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Development/Plasticity/Repair

Cross-Modal Plasticity in Higher-Order Auditory Cortex of
Congenitally Deaf Cats Does Not Limit Auditory
Responsiveness to Cochlear Implants
Rüdiger Land,1 Peter Baumhoff,1 Jochen Tillein,1,2 Stephen G. Lomber,3 Peter Hubka,1 and Andrej Kral1,4

1Institute of AudioNeuroTechnology and Department of Experimental Otology, Clinics of Otolaryngology, Hannover Medical School, Hannover 30625,
Germany, 2Clinics of Otolaryngology, School of Medicine, J.W. Goethe University 60590, Frankfurt am Main, Germany, 3Brain and Mind Institute and
Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C2, Canada, and 4School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas 75080

Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reor-
ganization may either compete with or complement the “original“ inputs to the deprived area after sensory restoration and can thus be either
adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behav-
ior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of “deaf” higher-
order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory
field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a
control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show
that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and
auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore,
cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered
cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned
postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally
(visually) reorganized higher-order auditory cortex remained auditory in congenital deafness.

Key words: cochlear implant; cross-modal plasticity; deaf white cat; deafness; deprivation; development

Introduction
Congenital sensory loss triggers cross-modal plasticity in the de-
prived sensory cortex (Rauschecker, 1995; Bavelier et al., 2006;

Stein and Stanford, 2008; Merabet and Pascual-Leone, 2010;
Stein et al., 2014). Cross-modal reorganization is likely related to
enhanced abilities in the remaining senses as best documented in
deaf individuals (Neville and Lawson, 1987; Levänen et al., 1998;
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Significance Statement

In a common view, the “unused” auditory cortex of deaf individuals is reorganized to a compensatory sensory function during
development. According to this view, cross-modal plasticity takes over the unused cortex and reassigns it to the remaining senses.
Therefore, cross-modal plasticity might conflict with restoration of auditory function with cochlear implants. It is unclear whether
the cross-modally reorganized auditory areas lose auditory responsiveness. We show that the presence of cross-modal plasticity in
a higher-order auditory area does not reduce auditory responsiveness of that area. Visual reorganization was moderate, spatially
scattered and there were no interactions between cross-modally reorganized visual and auditory inputs. These results indicate
that cross-modal reorganization is less detrimental for neurosensory restoration than previously thought.
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Bavelier and Neville, 2002; Bavelier et al., 2006; Auer et al., 2007;
Bottari et al., 2010, 2014).

A reorganization toward a new modality might interfere with
restoration of the original sensory input and thus could close
sensitive periods for the therapy, for example, with cochlear im-
plants (CIs) (Kral, 2007). This is related to a fundamental ques-
tion of developmental neuroscience: can experience cause a
sensory area to change the major driving modality and thus re-
structure the brain’s connectome extensively? A differential role
of auditory areas in cross-modal reorganization has been demon-
strated, with visual reorganization specific to higher-order audi-
tory fields in congenital deafness (Kral et al., 2003; Lomber et al.,
2010; Leonard et al., 2012). Although the primary auditory cortex
has been the focus of many studies (for review, see Kral and
Sharma, 2012), so far, no information is available on auditory
responsiveness of higher-order auditory fields in congenital deaf-
ness. Furthermore, it remains unclear whether cross-modal re-
sponses are evenly distributed within a reorganized field or if
reorganized neurons cluster spatially. To answer these questions,
the present study determined the auditory responsiveness and the
quantitative relation between visual responsiveness and original
auditory responsiveness in a secondary sensory area known to
take over a cross-modal behavioral function in deafness (Lomber
et al., 2010), the auditory dorsal zone (DZ). The investigation was
performed at the level of individual neurons using large-scale
microelectrode mapping.

The functional impact of cross-modal reorganization on the re-
stored auditory responsiveness using CIs on neuronal responses in
area DZ was compared between adult hearing cats (HCs) and con-
genitally deaf cats (CDCs). To allow large-scale mapping of the
whole field with multielectrode arrays, instead of searching the op-
timal stimulus (possible only in few neurons), we used stimuli likely
to evoke responses in the majority of neurons related to the given
modality and mapped the whole fields. We used an acute prepara-
tion, allowing us to separate reorganizations of bottom-up and lat-
eral interactions from other influences. We recorded responses to
both modalities at the same positions.

The present study demonstrates a modest visual cross-modal
reorganization and a dominance of auditory responsiveness in
the cross-modally reorganized DZ. The data do not indicate in-
terference between the reorganized and original modality and
show a substantial preservation of the original sensory inputs,
even after cross-modal reorganization, with an absence of bi-
modal interactions.

Materials and Methods
Animals. Experiments were performed in five adult congenitally deaf
white cats (Heid et al., 1998) and four adult hearing controls (�12
months of age, 7 female and 2 male). HCs had normal hearing with
click-evoked auditory brainstem response (ABR) thresholds �40 dB
SPLpe. CDCs had been identified from the colony of deaf white cats using
a hearing screening with ABRs within the first 4 weeks after birth (Heid et
al., 1998). HCs and CDCs lived in the same housing conditions. Experi-
ments were approved by the local state authorities of Lower Saxony
(LAVES, Oldenburg) and were performed in compliance with the guide-
lines of the European Community for the care and use of laboratory
animals (EU VD 86/609/EEC) and the German Animal Welfare Act
(TierSchG).

