
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-22-2012 12:00 AM

Generating Log File Analyzers Generating Log File Analyzers

Ilse Leal Aulenbacher, The University of Western Ontario

Supervisor: James H. Andrews, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Ilse Leal Aulenbacher 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Leal Aulenbacher, Ilse, "Generating Log File Analyzers" (2012). Electronic Thesis and Dissertation
Repository. 780.
https://ir.lib.uwo.ca/etd/780

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/780?utm_source=ir.lib.uwo.ca%2Fetd%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

GENERATING LOG FILE ANALYZERS

(Spine Title: Generating Log File Analyzers)

(Thesis Format: Monograph)

by

Ilse Leal Aulenbacher

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario
July, 2012

c© Ilse Leal Aulenbacher 2012

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

James H. Andrews Dr. Lucian Ilie

Supervisory Committee Dr. Marc Moreno Maza

Dr. Jagath Samarabandu

The thesis by
Ilse Leal Aulenbacher

entitled

GENERATING LOG FILE ANALYZERS

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date Chair of Thesis Examining Board

ii

Abstract

Software testing is a crucial part of the software development process, because it
helps developers ensure that the software works correctly and according to stakehold-
ers’ requirements and specifications. Faulty or problematic software can cause huge
financial losses. Automation of testing tasks can have a positive impact on software
development, by reducing costs and minimizing human error. Software testing can be
divided into three tasks: choosing test cases, running test cases on the software under
test (SUT) and evaluating the test results. To evaluate test results, testers need to
examine the output of the SUT to determine if it performed as expected. Programs
often store some of their outputs in files known as log files. The task of evaluating
test results can be automated by using a log file analyzer. The main goal of this thesis
is to design an approach to generate log file analyzers based on a set of state machine
specifications. Our analyzers are generated in C++ and are capable of reading log
files from disk or shared memory areas. Regular expressions have been incorporated,
so that analyzers can be adapted to different logging policies. We analyze the purpose
and benefits of this framework and discuss differences with a previous implementation
based on Prolog. In particular, we discuss the results of a series of experiments that
we performed in order to compare the performance between Prolog–based analyzers
and C++ analyzers. Our results show that C++ analyzers are between 8 and 15
times faster than Prolog–based analyzers.

Keywords: Software Testing, Test Oracles, Log File Analysis

iii

Acknowledgments

I would like to thank Dr. Jamie Andrews for his support, guidance and patience.
Professor, thank you for believing in me and for giving me the opportunity to learn
so much from you. It has been an honor and a privilege to work with you.

I would like to acknowledge the financial support of the National Council of Sci-
ence and Technology in Mexico (Consejo Nacional de Ciencia y Tecnoloǵıa) and the
Institute of Electrical Research in Mexico (Instituto de Investigaciones Eléctricas).

I would like to thank the Department of Computer Science and its wonderful faculty
and staff for their support and teachings.

To my beloved husband, Andrés Ayala Garćıa, thank you for loving, inspiring and
supporting me each step of the way.

There are not enough words to express my gratitude to my parents, who made a lot
of sacrifices so that I could get a good education and fulfill my dreams.

I would like to honor my late grandparents Margarita de Leal, Juanito Leal, Ilse de
Aulenbacher and Carlos Aulenbacher. Your example has inpired me all of my life. I
love you all so much.

My dear Opa Carlos, you passed away this year while I was writing this thesis. I
know you are now in heaven with our beloved Oma. Thank you for sharing so many
things with me and for being my mentor and friend. You will always be in my heart.
Mein lieber Opa, ich vermisse dich.

Finally, I would like to thank all of my family and friends in Mexico and Canada.
Thank you for your help, kind words and for being there for me.

iv

Table of Contents

Certificate of Examination ii

Table of Contents v

List of Figures ix

1 Introduction 1

1.1 Test oracles . 2

1.2 Log files and logging policies . 3

1.2.1 Log files and shared memory areas 3

1.3 Log File Analyzers . 4

1.4 Thesis focus . 6

1.5 Thesis organization . 6

2 Related Work 8

2.1 Analysis of server logs . 8

2.2 Test oracles . 9

2.2.1 The oracle assumption . 10

v

2.2.2 Deriving oracles . 11

2.2.3 Deriving oracles automatically 12

2.3 Generating log file analyzers . 13

2.3.1 Log files . 13

2.3.2 Expected program behavior 14

2.3.3 Log File Analyzers . 15

2.3.4 Log File Analysis Language 16

2.3.5 Log file analyzer generation 17

2.4 Other related work . 18

3 The Log File Analyzer Generator 19

3.1 The LFAL 2.0 specification . 20

3.1.1 The elements of an LFAL 2.0 program 20

3.1.2 New features in the LFAL 2 language 22

3.2 Scanning and Parsing LFAL 2.0 . 23

3.2.1 Lexical Analysis . 23

3.2.2 Syntax Analysis . 23

3.3 The log file analyzer generator . 24

3.3.1 Base libraries . 24

3.3.2 Machine Classes . 25

3.3.3 The Log File Analyzer Program 26

3.4 Analyzing log files . 27

vi

4 New Features in Analyzers 37

4.1 C++ Analyzers . 37

4.2 Pattern definitions . 38

4.3 Dynamic and static analyzer machines 41

4.3.1 Static analyzer machines . 41

4.3.2 Dynamic analyzer machines 44

4.4 New types of actions in transitions 46

4.4.1 “Error” transitions . 46

4.4.2 “Ignore” and “stay” transitions 47

4.4.3 “Doing” transitions . 50

4.5 Data declarations . 50

4.6 Shared memory integration . 52

5 Evaluating the Performance of Log File Analyzers 55

5.1 Performance experiments for LFAL 1.0 and LFAL 2.0 56

5.1.1 Experiment design . 57

5.1.2 The LFAL 1.0 BG/L Analyzer 59

5.1.3 The LFAL 2.0 BG/L Analyzer 63

5.1.4 Results . 66

5.2 Performance experiments for shared memory analyzers 68

5.2.1 Reading from disk . 70

5.2.2 Reading from memory . 71

vii

5.2.3 Results . 72

5.3 Logging overhead in disk versus memory 73

5.3.1 Results . 74

5.4 An example temporal filter analyzer 76

6 Conclusion 81

6.1 Conclusion . 81

6.2 Future work . 84

Vita 89

viii

List of Figures

2.1 A simple log file by Andrews [15] . 14

2.2 Analyzer machines for the elevator controller by Andrews [15] 16

2.3 An example of a LFAL specification by Andrews [15] 17

3.1 Log File Analyzer Generation Process 32

3.2 A simple example of a LFAL 2.0 program 33

3.3 The original LFAL specification, by Andrews [15] 33

3.4 The LFAL 2.0 specification, part 1 34

3.5 The LFAL 2.0 specification, part2 . 35

3.6 An LFAL 2.0 program with two machine classes 36

4.1 A pattern definition . 39

4.2 An example of a static machine . 42

4.3 An example log file . 43

4.4 An example of a dynamic machine 44

4.5 Data declarations . 51

ix

4.6 A log file in a shared memory area (SmaLog). In this example, a log
file is being written by two processes. At the same time, a log file
analyzer is accessing the log file in shared memory. 53

5.1 The four log patterns used in our experiments. The name of the pat-
terns (bold underlined) are followed by a corresponding regular expres-
sion (bold). Below each pattern, a sample log entry from the BG/L
log file. 59

5.2 The bgl01 analyzer in LFAL 1.0. This analyzer matches and counts
one pattern. 60

5.3 The bgl02 analyzer in LFAL 1.0. This analyzer matches and counts
two patterns. 60

5.4 The bgl03 analyzer in LFAL 1.0. This analyzer matches and counts
three patterns. 61

5.5 The bgl04 analyzer in LFAL 1.0. This analyzer matches and counts
four patterns. 62

5.6 The CPU user time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y
axis represents the number of milliseconds of user CPU time it took
on average to run the analyzer. 63

5.7 The CPU system time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y
axis represents the number of milliseconds of system CPU time it took
on average to run the analyzer. 64

5.8 The bgl04 analyzer in LFAL 2.0. This analyzer matches and counts
four patterns. 65

5.9 The CPU user time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y
axis represents the number of milliseconds of user CPU time it took
on average to run the analyzer. 66

x

5.10 The CPU system time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y
axis represents the number of milliseconds of system CPU time it took
on average to run the analyzer. 67

5.11 The CPU user time ratio between LFAL 1.0 and LFAL 2.0 for bgl01,
bgl02, bgl03 and bgl04. The x axis represents the percentage of the
log file that was analyzed and the y axis represents the LFAL1:LFAL2

ratio. 68

5.12 The CPU system time ratio between LFAL 1.0 and LFAL 2.0 for bgl01,
bgl02, bgl03 and bgl04. The x axis represents the percentage of the
log file that was analyzed and the y axis represents the LFAL1:LFAL2

ratio. 69

5.13 A sample program that illustrates how to create a log file in a shared
memory area using LFAL 2.0’s base libraries. 78

5.14 A table that summarizes the results of our experiment to compare
the performance of analyzers that read the BG/L log file from disk or
shared memory . 79

5.15 A table that summarizes the results of our experiment to measure the
time to write the BG/L log file in both shared memory and disk. . . . 79

5.16 A log file analyzer that filters system log file. 80

xi

1

Chapter 1

Introduction

Although we might not be aware of it all the time, software plays an important role

in our lives. From our appliances at home, to the planes we take, software is involved.

Software testing is a crucial part of the software engineering process, because it helps

testers to find and correct faults before releasing a program to the public.

A very important part of the testing process is evaluating test results. This is achieved

through the use of test oracles. A test oracle captures the inputs and outputs of the

software under test (SUT) and determines whether the SUT execution was correct or

incorrect. Test oracles are difficult to implement in part because of the complexity

involved in capturing the inputs and outputs of a program. An alternative is to

analyze log files. Oracles that analyze log files are known as log file analyzers. It is

already a common practice for developers to instrument their code so that relevant

events are logged to a file. The resulting log files are used for debugging purposes.

We are interested in generating oracles capable of analyzing log files, in order to

determine if they reveal faults in the SUT.

Although oracles are an integral part of the testing process, they are often difficult

2

to derive. For that reason, attempting to write an ad-hoc analyzer for each program

we develop would not be practical and would require a lot of effort. The main focus

of this thesis is to design a framework in which log file analyzers are automatically

generated from the specification of a program’s expected behavior.

1.1 Test oracles

The word oracle, comes from the Latin noun oraculum and from the verb orare which

means “to speak”. In the past, this word was used to refer to a priest or priestess

acting as a medium through whom advice or prophecy was sought from the gods in

classical antiquity. In its modern use, oracle refers to a person or thing regarded as

an infallible authority or guide on something [12]. In the context of software testing,

an oracle refers to a mechanism capable of determining if the software under test

(SUT) output is correct or incorrect.

Software testing can be divided into three tasks: choosing test cases, running test

cases on the SUT and evaluating the test results [15]. The task of evaluating test

results is often taken for granted and considered to be straightforward. In fact, this

assumption is known as the oracle assumption [34]. Test oracles are indeed a very

important part of software testing and should not be overlooked or underestimated.

As we will see in the next chapter, many oracle designs capture a program’s inputs

and outputs directly. Even though that is the classic approach to writing oracles, it

can be difficult to implement and can greatly increase the difficulty of writing a test

oracle. For that reason, our thesis focuses on oracles that analyze log files produced

by programs. Henceforth, we will refer to these kind of oracles as log file analyzers.

3

1.2 Log files and logging policies

Logs have been used to record important information, even before computers were

first invented. For example, logs have been kept for ships. To this day, such logs are

used to recreate the events that happened during past wars or to discover immigration

patterns [6]. With the advent of computers and with the increasing complexity of

software, developers found themselves in the need to record important events for

their programs. In practice, developers often use log files to recreate the events

that happened during the execution of a program, allowing them to debug their

programs. That is, they instrument their code so that important events, warnings or

error messages get saved into a text file. The information that can be obtained from

analyzing a log file depends on the what types of events the developer decides to log.

We refer to this as a logging policy.

1.2.1 Log files and shared memory areas

Log files are also very useful to debug real-time programs. Since real-time programs

are time-sensitive, it is often infeasible to use standard debugging tools. In my own

professional experience, log files are very useful to debug real-time systems. While

participating in the development of a real-time monitoring system [16], we noticed

that log files were our main point of reference for troubleshooting or debugging pro-

cesses. However, logging events into a disk file can affect the performance of real-time

systems. Therefore, we opted to log events to a shared-memory area [19]. Shared

Memory is the fastest form of inter-process communication (IPC) available [30]. It

allows several processes to share a memory area and exchange data efficiently.

4

Storing a log file in a shared memory area has various benefits. For instance, if a

system is comprised of several processes, each process could log events into a single

shared memory area. In that way, we would be able to analyze a time-ordered log

with the interactions of the different processes, instead of having to merge several

logs manually. In addition, reading and writing logs to memory helps minimize the

overhead of logging. It is faster to read and write from memory than from a disk.

Taking into consideration the above-mentioned experience, in this thesis we will ad-

dress the problem of logging overhead by adding shared memory integration to our

log file analyzers. This new capability will make log file analyzers not only capable

of reading logs from files, but also from shared memory areas. We will also describe

a simple-to-use library we developed so that programs can easily create log files in a

shared memory area.

1.3 Log File Analyzers

Having described the role of test oracles in software testing and the uses of log files,

we will discuss log file analyzers in more detail. As we mentioned before, log file

analyzers can be defined as oracles that process log files produced by programs.

In order to apply log file analysis, we need to make some basic assumptions regarding

the software environment. These assumptions are known as the log file analysis

assumptions and were introduced by Andrews [15]:

1. The SUT writes a record of events to a log file.

2. There exists a well–defined, agreed-upon logging policy that defines what pre-

5

cisely the SUT should write to the log file and under what conditions.

