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Abstract 
This study describes a method for combining two known risk factors for 

musculoskeletal injuries in heavy machine operators: whole-body vibration and posture. 

Time spent in specific forklift driving tasks in combinations of neck and trunk postures 

(from video) with the concurrent vibration exposure (r.m.s frequency weighted 

acceleration at seatpan) is presented in contingency tables; vibration (low, medium and 

high) in columns/ posture (neutral, moderate and awkward) in rows. Time spent in 

different combinations differed between tasks and between joints. For example, 30% was 

associated with low/neutral trunk postures and 18% for the neck in the engaging the forks 

task. Meanwhile driving backward with a load inside the truck involved 52% in an 

awkward/low neck combination and 42% in the same task but without a load. Future 

research should evaluate this method with more subjects and perhaps other machines in 

addition to the forklift, and aim to evaluate risk of injury. 

Keywords 
Driving posture, whole-body vibration, forklift operator, driving tasks 
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Chapter 1 

1 Literature review 

1.1 Workplace hazards involving heavy machinery and forklift trucks 

Heavy machinery operators should be trained in safe and proper use of their vehicle 

and equipment, since the consequences of inadequate training can be deadly to the 

operator and to those in the surroundings (Horberry et al., 2004). In the United States, 

nearly 100 workers are killed and 20,000 are seriously injured from forklift use each year 

(NIOSH, 2001). However, this should not be attributed to poor training on the operator’s 

part alone; other factors can play a role. The forklift truck is a commonly used piece of 

mobile equipment in the supply and demand chain where the lifting of heavy objects is 

involved. These powerful, heavy and relatively fast moving vehicles are responsible for 

deadly and traumatic accidents, and also for musculoskeletal injuries and disorders to the 

operator (Bovenzi and Hulshof, 1999; Hoy et al., 2005; Viruet et al., 2008).  

The areas of the body that are commonly affected by occupational injuries in forklift 

operators are the lower back (Hoy et al., 2005; Viruet et al., 2008; Waters et al., 2005), 

neck and shoulders (Ariens et al., 2001; Bernard, 1997). Musculoskeletal problems 

include pain, fatigue and disorders from inadequate working postures, which may result 

in performance issues in the workplace (Standardization, 2000). Low back pain (LBP) in 

forklift operators has been found to be twice as likely to occur than for non-driving 

workers (Hoy et al., 2005), while the incidence of neck and shoulder problems was 81% 

in machine operators, including forklift drivers (Tola et al., 1988). The prevention of 



	
  

	
  

2	
  

work-related incidents, injuries, and musculoskeletal disorders is a priority in 

occupational settings where heavy machinery is used (Standardization, 2000). The 

Occupational Safety & Health Administration (OSHA) is an example of one of the many 

agencies that have injury prevention as their main focus. Injury prevention 

recommendations include having more organized traffic management, incorporating 

comprehensive worker training, providing a safe work environment, having a safe 

forklift, and encouraging safe work practices. It is clear that these injury prevention 

measurements are not geared toward musculoskeletal injuries suffered by the operator 

from their daily work tasks. Standards such as ISO 11226 and EN 1005-4 have been 

developed to assess postures in the workplace and to provide recommendations that are 

intended to reduce health risks (Delleman and Dul, 2007). Both standards agree that 

postures involving lateral flexion of the neck and trunk, a flexed low back, and high 

frequency of postures in which the joints are near their maximum range of motion, should 

be avoided (Delleman and Dul, 2007). The majority of the previously mentioned postures 

occur in normal forklift driving tasks.   

1.2  Risks for forklift operators due to posture  

Forklift operators adopt awkward postures to see specific targets around the 

forklift (Godwin et al., 2010). An awkward posture is one that when maintained for a long 

period of time, or when used repetitively, can increase the risk of fatigue, pain or injury 

(Keyserling et al., 1992). The visibility constraints that result from the design of the 

forklift truck are enhanced when carrying a load by blocking much of the view forcing 

the forklift operator to adopt extreme neck and trunk postures (Giguere et al., 2006). 

Visibility of a target around the machine, or line-of-sight (LOS), is a major concern in 
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occupational settings where heavy machinery vehicles are used (Eger et al., 2010; 

Godwin et al., 2010). Even though reports tend to focus on the outcome of accidents 

rather than the cause, approximately 80% of accidents involving forklifts causing harm to 

pedestrians, falling-off ramps, and hitting objects could be reduced by improving LOS 

(Choi et al., 2009). The ultimate goal of ergonomists and forklift truck designers is to 

improve LOS while having minimal amounts of twisting and bending of the trunk and 

neck by the operator, to hopefully reduce the incidence of musculoskeletal injuries and 

accidents.  

The tasks that forklift operators have to do require them to adopt different postures. 

Hoy and colleagues (2005) isolated four posture combinations for specific tasks: normal 

driving posture (forward bent trunk, left hand on steering wheel and right hand on truck 

controls), aligning forks posture (trunk bent sideways and twisted with the neck twisted), 

reversing posture (considerably twisted trunk and neck), and stowing posture (laterally 

bent trunk and extremely extended neck). Identifying the tasks that forklift operators are 

required to do, and the postures that they adopt in order to do them, is beneficial towards 

the development of ergonomic interventions to avoid dangerous postures.  