Surgical preparation and CIs. Animals were premedicated with 0.25 mg
of atropine intraperitoneally and then anesthetized with 24.5 mg/kg
ketamine hydrochloride (Ketavet; Parker-Davis) and 1 mg/kg xylazine
hydrochloride (Rompun 2%; Bayer). The animals were then tracheoto-
mized and artificially ventilated. During artificial ventilation, the anes-
thetic was switched to isoflurane (Lilly) and maintained throughout the

surgical procedures at 1.3–1.5 volume percentage isoflurane concentra-
tion in a 1:2 mixture of O2/N2O. Adequacy of anesthesia depth and the
animals’ physiological state was monitored by means of ECG, heart rate,
end-tidal CO2, muscle tone, and EEG signals. End-tidal CO2 was main-
tained at �4.5%. Core temperature was kept �37.5°C using a homeo-
thermic blanket. Physiological state was additionally monitored by
analyzing capillary blood every 12 h for blood gas concentration, pH,
bicarbonate concentration, base excess, glycemia, and oxygen saturation.
A modified Ringer’s solution containing bicarbonate (according to the
base excess) was infused intravenously. Each animal’s head was fixed in a
stereotactic holder (Horsley-Clarke).

We then retested the hearing status in all animals by measuring ABR.
For this purpose, a small trephination was drilled at the vertex and ABR
responses were recorded with an epidural silver-ball electrode (diameter
�1 mm) referenced to a silver-wire neck electrode. HCs had click re-
sponse thresholds �40 dB SPL. The absence of ABR responses in deaf
animals confirmed deafness as diagnosed during early hearing screening
soon after birth (Fig. 1A).

Stimulation was performed using feline CIs (MED-EL, custom-made,
five channels, distance between contacts 1 mm; Fig. 1) inserted bilaterally
through the round window into scalae tympani of both ears. This in-
volved exposing both bullae and ear canals. To prevent electrophony in
HCs, the hair cells were destroyed pharmacologically before cochlear
implantation. This was achieved by intracochlear instillation of 300 �l of
2.5% neomycin sulfate solution over a 5 min period and subsequent
rinsing using Ringer’s solution. The absence of hearing was subsequently
confirmed by the absence of ABRs (Fig. 1). To test the functionality of the
CIs and to determine the stimulation threshold, we then determined
electrical ABRs (eABRs; Fig. 1). eABR thresholds were measured between
the epidural silver electrode to a reference in the neck (amplification
100,000�, sixth-order band-pass filter 10 –10,000 Hz). Electrical brain-
stem responses were recorded for a biphasic pulse (200 �s/phase) at
different current levels with bipolar stimulation between all possible bi-
polar electrode contact combinations.

As in a previous study in a larger group of animals (Tillein et al., 2012),
the eABR thresholds were not different between HCs and CDCs [Fig. 1D,
HCs: left ear 154 � 43 �A; right ear: 139 � 28 �A; CDCs: left ear 161 �
79 �A; right ear 152 � 38 �A; Wilcoxon–Mann–Whitney (WMW) test,
� � 5%].

Recording of electrophysiological activity. For electrophysiological re-
cording, a trephination above the lateral (suprasylvian) sulcus was per-
formed, exposing the dorsal auditory cortex (DZ) on the lateral bank and
visual medial suprasylvian sulcus areas (anterior and posterior medial
suprasylvian sulcus areas, AMLS/PMLS, subsequently referred to jointly
as MLS; Fig. 2A). The dura was opened and the cortex surface was cov-
ered with silicone oil. A modified Davies chamber was positioned around
the trephination site to stabilize the cortex with a layer of agarose and a
closure was created melted bone wax after the electrode arrays were set in
place. Cortical activity was recorded with two linear 16 site multielec-
trode arrays for which the intersite distance was 150 �m, surface area 177
�m 2, impedance 1–2 �	 (NeuroNexus). The multielectrode arrays
were positioned and inserted using micromanipulators, which were at-
tached to the stereotactic frame (TSE Systems). The penetration angle
was kept constant throughout the experiment. At least one penetration in
each investigated area was stained using DiI (1,1
-dioctadecyl-3,3,3
,3
-
tetramethylindocarbocyanine perchlorate; Invitrogen) that was applied
to the noncontact side of the multielectrode array using a micropipette
(Eppendorf). An epidural vertex silver-ball electrode served as an electri-
cal reference for both multi electrode arrays. The recorded signals were
amplified 5000 –10,000 times with a Neuralynx amplifier, band-pass fil-
tered (1 Hz–9 kHz), digitized (at a sampling rate of 30 kHz), and stored
on a computer.

Mapping procedure and stimulation design. We mapped the dorsal au-
ditory cortex and visual areas along the medial part of the suprasylvian
sulcus in deaf and HCs (Fig. 1B). Multielectrode arrays were inserted on
both sides of the sulcus at a distance of �500 �m from the midline of the
sulcus, thus penetrating the dorsal auditory cortex and the two visual area
in MLS. With an intersite distance of 150 �m and the uppermost site
inserted just into the cortex, the tip of the electrode shank was inserted
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with a micromanipulator to a depth of �2400 �m (�100 �m) from the
cortical surface. The depth or position of the multielectrode array was not
changed after insertion to search for activity. At each penetration posi-
tion and after the closure of the modified Davies chamber with agarose
and bone wax, we allowed the multielectrode array to settle and stabilize
the recordings for 10 –20 min. Each block of sensory stimulation was
initiated by 15 min of recording of spontaneous activity and was con-
cluded by 15 min recording of spontaneous activity to exclude drifts of
the general state of the animals. This approach allowed us to ensure a
constant light anesthetic state. We paid attention to avoid deep anesthe-
sia with burst suppression to prevent possible abnormal heteromodal
responses in the cortex (Land et al., 2012). During the neuronal record-
ings, isoflurane concentration was reduced to 1.0 –1.2 volume per-
centage, and adequacy of anesthesia depth was monitored to ensure
comparable anesthesia levels and to avoid periods of burst suppression.

