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» ABSTRACT
Laminar boundary-layer theory has been correctly

developed for streamwise corners using singular perturbatiom

1

techniques. Similarity appears as a basic assumption and

provides needed simplification., Any theoretical investiga-

tion of similarity breakdown, however, would require

examination'of the cross-flow behavior, which is examined
thoroughly in this thesis. Jr//-’ [

y The formulation of the bbundary—layer equations is.

&

reviewed beginning with time-independent Naviar-Stokes

~

-~
‘equations. Tensor analysis is used so that the resulting -

equations are generally applicable to any similar flow
configuration. - A npn;orthogonal Cartesian coordinate system
is chosen to deal with streamwise concave corners (i.e. with

corner angles less than 1800). Coordinate and fldw-variable

o
? o

transforms are then used to ‘define bounded guantities.

.
~

The computational procedures for obtaining the

boundary conditiqns and solving the main equations are
described briefly, noting some pitfalls that would hinder
numerical computgtion. Results characterizing-the mafnstream
flow and the secéndary cross—fléw arg displayed and discuss;

©, 90°, 120° and 150°.

ed for corners with angles of-30°, 60
Ways to proceed with further investigation, while keeping

the mathematical modél simple, are then suggésted.

iii
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1. INTRORUCTION ® ! -

<

1.1 Three-Dimensional Bouﬁagzngéyer Theory

fhe broad purpose of boundary—l§yer tﬁeory is to

make tﬂe difficéh& problem of solving the Navier-Stokes
equation simpler: *'The clagsical problem of the flow past
a fiat plate is perhaps the'éﬁmplest of such problemns, ‘
mainly because the flow is two-dimensional. Although the .
vast mgjority of practical situations are of course three-
dimensionél, various features resulting from the two- ) ‘
dimensional proglem cap_be used to good approximation in ,
situations where surface curvature is small. 'The normal
to tﬁe surface at some point, for example, c%n be assumed to
be the direction of the maximum veloéity gradient with the
result that velocity gradients in other directions are .
negligable. From the potential flow problem assqciated

» with the boundary layer problem in question, the pressure
distriButioﬁ is found. It is applicable within the boundary
layer by virtue of the pressure gradient along the surface .
normal being;zero. These results are .take® advantage of by
séecifying.a coordinate systeﬂ in which one o the coordinate
directions is normal to the surface and other coordinate
direcéions parallel to the surface. The velocity gradiént

in the normal direction dominates those in the parallel

directions, and the pressure gradient in the normal direction




) . - . . ) .2.
. . o v 2
is zero. It is now known that certain terms in the flow
equations can be neglected compared with others. _ k74

With three-dimensional proﬁlems it is possible that ,
thére exists velocities in the lateral éirection (i.e.
perpendicular to the flow directibn yet parallel to the
sﬁrface). For ,problems which are ax;ally svmmetric with
respect ‘to the s%%eamnise’@irection,‘the late}al coordinate
is periodic and can be eliminated from the prggleﬁ by a
transformation (see Schlicting (1955)}). nge}wise one must
assume the lateral curvatugg,%o be small so thit\the léteral'
~ : velocity component is small enough to be of secondary ' '

e
importance compared to the mainstream velocity.

. Largé curvatures in the_solid boundary pfesént

different problems. Sharb corners perpendicular to the £l
: o cause the boundary layer to separate from the boundary. In
these cases thé fundamental assumption that the boundary -
layer is thin breaks down and other theories must deal with
the situgtion.. Stewartson (1§74)~presents a theory for this o
- ' cése. Large curvatufes in the latefal 3irecti9n present

different proﬁlems again since lateral ve}ocitiés can be

large and must be considered, which further complicgtes the

problem. The guestion arises of how boundary layer theory

can be used to simpli fy the.problém.

’ ) . @

[ al
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«
Tl basic flow configuration to be considered now

and for the remainder of this work is that of flow moving

parallel to the intersection of two' infinite planes or, in

other words, streamwise corner flow. This problem serves ~ '

.;ell to illustrate the basic features of flow near surface
regions of large laye;Fl curvature. In this case the
curvature is infinite at the corner. Such flow features
;riée in many practical situatiohs such as wing-fluselage
juhctiohs, tail assemblies of airé}aft and corners of air

'intakes for jet engines. The solution to the problem can

also.- be more directly applipd"to providing. details of flow

‘e

near corners of high Reynolds number channel flows and

-

square air ducts in which tﬁe extent of the walls_ is -large

comparedﬁio the domain of interest near the corner. Physical

1 Iy

properties one may wish to predict in" streamwise corner

flow are boundary layer separation and transition from -

¢

laminar to turbulent flow. ‘This‘imp}iégﬂthat the flow is
lamina£ to begin with, thereforq—the problem in laminar
incompressible.fiow is here considered.
Héviquchosen the streamwise corner flow probkgm as
. specified above, it is neceséary'to consider now the features
of twofdimensional‘bgundary layer théory can be carried o¥&r
into tﬁ?% three—dimensionél préblem. The arguments of
velocity gradients normal to the surface dominating ‘or
constant pressure along surface normals clearly‘cannot apply

in the region near the corner, What has been suggested by




.y

‘be streamlgnes and- other be orthogonal fo these. Along ‘the -

Awould apply 1n-the boundary reglon W1thoutreferr1ng to a - ﬂ

Zamlr (1970) and Elchelﬁrenner (1973} is that a. coordlnate

,system be adonted such that one famllv of coordlnate surfaces Q’

orthogonals one assumes constant pressure or max1mum veloc1tx
<

gradlents. Zamlr (1970) developed a- system of equatlons that .

2
.

specific coordlnate system by means of tensor analy51s. :A . :
% ’ .
serious problem arises when one requlres a specific coordlnate - '
systemsto work in., Neither the streamlrne surfaces hor the -
corresponding orthogonal coordinate.surfaces are known a

beforehand. One mdy choose the correséonding coordinate .

" surfaces resulting from the assoc1ated potential flow

oroblem as berng close aoproxrmatlons to those within the

g
boundary\reglon, but the coordinate system thus 1mposed may

e

be very complicated to work in. The system proposed by

Zamir '(1970) is a case in point. The theory of curvilinear

boundary layers therefore involves fewer terms in the flow

"

equations but, since a complicated’coordinate system is ) -

used, the terms themselves become complicated. Very little

progress has been made in this direction for this reason.
Anotherﬁmethod that has:met with greater success,

as far?gs,streamwise corner ﬁlom is concérned, is that which

regards the“prqblem as a singular perturnation expansion.w

Van Dyke“(l97§) discusses'two—dimensional boundary layer:’

flow over a flat plate 4in detail by such a method. It is*

pointed out by this author that- the conventional Blasius

solution has long been known to be the first@order'inner



~r s N -
. I .

RS . ‘ ot solutlon of a perturbatlon upon the potentlal flow, but. the i

‘e . ol
.t o derlvatlon of hﬁgher—order expanslons was lacklng untll the
- Y P * o . ‘*’{" . 'v ', . . v
AL method of matched gsymptotlc expan51ons was’ developed; By S

- ‘e
R

treatlng streamw1se corner flow 1n ﬁ%rms of 51ngu1ar

< perturbatlons w1th matched asymptotlc expan31on$, equatlons

M ' . . .\
.

of the boundary reglon have been obtalned..

In summary, the fundamental aspects of boundary layer

- . ce 2o M A 9.
2 K s

C Lo ‘fw*: ' e theory,‘appllcable 1n elther two or three dlmen51cns, can be

I
-

) applled u51ng the 51ngu}ar perturbatlon process.' As with .

'

s N a boundary layer flow 0ver a flat plate, the ba51c ‘assumption

oo of the bouudary layer belng thln makes it necessary to

T v h vdeflne new 1hdependent variables that are the same order of

“ . . -
. - . 3 ‘ . . -«

PR . :magﬁitude. This can be called rescaling the independent
variables. erting the 'Navier-Stokes equations in these new

variables and dropping the terms that are very small in
. . //
comparison with the others, one obtainsya set,of boundary

& )

layer equations. Upon examining this simpler set of
N e 4

equations it is seen that in physical terms one has assumed
that the normal pressure gradient is zero and that the

; .velocity gradients parallel® to the surface are negligable
H .

o

compared with the normal velocity gradients. These assumpt-
] . y ¢

0y

4 o . <
ions can be applied directly in curvilinear boundary layer

theory for three dimensional situations, but since the -

)

assumptions arise as a result of rescaling variables and ==

dropping.negligable terms as in the two-dimensional case,\
- 1

proper rescaling of variables in the three-dimensional

case leads to the same results. Curvilinear boundary layer




i

v

theory and s1ngular perturbatlon boundary layer theory thus
apply the same approx1mat10ns in different ways. Using the
; ‘ * .

singular. perturbation method makes it unnecessary to use a

complicated curvilinear coordinate system.

1,2 Theoretical Streamwise Corner Flow in Review
| A formulation for three-dimensional flew wasifirst

develdped by Stewartson (1961) for viscous flow over a

quarter-infinite plate. Rubin (1966) adopted this formu-

lation for streamw1se corne%yflow as a singular perturbation
problem. Region I of Figure 1 denotes the area of zeroth;

T orderdpotentlal flow (i.e. undlsturbed malnstream flow).
Perturbation leads to first-order Blasius boundary layer
solutions of regions II and III. Outflow predicted by the
Blasius solutions providee matching conditions for first-

» order potential flow of redion I, implying that the effectiye
displacement body is two intersecting plates with paraboiic -
profiles. The induced cross flow in II and III due to first-
order potential flowileads to the second-oxrder boundary layer
of those regions which do not appear in two-dimensional
theory. Solutions of the flow equations can be found for

BN : these regions for distances far from the corner. v »

Rubin £l966) dedgced what form the corner boundary region
e equations of region IV would take. Boundary conditfons.for’ ° e
///// thls‘reglo; are the no-slip condltlons at the walls, matching

conditions of "tegions II and III and mainstream conditions

far from the solid boundaries. .

P
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Rubln (1966) made te</§ﬁsumption‘tﬁat the flo& ‘

propertles decayed exponentially into reglogs IT and III.
In a later paper Pal and-Rub?n (1971) discoVvered that in =
fact aléebraic decay into these.regidns applies. These
algebraic conditions” were determined as an asymptotic serles
with respect te dlstance from e corner and presented by the
authors. The fact that this asymptotic series could be
continued to any‘desired number or terms proved important
for the numerical solution ‘f he streamwise cornerxr flow;

equations as presente& by/Rubi d Grossman (1971) since

values on the outer boundary (a fin e distance from the -

>

cbrner) weﬂe required. Greater accuracy could be had by

using several terms of the expansron at the cost of

g

progres51vely greater dlfflculty 1n solution of each term

With the outer boundary. conditions in hand the governing

-equations of the corner region were solved by a Gauss-Seidel

numerical method.

Ghia and Davis' (1974a) demonstrated that the first
order gotentlal flow of streamwise corner flow-"can be found
by visualizing the dlsplacement effects of the corner: region

as the superposrtlon of the dlsplacement effects of the two

‘semi-infinite flat plates forming the corner*, Since any .
veetor can be represented as the vector product of the
gradients of two scalar functions, the velocity vector of the

‘potential region can be written as:

- N . ¢
S 7

vV = UY, x VY, : (1.2.1) o
* This is obvious from the analysis of Rubin (1966) - )
although it was not explicitly stated in that paper.

.
£




, - S S

whéievwl and Y, are the stfeam functiops associated with flow

past each plate.comprising the corner as if the other plate

¥

were not present. These are known from boundary layer theory
- ;

applied to flat plates as found in Van Dyke (1975).. An

understanding of the first-order potential flow is important

S - 4

\ >
¢ .

since the solution will dictate. what férms the velocity '
_.expressions of the corner region will take. . ( ,
Ghia (1975) presented a nmethod of dealing with the.

P - R
far<“field boundaries based on the knowledge of the algebraic- o

ally decaying asymptotic expressions of Pal‘and Rubin (1971). ’/;ﬂﬁ
N ’ ~ .« Based on an independent varlable transform of SlllS (1969),
the boundary at infinity was mapped onto unity so that the
- domainxof the problem was mapped from quarter-infinite to a
unit square. By redeflnlng the dependent varlables so that

they remain bounded, it was p0381ble to flnd D chlet ~-type

boundary conditions for ‘the dependent variables at the far- '

X,

field boundary. Ghia and Davis '(1974b) had developed ag

alternating directidén implicit method for solving numerically

PN

e the finhite corner problem.of Rubin and Grossman (1971).

Ghia (1975) used an improved version of this ADI method. The

-

¢ results reproduced in the main are the results of previous

finite corner solutions. leferences in the secondary flow
were attributed to the better treatment of,%he outer bound-’
ary, since the need to determine higher orders of the asymp-

totic solution of the outer boundary to obtain better

g accuracy at lafge but finite distances from the corner is

.eliminated. . .




=

¢ .
S 10
Weinberg anq Rubiﬂ 61972f considered coﬁpressible fiow
behaiﬁor in the corner boundary region. Mikhail and Ghia
(1978) also studied this situation using the far—field’
boundary treatment of Ghia (1975). ‘
' - Desai and Mangler (1974) derived ‘the streamwise

¥

corner flow equatlons in a general curvilinear coordinate

§
system with the intention of applying them to corners<of

arbitrary angle. qﬁée-a particular coordinate system was
. . . . *!

4

chosen, asymptotic solutions were found for the equations at
large distances. from the'corner, but close to the wall. With

the boundary conditions at infinity available in this nmanner,

\this boundary was then mapped onto a finite value. Numerical

D,
>

results were then obtained using a Gauss-Seidel method for
90° and 135° corners for which expetiméhtal as well as
theoretical results existed. —
Barclay and Rldha (1980) formulated the streamwise
corner flow problem so that solutiond for corner. angles -
between 0° and 360° could be obtained. Unlike Desai and
Mangler (1924;J a simple non—orthogoﬁal Cartesian coordinate
system was used as wel} as*fargfield conditions, yhich are
generalizations of those foand by Pal ‘and Rubin (1971) with
the corner angle parameter abpearing explicitly. The far-
field boundary was maﬁbed.onto a finite value with a

transform very similar to that presented by Silds (1969) and

used for the streamwi'se corner flow problem by Ghia (1975)

for the same reasons. Solutions were obtained

3

-

2




180°

225% and 270°, EFox the 90° qpfner the results'corresponded

-

Differences do.pccur in the cross flow velocities at
distances far from the solid boundary. These differences
were explained in Barcla& agé Ridha (1980) as resulting

om the treatment of the posgntial flow boundary of £he

\
1
\

_1c1ty qu streamWLSe Welocity decay exponentially to

conditiong of the potentlal flqw region. Instead the
boundary was taken at a finiteidistance from the surface.
] . ~

This was j.stified'since excel%ent agreement with.the

LT

results of {Ghia was obtained. ‘Comparlsons of the results

at different anglee were made by examining -the mainstream

%

\’ J’ I . v
! It As useful to examjﬁe-the similarities and|4/,

difference of rhe Qarious t eatments of the streamwise

{ +

corner fl W dlscussed above.: The major 51m11ar1ty is that

v

- the cross fLQw coordinates are .all scaled as before

lndlcated o that they are of order R % compared with the

. i
mginstream coordinate where

R:.Q.g‘.
\Y




i
|

) - : . . |
- v, ’ l

is the éeynqlds number bhased on a&n arbitrary leﬁgfh 2. 1In
addition to the rescaling, the boundary region i"assumei
_ to be similar wiyhlréspect to the streamwise variable x so

that a factor of 2x also appears in the new crogs-flbw ;

coordinates. so that the fiqallrescaling is

x =X
_ f2vxik
v= 5

z ='[22§]% 2 .

-

o U

Here the assumptions of boundary léyér theory are applied to

+ obtain boundary layer equations as approximations of the

~ ‘.1 -
coordinates Y and Z can be functi ns@df:still other

.

N . . Lo )
variables so that .a chosen coordinate 'System can be used (as
. : H

was the case in Desai and Maﬁgler (1974) and Barclay and

%

Ridha (1980)) to deal with corners of different angles.

Since the velocity magnitudes of the first-order

potent{al flow are known from Ghia and Davis 11974a), when

ritten in térmé of the bounggfy region coordinates Qf

(1.3.2), these velocities hecome ’ )

v¥) © wy,z) U

v < gy, z) UR;% (1.3.3)

v® ‘< w(y,z) OR®
¥

Zem

.12,

—
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where V(X), V(y) and v'Z are the physical velocity
.cbmponents; u, v and:w are the scaled velocity components; \\\V,

* N N \

and ' . ) éf
_ 2Ux o ; T
“ng == . o (1.3.4)

v

B

Y

is the Reynolds number based on length ¥. When these scaled

»

coordinates 'and velocities are substituted intq the Navier~ [ *

"Stoke’s equations and only first orders in terms of R kept,
one obtains the first-order corner boundary region equations.
Because of ‘similarity being assumed, these-equations are

independent of x. The:expansion fdr pressure can be assumed . .

to have the form
3

: -1 ' ~ !
P=Pl(x).+ RX )

Py(Y,2) + ... . (1.3.5)

The first-order term disappears.from the top-order equations -

and the R;lrterm can be eliminated‘by cross—differéPtia§i?n..

The velocity components.of (1.3.3) é;e used by all -
authors mentioned in this Sectiop and the corner boﬁnﬁary, : 4 e
region equations~a£e obtained as deséribed. The cqmputatipnr | -

- <2

al domains used are all closed and have Dirichlét ‘boundary o
;;;diéions available either directly, by iterd%igp:;Sﬁ/jaem\\\;//;///- X
a simplified set of equations applying ‘at a Boun@ary;~ ?h§‘~~ -
treatment of these boundaries and the method of;obtéining
boundary-condfliohs, hgwevef, constitute the major differen-
ces, .A less important souxce of difference 1is the‘coordinatg
system nsgd in.a particular case. In dealing Qith riéh}— | .

angled corners, Rubin and Grossman'(lQ?i) and Ghia and Davis -

(1974b) used Cartesian coordinates. The boundary conditions
N P R -

-

~ok -
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far'§§0ﬁ~the corner were 6btained.by Pal and Rubin (1971).

