c) 8-446 32	(c) 8-446 33	(d) 7-159 8	(d) 7-159 12	(d) 7-159 17
32.70 36.11 36.14 31.63 34.74 37.99 35.21 39.81 36.52 36.63 3 1.82 1.64 1.47 1.67 1.20 3.00 0.00	S10,		40.28	41.59	42.45	41.29	.42.11	41.82	42.08	40.34	45.36	44.97	47.16
0.00 0.00 <th< td=""><td>A1,0,1</td><td></td><td>32.70</td><td>36.71</td><td>36.14</td><td>33.63</td><td>34.74</td><td>37.99</td><td>35.21</td><td>39.81</td><td>36.20</td><td>36.63</td><td>37,70</td></th<>	A1,0,1		32.70	36.71	36.14	33.63	34.74	37.99	35.21	39.81	36.20	36.63	37,70
1.82 1.64 1.47 1.67 1.120 5.55 2.36 1.20 1.29 0.17 0.13 0.00 0.04 0.17 0.05 0.13 0.04 0.18 0.00 0.11 0.07 0.00 0.04 0.04 0.03 0.03 0.41 1.20 0.11 0.07 0.00 0.04 0.04 0.00 0.03 0.03 0.41 0.11 0.07 0.00 0.04 0.00 0.03 0.03 0.41 1.21 0.11 0.07 0.00 0.04 0.04 0.04 0.03 0.03 0.41 0.11 0.07 0.09 0.33 0.32 0.06 0.24 0.24 0.01 0.46 0.54 5.45 5.68 5.13 5.90 99.05 97.11 97.02 8.03 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 97.81 92.19 5.703 5.805 5.895 5.695 5.695 5.765 5.7	cr,0,		0.0	0.09	0.00	0.00	0.08	0.04	0.00	0.00	0.00	0.00	0.00
0.17 0.13 0.00 0.04 0.17 0.05 0.13 0.04 0.18 0.04 1.89 1.66 1.80 1.96 2.27 0.81 0.74 0.33 0.41 0.11 0.07 0.00 0.04 0.04 0.03 0.03 0.41 8.06 9.19 8.52 8.86 8.18 7.87 6.05 7.27 4.69 3.98 0.46 0.54 0.57 0.33 0.32 0.06 0.24 0.74 5.19 8.18 22.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 5.703 5.805 5.665 5.603 5.719 6.055 <t< td=""><td>Feo</td><td></td><td>1.82</td><td>1.64</td><td>1.47</td><td>1.67</td><td>1,20'</td><td>3.01</td><td>-6.55</td><td>2.36</td><td>1.20</td><td>1.29</td><td>1.20</td></t<>	Feo		1.82	1.64	1.47	1.67	1 ,20'	3.01	-6.55	2.36	1.20	1.29	1.20
1.89 1.66 1.80 1.96 2.27 0.81 0.74 0.57 1.14 1.21 0.11 0.07 0.00 0.04 0.04 0.03 0.03 0.03 0.41 8.06 9.19 8.52 8.86 8.18 7.87 6.05 7.27 4.69 3.98 9.04 0.54 0.57 0.33 0.32 0.06 0.25 0.24 0.76 0.74 0.74 0.76 0.74 0.76 0.74 0.76 0.74 0.76 0.76 0.76 0.76 0.76 0.76 <t< td=""><td></td><td></td><td>0.17</td><td>0.13</td><td>0.00</td><td>0.04</td><td>0.17</td><td>0.05</td><td>0.13 *</td><td>0.04</td><td>0.18</td><td>0.00</td><td>0.13</td></t<>			0.17	0.13	0.00	0.04	0.17	0.05	0.13 *	0.04	0.18	0.00	0.13
0.11 0.07 0.00 0.04 0.04 0.00 0.03 0.41 8.06 9.19 8.52 8.86 6.18 7.87 6.05 7.27 4.69 3.98 0.46 0.54 0.57 0.32 0.06 0.25 0.24 0.01 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.15 97.11 97.02 96.74 9 92.19 92.13 5.63 5.695 5.664 5.91 5.93 5.73 5.93 5.73 5.695 5.74 5.765 5.765 5.74 5.765 5.765 5.765 5.765 5.765 5.765 5.765 5.765 5.765 5.765 5.776 0.165 0.165	MgO	-	1.89	1.66	1.80	1.96	2.27	0.81	0.74	0.57	1.14	1.21	1.15
8.06 9.19 8.52 8.86 8.18 7.87 6.05 7.27 4.69 3.98 6.69 6.45 0.57 0.33 0.32 0.05 0.24 0.24 0.01 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 6.60 0.25 5.805 5.664 5.801 5.43 6.055 5/02 5.815 5.703 5.825 5.695 6.066 0.000	Ca0		0.31	0.07	0.00	0.04	0.04	0.00	0.03	0.00	0.03	0.41	0.00
0.46 0.54 0.57 0.33 0.32 0.06 0.25 0.24 0.07 6.69 6.45 6.68 6.35 6.80 7.41 6.11 7.39 7.99 8.18 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 5.875 5.703 5.805 5.887 5.889 5.664 5.901 5.565 5.762 0.000	6a0		8.06	9.19	8.52	8.86	8.18	7.87	6.05	7.27	4.69	3, 98	4.20
6.69 6.45 6.63 6.80 7.41 6.11 7.39 7.99 8.18 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 96.74 9 92.10 5.805 5.805 5.805 5.805 5.801 5.543 6.056 5.655 5.655 5.695 6.063 5.719 6.030 0.000 0	Na,0		0.46	0.54	0.57	0.33	0.32	0.0 6	0.25	0.2 4	0.24	0.07	0.23
92.19 98.07 97.64 94.17 95.90 99.05 97.11 97.02 36.74 9 Number of ions on the basis of 22 0 5.875 5.703 5.887 5.859 5.664 5.801 5.543 6.055 5.762 5.621 5.930 5.824 5.652 5.695 6.063 5.719 6.301 5.695 5.762 0 0.000 <td>κ2⁰.</td> <td></td> <td>6.69</td> <td>6.45</td> <td>6.68</td> <td>6.35</td> <td>6.80</td> <td>7.41</td> <td>6.11</td> <td>7.39</td> <td>7.99</td> <td>8.18</td> <td>7.98</td>	κ2 ⁰ .		6.69	6.45	6.68	6.35	6.80	7.41	6.11	7.39	7.99	8.18	7.98
Number of tons on the basis of 22 0 5.875 5.703 5.805 5.864 5.801 5.543 6.055 6.000 5.621 5.930 5.824 5.652 5.695 6.063 5.719 6.301 5.595 5.762 5.621 5.930 5.824 5.652 5.695 6.063 5.719 6.301 5.765 5.762 0.000 <t< td=""><td>TOTAL</td><td>~</td><td>92.19</td><td>98.07</td><td>97.64</td><td>94.17</td><td>95.90</td><td>99.05</td><td>97.15</td><td>11.79</td><td>97,02</td><td>96.74</td><td>99.74</td></t<>	TOTAL	~	92.19	98.07	97.64	94.17	95.90	99.05	97.15	11.79	97,02	96.74	99.74
5.875 5.703 5.805 5.859 5.664 5.801 5.543 6.055 6.006 5.621 5.930 5.824 5.652 5.695 6.063 5.719 6.301 5.695 5.762 0.000 0.008 0.000 0.008 0.000 0.016 0.0		۰ ۱			ź	umber of	tons on	the basi	is of 22	0	,		
5.621 5.930 5.622 5.655 5.565 5.770 5.770 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.223 0.188 0.168 0.199 0.141 0.340 0.754 0.270 0.133 0.145 0.223 0.188 0.168 0.199 0.141 0.340 0.754 0.270 0.133 0.145 0.223 0.188 0.168 0.199 0.141 0.340 0.754 0.270 0.133 0.145 0.2410 0.340 0.367 0.418 0.340 0.367 0.242 0.262 0.004 0.000 0.000 0.000 0.410 0.340 0.357 0.418 0.328 0.391 0.246 0.207 0.461 0.455 0.152 0.016 0.006	Si		5.875	5.703			5.859	5.664	5.801		-		٢
0.000 0.008 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0145 0.223 0.188 0.168 0.199 0.141 0.340 0.754 0.270 0.133 0.145 0.020 0.0016 0.0016 0.004 0.020 0.000 0.004 0.020 0.000 0.000 0.004 0.020 0.000 0.0	A1		5.621	5.930			5.695	6.063	5:719				
0.223 0.188 0.168 0.199 0.141 0.340 0.754 0.270 0.133 0.145 0.020 0.016 0.000 0.004 0.020 0.004 0.016 0.004 0.020 0.000 0.410 0.340 0.367 0.418 0.469 0.164 0.152 0.117 0.227 0.242 0.016 0.012 0.000 0.008 0.008 -0.000 0.004 0.000 0.004 0.059 0.461 0.457 0.496 0.445 0.418 0.328 0.391 0.246 0.207 0.129 0.145 0.152 0.090 0.086 0.016 0.066 0.063 0.020 1.246 1.129 1.168 1.156 1.207 1.281 1.074 1.297 1.359 1.395 altered Paraisô formation phyllite.	ر ۲		0.000	0,008			0.008	0.004	0.000		-		
0.020 0.016 0.000 0.004 0.020 0.004 0.016 0.004 0.020 0.000 0.410 0.340 0.367 0.418 0.469 0.164 0.152 0.117 0.227 0.242 0.410 0.340 0.367 0.418 0.469 0.164 0.152 0.117 0.227 0.242 0.461 0.492 0.457 0.496 0.008 -0.000 0.004 0.000 0.004 0.059 0.461 0.452 0.152 0.158 1.156 1.207 1.281 1.074 1.297 1.359 1.355 1.355 v.207 assive sulphide ores.	Fe	,	0.223	0.188			0.141	0.340	0.754				
0.410 0.340 0.367 0.418 0.469 0.164 0.152 0.117 0.227 0.242 0.016 0.012 0.000 0.008 0.008 0.004 0.000 0.004 0.059 0.461 0.492 0.457 0.496 0.445 0.418 0.328 0.391 0.246 0.207 0.129 0.145 0.152 0.090 0.086 0.016 0.066 0.063 0.020 1.246 1.129 1.168 1.156 1.207 1.281 1.074 1.297 1.359 1.395 massive sulphide ores.	£		0.020	0.016			0.020	0.004	0.016	~	-		
0.016 0.012 0.000 0.008 0.008 ~0.000 0.004 0.000 0.004 0.059 0.461 0.492 0.457 0.496 0.445 0.418 0.328 0.391 0.246 0.207 0.129 0.145 0.152 0.090 0.086 0.016 0.066 0.066 0.063 0.020 1.246 1.129 1.168 1.156 1.207 1.281 1.074 1.297 1.359 1.395 massive sulphide ores.	: Ø		0.410	0.340			0.469	0.,164	0.152		_		
0.461 0.492 0.457 0.496 0.445 0.418 0.328 0.391 0.246 0.207 0.129 0.145 0.152 0.090 0.086 0.016 0.066 0.066 0.063 0.020 1.246 1.129 1.168 1.156 1.207 1.281 1.074 1.297 1.359 1.395 massive sulphide ores.	Ca	•	0.016	0.012			0.008	°.000 ×	0.004		-		
0.129 0.145 0.152 0.090 0.086 0.016 0.066 0.066 0.063 0.020 1.246 1.129 1.168 1.156 1.207 1.281 1.074 1.297 1.359 1.395 massive sulphide ores.	Ba		0.461	0.492		•	0.445	0.418	0,328				
1.246 1.129 1.159 1.156 1.207 1.281 1.074 1.297 1.359 1.395 massive sulphide ores. altered Parais& formation phyllite.	N a		0.129	0.145			0.086	0.016	0.066		,		
	, ×	,	1.246	1.129			1.207	1.281	1.074				- A
-	1 -	sulphide o	res.									لب	5
	-	Paraisò fo	rmation	phyllit									Ð

Table IV-2. Continued (Sericites and Ba-sericites)

303

÷...

Table IV-3. Spessartine garnet analyses.

Anal. no.	1	. 2	3	6	7	13 -,	14	15 、	16	AVERAG
510,	35.78 [©]	35,28	36.66	36.22	36.18	35.57	35.72	35.76	36.04	35.91
T10,	0.23	0.32	0.25	0.27	0.32	0.29	0.28	0.31	0.33	0.29
A1203	18.63	18.76	18.67	19.33	í9.14	19.29	19.09	18.96	19.22	19.01
Fe ₂ 0 ₃	1.00	1.84	0.77	1.50	1.68	J.56	1.38	1.53	- 1 .65	1.49
Fe0	2.84	1.86	4.03	2.40	2.26	2.71	2.45	2.56	2.22	2.53
MinO	33.50	34, 59	33.66	35.20	35.35	35.43	35.00	34.66	35.57	34.77
Mg() -	0.07	0.07	0.10	0.05	0,06	0.07	0.07	0.04	0.06	['] 0,07
CaO	5.28	5.45	5.26	5.58	5.32	5.37	5.19	5.44	5. 25	5.35
TOTAL	97.39	98.47	99.40 [°]	100.78	100.46	101.02	99.42	<u>99</u> .45	100.63	99.55
-	·		Nugber	of ions	on the ba	ists of.24	0 O	:	۰ ۱	
Si	6.024	5.877	6.076	5.905	5.919	5.768	5.898	5.908	5.881	5.92
Ti	³ 0.029	0.040	0.031	0.033	0.039	0.035	0.035	0.039	0.040	0.03
н	0.000	0.083	0.000	0.062	0.042	0.197	0.067	0.053	0.079	0.03
AŤ	3.697	3.683	3.647		3.690	3.686	3.715	3.692	3.696	3.69
Fe ³⁺	0.135	0.231	0.096	0.184	0.207	0.191	0.172	0.190	0.203	0.18
Fe ²⁺	0. 🏟	0.260	0.559	0.305	0.309	0.368	0.339	0.353	0.303	0.34
Mn	4.777	4.880	4.655	4.861	4.898.	4.866	4.895	4.851	4,916	4.86
Mg	0.018	0.017	0.025	0.012	0.015	0.017	ð. 017	0.010	0.015	0,01
Ca	0.952	0.973	0.934	0.975	0.932	0.933	0.918	0.963	0.918	0.94
Andrad.			-						*	4.62
Pyrope	i 🖡 👘				:	T,		•		0.51
Spess.	•	•				,				83.59
Hydrogross.						-				0.51
Gross.		4 ,						1		10.77
Almandine					•		•		•	-
4	-			•					•	

Sample 8-358.1

Table \overline{IV} -3. Continued

(Spessartine garnet)

	•		,	-			•	
Anal. no.	7	, 19 -	30	32	33 .	34	11.343.7 AVERAGE	
S10,		37.11	36.24	35.78	37.16 🤇	36.08	36.32	
Z Ti0 ₂		0.54,	0.25	0.28	° 0.27	0.29	0.27	
A1203 -	·	18.07	19.68 [°]	20.16	18.89	20.03	19.69	
Fe_20_3		1.86	0.00	0.00	0.00	0.00	0.00	
Fe0 -	•	3.25	4.46	4.85	4.58	5.06	4.74	
MnO		. 33.31	34.95	34.43	33.04	35.16	34.40	
Mg0 🚄	•	0.33	0.07	0.09	0.04	0.05	0.06	
Ca0		4.98	4.14	4.04	• 4.23₌	4.32	4.18	
TOTAL	a ,	99.45	99 .79	99.63	98.21	101.45	99.66	
- -	ء حر م	Nun	ber of i	ons on the	e basis o	F 24 0		
Si	, ·	6.107	5.977	5.856	6.171	5.841	5.990	,
Ti		0.067	0.031	0.034	0.034	0.035	1 0.033-	
H ₄ .		0.000	0.000	0.110	0.000	0 ; 124	0.000	
4 A1	•	. 3.505	3.825	3.889	3.697	3.822	3.827	
Fe ³⁺	•	0.230	0.000	0.000	0.000	0.000	0.000	•
Fe ²⁺	.•	0.447	0.616	0.664	0.636 😽	0.685	0.654	•
, Mn. ^		4.643	4.882	4.773	4.647	4.821	4.805	,
Mg 🐶	· · · ·	0.081	0.017	0.022	0.010	0.012	0.015	
Ca ·		0.878	0.732	0.708	0.753	Õ. 749	0.739	
	• •	7		-		•	r	r
Andrad.		6.32%			- •,	a •	-	
Pyrope		1.58%	• •			•	0.26%	
Spess.		82.63%	•• •		,	. •	83 .73%	•
Hydrogross		-		•	۰. م		•	•
Gross.	6	9.47%			•	1 '	12.85%	•
Almandine	• • • •	· · · · · ·	• • •			•	3.16%	
			٠	•				

(19) Dark spessartine in sample 8-358.1 (30,32,33,34) sample 11-343.7

2 Analyses of calcites from stockwork and massive sulphide ores. Tablé IV-4a)

		•				t i i	· · · ·		
Sample Anal. no		bis-228.6 29	bis-228.6 28	.bis-228.6 22	bis-228.6 19	(a) bis-228.6 20	8-425 30	8-425 `47	
, OgM		0.09	0.08	0.12	0.10	0.06	0.19	0.09	. برد ر
cao	, . , . ,	53.86	53.63	.52.42.	52.59	50.41	54.05	53.32	
Fe0	4	0.78	0.93	1.39	1.25	1.33	0.45	0.31	•
MnO	Ľ	1:59	1.62	1.80	1.63	1.73	1.34	1.88 	
Ba0 Zn0		0.02	0.00	0.00 0.14	0.45	0.09 2.02	0.14	0.0/ 0.21	•
TOTAL	•	56.34	56.27	55.87	. 56.13	55.64	56.17	55.88	
				- L - (
MgCU3	Ð	0.19	0.1/	0.25	0.21	0, 13, 00, 00	0.40 06 40	0.19 05 10	٤,
Cacu3		- 14 - 1 26	1 50	93.5/ 2 24	93.86 2 02	89.90 2 15	, 90.40 0.73	40. 10 0 50	
MnCO3 .	c	2,58	2.60	2.92	2.64	2.80	2.17	3.05	
Baco		0.03	0	0.00	0.14	0.12	0.18	. 60 • 0	
Znco3		• 00 • 0 •	00,00	. 0.22	0.69	-3.11	· * 0.00	0.32	*******
້ພູ		100.19	100.03	99.20	. 22:66	98.28	99.95	99.32	, * ,
•		, , ,	•		, (, (, ,	. **	
		· •	Number of ion	is on the bas	sis of 2 cations	ons			
₩	6	0.004	0.004	0,006 1,000	0.005	0.003	0.009.	0.005	
ہ بے دو		0,022	0.026	0.039	0.035	0.038	0.013	0.019	•
- u		0.045	0.046	0.052	0.047	0.050	0.038	0.054	
Ba	•	000.0	, 0, 000 , 000	0.000	0.001	0.001	0.002	0.001	•
U7	•	0.000	0.000	- 0.043	0.011	100.0	0. UUU	con n	٠

Table IV-4a) Continued (Calcites)

÷.

			•.			•		
Sample Anal. no.	(a) 8-425 63	(a) 8-425 _. 50	(a) 8-425 55	(a) 8-425 51	8-446 •9	8-44616	8-446 31	
MgO	0.30	0.13	, , , ,	0.27	0.13	00.0	0.14	
CaO CaO	53.34	51.71	52.35	49.78	53.16	54.34	52.84	
Fe0.	0.53	01.1	0.58	1.35	.0.78	0.02	ľ.ľ	
Wu O	1.38	1.44	1.27	1.57	2.55	1.93	2.20	
Ba() Zn()	0.10	0.13	0.13	f.	00.0	00.0	0.00	
	, +0, 0	00.1	7.1 4	3.0/	1	ł	ŀ	
TOTAL	56.19	56,1]	56.69	56.74	56.62	56.29	, 56.89	
MgCO3	0.63	0.27	0.46	0.57	. 0.27	0.00	0.29	
cacoz	95.21	92.30	93.44	88.86	94.89	97,00	94.32	
FeC03	0~35	1.77	0.94	2.18	1, 26	0.03	2.76	
MnC03	2.24	2.33	2.06	2.54	4. ₁₃	3.13	3.56	
Bac03	0.13	0.17	0.17,	0.13	00:00	0.00	0.00	
ZnCO3	0.83	2.47	3 , 30	2,66	1	1	1	
۲. ۲.	69-69	LE: 66	100:36	. 99.93	100.55	100.16	100:94	•
•••		Number of io	ıš on the basi	s of 2 ca	tions.		• 、	
		•		,,				
Mg	0.015	0.007	0.011	0.014	0.006	0: 000	0.007	
Č.	1.916	1.879	1.882	1.810	1,900	1.945	1.883	
te L	0.015	0.031	0.016	0.038	0.022		0.048	
Ba	00.0	0.002	0,002	0.001	-000 °0	000.0	0.000	
Zn	0.013	0.040	0.053	0.092	I	1	. 1	
		,			,			

307

(a) Zincian calcites

Table IV-4b) Analyses of carbonates scattered in cherts.