The number of spontaneously active sites was similar for HCs and
CDCs, with more spontaneous activity in the visual cortex than in the
auditory dorsal cortex in both groups (CDCs: 63 � 7% in DZ vs 84 � 6%
in MLS, WMW test, p � 0.03; HCs: 53 � 5% in DZ vs 75 � 11% in MLS;
WMW test, p � 0.029).

We analyzed and included all electrode sites in the statistics. In the text,
“position” refers to the penetration location in the cortex (Fig. 2B) and
“site” refers to electrode sites deep in the cortex, of which there were 16
for each electrode array. In total, we analyzed 1440 recording sites (720 in
the auditory and 720 in the visual cortex) in HCs and 1632 sites (816 in
the visual and 816 in the auditory cortex) in CDCs.

Sensory stimulation. eABR thresholds were determined at the begin-
ning of the experiment (Fig. 1). The eABR threshold of the respective ears
then was used as a reference current level. Electrical stimulation was wide
bipolar between the apical-most and the basal-most contact of the im-
plant, covering cochlear positions with characteristic frequencies �10
kHz (Kral et al., 2009).

Auditory stimulation. For intracortical recordings, pulses were pre-
sented binaurally, from 2 dB below to 6 dB above the eABR threshold in

1 dB steps for each ear. The electrical stimulus was a triplet of biphasic
pulses (200 �s/phase at 500 pulses/s, giving a total stimulation time of 4.4
ms) applied in bipolar configuration between the basal-most electrode
and the apical-most electrode of the CI. Pulse levels were randomized
and the interstimulus intervals were 1000 ms. Each electrical stimulus
was repeated 30 times.

Visual stimulation. Visual stimuli were generated in MATLAB (The
MathWorks) with the Psychophysics Toolbox (Brainard, 1997). Stimuli
were presented on a TFT display (Model 2009wt; Dell) at a 28 cm dis-
tance in front of the contralateral eye. In analogy to the electrical pulse,
we used a visual flash stimulus to study general visual responses. This
stimulus is simple and broadly activates neurons in the visual system,
both in the magnocellular and parvocellular subsystems. We presented
100 ms full-field flashes with positive contrast (white flash) or negative
contrast (black flash). Each type of flash was repeated 50 times with an
interstimulus interval of 1000 ms consisting of a gray background. Fur-
thermore, to include apparent movement into the stimulus, square-wave
phase reversal gratings of different orientations (0°, 45°, 90°, 135°) and
spatial frequencies (0.1–2.0 cycles/degree) were used for visual
stimulation.

Bimodal stimulation. To investigate interactions between the visual
and auditory responses, bimodal stimulation was used. Visual stimulus
(full-field flash, 16.7 ms duration, one frame, 60 Hz refresh rate) was
combined with auditory stimulation (triplet of biphasic pulses, 200 �s/
phase, 500 Hz) at 6 dB above threshold. The onset of the stimuli varied
across a range from �30 to 30 ms.

Histology. After the experiment, the animals were transcardially per-
fused. After thoracotomy, 0.5 ml of heparin (Liquemin; Hoffman-La
Roche) was injected into the left ventricle. Then, 2 L of phosphate buffer
(0.1 M, pH 7.4) and 2 L of fixative (2.5% glutaraldehyde and 2.0% form-
aldehyde) were infused transcardially with pressure �100 mmHg. After
24 h of postfixation in 4% formaldehyde, the brain was excised from the
skull, photographed, and a block containing the investigated cortical
areas was cryoprotected in 30% sucrose, frozen, and cut in frontal plane

Figure 1. Cochlear implants in HCs and CDCs. A, In HCs, acoustic stimulation generated evoked brainstem responses that disappeared after destruction of hair cells by intracochlear application of
neomycin. This treatment was required to eliminate electrophonic effects (see text for details). B, In CDCs, the conclusion of the juvenile hearing screening procedure was confirmed at the beginning
of the acute experiments by an absence of brainstem responses for stimulation at high sound pressure levels. C, Cochlear implants used for the present experiments were donated by MED-EL.
Stimulation was with apical-most and basal-most contact (5 mm distance) in wide bipolar configuration with charge-balanced biphasic pulses at 200 �s/phase. D, eABRs in HCs after implantation.
E, eABRs in CDCs after implantation. F, eABR thresholds (connected by the line) show no systematic difference in threshold between deaf and hearing animals or between the ears.
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in 50 �m sections using a cryotome (Leica). The sections were first pho-
tographed in fluorescence mode to reveal the DiI (Keyence, BZ-9000).
Subsequently, the sections were alternatively stained with Nissl and an-
tibodies against SMI 32 (Mellott et al., 2010), allowing us to identify the
borders of field A1, DZ, and lateral sulcus regions (LLS and MLS). All
stained sections were then digitized and the penetrations were recon-
structed (Keyence, BZ-9000). The DiI-stained penetrations were com-
bined with photographs of SMI-32-stained (same) sections.

Data analysis. Multiunits (MUs) were derived by band-pass filtering
the raw signal between 700 Hz and 9 kHz. First, we determined all spike
activity with amplitudes that exceeded a fixed threshold of 50 �V (am-
plifier noise level �15 �V), separating large spikes. A fixed spike thresh-
old was used to ensure comparability between groups and multiunit
firing rates. We additionally analyzed “continuous multiunit activity”
(cMUA), including the all spike amplitudes (also the so-called “hash”)
using the 700 Hz high-pass filtered, rectified, and squared signal without
thresholding. This signal was denoted as cMUA.