Working in bent or twisted postures has been linked to neck and shoulder 

problems (Delleman and Dul, 2007; Tola et al., 1988), and there is strong evidence to 

suggests that posture in general is a risk factor for musculoskeletal disorders of the neck 

and shoulder regions (Bernard, 1997). Approximately 86% of machine operators reported 

pain in the neck area of the body in a previous study (Tola et al., 1988).  Meanwhile, 

trunk rotation has been associated with 60% of back injuries in different occupations 

(Kumar et al., 2001). It is believed that these awkward postures place the spine at risk of 
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high levels of loading of the spine and trunk (Eger et al., 2008b; Eklund et al., 1994; 

Griffin, 1996) and thus, may lead to LBP (Toren, 2001). The role that fatigue may play in 

the development of musculoskeletal injuries has also been investigated by looking at the 

EMG activity of different trunk muscles during isometric rotation; they have found that 

there is a statistically significant difference between muscles in initial median frequency 

and the rate of decrease of the power spectra (p < 0.01; Kumar et al., 2001). The amount 

of time (or the duration) spent in awkward or non-neutral postures has also been 

investigated in different occupations to find a relationship with the risk of injury; studies 

have evaluated helicopter pilots (Forde et al., 2011), load-haul dump operators (Eger et 

al., 2008b), and a variety of people who work in service and industrial branches (Ariens et 

al., 2001). Eger and colleagues (Eger et al., 2008b) found that load-haul dump operators 

on average, spent about 89% of the time with their neck rotated more than 40°, 3% with 

their trunk rotated more than 30°, and 16% of the time with lateral flexion of the trunk 

between 15 and 30°. In addition to being exposed to these awkward postures, and the 

risks that accompany them, there are other factors that can increase the risk of 

musculoskeletal injury to forklift operators.  

1.3  Risks for forklift operators due to vibration 

Forklift operators are exposed to whole-body vibration (WBV), which is known to 

have negative health effects in drivers of heavy machinery (Bovenzi and Hulshof, 1999; 

Eger et al., 2008a; Milosavljevic et al., 2010; Palmer et al., 2003; Viruet et al., 2008). 

LBP is the most common health problem presented from WBV exposure, followed by 

digestive, reproductive and vestibular system disorders, visual and other nervous system 

problems (Griffin, 1996). WBV is caused by mechanical vibration that can be transmitted 
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through the seat, the backrest, and the floor (Mansfield, 2005). WBV can consist of 

transient or steady state vibration. Steady state vibration for example, can result from the 

engine of the vehicle causing the vehicle to shake, while transient vibration can result 

from traveling over uneven terrain, which can cause mechanical shock that is transmitted 

to the operator (Mansfield, 2005). The methods for measuring WBV can be found in the 

ISO standards (ISO 2631-1; 1997), and the appropriate standards and calculation methods 

are to be selected accordingly with concerns of health and comfort, vibration perception 

and motion sickness. Since the human body responds differently depending on the 

frequency of the vibration, frequency weightings are applied to the root-mean-square 

(r.m.s) acceleration to allow comparison (Mansfield, 2005). Health, performance, and 

comfort are affected by WBV exposures in the frequency range between 1 – 20 Hz 

(Mansfield, 2005), and there is strong epidemiological evidence linking LBP to WBV 

(Bernard, 1997; Pope et al., 2002; Pope et al., 1999). LBP has been reported as the main 

cause of sick leave in the developing world (Pope and Novotny, 1993), it is at least twice 

as high in forklift operators  than in non-driving controls (Hoy et al., 2005), and it is a 

major health concern that affects millions of people worldwide (Pope et al., 2002). In the 

findings from a national survey in Great Britain, it was concluded that the most common 

sources of occupational vibration with significantly higher exposures were found in 

forklift truck and mechanical truck operators, farm workers, and truck drivers (Palmer et 

al., 2000). Motmans and colleagues (2012), investigated how factors such as track, load, 

engine, tires, cab suspension, seat suspension, driving speed, driving behaviour, body 

weight of the driver, and driving posture affect the amount of WBV to which forklift 

operators are exposed. From this experiment it was determined that a combination of 
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having a smooth driving surface, reducing the maximum speed limit and the use of 

air suspension can reduce WBV below the European directive’s limits (0.5 m/s2; 

Motmans, 2012).   

Standards for human health and vibration (ISO 2631-

1) state that to look at the effects of vibration exposure on 

health and comfort, the magnitude of vibration in the 

dominant axis should be observed in relation to the 

Health Guidance Caution Zones  (HGCZ; ISO, 1997). 

The dominant signal is usually found in the vertical 

translational axis (az), in the direction of the spine. 

Exposure can be measured using a basicentric co-ordinate 

system (Figure 1) with an origin at a point between the 

vibrating surface and the body; on the seat pan in the case 

of forklift operators (Griffin, 1996).  