Sample Anal. no	(a) S1-328.7 9	(b) S1-328.7 8	(c) S1-328.7 15	(d) S1-229.1
MgO	0.14	2.23	3,88	1.71
Ca0	52.64	13.86	2.61	3.10
Fe0	3.06	41.27	52.41	50.56
MnO	0.51	2.51	1.43	_5.46
TOTAL	56.35	59.87	60.33	60.83
MgCO ₃	0,29	4.67	8.13	3.58
CaCO ₃	93.96	24.74	4.66	5.53
FeCO ₃	4.96	66.57	84.54	81.55
MnCO ₃	0.83	4.07	2.32	8.85
Σ	100.02	100.05	99.65	. 99.52

Ions on the basis of 2 cations

Mg		0.007	0.121	0.216	0.097
Ca		1.893	0.542	01104	0.126
Fe	•	0.086	1.259	1.635	1.602
Mn		0.014	0.078	0.045	0.175
٠.		*		•	

- (a) Calcite
- Ca-siderite (b)
- Mg-siderite (sideroplesite) (c)
- Siderite (d)

309

Anal. no.	(a) 99	(a) 103	(a) 101	(a) 100	(b) ‴92	(b) 89	(b) 91	(c) 98	(c) 97	(c) 95
MgO	0.37	0.59	0.54	0.49 -	0.56	0.57	0.66	0.71	0.35	0.43
CaO	42.98	36.65	31.42	29.85	23.03	22.70	22.49	3.47	3.71	3.77
Fe0	3.23	4.01	1.37	0.86	1.01	0.50	0.51	6.16	2.16	1.73
Mn0	10.35	17.04	25.55	27.31	34.44	35.67	35.92	51.01	54.80	55.14
8a0-	0.27	0.01	.0.10	0.05	0.16	0.21	9.16	0.36	0.14	0.11
TOTAL	57.20	58.30	58.98	58.56	59.20	59.65	59.74	61.71	.61.16	61.18
MgCO ₃	0.78	1.24	.1.13	1.03	· 1.17	1.19	- 1.38	1. 49	0.73	0.90
CaCO3	76.72	65.42	56.08	53.28	41.11	40.52	40.14	6.19	6.62	6.73
FeCO ₃	5.21	6.47	2.21	1.39	1.63	0.81	0.82	9. 94	3.48	2.79
MnCO3 a	16.77	27.60	41.39	44.24	55.79	57.79 .	58.19	82.64	88.78	89.33
BaCO3	0.35	0.01	0.13	0.06	0.21	0.27	0.21	0. 46	0.18	0.14
Σ	99.82	100.74	100.95	100.00	99.9 1	100.58	100.75	100.72	99.80 ···	99.89
		5	Number	of ions	on the ba	sis of 2	cations		٤,	
Mg	0.019	0.030	0.028	0.026	0.030	0.030	0.035	0.040	0.020	0.02
Ca	1.583	1.356	1.175	1.130	0.888	0.870	0.861	0,140	0.151	0.15
Fe	0.093	0.316	0.040	0.025	0.030	0.015	0.015	0.193	0.068	0.05
Min	0.301	0.498	0.755	0.818	1.050	1.081	1.087	1.622	1.759	1.76
Ba	0.004	0.000	0.001	0.001	0.002	0.003	0.002	0.005	0.002	0.00

Table IV-4c) Analyses of coexisting carbonates in metalliferous sediments above the feitais orebody.

(a) Manganocalcite

(b) Kutnohorite CaMn(CO3)2

(c) Rhodochrosite

(a,b,c) sample 9-285

.

310

-

Table IV-4c) Continued (Carbonates in metalliferous sediments)

Anal. no.	(d) .80	(d) 58	(d) 81	(d) 67	(d) 76	(d) 84	(e) 54	(f) 53	(f) 86
MgO	0.40	0.42	0.44	0.30	0.30	0.22	, 3.28	3.40	3.66
CaO	45.75	46.42	44.45	47.98	44.50	45.79	30.46	29.21	29.72
Fe0 *	3.16	3.53	3.63	3.88	3.95	5.39	9.88	13.92	15.25
Mnû	7.69	6.48	8.30	4.52	8.46	4.84	13.75	11.03	9.22
BaO	0.18	0.21	0.21	0.21	.0.20	0.16	0.16	0.09	0.14
TOTAL C	57.18	57. 06	57.03	56.89	57.41	, 56.40	_ 57.53	57.65	57 . 9 9
MgCO ₃	0.84	0.88	0.92	0.63	0.63	0.46	6.87	7.13	7.67
CaCO3	81.67	82.86	79.34	85.64	79.43	8174	54.37	52.14	53.05
FeCO3	5.10	5.69	5.86	6.26	6.37	8.69	15.94	22.45	24.60
MnCO3	12.46	10.50	13.45	7,32	. 13.71	7.84 -	22.28	17.87	14.94
BaCO3	0.23	0.27	0.27	0.27	0.26 >	0.21	0.21	0.12	0.18
	100.30	100.20	99.84	100.12	100.40	98.94	99.66	99.70	100.44
	¢.	Nu	mber of i	ons on the	basis of 2	cations		,	
Mg	0.020	0.021	0.022	0.015	0.015	0.011	0.170	0.177	0.188
Ca	1.666	1.689	1.630	1.742	1.625	1.690	1.135	1.091	1.100
fe	0.090	0.100	0.104	0.110	0.113	0,155	0.287 0	0.406	0.440
Ma 🤳	0.221	0.186	0.241	0.130	0.244	0.141	0.405	0.326	0.270
Ba	0.002	0.003	0.003	0.003	0.003	0.002	0.002	0.001	0.002

÷

(d) Manganoan-ferroan calcite

۰, ۰

(d,e,f) sample 9-285 (in vein)

ģ

(e) Manganoan ankerite

÷......

(f) Ferroan ankerite

Table IV-4c) Continued (Carbonates in metalliferous sediments)

•	(g)	(g)	(g)	(g)	(g)	(h)	(h)	(h)	(h)
Anal. no.	42	72	52	82	<u>`51</u>	65	87	64 *	66
Mg().	1.94	1.65	1.59	1.81	1.13	2.20	1.43	1.61	1.37
CaO	2.27	2.46	2.04	2.54	2.29	1.23	2.80	0.91	0.88
Fe0	32.79	33.35	33.54	34,71	35.10	43.95	46.37	47.84	49.19
Mn0 .	24.02	23.51	23.96	21.67	23.08	14.08	° 10.86	10.54	9.36
Ba0 .	0.19	0.20	0.16	0.18	0.17	0.16	0.16	0.18	0.23
TOTAL	61.21	61.17	61.29	60.91	6 1.77	61.62	£1.62	61.08	61.03
MgCO ₃	4.07	3.46	3.33	3.79	2.37	4.61	3.00	3.37	2.87
CaCO3	4.05 p	4.39	3.64	4.53	4.09	. 2.20	5.00	1.62	(1 .57)
Fe003	52.89	53.79	54.10	55.99	56.62	70.89	7 4.79	77.17	79.34
Mnco	38.91	38.09	38.82	35.11	37.39	22.81	17.59	17.07	15.16
BaCO3.	0.24	0.26	0.21	0.23	0.22	0.21	0.21	0.23	0.30
-				٠		*			
Σ	100.17	99.99	100.10	. 99.65	100.68	100.71	100.59	99.47	99.25
	•	I	Number of t	ons on the	basis of	2 cations	-		
Mg.	0.109	0.093	0.089	0.102	0.063	0.123	0.080	0.092	0.07
Ca	0.091	0.100	0.083	0.103	0.092	0.049	0.113	0.037	· 0.03
Fe	1.032	1.053	1.059	1.098	1.105	1.378	1.459	1.528	1.57
Nn ·	0.765	0.752	0.766	0.694	0.736	0.447	0.346	0.341	0.30
Ba	p: 03	0.003	0.002	0.003	0.003	0.002	0.002	0.003	0.00

(g) Manganosiderite

(h) Oligonite

2

(d,e,f,g,h) in vein, sample 9-285

2

•

Table IV-4c) Continued (Carbonates in metalliferous sediments)

^

Anel. no.	(1) 126	(1) 124	(1)	(I) 122	(F]	(f)	(f) 113	(1)	(<u>]</u>) 105	(1)	(K) 102	(1) 102
Ng0 .	0.29	0.32	0.48	0.20	0.25	0.51	0.54	0.38	0.41	0.38	0.19	0.43
Ca0	41.45	40.52	40.03	40.13	40,56	12.67	. 11.66	11.84	11.50	11.63	8.73	30.89
FeO	- 1.45	1.64	0.84	0.78	0.20	0.64	0.29	0, 33	0, 58	0.31	1.03	1.90
0	14 :5 0	15.47	15.94	16.81	16.93	46.64	47.78	48.23	48.30	48.42	50.93	25.29
Ba0	0.0	0.01	00.0	0.00	0.0	0.06	. 0.07	0.09	0.13	0.07	0.20	0.05
TOTAL	57.69	57.96	57.29	57.92	57.94	60.52	60.34	60.87	60.92	60.81	61.08	58.56
HgCO3	0.61	0.67	1.01	0.42	0.52	1.07	1.13	0.80	0.86	0.80	0.40	0.90
caco ₃	73.99	72.33	* 71.45	71.63	72.40	22.62	20.81	21.13	20.53	20.76	15.58 [°]	55.14
FeC0 ₃	2.34	. 2.65	1.35	1.26	- 0.32	1.03	0.47	0.53	0.94	0.50	• 1.66	3.06
MLC0_	23.49	25.06	25.82	27.29	27.43	75.56	77.40	78.13	78.25	78.44	82.51	°. 40.97
Baco ₃	ł	0.01	,	, ,	·	0.08	60 0	0412	0.17	0.09	0.26	0.06
E	100.42	đ00.72	99.64	100.54	100.67	100.35	99.91	17.001	100.74	100.59	100.41	100.14
		·	Numt	ber of ion	Number of tons on the basis of 2		cations	•				. 1
, F	0.015	0.016	0,025	0.010	0.013	0.028	0.030	0.021	0.022	0.021	.011	0.023
5	1.523	1.488	1.484	1.478	1.490	0.499	0.462	0.466	0.453	0.459	0.348	1.116
Fe	0.042	0.047	0.024	0.022	0.006	0.020	0.009	0.010	0.018	0.010	0.032	0,056
£	0.421	0,449	0.467	0.489	0.492	1.452	1.498	1.501	1.505	1.510	1.606	0.755
ä	•	0.000	1	1	•	0,001	0.001	0.001	0,002	0.001	0.003	0.001
1	Manganocalcite	σ.				(£)	Calcic rhodochrosite	idochrosit				
(j) Calcfc	Calcic rhodochrosite	te				(1)	Manganoan	calcite.	Manganoan calcite, nearly kutnohorite	nohorite		,
I'chi ain ain ain ain an	1.001-0 21		٦			(1 1 1)) comple ll-343.1	1.040-1				

19 2010

ł

3 1,5

٦.

						<u>-</u>		
Sample Anal. no.	(a) 15.285.6 76	(a) 15.285.6 77	(a) 15.285.6 91	(b) 15.285.6 74	(c) 15.285.6 94	(c) 15.285.6 73	(c) 15.285.6 90	(d) 15.285.6 95
MgO ·	14.64	14.53	13.60	9.35	5.58	7.07	5.53	11.73
CaO	29.42	30.01	29.41	26.66	7.17	5.64	6.32	29.12
Fe0 ¹	3.83	4.00	4.58	12.33	45.50	45.48	46.58	4.18
MinO	6.82	6.55	7.11	7.33	1.72	1 .56	1.09	10.50
BaO	0.00	0.00	0.,00	0.00	0.16	0.07	0.09	0.01
TOTAL	54.71	55.09	54.70	55.67 -		59.82	59.89	55.54
MgCO ₃	30.69	30.45	28.51	19.60	11.70	14.82 •	11.59	24.59
CaCO,	52,61	53.57	52.20	47.59	12.80	10.07	11.28	51.98
FeCO3	6.18	6.45	7.39	19.89	73. 39	73.36	75.59	6.74
MnCO3	11.05	10.61	11.52	ł1.87	2.79	2.53	1.77	17.01
BaCO3		-	-	-	0.21	0.09	0.12	0.01
٤ .	100.43	101.09	99.9 1	98.95	100.88	100.86	100.34	100.33
	•	Number	of tons on	the basis o	of 2 cations	6	•	
Ng	. 0.700	0. 69 1	0,658	0.472	0.299	0.377	0.299	0.573
Ca	1.012	1:026	1.023	0.969	0.276	0.21 6	0,246	1.022
Fe	0.103-	0.107	0.124	0.349	1, 369	1.259	1.421	0.134
Min ,	0.185	0.177	0.195	0.210	0.052	0.047	0.033	0.291
8a ,	0.000	0.000	ö. 000	0.000	0 [°] . 002	0.001	0.001	0.000
				• •				

Table IV-4d) Analyses of carbonates in deeply altered PS phyllites and tuffs above the Feitais orebody.

(a,d) Ankerité

- (b) Ferroan ankerite
- (c) Mg-Ça-Mn-siderite

- (a,b,c) replacing albite
- (c,d) replacing chlorite

Sample Anal. no.	(d) 15.285.6 96	(e) 15-285.6 48	(e) 15-285.6 51	(e) 15-285.6 52	(f) 15.285.6 55	(f) 15.285.6 56	(g) 8-358.1 18	(g) 8-358.1 19
MgQ -	12.45	12.53	12.21	12.68	0.09	0.11	0.50	0.38
CaO	29.58	29.19	29.08	29.19	54.07	55.25	44.13 -	46.21
Fe0	3.60	3.91	3.71	3.83	0.20	0.20	`0. 09	Q.56
Mn0	9.48	9.43	10.42	9.47	0.25	0.32	12.04	9.98
BaO	0.00	0.00	0.01	* 0.00	0.07	0.02	0.00	0.12
TOTAL	55.11	55.06	55.43	55. 17	54.68	55.90	56.76	57.25 '
MgCO ₃	26.10	26,26	25.29	, 26.58	0.19	0.23	1.05 ′	0. . 80
CaCO_	- 52.80	52.10 ⁵ "	51.91	52.10	9 6 .51	98.62	77.87	82.48
FeC03	5.81	6.31	5.98	6.18	0.32	0.32	0.15	0.90
NnCO3	15.36	15.28	16.88	15.34	0.41	0.52	19.50	16.17
BaCO3	0.00	-	0,01	-	0.09	0.03	* 0.00	0.15
Σ	100.06	99.95	100.38	100.20	97.52	99. 72	9 9.4 7	100.51
	,		Number of	ions on the	basts of 2	cations		
Mg ·	0 .606	0.610	0.5 94	0.516	0.005	0.005	0.026	0.01
Ca 🛸	1.034	1.022	1.017	1.019	· 1.982 ;	1.980	1.622	1.67
Fe .	· 0.089	0.107	´ 0.101	0.104	0.006	0.006	0.003	0.01

Table IV-4d) Continued (Carbonates in PS phyllites and tuffs)

Ĵ

(d,e) Ankerite

Mn.

Bæ

(Rare) calcite < (f)

0.262

0:000

0.261

0.000

0.288

0.000

0.261

0.000

0.007

0.001

Manganocalcite (g)

٠<u>.</u>-

 $\frac{1}{2}$

0.286

0.002

ő.350

0.000 .

0.009

0.000

Sample Anal. no.	(g) 8-358,1 23	(g) 8-358.1 20	(h) 6~105.1 66	(1) 6-105-1 ~ 70	(j) 6-105.1 92	(k) 6-105.1 74	(k) 6-105.1 93	(k) 6-105.1 73
MgO -	0.44	0, 55	11.88	5.10	2.86	1.71	1.44	1.80
Ca0 '	44.46	43.74	30.96	1.65	3.50	6.46	5.95	3.90
Fe0	0.64	0.95	2.89	22.02	13.10	6.56	6.89	8.55
iņ0	11.38	12.11	9.32 •	31.48	40.35	45.77	45.06	46.57
BaO	0.05	0.15	0.01	0.16	0.04	0.07	0.08	0.16
(n0	-		0.00	0.05	0.04	0.20	0.00	0.14
TOTAL	56.97	57.50	55.06	6 0.46	59.89	60.77	60.42	61.12
lgC0 ₃	Q.92	1.15	24.90	10.69	5.99	3.58	3.02	3.77
່າເວັ້	∘ 79.36	78.08	55.26	2,95	6.25	11.53	10.62	6.96
eC03	1.03	1.53	- 4.66	35.52	21.13	10.58	11.11	13.79
In CÔ ₃	18.44	19.62	15.10	51.00	, 65.37	74.15	74.62	75.44
aC0, ,	0. 05	0.19	0.01	0.21	0.05,	0.31	0.10	0.21
nC0 ₃	-	-	0.00	0. 08	0.06 -	0.09	0.00	0.22
	99.82	100.57	99.94	100.43	98.85	100.24	99.47	100.39
,		- N	umber of io	ns on the ba	asts of 2 çi	ations		-
g	0.022	• 0.028	0.579	0.279	0.160	0.095	0.080	0.100
a	1.629	1.594	. 1.094	0.065	0.141	0.257	0.239	0.156
e .	0.018	0.027	0.079	0.675	n 0. 412	0.204	0.216	0.267
h j	0.330	0.349	0.258	0.978	1.285	1.439	1.463	1.471
a	0.001	0.002	0.000	0.002	0.00F	0.001	0.001	0.002
in .	_	_	0.000	0.001	0.001	0.005	0.000	0.004

- Table IV-4d) Continued (Carbonates in altered PS phyllites and tuffs)

(1) Fe-Hg rhodochrosite

(j) Fe-rhodochrosite

(k) Rhodochrosite

316

0.021

0.000

0.044

0.000

4

0.022

0.000

Sample Anal. no	(1) 15-330.2 129	(1) 15-330.2 130	(1) 15-330,2 134	(1) 15-330.2 - 136	(1) 15-330.2 138	(1) 15-330.2 139	(1) 15-330.2 141	(1) 15-330.2 142.
Mg0	0.18	0.14	0.20	0.16	0.18	0.16	0.40	0.09
CaO	53.69	54.79	51.59	54.50	54.83	54.77	53.06	54.97
Fe0	0.53	0.56	0.20	0.62	0.44	0.53	1.27	0.98
Mm0	1.30	1.13	4.83	1.06	0.86	0.77	1.57	0.75
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
TOTAL	55.70	56.62	56.82	56.34	56.31	56.23	56.31 _~	56.79
MgCO3	0.38	0.29	0.42	0.34	0.38	0.34	0.84	0.19
CaCO	95.84	97.80	92.09	97.28	97.87	97.76	94.71	98.12
Fe003	0,85	0.90	0.32	1.00	0.71	0.85	2.05	1.58
MnCO	2.11	1.83	7.82	1.72	1.39	1.25	2.54	1.22
BaC03		-	-	-	•	-	0.01	
Σ .	99.17 *	100.83	100.65	100.34	100.35	100.20	100.16	101.12
•			Number of 1	ions on the	basis of 2	cations		•
Hg	0.008	0.007	0.010	0.008	- 0.009	0.008	. 0.020	0.004
Ca	1.939	1.946	1.848	1.945	1.955	1.956	1.900	1.947
Fe	0.015	0.016	0.006	0.017	0.012	0.015	0.035	0.027

Table IV-4d) Continued (Carbonates in altered PS phyllites and tuffs)

5

(1) .Calcite in PS Formation tuff.

Mn

Ba

0.037 0.000

1

0.032

0. 137

0.000

0.030

0.000

0.024

0.000

Table IV-5. Analyses of sphelerites from the Feitais ore environment.

Sample		2	of s-161 (a)				— b'	Is-163.3	(a) <u> </u>	11-3	51.9(a)
Anal. no.	19	20	21	22	23 ^		11	12	13	14	15
s	32.42	. 33.43	33.46	33.45	33.31	•	33.09	33.16	33.04	33,49	33.11
Ma	0.00	0.00	0.00	0.00	0.00	ŧ	0.00	0.00	0.00	0.00	0.01
Fe	4.61	4.27	4.43	4.20	4.44		2.02	2.11	2.60	0.89	0.72
Zn	61.86	62.09	61.51	61.67	62.31		64.69	64.87	64.53	66.78	66.62
C4 .	~ 0.00	0.05	0.00	0.02	"0+ 02		0.02	0.06	0.15	0.08	0.00
TUTAL	98. 8 0	39.04	99.38	99.34	100.07		99.82	100.20	. 100. 32	101.24	100.46
FeS mole 5	8.02	7.45	ת.ו	7.38	770		3.63	3.67	4:50	1.53	1.25
					j	, ,			,		·
		J.			5				_		

Sample	11-35	1.9(a)		<u> </u>	61s-16	8.5(b) —			b1s-18	0(c)
Anal. no.	16	17	5	11	12	13'	85	86	66	'n
S	33.61	33.18	32.90	33.08	33.27	33.31	34.19	34.26	33.26	33.2
Pin	0.60	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Fe	1.40	∕™≇	1.85	2.09	1.75	1.68	2.21	2.12	3.72	4.0
2n '	64.,36	64.9	64.41	64.00	64.36	64.58	64.06	62.91	62.50	62.6
Cal	0.00	0.07	0.02	0.10	0.10	0.16,	0.00	0.00	0.00	ę. o
FOTAL	99.37	99. 6Q	99.18	99.2 7	99.52	199.78	100.46	99.28 ⁴	99.48 ,	99.9
Fas main \$	2.48	2.42	3.25	3.66	3.08	2.95	3.88	3.79	6.51	7.0

		-

Sample	8	1s-180(c))			b	1s-187.2(b) —		
Anti. ne.	73	- 74	78	\$	11	19	24	26	17°	18
\$	33.63	33.37	33. R	33.32	34.09	33.63	33.53	33.30	33.36	33.15
Ha-	0.01	0.80	0.00	0.00	0.09	0.00	0.00	. 0.00	0.01	0.00
fe	4.04	3.57	3.34	1.71	1.99	2.14	, 1.95	1.78	3.41	· 3.56
Zn	62.94	12.77·	63.20	64.40	64.ZT	64.86	64.75	64.07	42.42	43.01
64	9.99	0.00	0.02	0.10	0.00	ु 0.00	0.00	0.02	0.02	0.09
TOTAL .	100.62	99.71	100.38	19.42	100.29	100.63	109.22	99. 17	99.21	19.7 2
FeS male 5	6.99	6.24	5.82	3.01	3.50	3.72		3.15	\$.01 [*]	6.20

د : س

ŗ.

•

*

÷

. .