Analysis of ongoing activity. To derive ongoing multiunit rate from 15
min intervals before and after stimulation, for each site, we randomly
selected 100 intervals with a 1 s window length and calculated the mean
rate of these 100 intervals for all sites. We subsequently excluded sites if
firing rate was �0.1 Hz during the entire period (nonactive sites).

Analysis of responses. Sites in CDCs and HCs were defined as respon-
sive if neuronal activity was modulated by electrical stimulation via the
CI satisfying a fixed statistical criterion for all sites (DZ and PMLS). Mean
auditory responses were calculated for each of the 9 stimulation levels
(�2 dB to 6 dB above the eABR threshold). Response strength was de-
fined as the mean number of spikes in the interval 30 ms after stimulus
onset; that is, the time window when auditory responses occurred. Au-
ditory responses were ordered by stimulation level and the correlation

coefficient between response strength and stimulation level was deter-
mined. If the coefficient was significant ( p � 0.05) or if the unit signifi-
cantly responded above baseline in five of the nine stimulation levels
(two-sided t test against baseline activity, p � 0.05), then the site was
considered responsive to auditory input. For all responsive sites, the
response latency was defined as the peak of the response at 6 dB above
threshold. Visual responsiveness was considered as present in those neu-
rons that showed a significant increase in firing rate within the 60 ms after
the stimulus (� � 5%). Visually evoked activity was tested against base-
line multiunit activity before stimulus onset. Both rates were compared
with a two-sided t test ( p � 0.05) and, if found significant, were collected
as a response for further analysis. Response latency was defined as peak
latency.

Presence of bimodal enhancement was tested at those stimulus delays
where peak responses overlapped. Quantification was performed using
the enhancement index (EI) (Meredith and Stein, 1983)

E.I. �
VA � max�V, A

max�V, A

where VA is the firing rate with bimodal stimulation, V and A are the
firing rates of visual alone and auditory alone stimulation, respectively,
and max denotes the maximum function. To determine the additive or
superadditive character of bimodal responses, the additive index (AI)
was also used (King and Palmer, 1985)

A.I. �
VA � �V � A

V � A

If not stated otherwise, all data are presented in the form of mean � SD.
Data from animals were not pooled, statistical comparisons were per-

Figure 2. Mapping of auditory and visual areas in CDCs and HCs. A, Lateral view of the brain of an adult CDC after the study. The dashed rectangle depicts the region of interest. Scale on the top
of the brain: one division �1 mm. B, Surface of the depicted brain in A during the experiment. We studied the auditory DZ and lateral visual areas, which are located on either side of the suprasylvian
sulcus. Sixteen-site multielectrode axial arrays were inserted along both sides within 1 mm of the middle suprasylvian sulcus in the rostrocaudal direction between the posterior ectosylvian sulcus
(PES) and anterior ectosylvian sulcus (AES). Penetrations in the dorsal auditory cortex and the visual medial side of the suprasylvian sulcus are marked by white crosses; simultaneously recorded pairs
are connected by a dashed white line. C, Coronal section of the investigated region after the experiment stained with SMI-32 to confirm histologically the position of penetrations within the intended
cortical areas. Dotted lines (green) denote penetrations of the multielectrode arrays. In the DZ penetration, the red color within the circle is the overlay of the DiI deposit from the multielectrode array
used to reconstruct the position and direction of the penetration photographed in the same section before SMI staining. D, Overview of all positions of penetrations in the dorsal auditory cortex and
visual MLS in adult CDCs (n � 5) and adult HCs (n � 4) arranged along a straightened suprasylvian sulcus (dashed black line) relative to the position of the PES. Different colors denote different cats.
L, lateral; M, medial; D, dorsal; V, ventral; PLLS, posterior lateral suprasylvian sulcus area; SSS, suprasylvian sulcus.
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formed at the animal level (5 CDCs vs 4 HCs). We used a nonparametric
two-tailed WMW test with 5% significance level to compare data be-
tween cortical areas and between HCs and CDCs.

Results
The present study investigates the sensory function of a
higher-order auditory area (DZ) in adult CDCs. Cooling in-
activation of this area previously demonstrated a causal rela-
tion to supranormal visual behavior in CDCs (Lomber et al.,
2010). Here, neuronal responses were collected simultane-
ously with two DiI-stained single-shank multielectrode arrays
(16-channel) inserted to cover all cortical layers in DZ and the
visual fields in the middle suprasylvian region (MLS; Palmer et
al., 1978; Fig. 2). In total, we analyzed 1632 sites in CDCs
(nvisual � 816 and nauditory � 816) and 1440 recording sites in
HCs (nvisual � 720 and nauditory � 720).

Visual reorganization of the dorsal auditory cortex of CDCs
Visual stimuli allowing standardized large-scale mapping of
cortical areas with multielectrode arrays (flashes and phase-
reversal gratings) were presented using a screen covering the
frontal visual field.