These far-field conditions were applied at a finfie'distance
from the corner and not at true infinity. Ghia (1975{ used

a variable transform‘in ordexr to aggly the boundary c?nditions
at true infinity. Corners of arbitrary ang;e were studied

by Desai and Mangler‘(1974L and Barclay and Ridha (}980).
Desai ané Mangler (1974) used a éurvilinear yet non-orthogonal
coordinate system that allowed corner angles up to and
including 180o while Barclay and Ridha (19805 used a non-
orthogonal Cartesiap coordfnate system .that could represent
corner angles between*Oo‘and 3600. Both.of these papers

used coordinate transforms so that féf—field boundary
conditions could be appiied at true infinity.. However, while
Barcla§ and Ridha (1980f used'far—field equations of Pél

ané Rubin (1971), generalized so tﬁgt they applied for
different angles, Desai and Mangler (1974) assumed zero
Qelocity compénent pggallel toléhe soiia boundary so that the:
boundary layer far from the corner bofresponds exacély to

that of the flat plate. Along with this point Barciay and
Ridha (1980) also point out that the boundary equations of
Desai and Mangler (1974) provide only Qradignts of flow
éuantities instead of the quantities themselves. These
differences are suffi &ent to account for the lack of {
agreement in reSults/Between Desai and Mangler (1974) on
theooné hand and Bubin and Gfoséman (l%?l), Ghia (19%5) ané
Barclay and R%dha (l280) on the other, according to the

~

latter papst. #
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Experimental measurements have been made of the
mainstream velocity in several streamwise corner flow
situations, but differences‘exist between various ewperi-

mental results as well as between theory and experiment.

) : . 4 | 15..‘

As well as presénting new experimental results, Zamir (1981),

examined these differences and conc¢luded that the boundary
layer in a rectangﬁlar corner does not exist in a stable,
laminar forﬁ for Reynolds numbers greater than about 104 )
unless there is a favérable streamwise pressure gradieﬁt. .
As thé gradient is reduced to zero the instability appears,
the manner of which depends upon such factors as free
st?éam distﬁrbance; and the form of the corner %eading
edge. Such instability is not qpparent in the boundary

laver far ffomjthe corner. When the corner boundary layer

is stable the méinstream velocity profiles show a high

degree of similarity. Unstable corner boundary layers,

however, show a breakdown of similarity. ;All of the
theoretical analyses assume similarity explicitly in the
manner in which the independent vari

> ¢
(eg: see (1.3.2)), as well as assum

les are restcaled

. 6
Agreement between theory and experimant therefore appears

impossible to obtdin.\ Zamir (1981) d4d#d show, however, that

by exttapolating stable ntal results to the limit

. of zero pressure gradient‘to obtain the velocity. profilé

in the bisector plane, those of Rubin and Grossman (1971)

and Ghia (1975) were the closest.

zexro pressure gradient.
. ’ . L

L )
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1.4 The Present Work ,

It would seem from the conclusionsN‘of gamir (1981)
:that theoretical streamwise corner flow has limited practical

. application. To modi-fy the.theory by abandoning similarity, o

one must then deal with three independent variables plus the

N

attending complications. If unsteady flow is associated -
with the breakdown of similarity in corner flow, then the
mathematics are complicated further by the need to introduce

time as a fourth independent variable. dbbtaining solutions

* of such equations by compurarional methods is difficult and

~

ooostly. Y
The theoret;;él work previous to zamir (1981) is
still valuable, however, sSince one needs to know the struct-

ure of| similar corner £flow. Zamir (1981) has shown that

|

even for small pressure gradlents (where measurements are

still Loeflble) the boundary layer is steady and similar
for flow of Reynolds number less than about 104. Any '

theoreFical study of instability, therefore, Wodid‘use former

3

theorerical results as initial cgnditions upon which pertur- -
bations could be tried. ' ‘ S
Particularly important in studying how the corner -
boundary layer may behave should similarity break down is

detailed informatiog//gncernlng secondary flow patterns.

The major factor influencing secondary flow patterns even
in 51tuatlons with srmllarlty is- the shape of the solid
bound?ry. A streamwmse corner boundary has" already been

speciﬁied, but it is not necessary to consider only a
{

i . -

!

|
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rectangular corner ds has been,done by most theorists.
. Corner boundary layer- equatlons for corners of arbitrary
angle have been developed in Desai and Mangler 41974) in

which one is free to choose the most suitable coordinate

system. If the curvilfnea; coordinate system chosen in
Dgsai and Mangler (1974) is not‘tbe-most suitable, then one
~can consider the non-orthogonal Cartesian coordinate system

of Barélay and Ridha (1980) bécause simpler corner boundéfy

layer%Sequations result, and the theoretical results 0of the

\
\\\\vf}ow correspond to those of Ghia (1975) for a rectangular

owrner. ' ‘ .. e
Another majob factor affezting secondary flow
- patterns is the boundary condition imposed far from the
cofner, which shall be known as the‘farrfield boundary
condition. The reason For the difference between the
secondary flow patterns of Desal and Mangler (1974) and
Barclay and Ridha (1980),.as 1nd1cated by the latter authors,
is that the flow was assumed to coxrespond exactIY‘to
" Blasius flow at infinity in Desai and Mangler (lé%4).v
Since;the mainstream velocity characteristics within the
corner region are predicted more aédurgtely by Ghia (1975)
by using the far-field boundary conditions deveipped by Pal
and Rubin (1971) , the results of Desai‘and Mangler (f974)
suffer. Barclay and Ridha (1980), on.the other hand, used
the Pal -and Rubin (1971) boundary conditions and repbbﬂuced

-thé mainstream beiocity profile results of Ghia' (1975) for

a rectangular corner.
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\

\
- . The coricern’ of Desai and Mangler (1974) was to obtain

»
: Ty

corner boundary layer eauatlons in a general coordlnate system

~

and despite the far-field boundary condition this work is

valuable. The numerical results of these authors were therefore
only meant to be compared wirth existing theoretical and

experimental results, so only corner angles of 90° and 135°

were presented.
2 v, < - -5

Including the trivial case Qf a 180° corner, Barclay
, and Ridha (1980) obtained results for five different corner -
aqgles of two types. The cothers éf angles Qoo,and 135° may
be termed loosely as concave cornérs while thesé of corner
angle 225 and 270 are conyex corners. With. these results .
the authors noted that the secondary sheer layer exhibited

an ant&eymmetric behaviour for angles equidistant from 180°

However, the results comparing boundary layer flow patterns

3
for corners of different angles involve only mainstream and -

v

cross—fld& velocity magnitudes in the Hieector plane, which
v are éraphed as functions of distance from the corner point.
Full cross-flow diagrams werehpresented only for méinstream
- velocity contours and”croee—flow velocity directions, the
. hpurpose of Wthh is to compare these auantltleg\for corners
‘equldlstant from 180\. The only comﬂent regarding stablllty
was maﬁe with reference to the cross-flow ve1001t1es adjacent e

.

2
to the: corner and flowing tSWafd the cornerx. Barclay and ,

Ridha (1980) stated that for concave corners a substantial
¢4 o
inflow would be a stabrllzlng mechanlsm for the boundary ‘layer
40" T :
if ptesent,'but no mention of a specific angle was made.

¢

“ -

L4
e e it Y

£y
. B
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The purp?se of tnéfpresent work is to examine the = =

theoretical bounéary layer structure of concave corners,
) ‘including cérner angles less than 900, with emphasis on tﬂe
secondary cross-flow structure and keeping in mind the
breéarious natures of sim}larit§4and stability. The.

formulation of the corner boundary layer equations presented

in Chapter 2, Sections 1 and 2, will be patterned after that

of Desai and Mangler (1974) in-suffiéient detail that what
may be obscure to some rqad;rs of Desai and Mangler (1974)
may bé made clearer, par£iéularly the fact that the 'method
used by the authors is in fact a singular pertufbation
expansion. . Section 3 of Chaptepr will deal with the
coor@inate_sysfem_to be used. Instead of the éverly
complicated coérdinate system of Pesai and Mangler (1974),
:: form of that used in Barclay and Righa (1989) will be ¢
N : sed here, modified so that the ‘coordinate system covers the-
Ektireadomain of the corner instead of half. Sincernly'
concave corners are of iniifest here, there is no problem
in proceeding in this manner. Boundary conditions and
eoordinate transforms will then be discﬁssed in the following
three’ sections JéfChaptér 2. Presented in Chapter 3 is a

@ethod of obtaining numericél results which will then be

examined and discussed in Chapter 4,




-, wb

. : N\
' 2.  GOVERNING EQUATIONS

2.1 Navier-Stokes Equations in Tensor Form-.

1

.
w

Tensor analysis is used in this section, and the one
following, because then one need not consider a specific

coordinate system until later: The tensor equations remain
’ /
valid in any coordinate system. 1In this work, the tensor

o .
notation of Flugge (1972) is used. A Explanations of what the

-

various symbols mean will be given as neééed, although it is
not’ intended that a treatise of tensor analysis be presentéd.
The §;oblem‘is begun by stating the Navier-Stokes
and.continuiéy equagi?ns for steady, viscous, incompresSible
laminar flow. With these résﬁrictions, the appropriate
equatioﬁE developed and presented in Flagge (1972) are

presented as follows:

i i 1 45 A
” u’ u Ij = = o g Plj + vu |j
, (2.1.1)

ujl. =0 . . : ..
J . ¥ .

In the above equations, the indices represent the threé
independent variables Ei and therefore take the values one,
two and three. The Einstein summation convention is
maintained between identical covariant indices and contra-
variant indices, which are the subindices and superihdices
respectively. The s&mbol ﬁi represents the contravariant
compqpeﬁts of the velocitg vector, gnd P is the scalar press-

ure function. The symbols p and v represent respectively the

-
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constants of density and kinematic vigéosity.. The'vertical
stroke sindicates that the covariant derivative of the
preceeding quantity is to be taken. The -covariant

. . i .
derivative of w” can be written as

il . k i

‘ ul. =u + u T (2.1.2
3 "J jk )
and that of ui as
kn

uilj = ui'j - U Pii, (2.1.3)

where the comﬁéwindicates that the partial derivative is

& au.,
taken (e.g. u.,. = —= ) and TE. is the Christoffel symbol
~ 173 5] ij
which can be written in terms of ‘the covariant aﬂd contra-

° -

variant metric tensor as

_g.

= 5 g (gjmli + g lj’m) . (2.1.4)

mi’j
Lastly, what appears t0 be a covariant derivative taken with
respect to a ¢covariant index and a contravariant index is in

fact ‘a short form used to avoid writing the metric tensor;

that. is:

ilj

ik i "~ jk
. u =
” j =9 |

k7 9 (uf|j)| . (2.1.5)
Equations (2.1.1)zcan béamade simpler in form by

avoiding the use of the covariaAnt derivative and the attend-

ing Christoffel symfols. The/ continuity equatign of (2.1.1)

expresses the divergence of the velocity vector being zero.

This equation can be simplified (see Appendix I) by writing

~

i
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the equatidh as .
. Q, -
wl,, + 2K - (2.1.6)
where 0 =‘(g)% . - (2,1.7)

Upon multiplying by Q and changing the dummy indéx k to j
’ and‘éollecting the terms together, the continuity equation

.

becomes
(© uj),j =0 . (2.1.8)

" For the Navier-Stokes equations of (2.1.1), since
the covariant components of the velocity are &anted, one

multiplies by gfi and changes the indggfl to i throughout
H N J
the equations to get
.= - » (2.1.9
iy = 3 )

fOE

P| . + vuy
For further simplificatibn,ﬁ;;Zh te will be considered
.separately. Since the covariant derivative of a scalar is -
the saﬁe.as the partial derivaéivé, the pressure term

becomes

Pli =P, . ) (2.1.10)

'y

_The term on the left hand side of (2.1.2) can be shown (see

Appendix II) to be given by

). (2.1.11)

uj,l

The term containing the second-order covariant derivative
can be simplified by noting the well-known vector identity

written in Gibb's notation as -~

}7



23

Vx (Vx3) =9(V .1 -v:a .

If the curl of a vector in tensor notation is represented by,

i_ _ijk# y _ _ijk .
B Curl u” = € 'uklj € Uy g (2.1.12)
where sljk =1 eljk T
Q
. with Q defined above and eljk is the permutation symbol, and
where it is noted that
ijk _ _ijk _ i3k m
€ uklj e Wy o€ Uy Ty
. u s
- . ijk _.m ijk .m
) =g uk,J (e ij)
_ _ijk _fgg m _.m m _.m _m
=& Uy m g T3y "Tpg #Ty3 "oy ~Typ) -

then the identity can be written in terms of tensor not;tioﬁ*&‘

nrs mjk —
Jin © ( sm © uk’j)’r
. 5 ;- (2.1.13)
= (u Ij)'i = uilj .

Noting the continuity equation of (2.1.1) this becomes

u_lq - _‘g. DTS (g €mjk

i3 == 9ip (Sgn ki) e - (2.1.14)

With the relations (2.1.10), '(2.,1.11) and (2.1.14); equation

. . - -

(2.1.9) can b€ written as

3 -1 S
u’ ou,.,. 2(uj u’, . u uj'i)

P,. -~ vg,_ €"F° ¢

i in 7 sm uk’j)’r *
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To summarize; the tensor forms of the Navier-Stokes °
1"“" } o

equations and the continuity equation are here presented in
forms that do not involve covariant differentiation. The

. purpose of this section has been.to show that the equations

)

used .here and in Desai and Mangler (;974) are indeed the

correct on€s. Therefore the Navier-Stokes and continuity

equatiqns of (2.1.1) can be written as &
< . [} - Y]
J P N
u ui,j (uj u-, . u uj'i)
__ 1 _ nxrs rijk
= - 5Py TV € (Fgm € Uers)ep (2.1.16)
and .-~ (@u)),, = .

-~

2.2 Boundary Region Equations

Thesequations of (2.1.,16) are still the full Navier-
_Stokes equations and therefore still too general to be used

to obtain solutions for the corner boundary region. A more

.

appropri££¢ set of eqﬁétiﬁhs can be derived in the manner
previouély di;cussed %p Chapter 1. This précess of obtain-
‘ing corner boundary region eéuétions can be summarized in
three stages:
1) the independent variables are rescaled accorging
éo boundary layer theory; "
2)- the scaled forms of the dependent variaLles are

deduced by using the forms of the previously

obtained potential flow solution; and
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P

3) . these expressions fq;>both“independent and
dependent variables are substituted into the Navier-

Stokes equations, and only terms of the lowest order

in R are retained. s

It is desired that the actual coordinate system remains

unspecified for the time being'iﬂrorder éhat the generality
of the proéess may be emphasized. This can bg done by
continuing‘to use tensor aﬁalysis. It must be ﬁg;ed that
the tegsgr formulations to follow have already been present-
ed in Desai and_Mangler (1974),'althougﬁ iqié'sémewhat

R ™~
obscure fashion. They are presented herg in order to show

that the process leading to the fmnal s ;tem of equations is
the same as described before despité the perhaps unfamiliar
context of tensor notations. -

THe essence of the boundary layer rescaling of the
independent? variables ié contained in the equations of

(1.2.2), The scaled variables X, -Y and Z are regarded as

functions of other independent variables in the following

>

manner: 3"
X =x
’ Y = ¥(n,z) L (2.2.1)
2 =2(n,z) .

Notin§ the above -and (1.2.2), the transformation tensor

t; such that -
xt = t? gd ' T (2.2.2)
N i '
‘where - x° = (xX,Y,2)




=1

) and = ("X,n,C)
can be Qrittén as =
’ . O O ‘W.
. i, ;
t% - 9% - ¥ i v ] [va}% v [2vx]%
) BEJ 2Ux \U 4 ,U. .
) 7 2vx 2vx\%
2Ux U - U
]
with the Jacobean Q of the transformation (i.e. the
determinant of t; ) s
“ VX ‘vx
3 = — 2(Y - - z — . ™
0 5 ( n ZC YC Zq) 5 Qo .

It is seen in Appendix III that

Q

quantity denoted by Q in (2.1.7).

tensor given above,,pge can obtain the covariant metric

tensor g;

et

as follows (where gij is symmetrlc)

-1

e

e

¢

14 > =

ij

- k

1
v )1
Ux 2

£ g
j
2

(Y= + Z )

l 1f i

G. .
1]

km ' e

VX .2 2
2—(Y" + 2
U( n n)

Voo, \
=(YY + 22 )-
U( n n)

represents the same

With the transformation

by transformlng the Cartesian metrlc tensor,

0 lf i f j

.

v
=(YY + ZZ
-U( g C)

VX
- 2(Y Y_ +
U(nCAZZ)
VX 2 2

— 2(Y_ +

U ( C Zc)

4

(2.2,3).

(2.2.4)
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* o2y
r s A
r 3 \ v .
Vv \Y Y
I+5x % % 7 %3 : ’
VX VX ,
= ' v %22 T 923 ) (2.2.5)-
F \)_X . _.\'\
\ v 33 ‘

Since the metric tensor is symmetric, only\the diagonal and: ,

superdiagonal elements are written,.

