A dominantly-inherited Behcet-like disorder caused by haploinsufficiency of the TNFAIP3/A20 protein

Q. Zhou
National Human Genome Research Institute (NHGRI)

H. Wang
National Human Genome Research Institute (NHGRI)

J. Chae
National Human Genome Research Institute (NHGRI)

D. Yang
National Institutes of Health (NIH)

E. Demirkaya
University of Medical Sciences, erkan.demirkaya@lhsc.on.ca

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/paedpub

Citation of this paper:
https://ir.lib.uwo.ca/paedpub/1121
Authors

This article is available at Scholarship@Western: https://ir.lib.uwo.ca/paedpub/1121
A dominantly-inherited Behcet-like disorder caused by haploinsufficiency of the TNFAIP3/A20 protein

Q Zhou1, H Wang1, J Chae1, D Yang2, E Demirkaya3, M Stoffels1, M Takeuchi1, A Ombrello1, D Schwartz4, P Hoffmann1, D Stone2, R Laxer5, AV Royen-Kerkhof6, S Ozen7, M Gadina4, D Kastner1, I Aksentijevich1*

From 8th International Congress of Familial Mediterranean Fever and Systemic Autoinflammatory Diseases Dresden, Germany. 30 September - 3 October 2015

Introduction
TNFAIP3 encodes the anti-inflammatory A20 protein that functions as a potent negative regulator of NFκB signaling and the NLRP3 inflammasome. Low penetrance common variants of TNFAIP3 have been associated with a number of autoimmune diseases. Here we report 5 high penetrance dominantly-inherited frameshift and nonsense TNFAIP3 mutations in 11 patients with early-onset systemic inflammation, arthralgia/arthritis, oral and genital ulcers, and ocular inflammation.

Objectives
To identify a possible genetic cause of dominantly-inherited early-onset systemic inflammatory disease.

Patients and methods
We performed exome sequencing in 3 families, candidate gene screening in 2 families, and targeted sequencing of 384 Turkish and 384 Japanese patients. We utilized immunoblotting, cytokine profiling, immunostaining, immunofluorescence, real-time PCR, and flow cytometry to study abnormalities in patients’ immune cells.

Results
Four TNFAIP3 mutations were located in the N-terminal OTU domain of A20 and generated truncated proteins of similar length, while the fifth mutation was a truncating frameshift and nonsense TNFAIP3 mutations in 11 patients with early-onset systemic inflammation, arthralgia/arthritis, oral and genital ulcers, and ocular inflammation.

Conclusion
Truncating TNFAIP3 mutations cause haploinsufficiency of the A20 protein, with upregulation of the NFκB signaling pathway, NLRP3 inflammasome activation, and overproduction of proinflammatory cytokines. Targeted therapies with biologics that inhibit these cytokines may be effective in these patients. This is the first report of a human disease caused by high penetrance germline mutations in TNFAIP3.

*NHGRI/NIH, Bethesda, USA
Full list of author information is available at the end of the article

© 2015 Zhou et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Cite this article as: Zhou et al. A dominantly-inherited Behcet-like disorder caused by haploinsufficiency of the TNFAIP3/A20 protein.