Statistical significance of visual responsiveness was deter-
mined by comparing prestimulus and poststimulus firing rate.
Visual responsiveness did not differ between flashes and gratings.
Because flashes represented a stimulus better corresponding to
the auditory stimulus, in the following, we focused on the re-
sponses to flash stimuli. From all responsive sites, mean time
histograms were computed (Fig. 3A,B). Response to the visual
flash showed prominent ON and OFF response typical for vis-
ual areas. A distinct difference between CDCs and HCs in visual
responsiveness was only found in DZ (Fig. 3A), where CDCs

Figure 3. Visual responses in the dorsal auditory cortex of CDCs. A, Comparison of visual responses in the auditory DZ of CDCs and HCs. Shown are mean poststimulus time histograms with SEM
error bars. Only deaf animals showed a visual response in DZ. B, Comparison of visual responses in the visual areas reveals no differences between congenital deaf and HCs. Onset and offset responses
for the flashes are visible both in MLS and in DZ. Shown are mean poststimulus time histograms with SEM error bars. Similar visual responsiveness was observed in the visual areas of CDCs and HCs.
C, Comparison of peak latencies of the visual responses in the dorsal auditory cortex and visual areas. Tukey boxplots show the median with 1.5 interquartile range whiskers. Deaf DZ responses had
a slightly longer response latency. D, Visually evoked firing rates in DZ were significantly higher in CDCs than in HCs. Firing rates were significantly higher in the MLS fields compared with DZ in HCs,
but not in CDCs. Plots denote mean � SD error bars. E, Number of visually responsive sites was significantly higher in the dorsal auditory cortex of CDCs than in HCs. Plots denote mean with SD error
bars. F, Responsiveness to flashes arranged along the straightened lateral sulcus (dashed line) in deaf and HCs (left vs right) relative to the dorsal end of the posterior ectosylvian sulcus (distance �
0 mm). Number of responsive sites per shank is depicted by the size of the rectangles and nonresponsive sites by small dots; animals are coded by color. Size-count examples are shown on the left
side of the plot.
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exhibited visual responses, whereas HCs did not. In contrast, the
visual areas showed similar visual responses in CDCs and HCs
(Fig. 3B). This demonstrates a dissociation of the effect of con-
genital deafness on MLS neurons and DZ neurons.

The latencies of visual responses in the “deaf” DZ were higher
than response latencies in the MLS, the control visual area (Fig.
3C, CDCDZ � 41: median 35 ms with median absolute deviation,
MAD, of 7.6 ms; CDCsMLS�165: median 30 ms with MAD 7.3 ms;
HCMLS�184: median 30 ms with MAD 11.2 ms; WMW test, p �
0.005). The visual evoked firing rates in the deaf DZ were lower
than the rates in the visual areas, but differed significantly
from activity in the HCs, where no detectable evoked re-
sponses were present (Fig. 3D, CDCDZ�41: 1.1 � 1.6 spikes/
stimulus; HCDZ�9: 0.2 � 0.2 spikes/stimulus; WMW test, p �
0.007). In contrast, in the visual cortex, latency and firing
rate of responses did not differ significantly (Fig. 3C,D,
CDCMLS�165: 2.4 � 2.9 spikes/stimulus; HCMLS�184: 2.4 � 3.0
spikes/stimulus, WMW test, p � 0.37) and the latencies cor-
responded to those observed in MLS previously (Dinse and
Krüger, 1994; Nowak and Bullier, 1997).

We found a moderate number of visually responsive record-
ing sites in DZ of CDCs (Fig. 3E; CDC:5.1 � 3.0%; HC:1.3 �
0.9%; WMW test, p � 0.03; for higher responsiveness with units
with smaller amplitude, see below). Whereas visual responsive-
ness in DZ was thus emphasized in CDCs, visual responsiveness
in the visual cortex was similar to that in HCs (Fig. 3E, CDC:24 �
13%; HC:26 � 10%; WMW test, p � 0.85). The overall number
of DZ units responsive to visual stimulation in CDCs constituted
�20% of visually responsive units in the visual areas. Together,
these results demonstrate cross-modal reorganization in field DZ
of CDCs, a possible correlate of previous behavioral observations
(Lomber et al., 2010).

The position of visually responsive sites across the “deaf” au-
ditory cortex did not show a systematic gradient (Fig. 3F). Visual
responses in the deaf animals were sparsely distributed in the
dorsal auditory cortex, whereas, in the visual cortex, visual re-
sponses were abundant both in CDCs and HCs (Fig. 3F).

In total, the absence of a difference in visual responsiveness in
the control visual areas (MLS) between the investigated groups
demonstrate that the general state of the animals was comparable
between the two groups and cannot account for the difference in
DZ responsiveness. Therefore, the difference in visual respon-
siveness in field DZ between HCs and CDCs was the result of the
different hearing experience.

Preserved auditory responsiveness in DZ
To activate the auditory system and test auditory responsiveness,
we used electrical stimulation with CIs in both groups of animals
(Fig. 1). Implantation was performed acutely during the final
experiments: none of the animals had previous experience with
the electrical stimulation. However, HCs had normal hearing and
their auditory system developed under the influence of hearing.
Electrical “hearing thresholds” were quantified by eABRs (Fig. 1).
For comparability, we also stimulated HCs with CIs (Fig. 1). Their
hair cells were destroyed pharmacologically before implantation to
prevent electrophonic responses.

The responsiveness to the auditory stimulus was again deter-
mined statistically and mean poststimulus time histograms were
computed from responsive sites (Fig. 4A,B). CI-evoked re-
sponses were found in DZ of both CDCs and HCs (Fig. 4A,B).
CDCs had slightly shorter auditory response latencies than
HCs (Fig. 4C, CDCDZ�149: median 11 ms with MAD 3.7 ms and
HCDZ�113 median 12 ms with MAD 3.6 ms; WMW test, p �

0.03), indicating a change in the response properties in the deaf
DZ compared with HCs. CI-evoked firing rates in DZ of CDCs
and HCs did not differ significantly (Fig. 4D; CDCDZ�149: 0.69 �
0.7 spikes/stimulus; HCDZ�113: 0.64 � 0.65 spikes/stimulus;
WMW test, p � 0.74). We found no significant differences in the
number of responsive sites in DZ between groups (Fig. 4E, CD-
CDZ�149: 20 � 9%; HCDZ�113: 16 � 7%; WMW test, p � 0.38).
Auditory responsive sites were thus similarly present throughout
the entire field DZ in both groups of animals (Fig. 4F); however,
there was a tendency toward cluttering in the rostral part.