> . . ¢
Sc&led_ forms of the dependent variables are needed
for both. covariant and contravariant cases. X beginning is
o made by noting the tensor form of (1.2.1): ’ :
¢4 i3k, ' '
. u’ =€ ¢,j W,k (2.2.6) -
' i

where ¢ and ¥ are scalar functions. This expression for u

" can ‘be shown to satisfy the continuity équation (the second

. , N
equation of (2.1.6)) for any ¢ and Y. For the present: case, o

proper choice of these functions will ensure proper
scaling of t%e velocities. If the following forms 'are

- N o

; ; Achosen: . - o

$ = vxQ(n,z) , ¥ =Y, (2..2.7)
then one obtains.from (2.2.5) and (2.2.6) ’ . S
LU T sy .
= ——— Q -— = =
., gy B ¥y T 8 ¥y 2ulnn) U |
e S TI S I ]
0 X 0
[ *
J 4 R T - :
) w = d (2.2.8)
7 QX g Q¥
/ ¢ )
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Sinég these are the contravariant forﬁs of the velocity
.vector, it is ‘hot readily apparent that these are the scaled
forms wanted. ﬁéing the transformation tensor (2.2.3) the

pﬁysicélly meaningful CarteSiJ; velocity components are

found to be . L 1

aP el ut s um,n U x

¢ 2Y ¢

2y _ .2 i _ _-% _An _ 't
u - £f u URX' iij/// o o )
L

R ' (2.2.9)

n

o<
s
~
A
=

» . _ 226 220
A tz ut = URX!'i (zu - Q” - OC )
o o
= -;5 -
= w(n,t) UR_

a——

which are exactly like those of (1.3.3), and therefore
scaled properly. Covariant velocity'ffﬁfgpents are found

by using the metric tensbr gij of (2.2.5) to obtain

: B q
- ] _ v _ 12, _ *13
uy = glj u’ = uv + ;(qllu g & 6——-¢)
o o .
= Y_“ . . —_—
Z ul + X b X R
- ' q q
- J _ _ 22 _ 23 ‘
Uy = gpy U = vlgpu - 5= 0 - 5= ¥ (2.2.10)
: o o)
E vy . v
\ R q q ‘ '
= o ul 23 33
uy g3j.u = v(ql3u o) ¢ o p)

v
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With the addition of the formulation given next,
the above expressions Ean be substituted into (2.1.16) to
- obtain a numerically tractable set of equations. The

additional formulation is found from the first covariant

vorticity component.

w, = €mjk u
1. 9im k'3
< U - -
= g% (a3 " gl Gy T Vi) ¥ o)  (2.2.11)
- U
=~ 5% A+ 0(v) \
where A = - 2_ (A3 s, 5 = Qq58,, + & = Yi4) ) 2
- - QO 12773 1372 r2 '3 P '[?
or, in terms of u, ¢ and ¥, o * C -
Q . : Aygra = Ayay
o . _ _ 92273 T 92372
7 AF (qyyr3 = q30p) 0 o
q ’ - g r S| .
§ 3372 5 233 y - 5= (81, = Vi3 (2.2.12)
X ‘0 ‘0
922 933 .

The pressure P can be expanded as

%
Py «e

i

with Po = Po(x), Pl s'o and P2 = Pé(n,c) .

The above expressions can: now beigubstitut

P=7P +REIpP. +R ' (2.2:13)
o) X 1 X

into (2.1.16)
and, for. large Reynolds numbers, retairning only the first-

order terms; the following equations result after some

-

tediotis algebra:

~y
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QO u = ¢I2 + lpl3 - ‘;: &

Vu + ¢u,2 + wu,3 =0 e .

0 q r - g ’
o _ _ _ 122'3 2372
g B = ldypr3 7 d9p3ep) @ N 0
. - b
g I - g r q
+ 3372 5 23'3 v - Q23 (¢,2 - w,3) -(2.2.14)
-O 0
q q :
- 633 ¢,3:+ 522 w,z .
. o o ‘.
Q

O
5—(VA + ¢A,2 + wA,3 + QouA)

\ *Quldyrpuig = A3t =0
\In thexabove equations, it was assumed that Po(x) = Constant.
A The éx?re?sion§E12.2.1l) and (2.2.12) for A were used to
simpli%y the equations to eliminate vy and §. The operator V,

acting on u for example, représents

I

1

Vu = 5-ld330sp, = 2d,3Urp3 * dpplr33 .
.9 . (2.2.15)
* (d330p 7 dp303) Bep t (Gppegt dp30p) uig)e

The pressure term Pé(h,c) was elim%nated by cross-
differentiation.

The set of equations (2.2.14) are the corner boundary ’
region‘equations'refefring to a séill unspecifiéﬁ.coordinéte

system. These are four equations in the four unknowns: u,

A, ¢ and ¢. This set of equations is.the final N

ey

et AA
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product of tﬁe Boundary layer theoxy approxima@ion thch ‘can

be used to solve the corner boundary region flow configuration.

2.3 The Coordinate System

It is now necessary to choose a coordinate system to
4 .
use in specifying’amd solving the corner boundary region

equations. ° This meafs that specific choices for Y(n,Zz) and

Z(n, ) must be made. Certain basic features discussed below %

»

must be remembered in order to judge which choice is the - .-

most suitable. ) k . -

The most important feature of the coordinate'system

is that the physical boundaries of thelflow coﬁfiguration

must corresébnd to coordinate surfaces. Not only does this .j}/
sim?lify the assigning of boundafy values to specific grid

locations but this also‘makes it easier for the;e §rid

locations to remain aséoci;ted with the physical bourdaries =
should further transformations be needed for computational

purposeé. Since g¢orn®ers ofnafbitrary anglg are to bg‘df‘
cénsidered, the coordiﬁate system will have to change”aidhg”
}dith the corner angle. Another}importéht~ﬁeaturé required -

is that the coordinate system becomes Cartesian (either .

offhogonal or non-orthogonal) near the solid boundéfylfar B

from the corner. As shall be seen bglow, the flow is of the

Blasius type and a Cartesian coordinate system will make it

- .

- "easier, to obtain and solve the Blésius—tyﬁe equations for

u, A,¢ and ¥ which are %geé,as boundary conditions far from
\
& ‘ N
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the corner. It is also important that no singularities are

~introduced into the flow field because of the choice of .

coordinate system.
: ®

o .S . , 5
A less important but still desirable fe&ture of the

] &

coordinate system is that it be simple to use, meaning that
the resultant form of the equations are as simplé as

possible. One way that this might be accomplishéd is to use

~

an orthogonal coordinate system, since there would then be -

no cross—derivative terms and the metric tensor would have
non-zero components only along the diagonal (i.e.‘gij # 0

only if i = j). This does not mean, however, that the forms
- =] - ‘ .

faken by the metric tensor components are simple aiso. For

a corner of angle other than 90°, an orthogonal cqordinaﬁé

: ~ : ;e

system would@ be curvilinear, which-would imply that metric
3

tensor components must bé functions of position. Experience

has also shown that 'such a coordinate system is difficult to
) !

obtain. zamir (1970) p;esentéd such anvorthogohal'coordinate
:system, but it cannot be invexrted and it only applies to a

right-angled corner. ' . . .
- The simplest coordinate system used for the right-
angled corner by(Rubin, Ghia and their'iespective associates

is the orthogonal Cartesian system. iﬁgﬁ only is it orthogon-

al, but also the metric tensor components arxe not functions
’ . ‘9

of position. These two features lead to the most simplified

eqﬁation‘foxﬁs._ That it cannot ég used for corners of any

0 LY

other éngle is the only drawback. -However, it is possible

e
1

3.
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for a non-orthogonal Cartesian system to represent the

LY

configuration. Such a coordinate system is used in rclay

gJand Ridha (1980). The boundary surfaces whi cooxrdinate

surfaces parallel are one of the walls and the corner

+ bisector. The only other paper dealing with arbitrarily- -
———

angied corners, Desai and Mangler (1974), uses a nory-

orthogonaiicoordinate system éonsisting of a family of lines
; parallel to the piséctor and a family of hyperbolae. The .
coordinafe line of Ehe degenexjste hyperbola coincides with
rthe,solid'boundary comprisiﬁé the corner, ©Uf these two -
systems, the non-orthogonal Cartesian coordinate system of
Barclay and Ridha (1980) results in simpler forms oE the

equations since the metric.tensor components depend only on

the the corner angle and not 'n and . .

For this work, it is decided that a nonorthogonal
Cartesiap:coordinate system similar to that of Barclay and
Ridha (1980) will be used. Expressed as a specific:form of

(1.2.2), this coordinate system is

- ' ’. - 3 \
' X' = X .
. -
g = [3%5'5 n sina © C(203.1)
) - 2vx

o }% Zn coso + g) ,

N o ey
‘where o is the corner angle. This coordinate system is

slightly different from that of Barclay and Ridha (1980) in
that each family of coordinate lines parallels a different

solid boundary*. Although this coordinate system can not

Ta T mon e o e

*see next page.
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Note: Barclay and Ridha (1980) used a coordinate system in
which one fémily of coordinate lines paralleled the corher
bisector. Therefore half of the corner region is considered.

Boundary conditions are thus needed on the bisector,
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represent corners of angles greater than or equal to 1800,
‘ it is adequate for examiqing concave corners and especially
° for corners near 900. Fér the right-angled corners, thef
coordinate system becomes orthogonal Cartesian and hence
identical to those of Rubin, Ghia and associates. It_shalll
‘be seen that for this case the equations become identical
to those used by these authors. Alongawith satisfying the !
important criteria that the coordinate system must satisfy
'as before discussed, the coordinate system of (2.3.1) is
also as simple to use as is possible wgile still being able’
to.represent corners of arbitrary angle less than 1800.
r W@th the coordinate system speciﬁféd§%n (2.3.1),A
the details of the coordinate variables and the equations
~ can be finalized. ' The transformation fensor of (2.2.3{.
beconmes
1 0 0 )
t% = n sina [§%§]% sino [E%E]% 0 (5.3.2)
2vx

(n cosa + c).{—\’—.];i cosa [ = };5 {Z"TX]L -

2Ux r
the factoés qij of the covariant metric tensor defined in

- A (2.2.5) become (where qij is symmetric)

+ 2n% cosa * cz) {(n + ¢ cosa) (n cosa + )
q.. = , 2 ) 2 cos «
» ) N . 2

: : T ... (2.3.3)
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and the factor in the Japd%ean denoted by Qo'in (2.2.4)
becomes
Qo = 2 'sina . . (2.3.4)
Substituting (2.3.3) and (2.3.4) inke the generai boundary
region equations of (2.2.14), these equations become %
] - 2 + i + =
unn cosa unc uCC + sinco (q)un ?uc) 0
-2 + + si + ‘
ATm cosa AUC ACC sina (qun wAC)
4+ 2 sina uA l (2.3.5)
+ 2u sina ((n + cosoc)un - (n cosa + ;)uc) =0 ,

2u sina = ¢ + U

A sinza = wn - ¢C + coso (¢n - wC) .

For numerical reasons it is easier t6 solve the above set of
equations written as the fo%lowing second-order partial

differential equations by adding, subtracting and simplify-

ing (see Appendix IV): . : ,
~ v = 0

- + + si + = ,
u 2 cosa u . + .+ sina (d)un wuc) ,
- + i )
Ann 2 coso AnC ACC + sino §¢An + wgc) \\\H‘\\
’ + 2UA sinza + 2u sina~({(n + ¢ cosa)uc
" - (n coso + clun) =0 , ‘ (é{B.G)
) - 2 coso ¢ + ¢ 4 A sinza
nn ng [ 4
- 2 sina (un - u, cosa) = 0 ,
¥ - 2 coso U + P - A sinza
nn ng 44 n
- 2 sing (u, - u_ cosa) = 0 , ,
. C n ’ —

-~

~
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For the case of the right-angled corner, the above sets:of

equations become identical to the equations of the Rubin and
Ghia papers, e.g. (2) - (5) of Ghia (1975), (2.15)-(2.19) of
Ghia and Davis (1974b), (2.1 a-b) and (2.4 a—b) in Rubin and

Grossman (1971).

It is noted that for either set of equations, if the
roles of N and § are interchanged then the same set of:

equations result if one lets

u(n, g ) =u(g,n ) _
A(nlc ) = "A(Crn )' °
' (2.3.7)
¢(m,z ) =v(g,mn)
Y(n,t ) = ¢é(g,n ) !

=+

. This is a statement of what will bé called the "symmetry"
conditions. These denote relatiénships between any two

points which are symmetric about the bisector of the corner

-

(i.e. the line n=r ) and especially on the bisector where

“

it is found that:

A(nm ) = -Afn:n ) meaning A(n,n. ) = 0<_
Wb(nm ) =‘D(n,n‘) ) (2.3.8)
un(n,n ) =uc(n.n )

With either of (2.3.5) or (2.3.6), the boundary region
>

~

of corner flow is described. Once boundary conditions are
found, a wunique solution can be found. Boundary conditions

are determined in the next two sections beginning with those
- .6

atn > and z = «, and then atn =‘0 and ¢ = 0. The means
%
by which boundaries at infinity are utilized is then discussed.

4

-

-

%

1,




-

2.4 . The Far-Field Boundary Condition

-

For a specific solution of the.equations (2.3.5),,

T

.one needs boundary conditions along the coofdinate surfaces
given by : ‘ e

n=0, =0, n = ?,' r > @,
The latter two situations are concerned here. For the
right-angled corner, asymptotic expressions have already
been found by Pal and Rubin (1971). The authors discovered
that all quantities behaved algebraically as n, for example,
became large. The flow variables for large n were repre-

sented by asymptotic series of the forms:

4, (2) 8,0

u(n,zg) = ﬁo(c) + - + 5= * e
n
A, (g)
A(n,z) = nAO'(c)’fr A, (g) + — ... .
o : (2.4.1)
$, (2) .
_¢(n.c) = ng (c) + ¢, (g) + — ...
Py (2) b, (5)
v(n,z) =¥ (g) + — + 5= F eee .

n
If these fzfms are substi%gped int§ the set of eéuatzgﬁéi‘
(2.3.5); then the terms éan belcollected by various powers
of n and the\coefficients-found by beginning at the first
ordexr and ﬁgglecting higher orders: In this éection, the
coefficient functions fr- the toé two orders will be
considered, for the case of a cornerﬁof arbitfaf& angle, in

",
detail, ’ -

v

" \
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In order Fo substituteytﬁe relations of (2.4.lf
into the equations of (2.3.5), one must assume that the
derivatives can be represented as follows. For u, the

derivatives have the forms

-Q. (g) ’
1 1
Q = ——-  + 0(=)
n n2 n3
a: (z)
- 1 1 1
QC = qQ O(C) + a + 0(—5)
n
24, (¢)
1 1
a - + 0(=) (2.4.2)
nn n3 n4 .
ng ni n3
ay (z) . ot
— [1] l l
ﬁCC = ﬁo(c) + + 0(;5.

where the primes indicate full differentiation with respect
to the variable in the brackets. Similar forms are found

for the ¥ derivatives. For A, the derivatives have the

[

form:
o =2 - Azn(cz) + o(n%) .
‘ At'&= nAO(C) + Ai(c) + o(%) - k\\\
“n ;Ef‘ng;%_) ¥ O(n_lz) , (2.4.3)

Cand®

\ P!
¢ = ALE) + 005

2
Ao - R
AP

R ATE) + 0

e
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and the ¢ derivatives have similar forms. Substituting ail
these felatiqns into thééequations of (2.3.5f obtaihs the
following resuits. Collecting like terms in n together, the
u equation becomes ’

{08 (0) + sinx ¥ 81 (2)) + + (Q3(c) + sina (y;8)(0)

+ v 80 (0 - 9.8, (2))} - - (2.4.4)
+ higher-order terms = 0.
The A equation becomes
1 + ' [} . 2
n{Aé(C) + sina (¢>OAo + wvo(c) + 2ﬁoﬁo(§)) + ZGOAO sin“a}

o

+ {Ai(c) - 2Aé(c) cosa + sina (¢,A_ + woAi(c)
+ Y Al (g) + 2ﬁ0ﬁ1(c) + ﬁiﬁé(c) (2.4.5)

' . 2 N y _ .
+ 2 sin a,(ﬁoAl + ﬁlez <T hlgher—order terms = 0.

] - © :i
The continuity equation becomes - -
. _ ot l fa o s o
{Zﬁo sina ¢q _wOQC)} + - {20l 31ng wl(c)}
’ ' (2.4.6)
+ higher-order terms = 0.
Lastly, the equatioﬁ that defines A becomes .
a2 . 2. . -
n{sin“a A, + ¢O(C)} + {S}n a Ay + 91 () (2.4.7)

- coso (¢O - ¢é(C)) + higher-order terms = 0.

The boundary conditions for these problems can be
discovered - by examining the "symmetry" relations of (2.3.8)

and applying (2.4.1). It is noted that

u(n,0) = 0 implies ﬁo(Ol = 0, 01(0) =0, ...
44n,0) = 0 implies 9,(0) = 0, $;(00 =0, ... (2.4.8)
¥(n,0) = 0 implies y_(0) = 0, ¥, (0) = 0, ...

e




R

/ . 41
and

u(n,C)~* las g » » for.large n implies ’

. \ﬁ\d\:) l, ﬁl hd 0, ‘e o e as ‘z; > (X); *

~

N ) .o
A(n,z) » O0as ¢ + » for.large n implies
> 0, ..;; as g » », ,

Ao‘+ 0, A1

For large n, 11lMthe terms except the top orders can
. t '

be neglecfed in’ equations (2.4.4) to (2.4.7) to obtain

05(5) + sina y 0l(D)=0a ", - (2.4.9a)
Ag(C) + sina‘(¢vo + woAé(t) + ZQOQATZ)) (2.4.9b)
+ ZGOAO sinza = 0 .
20 sina = o  + 91, 3 (2.4.90),
sina A_ = - ¢L(D) . | (2.4.94)
The search for a solution is begun b§ letting
¢O(€) =AB'(C) and ;o(C) = B(g). . (2.4.10)

where B is some function yet to. be'determined. Using these,

one substitutes into (2.4.9c) to obtain

= B' () )
8,(0) = o552= (2.4.11)

and dnto (2.4.9d) to obtain

Vd

A(T) = - B"(g) . L, (2.4.12)
sin“q :

Substituting (2.4.10) and (2.4.11) into (2.4.9a) results in‘ﬂ‘

_ B"'(r) + -sina BB"(Z) = 0 . o (2.4.13)
Lastly, substituting (2.4.10) to.(2.4.12) into (2.4.9b)
results in

(BY"() + sina (B"'(Z) + B'(r) B"(Z))

o
o
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or (B"'(g) + sina.BB"(z))' =0 |, ' s

s . W \\
which is satisfied by (2.4.13). The boundary .conditicdns for

v

B(z) can be found by examining the condition given in .