3. It is possible to write a log file analyzer program that takes a log file as input

and either accepts the log file or rejects it with an informative error message.

These assumptions are important because they dictate the conditions under which

we can generate log file analyzers for the SUT. The logging policy is particularly

important, because the SUT must log events of interest so that the log file analyzer

can correctly assess the log file.

A log file analyzer processes the messages contained in the log file and determines

whether the SUT that generated such log file executed correctly or incorrectly. A log

file is considered to reflect a correct program execution, if the log messages it contains

are consistent with the expected program behavior.

For example, suppose we were looking at the log file produced by the software con-

trolling an ATM. Let us assume that such software has a logging policy that records

a message for each relevant transaction. Let us also suppose that we examine the log

file and find a line indicating that a user has entered his PIN incorrectly, followed

by a line indicating that such user was granted access to “his” account. Of course,

this is not part of the ATM’s expected behavior. Therefore, such a log file would be

considered incorrect. An ATM should not give access to unauthorized users. In fact,

such a log file would reveal that the ATM software is not working as expected. To be

able to specify the expected behavior of any program, we need to have a language that

allows us to express how a program should work. We express a program’s expected

behavior in a language called Log File Analysis Language (LFAL), which was first

introduced by Andrews [13].

6

1.4 Thesis focus

The main focus of this thesis is to generate log file analyzers from a set of speci-

fications. Our research builds upon previous work by Dr. James H. Andrews, who

proposed a framework in which the expected program behavior is expressed as a set of

state machines in LFAL (Log File Analysis Language). The LFAL program is trans-

lated into Prolog code. Upon compilation, a log file analyzer is obtained [13]. One of

our objectives is to extend LFAL so that we can incorporate new features that make

analyzers more flexible. We will discuss the purpose and benefits of these features.

Another objective is to generate analyzers based on the C++ language instead of

Prolog. This will allow us to take advantage of the power of C++ and support the

new features of the extended LFAL. We also evaluate the performance of our C++

analyzers and compare it against Prolog-based analyzers.

The results of our experiments show that log file analyzers based on C++ are between

8 and 15 times faster than Prolog–based analyzers. These experiments, along with

the example C++ analyzers that we present in this thesis, illustrate the benefits of

making log file analyzers more flexible. For example, support for regular expressions

makes C++ analyzers capable of processing log files that contain complex log message

patterns.

1.5 Thesis organization

Chapter 1 contains an introduction to our topic by explaining some basic concepts and

the purpose of our research. In chapter 2, we give an overview of related work on test

oracles and log file analyzers. We also describe some important concepts. In chapter

7

3, we describe the design of our log file analyzer generator. We begin by explaining

the extensions made to LFAL and presenting the new language specification. We then

describe the basic libraries, which contain functionality needed by all analyzers. These

libraries include a state machine class and shared-memory management routines.

We also describe the design of our log file analyzer generator, which translates a

LFAL specification into C++ code. We conclude the chapter explaining how log

file analyzers are used. We explain the benefits of generating log file analyzers in

C++ instead of Prolog in chapter 4. We also describe the new features introduced

to the LFAL language in more detail. In chapter 5, we describe the experiments we

conducted to evaluate the performance of C++ log file analyzers. In chapter 6, we

present our conclusions.

8

Chapter 2

Related Work

In this chapter we give an overview of work related to log file analyzer generation. We

begin by describing related work on analysis of server logs. We then give an overview

of work done in the area of test oracles. We also discuss the area that is most related

to our research: generation of log file analyzers.

2.1 Analysis of server logs

A log can be defined as a record of the events occurring within the systems and

networks of an organization. Logs are composed of log entries. Each log entry contains

information related to a specific event that has occurred within a system or network

[22]. The field of log file analysis is as ample as the variety of uses for logs. Some uses

include debugging and troubleshooting systems. Other uses include recording user

actions and investigating malicious activity. A significant amount of the work on log

files focuses on the analysis of logs generated by servers [33].

9

Servers generate large log files that contain messages, which help system administra-

tors to monitor a system and identify failures. Oliner and Stearley [26], studied logs

generated by five supercomputers in order to understand their behavior. The authors

recognize that even though system logs are the first place system administrators go

to find the cause of a problem, there is a pressing need for better tools to process and

understand log files. This task is often complicated by the lack of operational context

in logs, which capture the system’s expected behavior. To facilitate the analysis of

large logs, they developed a filtering algorithm that reduces a set of alerts to a single

initial alert per failure. Oliner et al. describe a tool known as Sisyphus, which uses

an unsupervised data mining algorithm for anomaly detection [27]. This tool helps

system administrators discover relevant information in large log files, even if they do

not know what they are looking for. Log entries are sorted so that entries considered

most “interesting” or “abnormal” are given more importance.

Web traffic analysis is another important application of log file analysis. Server log

parsers analyze raw traffic data from server logs. These data can be visualized and

manipulated in Web browser windows [23]. An example is AWStats, which generates

Web, streaming, ftp or mail server statistics, graphically [2]. Other examples of Web

log analyzers include Analog [1], Webalizer [11] and Sawmill Analytics [8].

2.2 Test oracles

In the previous section, we discussed what seems to be the most evolving and de-

veloped area of log file analysis: analysis of server logs [33]. This thesis, however,

focuses on log file analysis applied to the analysis of software. As we mentioned in

chapter 1, our thesis builds upon previous work by Andrews [13]. Andrews applies log

10

file analysis to software testing, in particular, to the evaluation of test results. Test

oracles are used for this task, because they evaluate whether the output of a program

is correct or incorrect. In Andrews’ framework, a log file (produced by a program

execution) is analyzed to determine if it reveals a failure in the software under test.

In fact, a log file analyzer is a type of oracle. Therefore, it is important to discuss

previous work in the area of test oracles.

2.2.1 The oracle assumption

As mentioned in chapter 1, software testing can be divided into three tasks: choosing

test cases, running test cases on the SUT and evaluating test results [15]. Weyuker,

defined an oracle as a mechanism that checks for the correctness of a program execu-

tion. Weyuker also coined the term oracle assumption, which refers to the belief that

the tester is routinely able to determine the program correctness on the test data [34].

Because of the oracle assumption, the task of evaluating test results is often consid-

ered “straightforward”. Therefore, it is common practice to have the tester examine

the results of a program execution by hand. The problem with this approach, is that

is assumed that the tester will know the correct answer.

Many papers on oracles refer to the importance of test oracles. Testing without an

oracle can cause loss of time, due to tester misconception. That could cause the tester

to “fix” a program that was already correct. Conversely, the tester might believe that

the program is correct, thereby releasing a program with errors [34].

In some cases, the task of evaluating test results is relegated to having the tester

examine a program’s output manually. However, such practice is neither reliable nor

cost-effective. The whole point of testing is to reveal system failure or provide as-

11

surance of system correctness. If we do not have a reliable way to evaluate whether

a test case was successful or not, we cannot confidently ascertain the correctness of

a program. In Richardson et al.’s words: “If the testing process does not determine

whether the system behaves correctly, there is nothing to be gained by performing

the tests” [29]. These last words might seem too definitive and many testers might

argue that all stages of software are valuable and important. However, it is important

to recognize that much of the research on software testing has focused on the devel-

opment and analysis of input data [34]. In fact, research literature on test oracles is a

relatively small part of the research literature on software testing [17]. Therefore, re-

searchers that work with test oracles have tried to raise awareness on the importance

oracles in the software testing process.

2.2.2 Deriving oracles

In the previous section, we discussed the importance of test oracles in the software

testing process. The reader might be wondering why it is that test oracles are not

always used. The explanation is that oracles are not particularly easy to derive. For

instance, Peters and Parnas [28] recognize that the documentation used to generate

an oracle can be almost as complicated as the software under test.

Richardson et al. [29] derive oracles from a program’s specifications. This requires

a mapping from the name space of the test data, to the name space of the oracle

information. The oracle information represents the expected behavior of a program.

The authors express this expected behavior as a set of assertions. An assertion is a

logical expression specifying a program state that must exist, or a set of conditions

that program variables must satisfy at a particular point in program execution. A

12

monitor program is used to verify the assertions. Any unsatisfied assertion identifies

an inconsistency between the expected program behavior and the specification-based

oracle.

Memon et al. [25] developed a technique to develop an automated Graphic User In-

terface (GUI) test oracle. The GUI is modeled through operators that represent GUI

actions in terms of their preconditions and effects. The test oracle automatically

derives the expected states (the expected program behavior). An execution moni-

tor obtains the current state of the GUI. The oracle compares the two states and

determines if the GUI is performing as expected.

2.2.3 Deriving oracles automatically

Peters and Parnas [28], describe an interesting approach, capable of automatically

generating test oracles from tabular documentation. This work is closer to our re-

search objective, because its focus is not limited to describing a method for deriving

oracles. Rather, the main objective is to achieve the automatic generation of test

oracles from program documentation.

The authors argue that if program documentation is mathematical, it is possible to de-

rive an oracle from it. Therefore, the expected program behavior is captured through

relational documentation, which is written using tabular expressions. In contrast with

assertions, the documentation is separate from the code, rather than embedded in it.

This facilitates analysis and review separate from the implementation. A Test Oracle

Generator (TOG) generates wrappers that call the functions to be tested. The test

case is executed by calling the wrappers instead of the real functions. Finally, the

wrapper evaluates the output to determine if it is correct.

13

2.3 Generating log file analyzers

In this section, we will discuss the framework proposed by Andrews [13] [15] [14] [35]

in which log file analysis is applied to software testing. In fact, Andrews’ log file

analyzers are test oracles that determine if a log file reveals a fault in the software

under test (SUT). This section provides much of the concepts and background needed

to understand this thesis. Henceforth, we will refer to Andrews’ approach as Log File

Analysis (LFA).

2.3.1 Log files

A log file is defined as a sequence of log lines. In LFA, a log file line is defined as a

sequence of keywords, strings and numbers beginning with a lowercase alphanumeric

character. Log lines begin with a keyword, separated by blanks and terminated by

a new-line. A keyword is a sequence of alphanumeric characters and underscores

beginning with a lowercase letter. Figure 2.1 shows an example of a log file [15] from

a hypothetical elevator controller program. We can observe that each line begins with

a keyword, for example go up, go down, etc.

To illustrate the concepts behind LFA, we will use the elevator controller program

and the log file in figure 2.1 as a running example. Let us first understand how the

log file in this example is interpreted:

• A user, who is in the third floor, calls the elevator (line call 3).

• The elevator goes up and reaches floors two and three (lines reach 2 and reach

3).

14

Figure 2.1 A simple log file by Andrews [15]

2.4 Other Related Research

Customized test oracle specifications have been used in
some application areas, such as protocol testing. Bochmann
et al. [43] report on one scheme in which ESTELLE
specifications are translated into Pascal oracles. This paper
can be seen as a generalization and formal definition of such
techniques.

Research in test case generation often includes genera-
tion of expected results for the specific test cases generated.
For instance, Gueraichi and Logrippo [14] discuss deriving
TTCN test suites, including expected results, from LOTOS
specifications of protocols; Donat [9] generates test cases
from more general, logic-based specifications, including
inputs and expected outputs. Our work on test case
generation is only in the early stages, but we do allow the
creation of oracles not specific to given test cases.

Finally, there are two studies by independent researchers
that we are aware of that also use the LFA assumptions.
Feather, in his study of lightweight formal methods for
spacecraft control software [12], analyzed the sequence of
events produced by test runs on the software. The events in
his study contained sensor data and actuator commands,
were stored in a sequence-sensitive database, and were
analyzed using database queries given to a special database
tool. Qiao and Zhang, in their study of testing communica-
tion safety properties of distributed systems [36], built a
customized tool that checks log files produced by the
systems under test. The lines in the log files recorded
communication events and the log file analyzer checked
that a protocol had been correctly followed.

3 FOUNDATIONS AND LANGUAGE

In this section, we describe the foundations of LFA and the
language that we use to describe log file analyzers. First, we
give a definition of the format of a log file that will be used
in this paper. Then, we formally define analyzers as
collections of state machines and discuss some of the
design decisions we made concerning our definitions. We
show how log file analyzers can be related to first order
logic, define the Log File Analysis Language (LFAL) based
on first order logic, and discuss the implementation of that
language. Finally, we discuss some issues concerning the
completeness of the proposed formalism.

3.1 Log Files

For simplicity, we impose some restrictions on the format of
log files. A keyword is a sequence of alphanumeric
characters and underscores beginning with a lower-case
letter. A string is a sequence of characters enclosed in
double quotes. A number is a sequence of digits, possibly
preceded by a minus sign and possibly followed by a
period and a sequence of digits. A log file line is a sequence
of keywords, strings, and numbers, beginning with a
keyword, all of which are separated by blanks and
terminated by a new-line. We refer to the set of all log file
lines as L. A log file is a sequence of log file lines.

Fig. 1 shows part of a log file from a hypothetical
program, one of whose tasks is to control an elevator. We
will use the program as a running example. Assume that
the log file is interpreted as follows: A user on the third

floor called the elevator; the elevator started to go up,
reached the second floor and then the third and then
stopped; the door opened on floor three at time 103325; the
door closed at time 103340; etc. Assume that times such as
103325 are timestamps in seconds since some arbitrary
event. Consider further the following requirements for the
elevator controller:

1. The door of the elevator must be closed if the
elevator is moving.

2. The elevator must not be moving when the
controller program terminates.

3. The door must never stay open more than 30
seconds.

Given a log file from the elevator controller, we can check
whether the log file reveals a fault in the controller. Note
that the call and reach lines are not relevant to checking
the requirements given, though they might be relevant to
checking other requirements; only the lines such as go_up

and door_open are relevant. The result is two separate but
interdependent “threads” of log file reports that are
arbitrarily interleaved. Such interleaved threads of informa-
tion are common in log files.