Both in HCs and CDCs, our selection criterion identified sites
in the visual cortex as being auditory responsive. However, these
were chance-level selections as a consequence of the automatic
statistical criterion because poststimulus time histograms in the
responsive sites did not reveal a response (Fig. 4B,F).

The results demonstrate that field DZ preserves its auditory
responsiveness after congenital deafness despite cross-modal re-
organization. The data show a dissociation of the effects of deaf-
ness on visual and auditory responsiveness in field DZ, with an
increase in visual responsiveness in deaf DZ and no effect in MLS
and similar auditory responsiveness in both investigated fields
and both groups of animals, but moderate differences in the
properties of the responses between deaf and hearing DZ (re-
sponse latency).

Auditory responsiveness in DZ was similar in CDCs and HCs,
with CDCs differing from HCs in the additional presence of vi-
sual responses. To exclude an influence of our spike selection
criterion (large units), we additionally included an analysis of all
units by analyzing the 700 Hz high-pass-filtered squared signal
without thresholding (cMUA), including also small units.

With cMUA, the incidence of visual responses in DZ increased
substantially, but the difference between the groups remained
(Fig. 5A, CDC: 17 � 4%, HC: 5 � 1%; Mann–Whitney test, p �
0.03). Also for cMUA, auditory responsive sites in the visually
reorganized deaf DZ exceeded visually responsive neurons (Fig.
5B, cMUA: auditory: 48 � 23%, visual: 17 � 9%; MU: auditory:
20 � 9%, visual: 5.1 � 4%). Therefore, whereas the sensitivity of
both measures differed, the auditory-responsive sites remained
more frequent than visually responsive sites, so this observation
was not due to the previous spike selection criterion (Fig. 5C).

Absence of bimodal interactions
Notably, only 1.4% (n � 12) of all recorded sites in DZ of CDCs
responded to both auditory and visual stimuli (i.e., were classified
as bimodal units). We computed the bimodal EI for those stim-
ulus timings where peak unimodal responses would overlap. The
EI was between �20% and 20% in 10 of 12 units with a mean of
�10 � 18 (n � 12). The bimodal AI was in most cases negative
with a mean of �20 � 15 (n � 12), indicating a subadditive
character of the interactions. However, it should be kept in mind
that these bimodal units represented only a negligible number of
the total sites recorded and had rather weak responses.

In addition, we tested possible interactions of bimodal stimuli
on firing rates within the visually reorganized deaf DZ in a more
general approach. Because visual and auditory responses had dif-
ferent latencies and bimodal interactions depend on the timing
between stimuli, visual and auditory stimuli were presented at
different time delays relative to each other. In doing so, we mea-
sured bimodal interactions and responsiveness as a function of
different time delays of bimodal stimuli. Provided a true modu-
lation of one response by the other modality was present, a dis-
tinct peak in the responsiveness for certain time delays should
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show up in this analysis. We inspected each site and then pooled
the units to compare the mean results statistically.

First, we tested auditory neurons in the deaf DZ that did not
respond to visual stimulation alone. These might respond to a
combination of visual and auditory input. For the auditory-
responsive units, the auditory stimulus was kept constant at 6 dB
above threshold and the visual flash (16.7 ms duration) was
shifted in time relative to the auditory stimulus. The visual stim-
ulus did not influence auditory responsiveness in the set of purely
auditory-responsive units in the deaf DZ (n � 100 with response
rate �0.3 spikes/stimulus). We computed the average for each cat
and then tested the modulation by time delay (Fig. 5D, n � 5
CDCs, comparing modulation of average responses for each cat,
ANOVA, F(15,64) � 0.09, p � 1). Subsequently, we compared
nonresponding neurons (n � 670 with response rate �0.3 spikes/

stimulus). Bimodal interactions might take place at subcortical
levels and neurons that do not respond to a single condition may
respond to a combination of stimuli. This was also not the case
(Fig. 5E, n � 5 CDCs, comparing modulation of average re-
sponses of each cat, ANOVA, F(15,64) � 0.82, p � 0.64). In HC,
firing rates exhibited no relations to visual onset (data not
shown). The last group comprised visually responsive neurons in
the deaf DZ. Due to the presence of the electrical artifact from the
CI stimulation, several stimulus time delays could not be tested
because some units were lost due to blanking. In the remaining
delays, a temporal shift of the auditory stimulus relative to the
visual stimulus did not reveal any significant influence of the
auditory stimulus on the visual response (Fig. 5F; n � 5 CDCs,
comparing modulation of average responses of each cat,
ANOVA, F(3,16) � 0.04, p � 0.98). Therefore, the set of auditory-

Figure 4. CI eABRs in CDCs and HCs. A, Comparison of responses to CI stimulation in DZ of CDCs and HCs. Poststimulus time histograms show mean responses with SEM error bars for responsive
sites at 6 dB above eABR thresholds in the deaf animals. B, Visual areas in MLS did not respond to CI stimulation. C, Comparison of latencies of responsive sites in CDCs and HCs. Tukey boxplots show
the median with 1.5 interquartile range whiskers. D, Response rates were similar in CDCs and HCs in all investigated fields. Plots denote mean with SD error bars. E, Number of auditory-responsive
sites was significantly higher in the auditory dorsal cortex than in the visual MLS region. Plots denote mean with SD error bars. F, Responsiveness to flashes arranged along the straightened lateral
sulcus (dashed line) in CDCs and HCs (left vs right) relative to the dorsal end of the posterior ectosylvian sulcus (distance � 0 mm). Number of responsive sites is depicted by the size of the rectangles
and nonresponsive sites by dots; animals are coded by color. Size-count examples are shown on the left side of the plot.
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responsive sites and the set of visually responsive sites in the
dorsal auditory cortex seem to be essentially distinct without in-
teractions between sensory inputs when tested with electrical
stimuli in the auditory domain.