The risk of musculoskeletal injuries suffered by heavy machinery operators, who are 

exposed to WBV, can be lowered by making sure that certain working conditions are met; 

these include: lowering speed limits (e.g., from 15 km/h to 8 km/h; Motmans, 2012), 

having adequate seat attenuation (e.g., mechanical suspension for heavier drivers and air 

suspension for lighter drivers; Motmans, 2012), have adequate maintenance of traveled 

roads to avoid excessive exposure to vibration, and to adopt comfortable postures 

avoiding excessive twisting, bending or slouching (Griffin, 1996). In the case of forklift 

operators, among others, it is virtually impossible to avoid twisting, bending and 

slouching since performing their jobs in a safe manner depend on them. Ergonomic 

Figure	
  1	
  -­‐	
  The	
  basicentric	
  co-­‐
ordinate	
  system	
  with	
  
its	
  six	
  degrees	
  of	
  
freedom.	
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modifications need to be made to the design of forklift trucks to change this. 

Standards for WBV such as the ISO 2631-1 do not consider the combined effects of 

vibration with different postures. Currently the majority of the literature regarding the 

combination of posture and WBV exposure is relatively new; the interest is from 

researchers in occupational fields that involve driving due to the high incidence of low 

back pain, and musculoskeletal disorders in general (Eger et al., 2008a; Eger et al., 

2008b; Hermanns et al., 2008; Hoy et al., 2005; Morgan, 2011; Okunribido et al., 2007; 

Punnett et al., 2005; Raffler et al., 2010; Wikstrom, 1993).   

1.4. Risks for forklift operators due to combined posture and vibration  

There is a biologically plausible relationship between WBV and posture as the cause 

of LBP in forklift drivers (Viruet et al., 2008). A factor in this relationship is the 

resonance frequency of the body (Pope et al., 1999). Research has shown that different 

postures change the way vibration travels through the body, affecting its frequency 

response (DeShaw and Rahmatalla, 2011). For example, sitting in a slouched position on 

a seat without a backrest has been found to decrease the principal resonance frequency of 

the body from 5.2 to 4.4 Hz, (Kitazaki and Griffin, 1998). Simultaneous WBV and 

posture exposure led to decreases in performance in terms of reaction time and workload 

demand while doing the NASA task load index workload assessment; performance was 

affected further while in twisting postures without a backrest (Newell and Mansfield, 

2008). Health and safety guidelines for WBV exposure in the workplace state that 

ergonomic factors such as poor posture (while driving) and poor visibility (that requires 

twisting and stretching) can cause back pain on their own, and these risks increase further 

when you combine them with WBV (Griffin et al., 2006).  
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Hoy and colleagues (2005) are one of the few research teams who have 

investigated WBV and posture in forklift operators as a risk factor for LBP. They found 

that forklift drivers were exposed to dangerous levels of vibration in the z-axis, while 

vibration in the x and y-axes was acceptable, and they identified certain postures as being 

likely to lead to LBP. However, they comment on the possible increased risk due to these 

factors individually, and not on the possible effects resulting from both. Standards for 

musculoskeletal risk prevention due to combined exposures of WBV and postures need to 

be developed. To develop these standards, more research is needed to establish the 

relationship and the factors that can lead to injury as a result of both WBV and posture.  

1.5  Methods for assessing combined posture and vibration 

Methods for assessing posture include questionnaires, observational measurements 

from video, and field measurements such as goniometers and for video analysis. Hoy and 

colleagues (2005) assessed the combined exposure of vibration and postures, in forklift 

operators. From video, evaluators identified four tasks that were performed the most, 

which were then subjected to further investigation with the Ovako Working Posture 

Analysis System (OWAS) and the Rapid Upper Limb Assessment (RULA) techniques. 

The postures adopted by city bus drivers have also been evaluated by using observational 

measurements; Okunribido and colleagues (2007) observed drivers for a period of time in 

which notes were taken every minute on the postures that were adopted. Two 

disadvantages with these methods are that they only evaluate postures at designated times 

and not consistently throughout the entire driving time, and the latter relies on the 

evaluator’s memory.  
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An adaptation of the “Computer-assisted recording and long-term analysis of 

musculoskeletal loads” (CUELA) system has been used (Hermanns et al., 2008; Raffler et 

al., 2010) on seated operators of many different vehicles (e.g., tram, helicopter, saloon 

car, van, forklift truck, etc). The CUELA system is capable of displaying simultaneous 

posture, video and vibration data; however, an unfortunate limitation was the system’s 

inability to measure axial rotations, which are very common postures adopted by forklift 

operators. Conversely, they classified postures and vibrations into categories and then 

into a 3 x 3 matrix scheme. This method of displaying the posture and vibration exposure 

is helpful for understanding their relationship.  

3D Match is a video-based posture assessment method that has been used with 

automobile assembly workers (McClellan et al., 2009; Seaman et al., 2010), load-haul 

dump operators (Eger et al., 2008b), and helicopter pilots (Forde et al., 2011). One of the 

advantages of using observational measures is that operators are free to do their job 

without any pieces of equipment that may affect their normal performance of tasks 

(Vieira and Kumar, 2004). Another advantage of using software like 3D Match is that it 

allows the evaluator to assess the operator’s posture at each frame of the video by 

selecting a bin containing the appropriate range of movement (e.g., 0-10°) for a given 

posture (e.g., neck/trunk flexion/extension, lateral flexion, and axial rotation). The 

optimal size for posture bins in the 3D Match software have been evaluated and deemed 

appropriate to avoid misclassification errors by the coder (van Wyk et al., 2009).  