(2.4.8) and using (2.4.10) to (2.4.12) to®ind that
X

E

w (0) =0 and ¢ (0) = 0 imply B'(0) = 0,
(o] o -

\‘ ’

0 implies B(0) = 0, and

H]

wO(O)
ﬁo +1as ¢ » ©» implies B' + sino as g - «,-

Therefore, in summary, the first-order quantities are found
by using (2.4.10) to (2.4.12) where -
B"'(C)’+ siga BB"(z) =0
"with B=B"=0 at ¢ =0 L (.44
and | B! + sina as (F +.Q.
If (2.4.14) looks familiar? it can be seen that if
one transforms the independené variable é by using

£ = £ sina \

so that ' B'(¢) = sina B'(E) ,
oo (2.4.15)
 B"(z) = sin‘a B" (£)
and BY' (z) = sina B"'(Z) ; f
then (2.4.14) becones ~d"
B"'(E) + BB"(§) =0 ‘
with B(0) = B'(0)y = 0 _ (2.4.16)

and | B'(f) +1 as § + =,

Since this is the Blasius equation in a Cartgsian coo;dinate
system, (2.4.14) is then the Blasius equatibp in a non-
orthogonal Cartesian system. Two properties éf‘the Blasius

I3

“function B(§) will be needed later in this section. It is

-




‘well known that (cf. James and Watson. (1963)) : -
B" = 0.4696 at £ =0"

and B~y & - l.2l€;8 for largé .

In terms of z, these coﬁditiéns become

v

B" = 0.4696 sin’q at ¢z = 0
(2.4.18)

and B g sina-— 1.21678 for lérge z.
. “_

It is also ndted that B(z) varies exponentially as g
increases, and therefore .approaches its limit faster ﬁhan
does an algebraically behaved Quantity.

With the firsthrder solutions found, it is now-
possible to consider the secqnd-ofder problem.. Substituting
the equations of set (2.4.9) and (2.4.10) to (2.4.13) into
(2.4.4) to (2.4.7) and neglecting all but the toplordeﬁ
terms, one obtains ?ﬂf

65 (2) + 98" (x) + sina (BAJ(7) < 0;B'(2)) = 0 (2.4.19a)
| $,B" (2)

- ] 1 —-
Bé;(cl Sina Sino

an(r) + 2co%¢

sin o
S—
p,B"" (c) ' ' ' N
—stme— * 201(8) BT(D) + 8;B"(T) L

cosa
sina

> - (2.4.19b)

. B' (1) B"(¢) + 2 sina A,B'(2)

%

20,B" (1)
24, sina = y1(2) : . (2.4

.2 ‘ .
Al sina - ¢i(C) (2.4,194)
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Substltutlng (2.4, 19c) lnto (2.4. 19a) results in
‘1’"' (z) "+ sino (B (l}‘) - B' (L) lbl(c) : . -
L ‘ ) - + éB" (O.) l!ltl = 0 R (2.4‘.2‘0) ' ) ‘
B4 ! . . . -
with boundary conditions (from (2.4.8)): . = o .
. . ’ N 1 ; 2
llll‘ =0  at L = 0 | .
ﬁl = 0 implying ;= 0at g =0 )
8, » 0 implying y] - 0.as ¢ + =, )

. 1 ' .
‘ - ) |
Using the transformations of (2.4.15), the ahove problem -

N s >
be'éomes . L ) |
: o s . ' ;- ,
na [} - 1 : 1 . u = .
VIR BUEE) - BUUE) Bi(E) H2BUD Ym0 - ]
with Yy =l =0atE =0 . o - (244.21) ' .
' ' . . ' Lo RN
, and - Yy > 0 as g >, ) o : ’
The only solutlon to. thlS problem is (see lebey and Fox
(1963)): “ ‘o
' R Q implying @, = 0. _ . (2.4:22) - .
. . Substltutlnq (2 4. 19d) into (2 4., 19b) and notlng -~
(2 4.8) and (2.4. 22) produces ghe follow1ng°~F a wi -
$11(z) + sina (B9 (2) + 28" (@) ¢1(c) £BUENY) .
_ ' . po O
= 2 cosa (BT‘(;) + sxna\gi}c) B" (7)) - (2.4.23) » ‘
with ¢, = 0.at ¢ =0 R
and . Al + 0 1mply1ng 9] = @ aser > . . . DR
. . The solutlon for the. above problem can be found by splitting S
- x
_the solutlom into a partlcular and homogeneous part.,_A
. particulat solution to (2.4.23)'is - . . ' :

¥
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4, = cosa (zB'(Z) - B) N (2.4.24)

which satisfies the ‘main equation of (2.4,23). The

associated homogeneous equation is

' r;|. \ : " ! ’ ' -
¢ (z) + sina= (BYp () + 2B'(5) ¢} (%) _
+ B"(z) ¢>h) =0 . o (2.4.25)
which can be written as
. v 3 | L I—
(¢h(c) +)slna B¢h) =0 . (2.4.26)
- ] and integrated twice -to get ..
' ¢5(C) + sino Béh = Cg +D, " (2.4.27) o

where C and D, arxe constants of integration; wﬁich will beb

determined Ey boundary conditifbms. From the theory of .

A

v first-order ordinary differeptial equations: the general

. solution to (2.4.27) is

' $p () = A e 5+ JoB a (2.4.28) -
5 \’{Q - . Z; C " . T .
4 ¢"Sina fPB dt [ (Gt 4p) e*Sine [cBat 4. .
] ooy ‘. o ! ) .
4 v r' . 2
- where A is. another constant to be determined. Noting *\_‘
iﬁ e (2.4.14)% theAexponenti%l cép be Qrittgn as ,jﬁji .
¢ C’ 1
. , B" ' (t)
« p C . +J —— dt -
< - gmsina JOB‘ dt _ o), B"(D)
. T L o @n@B (7)) +c)
- i, = KB"(Z) ' '
- : ” where K is a copstant, Thie"r general sqlution’4.28) now
4 . .
becomes : N . .
' ’ -‘ N |, . ‘.a
~ ) C ® n . +
’ -— " s ) " CT + D ._ ’ f '
g’h(.C) = AKB" (g) +'B" (L) JOW dr- .. (2.4.29)
% - R
» . ! { i
-~ , ;zl

(%Y
s
¢
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~

From‘thé first boundary’cohdition of (2.4.23); which is
¢1 (‘O")A = Q’I

it can be seen tha Sigce

¢p(0)a= 0, . . N
‘tﬁergfore ' ¢h(0$ = 0, £
which implies ‘that " . " )
A =o. . | ‘
L4 >

The other boundary condition of (2.4,23) can be interpreted

.as folloyé:

>

$ XA as { - o " (2.4.32)
where;x is a_consiant. If one writes"
)‘ :.. \ ’ — . 1 - ) n . - -
o $3 = 0, * ¢ = cosa'(EB'(z) - B) + ¢ (2.4.33) o
‘ - X

and notes that for large g, one can write

(4

tB'(r) = B = ¢ sina - £ sina-+ 1.21678

r
s
z

- ~"1.21678 (2.4.34Y

F

P

@ ¢ -

from (2.4.18), then (2.4.32) can be written as . :

sl

e

¢p > - cosa (1.21678) as ¢ > w, . (2.4.35)

[y
1]

.Edﬁat;on (2t4.2§)‘for large ¢ can be written as

\

« ¢7(z) -+ sino (¢ sind = 1.21678)
- =CrL 4D ' (2.4.36)

.
-~ e

where, by equating the coefficients oftlike powers of c,_'

it is found that -

"
¥

3 e

D

1

é s;n o ¢5
. " o (2.4.37) ¢
-1,21678 sing op + ¢ﬂ(c) N

1

foy which, as 7' +,», &ne’obtains

L : .




e

g ¢

2 . "
-

e *
c i sinza (1 £ 1.21678 cosa)

(2.4.38)

D

¢p (L) - 1.21678 sina ¢, .

The problem (2.4.23) is now determined except for
. -
the constant A. This is not unexpected since (2.4.23)

-

specified only two boundary conditions. The third condition
needed to 'determine A must be found elsewhere. Frdm

(2,3.8), one recalls that

-

¢(n,n) = Y(n,n). "(2.3.12b)
Upon substituting in the asymﬁtotic forms of (2.4.1), the

above expression becomes

n¢o(c)"+'¢i(c) = wo(c) + o(%) where n = ¢,

& ‘ . or, from (5.4.10) and n = ;
cB(2) + ¢1(8) = B(E) + O() . (2.4.40)
&nd for r - « noting (2.4.18) this becomes
91 5 —1.21;78 as ¢ > . (2.4.41)
Comparina this expression &ith,that of Z2.4.32), one -
’ des that :

-

A = -1.21678, : (2.4.42)
. . . P
o ' Noting (2.4.38), the solution of (2.4.32) can be

: | stated as .

43 (2) = cosa (LB'(Z) - B) +:¢, (¢)

" "where on is the solution of . : {éi
: .
: o (&) + sina By Q (2.4.43)
r . - = -1.21678 'sing (1 + cosa) (¢ sina — 1.23678)
ok LI ! ) .
0 with 3, (0) = 0, |

or in other words, byinoting (2.4,28) and (2.4.31) as well

\

|
by .
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as (2.4.42),

.

.¢1(c) = cosg (zB'(z) = B) ) (2.4.44)
Ct sino - A

BV (_t) dt

- ) sino (1 + cosw) B" (%) f
o .

-

-

which, when ¢ = 900, is the same expressionh as found in Pal

and Rubin (1971)..

With the top two orxrders now known as follows:

B' (t) 1
u(n,z) ~ FEST + O(——f)

~ n
- I
- ¢! (z) -
Al o) v B2 oy
. sing n
k4 e - sSin o

S

. < 1 (2.4.45)
¢(n,2) v nB'(Z) + ¢,(2) + O(X) .

Y(n, 0 v BD) + O(=5) !
n

no ‘higher orders will be needed, as shall be seen. ‘The

-

asymptotic ‘expressions for large ¢ start with

_ Gy(n). " = ‘
) u(n, g) = uo(n) + z ..
: A(n,g) = cﬁo(n) + K )+ ...
61(”) ) .(2.4.46)
$(n, z) = éo(n) - oy
. w(nft{ =7ZP (n) + P () + ...
3 - .
‘and by following the same procégaure to obtain
9 : B (1) 1 R
. u(n,g) v STna + O(?) .. (2.4.47a)
" $2 (n)
. B"(n) . "1 1 .
. A(n,z) A > * 51— * O(E) (g:4.47b)

sin«

e
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$(n,7) ~ B + 0(—=) (2.4.47¢)
g
. . ‘ 1
P ?(n,aé " TB (n)‘+ ¢1(n) + O(E) (2.4.474)

where B(n) and ¢l(n) are.the same functiqns as before with
the indépendent variables renamed.

In (2.4.45) and (2.4.47), all quantities except
u(n,g) are unboundéd as either n or ¢ approaches infinity.
In order to obtain bounded dependent variablg;, the unbounded

terms in (2.4.45) and (2.4.47) must be removed. The trans-

formed variables are given by

1

a(n,z) .= u(n,z)

- nu, (2,0) g (n, )

A(n,0) =AM, 0) + —2q—— -~

$(n,2) =% (n,) - nu(=,z) sina (2.4.48)

¥(n,z) = ¢(n,g) - gu(n,») sina

where, as n is allowed to approach infihity in (2.4.45), .one

obtains
) B' (z)
u(ml C) = q
- sina

so that 'B'(z) = sina u(w,z) (2.4.49a)
and, from (2,4.42) in a similar manner, '
"B'(n) = sina u(n,=) . ‘ (2.4.49b)
The far-field boundary .conditions can now be found
for the n » « boundary, say,kﬂﬁsubstitnfing (2.4.45) and

(2.4.49) into (2.4.48) aﬁd ietting’n become infinite to get.

F(eo,z) = ule,z) ' (2.4.50a)

_ $1 () - .

A(w,z) = - s (2.4.50b)
sin o .

-,
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9(=,2) = ¢,(2) ' , (2.4.50c)
(=) = B(g) - ¢ sina ©(2.4.50d)
and at the ¢ » « boundary, by.substituting (2.4.47) and
&
(2.4.49) into (2.4.48), one obtains
— -
u(n,®) = u(n,») ' )
g = dgi(n) 1 -
b sinle (2.4.51)
?13‘(n,°°) = B(n) - n sina ’
* Tin=) = ¢y (n) . ,

In both cases, when the remaining independent variable

" becomes infinite, the.barred values of (2.4.50) and (2.4.51)

become ’
T(w, ) =1 : v
}::(co,oo) = .
- - ] (2.4.52)
- ¢(.°°’ °°) = =) .

\{p-(;’rm) = -,
thus demonsfrating boundedness.,

As a final note to this section, the main set of

equations, last presented in (2.3.6), can now be written in

terms of the bounded quantities to obtain ,

'
-—

- - - + \+ . T . - - .
4 ‘2 cosa Ut U, * sing ((6 + n sino u(°°,i;))un

+ (§ + ¢ sina ﬁ(n,w)lﬁc) =0 (2.4.53a)

]

BRSSP RRN

.
?
i

4
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= : =’ = . - - L= = P
Ann- 2 coso AnC + ACC + sino ((¢ + n sinowmu( ,C))An
+ () #°¢ sina GQn,w))i%l + 2uh sinza
- 2 cota (unn(n,”) - uCé(“,C)) - ¢§é(“'C) + ¢ig(n'“)
+ 0 {8, (=) (3 - §(n,®) + sina (a(=,z) - 1))
+ 2u s%na (un(n,w) -, + u, cosa) } |
= n {u, (=2 (P - P(=,T) + ¢ sina (u(n,®) - 1))
» .
+ 2u sino (ﬁc(aw,c) - EC + ﬁn cosa)} = 0 (2.4.53b)
- - . - L2
¢nn - 2 cosu ¢nc + ¢CC + AC sin" o (2.4.53¢c)
o - 1 - . o) - Tl T e - :
~ 2 “sina (un. 5 un(n, ) coso (,uc uc( . C)) 0
wnn - 2 coso wnc + wCC - An'31n o (2.4.534)
.: 3 l _-co - a - a <0 —
2 sino (uC 5 uc( , G) cosa (un un(n, )) o .

These equations, along with the boundary conditions given by
(2.4.50) and (2.4.51), specify the cdrner boundary region

problem completely.

- 2

*
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2.5 ° The Wall Boundary ‘Conditions -— .
=
Most of the boundary conditions for the flow ' ’
guantities &t the wall have already been deduced from the
=

no-slip condition, Noting (2.4.8), these boundary
conditipné are
=F=0=0 at n=0or¢=0. (2.5.1)
The wall condition for A, however, is not so easily
obtained. To do so, one begins by considering the two

first-order equations of (2.3.5), which are written in terms

of boun@ed quantities as -

A sin“ac = y_ - ¢_ + cosa (§n.— $C) B

n z .
_ _ (2.5.2a)
+ sino cosa (u(~,z) - u(n,=)) ,
24 sina = $n + P, + sina (@(e,8) + W(M,®) . (2.5.2b)

At the boundary n = 0, where all quantities (except A) and

their derivatives in ¢ are zero, (2.5.2a) and (2.5.2b) are

A(0,2) sin’a

= ‘-b-rL(O,C) + cosa 5n(0lc) .
- . (2.5.3a) -
i - + sina cosa u(®,z)
0= §,(0,5) +sina ul=0) . - (2.5.3b)

-

By substituting for $n(0,C) in (2.5.3a) using (2.5.3b), the‘

wall condition for A(0,z) is found to be A <4 -
- Wn(OIC) 4
A(0,T) = . T . (2.5‘.‘4)

sSin o -

-
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A similar argument for the boundary ¢ = 0 is used,to

A

obtain -

- ¢c(,n,0) )

A(ﬂ,O) = "'—-—-——2'—- “ e (2.5.5)

sin“o . .
With the above information in hand, and with the far-
field boundary condition knoﬁn, the boundary conditions of
the main equations are completely spec1f1ed if one assumes
that the right hand sides of (2.5.4) and (2.5.5) are known
in advance of solving the A-equatlon. In practical®-terms,
e

this means that equations (2.5.4) and.(2.5.5) are iterated

upon to obtain the correcdt wall conditions.of A. .

2.6 Application of the Far-Field Conditions

Up to this roint, it has been assumed that the
domain of the equations of the flow variables in the cross-
stream plane 9f the streamwise corner flow problem'is
infinite. Fo;’praétical purposes, however, the'far—figld‘
conditions need to be'applied at a specific coordinate
surface. Until Ghia (1975). presenited another approach, what
was done was to-.choose some: large yet finite ;élue at which
to apply the asympfotié expressioﬁs, where enough terms were
used to fepresent qﬁ;ntities accurately. Since a large nﬁmr
bex of'termé may be needed, and since obtaining these terms

may be difficult, a simpler approach would be to transform

the independent variables of the equations so that true

infinity is mapped onto a given finite value. With this
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approach, only the first two terms of the asymptotic

expressions are needed to represent the far-field conditions
B to.

- accurately. Thus, the far=field conditions denoted by
(2.4.50) and (2.4.51) are applied at true infinity. If the - |
- i same variable transform ig/used for each coordinate, the

-

in%inite domain is.now ﬁg;ped:onto aJQQﬁare domain with the
‘ flow guantities aQéilagle along the whole periphery.
Some trans;orms that can be used for this purpose are
presented in Sills (1969). The two that are to be considered

here are those.denoted by Sills (1969) as transformation I:

. n - __8n
n= m oxr n = BT\—"‘T ’ ((2.6.1)

and transformation TI:

n - - % In(l = n) or n=1- e BN ' (2.6.2)

@ where § is a pgrameter:in both cases.
Both trarsformations have similar properties. Both
map the interval (0,«) in n onto the interval (0,1) in n. ‘

Regularly-spaced subintervals in n correspond to increasingly
& ' &

- 1arg§r intervals with increasing n. The jparameter B can-be
chosen in such a way as to control how much larger successive
n:ﬁubi;%ervals become., One of the above transforms. can be
‘hsed to transform the domain (n,), where n and ; range from

zero to infinity, onto the domaif' (n,s), where n and s

o zange from zero to unity. For numerical purposes, discrete
. Y.

4 \

«points regularly spaced in the domain (n,8) can be mapped ‘ .
. A . . . ‘
onto points in (n,%), which are concentrated near the corner .

®

»
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of the solid boundary. One can therefore choose 8 to obtain
the desiréh concggtration of data points in the corner.

