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the perceptual neural trace of 
memorable unseen scenes
Yalda Mohsenzadeh  1,2, Caitlin Mullin1, Aude Oliva1 & Dimitrios Pantazis  2

Some scenes are more memorable than others: they cement in minds with consistencies across 
observers and time scales. While memory mechanisms are traditionally associated with the end stages 
of perception, recent behavioral studies suggest that the features driving these memorability effects 
are extracted early on, and in an automatic fashion. This raises the question: is the neural signal of 
memorability detectable during early perceptual encoding phases of visual processing? Using the high 
temporal resolution of magnetoencephalography (MEG), during a rapid serial visual presentation 
(RSVP) task, we traced the neural temporal signature of memorability across the brain. We found an 
early and prolonged memorability related signal under a challenging ultra-rapid viewing condition, 
across a network of regions in both dorsal and ventral streams. This enhanced encoding could be the key 
to successful storage and recognition.

Every day, we are bombarded by a mass of images in newspapers, billboards, and on social media, among others. 
While most of these visual representations are ignored or forgotten, a select few will be remembered. Recent stud-
ies have shown that these highly memorable images are consistent across observers and time scales demonstrating 
that memorability is a stimulus driven effect1–5. This is punctuated by the fact that observers have poor insight 
into what makes an image memorable. For instance, features such as interestingness, attractiveness and subjective 
memorability judgments (what the observer thinks they will remember) do not explain the phenomenon2,6.

Investigations into the neural basis of memorability using fMRI have revealed greater contributions in brain 
regions associated with high-level perception along ventral visual stream, rather than prefrontal regions associ-
ated with episodic memory7,8. These greater perceptual correlates indicate a potential processing advantage of 
memorable images, suggestive of a stronger perceptual representation. In a related vein, using an RSVP paradigm 
mixing images with different levels of memorability, Broers et al. (2017) found that memorable images were 
recognized significantly better than non-memorable images with extremely brief display durations9 (13 ms), sug-
gesting that features underlying image memorability may be accessible early on in the perceptual process. The 
early response of the memorability effect is also supported by work tracking pupillary response and blink rates 
for memorable and non-memorable images, concluding that memorable images have both an immediate10 and 
long-lasting5 effect on recognition performance.

Taken together, this work suggest that memorable images are encoded more fluently, and this perceptual pro-
cessing advantage correlates with better long-term storage. Here, we trace the temporal dynamics of memorable 
images in order to reveal the time course of neural events that influence future memory behavior. We employed 
high temporal resolution of magnetoencephalography (MEG) during a rapid serial visual presentation (RSVP) 
task to isolate the perceptual signature of memorability across the brain.

In order to focus our investigation on purely perceptual aspects of memorability, we isolated the neural signal 
of memorable images from the influence of higher cognitive processes such as the top-down influence of memory. 
This approach requires the consideration of two basic principles: First, we acknowledge that image masking pro-
cedures, such as those found in traditional RSVP tasks, inhibit neural representations of non-target images from 
reaching deep memory encoding11–16. Second, we assume that memorability scores from the LaMem dataset17 
(normative memory scores collected from thousands of observers) can function as a proxy for individual memory 
in the current study (i.e. an image with a high memorability score would be very likely to be remembered by an 
observer in our study had the information not been interrupted through masking, whereas an image with a low 
score would not)2–5.
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Results revealed an early and prolonged memorability related signal recruiting a network of regions in both 
dorsal and ventral streams, detected outside of the formation of subjective memory. The enhanced perceptual 
encoding shown here could be the key to improving storage and recognition.

Results
During an ultra-rapid serial visual presentation (RSVP) paradigm18, observers performed a two-alternative 
forced-choice face detection task (Fig. 1), while MEG data were collected. In each RSVP sequence of 11 images 
(34 ms per stimulus), 15 participants were instructed to determine whether the middle image, or target, was a 
face or non-face (50% chance), a task they could perform successfully (d′ = 3.72, two-sided signed-rank test; 
p < 10−4). Importantly, in the face-absent trials the middle image was replaced by a scene image (the non-face tar-
get) sampled randomly from 30 images, half with a high-memorability score of 0.88 ± 0.06 (mean ± std) and half 
with a low-memorability score of 0.59 ± 0.07 (mean ± std). The remaining images (distractors) in the sequence 
were sampled from mid-level memorability scores of 0.74 ± 0.01 (mean ± std). Target scenes and distractor stim-
uli came from the LaMem dataset, with pre-acquired memorability scores17. The rationale for opting the middle 
image as the target in the experiment design was to provide effective RSVP forward and backward masking, 
without making the task extremely difficult by varying the target position19.