.

•

Amal. no. 22 (b) (20(d)) 42 41 44 45 46 47 27 3 S 33.40 33.41 33.46 33.14 33.60 23.24 33.53 39.34 33 In 0.00 0.0	Sampio 🕤	615-187.2	b1 s-220.55			8365	.25(b) -			8-418.	7(c)
Nn 0.00	Anal. no.	22(b)	(20(d)	42	41	44	45	45	47		30
Fe 3.80 2.06 0.57 0.59 0.77 0.86 0.72 0.52 3.79 3 Za .63.35 63.84 65.16 65.40 64.53 65.23 66.55 63.16 62 Cd 0.02 0.06 0.23 0.06 0.00 0.00 0.03 0.11 0.00 0 TOTAL 100.57 99.43 99.36 99.31 96.36 99.23 100.71 100.28 99	s -	33 🚚	33.49	33.41	33.46-	33, 14	33.60	33.24	33.53	33.34	33.48
Cd 0.02 0.05 0.23 0.06 0.00 0.03 0.11 0.00 0 TOTAL 100.57 99.43 99.36 99.31 96.36 99.23 100.71 10b.28 99	HL Pr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Cd 0.02 0.05 0.23 0.06 0.00 0.03 0.11 0.00 0 TOTAL 100.57 99.43 99.36 99.31 96.96 99.23 100.71 100.28 99	Fe	3.80	2.05	0.57	0.50	0.77	0.86	0.72	0.52	3,79	3.66
TOTAL 100.57 99.43 99.36 99.89 99.31 96.96 99.23 100.71 100.28 99	2 1	-63.35	63.84	65.16	66.87	65.40	64.53	65.23	66.55	63.16	62.64
	Cd: _	0.02	0.05	0.23	0.06	0.00	0.00	+ 0.03	ò.11	0.00	0.00
	TOTAL	100.57	99.43	99.36	91.89	99.31	96.96	` 99.23	100.71	ົາ ປະສ ຼ	99.90
F65 MD16 5 6.56 3.62 1.91 0.485 1.36 1.52 1.28 0.91 4 6.56 6	FeS mile S	6.56	3.62	1.ព	0.88	1.36	1.52	1.28	0.91	6.56	6.40

۰.	•		' u			,	•	.	,	* ,*
Sine le		8-41	8.7(c) —			*	8-41	5(c)	-	
Anel. no.	33	* 37	40	42 '	15	21	23	.25	26	27
s	33.59	32.11	33.21	33.72	33.89	33.77	33.68	13.67	34.02	33.9
Ma 🔬	0.00	0:02	0.02	0.03	0.00	0.04	8.00	0.00	0.03	. 0.0
Fe	3.81	3.57	5.64	5.64	6.29	5.99	6.05	5.75	5.90	6.2
Zn	63.15	63.54	61.86	61.66	60.24	60.66	59.5Z	60.21	40,05	60.3
C#	0.00	0.00	0. 00	0.00	0.07	0.00	6.00	0.15	0.04	0.0
TOTAL	100.55	'99.23	100.83	101.05	100.49	100.45	99.25	99.79	1,00.05	100.6
FeS mile S	6.60	6.17	9.64	9.67	10.86	10.35	10.63	10.04	10.30	10.8

· ·

•				•	*	-				•	· -
,		•	. •						1	-	
ample mel. np.	8-425 32(<u>r</u>)	50 ,	51	* 8-44 52	53	56	-30	70	s-228.6(e * 80)))	•••
, <u> </u>	33.60	34.01	33.35	34.15	33.47	⁶ 33.69	34.04	~ 33, 38 ·	11.13	33.3	•
i.	0.00	9.00	0.00	0.90	0.00	0.00	0.00	0.90	0.00	Ó. 00	
e	- 6.07	4.79	\$.01	4.66	4.79	4,48	4.53	2.34	2.43	1.45	
in in the second second second second second second second second second second second second second second se	60.32	10.94	6.07	61.66	40.78	61:04	67.51	64.01	- 63.60	63, 16	
4	0.15	´ 9.00	° 0.00.	0.00	9.00	0.00	0.60	0.00	ơ.00	0.00	
TOTAL '	100.24	99.74	59.4 2	100-52	99.43	, 19. 20	'100.08 ¹¹	99.74	99.63	31, 58 `	
fas mala 1	10.52	1.43	8.76	8.18	8.45	7.91	7.94	4.10	4.20	4.34	
1				·	•						

Table IV-5. Continued (Sphalbrites)	
-------------------------------------	--

٤.

<u>نې</u> د کې

Sample			1-228.6		·	— b1s-23	14.3(a) —		21-76	i1.2(e)
Anal. no.		82	83		28	29		31	6	7
s	,	34.03	33.5Z	33.71	33.65	33.27	33.55	33.21	33.51	32.8
7h		o. co √	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00
Fe Y	¥	2.54	2.38	2.39	1.75	1.81	1.38	1.59	2.11	2.01
Za		63.46	63.18	63.15	64.52	64.54	64.65	63.93	64.23	64.05
C4	, *	0.09	0.90	.0. 04	0.18	0.16	0.23	0.17	0.15	0. 13
TOTAL		100.13	99 .07	99.29	100.10	99.80	99.8 1	96.92 .	100.01	99. 14
FeS male 1		.4.47	4.22	4.24	3.07	3.17	2.43 *	2.82	3.70	3.54

Q

319

Sample		21-8	00.\$(e)	<u> </u>		
Antie no.	22	33	. 34	35		
5 .	33.30	33.44	33.30	33.33		
Ma `	0.10	0.05	0.01	0.04	,	
Fe	° 1.48	. 1.19	1.12	1.04		
Zn .	64.52	65.80	4.69	° 65.89		
C4	0.15	0.15	0.09	0.12		
TUTAL	99.55	100.63	99.20	100.42		
FeS mole 1	2.61	2.07	1.96	1.81	`	

(a) In churts and jespers
(b) In medium grade Zn-Pb massive are (2n+Pb<7%) <-
(c) In high grade Zn-Pb massive are (Zn+Pb>7%)
(d) In compor rich massive are
(e) In stachmark ares

Þ

APPENDIX V

WHOLE ROCK GEOCHEMICAL DATA ON ORE ZONE ROCKS INCLUDING HANGING WALL CULM GROUP SEDIMENTS

V-1°. Stockwork zone rocks and massive sulphide ores
V-2. Siliceous and metalliferous sediments (Jasper unit)
V-3. PS Formation phyllites, tuffites and tuffs

V-4. Gulm Group greywackes and shales

				~				
-1-	w	1.1	يد [با عملا	-	-	alternat	Mine	+

		b1s-262	15-412	b1 5-306. 1	8-363.3	8-363.4	bis-254.5	8-499.7	8-457.1	8-365.
510 ₂		67.38	63.69	69.19	37.77	49.67	55.90	47.85	64.14	57.3
T102		0.10	0.21	0.10	0.36	0.32	Q. 04	0.06	ð. 10	0.27
A1203		11. 01	16.20	9.96	17,11	25.89	3.78	5.88	7.88	22.57
Fe.,0.,	•	7.55+	4.84*	1.34*	19,60*	4.60*	-			0.3
Fe0		•		:	•		21.72*	21.60°	14.70*	2.6
MnG		0.05	0.03	0.07	0.10	0.05	0.01	0.14	0.01	0.0
Mg0		0.50	2.86	0.88	3.22	2.71	0.18	1.42	ND	2.9
CaO		0.67	0.80	6.80	, ND	0.30	ND	2,30	NO) No
BeQ ·		0.109	0.09	0.21	1,17	2.22	0.18	0.05	0.06	`
Ne ₂ 0		6.83	3.09	1.68*	1.56	1.91	0.25	0.23	°0.36	0.9
ĸįČ		0.09	2.46	1.91	2.91	5.15	0.82	1.00	1.64	4.9
P205		ND	ND 14	ÎND	ND	0.02	ND	. HD	ND	0.03
LOI		1.73	4.52	5.98	14.84	6.03	15.73	•15.25	9.79	4.7
TUTAL		96.00	98.79	98.12	90.64	98.87	98.53	95.91	98.68	98.71
5%	·	5.69	3.08	0.32	14.64	2.58	16:77	16.77	11.29	1.8
Rb -		14	155	140	1 79 j	29 3 ⁴	4 7	50	72	315
Sr	•	· 127	74	129	178	266	• 7	25	34 -	186
54	1	810	766	1859	10538	19916 '	1596	464	527	17972
Sc		7.7	15.0	- `	11.0	11.0	- `	-	6.5	12.0
Y	7	, 41	80	69	40	33	31	29	34	62
Zr		151	264	53	252	225	68	93	131	356
HF		5	9	•	7	10	-	-	4	9
Nb	•	· 16	17	17	9	100	12 `	30	21	` 6
Te		24	5	-	3	` 3	í •	•	42	្មា
Cr		2	5	4	10	9	4	11	6	' 5
Co		93	22	. 36	46 .	12	96	56	72	14
Nf 1		. 5	10	18	5	17	1	ND	2	13
Ĉu		28	ND	HD	43	27	66	87	1569	41
Zn -		93	21	36	ាទា	53	9567	27	197	69
Pb		43	33	19	62	XD	93	41	142	ND
Th		• 11.0	23.0	•	14.0	°.			7.6	22.0
La		O .	71.5			ċ		•		
Ce			142.7							
Nd			72.9						-	
Set			15. <u>9</u>						•	
Eu			2.5			1				
64			14.7							
Dy			15.7 -				1			
Er			10.6							
Yb			8.7				•	ŝ		

•* Total Ire

Table Y - 1b) - (Ovter stocknork rocks	(Quartz-sericita-	sulphides)
-------------------	-----------------------	-------------------	------------

		8-508	15-376,6	9-524.7	bis-259.2		bis-236.3	b1s-229	8-367.9	8-617	bis-230.5
102	•	79.07	73.48	68.62	74.53	61.57	69.35	30.40	66.00	54.53	17.88
102		0.10	0.14	0.18	0.14	- 0.06	0.29	0.27	0.17 ·	0.30	0.17
12 ⁰ 3		8.44	6.98	15.27	, 12.08	8,12	15.30-,	14.68	15.44	25.91	9.68
م ي د (5	0.54		ND -			1		,	,	1
e0		5,73	5.97*	1. 59	3.89*	14.90*	2.96*	19.41*	5.14*	4.00*	40.44*
nO		0.06	0.25	0.07	0.02	0.01	0.02	0.27	0.01	0.06	0.02
9 0		1.06	1.18	2.05	0.47	ND	0.49	0,45	. 0.93	1.77	0.25
a0	•	ND .	1.89	1.70	10	10	HQ.	, 7:69	ND .	ND	ND
a0	•	0.10	1.06	0.30	0.34	0.45	0.93	1.23	1.68	0.07	0.50
a ₂ 0		0.19	0.21	0.43	0.32	0.21	0.42	0.29	0.34	0.34	0.13
20		1.33	1.17	4.57	3.11	1.84	3.83	3.24	3.77	6.85	2 , 19
z ⁰ 5		ND-	ND -	0.01	HD	ND	ND	NØ	0.02	0.01	ND
01		2.19	6.67	4.95	4.01	9. 96	3.98	19.14	4.34	6.38	28.59
OTAL .	,	98.81	98.66	99.52	98.91	97.16	97.59	97.10	97.84	100.22	99.84
x_	`	1.70	3.30	0.63	2.77	11.59	2.42	13.10	3.58	3.25	28.90
`		62	58	210	141	84	151	131	231	317	93
- r	•	21	39	30	33	32	73	190	95	40	37
4		869	9462	257	3078	4004	8296	11012	15078	645	4534
- c	-	-		-	-	-		6.6	7.5	22.0	-
-		52	25	80	57	26	42	49	25	99 [°]	26
r '		146	190	239	211	139	287	296	227	317	170
7		-	-	-	-	-	-	2 34 7	6	367 15	-
b		23	1	22	16	10	5	Ś	ND	29	.17
		-				-	•	6	· 6	29 10	•
r			2	16	10	· 2	7	14		ND	,
0		43	56	17 .	49	*	37	55	18	13	82
1	•	4	6	3	18	7	46 ·	13	11	9	еж. 1.
	•	39	84	16	43	356	6	62	57	• 7	439
u(ppb)		-		-		· -		••	3/ -		439
n i		20	413	263	660	576	6102	372	23	106	265
b		9	103	28	693	59	1328	895	1	42	1049
- h		-		-			-	13.0	14.0	25.0	-
4				,	•			·		66.1	
• •		•	•		-					138.6	
4	,		•				•			71.6	
		-			-	· ·				14.7	
'n	•		,							2.1	
d 🔍									,	12.0	
y										11.9	
r										7.5	
b .									•	7.2	
24		· .•	•								
2 ⁺ /2Fe		0.93	L	1.00							

323

Table V - 1b) - Continued (Outer stockwork rocks)

,

	11-422.2	8-370	NF-5	21-696.1	21-689.2	15-409.3	21.793.2	b1s-250.
10 ₂	\$5.39	74.91	60.78	68.74	73.64	60.18	74.77	57.11
10, .	0.41	0.06	0.23	, O. 14	0.16	0,18	0.15	0.06
1 ₂ 0 ₃	18.92	4.81	12.21	11.88	13.49	16.71	13.20	6.29
a ₂ 0 ₃	ND .	ND			0.13		0.72	
e0	6.77	2.44	11.66*	7.80*	1.97	3, 18*	Z.82	21.07*
mû	0.18	0.22	0.05	0.06	0.03	0.07	0.04	0.07
igû	1.77	1.09	0.58	0.72	2.33	3.63	1.44	0.81
a0	0.22	5.36	ND	ND	NO	3.44	NO	HO
a0	2.88	1.21	2.13	0.27	0.11	0.19	0.06	0.11
a ₂ 0	0.15	ND	ND	MD	NO	: 10	ND	ND
ί _χ ῦ	3.42	0.79	2.10	3.16	3.54	4.25	3.13	0.54
2 ⁰ 5	0.04	ND	MD	ND	10	ND	ю	10
01	8.13	· 7.33	8.26	5.87	3.26	7.41	2.55	12.33
UTAL	98.26 -	58 .22	95.88	98.64	98.66	99.25	98.88	89.39 j
3	1.79	2.01	7.95	3.30	0.62	1.68	0.70	13.15
) (),	127	59	92	160	191 -	237	131	31
ŕ	51	175	56	16 .	13 /2	36	16	12
2	25830	10903	19036	2413	1017	1657	572	1020
6	-	2.8		-	12.0	14.0	-	-
	64	ND	22.	68	้าน	83 5 5	76	29 *
r	629	100	185	196	219	233	205	90
1	-	2	-	-			۹.	-
•	980	80	30	15	21	17	2 1	10
a	-	7	-	-	6	5	-	
,	4	11	3	13	8	8	5	` 9
0	45	62	31	43	16	13	27	1 81
1	12	13	32	š	13	17	8	NC
	41	30	40	25	XD		6	1106
w(ppb)	-	140	-	_	•			
A	2122	369	12	119	#9	80	47	272
b	711	149	42	59	17	12	49	95
- h	•	5.8	-	-	15.0	16.0	· •	-
A						· ·		
4	·			1				
ld .				· · ·		•		
•		•		,				
a								
4								• ,,
V								v.
r								۰.
•								
a ²⁺ /zFe	1.00	1.00	•		0.96		0.81	

Table V - 1c) Stockwork rocks (Quartz-chlorite-sulphides).

	21-775.6	21-711.5	8-506.3	15-382	21-735.9	8-511.1	21-721.2	b1s-240.6	15 390	b1s-248.3
510 ₂	72.94	75.88	66.50	,25.82	52.62	75.15	83.29	44.61	69.18	69.94 ·
r102	0.11	0.07	0.11	0.48	0.13	0.08	0.05	0.09	0. İ1	0.04
N1203	9.84	7.45	10.66	22.72	11.95	7.39	4.34	8.17	10.45	4.89
·•_203	0.73	0.62	1.05		ND	0.86	0.07		0.91	
FeÖ	6.44	8.14	10.82	19.69*	22.20	11.22	6.83	29.69*	6.70	15.76+
tn0	0.09.	0.08	0.13	0.45	0.40	0.14	0.04	0.16	0.16	0.08
1 g0	5.96	3.10	5.37	17.12	3.50	1.24	2.04	1.60	8.38	0.64
240	ND	ND	ND	NO	ND	NO	ND	ND	0.25	ND
la0	0.13	0.11	0.05	0.19	0.04	HD	0.04	0.06	0.01	0.03
ia_ 0	ÌND	ND	ND	ND	ND	ND	ND	, ND	ND	ND
ړه	0.54	0.27	0.24	0.39	0.13	0.07	10	NO	0.05	ND
205	- ND	ND	ND	ND	ND	ND	ND	ND	ND	' ND'
_01	. 3.59	2.58	3.96	11.60	8.42	2.49	1.82	12.76 ₄	4.86	6.78
TOTAL	100.27	98.30	98.86	98.46	99.59	98.64	98.52	97.14	100.09	97.16
51	0.11	0.40	1.39	1.58	4.27	0.48	0.51	13.29	0.41	7.13
b `	31	22	18	27	13	10	6	14	5	12
ir	3	3	10	13	6	4	1	4	4	6
la internet interne	1123	. 999	463	1687	317	\$7	392	522	72	306
ic	-	•	-	10.0	11.0	r 5.6	-	6.7		(+
1	59	2	34	100	65	37	28	40.	65	- 24
Lr in a	158 -	109	161	419	, 185 _	125	88	136	154	84
17	-	-	•	14	7		-	3	-	-
1	16	10	13	16	17	16	15	12	14	21
fa ,	-	-	-	2	1.	17		7	•	· -
Cr	ND	ND	10 .	.9	3	13	3	· 11	7	3
. o	37	56	64	54	69	81	. 81	116	29.7.	93
E1	ND	NO	ND	11	ND	ND	ND	ND	· 10	HD
Cu	27	33	2766	97	153	37	121	1025	37	563
lu(ppb)	•	-	•	-	-	-	-	.		-
La	1 72	377	9 1	2685	251	- 46	98	231	583	91
	26	68	ND	237	45	ND .	្វារ	37	46 🕓	57
(J)	-	-		19.0	12.5	•	-	. 8.2	•	
. .	·			53.4	15.9			¢.		
Ce				114.3	36.0					
				61.6	21.1					
Se .	•			13.3	4.7					
Eu				T.76	0.71					
94	-			12.6	3.7					
By				14.5	-		, <i>'</i>			
Er				10.19	2.8		•			
Yb -			-	9 .1	- 3.6			'	,	
Fe ²⁺ /1Fe	0.91	0.94	0.92		1.00	0.94	0.99			

* Total from expressed as FeO

Table V/- 1c) Continued (Stockwork rocks)

_/		21-738	21-756.5	8-504.4	b1s-246.5	8-466.1	8-479.5	8-483.5	21-734	21-778	21-800
510 ₂		76.77				44.38		•			
10 ₂		0.04	ଂଶ .32 ୦.14	68.11 0.10	69.55 0.09	44.58 0.10	52.18 0.14	35.52 0.14	67.54 0.09	63.48 0.11	30.08 0.26
1.0		5.33	11.59	8.73	8.07	8.04	11.18	13.08	7.96	10.53	21.17
1 ₂ 0 ₃	•	0.28	1.07	a./J	0.97	a. va	FT. 10	13.00	/.98	-0.71	1.62
2 ⁰ 3		8.74	13.99	11	15.08	28.33*	20.91 *		14		6.49
wu Mû			0.14	11,92* * 0,12		. 0.12	-	27.64-	14.86*	10.66	
		0.43 1.72	6.86	4.73	0.13 1.73	3.79	0.25	0.34 5.23	0.27	0.21	0,47
90 a0		1.72	6.000 HD			3./9 ND	4.346 ND		3.13	8.76	27.72
aC aC		0.02	0.04	0.04 0.01	NO	ND ND		1 ND	ND	ND.	0.56
					ND		ND	NO	ND	ND	ND .
a ₂ 0		ND	ND	.10	ND	NO	ND	ND	ND	MD	HD
zŌ		ND	80	ND	ND	ND	10 9.	HD -	ND	ND	ND
2 ⁰ 5		ND .	§ ND	ND	10	HD-	NO	NO .	. ND	ND	NŬ
01	•	4.21	4.33	3.69	3.63	12.69	6.94	9.21	4.93	5.36	12.12
OTAL		99.3 1	99.47	97.45	99.25	97.46 \	96.57	91.16	98.78	99.82	100.49
x	1	0.81	ND	2.13	1.44	13.96	4.27	8.62	2,47	1 .70	° 10
b		5	7	7,	5	7	5	5	3	' ND	80
r		29	2	4	1	2	ND	3	ND	3	12
8		158	371	129	5Q Ü	ŅD	49	31	19	11	ND
6		-	•	6.7	6.8	6.6	8.1	•	•	-	18.0
		27	67	47	46	37	51	53	43	60	132
r"		72	202	148	144	143	186	143 -	134	170	314
H f			•	5	5	5	6	-	-	· •	10
b		7	. 16	14	12	118	17	23	' 11	` 5	24
`a		-	- 1	15	12	17	15	-	-		3
r		~ 4	1	11	14	10	9	12	2	'ND [°]	16
0		95	66	n	\$3	96	84	90	π	42 '	25
1		ND	HD	ND	10	10	10	NO.	ND	- AD	3
u		120	10	3214	407	431	4818	1 725 9	971	45	HD
u(ppb)			-	32	• *	• •	109		•	-	-
R		168	319	56	128	100	119	237	251	1032	1056
b .		16	23	19	ND	67	42	67	36 -	3016	740
'n		-		8.3	7.9	7.0	10.0	-	•		21.0
a		• • • •		38.9			46.9				163.8
4				73.7			86.7				. 290.3
4		•		36.1			41.9				133.0
8		`		7.9			9.1				25.2
4	•			1.03			1.24				2.3
d				7.3			8.5			۰.	16.5
y j	,			5.8			7.5				10.3
r '				3.5	•		4.7		•		7.1
15			^°	4.0			5.0	-			9.6
24/1Fe		0.97	0.9		0.96				•	0.94	0.82

Table V - Id)	Hessive	sul phide	ores.
---------------	---------	-----------	-------

(*)	b(s 168.5	bis 180	b1s 167.2	bis 196.7	'bis 201.7	8-369.25	4-369.8	8-371.1	8-384.5	8-397.3
Cus .	0.52 *	0.19	0.16	0.22	0.12	0.12	0_12	0.13	0.13	0.11
Zn	. 3.79	10.24	2.60	4.53	2.03	3.56	3.56	4.02	0.36	2.83
Pb	3.07	4.79	0.63	2.23	0.15	2.90	2.90	1.82	0.15	1.65
As	1.05	0.27	Q. 41	1.09	0.14	0.86	Q. 88	1.05	0.88	1.17
52	35.05	36.56	19,86	-44,16	52.00	. 39.11	26:80	36.57	50.46	30.39
Sr p pm	· •	13	112	23	,	5	129	20	27	221
la	567	365	2545	<1 ·	<1	326	1229	2300	2730	59300
śc	<0.5	< 0.5	-	· _	0.2	0.4	<0.1	+	0.2	<0.1
r	52	98	44.	26 '	. 2	8	95 e	19 '	17	31
L r	66	106	101	45	21	32	78	34	31	90
HT	<6	<5	-	-	<1	< 1	<5	-	<5	<5
Ta 👘	<5	<5	-	- '	2	5	< 5	-	10	<5
(r	<5	d .	. 6 .	6	5	<5	<5	< 5	<5	<5
io ^a	74	49	54	83	121	76	21	8 3 '	.n	25
й "	*8	23	9	7	<5	<5	24	7	<5	18
Th .	< 0.5	1.5	• -	-	0.9	1.5	<0.1	-	< 0 :1	<0.1
a	10.8									•
ie in the second second second second second second second second second second second second second second se	25.9									
N	11.7								•	
in in	3.1	"		`				1		
Eu	1.63	, •								
4	3.1			•	•					
y	3.3				-					
Er	2.3		-						•	
76	2.7									

(*) Cu, Zm. Pb and As are drillhole assays of 1 metre long intervals (Pirites Alentejagas, unpublished data).