N Ane can«develop formulae relating the derivatives
y y

-
with either of the above transforms. For transformation If’

equations (2.6.1) are used to find for some function Q(n,g):

B(Bn +.1) - 8°n _ o .o B

an ;;
(Bng 1)° " (gn + 1)°

(Qn = Qn n Qn

(2.6.3)

=“Qn B(l - n)2 ’

>

and similarly in g, onre finds
0. =g, B(1-s)?
et - S)-

Higher dérivatives sre found by using (2.6.3) repeatedly.

The results sre summarized as follows:

w -

.. _ _ 2 . _ _ 2.
. Qn = g(1 - n) Qn ' QC =.8(1 s) QS_,
o .
_ a2 4 _ _ 3 .
an = B (1 - n) an 2BT(1 - n) Q, » -
N : (2.6.4)
?" -~ /’ - 2 _ 2 _ . -
( an = B (1 .n) (1 s) Qns ’
TR
_ 2 4 oa2.q T3
% QCC = B7(1 - s) Qs 287 (1 s) Qg -

*

Formulae for transformation II are found in a similar fashion

starting with (2.6.2) to obtain

Qn =8(1-n)Q = QC = Bg(1 - S)Qs '
a2 L 2% 2
an =g (1 -n"Q - 8L - n)Qn ' -
° 4 (2.6.5) ..
) ) ’ .
an =g8"(1 -n) @ - S)Qns ’

2 2 2
(1 - 9% - (1 - s -

i3




.1. / - ) ' 56

L d .
" The }fferéhpe between transformations I and II is

that the n—s?bintervals corresponding tg\equal n-subintervals
“increase aljébraically for trans;ormation I and exponentiélly
fgr transfqémation II as n increases. ’It was'shown by Pal
and Rubin §1971) that the flow quantitie; behave algebraical-
ly as they approach the far—fielé boundary. .It is no doubt
for’thiS';eason that Ghia (1975) chose transformation I for
his equations. ‘This reason can be illustrated with the
followiﬂd\argument. . :

For large n (and similarly for iarge ), all of the
barred quantities can be represented by the now-familiar
asymptotic expression

§=al) +2b) + e ... . (2.6.6)

: n

-

Using transformation I, this expression and some of its

n-derivatives can be written as ~
0 = a(s) + 8b(s) 1 ; ny oL, -
9 = - gb(s) s + (2.6.7)
n A 'r:j L) ’ . .
Q.. = 28b(s) 14
nn \ nj e e

where it can be seen that as n apprbaches ufity, all the
n-derivatives remain finite. Using transformation II,

however, results in o




S

6=a(_S) "I-n—%i—(—fli)-*' cee 7
. -1
— ©g = -eb(s) —2 2Bl
(1n(l - n))
3 = - Bb(s) Q-m? (2.6.8)
- nn (In(l - n))?
\ : . -2 ;
g + 2(1 - n) . oL,
(In(1 - n))
where one can use L'Hopital's Rule to find:
D lin A-mr _1im @ -m7?
1l qn2 -n))° 2 2 1m@1-n) (L -m7h
_lin_ (-m7t
" nal 22 In(l - n) . !
L _lim _-(1 - )72
nl o, 1 -yt y
_lim -1
= 0l 20 =) (2.6.9)
2) lim (1 -n)7% _ _lin 2
n2l (1h(1 ~n))? nol ) _ p)2
) Llim 2 -m72 ' lim _ -8/3
-1 (1n(1 - n))3 n>1 (1 - n)2
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and thus as n approaches unity, all the limits are unboundéd
so all the derivatives of (2.6.8) can be unbounded as well.
Also, while the n-derivatives are unbounded, the derivatives

respect to the physical cgbréinate n are bounded. One
- :
can demonstrate ‘this either by finding n-derivatives of
(2.6.6; or by using the.n-relations of (2.6.5) in (2.6:8)
while noting (2.6.9).

If one objects to this unboundedness as described

above, then transformation I must be used to map the n or g
interval from 0 to » onto the interval 0 to 1 sq that one has
a fihite region over which to apply theI)i;icQ;et boundagg .
conditions mentioned above. “It will be seen in g'later -
sec;ion, however, that transformation I presents otﬁer prob-
lems when trying to solve thHe system ofhequaéions nuﬁerically,
To summarize thig section, the.equations resulting from both
transformation; will be noted here for refrence. Tﬁe equations

(2.4.53) once acted upon by.transformatioﬂ I become . ‘

Al

- . 2 2 2 -
un)n - 2 cosa B (1 - n) (1 = s) U

821 - mia - m?

+ 820 - 9% (1 = 9?2 G, + sina ((§

S
+. n sinc ﬁ(l,s)) B(1 - n)2 Gn + (@ + ¢ sino ﬁjn,l))
B - )20 =0 (3.6.10a)-
F «
. - o

é

’
"y

-
Gt e -
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20 - m2(a ~m2 i) -2 cosa B2(L - m2(1 -.)2 K 59
R -n n nln osa In ‘ S Ag

2

‘, + 82(1' - s)'z(,(l,_--'s)2 is')s + sinaf{($ + n sino u(l,s))

su-mzin+ @+-cmnaﬁmJJ)gu-m2£;

So 2 o _
+ 20A sin“or~ 2 gota (urm(n,_l) - uQC(l"S)‘? q)un(n,l)

+C {ﬁnn(n,l) ($ - $(n,1) + n sina (u(l1,s) Li)i

2

+ 29Gsina ("n(n;l) - 81 - Mm% G+ cosa B(1 - s)? )

‘ - W\ _ _ .
~-n {uCC(_l,s')“' (¢ - ¢v(1,s) + ¢ sina (di(n,1) - 1))
2

+ 23 sinae (3.(1,8) - B(1 - s)2 G-+ cosa 8(1 ~ m)2 u)}
4 S. n
[Ny
- (2.6.10b)

B2 - m2(@ - m?F ) -cosa 821 -mZa L kG

o sgfa - - 925 +osin’a 80 - 92 A,
- 2 sine (8(1 - )% § -3 §4n,1) - cosa (8(1 - 8)7 G
- u, (1,8} =0 | (2.6.10c)
e21- m20@ - m?§), -2 cosa 8201 - m2a - 92§
c et - 92 - s)z*is)s - sin®a 81 - mP A
- 2 sina {B(1 - s)‘zA G's —“%— ﬁ;(l,s) - cosa (B'(l - n)2 Gn
. - - Gn(n,l)j}'=-o A i (2:6.10d)
where s : " (2.6.11) .

- n _
Uy e and C_—_Te(l—-s:'

The.same set of equations acted upon by transformation IT

becone
- . . . N . o

»
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- 0 _—
. S Y
g2 -n) (@ -m) T =2 qosa B2(1 - n) (L= g) ﬁns',
+ 82 - 8) (1 =s) &) sina {( + n sina u(l,s))
B (1 —‘n) Gn:+ {$°+ ;.si?a ﬁ(n,l){ B(1 -"s).ﬁ;}
=0 | ! (2.6.12a)

) . ¢ oo
871 - m) XA - )y

-

AS) S

s

-2 COsa;Sz(l - n)

¢

(L - s) A

ns

.

4 sina -{($ + n sina u(l,s))

+ 8201 - 8] ((1Fs)

B(1 - n) Kn + (U '+-r, sina ﬁ(‘l,n)«)

(1 - s)

As}

s

+ ﬁﬁ‘(l,s) +C {u

-

+ 2u 51na (u (n, l)

-n {u

Tt 2u§ 51n2a - 2 cotoa (u

(n 1)

(n 1) -

) (1,s))

- Eﬁ (n,1)

(¢ - ¢(n 1) % n sina (u(l s) ri))

°

B(l - n) u + cosa 8(;

'?%) ﬁ >}

'~

¥

(1 s) (¥ - w(l Sﬁ + z 31ng (ﬁ(n 1) - 1)) + 2u sino

' ~

(u (1 s) - 8(1 - s) m. "+ cosa B(l - n) u )}

4

- t . .
_ 3 . _ ’ (2.6.120) *
. -~ v . . R q . .
(1 - m) ‘(1 - n) kA ) -2 cosa BX(L'- n), (1 -8) Fg ,
2, - C Lo
+5, - e ((1—@? K) - sinla B - 8) Ag -
: ' . S o TG
L, - 2 s;na'{67l - "n), Pn :’%.Gn(q,l) - cusa {B(1 - S)‘Ps | .
- ﬁ (1,8))} = : ] - (2.6.12¢c) . ’
. ’ ) N ' s,
B (l < n) ((lx¥ n) w ) - 2 -cosa 8 (l = n) {1 - s) wns
- ’ 7 B Q n)‘ A Fe
+ B 1 - s) L(l - sl ¢Sls - sin a : . ’?', -
’ L4 ’ . . D"
~='2 sino {ﬁ(lv— s) us - ifu a,s) —~cosa (B(l - n) u
K . R ‘ ‘
S W (n,10) =0 , (He.12a) g
) ) n . <! l ) . \1 . ‘.h‘ - . ‘.
where .. + n == % 1n(l-n) and ¢ = - ¥ in{l-s). (2.6.13) "~
, AR 8 : LB e M
) - ’ . ' ) ) ’
. ' A . 4 ' T B ’ '
o ) @}' K. . * o . Il
° * ‘ ' { e " :, ) ,
Y N B Vo )
R ’ o ‘v'ss"- :; _ “h
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3.  SOLUTION OF TRE EQUATIONS . . e
¢ ° o ) ~ ' 5
ot » 3.1 - Introduction ‘ C . o ’
. This chapter describes théfyanious ‘steps taken to
" fiad the numerical-solution of the governing equations. The, ~

far-field condltlons are dealt with first, the wall boundary

o o~
.

conditions secpnd, and the equations of the main system last.

@ In order thatrthis,chapter caﬁ be applied to either

. . "of the twootransformsﬂdiscussed earlier, the following nota-

3 * . w -
.o

tions afe‘hsed. Equations (2.6.3) can be written as -«

© v . ) * ) 35 3Q _ ! 1 a3
‘ = = 5= = S : . (3.1.1 - e
‘L Ve % T 523 % o (..
, ¢ A .
, , : 0 = [§§]2 32Q. 225 20 ;- A o : :
, 4 ’ ' ., ) ‘- CC ,BC 35'20 acz a ‘c. N X ”( ' .
- L » I - ' ¢
v oL =*(S)2aQ +8._0 Y(3.1.2) .
K : - ,\;zi PRI = . *ss-, Tz *s - , . AR
' and similarly for n- derlvqxlves (e g. Q =NQ). The fofms .
; ) taken by SC and so on depend on whlch transformatlon is used, ’ -
\,° g ’ » as can be seen in (2.6.4) and (2.6.5). For reference, the
" ‘ .théid—ondeg derivative is ; WL - ' ’
. P ‘ 3. - ‘ ©
S - = - * 3(8 S + . 3.1.3 .
- - . QCCQN* (St),QSS ( ) §cst SCCCQS. . (3.1.3) ’
. / . °  Thercfore,. ° A T o : L .
o o tpla-ec% - 68321 - s)°9 °
J . ccc. N sss ss - . .
’ T £ . , S (d.1.4) ,

+ 6831 - sylo_ - : .

1 ' L4
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in terms of transformation I and . . \ T
' '\ ’ ¢
: - 3 Toap3ia 2 -
Qe = 871 - 8)7 O 384(1 s) " Qgq ,

- +B?(1—S) Qs

in terms @fatransformatidn IT.

S

XY The Far-Field Equationé/ v

. B&cause of symmetrx,\only one of s or n need be
& ® LIS a
treated as variables. In the following discussion, s is the °

° -

variable‘and n is held constant ‘at unity. Using the trans-

3
«

formations of the previous section and noting the r and's

derivatives are full derivatives, (2.4.14) becomes

’ ©osH e 4 5% sv B 48" B
P : o : ~(3.2.1)
n . +8in ((8M%B" +s"§"-B) B=0 . o
=3 with “B(QY = B'(0) = 0 , ‘ - _ (3.2.2)
-and instead of B' » sina as s -~ 1, .
one uses (2.4.18), .which ig
l o 0.4696 sinZa ‘ - ‘
. <, . Bll (_0) - - "— (o4 R (3.2.3) ‘
. ot 4 -
. . . i 8 ) . . °

where the primes of B repfesent full s-derivatives of B and’

-

e _primes of S are functions that can be written in terms of s.
v At thé same time, (2.4.42) bécomes
S, $1(8) =cosa ((s) §' B' = B) + ¢, (s) (3.2.4)
. ) - _,-M‘

(2]

b

fu 1

PO - SN

o me
»
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where ¢h s) is the solutlon of . ' ‘ ) .
s! ¢h + sina B¢h = ¥ sina (1 + coso) s
. (3.2.5)
(C(s) 31na\+\@)
where ¢,(0) =0 - (3.2.6)

and the constant A is from (2.4.42). The egquations and

initial conditions (3.2.1), (3.2.2), (3.2.3); and (3.2.5),
(3.2.6), (3.2.7) comprise a set of two initial-value prob—
lems, og§<of,thir§ order and the other_ognfirst ‘order. This .

set og equations would be more easily solved if theyowere
‘ . *

written in terms of first-order initial-value equations onlyf‘ﬁ

M »

Letting

Yy = B(s)-, Y, = B' (s), Yy = B" (s) and Yy = ¢h(s)§ (3.2.7)

the set of equations becomes , -
' - 2 -— .
#(s) = y,(s) with y (0) =0, . Gze
yé(s) = y3(s)' with 'yz(O) =0, - (3.2.9)
.2 .l 1 Ill . 1 2 tan
-(s')y"8'y,-8'S"'y, -y, .sina ((S')“y,-S'S"y,)
vy 3 27Y1 - 3 Ry ;
yyls) = — ; — .
SR (5% (3.2.10) .
. _ .2 ' .
with y.(0) = 0.4696 sin o _ , \ .
3 ) . . i
8 ' ' ‘ 8
and' A \ . ) v E
. ~ A sina (1 + cosa) (Z(s) sino + A) - Y1Y4 sina : 4/
yy(s) = . - 5T N '
" with - y4(0) =0 . (3.2.11) o

-

" The set of equatlons given by (3.2. 8) to (3.2.11). can be

solved using a'RUnge—Kutta routine., The routine 4is halted - *
. A
when yl to ¥4 approach constant values. Once solutions are

»

obtained, the outer boundary condltlons of (2.4.50) are

’
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A(t,s) = 8' y,(s)/sina
ﬁg(l,s) = (_(_S')zy3 + 8's"y,)/sina X
b — 1y 2 - " :
uCC(l,s) = -y; ((8') "yg s's"y,) . . )
A(1,8) = (yyy, = M1 + cosa) (£(s) sind + 1)) /8ina h ;

- - copa L(s) ((s") %y, + s's"y,)/sin’a (3.2.12)
- . »
$(1,s) = Y4 + cosa (g (s) S'y2 - yl)
P(1,s) = y; — &(s) sino

s

and the other boundary conditions of (2:4.51), by™ "symmetry",

are

u(n,1) = N' y,/sino

ﬁ'n(n,l)

= ((qf)2y3 + N'N“yz)/sina -

™ — |2 [ RN
a; (n,1). = -y, () Tyy + NN Yy

A(n,1)

sy

$(n,1)

¥(n,1)

(y,¥, + A(1 + cosa) (n(n) sinc + \)) /sina

coso. n.(n) ((Nﬂ)2y3 + N'N"Yz)/sinza (3.2.13)
y; = n(nl sina _ ) . B o
‘ - '. — ";
y, + cosa (njn) N'y, ,yll . i
! . .
had H
~ - )#

‘i-;,‘__“ \
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3.3 The Wall BSundary Value of A
Along with the wall boundarf'ccnditions given by
" (2.5.1) and transformed, which are ‘
W=¢=0=0 on n=0o0rs=0, ‘ L}.B.l)

the wall conditions of A given by (2.5.4) and “{2.5.5) after

~ -
either transformation is applied become

[}

A(0,s) B@h(O,SJ/Sinza
(3.3.2)

A(n,Q)

- B$S(n,0)/sin2a

These boundary conditions need to be updated whenever new

values of ¢ or ¥ are available. From (2.3.11), it is noted
‘ i .

that once A(0,s), say, has been updated, then one can use

A(n,0) = a(0,s) (3.3.3)

‘for the other wall boundary. Thus, oﬁly one of 5 or E need

be available before the A-equation is solved.

<

In. order to obtain the A wall conditions, one must
use foreward difference approximations to obtain estimates

of @n(o,s) or ﬁs(n,O). With all parts of

. .
L

0,1 = 87, (O,l)[sin2a , (3.3.4)

already known from the far—fleld boundary conditions, thls

%

could be used to test the accuracy of various foreward

differénce schemes. A flve—p01nt foreward difference
formula was found to be much more accurate than a two—p01nt

or three-point scheme, . -

.

a®
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3.4 Solution of the Main Equations

-

The main equations, given hy (2.6.1Q) or (2.6. l2),
con51st of four second-order elliptic linear partial
differential equations of the form | | ’

:e(avn)n + 2bvns + c(cvs)S + dvn +oev, &

. (3.4.1)
. o+ fv+ g =20 Y

where v represents one of the dependent variables'u, A, &, or .

¥; and the letters a to g represent coefficients, ‘which may

o

depend ubon dependent variables other than that repreeented
by v as Qell as the‘indepehdent variables n and s. Since
the main equations are so compléx, they must he solved
numerically. The illustration of the numerical procedure,

which is described in this section, can be simplified by

using (3-.4.1) lnstead of an equatlon of (2.6. 10)'%r (2.6.12).
The lntroductlon of a flCtlthuS tlme-derlvatlve )

will be,usefQLoln presentlng the solution procedure., The
' -
equation (3.4.1) then becomes

= + + + +
Ve a(avn)n 2bvns c(_cvs)s dvn ev, "y

- (3.4.2)
+ fv + g . )

In general, the dependeht variables besides that represented

’

by-v are not known beforehand, meaning that the coefficient

may also be unknown. In praEtice, one approximates the

unknowns and iterates to obtain more accurate approximationg,
-

When this iteration process has converged or when the

-dlfference between succe531ve 1teratlons is less than some

[}

value, the value of Ve is zero to this degree of accuracy.

. e ' }

VA ke e i SRy e

|




Thus, the time-dérivative disappears and the numerical &

solution is of the desired equations. Since one is .interest-
ed‘only in" the convergeé results, the intermediate results
( at smaller "times" are ignored.