Following the MEG experiment, observers performed an unanticipated old-new memory test, with all targets 
and novel images shown one at a time. Participants were presented with the RSVP target images mixed randomly 
with 60 novel images matched on high and low level features, and instructed to indicate whether they had seen 
the image at any point during the RSVP task. Results show that while the goal-directed target stimuli (faces) 
were detected and remembered well above chance (d′ = 0.59, two-sided signed-rank test; p < 0.01), memory for 
target scenes was at chance level (d′ = −0.13, two-sided signed-rank test; p = 0.1), corroborating an absence of 
explicit memory trace. The unanticipated memory tests confirmed that despite 30 repetitions (see methods) of 
each target scene, participants failed to recall having seen these images. This provides the ideal circumstances to 
evaluate the purely perceptual basis of memorability, thus all subsequently described analyses focused only on 
perceptual dynamics of the target scene stimuli and the subjectively perceived face-target trials were disregarded 
from further analyses.

Figure 1. Paradigm design. RSVP paradigm, known to greatly reduce image visibility, and examples of high 
and low memorable target scenes. Each RSVP trial includes presentation of 11 images with the speed of 34 ms 
per picture (without inter-stimulus interval). In half of the trials a face image was embedded in the middle of the 
sequence and participants were asked to detect the face trials (a two-alternative forced choice task). In the non-
face trials, the middle image was drawn randomly from a set of 30 scene images, half high memorable and half 
low memorable (target scenes). The presented images in this figure are not examples of the stimulus set due to 
copyright. The stimulus set used in the experiment can be found at https://memorabilityrsvp.github.io.

https://doi.org/10.1038/s41598-019-42429-x
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Temporal trace of memorable images. After extracting the MEG time series from −100 to 500 ms rel-
ative to target scene onset, we performed multivariate pattern analysis in a time-resolved manner. For each time 
point (1 ms step), we measured the performance of a SVM classifier to discriminate between pairs of scene images 
using leave-one-out cross-validation resulting in a 30 × 30 decoding matrix, also known as representational dis-
similarity matrix (RDM), at each time point (Fig. 2A). We then used the representational similarity analysis 
(RSA) framework20–23 to characterize the representational geometry of memorability effect in MEG data. In this 
framework, hypothesized model RDMs can be compared against time resolved RDMs created from MEG data by 
computing their correlations (Fig. 2A). Here we considered two hypotheses, a linearly separable representation 
between our two conditions, such as a categorical clustering geometry (see the model RDM and its 2D multi-
dimensional scaling (MDS) visualization in Fig. 2B), and a nonlinear entropy based representation where one 
condition is dispersed while the other is tightly clustered (see the model RDM and its 2D MDS visualization in 
Fig. 2C). The comparison of these two candidate model RDMs with the time resolved MEG RDMs yielded the 
correlation time series presented in Fig. 2B,C. As depicted, while no significant correlations were found between 
the MEG RDMs and the linearly separable model in Fig. 2B, the model assuming a more entropy based geometri-
cal representation for high memorable images explained MEG RDM patterns with significant correlations start-
ing at ~150 ms after target image onset.

The lack of categorical separability in our representational geometry implies that the classical 
between-categorical decoding analysis is not well suited to describe the distinction between these two conditions. 
Instead, we averaged the decoding values (dissimilarities) within high and low memorable scene pairs separately. 

Figure 2. Multivariate pattern analysis and geometrical representation of memorability across time. (A) Using 
MEG pattern vectors at each time point t, a support vector machine (SVM) classifier was trained to discriminate 
pairs of target scene images. The performance of the SVM classifier in pairwise decoding of target images 
populated a 30 × 30 decoding matrix at each time point t. This process resulted in time resolved representational 
dissimilarity matrices for MEG data which can then be compared with candidate model RDMs by computing 
their Spearman’s rho correlations. (B,C) Two possible representational geometries of memorability and 
their comparison with MEG data. The RDM and MDS plot in panel B show a categorical representation in 
which high and low memorable images are linearly separable. The RDM and MDS plot in panel C illustrate a 
representational geometry where high memorable images are more dispersed than low memorable ones. The 
gray curves in (B) and (C) depict the time course of MEG and model RDM correlations. The line below the 
curve in panel C indicates significant time points when the correlation is above zero. Statistical tests used a 
cluster-size permutation procedure with cluster defining threshold P < 0.05, and corrected significance level 
P < 0.05 (n = 15).

https://doi.org/10.1038/s41598-019-42429-x
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Figure 3 shows the two curves for high and low memorable scenes across time in red and blue, respectively. 
Decoding accuracy was near identical for high and low memorable scenes until 149 ms, at which point the two 
curves diverged significantly, revealing the onset of a memorability-specific signal, which lasted until 228 ms 
consistent with the results in Fig. 2C.