	8-404.6	8-413	8-414	8-425	8-436	8-446.85	8-464.4	8-456;;
Curs	0.24	0.20	0.25·	0.39	0,64	0.72	1.81	2.98
Zn	5.45	5, 16	7.50	11,24	- 1.68	3.27	2.13	2.99
Pb	3.17	3.12	/ 3.33	2.62	0.62	0.50	0.86	0.73
As	1.75	1.06	0.77	0. s i	0.55	1.10	0.50	0. 8 0
SI	41.40	43.25	40.49	36.23	45.52	42.98	36.80	38.74
Sr ppm	<2	31	11	< 2	17	15	26	15
Na .	119	147	73	103	25	. 6	516	171
Sc	-	-	0.3	<0.5	•	0.7	-	3.6
۲ ۲	63	45	44	59	15	38	69	25
Zr.	71	ព	56	66	29	57	75	70 °
Hf	-	-	<1	< 2	-	-	-	4 -
Ta	-	-	9	6	• '	•	-	[°] 20
Cr	< 5	<5	< 5	<5	<5	<5	7	11
Co	55	60	63	40 -	93	86	73	97
#1	13	7	. 5	12	<5	9.	<5	<5
Th	•	-	N ð. 1	0.6	.=	•	-	5.0
ia i			-			7.5	•	
Ce						15.6	. •	
Ne		ι			•	6.3		
50		•				1.58		
Er	•					0.51		
64	•					1.40	,	
Dy		4			_	1.44		
Er j		Ĵ			-	0.9 1		
ΥÞ	-					0.73		

×	bis-160,2	bts 161	b1s 166	LC5 243.8	8-361.1	11-322	11-351.9	14-129.5	14-]33.4	15-315
i10,	. 84.96	81.84	\$7.17	81.37	59.09	91.66	75.98	83.83	89.27	86.47
102	10	ND	ND	10	0.01	ND	ND	ND	ИĎ	ND
1203 ·	0.06	0.29	0.01	4 2.65	1.27	1.50	• 0.26	0.25	0.06	0.37
·•	5.67	0.20	1.10*	9.53*	10.29*	0.26	17.27*	9.86*	1.89	6.53
֥0	5.39	2.09				3.31			5.22	3.96
NQ .	0.09	0.38	0.02	0.33	0.24	0.69	0.24	0.72	0.29	0.59
lg0	ND	0.02	NO	0.88	0.18	0.51	0.07	0.14	0.01	0.18
a0	0.97	7.97	0.30	0.93	6.78	ND	3.22	ND	ND	ND
10	10	0.46	10	10	4.52	ND .	NO	ND	ND	0.01
14 ₂ 0	ND	HD	NQ	HO	ND	ND		10	ND	ND
20	10	ND	HD	10	ND	20		10	ND	ND
2 ⁰ 5	0.07	0.98	- 10	0.04	ND	ND	Ø.21	-0.09	0.02	0.12
.01	2.08	6.87	0.96	3.83	13.57	1.55	1.15	15,36	2.16	، 1.06
TOTAL	99.2 7	100.20	99.58	99.57	95.95	99.46	98.40	100.25	99.00	99.29
z	0.64	0.61	0.83	2.95	11.25	9.06	0.0B	3.19	0.81	0.10
b .	3	3	3	2	10	2	` 5	3	1	3
r	¥	93 `	2	17	484	3	·1 29	5	3	6
a '	68	4103	11	10 4	0600	5	14	4	30	104
c	0.4	0.5	<0.1	• .	•		•	-	•	0.3
M .	Z	10	10	10	6	100 Ì	٠,	3	3	9
r	25	22	16	18	80	19	27	21	21	25
r 1 - 11	<1	<1	<1	-	•	••	-	. •	-	<1
b	10	9	17	5	10	14	ND '	້ 9	10	11
'a	8	5	14	•	-	-		-	•	บ
ir i	17	8	5	18	6	11	41	9	13	17
o	135	79	203	118	43	348	93	151	146	121
1	33	28		21	149	48	- 7.	- 16	· 17 。	17
	· 12	33	50	81	53	56	31	59	49 [°]	58
м (ррб)	n	14	15	-	, -	-	51	-	110	20
л	35	237	33	71	129	30	21	258	20	51
5	10	35	#0	HO	33	- 110	25	127	10	Nd
h	0.4	° 0.2	0.2	-	•	-	-	-	-	0.3
•						•	14.7			7.0
ie,			•				15.7			7.7
ld .				••			9.8	•		6.5
a '							2.5		•	1.76
						•	0.57			0, 39
ld .						-	. 3.3			2.3
y							4.1		1	2,.3
ur -	•						2.7		· · · ·	1.45
Ъ'			-				2.8		•	1.25
2+	0.51	0.52				0.93	-		0.75	0,40

Table Y-2a) Cherts and jass

Total Iren

(a) .

ted from model analysis from known sulphide minoralization. All others al **(b)** Ch e Feitais-Estacas m seive ule

.

•

, ,

	15-319.3	15-329	16-252	11-341NV	(a) \$1- 328. 7	(a) SZ-4308	(a) 52-430	(a,b) \$2-377.8	(a,b) S3-380	(a) JR-30
i10 ₂	83.69	89.64	90.19	91.41	82	85	85	85	85	95
102	ND	• ND	ND -	- ND						
بi ₂ ō3	0.28	0.10	0.11	0.07						
e203	10.67 *	7.48	. 2.84	ેં ⊦.7 1	- 15 之	10	10	10	10	2
• 0	3.43	0.69	2.12	3.87		U				
InQ	# 0.10	0.21	1.34	0.57	1 .					
lg 0	ND	ND	ND	0.01						
a0	0.48	0,49	0.90	0.64	2	1	١	1	1	
140	ND	ND	ND	0.01						
h 2 ⁰	0.07	ND	ND	ND	•					
ko /	ND	80	· • ND	ND.		5				
205	0.67 1	ND	ND	ND [.]			-			
.01	₹, ND	0.90	2,07	0.74			*	:	,	
TOTAL	99.39	99.49	99 .55	• 99.12						
a a a a a a a a a a a a a a a a a a a	y 0.22	• 0.11	0.07	ND	•	-	· -	-	-	-
tb	1	2 `	2 *	• .1	5 `	ND `	3	` 3	3	N
ir	10	11	29 ~	49	298	28	30	4.	3	3
la l	· -~ 32	3	19	867,	111	211	210	NÒ	ND	2
ic	<0.1	0.3	-	-	-	-	7	-	-	-
1	-14	4	2	6	19	6	. 6\	9	9	4
ſr	23	,21	25	. 22	27	21	21 🔪	20	24	\ 21
H	<۱	्रा	-	-	•	-	-	-	-	
6	6	່ນ	10	15	3	4	2	ેશ્ર,	18	(16
`a`	14	7 "	-	•	-	-	-	-	-	-
ir .	11	20	11	\$	7	10	14	12	ນ	H
	208	133	85	152 -	64	- 17	180	120	135	73
Hi 🗤 🥇	20	16	18	31	12	10	7	23	-	H.
Lu d'Alt	54	45	23	63 a	> 114	37	33	12	•`	11
iu (ppb)	29	-	•	-	` -	1 •	-	- •	-	-
Ľn –	. 15	8	19	ND	23,	ND	ND	23	ND	5
•	13	ND	ND	17	20	28	20	ND	ND	10
h ,	. <0.1 .	<0.1	•	•	₹	•	-	-	•	-
a .	14.9	5.8	4.9					•		
ie in the second second second second second second second second second second second second second second se	9.7	4.6	3.5			,				
M	14.4	3.8	3.9		• •			-	•	
ie i	-3.4	0.86	1.06			3 .			,	
iu i	0.82	0.22	0.39					-		
به از اه	-	-	1.33						∠● ,	
ly .	, 4.6	1.49								
ir '	2.6	1.04	1.12		_	+				
16 N	2.2	1.62	1.20		•					•

al analýsis 1 from an

(a) Major element abundances estimates(b) Agent from sulphide mineralization

Table Y-2a) Continued (Cherts and jaspers)

	r.	(b) JR-34	(b) JR-35	(a,b) SF-11	(a,b) SF-12	(a,b) SF-31	(a,b) SF-41	(a.b) SF-42	(a.b) SH-13A	(a,b) ,5N-138	(a,b) 54-130L	
02	* *,	97.88	79.1ò	90	90	95	97	98	90	90	9 7	•
02		HD.	ŃD				•		•			
203		0.03	ND			•	۰.					
203		1.99*	20.55*	5	2	3	0.5	· 0.5	z	5	0.5	
Č J		•				-					•	
0 '		0.01	0.06	1	1.	0.5	0.5	0.1	1	5	0.5	
0		ND	ND	-				•••	•		••••	
0		ND	ND								•	
0		NO	ND					1			• •	
20 20	b .	ND	ND	~	. '							
20	•	ND	NO		-		•					
0	·	NO	0.02	•				· ·	,			
0 ₅			9.UC								<i>.</i>	•
I		0.09	ND							t		
TAL		100.00	99. 73									
										4	,	,
		NC	ND	•	•	-	•	•		•	-	
•		. ND	3	HD	ND	ND	ND	HB	ND	ND	·NO	· .
1		2	3		158	20	21	133	12	19	74	
		• NO	ND	10	9	17	ี่ ที่ 1	10	6	209	30	
		-	-	-	0.9		0.2				.2	
-		7	9	- 7	7	8	8	· · ·	3	-	6.	
										7		•
-		26	25	. 23	Z4	22	24	18	14	23	20	•
		-	-	•	1	•	4]	-	-	-	4	
		17	7	10	11	12	-	13	4	9	17	•
		-	-	-	8	•	8	•	· •	-	. 14	
		9	11	3	15	T	8	ND	19	5	7	
		65	98	8Z '	72	70	66	101	65	49	63	,
		HD	ND	ND	ND	11	ND	116	HD	6	ND	
		ND	23	91 .	17	29	15	29	29 -	33	HD	
(ppb)		•		-	-	-	<1	•	-	-	8	
		HD	ŇD	16	ND.	9	10	· ND	17	20	11	
		ND	16	, ND	ND.	ND:	21	15	ND	MD	18	
		· •	-	•	0.5	. .	· 0.2	-	-	-	0.2	
							,		<u>'</u>	-		
•								•		1.		
	,								•			
				·					**		r.	•_
	•		~									-
		1					•			-		
		•								,	-	
					•			w .				
,			· /					,				
	,			• '								•
3 4						•		<i>.</i>			,	٠.
2+ /1Fe												•

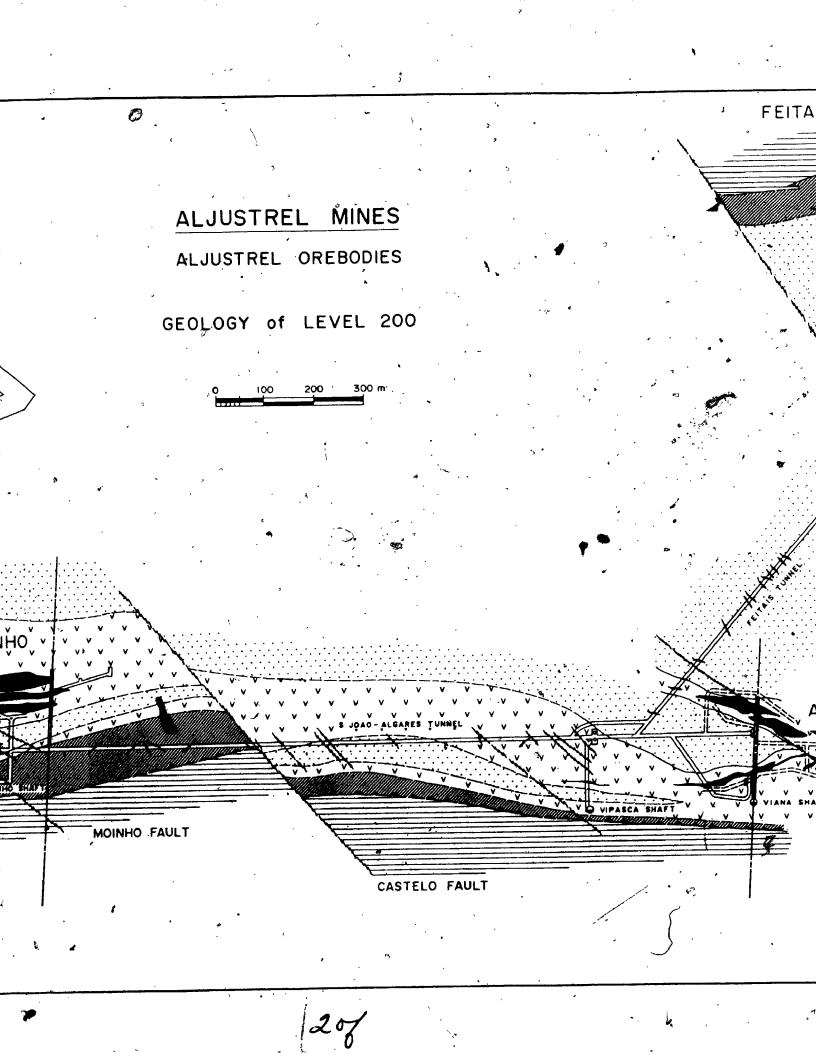
Ù

(a) (b)' Major element shur denous estimated from model analysis

ny from sulphide minoralization à

Table V-Ža) Continued (Cherts ers) we face

а	۰.	(a,b) 54-1300	(a,b) 591-1353	(b) \$1-14	(a,b) SH-140
10 ₂		90	90	86.52	86
1102	ੱਸ			ND	
1203	1	5	5.	13.24*	5
÷0	5				•
M0		5 '	5	0.01	10
10 1 .				ND	
Dec 0.				ND	
ia0 /			1	ND .	
14g0'	<u>.</u>			10	
20	•			10	
2 ⁰ 5				ND	
.01	•			0.38	
UTAL				99.55	
3		•	•	ND	-
•		3	3	ю	2
ir i		10		6	83
la.		ND.	10	ND	45
ic 🗽		1.	•	-	1.6
		16	11	7	9
ir 🌰		17	13	25	22
۳ <u>م</u>			-	• `	£1
•		10	13	6	11
la -		•	•	-	10
in 🦂		21	20	16	130
<i>ы</i> ,	,	118 -	122	65	96
H		ND	HD	, #0	10
λı		ND		MD	30
lu (ppb)		•	-	-	、•
Čn –		496	176	32	74
•		-90	ND	22	149 6
nt ,		-	-		0.4
a +	•				
le i		•			
H.					
عا					
Ew				•	


fe²⁺/2fe

,	•		
Table Y-2b)	Hetalliferous	sationts	

۸ 				-	~~			. k			\$
,	LC5-240	6-103.4	6-106.9	9-285	าโ _ร 343.7	16-253.4	\$1-229:7	(a.) SF-5	(a) \$₹-21	(a) SF-22	(a) SH-138
St0 _Z	47.19	35.05	17.15	, 12.95	13.55	31.23	21,25	[2]	[2]	[2]	[2]
T10, s	. 0.09	0.03	0.37	0.04	0.19	.0.04	0.13				
A1203	2.53	1.72	6.49	2.34	3. 👥	.2.78	6.54				
Fez03	2.79*	0.89	12.75	15.20	32.35 *	3 3.91*	15.67	[3]	[0.5]	(1)	[0.5]
Fe0		6.15	23.86	12.99	đ.	• •	35.56				
Mad (18.31	18,14	10.21		[ु] 12.96 •	17.14	1.44	[86]	[96]	(90)	[95]
	1.70	1.09	2.07	0.58	1.63	1.70	1.61	• • •	••	• •	
Gan - 2 3 -	7.72	13.66	5.20	18.49	16.97	10.07	0.75		Ŷ		
Be0	. 0.08	ND.	10	\$ 2.18	0:53 1	ND	0.06				
Na_0		ND,	10	10	10	10	10	•	~		
ĸ _z õ	0.40	NO,	NO	10	- 10	10	0.01	•			•
	ND	0.02	0.92	0,12	0.28	10	0.30	,			•
Pz05		U.UE	V. 3K	0,12	u.4 . 3		v. 30				
L01*	f8.73	22.79	<u>)</u> 19.43	Z3.48	. 18. 38	12.29	14.80	•	¢. ,	•	
TOTAL	91.54	99.51	95,45	99.53	100.73	89.16	98.13		•	•	4
Ŝ\$	0.16	0.30	0.21	0. S 7	0.17	5.80	1.37				
. No 4.	. 23	*,	c 11	15	· 11 ·	,	່ອ່	10	17	18	19
Sr .	-157	ret -	ים וו- <u>ה</u> זוו	609	433	. 122	113	41	2964	5445	5327
	745	, 110 .		19600	-4713	- 122 	573	14	2005	4623	12309
Ba ,,	/43	3 MLL 1.4	5 6.8	1.6		-	• 4.5	0.7	3.1		0.7
<u>_</u> Sc	. 15°	21			- 47	25	31	21	102	76	46
			145 9	28	71	23 V 70	· 54	,	56		
Zr	37 🧳	2	109	4 .		/u		48		21	22
Hf	• •	,1	2	<1 -	, -	, .	1	· •1	1		<1 • •
ND ,	NŬ	9	22	5	34	,	36	48	31	25	27
Ta s	•	3-	2	<1	•	• .	1	,3	Z	•	Z
Cr	20 ·	14 ្	64	19	27	10	34	21	28 `	· 24	22
ίζο	19	34	90	43	41,	40	127	6	4	n	19
N1	31	121)	309	51	200	133	13	, 49	96 1 °	636	5
cu ,	320	561	61	43	, 100	96	10	10	500	257	ND
Au (ppb)	· •	15 /	, G	21	· • ·	•	•	•	. •	390	240
Zn .	70	1 01 o	493	325	376	297	247	165	564	475	732
Pb 6 2 -	33	17		30	្វររ	· 31	54	34	44	- 24	21
The second second second second second second second second second second second second second second second se		0.6	5.8	1,3		•	2.6	0.7	, ۲. ۵	•	≪9,1
فرم مأ	/ h	118.0	152.1		•			31.5			
, Ge		152.5	138.6	• •				35.3	v		
**	P	65.8	M.3		· ·	•		16.3	**		
5 °7 ,		13.2	13.9	0	-			2.9	, 1	• • ·	•
Eu		4.2	3.1			ú		0.36			
G4 ' .	·	12.1	12.8	'	•		•	1.0			
•	•	12.1 17.4	12.4	11	•			₹.5 ₹,5	` .		
By Er			1414			, v					. 🔸
Mark 1		13.3	, 4. <u>7</u>	2	<		•	ຸ ນີ ຍຸ 			
Fa ²⁺ /2Fa	•	0.40	0.48	0.49	<i>i</i> X	× .	0.72		•		

* Total Iron

9) Major alamant abundannus aptimatad fran updal analysis; thèse samples -800 a anay fran sulphide sineralization.