3.2 Log File Analyzers

The considerations in the last section suggest a view of a log
file analyzer program as a set of simpler programs, each of
which attends to only one or a few threads of information in
the file and each of which checks for only one or a few
closely related requirements. We take the further step of
viewing these simpler programs as state machines running
in parallel. Each state machine “notices” only a subset of the
lines in the file and makes transitions triggered by the log
file lines that it notices. A state machine reports errors if it
notices a log file line, but cannot make a transition on it. We
write the state machines so that this happens if and only if
the log file reveals a failure of the SUT. Like the Statecharts
formalism [15], this view allows parallel components to be
expressed succinctly and builds on a simple, intuitive
model of computation.

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Fig. 1. A simple log file.

• The elevator stops (line stop) and the door opens on floor 3, at time 103325

(lines stop and door open 103325).

• The elevator door closes on floor 3, at time 103340 (line door close 3 103340).

The rest of the lines are interpreted in a similar way.

2.3.2 Expected program behavior

Throughout section 2.2, we gave an overview of different ways to derive oracles.

Oracles need to capture the expected program behavior in some way. The first step

would be to list a set of requirements for the elevator controller [15].

1. The door of the elevator must be closed if the elevator is moving.

15

2. The elevator must not be moving when the controller program terminates.

3. The door must never stay open more than 30 seconds.

Having enumerated the requirements to be checked, we can now examine the log file

to see if it reveals any fault in the controller. Log files often contain several threads

of information. For instance, if we wanted to check requirements 1, 2 and 3, we

would need to pay attention to lines such as door open, go up and stop. Lines with

keywords reach or call are not relevant for requirements 1, 2 or 3. In fact, such

lines might be relevant to checking other requirements. Threads of information are

often arbitrarily interleaved in log files.

2.3.3 Log File Analyzers

Taking into consideration the fact that log files often contain interleaved threads of

information, a log file analyzer can be viewed as a set of simpler programs. Andrews

[15] explains that each program “notices” a set of log lines that represent a thread of

information, to check one or more closely related requirements. More formally, these

programs are state machines running in parallel. Each state machine recognizes or

“notices” only a subset of the lines in the file and makes transitions triggered by the

log file line it notices.

State machines in a log file analyzer report an error when one of these conditions

occur:

• A line is not noticed

• A line is noticed, but the state machine cannot make a transition on it.

16

Figure 2.2 shows an example of two state machines that check for the elevator con-

troller requirements outlined in section 2.3.1. The machine shown at the left checks

requirements 1 and 2. The machine at the right checks for requirement 3.

Figure 2.2 Analyzer machines for the elevator controller by Andrews [15]

Wedefine an analyzermachine as a 6-tuple hX;!; i; F ;N; !i,
where:

. X is the machine’s identifying name,

. ! is a countable set of states,

. i 2 ! is the initial state,

. F ! ! is the set of final states,

. N ! L is the set of log file lines noticed by the
machine, and

. ! ! !"N " ! is the transition relation, such that
!ðs; l; s1Þ and !ðs; l; s2Þ iff s1 ¼ s2.

The transition relation is defined to be deterministic so that
the analyzer does not have to backtrack in order to
determine whether a log file is acceptable. Given a
particular analyzer machine m, we will refer to its
components as hXm;!m; im; Fm;Nm; !mi and occasionally
abuse notation by identifying m with Xm. An analyzer
machine is like a finite state machine, except for two main
differences: Its set of states can be countably infinite and it
can restrict its attention to a subset N of the possible lines of
the file. The reasons for these differences will be made clear
in Section 3.3. We define a log file analyzer to be a countable
set of analyzer machines.

As an example, see Fig. 2, which gives the name, set of
states, initial and final states, and transition relation for two
log file machines. The usual conventions for depicting state
machines are used; final states are indicated by double
ovals, the initial state is indicated by a small arrow, and
conditions on transitions appear in square brackets. The left
hand state machine, called door_safe, can check an
elevator controller log file for the first and second
requirements from Section 3.1. The right hand machine,
no_delay, can check for the third requirement, that the
door is open for no more than 30 seconds. Note that, in
no_delay, the lower state is parameterized on the variable
T1. We use this notation to signify that no_delay has an
infinite set of states with names of the form open(0),
open(1), open(2), Note also that the transitions to
and from the open states refer to this parameter. We use
this notation to signify that, for all timestamps T1, the state
with name open(T1) has a collection of transitions from
closed, each triggered by a log file line of the form

door_open I T1, and also has a collection of transitions to
closed, each triggered by a log file line of the form
door_open I T2, where T2-T1 is less than or equal to 30.
To complete the analyzer machine specifications, we specify
that the set N of noticed lines for door_safe is all the lines
of the forms go_up, go_down, stop, door_open I T, and
door_close I T; and the set N of noticed lines for
no_delay is all the lines of the forms door_open I T and
door_close I T.

Consider the log file analyzer elevatorA consisting of
the two machines door_safe and no_delay. This
analyzer is able to check for all three requirements. We
now define the operational semantics of the analyzers to
make this notion more precise.

We define a configuration of a log file analyzer A as a
function that assigns, to each machine m 2 A, a state in !m.
The initial configuration of an analyzer A is that in which all
machines are in their initial states. We say that a
configuration C of a log file analyzer A rejects a log file
line l if either:

. For all m 2 A, l 62 Nm (that is, no machine in A
notices l) or

. For some m 2 A, l 2 Nm, but there is no s 2 !m such
that !ðCðmÞ; l; sÞ (that is, some machine in A notices l
but cannot make a transition on it in its current
state).

For example, if analyzer elevatorA is in the
configuration C such that Cðdoor safeÞ ¼ moving and
Cðno delayÞ ¼ closed, then it rejects any line of the form
door_open I T because, although no_delay can make a
transition on the line, door_safe cannot. It also rejects any
line of the form reach I or call I; we would have to add
another analyzer machine to elevatorA to explicitly
ignore such lines (see below).

Given an analyzer A, configuration C, and log file line l,
if C does not reject l, then nextðC; lÞ is defined as the
configuration C0 such that

. If l 62 Nm, then C0ðmÞ ¼ CðmÞ;

. Otherwise,C0ðmÞ is the state s such that !mðCðmÞ; l; sÞ.

ANDREWS AND ZHANG: GENERAL TEST RESULT CHECKING WITH LOG FILE ANALYSIS 637

Fig. 2. Analyzer machines for the elevator controller. Left: A machine that checks for requirements 1 and 2. Right: A machine that checks for
requirement 3.

It is important to note that log file analyzers are composed of infinite-state machines.

This is necessary because log files often contain data that must be remembered by

an analyzer to judge a later line. For example, in figure 2.2 at the right, we can

observe the no delay machine, where the state open is parameterized. That allows

the analyzer to “remember” the time at which the elevator door was opened and thus,

determine if the door stayed open for more than 30 seconds.

2.3.4 Log File Analysis Language

Andrews introduced the Log File Analysis Language (LFAL), which is used to specify

the expected program behavior. This expected behavior is represented in the form of

state machines. Figure 2.3 shows the LFAL specification for the no delay machine.

17

We can observe that the language is a straightforward representation of the no delay

machine that defines the initial state of the machine, the transitions along with their

corresponding conditions and the final state.

Figure 2.3 An example of a LFAL specification by Andrews [15]

script. The translator translates an LFAL analyzer specifica-
tion into the Prolog axiomatization of the theory that
induces the intended analyzer. The clauses for the notices
relation are not given explicitly in LFAL; the translator
assumes that each machine notices all and only the lines
used in its transitions. A transition condition is defined in
LFAL as a Prolog goal. Log file analyzers may also include
any Prolog program text in order to define any auxiliary
predicates used in the conditions. Fig. 6 shows the Prolog
translation of the machine shown in Fig. 5.

After translating the LFAL program into Prolog clauses,
the LFAL compiler script invokes a Prolog compiler on the
resulting program together with the library, which is also
written in Prolog. The resulting native-code executable file
can then be run on a log file of interest. The executable
displays a report stating that the log file conforms to our
specification or explaining why it does not.

To this point, we have considered only analyzers
specified in their own source files, separate from the SUT
code. However, they could in the future be specified in
comments within SUT code, in the manner of Anna [29] or
Chechik and Gannon’s approach to SCR [8], and later
extracted to build the analyzer. This may be desirable in
some situations where it is important to maintain the
analyzer and the SUT together in one source file.

3.7 Generality Issues

One of the common concerns raised about the state machine
approach to LFA is the fear that it might not be general
enough, that is, that it can apply only to simple tasks or to
tasks involving only state-based software. However, the
ability to place upon transitions conditions that refer to
arbitrary predicates makes the language Turing-complete,
in the sense that any program giving a complete record of

its input and output could accurately be evaluated for
correctness by an LFAL analyzer.

More practically, we can ask whether an approach based
on countable state machines generally results in analyzers
that are compact, easy to write, and useful. Leveson et al.
[27] state that even, in complex, safety-critical systems, it is
reasonable to assume “that there are relatively few
[hazardous] states. . . and that these can be determined.”
This suggests that there is no inherent barrier to state-based
LFA applying to such conformance testing problems as long
as there is enough information in the log file to determine
whether a hazardous state has arisen. We have studied the
application of LFA to a complex, system-level, safety-critical
specification [2] and have found no difficulties inherent to
the LFA approach.

Moreover, the approach does not apply only to problems
that have a natural expression in terms of state machines.
The description of the dictionary class, to be given in the
next section, is not usually thought of in terms of state
machines. Its simple and compact expression in LFAL
suggests that oracle specifications can approach the con-
ciseness and precision of algebraic specifications [40].

4 EMPIRICAL STUDIES

There are a number of important questions that need to be
answered empirically about LFA, including questions about
usability, breadth of applicability, and development time, as
compared to other formal and conventional software
development methods. We have applied LFA to a number
of different applications and specifications, both simple and
complex, and at both the unit level and the system level.
Some of this work is reported on in [2] and other work is
ongoing. However, more detailed study will require
empirical research with users, which is relatively expensive
and complex. Before embarking on such research, it makes
sense to first study whether the approach can meet certain
performance and effectiveness requirements and how it
compares with alternative approaches.

We therefore undertook empirical studies on the
performance and effectiveness of LFA in one of the
important applications of test oracles: as test result checkers
for random test data. In this section, we describe the results
of these studies.

We first explain the motivation of our research into this
subject and then describe an initial case study we
performed on random unit testing. We then discuss an
experiment motivated by the case study and some more
detailed experiments that were undertaken to clarify the
first experiment’s results. Finally, we draw conclusions
from the experiments and discuss the implications with
respect to the most important variable we did not attempt to
measure, development time.

4.1 Motivation

These experiments involve the question: What is the most
useful application of formal and semi-formal methods to
the process of unit testing?

Several authors ([10], [18], [21], [23]) have proposed test
suite generation and/or test oracle generation from formal
or semi-formal specifications of units. However, the test

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 7, JULY 2003

Fig. 5. The definition of the no_delay machine from the elevatorA

analyzer in LFAL.

Fig. 6. The translation into Prolog of the no_delay machine from Fig. 5.

2.3.5 Log file analyzer generation

The implementation of LFA includes a translator, an auxiliary library and a compiler

script. The translator translates an LFAL specification into Prolog code. The com-

piler script compiles the Prolog code and produces an executable that can be used to

analyze log files.

Log file analysis has been applied to several lab-built pieces of software such as an

elevator controller and a heater monitor [15] and to two pieces of commercial software

[35]. While it proved to be useful, the use of the Prolog as the target programming

language posed some difficulties that could be addressed by using a more familiar

programming language such as C++ or Java.

18

2.4 Other related work

To conclude this chapter, in this section we present related work on log file analysis,

applied to software engineering in general.

Chang and Ren [18] developed a Test Behavior Language (TBL), which uses pa-

rameterized patterns as logical predicates. Using TBL, software properties can be

validated through execution traces. The authors define patterns through regular ex-

pressions. As we will see in the following chapters, we incorporate the use of regular

expressions to our work to make log file analyzers more flexible and adaptable.

Tan et al. [31] introduced a framework called SALSA, which stands for “Analyzing

Logs as State Machines”. Its objective is to derive a program’s control flow in terms

of state machines. This information is derived from log files. It is very different

from Andrews’ approach in that its objective is to derive state machines from a log

file, while Andrews uses state machines to capture the expected program behavior a

priori. SALSA is intended to help developers understand what a program is doing by

helping them visualize a program execution in terms of state machines. In contrast,

Andrews’ LFA is intended to be applied to software testing.

19

Chapter 3

The Log File Analyzer Generator

In this chapter, we describe the design of our Log File Analyzer Generator. We

begin by discussing the LFAL 2.0 language in section 3.1. We explain how LFAL 2.0

programs are transformed into C++ code in section 3.3. Finally, we describe how log

file analyzers are used as oracles to analyze log files and reveal faults in the software

under test (SUT) in section 3.4.

Figure 3.1 shows a high-level view of the architecture of our Log File Analyzer Gen-

eration Process, by illustrating its different stages. The process starts with an LFAL

2.0 program. This code is scanned and parsed resulting in an abstract syntax tree

(AST) (see section 3.2). The AST is analyzed by the code generator and the following

files are generated: C++ code for machine classes (see section 3.3.2), a Makefile and

C++ code for the log file analyzer program (see section 3.3.3). Using the Makefile

and a C++ compiler, these files are compiled and linked with the base libraries (see

section 3.3.1). At the end of the process, we obtain an executable log file analyzer

(see section 3.4). We will discuss this process in more detail in the following sections.

20

3.1 The LFAL 2.0 specification

In section 1.3 in chapter 1, we mentioned that to analyze a log file, we need to have

captured a program’s expected behavior. We use the Log File Analyzer Language

(LFAL), which was introduced by Andrews [13], for that purpose. One of the objec-

tives of this thesis is to extend LFAL so that we can incorporate new features that

take advantage of the C++ programming language and make log file analyzers more

flexible. Henceforth, we will refer to our extended version of LFAL as LFAL 2.0.