Together, our analysis demonstrates that the two categories of high and low memorable images are not lin-
early separable, but that high memorable images show a more distributed geometrical representation than low 
memorable images. This suggests that memorable stimuli are associated with higher differentiability and unique 
information, as illustrated by higher averaged decodings within high memorable scene pairs than low memorable 
scene pairs (Fig. 3).

Temporal generalization reveals an evolutionary dynamics for memorable images. The signif-
icant persistence of memorable images from 149–228 ms (cluster defining threshold p < 0.05; corrected signifi-
cance level p < 0.05) suggests this class of stimuli benefited from prolonged temporal processing. This extended 
processing could manifest as either a stable representation sustained over time - i.e. as a form of neural mainte-
nance, or a series of distinct representations dynamically evolving over time. To investigate, we applied a temporal 
generalization approach24 which uses the trained SVM classifier on MEG data at a given time point t (training 
time) to test on data at all other time points t’ (testing time). Intuitively, if neural representations sustained across 
time, the classifier should generalize well across other time points. The resulting matrices (Fig. 4A,B), in which 
each row corresponds to the time (in ms) at which the classifier was trained and each column to the time at which 
it was tested, reveal that both conditions show a diagonally extended sequence of activation patterns starting at 
~70 ms. This shape of significant time points suggests that the representations of both conditions dynamically 
evolved over time. Importantly, the greater diagonal reach of the high memorable condition suggests further 
processing during this evolutionary chain.

Cortical source of image memorability. How do the changing patterns of brain activity map onto brain 
regions? Using MEG source localization, we investigated where the memorability-specific effects manifested in 
the visual stream. We broadly targeted three anatomically defined regions-of-interest (ROI) known to be involved 
in building visual image representation. Based on Freesurfer automatic segmentation25, we selected the perical-
carine area for early visual processing, the inferior temporal area for the ventral stream processing and a parietal 
area for the dorsal stream processing. We successfully localized the MEG signals in the selected regions (Fig. S1). 
Within these ROIs we performed the same pairwise decoding analysis as for the sensor data but now using cor-
tical source time series within these regions. Decoding results suggest that memorability recruited distinct brain 
regions evolving over time: as expected, no significant differences were seen in the pericalcarine (Fig. 5A,D), 
while significant differences between high- and low-memorable images were localized in the left parietal area 
starting at 153 ms (Fig. 5B) and then later in the right inferior-temporal around 225 ms (Fig. 5F). A conventional 
evoked response analysis is shown in Fig. S2 of Supplementary Information. While conventional evoked response 
analysis fails to pick up the subtle memorability effect, multi-variate pattern analysis proves to be a successful 
method for analyzing and interpreting MEG data.

Figure 3. Time course of image decoding for high versus low memorable images. The pairwise decoding values 
were averaged within high and low memorable images separately. The color coded red and blue lines at the 
bottom of curves show significant time points where the decoding is above the chance level of 50%. The orange 
line indicates significant time points for the difference between high and low memorability. Statistical tests used 
a cluster-size permutation procedure with cluster defining threshold P < 0.05, and corrected significance level 
P < 0.05 (n = 15).

https://doi.org/10.1038/s41598-019-42429-x
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Discussion
In the current study, we examined the temporal processing signature of visual information that is likely to be 
remembered compared to the one likely to be forgotten. We tested this effect using high-temporal resolution 
MEG during an RSVP task to suppress the effects of top-down influences of memory. Our results revealed the 
dynamic neural blueprint of the perceptual memorability effect, with highly memorable images showing signifi-
cantly better decoding accuracies between ~150–230 msec. Despite the extremely rapid viewing conditions, this 
signal persisted and evolved over multiple brain regions and timescales associated with high-level visual process-
ing (e.g. semantic category or identity information).