(1)1tes) Table V-326) Conti

•	(b) 8.346	(b) 8-355.7	(b) 52-425.3
510 ₂	70.18	- 61.75	69.00
T10,	0.67	0.71	0.66
٨١, 2 0,	14.82	15.59	. 15.39
Fey0,	1.03	•	
FeQ	3.04	10.40	5.43
XinQ	0.17	0.49	0.06
HgC	1.43	2.59	1.87
CaO	` 0 .66	, ND	, ND
540°.	0.29	0.22	0.34
Na.,0	1.17	0.89	HD
ĸzō	ʻ 3 [°] . 30	2.96	3.61
² 2 ⁰ 5	0.02	0.09	0.03
LOI .	3.53	3.97	3.22
TOTAL	100.31 ,		99.26
ss	α • 0.03	0.02	ND
Rb	220	230	277
Sr	. 86	59	34
le .	2636	1976	3090
Sc ·	13.0	, •	13.0
Y	् 33	39	28
Ur .	141	154	155
HT	4	•	4
Ma	21	15	23
Ta	2 ر	• •	- 4
Xe	. 85 .	76	80
Co	21	51	,54
# 1	52	<u>7</u> 1 ·	170
Çu	119	20	49
Au (ppb)	• 30	•	-
Zn	54	196	140 °
Pb -	ND	NO	14
Th ,	. 9.0	•	8,9
La, ·			
Ca .		-	

Ce

Eu Gei Dy Er Yb Fe²⁺/2Fe 0.77

61.10

à

Table V-3b) Little alta PS POCKS. na i terred

:

á

•	(a) 15-330.2	(a) 15-283.5	(a) GF-86	(b) b1s-)34	(b) b1s-143.1	(b) b1s-150.2	(b) LCS-242.6	(b) 8-291.25	(b) 8-308.5	(b) 8-310.6
510 ₂	47.77	59.01	56.46	80.93	52.90	- 80.34	39.40	60.29	79.11	74.59
102	0.30	⁶ 0.19	0.86	0.26	0.74	0.34	1.19	0.63	0.47	0.56
1 ₂ ō3	23.58	23.76	23.37	7.86	20.51	8.91	29.96	16.94	10.63.	12.61
•z03	1.60		1.25		1.66	0.57		1.20	0.93	
ه ٥ آ	11.03	2.09*	5.24	2.19*	7.46	3.06	8.63*	6.30	1,86	2.37•
m0	0.26	0.10	0.29	0.40	0.63	0.21	0.14	Q.34	0.07	0.04
lgC	3.09	1.65	1.95	0.99	2.31	1.16	1.77	1.40	0.93	1.04
a 0	0.86	ND	0.86	0.35	0.31	0.31	0.07	2.64	ND	0.73
e 0	. 0.09	0.93	0.07	0.18	0.52	0.19	1.99	0.05	0.05	0.04
12 0	3.34	1.94	2.41	0.26	0.64	0.38	0.15	1.75	0.39	0.08
ي قح	1.01	6.07	2.77	1.67	4.24	1.74	7915	2.99	2.62	3.35
205	0.05	ND I	0209	0.04	0.02	0.02	0.27	0.07	ND	ND
.01	4.72	3.10	5.10	4.42	6.49	2.45	7.13	5.44	- ₁₀ 2.85	4.14
TOTAL	97.70	98.84	100.72	99.56	98.43	99.67	97. 85	180.04	99 .93	99.55
x .	0.05	ND	0.03	0.33	1.08	0.03	2.04	0.02	0.11	0.06
6	° 87	567	183	84	- 212	92	372	156	159	185
r	366	133	326	45	91	48	78	241	37	39
4	610	8357	~60 1	1614	4675	1686	17800	444	401	376
ic	9.3	• -	16.0	•	19.0	•	•	13.0	9.3	-
1	36	8	49	11	31 -	17	ถ	38	24	23
lr į	235	148	370	84	165	∍ກໍ	283	248	117	104
ff , _	8	•	10	•	3	•	• .	7.	3	-
lə	15	~6	29	° 17	13	15	15	51	26	24
a e	2		3	-	2	• .	-	4	4	•
ir	32	NO	37	59	84	53	118	66 ,	17	64
ò	64 .	* 14	23	113	51	85	43	56	24	34
15	86	164	27	184	161	85	179	90	64	33 ິ
.u	HD	ND	ND	130	55	ુ ૩૪	59	•	595	75
iu (ppb)	-	•	-	-	19 °	-	(- 75	•	-	· -
ัก	250	33	121	136	93 -	55	75	•	29	26
Ъ,	42	NO	24	45	>19	27 . 💌	HD	41	· 81	ND
Da	24.0	-	22.0	- ,	13.0	•	-	11.0 /	6.4	
•	-		•		20.8		-	41.3	,	
• ~,-			·		42.3			96.9		
ldi 🛛					18.9		•	40.5		
ia .					3.5			8.4		
iu i		•	•		0.82			2.4		
id					2.7		¢			
)y `			134		2.1			7.5		•••
ir -					1.40			3.7	•	
ľb •_		0			1.28	ð		4.1	•	
'e ²⁺ /1fe	0.88		0,82		0.83	0.86		0.86	0.69	

* Total Iron (a) Tuffs (b) Tuffitas, phyllitas

.7

	(a) 515 109-1	(a) 11-261.9	(a) 10-250:9	(8) 16-233.7	(b) b1s 119.
102	~ 64.80	66.94	67.23	67.06	59.91
10,	0.70	0.67	0.67	0.78	0.75
1,0,	14.49	13.86	15.57	15,14	15.25
203	5.64	5.20	5.86	5.92	8.69
0 /	0.15	0.09	0.08	0.06	0.12
jû	2.50	, 1.49	11.96	1.96	2.25
0	1.82	1.58	0.54	0.60	0.96
۵.	0.03	0.04	0.04	0.07	, 0.07
20 120	2.55	2.42	2.07	2.72	<u> </u>
,õ	1.42	1.61	2.09	1.39	2.33
,0 ₅	0.10	0.12	0.09	0.10	0. 08
01	5.27	5.22	3.00	2.75	8.31
DTAL	99.55	99.24	99.22	98.54	99.81
5	0. 15	9.76	0.63	0.05	, 1 . 38
• • · · ·	64	73	96	65	101
•	178	173	185	187	104
L	304	330	367	639	650
:	12.0	10.0	11.0	12.0	•
	27 [·]	22	23	27	27
•	137	158	138 ,	149	142
•	4	3 ·	4	4	• -
)	18	15	11	12	13
I	3	5	4	5	-
•	. 76	53	60	75	90
• •	47	28	32	33	63
	30	13	21	30	47
1	31	12	26	10	° 82
I	63	30 *	50	54	62
•	15	< 15	16	36	, M
1	7.5	6.2	7.6	7.\$	-
Ì	29.7				
	41.4		S		
l	24.1				1
•	4.9				
1	1.66				•
I	4.1				
,	3.7			,	
•	2.1	•			
	2.3				,

ocks. elected trace Ĉu

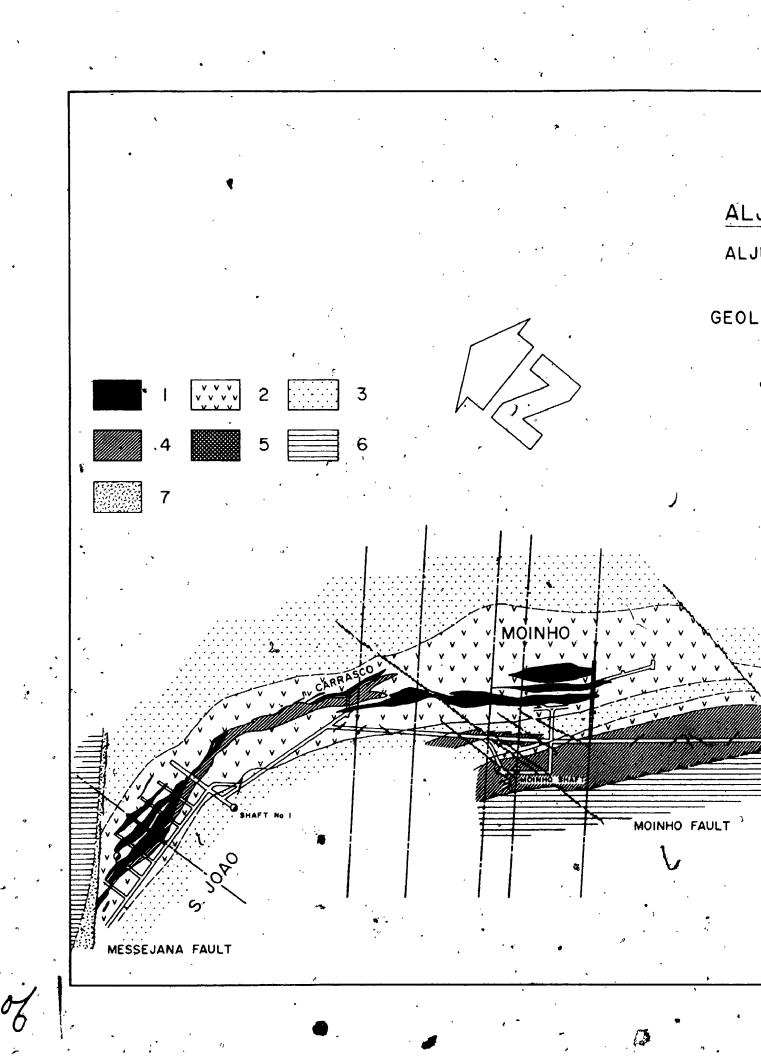
d

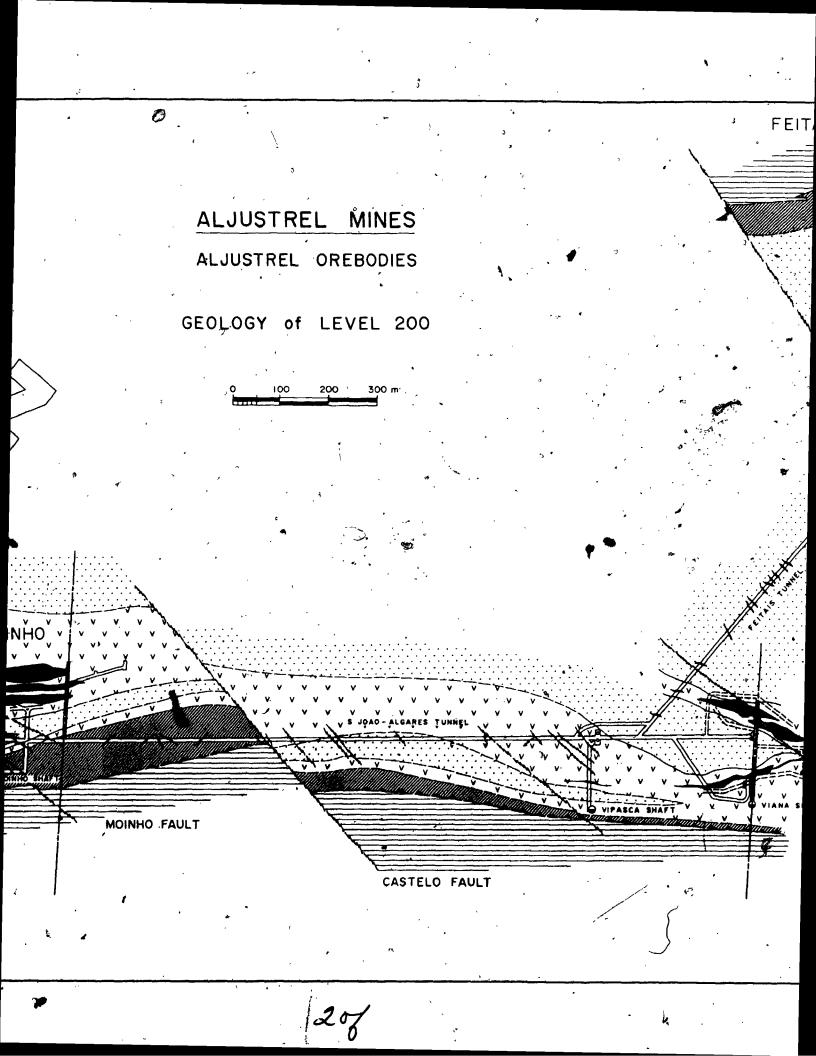
Total Iren e ٠ as Fe₂0₃ ,

(a) Greyniches (b) Black ghale

APPENDIX VI

UNDERGROUND GEOLOGY


AND KEY TO SAMPLE LOCATIONS


- VI-1. Geology of level 200 of the Aljustrel mines
 (After Freire d'Andrade and Schermerhorn, 1971)
- VI-2. Geologic cross section 2-2' across the Feitais
 orebody (ibid.)
- VI-3. Projection of the Feitais orebody and surface drill holes on a horizontal plane (Pirites Alentejanas, unpublished)

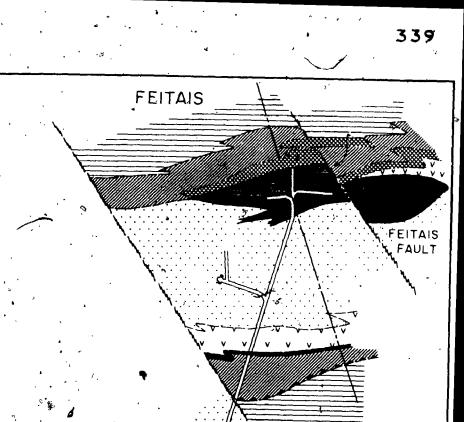

VI-4. Key to sample locations

Figure VI-1. Geology of level 200 of the Aljustrel mines.

 massive sulphide orebodies; 2, upper tuffs (mostly Green facies of both the Quartz eye Tuff and the Mine Tuff; 3, lower tuffs (QET and MT); 4, phyllites, tuffites and tuffs of the Paraiso Siliceous Formation;
 Jasper unit; 6, Culm Group; 7, Messejana dolerite. After Freire d'Andrade and Schermerhorn (1971).

FREPRESA FAULT

ALGARES

AUGARES FAULT

Figure VI-1

39

MINES

OREBODIES

LEVEL 200,-

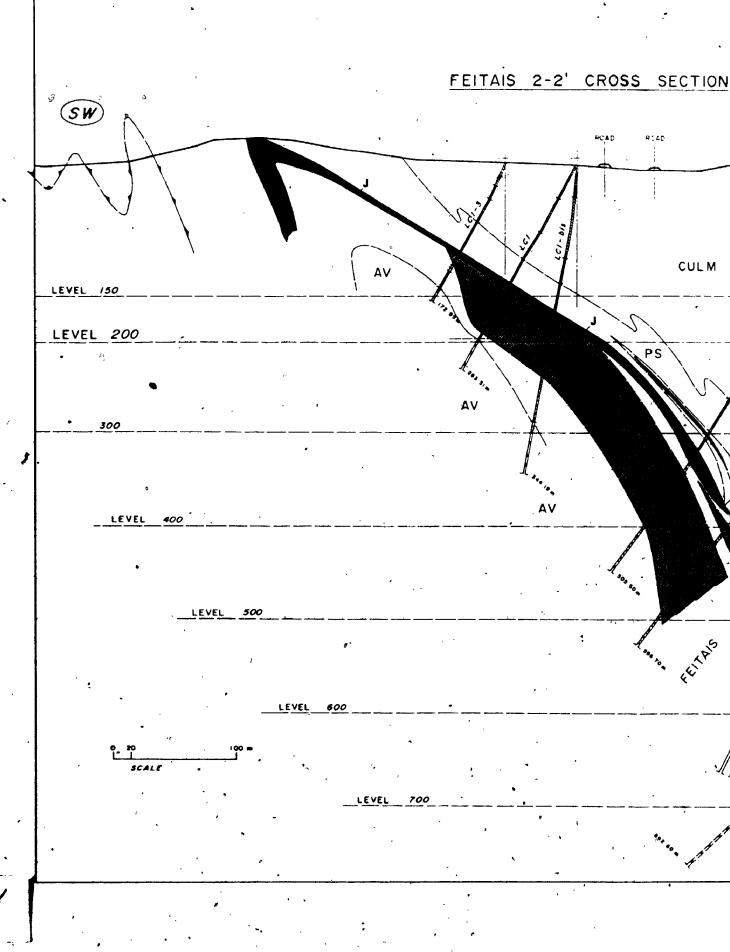
'300 m

Ľ

200

Ż

CASTELO FAULT

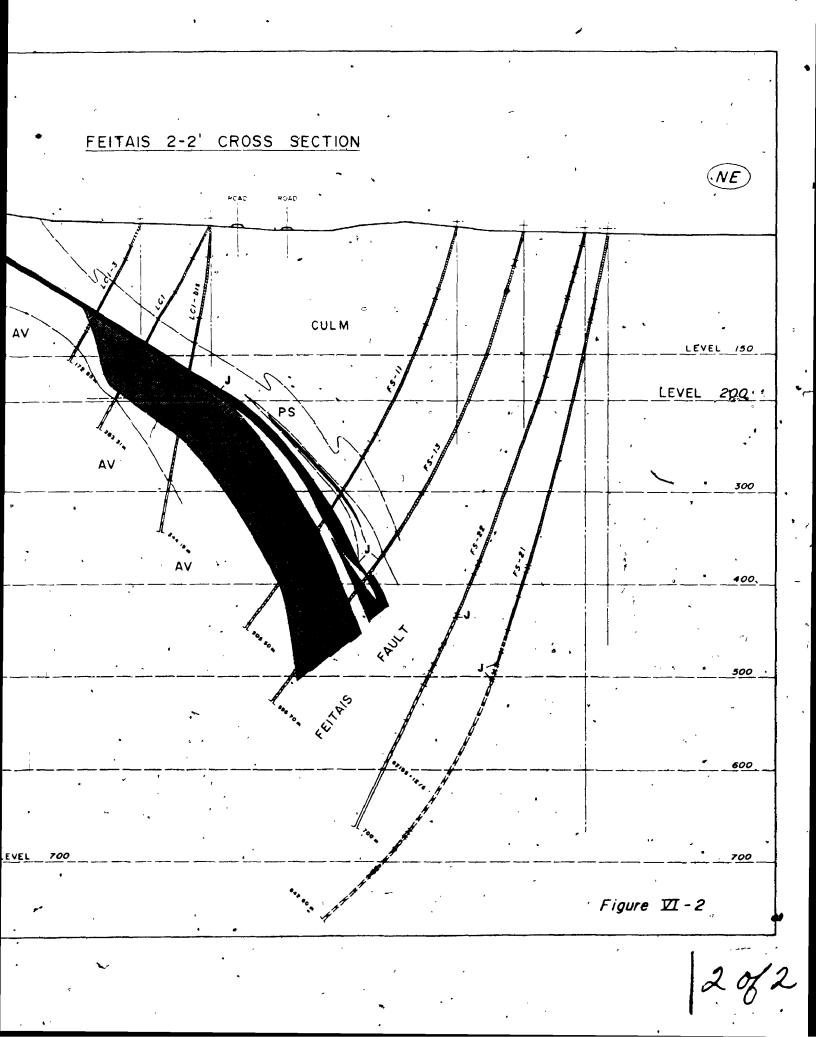
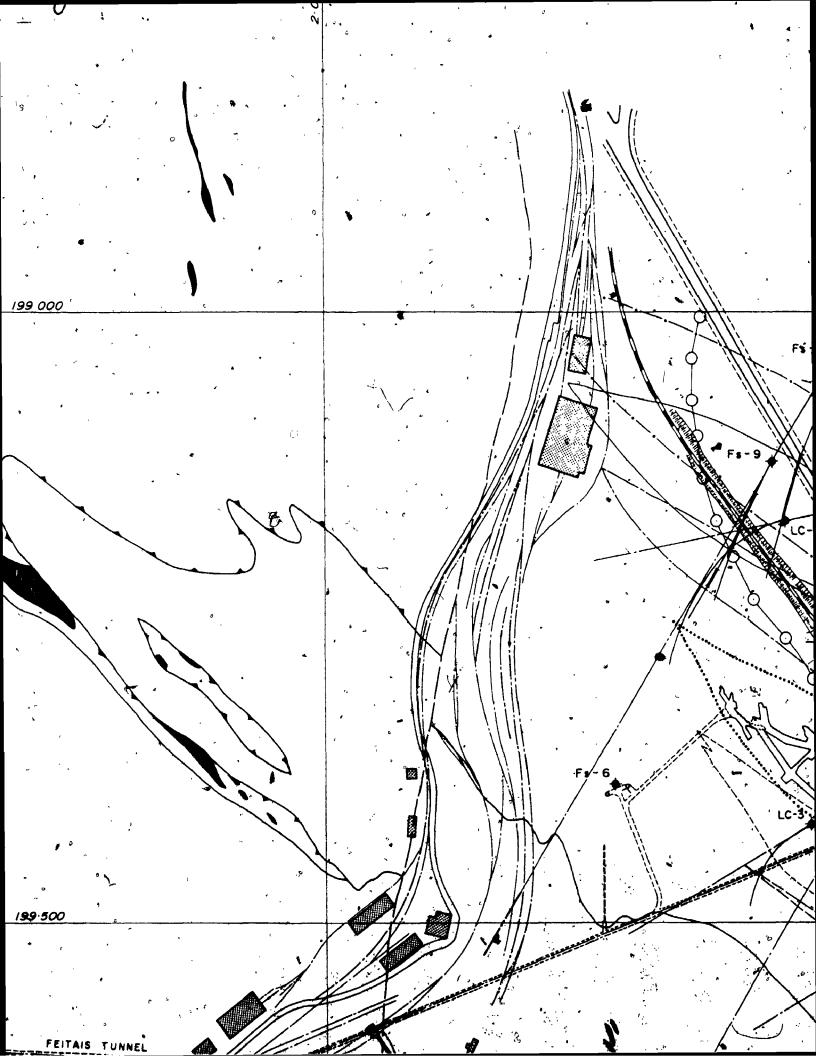
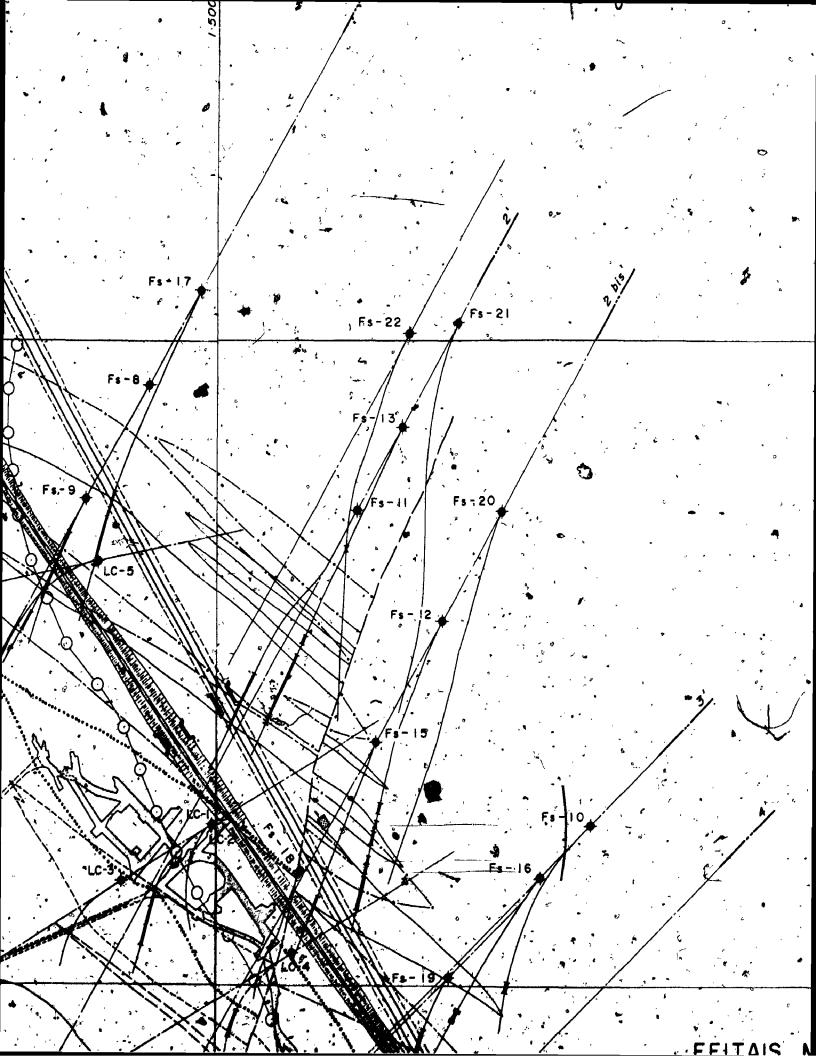