In this section, we describe the LFAL 2.0 language specification. In section 3.1.1, we

give an overview of the different elements of an LFAL 2.0 program. In section 3.1.2,

we introduce the new elements of the LFAL 2.0 language and its specification.

3.1.1 The elements of an LFAL 2.0 program

LFAL 2.0 captures a program’s expected behavior as a set of state machines. A state

machine is composed of a set of unique states, an initial state and one or more final

states. A machine changes from one state to another through transitions. Transitions

are triggered by events [32].

An LFAL 2.0 program can be seen as a set of analyzer machines. Transitions in

analyzer machines are triggered by log lines. An analyzer machine has the same basic

elements as a generic state machine. Such elements are:

21

• State definitions, which define the states of an analyzer machine. States can

have state variables. For example, a state can be declared as state RECEIVED

(int Time). The state would be RECEIVED and the state variable would be

Time.

• Initial state definition, which specifies the state in which an analyzer machine

is at the start.

• Transitions. These elements define the way analyzer machines change from

one state to another. Transitions can include conditions and, if successful, cause

the analyzer machine to change to another state. As we will see in the next

section, transitions in LFAL 2.0 are very flexible and can involve other actions

besides changing the machine state.

• Final states. An analyzer machine can have one or more final states. These

indicate the state the analyzer machine must be in, before exiting.

Figure 3.2 shows an example of an LFAL 2.0 program with the definition of an

analyzer machine called elevatorState (see line 5). This LFAL 2.0 program specifies

the expected behavior of a very simple elevator controller program. We can observe

that elevatorState has two state definitions: on service and normal (lines 8 and

9). The initial state for elevatorState is on service (line 12). Lines 15 and 16

contain the transitions, which change the state of the analyzer machine triggered by

the go on service or go off service lines. The final state definition is shown on

line 19. We will describe in more detail how the machine in this example works in

section 3.4.

22

3.1.2 New features in the LFAL 2 language

LFAL 2.0 retains the elements of the original LFAL, which include the basic analyzer

machine elements outlined in section 3.1.1.

Figure 3.3 shows a summarized version of the original specification of LFAL [15] in

Backus Normal Form (BNF). Figures 3.4 and 3.5 show the BNF specification of the

LFAL 2.0 language.

LFAL 2.0 extends LFAL by incorporating the following new elements:

• Pattern definitions. Used to incorporate regular expressions into analyzers

(see rule <pat-def> in figure 3.5). An example of a pattern definition in LFAL

2.0 is shown in figure 3.2, lines 2 and 3.

• Data declaration. This element can be used to incorporate C++ objects into

analyzers (see rule <data-decl> in figure 3.5).

• State definitions. LFAL 2.0 supports C++ data types. Therefore, in LFAL

2.0, states need to be declared together with their state variables names and

types (see rule <state-def> in figure 3.5). An example of the syntax is shown

in figure 3.2, lines 8 and 9.

• Transitions. The original version of LFAL allows the user to define a series

of transitions for the analyzer. This remains true for LFAL 2.0. However,

by introducing new kinds of actions, transitions in LFAL 2.0 are much more

flexible. For example, a transition can be defined to execute C++ code, create

or delete an analyzer machine object, show a specific error message, etc. (see

rules <trans-def> and <action> in figure 3.5). Examples of transitions in an

23

LFAL 2.0 program are shown in figure 3.2, lines 15 and 16.

We will explain the purpose and benefits of these elements in more detail in chapter

4.

3.2 Scanning and Parsing LFAL 2.0

3.2.1 Lexical Analysis

The analysis of the syntax of a program can be divided in two parts: lexical analy-

sis (also called scanning or lexing) and parsing. This section focuses on the lexical

analysis of LFAL 2.0.

Scanning divides the input into meaningful pieces, known as tokens. Scanners work

by looking for patterns of characters in the input. These patterns are known as regular

expressions [24]. In terms of lexical analysis, LFAL 2.0 is defined by a set of reserved

words. We implemented our lexical analyzer using Flex. Flex is an open-source tool

for generating programs that perform pattern-matching on text [4]. Our scanner

works in conjunction with a parser. When a token is recognized, our scanner passes

it to the parser so it can be processed.

3.2.2 Syntax Analysis

Syntax analysis is also known as parsing. A parser is a program that reads a stream

of tokens and determines their relationship [24]. The relationship between tokens can

24

be represented as a set of rules like the ones shown in figures 3.4 and 3.5. These rules

specify how tokens in LFAL 2.0 can be combined to define a log file analyzer. We

implemented our parser using Bison. Bison is an open-source parser generator [3].

The scanner generated by Flex processes the input (a LFAL 2.0 program), detects

tokens and passes them to the Bison parser. Our Bison parser builds an Abstract

Syntax Tree (AST), which is a representation of the syntactic structure of input

written in a programming language [24].

3.3 The log file analyzer generator

In the previous section, we explained how LFAL 2.0 is parsed to obtain an AST.

This AST contains the LFAL 2.0 program structure. It is used by the Log File

Analyzer Generator to produce C++ code. The generated C++ code can be divided

in two parts: the code for machine classes and the code for the log file analyzer

main program. These two parts, together with several base libraries, are compiled

and linked to produce an executable log file analyzer. In this section we describe

how machine classes, libraries and the log file analyzer work together to provide the

necessary functionality for a log file analyzer.

3.3.1 Base libraries

We have developed a set of libraries that encapsulate the basic functionality needed

by all machine classes. In this way, we minimize the amount of generated code, thus

avoiding the generation of repetitive code. Therefore, the C++ code for these classes

is not generated for every log file analyzer. Rather, log file analyzers use these libraries

25

through mechanisms such as inheritance or aggregation.

Our base libraries contain the following functionality:

• State Machine. Contains the basic functionality needed for the analyzer ma-

chines to work. It includes routines that manage the machine’s transition table

and states.

• Log File Parser. Contains the data structures and methods that analyzer

machines need to recognize certain lines (regular expressions) in a log file.

• Shared Memory Management. Contains data structures and methods to

create, open, and delete shared memory areas. In addition, this library contains

methods to create and manage log files in a shared memory area.

3.3.2 Machine Classes

LFAL 2.0 programs can have one or more analyzer machines. Each analyzer machine

can check for one or more requirements. That is, an LFAL 2.0 program can have

one or more types of analyzer machines, each noticing a different set of lines and

requirements. We refer to them as machine classes. Figure 3.6 shows an example of

an LFAL program with two machine classes: doors (shown in lines 10–29) and mem

(lines 31–46). We will use figure 3.6 as a running example to illustrate the concepts

presented here.

The log file analyzer generator produces C++ code for each machine class. That is,

for this example, it would generate a class for the analyzer machine doors and for

the analyzer machine mem.

26

In our implementation, each machine class has a transition table in the form of an

array of structures. Each transition record contains the source and target states and

a pointer to a transition method. Transition methods contain C++ code that defines

the action to execute. The most common action is to change the state of the machine.

However, depending on the contents of the LFAL 2.0 program, the transition method

might contain other C++ code such as conditions or actions specified by the user. In

the next chapter, we will describe the advanced features of LFAL 2.0 in more detail.

3.3.3 The Log File Analyzer Program

Once C++ code is generated for the machine classes, the code generator has the

necessary elements to generate C++ code for the main log file analyzer program.

This program instantiates the machine classes and processes the log file.

In general, the log file analyzer program performs the following actions:

1. Open log file, standard input or shared memory log file, according to the option

specified at the command line.

2. Instantiate parser object and configure. This sets up the parser to match log

file lines.

3. Initialize machine classes. For each machine class:

(a) Create and initialize transition table

(b) Instantiate machine class and add to vector of analyzer machines

(c) Set the analyzer machine’s initial state

27

4. The log file analyzer program enters an infinite loop that ends until the entire

log file is processed. Inside the loop, the analyzer performs the following actions:

(a) Read log file line

(b) Determine whether the read line is noticed by a machine

(c) For each machine in the vector of analyzer machines:

i. If the line is noticed by the machine, call its transition method.

ii. Display error message if applicable. For example, if the machine no-

ticed the line but was unable to make a transition, an error message

will be displayed.

5. At end of file, report whether the log file was accepted or rejected.

3.4 Analyzing log files

Once the log file analyzer generation is complete, the executable log file analyzer can

be used to determine if a log file reveals errors in a program.

In this section, we present two examples that illustrate how our generated log file

analyzer processes log files.

Our first example is the LFAL 2.0 program shown in figure 3.2. This LFAL 2.0

program specifies a log file analyzer consisting of one machine class: elevatorState.

An elevator is usually known to be “on service” when it is being controlled exclusively

by an operator who inserts a key inside the keyhole in its control panel. This state

is meant to indicate that the elevator is undergoing some kind of maintenance. Once

the elevator is ready for normal operation, it is known to be “off service”.

28

The elevator system is expected to start up on service and eventually be taken off

service in order to operate normally. After some time, the elevator might be put

on service again to perform repair or maintenance tasks and then taken off service

again. This is expected to happen several times. Evidently, a log file produced by

the elevator controller software should reflect that the elevator was on service before

the controller program exited.

The elevatorState analyzer machine checks that the following requirements are met:

1. The elevator state alternates from being “on service” to being in normal oper-

ation mode (“off service”) and vice versa

2. The elevator system starts up and shuts down while “on service”

Lines 2 and 3 define two patterns: go on service and go off service. These

patterns define two regular expressions. For instance, the line ‘‘elevator put on

service’’ would be matched by the pattern go on service on line 2. Lines 9 and

10 show the two possible states for this machine: on service and normal. Line 12

sets on service as the initial state of the machine. The analyzer machine’s transi-

tions are defined in lines 15 and 16. When the machine recognizes (or “notices”) a

line such as ‘‘elevator taken off service’’, the machine changes to the state

‘‘normal’’. Similarly, if the analyzer machine notices a line of the type ‘‘elevator

put on service’’, the analyzer machine will transition to the on service state.

Line 19 defines the final state. Therefore, when the end of the log file is reached, the

machine should be in the state on service.

If we translated our example LFAL 2.0 program shown in figure 3.2 with our log

file analyzer generator, we would obtain (after compilation) an executable log file

29

analyzer. Let us suppose we gave the resulting log file analyzer the following log file

as an input:

1 elevator taken off service

2 elevator put on service

In this case, the log file analyzer would accept this log file. The line ‘‘elevator

taken off service’’ would cause the analyzer machine elevatorState to transi-

tion to the state normal. Then, the line ‘‘elevator put on service’’ would cause

the machine to transition to the state on service. Since we have reached the end of

the log file, the analyzer reports that the log file is correct.

Let us look at an example of a log file that would cause this example log file analyzer

to report an error:

1 elevator taken off service

2 elevator put on service

3 elevator taken off service

The process for the first two lines would be identical as in the previous example. How-

ever, the third line ‘‘elevator taken off service’’ causes the elevatorState

analyzer machine to transition to the normal state. Therefore, when the log file an-

alyzer reaches the end of the file, the analyzer machine would not be on the required

state on service. Therefore, the log file above would be rejected, because the an-

alyzer detected that the elevator was in normal operation mode when the elevator

controller program ended.

Let us analyze a slightly more complicated example. Figure 3.6 shows an LFAL 2.0

program of a log file analyzer with two machine classes: elevatorState (the same as

30

in the previous example which checks that the elevator starts and ends “on service”)

and doors. In this case, let us suppose that we are trying to determine if an elevator

controller program is working correctly by analyzing two aspects of its operation: its

status (off/on service) and the doors. To define the expected program behavior, we

write the LFAL 2.0 code shown in figure 3.6. Let us suppose we want to check for

the following requirements:

1. The elevator starts and ends in the expected state (on service).

2. The states alternate as expected.

3. The elevator door must never be open while the elevator is moving.

4. The elevator door must not stay open more than 30 seconds.

To check for these requirements, we define two machine classes: elevatorState,

which checks for requirements 1–2, and doors, which checks for requirements 3–4.

We have mentioned that log file analyzers can process different threads of information.

This example will give an example of that. Let us suppose we have the following log

file:

1 elevator taken off service

2 door open at 1

3 door close at 5

4 go up

5 door open at 8

6 elevator put on service

31

It is important to note that the machine doors has slightly more complicated pat-

tern definitions. In figure 3.6, lines 4 and 5, we can observe two examples of pat-

terns with variables. For instance, the pattern ‘‘door open (int VAR1)’’ in line

4, defines a regular expression where the variable VAR1 saves a timestamp as an

integer (int). Therefore, the line ‘‘door open at 1’’ would be matched by the

‘‘door open (int VAR1)’’ pattern. The value 1 would be stored in the variable

VAR1. We will discuss patterns in more detail in chapter 4, section 4.2.

The elevatorState machine will notice line 1 (elevator taken off service). The

doors machine won’t. Similarly, elevatorState won’t notice line 2 (door open at

1) but doors will. We can observe that each analyzer machine processes two different

threads of information in the same log file. The log file analyzer will reject this log

file, because after reading line 4 of the log file, the doors machine will be in the

state moving. After reading line 5, doors will try to make a transition. However,

by looking again at the code in figure 3.6, we notice that there is no transition from

the state moving to the state open(int T1). The elevatorState notices line 6 and

transitions to the state on service. This log file would therefore be rejected because

it reveals a fault in the elevator controller program (i.e. the doors analyzer machine

detected that the elevator’s door was opened while it was moving).

In this chapter we gave an overview of our log file analyzer generator. We discussed

the LFAL 2.0 language and provided some basic examples. In the next chapter, we

will focus on the new features of LFAL 2.0 (see section 3.1.2) in more detail.

32

Figure 3.1 Log File Analyzer Generation Process

33

Figure 3.2 A simple example of a LFAL 2.0 program

Figure 3.3 The original LFAL specification, by Andrews [15]

34

Figure 3.4 The LFAL 2.0 specification, part 1

35

Figure 3.5 The LFAL 2.0 specification, part2

36

Figure 3.6 An LFAL 2.0 program with two machine classes

37

Chapter 4

New Features in Analyzers

In chapter 3, section 3.1.2 we gave an overview of how LFAL 2.0 was extended to

support new features.