A variety of neuroimaging and recording techniques have demonstrated that the cortical timescale of visual 
perception begins with low level features in early visual cortex at ~40–100 msec.24–29 and reaches the highest 
stages of processing in the inferior temporal cortex within 200 msec after stimulus onset22,23,30–38. Despite mem-
orability being a perceptual phenomenon, previous work has revealed that low-level image features, as well as 
non-semantic object statistics, do not correlate strongly with memorability scores2, thus these features were equal-
ized between conditions here, resulting in the overlapping curves within the first 150 msec after image onset 
(Fig. 3) and the lack of any memorability effects in the pericalcarine ROI (Fig. 5A,D).

Event-related potentials (ERPs) have linked high-level properties of the visual stimulus, such as its identity 
or category, with a timescale roughly 150 msec after stimulus onset32. More recently, MEG work has demon-
strated a similar pattern of results22,23,39,40. While the current image set also controlled for high-level semantics 
between conditions (for every high memorable stimulus, there was a matching low memorable stimulus of the 
same semantic category), the memorability effect persisted during this period such that the decoding rate for 
memorable images did not drop as drastically, but instead persisted for an additional ~100 msec (see Fig. 3). This 
suggests that the timescale of the memorability effect (~150–230 msec) is reflective of a processing advantage for 
high level perceptual features.

How does this persistent high-level signal reflect the processing advantages of memorable images? To address 
this question, we examined the temporal generalization of the MEG data to reveal how the sequence of the mem-
orability signals manifests over time. While the task-irrelevance and rapid masking in the current design inhib-
ited the stimulus representations from reaching deep levels of encoding and manifesting into memory, recent 
temporal generalization work suggests that unseen stimuli are still actively maintained in neuronal activity over 
time, with an early signal representing the evolution of perception across the visual hierarchy (diagonal pattern) 
and a later signal generalizing over time (square pattern) as a function of the subjective visibility of the stimulus41.

Given that high memorable images are quickly perceived and understood9, we might have expected the mem-
orable representations to stabilize more rapidly in the brain (as evidenced by a square generalization matrix), 
potentially reflecting a more durable maintenance of information across time. However, in both the high and low 
memorable conditions the generalization matrices were dominated by a diagonal pattern, commonly associated 
with a long sequence of neural responses reflecting the hierarchical processing stages of perception24. Importantly, 
the high memorable representations demonstrated a significant diagonal extension over the low memorable con-
dition (Fig. 4), suggesting greater evolution of perception during this processing chain. Thus, the prolonged diag-
onal shape suggests that rather than manifest into memories under the current rapid viewing conditions, the 
representations of these memorable images were strong enough to take one step further down the perceptual 
processing pathway, perhaps readying themselves for a reliable transition into long term storage.

The evolution of signal observed in the diagonal processing chain triggers the question of which brain regions 
are responsible for this perceptual advantage? We performed an ROI based cortical source localization to eval-
uate the contributions of several regions previously associated with perceptual processing. Results revealed 
that memorability was localized to several high-level brain regions evolving over time; with the left parietal 
region recruited first, followed by the right IT cortex and, as predicted, no-significant difference observed in the 

Figure 4. Temporal generalization. (A,B) Generalization of image decoding across time for high and low 
memorable images. The trained SVM classifier on MEG data at a given time point t (training time) was tested 
on data at all other time points t’ (testing time). The resulting decoding matrices were averaged within high 
or low memorable scene images and over all subjects. White contour indicates significant decoding values. 
Statistical tests used a cluster-size permutation procedure using cluster defining threshold P < 0.05, and 
corrected significance level P < 0.05 (n = 15).

https://doi.org/10.1038/s41598-019-42429-x
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pericalcarine. While hemispheric laterality effects may be a reflection of low signal-to-noise ratio, our results 
implicate high-level visual cortex in both the dorsal and ventral streams and not early visual areas to memorability 
effects.

The significantly better decoding rate of high-memorable images in these brain regions indicates that their cor-
tical representations reflect a more concrete embodiment of the stimulus compared to those of low-memorability. 
However, this strong representation is still evolving over time and space as it moves from one high-level per-
ceptual region to another. Both the inferior-temporal region and areas encompassed by the parietal cortex have 
been previously associated with the perception of shape, objects, faces and scenes and other high-level visual 
features42–48. Thus, when these regions are recruited during natural viewing, memorable images seem to carry a 
hidden advantage in the form of a kind of processing fluency49.