- When one proceeds to solve the equations of the

\

& R
system numemically, the coefficients and v are represented

. . in a discrete form with derivatives approximated by

appropriate difference formulae.

3.5 Numerical Considerations of Coordirate Transforms

It was mentioned in Section 6 of Chapter 2 that
numerical *problems would arise depending on which of trans-

formations I or II was used. These problems occur at or

near the outer boundary where the far-field-cénditions are

)

~applied. 1If there are only second-order .derivatives in an -

equation (i.e. if d and e of (3.4.1) or (3.4.2) are zero,

a

as is the case with the § and Jy-equations),using

- : f' ‘transformation II results in the second-order derivative

«
v

‘being

2

B (1l - n) ((1 —,n)vn),n |
‘ S - ' (3.5.1)

. - s 221 - 2 a2 L - Seded),

B = B"(1l - n) Von B (1 n)vn .

o, » ,
Using three-point central differences t?Tanroximate the

derivatives; one has (where h is the numerical grid spacing

in both the n and s-directions) the following;

L
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-

&

ﬁboundary conditions, any error accumulated during the

il

- \' -2y +'v’//f\‘\ 68

62(1 _ n).2 i+l,§ i, i-1,9
' 2
h
- ) N (3.5.2)
V . ot ™ V‘- . » '
- 82(1 - 1) i+1,4 i-1,7 +_O(hz)

2h

where A 5 = v(n,s) where n = ih, s = jh
- 14

-

and h is the grid spacing. Considering a point next to the

outer boundary where V. is knowh (i.e. n =1 - h), the

i+1,1.
coefficient of Vi+l,j 35 ,
82h2 ) Bzh _ 82 (313 3
Wz T T T "S-

If instead transformation I is used so that the second-order .

derivative is -~

2(l - n)4v

<

2 2 2 _
B°(1L - n)°{(1 - n) vn).n =B nn i
(3.5.4) =
-2 62(1 - n)3vn ' '

then the coefficient of the known Vs " on the boundary,

+1,3

found in a similar manner, is

' 2 4 2.3 -
. Bzh _ 2ghh = 8212 - %12 - g, - (3.5.5)

This means that the information at the outer boundary does .

not enter into the numerical solution procedure. - Even if

a fed

.the initial estimate of the solution satisfies the outer

L] . -
_numerical proceedure would destroy this agreement.

One..can deal'with‘this problem simply by using a

. different approximation for the derivatives. Suppose
- .

(3.5.4) were written as

oF

-

=

P Py

.
A Ao SE
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2 2 _ 2
87 (1 - n) ((T - n) vn)n
) " Y 2 ' '
-= B8°(1 - n)7 {((QA - n) )nvn (3.§;§)
2
+ (1 - n) Vnn} ' | . -
and the following approximations were used: *
. Q1-(m+2m)2-@1-(-32n)?
“1-m?_ = 2 2
L " 'n - h
~ . - (3.5.7)
, (- (@+zm)?+ 1= (-3h)°
(1L - n)” = 5 .
)

Using normal central differences' for the derivatives of v,
| .
\ ' -

(3.5.6) with (3.5.7) can be approximated by

820 -m?

h2

1

(1 = (n +7h))2 v

i+l,3

1 2 1. 2
- {(1 - (.n+—2-h)) + (1 - (“'?2‘h)) }vij

14

+ (}~- gn -5 h)) Vi—l,j] . (3.5.8)
The coefficient of V. . . , when n =1 - h, is
. i+1, 7 ‘
' 2 2} Tz ' - (3.5.9)

which is not equal to zero. The_information at the outer
boundary. is therefore available for comput&tion.

A more serious problem that, arises from using

.

transformation I involves the magnitude of error introducedg,
. . -
¥ by using difference formulae of given accuracy to approxi-
.o ! i . .

mate derivatives. Consider those terms containing spatial

-

AN

T «uw\\u‘,-q«u«sm LN
P
4
i

-
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derivatives of v (except the cross-derivative) of (3.4.2):

3 .
-~ 2 2 A )
a’v . + ¢ Vg + (4 + aan)vn + (e + cc§)vs_ (3.5.10)

-

where, for transformation I,

a=8(l-n2 , c=8(1-s)? - (3.5.11)

If three—point differences are used such that

1 2
. Vn—-z—HDnV+O(h) '
then (3.5.10) is approximated by

82(1 - 5)4 2

2 4
(1 - n)
== 5 <V

2
D™ V +
h? n h

AS

+

2 3 .
d - 28°(1 - n) . .
5h Dn \% (3.5.13)

e - 28%(1 - 5)3

+ T

D Vv +Ao(h2)
S

-
-

For a grid point near a corner formed by a wall and a far-
field.boundary, where

\ ) n=1-h and s =nh ’
. . 3 N
(3.5.13) becomes .

-

2. .4 2.3
62n2p2 y . B —m” 2 a- 28%h
n \ hQ s 2h

* e

2 3
e - 28 (1 ~ h) 2,
Zh. D, V + o(h™) . .

DV
n

4

J
. ’ e . .
It is noted that the first and third term (assuming d = 0)

are of the same order of magnitude as the error term, which

°

ia turn could. dominate, that region of the corner. Once the

~

solution procedure is,descriﬁjj;;?n illustration of this ’
%

«®
1




problem will be presented. Recalling (3.5.9), the error
e

term could also dominate the information contained in the .
far-field boundary condition even though the coefficient
is non-zero, = |

This problem could be remedied by-using higher-

'
4

order difference formulae“to approximate the derivatives.

Five-point difference formulae (repreéented'below by n*) .o

would lead to the following result, which corresponds to

(3.5.15): - ‘
2.2 2 it 2.3
8°h% ., 2 g% - n* o2 d - 28°h°> _,
12 2 n V7 T DVt —gn— D" Vv
o~ . ] " (3.5.16)
“ e - 28%2(1 - h) 3
; + ~>1h D*S‘V+ Oo(h™) —

where the error term is an order of h smaller than any of

the difference terms. There is also no problem .at the outer

2

boundary, since the coefficient of V, , with n=1 - h,

i+l,3
iS A ——
2.4 2.3

Bh g 28R - 2% s, (3.5.17)
I2h

11

whidh is about the same size as the corresponding ekXpression
(3.5.9). The penalty for using higher-order difference
approximations 1is ., of course, that the difference equations

become more complicated and require more computer time and

(iQ

storage to solve numerically.
. . ;

All of the probleﬁs discussed have been 7

-

consequences of using transformatign I. If instead

. ,
transformation II is used, the problems are absent.

[




g .
, , . P
Noting that for transformation II 4 ’
° ¢ ! .q, . . ‘-
a =8(1-n and c = 61> s) ; (3.5.18)
expression (3.5.10) becomes - - . .
2 L2 25 20 w2 .
B (1 - n)‘vnn.ﬁgg,(l - §} Ves +:}q - B7(1 - n))vhl
. C e - 82 - sPv_ " (3.5.19)
. . » - \\ SS. o . . . . )

. . ‘4

Ordinary three-point differences can be used to approximate
‘ - .

the. derivatives go, that (3.5.19) at - n=1-h and®s ="h

' . ¢ . . 4

becomes - C ) .

. : a2 02 _ a2 :
- §2p2y 4+ B Un-h) 2, ,d-8h, y ‘
n h? s ¢ 2h. n o .
“ '“-\. ' N
, 5 , “(3.5.20) ‘//j‘
. v, e =8°(1L - h) o2 - : ' ‘
. - + =% D,V + 0(h™) 7 , .
where thé error:term is two oraefs of h smallér than the'
“\\difference terms. Assuming 4 and e are zero, the far-field :g
boundary coefficient of Viil 3 corressponding fo (3.5.5) anq{ . -lﬂ.
’ . .
(3.5.9) -is ' . o ‘ '
° 2. 12 - .
N 2 -— B — B ~ Ty
. B == 3 ‘ (3.5.2%)

v

which is larger than.any coefficient exanined using trans-
[°4

I3

. ‘ .o - - L ; : '
formation.-L with any different& scheme. However, §§nce the «

-

ga®

error. term O(hz) contains expressions+involving

. - . $

3 . . o - 2 ) 2 ; '
: h Vess and »h vssss . (3.5.22)

5.

for three-point difference approximations for first and

second-oxrder derivatives;, these third and fourth-oxder S
N . S - :
. ) Wderivatives, in this same problem area, may be large enough . Yo

'Y - . .

+




to cause the .error term to dominate ngi:rthless. As in ﬁhe '
P \

-discuszion of (2§6.81L if théseoperivatives are included,
N g R . . - ’ v v
?pe ge ’ ] ) : _ S .
’ ¢ 3') . = -3 ' ," o
» Ogeg = - 8b (n) 2 (d “‘S) 3 6(1 s). - - . .
T . (In{(1 ~ s)) (In(l - s)¥ '
: 5 S 3 : -
B L6 - s) 4]-,/+ “ ~ .
o Al =S g (3.5.23) o
_ \ ~_— -4 _ -4 T g o
stss'= - 8b(n) o 2 2 +. 24(} é) 3 . N
(In(l - s)) (In(l - s)) o R 3 .
v L. v .ﬂ‘ - ¢ 4 B "4 . )
: . 360 » s)” - 24(1 - s) i ) . -
{% . (ln(l - s))" * (In(1 - §)) _
= . - » .. - N , » -.
and one notes th@t 1f b(n)jis non-zero, then the-derivatives -
' become unbouided ‘as s approaches unity by'considéringﬁthe )
, limits df the s-terms as has béen done. . °. - .
s . . . w
_ These numerlcal problems will, be examined’ again : L
J7after th¢ method usad Lo solve the partial dlfferentlal ’
’ - 3 " . .
equations has' been introduced. ’ " '
hl . . - , O ) K 4]
N ' K . . . .
; 3.6 - The Numerlcal Mgthod ' -
E ' One: can begln by con51aér1ng e1the§ (3.4.1) or. ' o } i
é N ' . ‘1}:“’

(3.4.2) w1th“the dlfference approx1mat10ns supstltuted.yheﬂi )

ever derivatives appear.- Three dr five-point central differ- ‘ :

A s - . . ) N
. ences are used for approximating-‘the spatial derivatives and N

a twp;point forward-difference approk{matién is substituted

forlthe“fic;itioué time~derivative. If'Vi.j.is the diéc}epe e

s




. where V*‘ J is the new value o8 V. . aE a 1atef "timé" ‘p
’ & . , ‘c

" ZLS the tlme—step, (V )..j etc. are. the' centxsal dleference
. 4 -

approx:.matlons used,fand the coefflclents of (3 6. 2) are
. Tz e i T s
dlscretizec'* forms Qf those,%f (3.4. ‘

-.V\,.

2} . 9 , 3 0
= " Sﬁ updated “valudes are usec'i as soon as’ they bec ’
. B uﬁ?"/ p/o T v ’ i ‘lé\
C° av*allable,A then (‘3 6.2) descra.bes a, pomﬁt Gauss~SeJ.del '
- RS S - . .o
‘,."- method *of 1ntearat;Lon where. the tlme-—step parameter p can be'

ey VS .

c‘ﬁ‘c’)sem bﬁe lar?% and’ Stlll‘ malntaln computat:.onal stab:.l- 9

"z.tyx ThJ.s Was the \basch meth usedp with' some- modlflcatlons

descrlbeg beléw, to solve .the: System of e:quatlons. 'L‘he‘

A
,
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7
, maH‘i modlflcathn,vsas to postulate a spatlally-dependent L ) .
) ] N . tl@s‘tep pa:rameter of thewform - . ., : . '
g + . . e . R pan
“ . " . . ® = " ‘ ug -~ . - L.t . R - ..
% . ' ; . PR ETR q. . s . (3:6:3) ' -
&5 oo 1,73 . Ty . & ‘ -
¢ . <8 T . . ! . v : - .
. where q; . is the sum of the doefficiefts of ViJﬁ (as - « .
L ® ’ - - 7 ¢ N ~
LI N A P . - N
.t opposed to \lt_ﬂ J for example) arising %frc‘)m the central
a 4 . v ’ '
. ‘ T dlffe,rence apprdx1mat1.ons, and u) is a relaxatlon parameter T e
t o ‘ ’ ’ i
LR With (3. 6. 3) , the @ifference eouatlon (3.6._2) ,.becomes. an B
° v: . 3 °° ¢ e . . -
. . S. OR type of 1tératlon algorithm, For the ‘inferior .points - -
N e A . "
. S . of the 1teratlon scheme. w1th three-—pOJ.nt approx1matlens, [ ‘
r“:ﬂ B » > . . o ~ <y .
> . . . i 2 . ‘ . 5
v A . ..=-—--{,a':..+(c) | , 3.6.4)
. . ql,j_ h2 (‘ )J.,J ,] - (,.. C e .
. Lt kd ' ’ D K ? y " " . . ‘ ., )
Eoy . “  was used. WitH five-point appréximations, N ot ,
N7 . e . N . . - ’ . T . . . '
. R - - . )
N .0 R - SR } ' ) - :
* L u o= s rah o @D, 0 (3.8.5) : '
N “L4J " 12h i, 1,] - . -3
.- . i o : . . . - ' . .. Lon e
This scheme is valid provided ~ A )
- M, T, ’ - ) 1 " co ) ’ ‘
. . . - . £+ oqg.t. 0 - ©. w- (3.6.6) N
i i,5% 9,37 L S ;
O ., for any n or .;s\wi.thir}\ the interval (0,1), whici® is not-the ' ‘
o, . case for the A-equation. ,Fo‘r thie ﬁ»—-eq’uatio,n,w ther parameter =~ - 4
_' A . .0 Tust be very small 1n order for . the computatron to remaln ) E
: - « oy
stable. Use of (3.6.3) was therefore abandoned J.n favor of RN *‘%
% * .« J. - . t hed o
"“ . e constant p<for the 1 and A—equatlons., In tlie 3 and" e 5
' P e ! e ; . g J,é:‘
X . ©  equations,. however, the scheme works well o '< L
. y S - ¢ The numem.cal process is begun :ﬁrOm an :Lnltlal.,_ Lt o"‘,‘- #
. 7 vt < v d i - § N T
! estimate .of the somlons obta:Lned 1n -1 manner suggesteg ~by*f - ;
© v . . ) . R 3
T e e, _ p - i g - B F
g oo GhJ.a and DaV1s (19745) from the known boundary cond%nt\lonsw ¢ e
SR . T A e e
3 N . . w K > L ! . {‘ ' ":? . ::‘ﬁ“’. ¥ . Vi *
' ) . * ¢ . - ! A AP W e . ~" ‘

v

® B .
it nnies aa il e s =y e -




-

-~ ' T A

L. o=, U, UL
r.J 7 i, m,]

v " 2 -
T {1 - "15 (_n. + Sj) _}/4)

1,9 7 51,1:1\%,9 ’ _
O A T - 15(n~.—+s) -
- qjin,j wi,m lpm,j {1 *] }/‘p ’ . —
A‘i,j =_(a), j n)l 5" (c)'i,j,(f's)i‘,j . (3.6.7)
" ; + 905(1 {(a)i,j(rg)n)i,j ': (C) j(ws)l,]}
' . ' . . . ¢ V_ ;‘ ;. ‘\ ..
i + sina cosa*(um'j - ui,m) /{ﬂ
* . where i,9=2,°3, «o. ,m =1 ‘ J

and'm? is the total number of grid points péf‘dependent‘

variable. The exponential factor within th%;curly brackets
¢ represents an éttempt to have an initial estimate nearer the

Y

expected final soldtion’as bresented in Ghia (1975) for the

. case of thée rectangular corner® The last relation of (3 6. 7) o

' 2

.1s a numerlcal form of the defining equatlon of A as found

in (2.3.5). It was found that for o = 90°; p =_0.004 for u

~
&

and A-equations ahd w = 1.87 for § and J-equations; so these
. ﬁ ° s * N /4 . ! -
values were used -in the computation. - R '

¢ ~

- ~ Another device used £o accelerate thejéombugatibnal

"’ o, —- : ¢ . i
process was to note that by using the “symmetry" ;Qlations " °

of (3;3.1i1, as sqon as V¥ 3 is found at a grid poiht (i,j),"
- T T,

3+
- L]

a new value at (j,1) is found also. Values at two. places e

¢

w: .- can be updated for each use of (3,6.2).
- n B " . -
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3.7 Suﬁmary . . ® o R . ‘
The follqwing*sequeAce summarizes the general B
proceedure used to obtain numerical solutions: - -
1) Boundary conditions are input and initial estimadtes .
are obtained using (3.6.7); - ” ’ “‘ \
2) The ﬁ—eqﬁation§§Sxitqrated'upon viaA(3.6.2) once.%ér all
points followed b§ the ¢—equation; coe . -
3) Boundarf conditions of A along the walls are updateddﬁ ﬂ&&
) using a fiverpoihy foreyard difference formula as N )
ndescribed in Chaptexr 3, Section 2; _
5 »
%) The A-~equation follqwed by the E—équation are iFerated _L
ugoh in the same manner as f<;r those; df, step 2'}aiaove; )
5) The stopping criterion[ﬂdescribed below) is testéd, and
if it faiis then program control goes to step.2, but ifo
‘ the ﬁést succeds, then control goés to the ne%t step’ i
6) The converged solution, approximations Are ﬁgoéessed,
_ 'printed and filed. ' o T
{’In practice, s£eps 2 té 4 are repeated a fdxed number of . -
timejﬁbefore entering. step %. . T ‘ . T s
V Two different types of stopping criteria can be used . ;
in step 5. Tﬂé more coﬂyentionél criterion is to examine .‘ o E
theé largest difference between g;ég pbint§bof successive . ‘ .
. . - > : «

iterations. When the largest difference falls below a’ giyen
value; the solution is accepted as converged. For reference . oo
this shall be called $He normal criterion. Since the largest

difference:may not decrease steadily bgcausé of the iterative

. .

<
8
fo? AW -

5
s,
-fe s
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hehayior of all four system equations, one must be, careful

that the wvalue chosen to halt the comﬁutatibn process is

‘small enoﬁgh soithat‘subsequent flﬁCtuations will be

insignificantly‘small.