The potential health risks resulting from WBV and posture as individual factors have 

been evaluated; however, the combined effects of these factors need to be addressed 

further. 
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Chapter 2 

2 Introduction   

The forklift is the most commonly used piece of mobile equipment in occupational 

settings where there is heavy lifting involved, such as in warehouses. These powerful, 

heavy and relatively fast moving vehicles are involved in deadly and traumatic accidents, 

and also in musculoskeletal injuries and disorders to the operator (Bovenzi and Hulshof, 

1999; Hoy et al., 2005; Viruet et al., 2008). The areas of the body that are commonly 

affected by occupational injuries in forklift operators are the lower back (Hoy et al., 2005; 

Viruet et al., 2008; Waters et al., 2005), neck and shoulders (Ariens et al., 2001; Bernard, 

1997). Forklift operators are twice as likely to suffer of low-back pain (LBP) than those 

who do not operate heavy machinery (Hoy et al., 2005). Musculoskeletal problems such 

as pain, fatigue and disorders from inadequate working postures may result in 

performance issues in the workplace (Standardization, 2000). 

Standards like ISO 11226 and EN 1005-4 are designed to assess postures in the 

workplace and to provide recommendations to reduce health risks (Delleman and Dul, 

2007). It is generally understood that quick and frequent movements of joints nearing the 

limit of their range of motion, postures involving lateral flexion of the neck and trunk, a 

flexed low back, and postures in which the joints are near their maximum range of 

motion, to name a few, should be avoided (Delleman and Dul, 2007). However, the 

previously mentioned postures all occur in normal forklift driving to improve visibility of 

targets, or line-of-sight (LOS; Giguere et al., 2006; Godwin et al., 2010; Hella et al., 

1991; Hoy et al., 2005; Waters et al., 2005). Even though reports tend to focus on the 
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outcome of accidents rather than the cause, approximately 80% of accidents 

involving forklifts causing harm to pedestrians, falling-off ramps, and hitting objects 

could be reduced by improving LOS (Choi et al., 2009). It is well recognized that a major 

risk factor to musculoskeletal injuries are awkward or extreme postures (bent or twisted 

postures; Delleman and Dul, 2007); therefore, identifying the postures involved in the 

tasks performed by forklift operators may be beneficial in the development of ergonomic 

interventions to avoid potentially harmful postures. In addition to being exposed to an 

increased risk of injury from awkward postures, there are other factors that can increase 

the risk of musculoskeletal injury to forklift operators. 

Whole body vibration (WBV) is another factor that affects forklift operators (Blood et 

al., 2010; Costa and Arezes, 2009; Motmans, 2012; Rashed, 2007). Health, performance, 

and comfort are affected by WBV exposures in the frequency range between 1 – 20 Hz 

(Mansfield, 2005), and there is strong epidemiological evidence linking low back pain 

(LBP) to WBV (Bernard, 1997; Pope et al., 2002; Pope et al., 1999). Standards for health 

and vibration (ISO 2631-1) provide Health Guidance Caution Zones (HGCZ) for 

evaluating vibration exposure (ISO, 1997). The vertical translational axis (az), along the 

length of the spine, is commonly the dominant vibration axis; exposure can be measured 

using a basicentric co-ordinate system with an origin at a point between the vibrating 

surface and the body (i.e., the seatpan for seated exposure; Griffin, 1996). It is recognized 

that WBV and posture can lead to musculoskeletal injuries as individual factors, but more 

research is needed to determine how these factors behave in combination.   

There is evidence indicating a biologically plausible relationship between WBV and 

posture as the cause of LBP in forklift drivers (Viruet et al., 2008); however, the link is 
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not yet fully defined. A possible link is the resonance frequency of the body (Pope 

et al., 1999) since it has been found to change with different postures; e.g., increases 

when the spine is rotated (DeShaw and Rahmatalla, 2011). Discomfort increases if the 

spine is twisted during vibration exposure (Wikstrom, 1993). Lastly, simultaneous WBV 

and posture exposure decreases performance, especially while in twisted postures without 

a backrest (Newell and Mansfield, 2008). This is all clear evidence that in order to create 

workplace modifications that might decrease the occurrence of musculoskeletal injuries, 

the combined effects of WBV and posture need to be assessed.  

The relationship between vibration exposure and overall time spent in extreme 

postures has been investigated in a variety of ways. Field posture measurements have 

used the CUELA system or observational methods combined with the Ovako working 

posture analysis system (OWAS) and the rapid upper limb assessment (RULA) 

techniques (Hermanns et al., 2008; Hoy et al., 2005; Raffler et al., 2010). These posture 

assessment techniques separate movements, tasks and body parts and create a code to 

assess posture, similarly to other studies (Eger et al., 2008b; Hermanns et al., 2008; 

Raffler et al., 2010). The CUELA system was used (Hermanns et al., 2008; Raffler et al., 

2010) to evaluate seated operators of many different vehicles (e.g., tram, helicopter, 

saloon car, van, forklift truck, etc). Unfortunately this system is not able to measure axial 

movements, which are very common postures adopted by forklift operators; this is an 

important limitation. However, they classified postures and vibrations into categories and 

then into a 3 x 3 matrix scheme. We believe that this is a useful way of displaying the 

posture and vibration exposure relationship, and may help gain a better understanding of 

the relationship between posture and vibration. Hoy and colleagues (Hoy et al., 2005) also 
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assessed the combined vibration and posture exposures, specifically in forklift 

operators. They identified postures in different tasks; however, they only evaluated 

selected postures in specific periods of time, and their conclusions regarding LBP were 

drawn from considerations when viewing posture and vibration individually rather than in 

combination.  