While the memorability of a stimulus plays a key role in influencing future memories, we acknowledge that 
it cannot be fully explained by image attributes2,4 or attentional conditions50. Yet this effect is quite strong. Even 
explicitly attempting to avoid forming a memory still results in memorability effects on later retrieval8. The design 
of the current experiment emphasized memorability as a perceptual phenomenon and thus limits our ability to 
explicitly draw memory related conclusions. Future work should examine the full timeline of memorability in 
the brain; from encoding, to storage to recognition. Only then will we have the full picture of the influence of 
memorability on memory formation.

While we acknowledge the coarse spatial resolution of MEG data, previous works51–55 have frequently used 
MEG source localization in the regions studied here to localize cognitive effects. While we successfully localized 
memorability with MEG in IT and parietal cortex, given the limited spatial resolution of MEG, future work 
should also focus on linking higher spatial resolution brain data to the current timescale. The ability to reliably 
trace the memorability signal over space and time has many practical advantages such as the early detection of 
perception or memory impairments in clinical populations (weaker or slower representations56 and the design 
and establishment of more memorable educational tools for improved implicit visual literacy.

As the medium of knowledge communication continues to evolve, visual literacy (the skill to interpret, nego-
tiate, and make meaning from information presented in the form of an image) has become increasingly impor-
tant. The ability of some images to be quickly understood and stick in our minds provides a powerful tool in the 
study of neural processing advantages leading to superior visual understanding. The high temporal-resolution 
results reported here provide new insights into the enduring strength of perceptual representations, pinpointing 
a high-level perceptual property that is quickly encoded.

Figure 5. Spatial localization. (A–F) Time course of image decoding in cortical sources. RDM matrices 
were extracted at each time point t using MEG source localization in pericalcarine, parietal area and inferior 
temporal, separately for left and right. The color coded red and blue lines at the bottom of curves show the 
significant time points where the decoding is above chance level of 50%. The orange line indicates significant 
time points for the difference between high and low memorability. All significant statistical tests are with 
permutation tests using cluster defining threshold P < 0.05, and corrected significance level P < 0.05 (n = 15).

https://doi.org/10.1038/s41598-019-42429-x
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Methods
Participants. Fifteen healthy right-handed human subjects (12 female; age mean ± s.d. 23.8 ± 5.7 years) with 
normal or corrected to normal vision participated in this experiment after signing an informed written con-
sent form. They all received payment as a compensation for their participation. The study was approved by the 
Institutional Review Board of the Massachusetts Institute of Technology and conducted in agreement with the 
principles of the Declaration of Helsinki.

Experimental Design and Stimulus set. Stimulus set. The stimulus set comprised 60 target images (30 
faces and 30 scenes) and 150 distractor images of scenes. The scene images (task irrelevant targets and distrac-
tors) were selected from a large memorability image dataset called LaMem17. The 30 scenes comprised of 15 high 
memorable and 15 low memorable images controlled for low level features (color, luminance, brightness, and 
spatial frequency) using the natural image statistical toolbox57,58 (see Supplementary Information). The face target 
images were selected from the 10 K USA Adult Faces3.

RSVP paradigm. Participants viewed RSVP sequences of 11 images each presented for 34 ms without inter 
stimulus interval in separate trials (Fig. 1). The middle image and the 10 distractor images, respectively, were 
randomly sampled from the set of 60 target images and the set of 150 distractor images. The image sequence 
was presented at the center of the screen on a gray background with 2.9° of visual angle. Each trial started with 
a 500 ms baseline time followed by the RSVP sequence and then a blank screen which was presented for 700–
1000 ms with uniform distribution. The blank screen aimed to delay response and thus prevent motor artifacts 
on the data. At the end of trial, the subjects were prompted with a question to report whether they have seen a 
face image in the sequence or not and they responded with their right thumb using a MEG-compatible response 
button box. The experiment included 30 trials for each of the target images and trials were randomly ordered and 
presented in 12 blocks with 150 trials. In order to prevent eye movement artifacts, participants were instructed to 
fixate on a black cross at the screen center and only blink when pressing the button to respond. The subjects did 
not see the target images or distractors before the experiment.

Subsequent memory test. To determine if the target images (middle images in each sequence) were encoded in 
memory or not, after the MEG experiment we asked the subjects to perform an unanticipated memory test. They 
were presented with 120 images, the 60 RSVP target images randomly mixed with 60 novel images (30 faces and 
30 scenes matched in terms of low level features and semantics with the target images), and were asked to report 
if they have seen the images during the experiment with 4 levels where 1 being a confidently novel image and 4 
being a confidently seen image.