In this chapter, we describe the new features of LFAL 2.0 analyzers in more detail

and we explain the benefits that they provide. In addition, we provide examples that

illustrate how these new features are used in log file analyzers.

4.1 C++ Analyzers

The most notable difference between the original version of LFAL and LFAL 2.0 is

that log file analyzers are generated in the C++ programming language instead of

Prolog. We decided to use C++ because we expect LFAL 2.0 analyzers to have better

performance with respect to their Prolog counterparts. In addition, C++ is a more

commonly–used and more widely available language.

38

C++ allows log file analyzers to take advantage of the object–oriented paradigm.

As we mentioned in chapter 3, section 3.3.2, the generated log file analyzer code is

organized in classes, which encapsulate the functionality of each machine class. In

that way, machine classes can be instantiated, allowing the analyzer to create or delete

new analyzer machines as needed. As we will see, this is very important for some of

the new features of LFAL 2.0 analyzers.

It is important to mention that most of the features described in this chapter need a

fast, object-oriented and modern programming language such as C++.

4.2 Pattern definitions

One of the main challenges in log file analysis is that log file formats differ significantly

from system to system. In addition, log lines often are a complex combination of

words, numbers and other types of data. For that reason, it is important for log file

analyzers to be flexible regarding the format of the log file lines they can process. In

that way, log file analyzers can be adapted to existing systems and their corresponding

logging policies. To achieve this, we have incorporated regular expressions into LFAL

2.0 log file analyzers.

A regular expression is a specific kind of text pattern that can be used to recog-

nize or “match” strings of text [21]. There are many different regular expression

implementations. Perl–compatible regular expressions are among the most popular

implementations [20]. One of the most popular Perl–compatible implementations is

called PCRE (Perl–Compatible Regular Expressions). We decided to use this im-

plementation because it is provided as an open-source library and is used in many

39

programming languages and applications. In fact, PCRE is built into PHP and is

used in high–profile open source projects such as Apache, KDE, Postfix, Nmap, etc.

PCRE is also used in commercial software, such as Apple’s Safari browser [7].

In LFAL 2.0, we define patterns which specify the format of log lines, so that they can

be matched by analyzer machines. According to LFAL 2.0 syntax (see rule <pat-def>

in figure 3.5), a pattern is defined by specifying three elements: a pattern name, a

list of variables enclosed in parentheses and a string with a regular expression. In

an LFAL 2.0 program, patterns are defined at the top, before the definition of the

machine classes. The reason for this is that several machine classes can notice a

pattern. Figure 4.1 shows an excerpt of an LFAL 2.0 program, which shows an

Figure 4.1 A pattern definition

example of a pattern definition on line 1. The name of the pattern temp is in bold.

In this example, the pattern specifies that a float value is to be captured by declaring

the variable T (underlined in line 1). The regular expression in this example is ‘‘The

temperature is (?<T>)’’. In this case the T indicates the position of the variable

float T in the pattern. This pattern would match lines such as ‘‘The temperature

is 9.4’’ or ‘‘The temperature is 46.3’’.

As we can observe in line 7, figure 4.1, a pattern is noticed by a machine if it appears

40

in one of its transitions. Variables in log file lines, are used by analyzer machines in a

variety of ways. In this example, the variable T is used to evaluate if the temperature

value in a log line is greater than 50. If the condition is met, the machine transitions

to the state highTemp.

It is important to mention that the syntax (?<T>) is part of the standard PCRE

syntax for named substrings. The parentheses indicate that a substring is to be

captured. In PCRE named substrings are enclosed between ?< and >. We emphasize

this fact because we designed LFAL 2.0 patterns so that developers with experience

in PCRE or Perl–style regular expressions, can use them without having to learn new

syntax.

The incorporation of regular expressions to LFAL 2.0 allows log file analyzers to

process log lines with a much more complex format. For example, consider figure 4.1.

We have explained that the user can define flexible patterns, such as in the case of the

pattern temp(int T). In the original version of LFAL, analyzers did not have a way

to specify a pattern for a log line. Therefore, if the example shown in figure 4.1 were

written in the original version of LFAL, the analyzer could only look for lines such

as ‘‘temp 9.4’’ or ‘‘temp 46.3’’. That makes it difficult for analyzers to adapt

to existing log files. In fact, in chapter 5, where we compare LFAL against LFAL 2.0

analyzers, we describe how we had to modify an existing log file so that it could be

analyzed with a Prolog-based analyzer.

41

4.3 Dynamic and static analyzer machines

In this section, we introduce one of the most important new features of LFAL 2.0. The

examples we have seen so far involve what we call static machines. Static machines

have two main features: They need an initial state and only one instance of them

exists in a log file analyzer. These kind of machines are used to analyze aspects that

involve the whole log file.

In log files, it is common to find groups of lines, which are related to a specific identifier

such as a transaction ID number. Dynamic machines are used to analyze this kind

of log file. Dynamic analyzer machines are created “on the fly” by a special type

of transition that creates a new analyzer machine when a certain log line is noticed.

Dynamic analyzers do not need initial states because the transition that triggers the

creation of the machine specifies its initial state.

To clarify the difference between static and dynamic machines, we will contrast two

examples of log file analyzers: one using a static machine and one using a dynamic

machine. The objective of both analyzers is to check for memory leaks. However,

as we will see, this kind of analysis can only be performed effectively using dynamic

machines.

4.3.1 Static analyzer machines

In figure 4.2 we present an example of an LFAL 2.0 program with a static machine

that checks for memory leaks. Line 7 contains the initial state definition. This

machine intends to check that for every memory allocation, there is a corresponding

deallocation. Line 16 shows the transition definition where, upon noticing a line

42

Figure 4.2 An example of a static machine

with the pattern malloc(int Ptr), the machine transitions to the state alloc(Ptr).

In line 17, we can observe that when the machine notices a line with the pattern

free(int Ptr2), the machine transitions to the state unalloc if the address in

the log line corresponds to the address saved in the state variable alloc(Ptr). For

example, let us suppose we have the following log file:

1 malloc returned 100

2 free called on 100

3 malloc returned 200

4 free called on 200

The log file analyzer produced by the LFAL 2.0 program shown in figure 4.2 would

process the log file above like this: The static machine mem would notice the line

43

“malloc returned 100”. That would cause the machine to transition to the state

alloc(100). Then, the line “free called on 100” would cause the machine to

transition to the state unalloc. It is important to note that the condition that

precedes the transition (Ptr==Ptr2), is true. That is, the number in the log line “free

called on 100” (Ptr2) is equal to the value saved in the state variable malloc(Ptr),

which is 100. Lines 3 and 4 in the example log file above are processed in a similar

way. When the end of the log file is reached, the analyzer reports that the log file is

correct, because the machine mem is in its correct final state unalloc.

The previous example is limited because this analyzer will only check for memory

leaks correctly if there is at most one block of memory allocated at a time. Thus,

such an analyzer would be unable to check any sequence of malloc and free calls to

detect memory leaks successfully. For example, consider the log file shown in figure

4.3. In this case, the log file would report an error in line 4 of the log file. Upon

Figure 4.3 An example log file

processing line 4, the static machine mem would be in state alloc(200). Because

static machines have only one instance in a log file analyzer, the machine mem would

report an error indicating that it was unable to perform a valid transition with the

line malloc returned 300. That happens because although the machine notices the

line, it cannot transition from alloc(200) to alloc(300).

44

4.3.2 Dynamic analyzer machines

From the previous example we can see that dynamic analyzer machines are necessary

to correctly analyze log files with more than one instance of a group of log lines. For

a memory leak checker, we need the log file analyzer to be able to process “malloc”

and “free” lines in any possible sequence.

Figure 4.4 An example of a dynamic machine

Create transitions. Dynamic machines contain a special type of transition which

creates a new analyzer machine upon noticing a specific log line. We refer to this

45

type of transition as a create transition. Figure 4.4 shows an example of a dynamic

machine. In this example, we observe the definition of a log file analyzer comprised

of one dynamic machine class called memDynamic. This analyzer machine does not

have a initial state definition. Line 12 shows the create transition. This transition

specifies that upon noticing the pattern malloc(int Address), the log file analyzer

will instantiate a new memDynamic machine. In fact, the log file analyzer starts with

zero machines. As the log file analyzer encounters lines with the pattern malloc(int

Address), it creates new instances of the memDynamic machine.

Delete transitions. Dynamic machines can also contain transitions that delete an

analyzer machine upon noticing a certain log line. We refer to these type of transitions

as delete transitions. Line 15 in figure 4.4 shows an example of a delete transition.

When a line with the pattern free(int Address) is noticed, the analyzer machine

instance is deleted. In this case, the delete statement is preceded by a condition.

The condition checks whether the address specified in the log file is the same as the

address contained in the state variable allocated(int A).

Let us suppose that we are analyzing the log file shown in figure 4.3. Lines 1, 3 and

5 in the log file would trigger the creation of instances of the memDynamic machine

shown in figure 4.4. Lines Lines 3, 5 and 6 in the log file will trigger the deletion

of an instance of memDynamic. The basic logic of this log file analyzer is to create

an instance of a memDynamic machine for each malloc call. If the analyzer finds

the corresponding free for a malloc, it deletes the related memDynamic instance. It is

important to note, however, that our description of the memDynamic analyzer machine

is incomplete without describing other types of transition actions that are important

for the correct functioning of dynamic machines. In the next section, we will describe

these special types of transitions. We will also complement our explanation of how

46

the example log file in figure 4.3 would be processed.

4.4 New types of actions in transitions

As we have mentioned previously, a log file analyzer is comprised of one or more

analyzer machines. An analyzer machine is a state machine that performs transitions,

which are triggered by log file lines. Transitions usually involve a change in the

state of the analyzer machine. LFAL 2.0 introduces new types of actions that allow

transitions that besides changing the state of the machine can perform other actions

such as executing C++ code or printing user-defined messages. These new transition

actions provide the user with a fine-grained control over analyzer machine transitions

in LFAL 2.0.

In this section we describe these new types of transition actions. We will continue to

use the analyzer in figure 4.4 as a running example to illustrate how some of these

new transition actions work.

4.4.1 “Error” transitions

In chapter 2 section 2.3.3, we mentioned the conditions that cause log file analyzers

in the original version of LFAL to report errors: When a line is not noticed by a

machine and when a line is noticed but the machine cannot make a transition on it.

LFAL 2.0 introduces a new type of transition action called error. We refer to tran-

sitions that contain error actions as error transitions. These kind of transitions are

used to differentiate the case when the analyzer machine does perform a valid transi-

47

tion, but the user wants to mark such a transition as an error. Error transitions are

defined by the keyword error and a user-defined error message.

Figure 4.4 shows an example of an error transition (see lines 21–22). This error

transition provides the memDynamic machine with the capability of detecting two or

more “malloc” log lines with the same address. Consider the following log file:

1 malloc called on 100

2 malloc called on 100

From our previous discussion in section 4.3.2, the line malloc called on 100 would

trigger the creation of a new instance of the memDynamic machine in the alloc(100)

state. Let us call this instance m1. Line 2, would also trigger the creation of a new

instance, also in the alloc(100) state. Let us call that instance m2. Instance m1

would perform an error transition because it would find that the address in its alloc

state alloc(100) is equal to the address found in line 2 of the above log file example.

Therefore, m1 would perform the error transition (lines 21–22 in figure 4.4), that

would print the following error message: “Malloc had already been called for

that address”.

4.4.2 “Ignore” and “stay” transitions

In occasions, it is necessary to distinguish transitions that are valid, but need to be

ignored. This is especially true with log file analyzers that might contain several

instances of an analyzer machine, like in the case of dynamic machines. That allows

dynamic machines to ignore any lines that would be noticed by other machines of the

same type. We refer to this type of transition as ignore transitions.

48

We can observe that our running example, figure 4.4 contains two ignore transitions

in lines 18 and 25:

18 from allocated (A), on free(B), if (A != B), ignore;

25 from allocated (A), on malloc(B), if (A != B), ignore;

These ignore transitions avoid conflicts between instances of the memDynamic analyzer

machines. For instance, let us suppose we have two instances of memDynamic: m1 with

the state alloc(100) and m2 with the state alloc(200). If the log file analyzer were

to process the line “malloc returned 300”, both m1 and m2 would ignore such a line.

m1 would perform the ignore transition on shown above (line 25). The machine would

compare the address in the log line “malloc returned 300” (B) against the address

stored in the state variable allocated(100) (A). Since the values are different, the

line “malloc returned 300” would be ignored by m1. m2 would also ignore such a

line.

Stay transitions are used to indicate that a transition will not cause the state of the

machine to change. Like error transitions, stay transitions display a user–defined

message.

Our running example revisited. Now that we have explained how ignore and

error transitions work, we can conclude our discussion of how the example log file

analyzer in figure 4.4 would analyze a log file like the one shown in figure 4.3.

1. The log file analyzer starts with zero analyzer machine instances.

2. Line 1 (malloc returned 100) in the log file triggers the creation of a new

memDynamic analyzer machine. Let us call this instance m1. This instance is

created in the state allocated(100) (see create transition in line 12, figure 4.4).

49

At this point, the analyzer has one memDynamic analyzer machine instance.

3. Line 2 (free called on 100) in the log file triggers the deletion of instance

m1.

4. Line 3 (malloc returned 200) triggers the creation of a new instance of memDynamic.

Let us call this instance m2. Similarly to point 2 in this list, this instance would

be created with the state allocated(200).

5. Line 4 (malloc returned 300) is ignored by m2 (see ignore transition in line

24, figure 4.4). This line also triggers the creation of the m3 instance with the

state allocated(300). At this point, the log file analyzer has two analyzer

memDynamic machine instances.

6. Line 5 (free called on 200) is ignored by m3 (see ignore transition in line

18, figure 4.4). This line also triggers the deletion of the m2 analyzer machine

instance.