Discussion
The present data demonstrate cross-modal reorganization in the
secondary auditory field of CDCs, a possible correlate of previous
behavioral observations. The cross-modal visual reorganization,
however, did not reduce auditory responsiveness substantially
even after long-term congenital deafness (�1 year). Cross-
modally responsive units were sparsely distributed in DZ and
were approximately three times less frequent than auditory re-
sponsive units. The few units with audiovisual responses did not
show bimodal enhancement.

The comprehensive mapping of auditory and visual fields
demonstrated a dissociation of deprivation effects between the
areas and sensory inputs: the higher-order auditory cortex devel-
oped visual responsiveness in CDCs. In contrast, there was no
effect of lifelong auditory deprivation on the adjacent visual cor-
tex. The data thus demonstrate a dissociation of the effect of
deafness on responsiveness of auditory and visual areas.

Although cross-modal reorganization is well documented
(Rauschecker, 1995; Bavelier et al., 2006; Auer et al., 2007; Mera-
bet and Pascual-Leone, 2010; Ding et al., 2015) and related to
enhanced abilities in the remaining senses in deaf individuals
(Neville and Lawson, 1987; Levänen et al., 1998; Bavelier et al.,
2006; Bottari et al., 2014; Stein et al., 2014), the original function
of the reorganized neural tissue has not been explored before at
the level of neurons. The absence of adverse effects of cross-

modal reorganization on auditory responsiveness has implica-
tions for visual communication before cochlear implantation in
children born deaf.

Methodological considerations
The cross-modally reorganized DZ is known to be involved in
visual motion detection (Lomber et al., 2010). Here, we used
flashes and phase-reversal gratings known to evoke strong re-
sponses in motion-sensitive and pattern-sensitive neurons (Kral
et al., 2003). Strong responsiveness with such stimuli in neigh-
boring motion-sensitive visual areas confirmed their effective-
ness in driving the neurons (cf. Dinse and Krüger, 1994; Nowak
and Bullier, 1997). The responsiveness to grating and flashes was
similar. Although we cannot exclude that a more specific visual
stimulus could have caused stronger visual responsiveness in
field DZ, this argument can never be disproven. The present
standardized approach is optimal for large-scale mapping
purposes. Furthermore, the flash stimulus is a good visual
correlate of the wide bipolar electrical stimulus used for audi-
tory stimulation, allowing direct comparison of the inter-
modal balance in responsiveness.

We did not investigate the detailed functional properties of CI
responses. The present study, as a first step, focused on respon-
siveness; more detailed future studies might reveal further differ-
ences in auditory properties of deaf DZ beyond the latency
differences observed here. Here, the deaf brains were untrained,
completely naive to auditory stimuli, and still stronger auditory
than visual responsiveness was observed in their field DZ. Hear-
ing experience with CI would likely further increase the auditory

Figure 5. Absence of bimodal responses in the visually reorganized deaf DZ. A, cMUA responses (including all spikes) also reveal differences in visually responsive sites in the dorsal auditory cortex
between CDCs and HCs. Plots denote mean with SD error bars. B, Direct comparison of auditory and visual responses in the deaf auditory cortex. Responsiveness of the visually reorganized dorsal
auditory cortex of CDCs showed more auditory-responsive sites than visually responsive sites. Plots denote mean with SD error bars. C, Comparison of ratio between auditory responsive and visually
responsive sites for MUA and cMUA. D, Responsiveness to auditory stimulation was not affected by visual stimulation at different onset asynchronies. Plots denote mean with SD error bars. E,
Responsiveness of visual response was not affected by auditory stimulation at different onset asynchronies. Plots denote mean with SD error bars. F, Nonresponsive sites were not affected by
different stimulus asynchronies. Plots denote mean with SD error bars.
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responsiveness in DZ, as demonstrated in field A1 (Klinke et al.,
1999; Kral et al., 2006, 2013).

Bimodal supraadditive interactions follow the law of inverse
effectiveness (Stein and Stanford, 2008). With respect to bimodal
interactions, the small dynamic range with electrical stimulation
is thus a limiting factor. However, because the present study even
did not observe additive interactions, this small dynamic range
cannot explain the absence of bimodal interactions.

Cross-modal reorganization in congenital deafness
Cross-modal reorganization in DZ corresponds to data from hu-
mans (Finney et al., 2001, 2003; Bavelier et al., 2006). Ectopic
subcortical and lateral projections into DZ (from the adjacent
MLS, area 7, and areas 19/20/21) are present in CDCs (Barone et
al., 2013). Cross-modal visual responses in the deaf DZ had la-
tencies slightly longer than responses in the adjacent MLS
(Palmer et al., 1978), consistent with a direct connection from
MLS to the deaf DZ in CDCs. Visually responsive sites in the deaf
DZ were moderate in number and accounted for �30% of the
auditory-responsive sites. The present findings are thus consis-
tent with the perceptual-narrowing hypothesis (Ghazanfar and
Schroeder, 2006; Lewkowicz, 2014; Maurer and Werker, 2014)
because such sparse responsiveness may result from patchy exu-
berant connections that appear developmentally and are nor-
mally pruned during postnatal life (Innocenti and Price, 2005;
Innocenti, 2011).