-

. ™

(

Another crlterlon 1nvolves examining certaln

features of the soluttcn. The proflles of u(s,s) and A(O&?iA’)

©

were chosen, and when A (0,s) was found to be much more

« r ’

.senéitiXe to the number of iterations than u(s,s), the
latter was.dropped. If the iargest,differeﬁge betweern

points, of successive iterations was tor fall below a certain |

.

value related to the resolution of a graph, then thejecheme

.

3 . , . )
.can be considered as converged.with the understanding: that .

'the next few iterations’ are. not 901ng to make 51gn1ficant

changes in the soiutlon. Thls w1ll be called the resolutlon

. N

criterion. -

.
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, g4 RESULTS " : ", - A
4.1 Data Reduction . ‘ _ - . .%’ —
Quantltles of major 1nterest are the phy51cal
components of velocity, which are giwen _in terms of u, ¢ and -
. w bY ) , N - 4 &
. N . - ' r 1 .
. \ a2ty - w C . I
. : i .
a® = R (qu sina - ¢) = YPR®
- boom . (4.1.1)
T~ . -«(3),= UR %((n—cosa + Z)u - ¢ cota ; '
+ 7. ﬂ
. - Y csca) . . .
1 o .
L77 . = wUR ? : - ‘ ’
or, in terms of the bounded quantities, .by i . o
‘ | ) u(l) - U L .
o 2y Lk o
L . u' = UR (n slna (= ul>,5)) - ¢L_ ’
: .= vUR'!5 , ' -

¥ " L e (3) i K (4.1.2)
% . 2 u = UR “(n cosa (u -"u( S
, 4 T + ¢ (u - u(n,®) - ¢ ceta - ¥ csca)
. . 1 . -
‘ r\ _ % . £ i
« } ‘ . o ‘:,.:.” - WUR ~ ° . . . '
' ' Y Y " N :‘ \
With the c&oss -flow ve1001ty components v and w thus ob— - L
- . talned the magnltude'r and dlrectlon angle 6 (measured oy, -
. . ’ , . - .
f Lo counterclockw1se from the z- azls) of the cross-ﬁldw velocity s
e are f“ : Ce - . T L '
oo . re (v2rwdi ) o£® S L ‘
N T b © (4.1.3) o
t : o * . —1 v ’ : t _ 3
“ . and‘ 6 = tan ( ) . ' Y 0 \ ° s . . 5(‘ ]
: : o : " ¢t o ;
) - ° s i
: ) 4 , .- .._ - ,
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Since the data to be processed :are still.-in terms of

/ ) .
n and s, it is desirable to transform the yelocity compdnents o~
so that they can be expressed in terms.of the more physicallyak

meaningful coordinates n and ¢. This is easy to do by using

the inverse transformation I of (2.6.1), but to obtain -

)
» £

regularly-spaced data points in n and [ it is necessary to 4
interpolate. To do this, a bicubic spline interpolation

routine was used. . With this done, it was then possible to ,
produce .graphs or tables of the quantities of 1nterest in
terms of regular 1ntervals of n and . For square regions,
contour plots of the quantities with respect to elther‘
(n,s) or (n,r) were made using a'standard computer routine.
For smooth graphs, more points could be found by using a
cubic spline'interpolatigg routine. These standard computer
routines are listed at the‘end of the_thesis. |

- ST L ) . ‘ '
4,2 The nght-Angled Corner o Lo . vt . )

£y

Results for the rlght angled corner shall be used

H

as a test for the computatlon and reductlon procedures by

comparlson Wlth the results of other authors. In particular,
3 ~
‘these results are used to decide which of transformatlon I

.and’ II is preferable and, glven the transformation, should

8 three—pornt or a five-point dlffﬁgence estimate be used

for the derivatives. ) ’ , : :
. N [ T
The first case tried was that usihé traﬁsformation I
¥,

and three—pOLntcdlfference approxlmatlons._ It has,already

<
&
3
4

»
~
- /
-

-~
-
.
S
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tprocessing as did Figure 2 described above. The value of

r ' ,
. - - 81 '

been noted that problems may arise near the corners where

-/

one independent variable has the value zero and Ahe other ¢

unity, The gquantity A, evaluated at various values of s '

along the wall n = 0, is shown in Fiéure 2 for the present

‘case. The ten curves shown represent the function A(Q,s)

-~

-

evaluated at interyals of the solution process a fixed number

. 3

of iterations apart. Curve number l'represents the initial =~ ——
approximation of A(0,s). Note the irreqularity . near s = 1 . »

that appears almost//umedlately and the dev1atlons that )

.

increase as the computer precedure continues,as indicated-.

*

by successively numbered curves. &

The next case tried was that using transformation I o

and five-=point diffefence approximations. Figures 3 and 4

“illustrate the behavior of A(0,s)  with continuing computer

<

-

K(O'SY of Figure 3 seems to conﬁerge.as the process iterates ;
from" the initial estimate of A(0,s) labelled 1 through to

‘curve 5, where the process was halted u51ng the normal

criterion. When a smaller halting Criterion parameter was =

used, /however, the curves of A(O’L) labelled 6 through‘lO

(-4
illustrate that when “the 1terat10n process continued, the “

-

error of thﬁt region of the corner still caused fluctuations.

,Desplte thls, the results ohtained at the polnt whefe the

PEREE

computex program was halted at curve 5 compared well with

- - -

results presented by gﬁher aythors. Flgure 5 _compares theV 2

. -a

malnstream velécmty proflles of different authors. The

.

contour Figures 6, 7 and 8 compare very closely with those




presented by Ghia '(1975)" in the (n,s) coordinates.
:
So far, it seems that it would be,optimum to use

e [

five-point differences with transformation I:for reasons of

- . - ! . . . b
' .~ ~than with three-point differencest However, both schemés

N [P

improved acgcuracy altggpqh more Cfmputipg time is neleded

R vthe“toleran\ce used in the normal criterion for stopping the

9 procedure had been too,émall, the ggmputation Qould not have

" halted when the solution approximation was available. This

reason, along with increased computing time, provided the
hd LY ] -
> Jyoﬁivation to try transformation II. The final case tried,

. . %
. therefore, was that using transformation II and three-point

rs 4
’ -]

" difference approximations. Convergence was achieved more

' surely than-with transformation I. The contour Figures 9, .

s “+

10 and 11 represent the flow quantities for transformation

II. They differ from those of transformation‘I‘%nly because
: = ; y
_ of the different transformations used, which can be detected

, : by nbting that the features of Figqures 9 to 1l appear larger
» than those of Figures 6 to 8. If one transfoims both sets

. , - L ) . "
of information from (n,s) coordinates of transformations I

4 ’ KN

and II tO“ﬂ,C3 coordinates using £pe appropriate inverse |

transformations as,given in (2:6.1) or 12.6.2);,then the

solutions using diffgrént transformafions compare soncloseiy

that it becomgé diffiéult to tell them apart. This is

' especially_true of the qontcurs of the variops‘quanti;ies
Ry that lie within the béundary)regionq which.can.be defined to

» »

be at and within the mainstream velocity contour/a = 0.9 .

S 82

have the problem of not being computationally stable. If .

]

e
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In addition to the'convergepce\and solution characteristics,

[

the three-point tranéformqtion II scheme.is faster than the
five~point transformation I scheme since there are fewer .

13 . - b — . . »
point values that need to be processed in one iteration. It

¢
AR

is also possible to use. the éforémgntioned/resolution

@ °

criterion for halting the computer program,

.

) To summarize, it is first of all noted that the
L . il

equations and boundary conditions presented here and %,
. %

“

specified for the right-énqleé corher with transformation I
become identical to those used by Ghia (1975). The results

presented in that paper compare very well with those present-

N

ed here. This means that the computational scheme, while
& :

<

different from that described by Ghia (1975), leads to the
P

»

same results. It is next noted that differences between

solutions obtained by using transformation I or II are nearly

non-existant, when viewed with respect to (n,7) coordinatés.
Figures 12, 13 and, 14 display results, in texrms of (n,Z)

L
coordinates, of mainstream velocity, cross-flow velocity

magnitude and ‘modified main$tream vorticity respectively.
. .

The sﬁéller insets to these figures are plots of the corre-

sponding. results available from Rubin and Grossman (1971). °

The resultsﬁof éarclay and’Ridh? (1é80) for the right-angled

corner agfeé well with those of Ghia (1975) and

thérefore with the present résults alsojﬁiwith these conclu-

tions and excellent comparisons, one' can use the solution .
.

scheme. pregented’ in this work to examine corners of different

corner angles with confidence in the results. -

-

.
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Figure 9

Contohr graph of the mainstream velocity
G¢n,s) obtained using the 3-point
transformation II scheme :
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Figure 10

Contour graph of secondary flow
velocity given by

\

1, .
r = (v2 + w2)'5 )

obtained with the 3-poiﬁt

transformation II scheme
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Figure 11

Contour graph of the modified
vorticity function A(n,s)
obtained with the 3-point
transformation IT scheme
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Figure 13 .

Cross<Flow Velncity Magnitude

“rlnge) = (v v whHE
The smaller plot shows the results
of Rubin and ~rossman (1971) with
symmetry assumed,
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Modified mainstream vorticity A
ACn,T ). .
The smaller-plot shows the results
of Rubin & Grossman (1971). . P
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4.3 Cdrners of Different Angles ,

Four other sets of results were obtained besides

that of the riqht-aggled cg&ner. Taken together, the

results for the following five corner angles:

(e}

« ="30%, 60°, 90°, 120°

and 150°%; | (4.3.1)

can be examined to note how changes in the corner angle

¢

produce differences in various flow quantities. These
: : S

resultslwill be presented graphically in terms of the
"physical" variables n and z.
The mainstream velocity profiles in the bisector

plane, shown in Figqure 15, consists of the mainstream

velocity profile ﬁ(nz,nz)‘where

n =S [9§]* = 2n (1 + cosa)? (4.3.2)

Z.~X

is independent of corner angle a. Figure 16 displays the
. skin frigtion versus n for all fﬂ?e angles. Similar
figures are given in Barclay and Ridha (1980) for the angles
90°, 135°, 1800, 2252 and 270°%. In both cases, the vélocity
profiies for the concave cornérs are of the S~type, whieh
characterize velocity'profiles'that may lead to boundary
layer separatlon. As the corner angle becomes smailér,

the E;oflles deviate more radically from Blasius proflles.
The point at which thg mainstream velocity profile u(nz,nz)

approaches unity occurs at successively larger values of N,

indicating that the corner boundary region is thickening. y

* Comparlsons with Barclay and Rldha (1980) are not pos51ble
becduse of the different angles considered (except 90 de-
-grees, which is the same as Rubin & Grossman (1971) and
Ghia (1975))

“
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Also,'in both cases, the skin friction for angles less than

180° indicates a deficit at tfhe corner, but increases to the
v, ) r
Blasius value away from the corner. Again as the corner

angle decreasegs, the skin friction approaches the Blasius
value at progresgively largér distances from the corner.

One way to examine tﬁe secondary flow in directions
perpenaicular to the mainstream direction is to examine‘
magnitudes and directions at various points. This flow is
called secondary because it is of the order of R:i in
magnitude, compared to order unity for the mainstream veloc-
ity. The directions at'various’points are indicated by the
arrows in Figures 17 to 21. These plots were drawn so that.
the axeé correspond to the walls;-the different corner |
angles are apparent, and the resulting flow field appears as
it would naturally. The coordinates n and ¢ of thése figures

1

measure along coordinate lines of the non-orthogonald™~—

Fy

Cartesian coordinate sy®tem, which are parallel to each axis.

. /
From these diagrams, \t is possible to distinguish

>

three separate regions in general. All three, ﬁowever, may

.

not he present in a varticular case. Beginning with the

«

150° corner of Figure 17, one notes that in the outer region
the flow is toward the corner along the walls, Before the
corner is reached, the cross—flow directions turn outward

so that they eventually point away from the corner in a

direction parallel to the bisector. From the detail of the



® ' , :
. 99

figure, the-cross-flow behavior right at the corner.is
evident. ‘This, denoted as the inﬁer'iegion, abpears to flow
into the corner, As the corner épglé decreases through 120°
to 90° (Figures 18 and 19), one notices the emergence of a:
{?ddle region, which is charécterized by flow moving outward
frém the corner., This flow rég%pn meets~the incoming flow
éf thé outer region at which point both are deflected’ away
from the walls to form the outward-moving flow parallel to
the bisector. As the corner angle continues. to decrease |
to 60° (Fig&ke 20) , the middle regioﬁ becomes larger while -

the inner region decreases. For the ° corner (Figure 21,

the inner region is no longer evident and the middle region

completely dominates.the interior flow field.-

Figures 22 to 26 are contour graphs reépresenting

4 . .
the cross-flow velocity magnitudes. The number of contour

lines (spaced 0.5 units apart in all cases) increase .
, -~ ’ 3 ¢
with decreasing corner aﬁgle. In all cases, the point of
r .
‘ highest cross-~flow velocity occurs at some point on the

bisector and decreases in magni?ude qu;ckly as one moves

from this point tpwards any point on the solid boundary

near the corner. By eomparing figures of series 17 - 21 and’
22 - 26 of corresponding corner angle, the regién of highest

cross-flow velocity.is directed outward from the corner and

L3

barallel to the bisector. It is also noted that J@'the

cor®r angle decreases and the middle region of the cross-

” .

flow becomes larger, regions of local maxima or ridges form

¥
B / c\,;g
.
'
. ;

e
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‘ . ) 1 0.0 .o
. / ‘ »
near ‘the walls and far from the corner. The valley regions
, . . <
between the ridge and the,centfal maximum correspond to
- areas where the outgoing flow of the middle region collides
with the .incoming flow of the outer iegion. The ridges

themselves indicate that the flow of the outer region is

-affected by the middle region flow so‘tﬁat the penetration

{
of the outer region toward the corner is halted. 1In all”
cases, there is a large gap bétween the éei}d boundary near ‘

"the corner and the flrst contour (r = 0.5), indicating low

.

cross-flow ve1001ty gradients near .the corner. .
The contours of Figureé,27 to 31 denote values of
the modified vorticitv function X(nfc).?‘Onpe again, contour

lines ‘become more cloSelyispaced with decreasing corner
-’ - s, . ) . s - -
angle. There exists a region along the bisector where the .
- .

. modified vorticity contoux}ines are closely spaced,

indicating a region' where gradients are large. This region

.

coincides not with the makimum cross—fldwivelocity region,
‘but with the region adjacent and closer to the corner alang -

#the bisector where the érbss—flow velocif§ is being
. s V.
- accelerated.’ Slnce the flow direction is generally out rd

&

along'the bisector, acceleratlon iniplies increasing f;o%

speed. Other régions containing large éradieﬂts of A(n,t)

are 'located along each wall and far from the corner. These
regions correspond to the ridges of the crossiz;?w velocity -

magnitude diagrams where they appear in the s ler angles.

k4

These regions denote areas where again the. cross-flow is ‘

- »
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’né@er probe the inner regibn fully, but other features .

i 101

being accelerated, but in this.instance acceleration implies

rapidly chénging velocity directions rather than changes of

speed. At the cérher,_gradientg‘dﬁai(n,g)‘are small and
Become smaller as the corner angle increases. ;gé;)ghé 126o
and 150° corﬂgks (Figures 28 and 27 respectively)?~there is
a region where A(n,r) is zero right at - the cornér. This
region corresponds to the-previously mentioged ihner region
which' disappears with decreasing corner angle. .
‘ The présence of the inner region, where the cross-
roW is directed tQ&hrds the corner,,was first noted.by
Gﬁia~(1975). After-checking that these velodity directions
weré'independent of the initial approximatien, the author
suggested that these inflow‘velociFies may ,indicate the
prgsence‘of viscous eddies of the étokes slow—-flow negién
suggested by Tokuda (1972) . This feature of .the innef regiQi'
is not detected in other numerical solutions, including the
concave co;her§ of Barclay and Ridha (1980) where a less-fine
grid was used. Even with the fine grid used by‘Gyia (1975),

only a few gfid points appear to lie within the inner region.

. hd 0 . / *
In the present treatment, a few more grid points octupy the

5

ggﬁér region, but not enough to show eddy currents.
According‘to Tokuda (1972), a finfte differenge method would
besiées eddy currents were predicted by the same author.

The flow structure-is also characterized by a separating

. -
flow profile.” Although in practice separation would not

o % - -

[\
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take place were it not for slight fluctuations in the main-

stream flow, leading edge effects or bther'destabiiizing
influences-<4s shown by Zamir [1981)?)'Tokuda (1972) alsg

-

. predicted an almost inviscid flow regiop with low shear

St .
.

N ' : .
flow exisfinggalong the corner bisector:and boundary layer -;\‘

~

4

type viscéus flow far from the solid boundary or away from
vthg bisector, andé%%ted the bulge' in the isovels of Zamir
and'¥oung (1970) as evidence‘of a low shear flow region
surrounddd bf a high shear flow region. The present work’
indicates a low shear flow-region at the corner ;inqe the
skin friction éoefficient based on ‘the mainstream velocity u
(see Figure 16) is zero. At le;st for the 1argerlangles,
A(n,r) is zero at the corner, denoting & region oﬁ_
irrotational and hence inyiscid flow. From the preceeding '
figures, it is seen that the lowiéhear région at the corner
* broadens as the corner aggle decreasés while the irrotational
region bgcomes smaller. lThié would seem to indicéte, at
least theoretically,Athat these combined effects are maxi—
mized for a concave cprnér of a certain angle.

Barclay and-Ridha (1980) remarked that for concave
© corners, a substant&al inflow near the corner alon@ the
’ . ,
bisector would be a stabilizing mechanism for the boundary
layer. Although the velocity magnitudes of the inner régién

" are not very substantial, the disappearance of the inner .

region with decreasing corner angle would seem to indicate
| v

a 'loss of stability based on this remark..
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The characteristics of the outer flow\region were
. : < ’

proposed from the experiments of Zamir aﬂd»&oung 1970)
and are the dominant feature of the numerical solutions of

Rubin and Grossman (1971) and Ghia (1975Y: The secogéary

-

flow of this region is directed toward the corner when near
‘the walls. Before the corner is réached, however, the flow

is directed away from the walls and turped to point outward

- bt .

in a region near the corner bisector. For the_corners of

“angles 120° and 1500L the entire flow field consists of the

P

inner and outer regions only. . It appears from Figures 17'2§d

. lS“thaf the .flow nearestr the walls flows inward right into g
the corner. . ., . )

1

For fhe 90°\porﬁér of Figure 19, there exists a
middle région;in wpich the secondary flow is directed

strictly outward-from-the.corner, even along the walls.