7. Line 6 (free called on 300) triggers the deletion of the m3 analyzer machine

instance.

8. The log file analyzer ends with zero analyzer machine instances. The log file

is accepted because every “malloc” call has a corresponding “free” call for the

same address.

It is important to mention that in this example, the final state declaration on line

27 is not used because memDynamic machines are deleted when they are no longer

needed.

The previous example shows how the new capabilities of LFAL 2.0 can be used to

create dynamic log file analyzers that, combined with the new types of transition

50

actions, provide the user with more control over how analyzer machine transitions

behave.

4.4.3 “Doing” transitions

Another powerful new type of transition action in LFAL 2.0 analyzers is the capability

of executing user–defined C++ code. This new feature gives users the flexibility to

customize or extend log file analyzers. We refer to this kind of transitions as “doing”

transitions.

Figure 4.5 a) in line 12 shows an example of a transition with a doing action. We

can observe that the user can include C++ statements such as references to objects

or method calls. This new feature is strongly related to data declarations, which is

described in the next section.

4.5 Data declarations

Data declarations allow users to declare external C++ objects and use them in a log

file analyzers. Normally, log file analyzers work with variables extracted from log files

or state variables. However, in some cases, users might need a mechanism that allows

them to use their own C++ objects inside a log file analyzer. This motivated us to

incorporate data declarations to LFAL 2.0.

To illustrate the use of data declarations, let us suppose we are interested in analyzing

a log file while computing some stats, such as the number of times a line appears in

the log. To do that, we would need to define a variable that could “remember” how

51

many times a transition on a given line has occurred. Figure 4.5 a) shows part of

Figure 4.5 Data declarations

an LFAL 2.0 program with a machine class called CountMessages. Line 6 shows the

data declaration. In this example, we declare the Counters object, which is of type

CountersType. Lines 10–13 show a transition where the Counters object is used to

increment a counter and call a method.

Figure 4.5 b) shows what happens when a LFAL 2.0 program has a data declaration.

During the code generation process, Counters becomes a member of the machine class

CountMessages. That allows Counters to be referenced inside the CountMessages

analyzer machine. The code generator adjusts the Makefile so that the class in the

data declaration is linked with the log file analyzer code.

With data declarations, users can embed extra functionality to log file analyzers. The

52

example shown above gives an idea of how data declarations can be used. Users can

use this feature to execute complex operations during a transition. The operations

they can perform are only limited by the content of the class they decide to specify

as a data declaration in an LFAL 2.0 program.

4.6 Shared memory integration

Log file analyzers usually read log files stored in disk. LFAL 2.0 analyzers have

the capability of reading log files stored in a shared memory area. In chapter 1,

we mentioned that shared memory areas are the fastest method of inter–process

communication [30]. We have developed a library that can be easily integrated to

a program, providing the capability of creating a log file in a shared memory area.

We refer to this library as the SmaLog library. Shared memory areas allow multiple

processes to read from and write to them at virtually the “same time”.

Figure 4.6 shows an example of how a log file is generated by two processes. Each

process writes to the shared memory log by using the writeMessage() method found

in the SmaLog library. It is important to note that the shared memory log is protected

by a semaphore. A semaphore is an IPC method that is used to synchronize processes.

In this case, the semaphore is used to protect the integrity of the log file, by preventing

two or more processes from writing to or reading from the log file at the same time.

While the two processes in this example are writing to the log file, a log file analyzer

can read and process the log lines. The log file analyzer will continue reading lines

from the shared memory area until no messages are received after a timeout.

It is important to note that shared files in memory are circular. Depending on the size

53

Figure 4.6 A log file in a shared memory area (SmaLog). In this example, a log file
is being written by two processes. At the same time, a log file analyzer is accessing
the log file in shared memory.

of the shared memory area, after a certain amount of time, the memory area will be

full and the oldest information in the log file will be replaced by new information. This

characteristic is what prevents shared memory log files from writing to undesirable

addresses in memory, which can cause segmentation faults. Our shared memory log

files are designed so that processes can be writing to them for days without causing

any problem in a system.

One of the main benefits of reading log files from memory is performance. Andrews

recognizes that one of the limitations of logging is overhead [15]. By logging messages

54

to memory instead of a disk file, we expect to tackle this problem by minimizing the

time required for an application to log a message. This feature provides analyzers

with the possibility of being integrated into multi–process, real–time systems.

The capability of reading log files is integrated into every generated log file analyzer.

To instruct a log file analyzer to read from a shared memory area, the user only needs

to invoke the analyzer with the -M option in the command line, followed by a shared

memory ID. In Unix/Linux systems, a user can see the a list of shared memory areas,

semaphores and other IPC mechanisms by issuing the command ipcs.

In the next chapter, we will present some experiments we conducted to evaluate the

performance of our log file analyzers. One of the experiments involves measuring the

difference in performance between an analyzer that reads a large log file from a shared

memory area versus an analyzer that reads the same log file from disk.

55

Chapter 5

Evaluating the Performance of Log

File Analyzers

In this chapter we describe a series of experiments that we performed to evaluate the

performance of our log file analyzers. One of the objectives of this thesis is to compare

our LFAL 2.0 log file analyzers with the original, Prolog–based analyzers. In chapter

4, we described how C++ log file analyzers differ from their Prolog counterparts in

qualitative terms, by explaining the new features introduced in LFAL 2.0 analyzers.

In this chapter, we compare log file analyzers in quantitative terms by measuring their

performance. We also illustrate the flexibility of our analyzers by providing examples

of how that they can be used to prioritize or filter system logs.

56

5.1 Performance experiments for LFAL 1.0 and

LFAL 2.0

The objective of our experiment is to compare the performance of the original, Prolog-

based log file analyzers with our LFAL 2.0 analyzers. In particular, we are interested

in finding out how fast our log file analyzers can process large log files. To achieve

our objective, we decided to generate a log file analyzer that finds specific types of

messages in a log file and counts their occurrences. We refer to this log file analyzer

as the BG/L analyzer.

To perform our experiments, we decided to use a system log from Blue Gene/L

(BG/L), which is one of the five world’s most powerful supercomputers [26]. This log

file was obtained from the Sandia National Laboratories webpage [10] and it contains

4,747,963 messages in 709 megabytes.

Besides evaluating the performance of our analyzers, we also wanted to investigate

how complex it would be to prioritize or filter log files based on work by Kent and

Souppaya in [22] and Oliner and Stearley [26]. With the new features introduced in

LFAL 2.0, our log file analyzers are more flexible. Thus, besides acting as test oracles,

our log file analyzers can be used to analyze or filter system logs.

The BG/L analyzer described in this section identifies messages based on regular

expressions that correspond to specific log entry types. This is one of the prioritization

criteria mentioned by Kent and Souppaya [22].

This log file analyzer could help system administrators to find how many “fatal”

messages are found in a log file. For example, the BG/L log file contains lines such

57

as:

KERNSOCK 1136390405 2006.01.04 R31-M0-NC-I:J18-U11

2006-01-04-08.00.05.204230 R31-M0-NC-I:J18-U11 RAS KERNEL FATAL

idoproxy communication failure: socket closed

By matching lines with the words RAS KERNEL FATAL, a system administrator could

get a quick idea of how many entries marked as “fatal” are present in the log file.

It is important to note that the BG/L analyzer only counts different entry types in

the log file. In order to be useful as a filtering/prioritizing tool, it would have to

output the matched lines to the standard output or a file. Our BG/L analyzer does

not output the matched lines because we are only interested in measuring the time it

takes the analyzer to process a large log file. However, in section 5.4 we will present

an example of a log file analyzer that acts as a temporal filter.

5.1.1 Experiment design

Our experiment consists in generating the BG/L analyzer in both the original version

of LFAL and LFAL 2.0. For simplicity, in this chapter we will refer to the original

version of LFAL as LFAL 1.0.

Our experiments are designed to evaluate two factors:

1. The number of patterns in a log file analyzer

2. The size of the log file

To evaluate how the number of patterns defined in a log file analyzer affects its

58

performance, we generated four versions of the BG/L analyzer. We will refer to them

as bgl01, bgl02, bgl03 and bgl04. The analyzer bgl01 will match and count lines

with one pattern. bgl02 will look for lines with two different patterns. Similarly,

bgl03 will match and count lines with three different patterns. bgl04 will match and

count four different patterns.

To observe how the size of a log file affects the performance of our log file analyzers, we

divided the BG/L log file into ten parts. In that way, we can observe the performance

of bgl01-bgl04 with 10%, 20%, etc. up to 100% of the log file.

We measured the performance of both LFAL 1.0 and LFAL 2.0 analyzers in CPU

time, using the /usr/bin/time Linux command. CPU time is the time a process

spends executing processor instructions. CPU time can be divided into User CPU

time and System CPU time. User CPU time represents the time spent in executing

a program’s instructions. System CPU time is the time spent in system calls [5].

We ran each version of the BG/L analyzer (bgl01-04) ten times on each of the ten

parts of the log file and measured user and system CPU time. After ten runs, we

computed the average user and system CPU times. For example, bgl01 was run ten

times on 10% of the BG/L log. bgl01 was then run ten times on 20% of the BG/L

log file. This operation was repeated until 100% of the log file was reached. This

process is repeated for bgl02-04.

Figure 5.1 shows the four patterns used in our experiments. These patterns are

presented in LFAL 2.0 syntax (see chapter 4 section 4.2) where a pattern name is

followed by a regular expression. The patterns identify different types of log messages

that indicate different events in the BG/L system.

59

Figure 5.1 The four log patterns used in our experiments. The name of the patterns
(bold underlined) are followed by a corresponding regular expression (bold). Below
each pattern, a sample log entry from the BG/L log file.

5.1.2 The LFAL 1.0 BG/L Analyzer

As mentioned above, we generated four versions of the BG/L analyzer in LFAL

1.0. Figure 5.2 shows the LFAL 1.0 program to generate the bgl01 analyzer, which

matches and counts lines of the type “fatal”. Figure 5.3 shows bgl02, which matches

and counts two types of log entries. Figures 5.4 and 5.5 show bgl03 and bgl04 re-

spectively.

As the reader might remember from chapter 4, section 4.2, LFAL 1.0 does not support

patterns. Therefore, we have no way to generate an LFAL 1.0 analyzer that could

process the original BG/L log file. In fact, LFAL 1.0 BG/L analyzers will expect to

process a log file with entries such as:

60

Figure 5.2 The bgl01 analyzer in LFAL 1.0. This analyzer matches and counts one
pattern.

Figure 5.3 The bgl02 analyzer in LFAL 1.0. This analyzer matches and counts two
patterns.

cores

cache parity

sym

fatal

Thus, in order to be able to analyze the BG/L log file with LFAL 1.0, we had to

“simplify” its log entries. To emulate the work accomplished by LFAL 2.0 patterns,

we used a sed script to match the patterns shown in figure 5.1. Sed is a stream editor

used to perform basic text transformations on an input stream [9]. Our sed script

matches the patterns and replaces them by its corresponding name. For instance, a

line such as:

61

Figure 5.4 The bgl03 analyzer in LFAL 1.0. This analyzer matches and counts three
patterns.

- 1117839086 2005.06.03 R24-M1-N6-C:J06-U11 2005-06-03-15.51.26.713752

R24-M1-N6-C:J06-U11 RAS KERNEL INFO generating core.238

which corresponds to the regex "RAS KERNEL INFO generating core.[0-9]+", would

be changed into:

cores

In addition, we eliminated any “unnoticed” log lines—that is, any lines that would

not be matched by any of the patterns in figure 5.1. This is necessary because LFAL

1.0 analyzers print an error message when a log file line is not noticed by any analyzer

machine. For instance, bgl01 in figure 5.2 would report an error if it found any line

different than cores. This is generally useful. However, for the purposes of our

experiment, this feature would affect our results. The reason is that thousands of

error messages would be printed to the standard output because the BG/L log file

has many different types of messages.

Since we are not interested in measuring the time it takes log analyzers to print error

messages, we suppressed the offending log entries. As we will see in section 5.1.3,

62

Figure 5.5 The bgl04 analyzer in LFAL 1.0. This analyzer matches and counts four
patterns.

LFAL 2.0 analyzers allow users to suppress error messages concerning unnoticed lines,

without having to modify the log file.

Figure 5.6 shows a graph with our measurements for the average user CPU time for

bgl01-04 analyzers. Each of the points on the graph represent one of the 40 obser-

vations in our experiment—that is, the average of ten runs for each of the analyzers

and each of the percentages.

It is important to note that the times shown in this graph include the time it took

to process the BG/L log file with a sed script. We can observe that, in general, time

increases with the percentage (size) of the log file processed. Similarly, the analyzer

that matches the greatest number of patterns (bgl04) takes the longest time to process

the log file.

Figure 5.7 shows the system time for the four BG/L analyzers. Similarly to the user

time graph in figure 5.6, time increases with the size of the log file. However, system

CPU time seems to be very similar for all four BG/L analyzers (bgl01-04) in 10% of

63

Figure 5.6 The CPU user time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y axis represents
the number of milliseconds of user CPU time it took on average to run the analyzer.

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer+sed
bgl02 analyzer+sed
bgl03 analyzer+sed
bgl04 analyzer+sed

the log file up to 40%, while in the rest of the percentages (50%–100%) system time

is not necessarily higher for analyzers with more patterns.

5.1.3 The LFAL 2.0 BG/L Analyzer

The procedure for our experiments is the same as the one explained in the previous

section. The only difference is that the BG/L log file was processed directly by our

LFAL 2.0 analyzer. Another important difference is that LFAL 2.0 analyzers can

omit error messages caused by “unnoticed” lines by specifying the option -u in the

command line. Therefore, LFAL 2.0 analyzers were able to analyze the BG/L log file

64

Figure 5.7 The CPU system time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y axis represents
the number of milliseconds of system CPU time it took on average to run the analyzer.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer+sed
bgl02 analyzer+sed
bgl03 analyzer+sed
bgl04 analyzer+sed

without requiring the log file to be adapted or modified in any way.