VIPASCA SHAFT

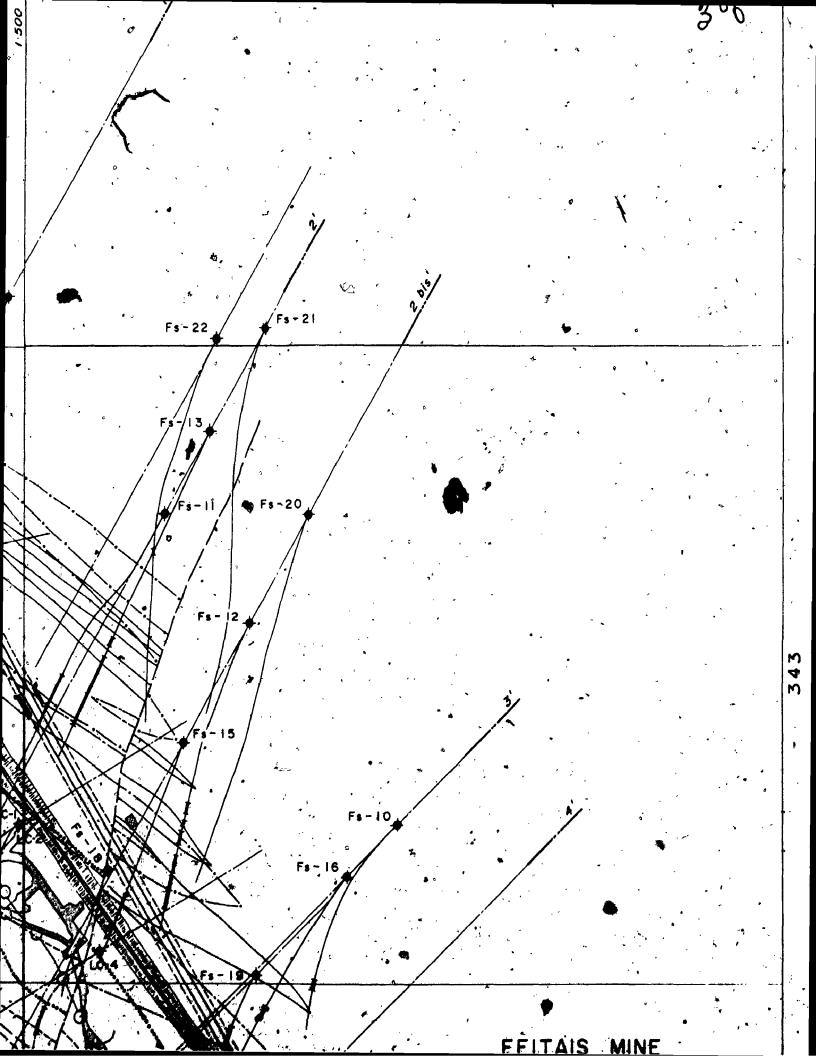
ĩ.

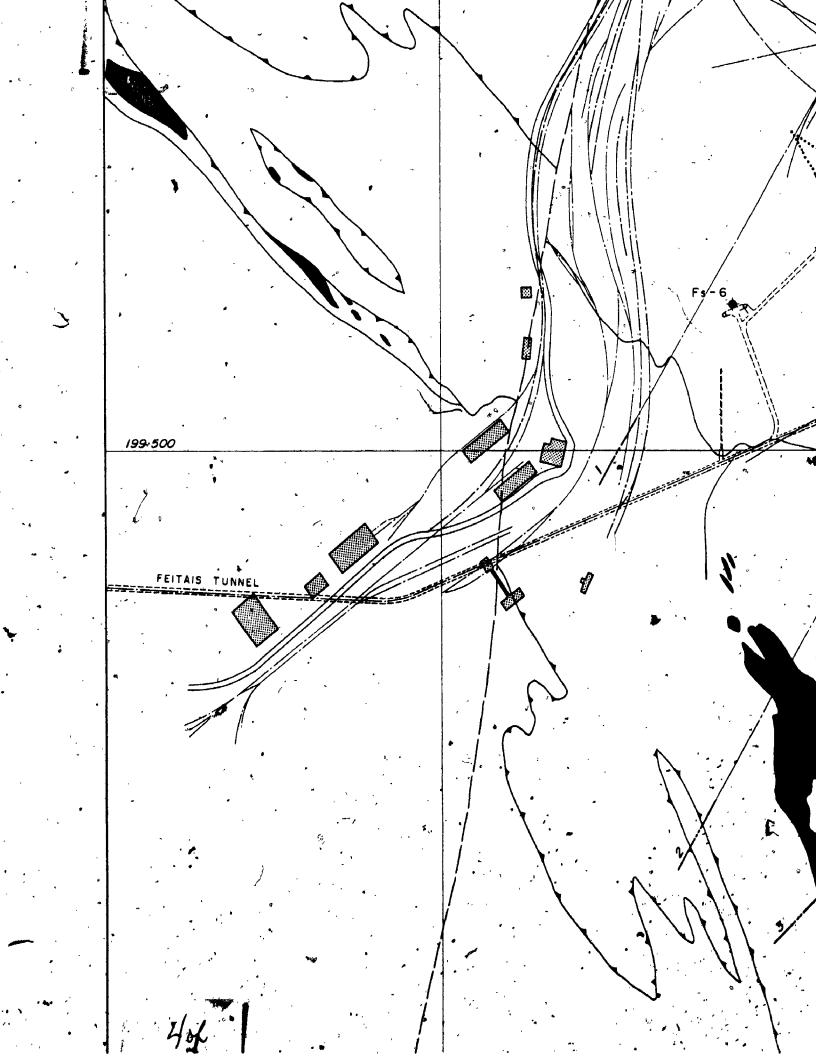
Figure VI-2. Geologic cross section 2-2' across the Feitais orebody.

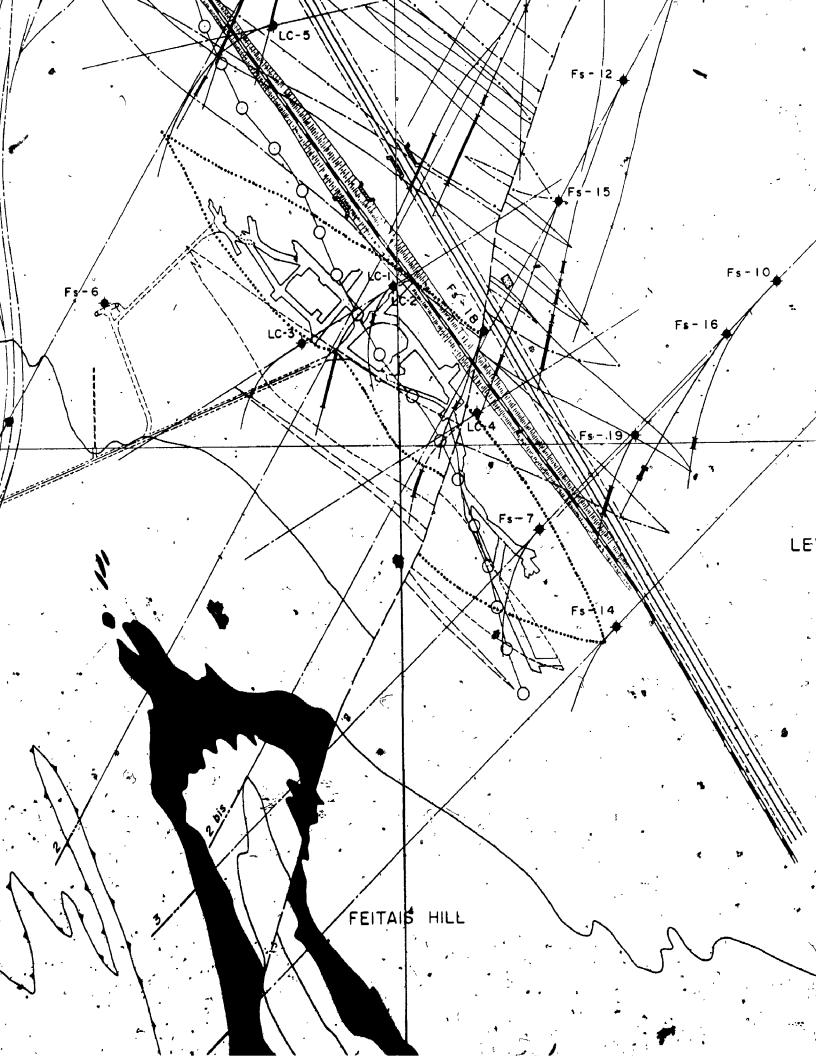
PS, Paraiso Siliceous Formation; J, Jasper unit; AV, Aljustrel Volcanics; shaded area, massive'sulphide

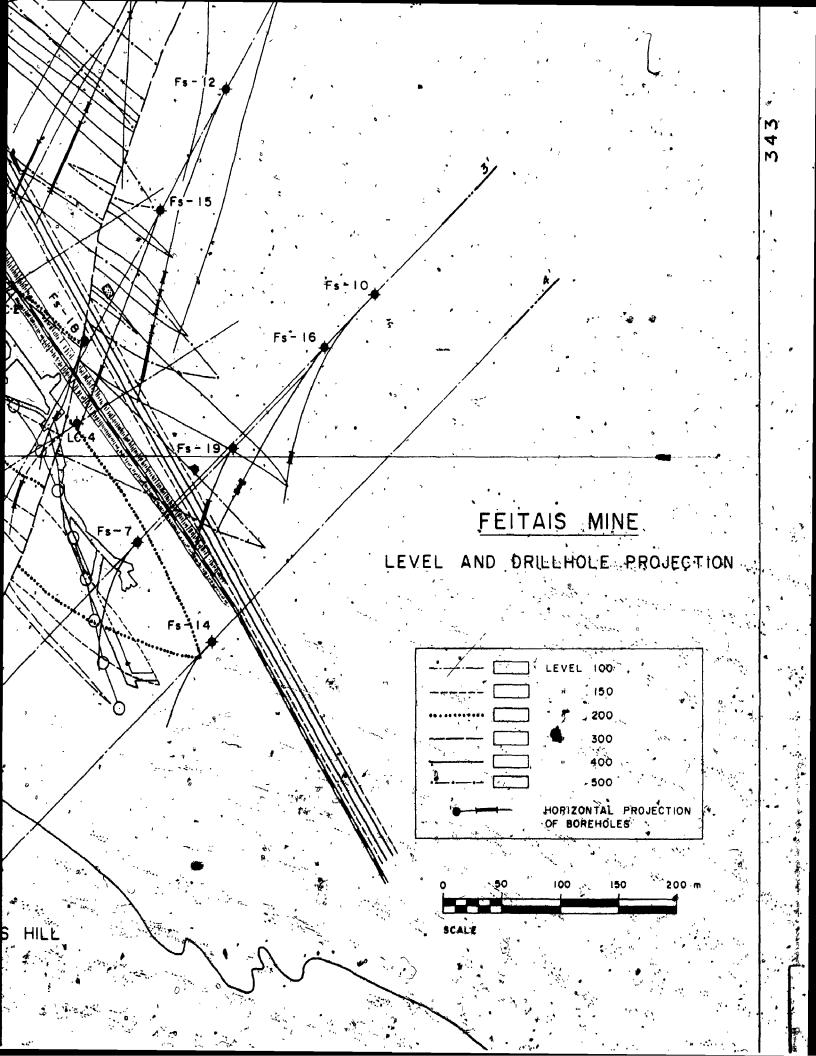
ore. After Freire d'Andrade and Schermerhorn (1971).


Figure VI-3. Projection of the Feitais orebody and surface drill


holes on a horizontal plane (Pirites Alentejanas,


unpublished).



VI-4. Key to sample locations

All sample numbers starting with numerals refer to FS drill holes; the number after the hyphen represents metres from surface (e.g. sample 15-315 was collected in drilleore FS-15, 315 metres below surface). 'bis' and LC5 refer to drill holes LC1-bis and LC5, respectively. For drill hole locations see figures VI-2 and VI-3. Samples MD4F were collected from that drillcore (see Fig. 3.4b).

Samples labelled GF were collected in the Feitais tunnel (Fig. VI-1). Surface samples were collected on hills where the Jasper unit outcrops (see Figs. 3-2 and VI-3). FS means, surface in Feitais anticline; MS surface in the Moinho area; JR jaspers remote from sulphide mineralization; PM, Moinho quarry.

REFERENCES

Addy, S. K. (1979). Rare earth element patterns in manganese nodules and micronodules from Northwest Atlantic. Geochim, Cosmochim. Acta 43: 1105-1116.

Albouy, L., Conde, L. N., Foglierini, F., Leca, X., Morikis, A., Callier, L., Carvalho, P., and Songy, J. C. (1981). Le gisement de sulfures massifs polymetalliques de Neves-Corvo (Baixo Alentejo, Sud Portugal). Chr. Res. Miniere 460: 5-27.

Alderton, D.H.M., Pearce, J. A. and Potts, P. J. (1980). Rare earth element mobility during granite alteration; evidence from Southwest England. Earth. Planet. Sci. Lett. 49: 149-165.

Anderson, R. N., Hobart, M. A. and Langseth, M. G. (1979). Convective heat transfer in oceanic crust and sediment in the Indian Ocean. Science 204: 828-832.

Anderson, R. N., Honnorez, J., Becker, K., Adamson, A. C., Alt, J. C., Emmermann, R., Kempton, P. D., Kinoshita, H., Laverne, C., Mottl, M. J. and Newmark, R. L. (1982). DSDP hole 504B, the first reference section over 1 km through layer 2 of the oceanic crust. Nature 300: 589-598.

Anderson, R. N., Langseth, M. G., and Sclater, J. G. (1977). The mechanism of heat transfer through the floor of the Indian Ocean. J. Geophys. Res. 82: 3391-3409.

Anderson, R. N. and Skilbeck, J. N. (1981). Océanic heat flow. In Emiliani, C., ed., The Sea, vol. 7, The Oceanic Lithosphere: New York, Wiley-Interscience, p. 489-524.

Andrews, A. J. and Fyfe, W. S. (1976). Metamorphism and massive sulphide generation in oceanic crust. Geosci. Can. 3: 84-94.

Appleyard, E. C. (1980). Mass balance computations in metasomatism: Metagabbro/nepheline syenite pegmatite interaction in Northern Norway, Contrib. Mineral. Petrol. 73: 131-144.

Arrhenius, G. and Bonatti, E. (1965). Neptunism and volcanism in the ocean. In Progress in Oceanography, vol. 3, M. Sears, ed., Pergamon Press, New York, p. 7-21. Aye, F. and Strauss, G. K. (1975). Identification de cymerite (Ba, Al, Si30g OH) dans la province pyritense sub-iberique. Mineraux associes (La Zarza, Huelva, Espagne). C.R. Acad. Sci. Paris, T.281, Ser.D, p. 1935-1938, Paris.

Bacon, C. R., Macdonald, R., Smith, R. L. and Baedecker, P. A. (1981). Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo. County. California. J. Geophys. Res. 86: B10223-B10241.

Ballard, R. D. and Grassle, J. F. (1979). Return to Oases of the Deep. Nat. Geogr. Mag. 156: 690-705.

Bard, J. P. (1969). Metamorphisme regional progressive des Sierras d'Aracena en Andalousie Occidentale
(Espagne); sa place dans le segment Hercynien Sub-Iberique. Thesis, Fac. Sci. Montpellier, 397 p.

Barnes, H. L. and Czamanske, G. K. (1967). Solubilities and transport of ore minerals. In Barnes, H. L., ed., Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, N.Y., p. 334-381.

Barriga, F.J.A.S. and Carvalho, D. (1983). Carboniferous volcanogenic sulphide mineralizations in South Portugal (Iberian Pyrite Belt). <u>In</u> The Carboniferous of Portugal (in press).

Barriga, F.J.A.S., Fyfe, W. S., Haq, Z., Macdonald, A. M. and Yijun, Z. (1983). Sea' floor metamorphism. In press.

Barriga, F.J.A.S. and Kerrich, R. (1981). High ¹⁸0 fluids, circulation regimes and mineralization at Aljustrel, Iberian Pyrite Belt. Geol. Soc. Am. Abs. W. Pgs. 13(7): 403-404.

Battey, H. M. (1955). Alkali metasematism and the petrology of some keratophyres from New Zealand. Geol. Mag. 92: 104-126.

,Bear, J. (1972). Dynamics of fluids in porous media. American Elsevier, New York, 764.p.

Start.

Beaty, D. W. and Taylor, Jr. H. P. (1982). Some petrologic and Oxygen isotopic relationships in the Amulet. Mine, Noranda, Quebec, and their bearing on the origin of Archean massive sulphide deposits. Econ. Geol. 77: 95-108.

Beaty, D. W., Taylor, Jr. H. P. and Coad, P. (1980). The Oxygen isotope geochemistry of the Kidd Creek Mine: evidence for a high ¹⁸0 ore-forming solution and implications regarding the genesis of volcanogenic massive sulphide deposits. Geol. Soc. Am. Abs. W. Pgs. 61: 384.

Berner, R. A. (1969). The synthesis of framboidal pyrite. Econ. Geol. 64: 383-384.

Bertine, K. K. and Keene, J. B. (1975). Submarine baritedeal rocks of hydrothermal origin. Science 18: 150-152.

Bishoff, J. L.Fand Dickson; F. W. (1975). Seawater-basakt interaction at 200°C and 500 bars: implications for origin of sea floor heavy metal*deposits andregulation of sea water chemistry. Earth Planet. Sci. Lett. 25: 385-397.

Bjornsson, S., Arnorsson, S. and Tomasson, T. (1972). Economic evaluation of Reykjanes thermal brine area, Iceland. Am. Assoc. Pet. Geol. Bull. 56: 2380-2391.

Blatt, H., Middleton, G. V. and Murray, R. C. (1980) Origin of sedimentary rocks, 2nd edition. Prentice Hall, Englewood Cliffs, N. J., 782 p.

Bonatti, E. (1981). Metal deposits in the oceanic lithosphere. In Emiliani, C., ed., The Sea, vol. 7, The Oceanic lithospherge: New-York, Wiley Interscience, p. 639-686.

Bonatti, E., Guerstein-Honnorez, B. M. and Honnorez, J., (1976). Copper-iron sulfide mineralizations fro**#** the equatorial Mid-Atlantic Ridge. Econ. Geol. 71: 1515-1525.

Bonatti, E. and Joensuu, O. (1966). Deep sea iron deposits from[®] the South Pacific. Science 154: 643-645.

Bonatti, E., Kraemer, T. and Rydell, H. S. (1972). Classification and genesis of submarine ironmanganese deposits. In Ferromanganese Deposits on the Ocean Floor. IDOE, Columbia University, New York, p. 149-166.

Boogaard, M. Van den (1967). Geology of the Pomarao region (Southern Portugal). Univ. Amsterdam, Rotterdam Delko, 113 p. 'Bostrom; K. (1970). Submarine volcanism as a source for iron. Earth Planet. Sci. Lett. 9: 348-354.

Bostrom, K. and Peterson, M.N.A. (1966). Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ. Geol. 61: 1258-1265.

Caltagirone, J.-P., Cloupeau, M. and Combarnous, M. (1971). Convection naturelle fluctuante dans une couche poreuse horizontale. C.R. Acad. Sc. Paris 273: B833-B836.

Campbell, I. H., Franklin, J. M., Gorton, M. P., Hart, T. R. and Scott, S. D. (1981). The role of subvolcanic sills in the generation of massive sulphide deposits. Econ. Geol. 76: 2248-2253.