Here, we have provided data for visual flash stimulation be-
cause this stimulus is independent of the receptive field and
other properties of the individual neuron. With regard to the
moderate 5% or 17% of visually responsive sites in the cross-
modally reorganized cortex (compared with 25% or 60% of
auditory-responsive sites), it needs to be emphasized that it is not
clear what minimal amount of cross-modal reorganization is
necessary to enhance performance. Distributed attentional and
top-down modulations are likely to complement (boost) the
cross-modal responsiveness described here. Conflicting findings
in the direction of change of sensory capabilities in blind or deaf
individuals, which can range from an increase to a decrease (Pa-
vani and Bottari, 2012), indicate that cortical cross-modal reor-
ganization may be variable depending on a given individual’s
(top-down) compensation strategy.

Auditory activation of the secondary auditory cortex
in deafness
The deaf DZ remained responsive to the auditory input. The
auditory responsiveness was not different from HC, demonstrat-
ing that the secondary auditory cortex develops its basic func-
tional responsiveness even in absence of any hearing. This
corresponds to persistence of basic functionality within the de-
prived sense of congenitally sensory-deprived humans (Colli-
gnon et al., 2009; Leonard et al., 2012; Striem-Amit et al., 2012a,
2012b; Cardin et al., 2013, 2016; Gandhi et al., 2015). The present
study provides the physiological substrate of this phenomenon.
Supporting this, sighted and congenitally blind subjects show
specificity for motion or object form in the occipital cortex re-
gardless of input modality, even in absence of visual experience
(Voss and Zatorre, 2012; Peelen et al., 2014).

Some studies have reported negative interference from visual
inputs for auditory processing in deaf subjects (Doucet et al.,
2006; Buckley and Tobey, 2011; Sandmann et al., 2012; Chen et
al., 2016). Conversely, beneficial cross-modal effects for speech
understanding have been reported, mainly in the postlingually
deaf (Giraud et al., 2000; Rouger et al., 2007; Stropahl et al.,

2015). These latter studies, however, investigated postlingually
deafened groups, whereas the present study investigated the con-
genitally deaf.

The increase in visual responsiveness in the present study was
not related quantitatively to a similar decrease in auditory re-
sponsiveness. Therefore, units that were visually responsive were
not strongly coupled to the auditory system. We did not find
bimodal interactions in the deaf DZ. In cats, visual deprivation
interferes with development of multimodal integration (Wallace
et al., 2004, 2006; Carriere et al., 2007, 2008). The absence of
vision during development interferes with the development of
multimodal interactions in the superior colliculus, but less with
visual responsiveness (Yu et al., 2013; Stein et al., 2014). Even
rearing under omnidirectional noise has a similar effect (Xu et al.,
2014). Furthermore, early visual deprivation has detrimental ef-
fects on multimodal integration in association area 7 (adjoining
the MLS areas; Carlson et al., 1987). A loss of bimodal interac-
tions and a dominance of visual inputs have been documented in
prelingually deaf children after cochlear implantation (Schorr et
al., 2005). Moreover, congenital cataracts prevented audiovisual
integration in humans (Guerreiro et al., 2015). The absence of
bimodal interactions in the present study is explicable by the
absence of early auditory experience that is essential for develop-
ment of audiovisual interactions.

Visual recruitment of higher-order auditory areas might close
the sensitive periods for therapy of deafness (Kral, 2007; Lomber
et al., 2010). Even though some neurons took over visual func-
tions and were auditory nonresponsive in the present study, the
general auditory responsiveness was not affected significantly.
Therefore, the major limiting factors after sensitive periods ap-
pear to be the developmentally reduced plasticity and central
processing deficits within the auditory modality itself (Kral et al.,
2002, 2009, 2013; Fallon et al., 2009). It needs to be emphasized
that absence of a difference in auditory DZ responsiveness in the
present study does not demonstrate the absence of functional
auditory deficits. Such deficits have been described numerous
times in the auditory system (for review, see Kral, 2013) and are
likely also present in the dorsal auditory cortex. The present
study, however, did focus only on responsiveness and its balance
between visual and auditory stimulation.

Bimodal training has improved auditory spatial localization
and changed auditory responses in field A1 of deaf ferrets
equipped with CIs (Isaiah et al., 2014). This demonstrates that
after focused training bimodal processing can become beneficial
for some (but maybe not all, see Schorr et al., 2005; Guerreiro et
al., 2015) functions after restoration of hearing, probably via top-
down influences from the frontal cortex (Isaiah et al., 2014). The
present data are consistent with these findings.

The present study has an important translational aspect.
Communication before cochlear implantation in deaf children is
an important predictive factor of implantation outcomes (Tait et
al., 2000). Some argue that deaf children should communicate via
enhanced focus on visual input (cued speech or sign language)
before cochlear implantation (Lyness et al., 2013; Campbell et al.,
2014; Mellon et al., 2015). However, many clinicians are con-
cerned with potential negative interactions between modalities
(Geers et al., 2011; Mellon et al., 2015). Indeed, the cross-modally
reorganized units in the present study did not respond to audi-
tory stimulation. However, they represented only a minor por-
tion of neurons in DZ. Consequently, the present data disprove
that cross-modal reorganization eliminates functional auditory
inputs to the higher-order dorsal auditory cortex.
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