Figure 5.8 shows the LFAL 2.0 version of the bgl04 analyzer. This BG/L analyzer

declares four patterns in lines 1–4. This analyzer uses a data declaration (see chapter

4, section 4.5) to count the number of times each type of log entry is matched. In the

transitions (lines 13–16), we can observe that the members of the Counters object

are incremented when a corresponding entry is noticed. Line 20 shows a special type

of transition. LFAL 2.0 allows users to specify transitions that are to be executed

only at the beginning or the end of a log file. This special type of transitions are

declared by using the predefined begin and end patterns. In this example, the

transition on line 20 is executed only when the end of the log file is reached, just

65

Figure 5.8 The bgl04 analyzer in LFAL 2.0. This analyzer matches and counts four
patterns.

before the log file analyzer program exits. This is useful because it allows the total

count of each of the log entry types to be printed.

Figure 5.9 shows a graph with our measurements for the average user CPU time for

bgl01-04 analyzers. The results show that the time increases with both log file size

and number of patterns.

Figure 5.10 shows the average system CPU time for the four LFAL 2.0 BG/L analyz-

66

Figure 5.9 The CPU user time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y axis represents
the number of milliseconds of user CPU time it took on average to run the analyzer.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer
bgl02 analyzer
bgl03 analyzer
bgl04 analyzer

ers. In general, system time for the four analyzers is similar and increases with the

size of the log file. This does not happen in 70% and 100% of the log file, where the

system CPU time decreases.

5.1.4 Results

By comparing the user CPU time results for LFAL 1.0 in figure 5.6 and LFAL 2.0 in

figure 5.9, we can conclude that LFAL 2.0 analyzers are indeed faster than their LFAL

1.0 counterparts. To visualize how much faster LFAL 2.0 analyzers are with respect

to LFAL 1.0 analyzers, we generated a graph with the ratio between the average user

67

Figure 5.10 The CPU system time for bgl01, bgl02, bgl03 and bgl04. The x axis
represents the percentage of the log file that was analyzed and the y axis represents
the number of milliseconds of system CPU time it took on average to run the analyzer.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120

M
illi

se
co

nd
s

(m
s)

Percentage of log file (%)

bgl01 analyzer
bgl02 analyzer
bgl03 analyzer
bgl04 analyzer

CPU time for LFAL 1.0 and the average user CPU time for LFAL 2.0. Figure 5.11

shows that LFAL 2.0 analyzers are between 8 and 15 times faster depending on the

number of patterns. In fact, the ratio seems to decrease as the number of patterns

increases. For example, LFAL 2.0 is 15 times faster than LFAL 1.0 for the bgl01

analyzer and between 8 and 9 times for the bgl04 analyzer.

Figure 5.12 shows the ratio between the system time in LFAL 1.0 and LFAL 2.0. In

this case, LFAL 2.0 takes slightly more system time than LFAL 1.0. The ratio starts

at 1.5 but decreases to values between 0.7 and 0.9. This might be an effect of system

calls in C++. However, it is important to note that system CPU time is only a small

portion of the total time spent by a process. Because user CPU time is less for LFAL

68

Figure 5.11 The CPU user time ratio between LFAL 1.0 and LFAL 2.0 for bgl01,
bgl02, bgl03 and bgl04. The x axis represents the percentage of the log file that was
analyzed and the y axis represents the LFAL1:LFAL2 ratio.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

R
at

io
 L

FA
L1

:L
FA

L2

Percentage of log file (%)

ratio LFAL1:LFAL2 bgl01
ratio LFAL1:LFAL2 bgl02
ratio LFAL1:LFAL2 bgl03
ratio LFAL1:LFAL2 bgl04

2.0 analyzers, LFAL 2.0 analyzers are still faster than LFAL 1.0 analyzers.

5.2 Performance experiments for shared memory

analyzers

In chapter 4, section 4.6 we introduced shared memory integration in LFAL 2.0 ana-

lyzers. We decided to develop this feature in order to enable our analyzers to process

output from real–time or multi–process applications. Besides making all of our ana-

lyzers capable of reading log files from shared memory areas, we developed a library

69

Figure 5.12 The CPU system time ratio between LFAL 1.0 and LFAL 2.0 for bgl01,
bgl02, bgl03 and bgl04. The x axis represents the percentage of the log file that was
analyzed and the y axis represents the LFAL1:LFAL2 ratio.

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

R
at

io
 L

FA
L1

:L
FA

L2

Percentage of log file (%)

ratio LFAL1:LFAL2 bgl01
ratio LFAL1:LFAL2 bgl02
ratio LFAL1:LFAL2 bgl03
ratio LFAL1:LFAL2 bgl04

that allows developers to easily log messages to shared memory areas.

In this section, we describe the experiment we performed to measure the difference in

performance between a log file analyzer that reads the BG/L log file from a disk file

and one that reads the same log file from memory. For our experiment, we chose the

bgl04 analyzer, which matches and counts four different log entry patterns (see figure

5.8). We also provide more details as to how our log file analyzers are generated and

invoked from the command line.

In section 5.2.1 we explain how we performed our experiment with the BG/L log file

on a disk file. In section 5.2.2 we explain the procedure we followed to load the log file

on a shared memory file in order to illustrate the ease of use of our shared memory

70

library. We also demonstrate that our log file analyzers are used in the same way,

regardless of whether the log file is in memory or disk. Finally, in section 5.2.3 we

compare the performance between an analyzer processing a file in disk, versus the

same analyzer processing a file in shared memory.

5.2.1 Reading from disk

To process the BG/L log file from disk, we translated the bgl04.lfal LFAL 2.0

program into a C++ program. To do so, we invoked our code generator (see section

3.3 in chapter 3) in the following way:

lfalc bgl04.lfal

This produces the necessary C++ files and a corresponding Makefile to generate an

executable log file analyzer.

Since the bgl04 analyzer includes a data declaration, the files CountersType.cpp

and CountersType.h should be provided by the user. As the reader might recall

from section 4.5 in chapter 4, data declarations allow users to integrate their own

data types into LFAL 2.0 analyzers. In order to successfully compile the generated

C++ code with the data declaration (CountersType), the user needs to compile it in

advance so that the file CountersType.o is present and therefore linked with the log

file analyzer.

The user can compile the C++ generated code by issuing the make command. This

produces the bgl04 executable log file analyzer.

To measure the performance of the bgl04 analyzer, we ran our analyzer ten times.

71

We invoked the analyzer through the following command:

/usr/bin/time -f ‘‘%U\t%S’’ ./bgl04 -u BGL.log

The utility /usr/bin/time measures the system and user CPU time that bgl04 takes

to process the file. The option -u omits error messages for “unnoticed” lines. After

ten runs, we computed the average user and system CPU time.

We also ran an extra set of tests by placing the BG/L log file in a Network File

System (NFS) which is part of our department’s research network. This was done in

order to evaluate the difference between processing a local file and a file in a network

file system.

5.2.2 Reading from memory

In order to read a log file in a shared memory area, the user does not need to build

the bgl04 log file analyzer in any special way. Therefore, the experiment to read the

BG/L log file from memory used the same bgl04 executable file described in section

5.2.1.

In order to read the BG/L log from a shared memory area, we first need to load

it. This task is greatly simplified by the routines available in our Shared Memory

Management base libraries (see chapter 3, section 3.3.1).

Figure 5.13 shows how the BG/L log file was loaded. In line 12, the log object is

created, specifying a log file that will store 4,747,970 lines. Line 14 creates the log file

in memory. Lines 14–23 deal with opening the file BGL.log. In line 32, the method

log.logMsg() is called repeatedly to copy each line of BGL.log in disk to the shared

72

memory area log.

Normally, a process would write log messages directly to shared memory rather than

write them to a disk file and then copy the disk file to shared memory. However, we

are performing the experiment like this so that we can compare the performance as

directly as possible.

As we can observe, creating a log file in shared memory only requires two lines of

code. The developer can then use the logMsg() method to write log messages to the

shared memory area.

To process the BG/L log file in memory, we invoke the analyzer in the following way:

/usr/bin/time -f ‘‘%U\t%S’’ ./bgl04 -u -M 1234

We can observe that bgl04 is invoked in a very similar way as in section 5.2.1.

However, instead of specifying a log file, we specify a numeric memory identifier after

the -M option. In most Linux/UNIX machines, the list of shared memory areas with

their corresponding identifiers can be obtained by issuing the ipcs command.

5.2.3 Results

After running the bgl04 analyzer on the BG/L log in both disk and memory, we

obtained the results shown in figure 5.14.

System time. As we can observe in figure 5.14, the system time for the analyzer in

a NFS disk was the longest. The system time to process the BG/L log file in shared

memory was 14.14% lower with respect to the NFS file. However, the system

73

time to process the BG/L log file in a local file was 26.42% lower with respect

to the NFS file. From these results, we can see that processing a file locally causes

the processor to spend less time in system calls compared to reading the file from a

shared memory area or a file in a NFS system.

User time. In figure 5.14 we can observe that bgl04 takes the longest when pro-

cessing the BG/L log file in a network file system. By reading the BG/L log from

a local file, the time reduces by 2.7%. However, when reading the BG/L log file

from a shared memory area, the time reduces by 8.56%.

From the results above, we observe that the time to process the BG/L file from a

shared memory area is 6.03% less with respect to processing the same log file

from a local file on disk. This difference is not as large as we expected. A possible

explanation is that this might be an effect of disk caching. The operating system

might be optimizing the reading process by caching parts of the file in memory.

As we can see, processing a log file in shared memory is faster than doing so in a

file on disk. The difference is more prominent between reading from a file in a NFS

file system and reading from a shared memory area. This leads us to conclude that

in time–critical distributed systems, it is much better to use a shared memory area

to concentrate and share data among processes. The fact that LFAL 2.0 supports

shared memory areas makes it easier to integrate it to these kind of systems.

5.3 Logging overhead in disk versus memory

In chapter 4, section 4.6, we mentioned our intention to tackle the problem of logging

overhead by writing messages to shared memory instead of doing so to disk. In section

74

5.2 we described the experiments we performed in order to evaluate the difference

between analyzing a log file in memory and analyzing the same file in a shared memory

area. We were able to show that, in general, processing a log file in a shared memory

is faster. However, the problem of logging overhead has more to do with the overhead

that is introduced by developers when they log messages in their programs.

In this section we present an experiment we performed in order to measure the dif-

ference between writing a large log file to disk, versus writing the same log file to a

shared memory area. We used the BG/L log file for these experiments. Our experi-

ment consisted of two parts:

• To measure the time it takes to write the BG/L log file to a shared

memory area, we ran the program in figure 5.13 ten times and averaged the

results. For simplicity, we refer to this program as writeMemory.exe.

• To measure the time it takes to write the BG/L log to disk, we wrote a

program that reads the BG/L log and writes each log entry to a new file. We

ran the program ten times and averaged the results. We refer to this program

as writeDisk.exe.

5.3.1 Results

The table in figure 5.15 summarizes the results obtained in our experiment. It is

important to mention that besides including the CPU user and system times, we

have included the clock time. This is because the /usr/bin/time utility does not

seem to measure disk I/O operations. As we will see, the user and system CPU time

75

measurements for writeDisk.exe do not reflect the time the process takes to write

the BG/L log file to disk.

We can observe that the average clock time for writeDisk.exe is 27,262.40 ms. In

contrast, writeMemory.exe takes 15,880.30 ms. Thus, the time to write the BG/L

log file in memory is 41.47% lower compared to the time to write this log file to

disk writeDisk.exe.

In terms of average user time, we can observe that the time for writeMemory.exe is

6,927.40 ms. Conversely, the time for writeDisk.exe is only 1,766.10 ms. Regarding

average system time, writeMemory.exe took 8,920.50 ms, while writeDisk.exe

took 2,935.80. That is, in general, the system time is higher when the file is written

to memory with respect to disk.

It is important to note that the sum of system and user time for writeDisk.exe

(4,701.90 ms) is much lower than the actual clock time (27,262.40 ms). We believe that

the reason for this is that the /usr/bin/time utility is only taking into consideration

the time the process takes to execute CPU instructions. The I/O operations on the

disk are not part of the measurements reported by /usr/bin/time.

From these results, we conclude that storing log files in shared memory reduces the

overhead of logging. Developers can opt to use shared memory in order to be able to

log messages at a lower cost in terms of time.

76

5.4 An example temporal filter analyzer

In chapter 2, we mentioned that an important part of the work on log file analysis

focuses on analysis of system logs (see section 2.1). In section 5.1, we mentioned we

are interested in evaluating if our log file analyzers can perform tasks in the area of log

entry prioritization. For that reason, in this section we present an example of a log file

analyzer that acts as temporal filter. Oliner and Stearley describe a temporal filter

for system log files that allows administrators to filter certain log entries that occur

within a certain number of seconds of each other [26]. For example, if a message

appears every second for an hour, the filter will only keep the first message. This

allows system administrators to avoid repetitive messages. Figure 5.16 shows a log

file analyzer that matches a certain pattern and filters the matched lines that are

within 5 seconds of each other.

Line 1 contains the pattern cache parity. We can observe that the regular expression

contains two variables: TS and S. The variable TS captures the timestamp in the log

entry while S captures the rest of the log entry.

Line 8 contains a data declaration for an object named Counters of type CountersType.

This object is used to store the timestamp of the last matched line. The transition

in lines 12–15 echoes the first log entry that matches the cache parity pattern and

stores its timestamp in Counters.ts last.

The transition in lines 17–21 compares the timestamp of the last log entry that

matched the pattern cache parity with the threshold, which in this case is 5. If the

difference between the timestamp of the last line that matched the pattern and the

current line is more than 5, the line is printed.

77

We ran this analyzer ten times on the BG/L log file and were able to successfully

obtain 7,828 lines that match the cache parity pattern and that are more than 5

seconds within each other. The analyzer took an average of 17,937 ms of clock time

to process and filter the BG/L log file. The corresponding system and user times

were 8,177 ms and 6,011 ms.