The goal of this study was to describe a method to assess the proportion of time spent 

in various combinations of posture and vibration during different tasks. Since certain 

postures and vibration levels, when viewed individually, are associated with increased 

risk of injury, it follows that specific combinations of these posture and vibration 

parameters may increase the risk of injury further, however, a method to study these 

factors in combination is needed. When considering ergonomic interventions it may also 

be useful to study the impact of vibration and posture on the neck and trunk separately as 

the effects may differ. 
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Chapter 3 

3  Methods 

The Board of Ethics at Western University approved this field study that took place at 

a distribution and storage facility in London, Ontario, Canada (Appendix A.1). Informed 

consent was obtained from the subject prior to the beginning of data collection (Appendix 

A.2). The desired measurements were obtained during normal forklift operations of a 

licensed 55-year-old male (1.88 m, 107 kg) with 20 years of forklift driving experience. 

The normal forklift operations consisted of combinations of driving forward, driving 

backward, driving with forks loaded or unloaded, engaging the forks, driving in the 

warehouse, and driving inside the truck. The data collection process was stopped twice to 

check that all the data acquisition instrumentation was working properly. Information on 

the forklift (Figure 2) is presented in Appendix B. 

Figure	
  2	
  -­‐	
  Forklift	
  used	
  during	
  testing	
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3.1  Test procedure 

Data collection began with the setting up of the instrumentation, which was placed in 

a way that it did not interfere with normal machine operations. The instrumentation 

included three video cameras, two IMUs (Inertial Measurement Units; MAG3; 

MEMsense), and an eye-gaze tracking system (ASL H6 Eyetracking system, Applied 

Science Laboratories, Bedford, MA) The eye tracker data will be used in future in-lab 

studies; therefore, it will not be discussed in this paper. .  

3.2  Driving Posture Measurements 

A custom-made aluminum cross (made 

from profile beams) was mounted on top of 

the forklift to attach the cameras. The cross 

was firmly secured to the fall-on protection 

with four large ‘C-clamps’, and the cameras 

were secured with six-degree of freedom 

Manfrotto clamps (Figure 3). The cameras were 

positioned to capture the entire torso of the operator at 

all times.  

Three video cameras were used to capture the 

postures of the forklift operator. The camera (HDR-

XR550V; Sony) that was mounted at the side of the 

forklift (Figure 4) had a sagittal view of the operator 

and was equipped with a wide-angle lens to capture 
Figure	
  4	
  –	
  Camera	
  on	
  lateral	
  side	
  of	
  

the	
  forklift	
  

Figure	
  3	
  -­‐	
  View	
  of	
  custom-­‐made	
  cross	
  on	
  top	
  
of	
  the	
  forklift	
  attached	
  with	
  c-­‐
clamps	
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a larger field of view; this was necessary since the cameras had to be mounted close 

to the forklift cab so that they did not interfere with machine operations. The camera (GZ-

MG555U; JVC) that was mounted at the front of the forklift (Figure 5) had a frontal view 

of the operator, with his head at the top of the image. The camera (GZ-MG555U; JVC) 

located at the back of the forklift (Figure 6) had a posterior view of the operator along 

with both side-view mirrors.  

3.3 Vibration measurements  

The vibration measurement 

equipment consisted of two IMUs (±5 G, 

±1200°/s; MAG3; MEMsense). One IMU 

was magnetically attached to the floor of 

the forklift chassis, at the base of the seat 

(Figure 7). The second IMU was located 

Figure	
  5	
  -­‐	
  Camera	
  at	
  the	
  front	
  of	
  the	
  
forklift.	
   Figure	
  6	
  -­‐	
  Camera	
  at	
  the	
  back	
  of	
  the	
  

forklift.	
  

Figure	
  7	
  -­‐	
  IMU	
  magnetically	
  attached	
  to	
  the	
  
forklift	
  chassis	
  at	
  the	
  base	
  of	
  the	
  
seat	
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on the seat interface (between the seat and the buttocks of the operator) within a 

semi-solid rubber mold (Figure 8) as defined in ISO 10326-1(Standardization, 1992). 

Two portable data acquisition units, or data loggers (DataLOG P3X8; Biometrics Ltd.; 

Newport, UK) were used to sample the data (1000 Hz) from 16 analog channels onto two 

separate one-gigabyte memory flash cards. A SYNC2 cable (Biometrics Ltd.) was used to 

start data collection on both data loggers simultaneously. The data loggers were placed 

behind the operator’s seat inside a bag (Figure 9) with the cables of the accelerometers 

secured in order to prevent any tripping, tangling or damage to the equipment.  