Carron, M. K., Mrose, N. E. and Reiser, A. N. (1964). New data on cymrite, a hydrated silicate of barium Mand aluminum (abs.). Geol. Soc. Am. Spec. Pap. 82: 26.

Carvalho, D. (1974). Lineament patterns and hypogene mineralization in Portugal, Problems of Ore Deposition. Fourth IAGOD Symp. V.II, p. 444-453, Varna.

Carvalho, D. (1976). Consideracoes sobre o vulcanismo da regiao de Cercal-Odemira. Suas relacoès com a Faixa Piritosa. Commun. Serv. Geol. Port. 60: 216-238, Lisboa.

Carvalho, D. (1979). Geologia, metalogenia e metodologia da investigacao de sulfuretos polimetalicos do Sul de Portugal. Commun. Serv. Geol. Port. 65: 169-191.

Carvalho, D. (1982). Pirites - Novos rumos para a prospecção. Geonovas 1: 11-21.

Carvalho, D., Correia, H.A.C. and Inverno, C.M.C. (1976a). Contribuicao para o conhecimento geologico do Grupo de Ferreira-Ficalho. Suas relações dom a Faixa Piritosa e Grupo do Pulo do Lobo. Mem. Not. Publ. Mus. Lab. Mineral. Geol. Univ. Coimbra 82: 145-169.

Carvalho, D., Conde, L:, Enrile, J., Oliveira, V. and Schermerhorn, L.J.G. (1976b)., Livro guia das excursoes geologicas na Faixa Piritosa Iberica. Com. Serv. Geol. Portugal 60: 271-315.

Carvalho, D., Goinhas, J., Oliveira, V. and Ribeiro, A. (1971a). Observações sobre a geologia do sul de Portugal e consequencias metalogeneticas. Est. Not. Trab. Serv. Fom. Min. 20(1-2): 153-199.

- Carvalho, D., Goinhas, J.A.C. and Schermerhorn, L.J.G. (1971b). Principais jazigos minerais do Sul de Portugal. I. Congresso Hispano-Luso-Americano de Geologia Economica (Livru Guia da Excursao no. 4). Serv. Geol. Portugal, Special Publ., 94 pp.
- Chilingar, G. V. (1963). Relationship between porosity, permeability, and grain-size distribution of sands and sandstones. Proc. Intern. Sedimentol Congr., Amsterdam, Antwerp.
- Clayton, R. N. and Mayeda, T. K. (1963). Attenuse of bromine pentafluoride in the extraplication of Oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27: 43-52.
- Clayton, R. N., O'Neil, J. R. and Mayeda, T. K. (1972). Oxygen isotope exchange between quartz and water. J. Geophys. Res. 77: 3057-3067.
- Cogne, J. (1976). La chaine Hercynienne Quest-Europeene correspond-elle a un orogene par collision? Propositions pour une interpretation geodynamique globale. Coll. Int. C.N.R.S. 268: 111-129.
- Combarnous, M. and Le Fur, B. (1969). Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. C.R. Acad. Sc. Paris 269; B1009-B1012.
- Corliss, J. B., Lyle, M., Dymond, J. and Crane, K. (1978). The chemistry of hydrothermal mounds near the Galapagos Rift. Earth Planet. Sci. Lett. 40: 12-24,
- Corliss, J. B., Dymond, J., Gordon, L. I., Edmond J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K. and Van Andel, T. H. (1979). Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.
- Costa, U. R. (1980). Hydrothermal footwall alteration and ore formation at Mattagami Lake mine, Mattagami, Quebec. Ph.D. thesis, Univ. Western Ontario, 288 p.
- Costa, U. R., Barnett, R. L. and Kerrich, R. (1983). The Mattagami Lake mine Archean Zn-Cu massive sulphide: coprecipitation of talc and sulphides in a sea floor brine pool. Econ. Geol. (in press).

- Costa, U. R., Fyfe, W. S. Kerrich, K. and Nesbitt, H. W. (1980). Archean hydrothermal talc evidence for high ocean temperatures. Chem. Geol. 30: 341-349.
- Cox, K. G., Bell, J. D. and Pankurst, R. J. (1979). The interpretation of gneous rocks. George, Allen and Untwin, Boston, 450 p.

*Craig, H. (1966). Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science .154: 1544-1548.

- Crerar, D. A., Namson, J., So Chyi, M., Williams, L. and-Feigenson, M. D. (1982). Manganiferous cherts of the Franciscan assemblage. I. General geology, ancient and modern analogues; and implications for hydrothermal convection at oceanic spreading centers. Econ. Geol. 77: 519-540.
- Davis, E. E. and Lister, C.R.B. (1977), Heat flow measured over the Juan de Fuca ridge: evidence for widespread hydrothermal circulation in a highly heat transportative crust. J. Geophys. Res. 82: 4845-4860.
- Deer, W. A., Howie, R. A. and Zussman, J. (1963). Rock Forming Minerals. John Wiley and Sons, Inc.
- Eby, G. N. (1972). Determination of rare earth, yttrium, and scandium abundances in rocks and minerals by an ion-exchange-X-ray fluorescence procedure. Anal. Chem. 44: 2137-2143.
- Edmond, J. M. and Von Damm, K. L. (1983). Ridge crest hydrothermal activity in the Eastern Pacific (Abs.). Geodynamics Symposium on Oceanic Lithosphere, Texas A&M Univ., April, College Station, Texas.

Elder, J. (1965). Physical processes in geothermal areas. In Lee, W.H.K. (ed.), Terrestrial heat flow. Am. Geophys. Union, Washington, D.C. 211 p.

Elder, J. (1967). Steady free convection in a porous medium heated from below. J. Fluid Mech. 27; 29-48.

Elifs, A. J. (1968). Natural hydrothermal systems and experimental hot water/rock interaction: Reactions with NaCl solutions and trace metal extraction. Geochim. Cosmochim. Acta 32: 1356-1363.

Ellis, A. J. (1979) Explored geothermal systems. In -Barnes, H. L. (ed.), Geochemistry of hydrothermal ore

350%

demosits, 2nd ed. Holt, Rinehart and Winston, p. 632-683.

Essene, E. J. (1967). An occurrence of cymrite in ^tthe Franciscan Formation, California. Am. Min. 52: 1885-1890.

Ethier, V. G., Campbell, F. A., Both, R. A., Krouse, H. R. (1976). Geological setting of the Sullivan orebody and estimates of temperatures and pressure of metamorphism. Econ. Geol. 71: 1570-1588.

Farrand, M. (1970). Framboidal sulfides precipitated synthetically. Miner. Deposita 5: 237-247.

Ferry, J. M. (1978). Reaction mechanisms, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from South-Central Maine, U.S.A. Contrib. Mineral.

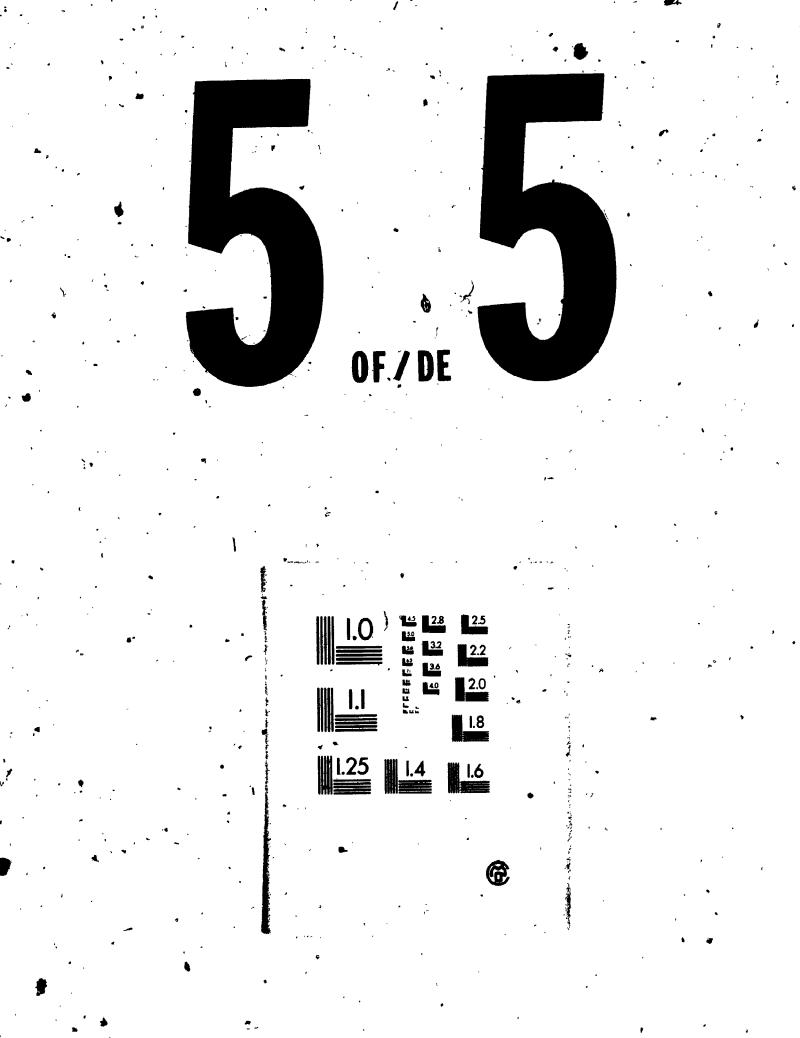
Petrol: 68: 125-140.

Fiske, R. S. and Matsuda, T. (1964). Submarine equivalents to ash flows in the Tokiwa Formation, Japan. Am. J. Sci. 262: 76-106.

Francheteau, J., Needham, H. D., Choukroune, P., Juteau, T., Seguret, M., Ballard, R. D., Fox, P. J., Normark, W., Carranza, A., Cordoba, D., Guerrero, J., Rangin, C., Bougault, H., Cambon, P. and Hekinian, R. (1979). Massive deep sea sulphide ore deposits' discovered on the East Pacific Rise. Nature 277: 523-528.

Franklin, J. M., Lydon, J. W. and Sangster, D. F. (1981). Volcanic-associated massive sulphide deposits. Econ. Geol., 75th Ann. Vol.: 485-627.

Freeze, R., A. and Cherry, J. A. (1979). Groundwater. Prentice Hall, Englewood Cliffs, N.J., 604 p.


Ζ.,

Froelich, F. and Sandrea, A. (1973). Presence de cymrite dans les mineralizations devoniennes stratiformes a blende-galene-barytine d'Arren's (Hautes-Pyrenees). C.R. Acad, Sci. Paris 277: D2445-D2448.

Freire d'Andrade, R. and Schermerhorn, L.J.G. (1971). Aljustrel e Gaviao. In Carvalho, D. and Goinhas, J.A.C. (eds.), Principais jazigos minerais de Sul de Portugal. Livro-Guia exc. 4, I Congr. Hispano-Luso Americano Geol. Econ.: 32-59. Madrid-Lisboa.

35|1

- Fryer, B. (1977). Rare earth evidence in iron*formations for changing Precambrian oxidation states. Geochim. Cosmochim. Acta 41: 361-367.
- Fyfe, W. S. (1973). The generation of batholiths. Tectonophysics 17: 273-283.
- Fyfe, W. S. (1974). Geochemistry. Clarendoh Press, Oxford, 107 p.
- Fyfe, W. S. and Henley, R. W. (1973). Some thoughts on the chemical transport processes, with particular reference to gold. Miner. Sci. Engng. 5: 295-303.
- Fyfe, W. S. and Kerrich, R. (1976). Geochemical prospecting: extensive versus intensive factors. J. Geoch. *exploration 6: 177-192.
- Fyfe, W. S. and Lonsdale, P. (1981). Ocean floor hydrothermal activity. In Emiliani, C. (éd.), The Sea, vol. 7, The Oceanic Lithosphere: New York, Wiley-Interscience, p. 589-638.
- Fyfe, W. S., Price, N. J. and Thompson, A. B. (1978). Fluids in the Earth's Crust. Elsevier, Amsterdam, 383 p.
- Garrels, R. M. and Christ, C. L. (1965). Minerals, solutions, and equilibria. Harper Row Publ., New York, 541 p.
- Gaspár, O. and Conde, L. (1978). A caracterização dos sulfuretos de Aljustrel com vista ao seu aproveitamento integral. Congr. O. Eng. Portugal 3(12), 17 p., Porto.
- Garcia Palomero, F. (1977). Carecteres geologiços y relaciones morfologicas y geneticas de las mineralizaciones del anticlinal de Rio Tinto. Acta Salmanticensia, Tésis de Ciencia.
- Gresens, R. L. (1967). Composition-volume relationships of metasomatism. Chem. Geol. 2: 47-65.
- Guichard, F., Church, I. M., Treuil, M. and Jaffrezic, H. (1979). Rare earths in parites: distribution and effects on aqueous partitioning. Geochim. Cosmochim. Acta 43: 983-998-53
- Hajash, A. Jr. (1975). Hydrothermal processes along midocean ridges: an experimental investigation. Contrib. Mineral. Retrol. 53: 205-226.

Hajash, A. and Archer, P. (1980). Experimental sea water/ basalt interactions: the effect of cooling. Contrib. Mineral. Petrol. 75: 1-13.

Hamet, J. and Delcey, R. (1972). Age, synchronisme et affiliation des roches rhyolitiques de la province pyrito-cuprifere du Baixo-Alentejo (Portugal): mesures isotopiques par la methode 87Rb/87Sr. C.R. Acad. Sci. Paris, 272, Ser. D., 2143-2146.

Haskin, L. A. and Haskin, M. A. (1968). Rare earth elements in the Skaergaard intrusion. Geochim. Cosmochim. Acta 32: 433-447.

Haskin, L. A., Haskin, M. A., Frey, F. A. and Wildeman, T. R. (1968). Relative and absolute abundances of the rare earths. In Ahrens, L. H. (ed.), Origin and distribution of the elements, 889–912, Pergamon Press.

Hattori, K. and Muehlenbachs, K. (1980). Marine Hydrothermal alteration at a Kuroko ore deposit, Kosaka, Japan. Contrib. Mineral. Petrol. 74: 285-292.

Hattori, K. and Sakai, H. €1979). D/H ratios, origins and evolution of the ore-forming fluids for the Neogene veins and Kuroko deposits of Japan. Econ.,Geol. 74: 535-555.

Hattor'i, K. and Sakai, H. (1980). Implications of D/H and ¹⁸0/,¹⁶0 ratios of ore fluids for Neogene vein-type and Kuroko mineralization of Japan. <u>In</u> Ridge, J. D. '(ed.), IAGOD Symposium, 5th Proc.: Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung, p. 325-336.

Haymond, R. M. and Kastner, M. (1981). Hot spring deposits of the East Pacific Rise at 21°N: preliminary descriptions of mineralogy and genesis. Earth Planet. Sci. Lett. 53: 363-381.

Heaton, T.H.E. and Sheppard, S.M.F. (1977). Hydrogen and Oxygen isotope evidence for sea water-hydrothermal alteration and ore deposition, Troodos, Cyprus. In Volcanic Processes and Ore genesis, London: Inst. Min. Metall. and Geol. Soc., p. 42-57.

Helgeson, H. C. (1970). A chemical and thermodynamic model of ore deposition in hydrothermal systems. Min. Soc. Am. Spec. Paper 3: 155-186.

Hellman, P. L. and Henderson, P. (1977). Are rare earths mobile during spilitization? Nature 267: 38-40.

Henley, R. W. (1973). Some fluid dynamics and ore genesis. Trans. Inst. Min. Metall. 82: B1.

Herzberg, C. T., Fyfe, W. S. and Carr, M. J. (1983). Density constraints on the formation of the continental Moho and crust. In press.

Hildreth, W. (1979). The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. In Chapin, C. E. and Elston, W. E. (eds.), Ash-flów tuffs. Geol. Soc. Am. Spec. Paper 180: 43-75.

Hildreth, W. (1981). Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86: B10153-B10192.

Hoefs, J. (1980). Stable Isotope Geochemistry. Springer-Verlag, Berlin-Heidelberg, 208 p.

- Hogdahl, O. T., Melson, S. and Bowen, V. T. (1968). Neutron activation analysis of lanthanide elements in sea water. Am. Chem. Soc. Advances in Chemistry Series 73: 308-325.
- Humphris, S. E. and Thompson, G. (1978a). Hydrothermal alteration of oceanic basalts by seawater. Geochim. Cosmichim. Acta 42: 107-125.
- Humphris, S. E. and Thompson, G. (1978b). Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta 42: 127-136.
- Hutchinson, R. W. (1973). Volcanogenic sulphide deposits and their metallogenic significance. Econ. Geol. 68: 1223-1246.
- Hutchinson, R. W., Fyfe, W. S. and Kerrich, R. (1980). Deep fluid penetration and ore deposition. Minerals Sci. Engng. 12: 107-120.
- Hutchinson, R. W. and Searle, D. L. (1971). Stratabound. .pyrite deposits in Cyprus and relations to other sulphide ores. Soc. Mining Geologists Japan, Spec. Issue 3: 198-205.
- Iijima, A. (1972). Argillaceous and zeolitic alteration zones surrounding Kuroko (Black Ore) deposits in Odate district of Akita Prefecture. Mining Geology 22: 1-20. (in Japanese)!

•

- Iijima, A. (1974). Clay and zeolitic alteration zones surrounding Kuroko deposits in the Hokuroku district, Northern Akita, as submarine hydrothermal-diagenetic alteration products. Soc. Mining Geologists of Japan, Spec. Issue 6: 267-290.
- Jahn, B.-M., Auvray, B., Blais, S., Capdevilla, R., Cornichet, J., Vidal, F. and Hameurt, J. (1980). Trace element geochemistry and petrogenesis of Finnish Greenstone Belts. J. Petrol. 21: 201-244.
- Jambor, J. L. (1979). Mineralogical evaluation of proximal-distal features in New Brunswick massive sulfide deposits. Canadian Mineralogist, v. 17: 649-664.
- Jones, B. J. and Segnit, E. R. (1971). The nature of opal. I. Nomenclature and constituent phases. J. Geol. Soc. Aust. 18: 57-68.
- Kastner, M. (1981). Authigenic silicates in deep-sea sediments: formation and diagenesis. In Emiliani, C. (ed.), The Sea, vol. 7, The Oceanic Lithosphere, New York, Wiley Interscience, p. 915-980.
- Keays, R. R. and Scott, R. B. (1976). Precious metals in ocean-ridge basalts: Implications for basalts as source rocks for gold mineralization. Econ. Geol., 71: 705-720.
- Klockmann, F. (1894). Ueber die lagartige Natur der Kiesvorkormmen des sudlichen Spareiens und Portugals. Sber. preuss. Akad. Wiss. 46: 1173-1181.
- Knauth, L. P. and Lowe, D. R. (1978). Oxygen Isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth Planet. Sci. Lett. 41: 209-222.
- Krauskopf, B. K. (1957). Separation of Manganese from Iron in sedimentary processes. Geochim. Cosmochim. Acta 12: 61-84.
- Krauskopf, B. K. (1967). Introduction to geochemistry. McGraw-Hill,/ New York.
- Lambert, I. B. and Sato, T. (1974). The Kuroko and associated ore deposits of Japan: a review of their feactures and metallogenesi's. Econ. Geol. 69: 1215-1236.

355

Lapwood, E. R. (1948). Convection of a fluid in a porous medium. Proc. Cambridge Phil. Soc. 44: 508-521.

- Large, D. (1979). Proximal and distal stratabound ore deposits. A discussion of the paper by I. R. Plimer, Mineralium Deposita 13: 345-359 (1978). Mineral. Deposita 14: 123-124.
- Large, R. R. (1977). Chemical evolution and zonation of massive sulfide deposits in volcanic terrains. Econ. Geol. 72: 549-572.
- Lawrence, J. R. and Giekes, J. M. (1981). Constraints on water transport and alteration in the oceanic crust from the isotopic composition of pore water. J. Geophys. Res. 86: 7924-7933.
- Lecolle, M. (1974). Presence de tufs soudes dans le volcanisme de Huelva (Espagne). C.R. Acad. Sci. Paris 287: 839-842.
- Lecolle, M. (1977). La ceinture sud-iberique: un example de province a amas sulfures volcano-sedimentagres (tectonique, metamorphisme, stratigraphie, volcanisme, paleogeographie et metallogenie). Thesis, Univ. Pierre et Marie Curie, Paris, 609 p.
- Liou, J. G. (1973). Synthesis and stability relations of epidote, Ca2 Al2 Fe Si3 O12 (OH). J. Petrology 14: 381-413.
- Lister, C.R.B. (1972). On the thermal balance of a midocean ridge. Geophys. J. R. Astr. Soc. 26: 515-535.
- Lister, C.R.B. (1977). Qualitative models of spreadingcenter processes, including hydrothermal penetration. In Uyeda, S. (ed.), Subduction zones, mid-ocean ridges, oceanic trenches and geódynamics. Tectonophysics 37: 203-218.
- Lister, C.R.B. (1981b). Rock and water histories during sub-oceanic hydrothermal events. Oceanologica Acta, Proc. 26th Int. Geol. Congress, Paris, p. 41446.
- Lonsdale, P. (1977). Deep tow observations at the mounds abyssal hydrothermal field, Galapagos Rift. Earth Planet. Sci. Lett. 36: 92-110.

Lotze, F. (1945). Zur gliederung der Varisziden der Iberischru Meseta. Geotekt. Forsch. 6: 78-92.

Love, L. G. and Amstutz, G. C. (1966). Review of microscopic pyrite. Fortschr. Mineral. 43: 273-309.

Lovering, T. S. (1961). Sulfide ores formed from sulfidedeficient solutions. Econ. Geol. 56: 68-99.