MEG acquisition and preprocessing. MEG data was collected using a 306-channel Elekta Triux system 
with the sampling rate of 1000 Hz and a band-pass filter with cut-off frequencies of 0.03 and 330 Hz. We measured 
the head position prior to the MEG recording using 5 head position indicator coils attached to the subjects’ head. 
The head position was also recorded continuously during the experiment.

Maxfilter software was applied on the acquired MEG data for head movements compensation and denoising 
using spatiotemporal filters59,60. Then Brainstorm software61 was used to extract trials from 100 ms before to 
500 ms after target image onset and preprocess the data. We removed the baseline mean of each sensor and data 
was smoothed by a low-pass filter of 20 Hz. Trials with amplitude greater than 6000 fT (or fT/cm) were marked as 
bad trials. Eye blink/movement artifacts were detected using frontal sensor MEG data and then principal compo-
nent analysis was applied to remove these artifacts from the MEG data. The participants were asked to withhold 
their eye blinks and only blink when they provided delayed button press responses. Furthermore, a fixation cross 
was constantly displayed at the center of the screen to prevent eye movements. Given this experimental design, 
we only lost less than 5% of trials per subject due to these artifacts.

MEG multivariate pattern analysis. Sensor space. We analyzed MEG data using multivariate pattern 
analysis. To decode information of the task irrelevant target stimuli, a linear support vector machine (SVM, 
libsvm implementation62) was used as a classifier. In order to reduce computational load, the MEG trials of each 
condition were sub-averaged in groups of 5 with random assignment, resulting in N = 6 trials per condition. At 
each time point t of each trial, the MEG data was arranged in a vector of 306 elements. Then, for each pair of 
high or low memorability scene images (middle scenes in the RSVP sequence) and at each time point, the accu-
racy of SVM classifier was calculated using a leave-one-out procedure. The procedure of sub-averaging and then 
cross-validation was repeated for 100 times. The classifier accuracies were averaged over the repetitions separately 
for pairs of high or low memorability scene images.

Source space. To localize representational information on regions of interest (ROIs), we mapped MEG signals 
on cortical sources (based on Freesurfer automatic segmentation25 using default anatomy63) and performed mul-
tivariate pattern analysis on each ROI. We computed the forward model using an overlapping spheres model64 
and then using a dynamic statistical parametric mapping approach (dSPM) MEG signals were mapped on the 
cortex65. Time series from cortical sources within three regions of interest, namely, pericalcarine, inferior tempo-
ral and parietal area (concatenating inferior parietal and superior parietal) were derived66. We chose pericalcarine 
as a control region which processes low-level features. Because we controlled our stimulus set for these features 
(Tables S1 and S2), we expected no significant difference in decoding of MEG sources in this region. Since our 
stimuli are scene images containing objects of various categories (see Supplementary Information), we investi-
gated parietal cortex, known to be involved in scene perception47,48 and inferior temporal cortex, known to be 
involved in object category perception22,36,51. In each cortical region of interest, pattern vectors were created by 

https://doi.org/10.1038/s41598-019-42429-x
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concatenating ROI-specific source activation values, and then a similar multivariate pattern analysis was applied 
to the patterns of each ROI.

Temporal generalization with multivariate pattern analysis. To compare the stability of neu-
ral dynamics of high and low memorable images, we studied the temporal generalization of their representa-
tions22–24,67–69 by extending the SVM classification procedure. The SVM classifier trained at a given time point t 
was tested on data at all other time points. The classifier performance in discriminating signals can be generalized 
to time points with shared representations. This temporal generalization analysis was performed on every pair of 
images and for each subject. Then averaging within high (or low) memorable images and across subjects resulted 
in a 2D matrix where the x-axis corresponded to training time and y-axis to testing time.

Statistical inference. We used nonparametric statistical tests which do not assume any distributions on 
the data70,71 and has been widely used for MEG data statistical tests65,68,72–74. Our statistical inference on decoding 
time series and temporal generalization matrices were performed by permutation-based cluster-size inference 
(1000 permutations, 0.05 cluster definition threshold and 0.05 cluster threshold) with null hypothesis of 50% 
chance level. For difference of decoding time series we used 0 as chance level. We performed bootstrap tests to 
assess statistics for peak latency of time series. Specifically, we bootstrapped subject-specific time series for 1000 
times, each time we averaged the time series and found its peak latency, and finally using the empirical distribu-
tion of peak latencies we assessed the 95% confidence intervals.

Data Availability
The data and analysis tools used in the current study are available from the corresponding authors upon request.
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