 

3.3.1  Accelerometer and IMU Calibration 

The IMUs were calibrated by collecting data (1000 Hz) for each translational and 

rotational axis with the sensors attached to a 6-DOF (degree of freedom) robotic platform 

(R3000, Mikrolar Inc., Hampton, NH, USA; Cation et al., 2011). Each translational axis 

was exposed to 17 different profiles containing sinusoidal waveforms with peak-to-peak 

Figure	
  5	
  -­‐	
  View	
  of	
  IMU	
  underneath	
  rubber	
  mold	
  on	
  the	
  
seatpan	
  and	
  cables	
  secured	
  to	
  the	
  chassis,	
  
leading	
  into	
  bag	
  behind	
  operator's	
  seat	
  

Figure	
  9	
  -­‐	
  Bag	
  used	
  to	
  store	
  
dataloggers	
  behind	
  
operator's	
  seat	
  during	
  
testing	
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accelerations between 1 and 8 m/s2 at 1, 2 and 5 Hz. Each rotational axis was 

exposed to 20 different profiles containing sinusoidal waveforms with peak-to-peak 

angular velocities between 10 and 100 °/s at 1, 2, and 5 Hz. The data was filtered with a 

bandpass 2nd order Butterworth filter (0.5 – 20 Hz) and the maximum and minimum 

values for each sinusoidal wave were extracted and fitted with a line. The equation for the 

line for each translational and rotational axis was used for calibration. 

3.4  Driving posture analysis  

Before doing posture analysis, the video 

files were prepared by inverting the images, 

and synchronizing the views from the different 

cameras. In order to aid the driving posture 

analysis, white tape was applied to the front 

and sides of the trunk to help identify 

translational and rotational movements of the 

trunk and head on video (Figure 10). This 

allowed for easier coding of driving postures in 

situations when the environment was dark and 

it was more difficult to identify the postures.  

3.4.1  Video preparation  
The video files from the three cameras and the eye-gaze camera were imported to a 

laptop. As a result of the interruptions for calibration purposes, there were three blocks 

for analysis referred to as trial 1, trial 2 and trial 3. Each video was flipped horizontally 

Figure	
  6	
  -­‐	
  View	
  of	
  operator	
  with	
  white	
  tape	
  on	
  
his	
  shirt	
  to	
  aid	
  in	
  the	
  posture	
  
analysis	
  process	
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and vertically, since the cameras were mounted up side down, and the different 

camera views were synchronized for each trial (Dartfish TeamPro 5.5, 2009; Georgia, 

USA). There were there different camera views of the forklift operator (frontal, sagittal, 

and posterior perspective), as well as the operator’s perspective captured with the eye-

gaze camera. Synchronization of the camera views was done by means of identifying the 

first frame in which a synchronization light was turned-on in front of all the cameras at 

the start of each video trial. Once the frame with the light “on” was identified, all the 

videos were lined-up to it and arranged to play simultaneously in a two-by-two layout 

(Figure 11). Three final videos with synchronized camera views were saved as AVI 

(Audio Video Interleave) files to allow for straightforward assessment of postures during 

the frame-by-frame coding process.  

3.4.2  Task Identification 
The investigator identified nine tasks that the forklift operator performed, including 

those identified in previous research (Hoy et al., 2005), and assigned them a numerical 

Figure	
  7	
  -­‐	
  View	
  of	
  synchronized	
  videos	
  in	
  a	
  2	
  by	
  2	
  arrangement.	
  The	
  top	
  left	
  view	
  is	
  
from	
  the	
  eye	
  gaze	
  camera	
  on	
  the	
  goggles;	
  the	
  top	
  right	
  from	
  the	
  camera	
  at	
  
the	
  back;	
  bottom	
  left	
  from	
  the	
  camera	
  at	
  the	
  side;	
  bottom	
  right	
  is	
  from	
  the	
  
camera	
  at	
  the	
  front	
  of	
  the	
  forklift.	
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value; this was performed while reviewing the 30 frames per seconds (fps) 

compilation videos. Any task that was not part of normal forklift driving tasks, such as 

calibrating, was assigned a dummy task number and was excluded from further analysis. 

The task categories consisted of the following conditions: forklift loaded or unloaded, 

driving forward or backward, and driving in the truck or in the warehouse (Table 1).  

 

Table 1: List of tasks 

Task # Task Name 
1 Engaging forks 
2 Driving loaded forward in warehouse 
3 Driving loaded forward in truck/ramp 
4 Driving loaded backward in warehouse 
5 Driving loaded backward in truck/ramp 
6 Driving Unloaded forward in warehouse 
7 Driving unloaded forward in truck/ramp 
8 Driving unloaded backward in warehouse 
9 Driving unloaded backward in truck/ramp 
10 Dummy task number 

3.4.3  Posture coding 

The three AVI video trials with the two-by-two synchronized views were down-

sampled to 6 fps (Prism Video File Converter v 1.88; Boston, MA), and then used for 

posture coding. A short clip of the video data that contained quick neck turning 

movements determined, with a residual analysis (Winter, 2009), that 6 fps was the lowest 

acceptable frequency to capture postures with the software used. 3D Match software was 

used to evaluate the forklift operator’s postures (version 5.03, Callaghan, University of 

Waterloo, Ontario, Canada, 2006). Posture was evaluated on a frame-by-frame process by 

selecting the appropriate posture category bin from the different posture categories for 

various joint angles in each frame. The joints for the trunk and the neck were evaluated. 
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The posture categories varied in flexion, extension, lateral bend, and rotation 

(Appendix C). There were three bins, out of the total, that were used to describe each joint 

angle in each frame. The posture data were saved as an output file that contained a series 

of values for each point in time, for each posture of the neck and the trunk; these were 

reassigned values between zero and two. 