\

This flow regipn'cqllides;witﬁ_the incoming flow of the *

" outer region nearﬂfhe walls ;so that the flow is.directed

N

-away from the wall afid ip;o"ﬁhe outward-flowing region
around the bisector. ‘As thq corner angle becomes smaller,
the middle regién becomes more prominent (see Figure 20).
fﬁe point along the wall where the mid$le afid outer regions

collide occurs farther away from the corner. LAt the same

[

time, the inner region receeds farther into the §orner until

" it vanishes from view (Figure 21).

3 ~—
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5. CONCLUSIONS .

o

5.1 Conclusions of This Work

-

Development of the flow equations has generally

. followed that ongesai and Mangler (1974). A modified form

of the non-orthogonal Cartesian coordinate system used by

Ed

E Barclay and Ridha (1980) was used in.this wofk‘instead of the

: . % -
semi-curvilinear coordinate system used by Desai and Mangler
o
(1974). For a right-angled corner, the modified coordinate

- .

system and the flow equations atre identical to those used by -
Rubin and Ghia and their respective associates. This
demonstra&s% that the analysis of Desai and Mangler (1974)

is correct to this point.

-

) While the basic method developed by ﬁ%l and Rubin
(1971) fpf obtaining equations of the far-field boundéry
conditions was used by Desai and Mangler (1974), .

the actual boundary_conditions used by the latter

were different from' those used elsewhere. This
differenée, noted By Barc}ay andhpidha (1980), is that "~
Blasius flow is assuﬁed by Desai énd Mangler (1974) to be
satisfied exactly, meaning that no cross-flow parallel to the
wall is to exist. The cooidinate .transform of Sills (1969)
and the reéefinitioq of flow quantities (so that they remain
bounded) are used b§ both Ghia (1975) and this work so that
far-field boundary cenditiohs could be applied at true
infinity. Numerical results were obtained for concave

corners of five different forner angles, including two

angles less than 90°,

121
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’ v

The main features that the numerical results

describe are the corner -flow patterns, especially those of

the secondary cross-flow, and how iﬁey change with changiﬁg

corner angle. Such detailed knowlédge of corner flow is

important in order to set the stagé for further inveSEiga— v

MY ~

tion. The need fpr this.is obvious since Eheorefical

streamwise corner flow models do not prediqt the bulging

mainstrgam isovel patterns that are ‘found experimentally..
o In practical situations, cérner flow is influenced

N -~

strongly by flow stability and pressure grédienﬁé'as well as

corner angle. Although Barclay and Ridha (l980)~ﬁéyé'stated ) v

that a significant cross-slow velocity directed at the corner
<«

enhances stability, and although thleinward flow decreases
; ) . )
with decreasing corner angle, the conclusion that stredhwise -

corner flow tends toward instability with decreasing corner

“angle is-qualitative-at best and certainly poorly supported.

N I(\?
The reason 'for this is that the present flow model is over- ~ o

i - o ¥ :
simplified and cannot answer questions concerning, pressure
gradient or stability.‘ Similarity,as it is expressed in-
the coordinate transfdrmationslof (I.3?2) and elsewhere,
inplicitly assumes a zero ﬁfessure gradient. 1In .ordexr g@&:
. s R
account for non-zero pressure#ggadients, thé flow e@ﬁétf%ns

v
must be modified beginning at this point. In addition, if

stability and similarity are related as suggested by Zamir

|
.

(1981), one needs a streamwise corner flow model that can
. ‘ 4 .,
account for dissimilar flow. Still another peason‘why the

- )
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results of the.existipg streamwise corner flo@ nmodels do .

not show the bulging isovel pattern is that there may exist
Secogd—order terms, with respect to the inverse of the
Reynolds number, that are large enough to affect the flow
significantly. The Reynolds numbers describing the f£low in
the experimen?al studies are ;inite, after all, and may be
small enough for second-order effects to be visible. This

work will.finish by illustrating these ideas further, and by

suggesting, areas of further study, in the next section.

5.2 Areas of Further Study

»

Even though the inverse of the Reynolds number may
be small, the coefficients multiplying it may be large enough
for the resulting product to be 51gn1f1cantly fﬁﬁ?@ ne
such possibility arises in the u-equation of (2 2 14), which
would resemble theé following equation had first and second-

order terms been kept:

4 i
Vu + gu,, + Wu,3°— R {(q12 Aj3 =~ dy3R.,)
o (5.2.1)
+ (Other Trems)}

With the coordinate system of (2.3.1) and (2.3.3), the

coefficient mulitiplying the second-order term is

n+¢ cosa) AC -~ (n cosa + ) An . {(5.2.2)

From Figures 27 ‘to 31 where A is plotted, at the p01nt along

the corner bisector where the contour llnes are most dense,

(5.2.2) is large and becomes larger with decreasing corne;;/
P 4 .

angle, provided A can be estimated by A. The area where

this occurs is the area where differences between theoretical
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and experimental mainstream isovels are nost ,apparent. In
order to investigate this furthér, it/would‘bg‘necesséry to
discovér all the second-ordex termS’éf'gll equééions,
including those arising from another outer and:inner
expansion of the perturbatipn proceé%. Solutions for the
new dependeng variables that would appear wéuld need to be
obtained to make certain whether ox nof.the; might be largé.
It may be that other terms would caneel the éne noted here.
fhis perturbation expansibn érocess becomes very tedious and
still does not answer- stability questions bec;u§e similarity
.is still assumed valid, ‘ .

In'con£rast, it is not difficult to,modffy the
pfesent streamwise corner flow model so that non-zero

2

pressure gradients can be considered. It is wellﬂknown (see

kS

Schlichting (1955)) that there exists a similarity transform

for boundary layers“with potential flow velocities of the
s ¢
form

.l

U=y, X, . o (5.23)
which corrgspoﬁds to flow past a wedge-shaped boundary. The’
"m" in (5.2.3) is related to the gnéle of the point of the
wedge, denotéd by 8, through’

| = 8/(2 -6 . | (5.2.4)
If (5.2.3) is used to apéfoximéée the potential flow'ariéing
" from a streamwise corner with a non-zero angie of_incidenceﬂ
which would result in a favorable preésure grédient in an
experiment, thqp‘the similarity transférmation of the -

coordinates, compared with (1.3.2), are
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X = X
. % Co
. 2v . *
y = [(T—‘*%—U'] (5.2.5)
- 3 . ;‘
. . = [ 2vx ]2
. - (m f 1)u

where U is given by (5.2.3). Starting at this point in the
development of the flow equations, and préceeding as has
been discussed in Sections 2 and -3 of Chapter 2, the system*

of.equations corresponding to (2.3.5) becomes

2 + + si +
uqn cosa unc uCC sinag (¢>un wuc)

_ 2% sina i -
(m +_l)pU2 dx

4+ si ‘ +
Arm 2 cosa Anc + ACC sina (¢An wAC).

=y
.

2

2 sina (m - 1)°
—m— udA + 2u sino _r-n_+_l— . (5.2.6).

+

An + c'cosoc)uC - (n coso + g)un) =0

mA = ll)n - (I)C +.COSO« (IPC + ‘bn). "

The right-hand-side of the first equation of (5.2.6) ,is known
po .

from (5.2.3) and Bernoulli's equation, which is

1

du 1 dp

_— Uk =" o (5.2.7)
so that the equation becomes -
-2 + + si + ' ’ ‘ “
unn \ cosa unc uCC t sina (q>un wuc) .
- 5 n . (5,2.8)
= 2 sin a:

m + 1 ' ) . . -

-
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Questions concerning stability still cannot be
answered because similarity is still a basic assumption of:
this new system of equations. Rather than formulating the
équatiohs Qithout similarity, an easier apprééch might be
‘to introduce a non-similar perturbation into the above

floﬁ model. One location for such a perturbation is sug-
- gested by Zamir (I1981), where it is noted that streamwise
corner flow becones unstable as the angle of incidence

(given by‘%;) decreases, One can postﬁlate a p}essure term

consisting of similar and non-similar parts such as

<

-

+ ef(x) (5.2.9)

.2
2 sin“a T 3

+

™
where £ ( = O(1)) is some function depending on ‘the stream-
wise vapaiblng (andﬂperhaps n, ¢, time t and corner angle o
as well)f\ Thé parameter € represents the magnitude of the
nén—similap term of (5.2.9). For large 6 and for € chosen

to e\smaii,,the first term of (5.2.9) would dominate, with
the result that the overall flow is similar. With decreasing
9, however, the second term of (5.2.9)’becomes more signifi- ®
cant, aﬁd fhe'flow becomes dissimilar. The expression (5.2.9)
also suggests.that the non-similar term becomes ‘more sig-
nificant as the corner angle o approaches zero. The fact

that this is also the case as the corner angle opens up and

approaches 180° is a fault of the coordinate sysfem (which

_collapses in the same limit) and might be rectified by

~y

U~
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insisting that
£ % or £~ (m~-ua) . - (5.2.10)

¢

The form that the function £ should take is a subJject

reduirihgtfurther study. Physically, the function f may

represent some fluctuation in the flow arising from any

or all of the following causes:
1) a small degree of f;eéstream‘turbulence,
2) a local phenomenon such as a separation
bubble, or ;
3) a disturbance originating at the leading _

& edge. .

In conclusion, the method of the nonrsimilar

.

. perturbation would probably be a much more fruitful area

of investigation than that of continuing the.éingular per-

N

turbation expansion method.
£
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APPENDIX I -~ FORMULATION OF DIVERGENCE . ' ‘

Before examining the divexrgence of a vector, the - :

~

following result is nedded. It is ?52§d that the metric »
tenspr is invariant with respect.to covariant differentia-

tion. &Lhis is given by . | . ‘
. ) _
%5l =0 - . (A.I.1) |
. which becomes, upon eipaﬂding the” derivative, he ’ 't ‘
.g: m ‘ m . *
95 Imj Tix ~ 9im k3 =0 - ‘.(A.I.2)

»

Multiplying both sides by gJ‘J and no{ing that
iy _ i ' - _
g gjk Sk ' ’y ‘

where 6; is the Krohgcker delta, (A.I.2) becomes

i3~ A 5 L ‘o o |
977 9y50k LN ij 0 . (A.I.4) a
Since the Christoffel symbol F;k is symmetric with respect to .

the. indices j and k, and since $fe aummf indices (i.e. those

P .
to which the summation convention applies) can be renamed,

then one obtains from (A.I,4) the following: ‘ N , .
i _‘!: ij LY . ) . ‘: ) .
rik =39 gij’k . ‘ (A.I.5) |
The divergence,of a vector can be written as . r :
j f J k .3 ' ' :
u’|l. =w,. +u I's,- . A.I.6 T
IJ .'J . jk ' ( ) . .

which, by (A.I.5), becomes - _

I TR 1.k 43 | . -
u’|. ="u rgt 39T Gy (A.I.7) )

Adler et al (1965) present the following argument in order

to simplify the last term. From matrix theory, glJ is the
‘ \

.

i

1

U o
|
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.inverse.of'qij and can he written as . N
N i. s Arl .
gtd = 2d (rA.1.8) .
g .
where g and Aij are the determinant and cofactor of gij"
The determinant is obtained from . * .
. g = gij Aij (i‘or j not summed) . (A.I.9)

Differentiating with respect to éij results in

&0 - v
32__ = AL g
g,

o ij

(A./I.103

since Aij does not'contain the gij of (A.I.9). Substituting

¢

(A.I.10) into (A.I.8), one obtains

P a (A.1.11)
which can be used to simplify (A.I.7)~so that one obtains

u

I

o

(o)
+
D] =
o
Q|-

(1n(9)) 4y-

I
ﬁu
+ .

s DO
o]

%

k
= u‘..,j + u (In(g )).k

y oL u (g%),k : .
‘ =u”,. + ’ A.I.12
. | g% . (A, )

f . 4 '

i -~

¥y !

-

.
v g s i Saea o



APPENDIX II - THE CONVECTIVE TERM .
- I3

The first ferm of the Navier-8tokes equation of
'(2.1.1) can be expanded as follows. The covariant derivative

is expanded so that the term in question becomes

4

3 = ] -yl k
u uilj u ui’j u” uy Pij (A.IX.1)

. ]
and the Christoffel symbol is written in terms of the metric

tensor to get

uj u km(
x 9 'Fmri

-

3 m
ut wilggpey t 9y

N 9. 4. + ul "™

(u jm’i g

j o,
9i9'm

-~ -

-~ )--.
Defivatives are formed as follows:
l{uj(um g:_) - uj g. -
2 jm’ i - jm i
. m S B
+ u’-u Ipirge U U gij’m} r
and the dummy suffices j and m of the last té;m only are

*renamed m and j respectively. The'result,is

.

1 jooo_ ]
gi'j'+ 2(uj u, . u uj’i) .
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APPENDIX III - THE JACOBEAN
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The determinant of gij can be found using (2.2.4)

as foilows: N

» P
3

. _Vxe
U

' \)3X
+ —= g, ,(
53 13
- (vx)2 2

2 : 2
-y (G307 7 Gyy (A33)7 -~ A3z (@)

.

* 2 9y, 933 93) -

(

T (93 933 7 (dp3) ) ¥

vx, 2
TT)

15 923 ~

‘ .

U

(ay, 933 = (dy3

3 912(9y5 933 ~ 933 9y3

972 913

)

)

VX '
3 (A3 959" 933

)2 -

Using the definitions implied in (2.2.3) for qj 40 this

becones

I .
1

2 2 2 2 2
= — "+
g \U) 4{(1~"n Gn)(FC + G

4

U3

(FH?C

+ + GG.
4(FF + GG ) (FF,

2 .2
-2 +
(FF, + GG) " (F;

If one expands the expressions inside the curly brackets and

g
4

) = (FnF

4

3 .
v>x 2 2.2 2" 42 2,
23 (2(F; + G ) (F, + Gi)(f +60) - 2F
+ G G )2 - 2(FF_ + GG )2 (F

noc n " oo

+ +
GGC)(FHF

¢

2 R
+ Gn)} .

+ GnGc)}

+ G))

+ G.)

(e B S BV S\
SEN YN

GnGC)

S

cancels the terms that subtract out, the expression simpli-

.

fies to

>

2
= 4 2§ P G
g = () ( .

Loy

c

- F

g

ﬂ“"2
Gn) .

-

(A.IT1.1)

PSRN
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From (2.2.4), the expression for Q can be writtén as

- i VX .
N = . = 2 == - G . - . .
- 0 det(tj) 5 (FHGE FC~H) . ‘ (A 1IT.2)

/By comparing (A.IIIL.1) and (A.II1.2), one notes that

o= (@7 , _ (A.III.3)
therefore justifying the definition (2.1.7), at least in

’ -
thijs case. By definition (A.III.2), one sees that Q is the

v
Jacobean of the transformation.

3 Mot da A oSk e
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APPENDIX IV - SECOND-ORDER EQUATIONS

o
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In the following, references made to differentiation

imply partial differgptiation. Only the two first-order

equations of (2.3.5) are required for congideration in this

appendix, These equationé are

2u sina = ¢+
u sina ¢n wc .

-v.)

. 2
= - 4 )
and , A sin“a wn ¢C cosa (¢n z

1

(A.IV.1)

(A.IV.2)

Once all the terms of the above equations are brought to the

]

right hand side, each can be differentiated ence by each of

n and ¢ to obtain the following® four equations:

+ - 2u’ sina =0
¢nn wnC .2un sina 0
o+ -2 ing = 0
- gt Vg 7 29, sino
’ . 2
- + - - =
wnn ¢n€ cosda (¢nn wnc) An sin“o 0
. . 2
- + . - - A =0 .
wnC ¢CC cosa (¢nc wCC) ; sin“a
One now subtracts (A.IV.6) from (A.IV.3) to obtain
.2
- + + + A :
¢nn cosa QHC ¢CC cosa wCC r sin o
- 2u_sina =0 ,
n
and (A.IV.4) is subtracted from (A.IV.5) to obtain

wnn

- 2u_ sina = 0 .

4

sy

- cosa wnE + wCC + cosa ?nn - A $inZo

(A, IV.3)
(A.IV.4) "
(A.IV.5)

(A.IV.6)

%

(A,IV.7)

(A.IV.8)

av
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Both equations contain.referenées to ¢ and Y. To aveid this
and make the cross-derivatives resemble those of the first.“
two equations of  (2.3.5) at the same time, (A.IV.4) is

substituted into (A.IV.7) for WCC so that the equation

. becomes
Ead
] . 2 »é
- 2 cosa ¢ + + A sin’a '
i ® Ong O AL S
/ . .
- 2 sina (un - uc'cosu) =0 . (a.1v.9)
Similarly, if (A.IV.3) isyused to substitute for ¢nn in
(A.Iv.8), then one has N
Y - 2 'cosa ¥ + 9. - A sinza ‘
nn ng (4 n
- 2 sina (_uC - un cosa) = 0. % (A.IV.10)
These last two equations are now used along with the first
two of (2.3.5) to form the set of four second-order partial 4 )
differential equations of (2.3.6). )
o a . .
>
é
- ;° b il
Y, )
- :
. 3
. — L |
}
- 1
\ - i
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. COMPUTER SOFTWARE

Mathematicdl ‘routines used to find.the far-field
boundary values, and to perform some of the data reduction
are taken from the IMSL Library, Editioh 8. These are

listed as fdilows:

DVERK : Runge-Kutta Integration

®

IBCIEU : Bicubic Spline Interpolation .
- & ’
&
The plotting routines used ‘are CALCOMP routines.

- For the contour graphs, the program UCON2 is used. A source

(.or reference for UCON2 is

2

UCON2 CONTOURING PROGRAM USER'S MANUAL -
FOR USE ON THE CDC CYBER 73
Computing Cenfer, The University'of )
Western Ontario,

{ 1
London, Ontario, Canada (1973). S
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The divegence, of a vegtor can be written as
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