This example shows that LFAL 2.0 analyzers are flexible and can be used not only

as test oracles, but also to perform filtering tasks on system logs. Patterns and data

declarations make filtering possible by enabling analyzers to match and manipulate

complex text patterns.

78

Figure 5.13 A sample program that illustrates how to create a log file in a shared
memory area using LFAL 2.0’s base libraries.

79

Figure 5.14 A table that summarizes the results of our experiment to compare the
performance of analyzers that read the BG/L log file from disk or shared memory

RENT
DISK)rent))user
DISK)rent)sys

BG/L%log%in%NFS%
(ms)

BG/L%log%in%local%
file%(ms)

BG/L%in%shared%
memory%(ms)

MEM)user System%time%(ms) 757)))))))))))))))))))))))) 27,196)))))))))))))))))) 650))))))))))))))))))))))))
MEM)sys User%time%(ms) 27,948)))))))))))))))))) 557)))))))))))))))))))))))) 25,555))))))))))))))))))

DISK)user
DISK)sys

Figure 5.15 A table that summarizes the results of our experiment to measure the
time to write the BG/L log file in both shared memory and disk.

a)
writeMemory.exe
Run Clock5time5(ms) User5time5(ms) System5type5(ms)

1 16136 6949 9147
2 15802 6964 8832
3 15515 6648 8858
4 15329 6790 8512
5 16078 6900 9172
6 15881 6964 8879
7 15980 6886 9023
8 15594 7041 8506
9 16096 6904 9148
10 16392 7228 9128

AVERAGE 15880.3 6927.4 8920.5

writeMemory.exe writeDisk.exe
Average3clock3time3(ms) 15,880.30 27,262.40
Average3user3time3(ms) 6,927.40 1,766.10

Average3system3time3(ms) 8,920.50 2,935.80

80

Figure 5.16 A log file analyzer that filters system log file.

81

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we have described our work regarding the automatic generation of

log file analyzers from the specification of a program’s expected behavior. Our work

builds upon previous work by Andrews, who introduced a language known as Log File

Analysis Language (LFAL) that expresses a program’s expected behavior in terms of

state machines. Andrews also developed and tested a log file analyzer generator that

translates an LFAL program into Prolog code.

The main objective of this thesis was to design and develop a log file analyzer gen-

erator that generates analyzers based on the C++ language instead of Prolog. This

was motivated by several reasons. One of them was that C++ is a modern, fast

and well-known programming language. Another important motivation was that we

expected to improve the general performance of log file analyzers by using the C++

82

programming language instead of Prolog. In addition, we wanted to take advantage

of a C++ implementation in order to incorporate new features that could make our

log file analyzers more flexible and powerful.

We extended the original LFAL language and incorporated new elements such as

support for PCRE regular expressions, different kinds of transition actions and the

possibility to extend the functionality of log file analyzers by incorporating user–

defined data members or embedding C++ code in transitions. We presented several

examples that show how these new features can be used to provide the user with

more control over the behavior in log file analyzers.

For instance, in the Prolog implementation, a log file analyzer reports an error if a

line is not noticed or if a line is noticed but none of the analyzer machines are able

to perform a valid transition. LFAL 2.0 analyzers allow users to define certain types

of transitions that, although valid, still print a user–defined error message. These

new features provide the user the ability to customize log file analyzers to a greater

extent.

In addition, we successfully designed and implemented a log file analyzer generator

that translates an LFAL 2.0 program into C++ code.

To evaluate whether the use of C++ improved the performance of our log file ana-

lyzers, we performed a series of experiments that compare the performance between

Prolog–based analyzers and C++ analyzers. Our results show that, depending on

the number of patterns defined in an analyzer, C++ analyzers can be between 8 and

15 times faster compared to their Prolog counterparts.

Our experiments also revealed the benefits and flexibility of the C++ implementation.

83

For instance, the task of analyzing a system file with the Prolog implementation

proved to be laborious. This was because the original log file needed to be modified

so that it could be analyzed. In contrast, we were able to show that LFAL 2.0’s

support for PCRE regular expressions allow our log file analyzers to match complex

log file entries. This represents a major advantage, since LFAL 2.0 analyzers do not

require developers to change the way they log events in their programs. In fact, LFAL

2.0 analyzers adapt to the logs. Logs do not have to be adapted to LFAL 2.0. This

is relevant because one of the main challenges in log file analysis is precisely the fact

that log formats differ greatly from system to system.

Another aspect of our work consisted in making our log file analyzers capable of

reading log files from shared memory areas. We performed a series of experiments

to determine how much faster it is to process a log file in disk compared to in a

shared memory area. Our results show that the time to analyze a log file is less if it

is located in a shared memory area. In fact, the log file analyzer in our experiment

took approximately 6% less user CPU time when the log file was located in a shared

memory area, compared to the time the same analyzer took to process the same log

file in a local disk. While this reduction in time does not seem to be very large, it

is important to consider that storing log files in shared memory areas has qualitative

advantages as well. This feature allows our log file analyzers to easily integrate

with multi–process, real-time systems. In addition, this opens the possibility for our

analyzers to process log files “on–the–fly”, as they are generated.

Besides integration support for shared–memory log files, we developed a easy–to–use

library which developers can use to create log files in shared memory areas. In fact,

the original motivation for developing this library was to tackle the logging overhead

problem. In order to analyze the behavior of a program, our log file analyzers require

84

that developers log events of interest in their programs. This might not represent

a problem for small programs. However, the overhead of logging messages to disk

can become a problem in real–time systems. We performed a series of experiments

to evaluate how much faster it is to write a log file to disk compared to writing the

same file to shared memory using our library. Our results showed that writing log

messages in memory takes 41% less time, compared to the time it takes to write the

same file to disk.

We also showed that our log file analyzers are flexible enough to be used in the area

of system logs prioritization and filtering.

We consider that log file analyzers have a lot of potential in the area of software test-

ing. As we mentioned earlier, the task of evaluating test results is often performed

manually and thus it can be time–consuming and unreliable. Log file analyzers are

test oracles that determine if a log file produced by a program reveals faults in it. De-

velopers often log events in their programs for debugging purposes and analyze them

precisely to determine if a program behaved as expected. However, log files are often

long or intricate and thus, difficult to analyze manually. Log file analyzers provide a

way to analyze log files automatically and reliably, helping testers to automatize the

evaluation of test results.

6.2 Future work

We believe that it is important to continue maintaining our LFAL 2.0 framework by

treating it as an open–source project, so that it can be evaluated further.

We consider that it would be very interesting to develop several case studies where

85

we apply log file analysis to a large, multi–process system. This would allow us to

evaluate how easy it is to specify the expected behavior of a whole system using LFAL

2.0. In addition, it would allow us to observe the performance and effectiveness of a

more complex log file analyzer.

86

Bibliography

[1] Analog official web site. http://www.analog.cx/. [Online. Accessed May 2012].

[2] Awstats official web site. http://awstats.sourceforge.net/. [Online. Ac-
cessed January 2012].

[3] Bison - GNU parser generator homepage. http://http://www.gnu.org/

software/bison/. [Online. Accessed January 2012].

[4] Flex (the fast lexical analyzer) homepage. http://flex.sourceforge.net/.
[Online. Accessed January 2012].

[5] Linux programmer’s manual – time. Linux Man Pages. [Accessed July 2012].

[6] National maritime museum. http://bit.ly/RoyalNavyLogs. [Online. Accessed
May 2012].

[7] Pcre - perl compatible regular expressions homepage. http://www.pcre.org/.
[Online. Accessed January 2012].

[8] Sawmill analytics. http://www.sawmill.co.uk/. [Online. Accessed May 2012].

[9] sed linux man page. Linux Man Pages. [Accessed July 2012].

[10] Supercomputer event logs. http://www.cs.sandia.gov/~jrstear/logs/. [On-
line. Accessed June 2012].

[11] Webalizer official web site. http://www.webalizer.org/. [Online. Accessed
May 2012].

[12] New Oxford American Dictionary. Oxford University Press, Inc., third edition,
2010.

[13] J.H. Andrews. Testing using log file analysis: tools, methods, and issues. In
Automated Software Engineering, 1998. Proceedings. 13th IEEE International
Conference on, pages 157 –166, 1998.

87

[14] J.H. Andrews. Deriving state-based test oracles for conformance testing. In
Proceedings of the Second International Workshop on Dynamic Analysis (WODA
2004), pages 9–16, 2004.

[15] J.H. Andrews and Y. Zhang. General test result checking with log file analysis.
Software Engineering, IEEE Transactions on, 29(7):634–648, 2003.

[16] Ilse Leal Aulenbacher, José Maŕıa Suárez Jurado, and Efrén R. Coronel Flores.
A real-time data acquisition system for the Laguna Verde nuclear power plant.
W. Trans. on Comp., 9(7):778–787, July 2010.

[17] Luciano Baresi and Michal Young. Test oracles. Technical Report CIS-TR-01-
02, University of Oregon, Dept. of Computer and Information Science, Eugene,
Oregon, U.S.A., August 2001. http://www.cs.uoregon.edu/~michal/pubs/

oracles.html.

[18] F. Chang and J. Ren. Validating system properties exhibited in execution traces.
In Proceedings of the twenty-second IEEE/ACM international conference on Au-
tomated software engineering, pages 517–520. ACM, 2007.

[19] E.R. Coronel Flores. Desarrollo de una herramienta de monitoreo y depuración
de errores de software en tiempo real para el nuevo sistema de adquisición de
datos del SIIP de la Central Nucleoeléctrica Laguna Verde. IX Congreso In-
ternacional sobre Innovación y Desarrollo Tecnológico (CIINDET), (Article ID
409), November 2011.

[20] J. Friedl. Mastering regular expressions. O’Reilly Media, Inc., 2006.

[21] J. Goyvaerts and S. Levithan. Regular expressions cookbook. O’Reilly Media,
2009.

[22] K. Kent and M. Souppaya. Guide to computer security log management. Tech-
nical Report NIST Special Publication 800–92, National Institute of Standards
and Technology, Gaithersburg, USA, September 2006.

[23] Michael Khoo, Joe Pagano, Anne L. Washington, Mimi Recker, Bart Palmer, and
Robert A. Donahue. Using web metrics to analyze digital libraries. In Proceedings
of the 8th ACM/IEEE-CS joint conference on Digital libraries, JCDL ’08, pages
375–384, New York, NY, USA, 2008. ACM.

[24] J. Levine. Flex & bison. O’Reilly Media, Inc., 2009.

[25] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Automated test oracles
for GUIs. In Proceedings of the 8th ACM SIGSOFT international symposium on
Foundations of software engineering: twenty-first century applications, SIGSOFT
’00/FSE-8, pages 30–39, New York, NY, USA, 2000. ACM.

88

[26] A. Oliner and J. Stearley. What supercomputers say: A study of five system logs.
In Dependable Systems and Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP
International Conference on, pages 575 –584, June 2007.

[27] A.J. Oliner, A. Aiken, and J. Stearley. Alert detection in system logs. In Data
Mining, 2008. ICDM ’08. Eighth IEEE International Conference on, pages 959
–964, December 2008.

[28] D.K. Peters and D.L. Parnas. Using test oracles generated from program docu-
mentation. Software Engineering, IEEE Transactions on, 24(3):161 –173, March
1998.

[29] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley. Specification-
based test oracles for reactive systems. In Proceedings of the 14th international
conference on Software engineering, ICSE ’92, pages 105–118, New York, NY,
USA, 1992. ACM.

[30] W.R. Stevens. UNIX Network Programming: Interprocess Communications, vol-
ume 2. Prentice Hall, second edition, 1999.

[31] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. Salsa: analyzing logs
as state machines. In Proceedings of the First USENIX conference on Analysis
of system logs, pages 6–6. USENIX Association, 2008.

[32] Dave Thomas and Andy Hunt. State machines. IEEE Software, 19(6):10–12,
2002.

[33] J. Valdman. Log file analysis. Technical report, Department of Computer Science
and Engineering, University of West Bohemia in Pilsen, Czech Republic, 2001.
Tech. Rep. DCSE/TR-2001-04.

[34] E.J. Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[35] D.J. Yantzi and J.H. Andrews. Industrial evaluation of a log file analysis method-
ology. In Dynamic Analysis, 2007. WODA ’07. Fifth International Workshop on,
page 4 (paper index); 7 pages total, New York, NY, USA, May 2007. ACM.

89

Vita

Name Ilse Leal Aulenbacher

Place of Birth Distrito Federal, México

Year of Birth 1981

Post-secondary The University of Western Ontario
Education London, Ontario, Canada
and Degrees 2010–2011 M. Sc. of Computer Science

Universidad del Sol
Cuernavaca, México
1999–2003 B.Sc. in Computer Systems

Honours and Awards: Mexican National Council of Science and
Technology (CONACYT)
Graduate Research Scholarship, 2011–2012

Mexican Institute of Electrical Research (IIE)
Graduate Research Scholarship, 2011–2012

Related work Researcher, developrment of real–time systems
experience: Mexican Institute of Electrical Research

2004–2010

Publications: Ilse Leal Aulenbacher, José Maŕıa Suárez Jurado,
and Efrén R. Coronel Flores. A real-time data
acquisition system for the Laguna Verde nuclear
power plant. W. Trans. on Comp., 9(7):778–787,
July 2010.

Ilse Leal Aulenbacher and José Maŕıa Suárez
Jurado. A data acquisition system for the La-
guna Verde nuclear power plant. In Proceed-
ings of the 8th WSEAS international conference
on Data Networks, Communications, Computers,
(DNCOCO’09), pages 142–146, tevens Point, Wis-
consin, USA, 2009. World Scientific and Engineer-
ing Academy and Society (WSEAS).

	Generating Log File Analyzers
	Recommended Citation

	tmp.1346296258.pdf.vXQnp