3.5  Analysis of the acceleration data 

The data from the IMUs and accelerometer were exported as text files using the 

Biometrics DataLog PC software (Version 7.50; Ladysmith, VA, USA) for further 

analyses with LabVIEW (LabVIEW 2010, National Instruments; Austin, TX, USA). A 

custom-made LabVIEW program converted the data from “counts” into voltages 

(4000 counts = 3 volts), and applied the calibration factors for linear acceleration and 

angular velocity units. The appropriate frequency weightings for vibration and health 

were applied by using the National Instruments ‘Sound and vibration’ toolkit. As 

indicated by ISO 2631-1 standards, different frequency weightings are needed for each 

axis; for health concerns, the frequency-weighting factor for the dominant axis (wk) is 

used, which was the vertical direction in this study. The lower and upper limits for 

assessing the frequency weighted r.m.s acceleration were 0.45 and 0.90 m/s2 respectively. 

These limits are based on ISO 2631-1 magnitudes for the 8-hour HGCZ. From these 

limits we assigned a value for each of the three regions; for r.m.s frequency weighted 

acceleration values less than 0.45 (low), between 0.45 and 0.90 (medium), and greater 

than 0.90 m/s2 (high) r.m.s respectively.  

The vibration exposure data was summarized in terms of commonly reported 

measures. The dominant frequency was calculated by using one-third octave analysis to 
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determine acceptable daily exposure durations and compare our values to other 

seated vibration exposure. The crest factor is a ratio of the peak acceleration and the 

r.m.s, as a result they are highly influenced by instantaneous shock. Vibration Dose Value 

(VDV) was calculated by taking the fourth root of the sum of the fourth power of the 

frequency-weighted r.m.s acceleration.  

3.6  Sample Rate Differences 

It is important to note that studying posture and vibration in combination poses certain 

technical difficulties. Since the video cameras had a sampling rate of 30 Hz, the vibration 

measurements were done at 1000 Hz, and posture was assessed with 3D Match at 6 Hz, 

we needed to match their frequency content to extract vibration and posture data at each 

point in time for each task. The acceleration data were frequency weighted with the ISO 

filters. This effectively reduced the frequency content to less than 16 Hz. The acceleration 

data were then down-sampled to 30 Hz to match the video data that was obtained at 

30 fps. The posture output file from 3D Match containing the new values between zero 

and two at 6 fps were interpolated to 30 Hz to match the task data. 

3.7  Combined Effect of Posture and Vibration  

Prior to analyzing the combined effects of posture and vibration, the three blocks of 

data had to be combined. The final version assessed posture and vibration for the nine 

tasks. The task with the dummy task number was omitted.  

To assess the combined effect of posture and vibration, we created a scoring 

system that allowed us to distinguish the two factors and to know the resulting 

combination. A different score was obtained for combinations of low, medium high 
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vibration and neutral, moderate and awkward posture. The amount of time spent in 

each of these combinations was reported on a 3 by 3 contingency table, separately for the 

neck and trunk for each task. The columns contain the vibration zones divided into low, 

medium and high risk of exposure, as suggested by ISO-2631-1 and as used in previous 

research (Eger et al., 2008a). The rows contain the postural risk regions (neutral, 

moderate and awkward) as determined by the scoring system used on the 3D Match 

postural ranges, as described previously in this section.  
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Chapter 4 

4  Results 

4.1  Participant Demographics  

The operator was a 55-year-old male (107 kg, 1.88 m) who had 20 years of experience 

operating a forklift. He was self-described as having a mesomorph body type and being of 

average physical fitness. He was involved in physical activity (cardio and strength) 

between 30-44 minutes 1-2 times per week. With regards to previous musculoskeletal 

injuries, the operator had experienced an injury over a year ago affecting his shoulder; 

however, it was believed to have arisen from improperly lifting scuba tanks. He never had 

to change duties or jobs or missed work due to this shoulder trouble.  

When asked about the task demands and the cab design, the operator indicated that in 

order to see what he was doing and where he was going while operating the forklift, he 

had to adjust his posture. The task that he isolated as demanding an adjustment in his 

posture every time was backing up, and it requires him to turn his neck and back to look 

backwards. Lastly, he indicated that he did not have to adjust his posture in order to 

manipulate the machine’s controls. 

4.2 Vibration Measurements  

A summary of vibration data was obtained to quantify the vibration exposure (Table 2).  

The r.m.s acceleration for the total duration was 0.98 m/s 2 and was as low as 0.56 m/s 2 

in one of the tasks; these values are to be expected for vibration experienced on a forklift 

truck and are in the moderate to high risk of injury due to vibration. The majority of the 
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crest factor values were between 6.5 and 9, except for two tasks that had crest 

factors of about 12. Most tasks had a dominant frequency between 3.15 and 5 Hz. Task 1 

had an unusually high dominant frequency (20 Hz).  