Ludden, J. N. and Thompson, G. (1977). Behaviour of rare earth elements during submarine weathering of submarine basalt. Nature 274: 147-149.

Lydon, J. W. (1981). An addendum. Geosci. Can. 8: 101-103.

MacGeehan, P. J. and MacLean, W. H. (1980). Tholeiitic basalt-rhyolite magmatism and massive sulphide deposits at Matagami, Quebec. Nature 283: 153-157.

Mahood, G. and Hildreth, W. (1983). Large partition coficients for trace elements in high silica rhyolites. Geochim. Cosmochim. Acta 47: 11-30.

McCulloch, M. T., Gregory, R. T., Wasserburg, C. J. and Taylor, Jr. H. P. (1980). A Neodymium, Strontium and Oxygen isotopic study of the Cretaceous Samail ophiolite and implications for the petrogenesis and seawater hydrothermal alteration of oceanic crust. Earth Planet. Sci. Lett. 46: 201-211.

Meagher, E. P. (1980). Silicate Garnets. <u>In</u> P. H. Ribbe (ed.), Orthosilicates. Min. Soc. Am. Rev. Min. 5: 25-66.

Madel, J. and Lopera, E. (1976). Geologia de la zona minera de tharsis. Livro guia das excursoes geologicas na Faixa Piritosa Iberica. Com. Serv. Geol. Portugal. 60: 288-295.

Montes, F. L. and Silva, J.M.L. (1979). O programa de aproveitamento integrado das pirites. SINACT, Lisbon, 35 p.

Moody, J. B. (1979). Serpentinites, spilites and ophiolite metamorphism. Can. Min. 17: 871-887.

Mottl, M. J. (1976). Chemical exchange between seawater and basalt during hydrothermal alteration of the oceanic crust. Ph.D. thesis, Harvard Univ., 188 p.

Nottl, M. J. and Holland, H. D. (1978). Chemical exchange during hydrothermal alteration of basalt by seawater. I. Experimental results for major and minor components of seawater. Geochim. Cosmochim. Acta 42: 1103-1115.

- Mottl, M. J. and Seyfried, W. E. (1980). Sub-seafloor hydrothermal systems rock-vs. seawater-dominated. In Rona, P. A. and Lowell, R. P. (eds.), Seafloor Spreading Centers: Hydrothermal Systems. Dowden, Hutchinson and Ross, Stroudsburg, p. 66-82.
- Mueller, S. T., Prodehl, C. L., Mendes, A. and Sousa Moreira, V. (1973). Crustal structure in the southwestern part of the Iberian Peninsula. Tectonophysics 20: 307-318.

Ð

- Munha, J. (1976). Nota preliminar sobre o metamorfismo na Faixa Piritosa Portuguesa. Com. Serv. Geol. Portugal. 60: 151-161.
- Munha, J. (1979). Blue amphiboles, metamorphic regime and plate tectonic modelling in the Iberian Pyrite Belt. Contrib. Mineral. Petrol. 69: 279-289.
- Munha, J. (1981). Igneous and metamorphic petrology of the Iberian Pyrite Belt volcanic rocks. Ph.D. thesis, Univ. Western Ontario, 711 p.
- Munha, J. (1983). Low grade regional metamorphism in the " Iberian Pyrite Belt. Commun. Serv. Geol. Port. (in press).
- Munha, J., Fyfe, W. S. and Kerrich, R. (1980). Adularia, the characteristic mineral of felsic spilites. Contrib. Mineral. Petrol. 75: 15-19.
- Munha, J. and Kerrich, R. (1980). Sea Water Basalt interaction in spilites from the Iberian Pyrite Belt. Contrib. Mineral. Petrol. 73: 191-200.
- Munha, J. and Kerrich, R. (1981). High temperature (>400°C) equilibrium of marine water with ocean floor: evidence from ¹⁸0 enriched fluids of the Iberian Pyrite Belt. Am. Geophys. Union Fall Meet. 1981.
- Nance, W. B. and Taylor, S. R. (1977). Rare earth element patterns and crugtal evolution. II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochim. Cosmochim. Acta 41: 225-231.

- Normark, W. R., Morton, J. L., Koshi, R. A., Clague, D. A. and Delaney, J. R. (1983). Active hydrothermal vents and sulphide deposits on the southern Juan de Fuca Ridge. Geology 11: 158-163.
- Norrish, K. and Hutton, J. T. (1969). An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 33: 431-451.
- Oftedhal, C. (1958). A theory of exhalative-sedimentary ores. Geol. Foren. Stockholm Forth. 80: 1-19.
- Ohmoto, H. and Rye, O. R. (1974). Hydrogen and Oxygen isotope composition of fluid inclusions in the Kuroko deposits, Japan. Econ. Geol. 69: 947-953.
- Oliveira, J. T. (in press). The Devonian-Carboniferous stratigraphy and geodynamics of Southern Portugal: some comments. Neues Jarb. Geol. Pålaeont. Abhl.
- Oliveira, J. T., Horn, M. and Paproth, E. (1979). Preliminary note on the stratigraphy of the Baixo Alentejo Flysh Group, Carboniferous of Southern Portugal, and on the paleogeographic development, compared to corresponding units in Northwest Germany. Commun. Serv. Geol. Port. 65: 151-168.
- "Oliveira, V.M.J. (1971). Breve nota sobre a alteracao meteorica do grande filao doleritico do Alentejo e paleogeografia des formacoes encaixantes. I Chillage, Seccao 4(2): 781-786.
- O'Neil, J. R. and Taylor, H. P. (1967). The oxygen isotope and cation exchange chemistry of feldspars. Am. Mineral. 52: 1414-1437.
- Ostwald, J. and England, B. M. (1977). Notes on framboidal pyrite from Allandale New South Wales, Australia. Mineral Deposita 12: 111-116.
- Ostwald, J. and England, B. M. (1979). The relationship between euhedral and framboidal pyrite in base-metal sulphide ores. Min. Mag. 43: 297-300.
- Pearce, J. A. and Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69: 33-48.

Pfefferkorn, H. W. (1968). Geologie des gebietes zwischen Serpa und Mertola (Baixo Alentejo, Portugal). Munst. Forsch. Geol. Palon., p. 9-143.

Piper, D. Z. (1974). Rare earth elements in ferromanganese nodules and other marine phases. Geochim. Cosmochim. Acta 38: 1007-1022.

Pisutha-Arnond, V. and Ohmoto, H. (1980). Chemical and isotopic compositions of the Kuroko ore-forming fluids. Geol. Soc. Am. Abs. W. Pgs. 61: 500.

Plimer, I. R. and Carvalho, D. (1982)¶ The geochemistry of hydrothermal alteration at the Salgadinho copper deposit, Portugal. Mineral. Deposita 17: 193-211.

- Priem, H.N.A., Boelrijk, N.A.I.M., Hebeda, E. H., Schermerhorn, L.J.G., Erdurmen, E.A.T. and Verschure, R. H. (1978). Sr. intopic homogenization through whole mock systems under low-greenschist facies metamorphism in Carboniferous pyroclastics at Aljustrel (South Portugal). Chem. Geol. 21: 307-314.
- Prodehl, C. L., Sousa Moreira, V., Müeller, S. T. and Mendes, A. (1975). Deep seismic sounding experiments in central and southern Portugal. XIVth General Assembly of the European Seismol. Comm., p. 261-266, DDR Nat-Komitee Geodasie und Geophysik, Berlin.
- Rambaud Perez, F. (1969). El sinclinal Carbonifero de Rio Tinto y sus mineralizaciones associadas. Mem. Inst. Geol. Miner. Espana 71: 229.

Rast, N. and Grant, R. (1973). Transatlantic correlation of the Variscan-Appalachian Orogeny. Am. J. Sci. 273: 572-579.

Ribando, R. J., Torrance, K. E. and Turcotte, D. L. (1976). Numerical models for hydrothermal circulation in the oceanic crust. J. Geophys. Res. 81: 3007-3012.

Ribeiro, A. 1981). A geotraverse through the Variscan Fold Belt in Portugal. Geol. en Mijbouw 60: 41-44.

Ribeiro, A. (in press). Noticia explicativa da carta geologica 1/50,000 - Bordeira. Serv. Geol. Port., Lisbon.

Ribeiro, A., Antunes, M. T., Ferreira, M. P., Rocha, R. B., Soares, A. F., Zbyszewski, G., Moitinho de Almeida, F., Carvalho, D. and Monteiro, J. H. (1979). Introduction a la Geologie generale du Portugal. Serv. Geol. Portugal. Special publication, 114 p.

- Ribeiro, A., Oliveira, J. T. and Silva, J. B. (1982). La estructura de la zona Surportuguesa. Libro de homenaje a J.M. Rios. Inst. Geol. Min. Espana (in press).
- Ribeiro, A., Ribeiro, L. and Iglesias, M. (1983). Collision tectonics in the Iberian segment of the Variscan Fold Belt (abs.). Quarterly J. Geol. Soc. L., spec. iss. William Smith meet. Collis. Tectonics (in press).
- . Rickard, D. T. (1970). The origin of framboids. Lithos 3: 269–293.
- "Rickwood, P. C. (1968). On recasting analyses of garnet into end-member molecules. Contrib. Mineral. Petrol. 18: 175-198.
 - Ripley, E. M. and Ohmoto, H. (1979). Oxygen and Hydrogen isotopic studies of ore deposition and metamorphism at the Raul Mine, Peru. Geochim. Cosmochim. Acta 43: 1633-1643:
- RISE Project Group (1980). East Pacific Rise: hot springs and geophysical experiments. Science 207: 1421-1433.
- Riverin, G. and Hodgson, C. J. (1980). Wall rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec. Econ. Geol. 75: 424-444.

Roberts, R. G. and Reardon, E. J. (1978). Alteration and ore-forming processes at Mattagami Lake mine, Quebec. Canadian Jour. Earth Sci. 15: 1-21.

Robertson, A.H.F. (1977). The origin and diagenesis of, cherts from Cyprus. Sedimentology 24: 11-30.

Rockingham, C. J. and Hutchinson, R. W. (1980). Metamorphic textures in Archean copper-zinc massive sulphide deposits. CIM Bulletin, April, 1980, pp. 104-112.

Roedder, E. (1968). The noncolloidal origin of "colloform" textures in sphalerite ores Econ. Geol. 63: 451-471.

Ross, C. S. and Smith, R. L. (1961) Ash-flow tuffs: their l origin, geologic relations and identification. U.S. Geol. Surv. Prof. Paper 366, 81 p.

Routhier, P., Aye, F., Boyer, C., Lecolle, M., Moliere, P. Picot, P. and Roger, G. (1980). La Ceinture Sud-

361

Iberique a amas sulfures dans sa partie espagnole mediane. Mem. B.R.G.M. 94, 265 p.

Runnels, D. D. (1964). Cymrite in a copper'deposit, Brooks Range, Alaska. Am. Min. 49: 158-165.

 Salpeteur, I. (1976). Etude structural et petrographique de la zona de Paymogo (Nord de la Province d'Huelva). Matallogenese des amas sulfures assocres. These Universite de Nancy I. 234 p.

Sakai, H. and Matsubaia, O. (1974). Isotopic geochemistry of the thermal waters of Japan and its bearing on the Kuroko ore solutions. Econ. Geol. 69: 974-991.

Sato, T. (1972). Behaviours of ore-forming solutions in seawater. Mining Geol. 22: 31-42.

Schermerhorn, L.J.G. (1970a). Mafic geosynclincal volcanism in the lower Carboniferous of South Portugal. Geol. Mijnb. 46(9): 439-450.

Schermerhorn, L.J.G. (1970b). The deposition of volcanics and pyritite in the Iberian Pyrite Belt: Mineral. Deposita 5: 273-279.

Schermerhorn, L.J.G. (1971a). An outline stratigraphy of the Iberian Pyrite Belt. Bol. Geol. Minero. LXXX-III-IV: 239-268.

Schermerhorn, L.J.G. (1971b). Pyrite emplacement by gravity flow. Bol. Geol. Minero. 82(III-IV): 304-308.

Schermerhorn, L.J.G. (1973). What is keratophyre? Lithos.* ,6: 1-11.

Schermerhorn, L.J.G. (1975). Spilites, regional metamorph-, ism and subduction in the Iberian Pyrite Belt: some comments. Geol. Mijnb. 54(1): 23-35.

Schermerhorn, L.J.G. (1976). The Aljustrel volcanics: Megacryst tuff and green tuff (Aljustrel and Gaviao pyrite deposits, South Portugal). Mem. Not. Publ. Mus. «Lab. Minerl. Geol. Univ. Coimbra 82: 41-60.

Schermerhorn, L.J.G. (1978). Epigenetic magnesium metasomatism or syngenetic chloritite metamorphism at Falun and Orijærvi. Trans. Inst. Mineral. Metall. 87: B161-B167.

Schermerhorn, L.J.G. and Stanton, W. I. (1969). Folded overthrusts at Aljustrel (South Portugal). -Geol. Mag. 106: 130-141.

Seyfried, W. E. and Bischoff, J. L. (1977). Hydrothermal transport of theavy metals by seawater: the role of seawater/basalt ratio. Earth Planet. Sci. Lett. 34: 7/1-77.

Shirozu, H. (1974). Clay minerals in altered wall rocks of the Kuroko-type deposits. Soc. Mining Geologists Japan, Spec. Issue 6: 303–311.

Sigvaldson, G. E. (1959). Mineralogische untersuchungen uber gesteinszersetzung durch postvolkanische 'akivitat in island. Beitr. Mineralogie Petrologie 6: 405-427.

Smith, I.E.M. and Johnson, R. W. (1981). Contrasting rhyolite suites in the late Cenozoic of Papua New Guinea. J. Geophys. Res. 86: B10257-B10272.

Smith, J. V. (1974). Feldspar minerals, vol. 2. Springer-Verlag, Berlin, 690 p.

Smith, W. C., Barnister, F. A. and Hey, M. H. (1949). Cymrite, a new barium mineral from the Benallt manganese mine, Rhiw, Çarnarvonshire. Min. Mag. 28: 676-681.

Soler, E. (1969). L'association spilites-keratophyres de la province de Huelva (Espagne). Thesis, Univ. Paris, 105 p.

Solomon, M. (1976). "Volcanic" massive sulphide deposits and their host rocks - a review and an explanation. In Wolf, K. A. (ed.), Handbook of stratabound and stratiform ore deposits, II, Regional studies and specific deposits. Amsterdam, Elsevier, p. 21-50.

Solomon, M. and Walshe, J. L. (1979). The formation of massive sulfide deposits on the sea floors. Econ. Geol. 74: 797-813.

Soong, R. and Olivecrona, J. A. (1975). An occurrence of cymrite in black shale, north-west Nelson, South Isla**o**d, New Zealand. Min. Mag. 40: 311-312.

Sparks, R.S.J., Sigurdsson, H. and Carey, S. N. (1980). The entrance of pyroclastic flows into the sea. I. Oceanographic and geologic evidence from Dominica, lesser Antilles. J. Volc. Geoth. Res. 7: 87-96.

}

Sparks, R.S.J., Sigurdsson, H.. and Carey, S. N. (1980). The entrance of pyroclastic flows into the sea. II. Theoretical considerations on subaqueous emplacement and welding. J. Volc. Geoth. Nes. 7: 97-105.

Spooner, E.T.C. (1977). Hydrodynamic model for the origin of the ophiolitic cupriferous pyrite ore deposits of Cyprus. In Volcanic processes in ore genesis. London, Inst. Mining Metall. and Geol. Soc., p. 58-71.

Spooner, E.T.C., Beckinsale, R. D., England, P. C., and Senior, A. (1977a). Hydration, ¹⁸O enrichment and oxidation during ocean floor hydrothermal metamorphism of ophiolitic metabasic rocks from E. Liguria, Italy. Geochim. Cosmochim. Acta 41: . 857-871.

Spooner, E.T.C., Beckinsale, R. D., Fyfe, W. S. and Smewing, J. D. (1974). ¹⁸0 enriched ophiolitic metabasic rocks from E. Liguria (Italy), Pindos (Greece), and Troodos (Cyprus). Contrib. Mineral. Petrol. 47: 41-62.

Spooner, E.T.C., Chapman, H. J. and Smewing, J. D. (1977b). Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus. Geochim. Cosmochim. Acta 41: 873-890.

Spooner, E.T.C. and Fyfe, W. S. (1973). Sub-sea-floor metamorphism, heat and mass transfer. Contrib. Mineral. Petrol. 42: 287-304.

Straus, J. M. (1974). Large amplitude convection in * porous media. J. Fluid Mech. 64: 51-63.

Strauss, G. K. (1965). Zur Geologie der SW-iberishen kiesprovinz und ihrer lager-statten, mit besonderer Berucksichtigung der Pyritgrube Lousal, Portugal. Thesis, Univ: Munich, 152 p.

Strauss, G. K. and Madel, J. (1974). Geology of massive sulphide deposits in the Spanish Portuguese Pyrite Belt. Geol. Bunds. 63(1): 191-211.

Strauss, G. K., Madel, J. and Alonso, F. F. (1977). Exploration pratice for strata bound volcanogenic sulphide deposits in the Spanish-Portuguese Pyrite Belt. In D. D. Klemm and H. Y. Schneider (eds.), Time-and-Strata-Bound Ore Deposits. Springer, 56-91: Sweeney, R. E. and Kaplan, I. R. (1973). Pyrite framboid formation: laboratory synthesis and marine sediments. Econ. Geol. 68: 618-634.

 Taylor, Jr. H. P. (1974). The application of Oxygen and Hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 69: 843-883.

Taylor, Jr. H. P. (1978). Oxygen and Hydrogen isotope studies of plutonic granitic rocks. Earth Planet. Sci. Lett. 38: 177-210.

Thuřston, D. (1973). Studies on bedded cherts. Contrib: Mineral. Petrol. 36: 329-334.

Toth, J. R. (1980). Deposition of submarine crusts rich in manganese and iron. Geol. Soc. Ama Bull. 91(I): 44-54.

Turner, J. S. and Gustafson, L. B. (1978). The flow of hot saline solutions from vents in the sea floor - some implications for exhalative massive sulfide and other ~deposits. Econ. Geol. 73; 1082-1100.

Valker, R. R., Matulich, A., Amos, A. C., Watkins, J. J. and Mannard, G. W. (1975). The geology of the Kidd Creek mine. Econ. Geol. 70: 80-£9.

Webb, J. S. (1958). Observations on the geology and origin of the San Domingos pyrite deposits. Comun, Serv. Geol. Port. 62: 129+143.

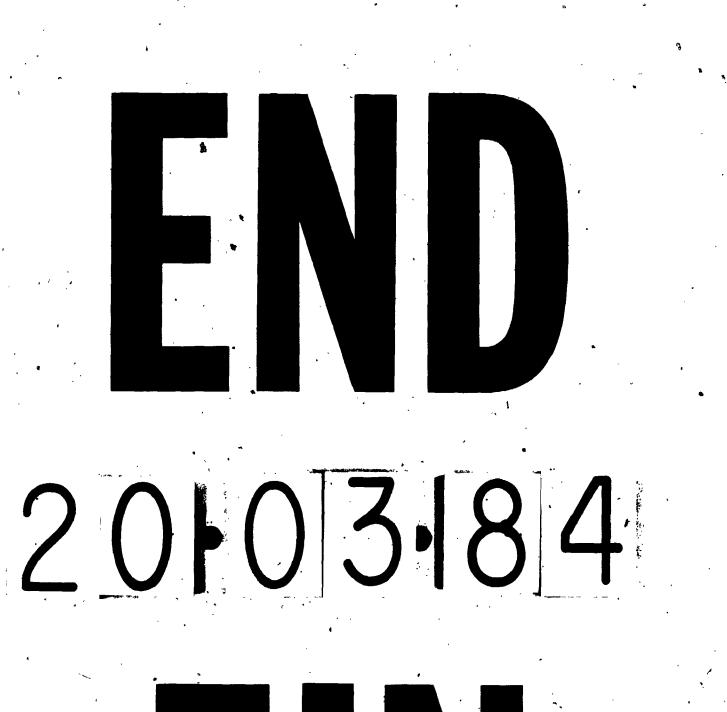
Wedepohl, K. H. (Ed., 1978). Handbook of Geochemistry. Springer Verlag, Berlin.

Weiser, H. B. (1949). A textbook of colloid chemistry. John Wiley & Sons, New York, 2nd ed., 444 p.

Wenner, D. B. and Taylor, Jr. H. P. (1971). Temperatures of serpentinization of ultramafic rocks based on 180/160 fractionation between co-existing serpentine and magnetite. Contrib. Mineral. Petrol. 32: 165-185.

White, D. W., Anderson, E. T. and Grubbs, D. K. (1963). Geothermal brine well: mile deep hole may tap ore-bearing magmatic water and rocks undergoing metamorphism. Science 139: 919.

Whitehead, R. D. (1973). Environment of stratiform sulphide deposition; variation in Mn:Fe ratio in host


rocks at Heath Steele mine, New Brunswick, Canada. Mineral. Deposita 8: 148-160.

Williams, H. and McBirney, A. R. (1979). Volcanology. Freeman, Cooper & Co., San Francisco, 397 p.

Wilson, A. D. (1955). A new method for the determination of ferrous iron in rocks and minerals. Bull. Geol. Surv. Gt. Britain 9: 56-58.

- Wright, T. L. (1968). X-ray and optical study of alkali feldspar: an X-ray method for determining the composition and structural State from measurement of 28 values for three reflections. Am. Min. 53: 88-104.
- Wright, T. L. and Stewart, D. B. (1968). X-ray and optical study of alkali-feldspar. T. Determination of composition and structural state from refined unit cell parameters and 2V. Am. Min. 53: 38-87.

Yamada, E. (1973). Subaqueous pumice flow deposits in the Onikobe caldera, Miyagi Perfecture, Japan. J. Geol. Soc. Japan 79: 585-597.