Table 2 - Vibration Summary Table for the z-axis (vertical) 

 
VDV 

(m/s 1.75) 
r.m.s 

(m/s 2) 
Peak 

(m/s 2) 
Crest 
Factor 

Dominant 
Frequency 

(Hz) 
Task 1 17.71 0.55 3.63 6.53 20 
Task 2 20.89 0.65 5.87 8.99 5 
Task 3  50.30 1.37 11.82 8.58 3 
Task 4 37.89 0.92 11.39 12.33 5 
Task 5 24.81 0.74 5.83 7.80 3 
Task 6 36.27 1.11 8.52 7.67 5 
Task 7 44.52 1.71 12.00 7.01 4 
Task 8 32.73 0.96 7.10 7.37 5 
Task 9 57.72 1.42 18.45 12.96 4 
Total 72.11 0.98 18.45 18.67 4 
VDV (Vibration Dose Value); r.m.s (root-mean-square) 

4.3  Combinations of vibration and posture  

The purpose of this thesis was to develop a method for evaluating the combination 

of two known (individual) risk factors for musculoskeletal injuries in heavy machine 

operators; therefore, the specific findings are less important than the overall process. 

Nevertheless, the specific findings illustrate the power of this approach for gaining insight 

into the risks of combined posture and vibration exposures. 

 There are general similarities in the combinations of posture and vibration for the 

neck and spine; however, usually the neck had a greater proportion of awkward postures 

and low vibration compared to the back. The contingency tables (Figure 12) show that 

the time spent in the different posture/vibration combinations is different for each task, 

and also for the neck and the trunk. For example, the task of driving backward with a load 
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in the truck involved having the neck in an awkward posture combined with a low, 

medium or high level of vibration for 87% of the duration of the task; the trunk spent 

72% of the time in an awkward posture combined with different levels of vibration. 

However, driving forward without a load in the warehouse is an example of a task that 

had evenly distributed proportions of time for all the posture/vibration combinations. This 

pattern is also observed in other tasks such as driving with a load forward in the 

warehouse, and in the truck. 

  
NECK (%) 

 
TRUNK (%) 

Po
st

ur
e 

Awkward 26% 22% 3% 
 

10% 9% 1% 
Moderate 9% 6% 1% 

 
13% 11% 2% 

Neutral 18% 13% 2% 
 

30% 21% 3% 

  Low Medium High 
 

Low Medium High 
  Vibration  Vibration 

Percentage of time spent in the different combinations of vibration and posture while 
engaging the forks (duration of 277 s) 

        
    

Po
st

ur
e 

Awkward 36% 26% 8% 
 

21% 16% 5% 
Moderate 13% 6% 2% 

 
17% 12% 4% 

Neutral 4% 3% 2% 
 

15% 8% 3% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving loaded forward in the warehouse (duration of 167 s) 

        
    

Po
st

ur
e 

Awkward 26% 22% 9% 
 

14% 13% 4% 
Moderate 8% 7% 5% 

 
10% 8% 9% 

Neutral 10% 7% 7% 
 

20% 15% 8% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving loaded forward in truck/ramp (duration of 131 s) 

        
    

Po
st

ur
e 

Awkward 34% 21% 17% 
 

23% 16% 16% 
Moderate 11% 5% 1% 

 
10% 4% 2% 

Neutral 7% 3% 1% 
 

18% 9% 2% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving loaded backward in the warehouse (duration of 188 s) 
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Po
st

ur
e 

Awkward 52% 24% 11% 
 

41% 21% 10% 
Moderate 7% 2% 1% 

 
9% 3% 1% 

Neutral 4% 1% 0% 
 

11% 2% 1% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving loaded backward in truck/ramp (duration of 117 s) 

        
    

Po
st

ur
e 

Awkward 11% 8% 7% 
 

5% 5% 3% 

Moderate 11% 10% 9% 
 

9% 9% 7% 

Neutral 16% 15% 13% 
 

24% 19% 19% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving unloaded forward in the warehouse (duration of 165 s) 

        
    

Po
st

ur
e 

Awkward 8% 6% 15% 
 

5% 5% 6% 
Moderate 6% 5% 5% 

 
7% 7% 15% 

Neutral 22% 15% 17% 
 

25% 14% 16% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving unloaded forward in the truck/ramp (duration of 57 s) 

        
    

Po
st

ur
e 

Awkward 25% 20% 20% 
 

14% 12% 16% 
Moderate 10% 5% 2% 

 
14% 8% 3% 

Neutral 12% 6% 2% 
 

19% 10% 5% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving unloaded backward in the warehouse (duration of 181 s) 

        
    

Po
st

ur
e 

Awkward 42% 21% 18% 
 

42% 21% 18% 
Moderate 7% 5% 1% 

 
8% 3% 1% 

Neutral 4% 2% 1% 
 

3% 3% 1% 

  Low Medium High 
 

Low Medium High 

  Vibration  Vibration 
Percentage of time spent in the different combinations of vibration and posture while 
driving unloaded backward in the truck/ramp (duration of 78 s) 

Figure 12 – Percentage of time during different forklift driving tasks for combinations of 
posture and vibration.	
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Chapter 5 

5  Discussion 

In this study we looked at the amount of time spent in combined postures and 

vibration during tasks performed by forklift operators to assess the potential risk of injury. 

We suggest a method for comparing vibration (low, medium and high) and posture 

(neutral, moderate and awkward), with postures arranged in rows and vibration levels are 

in columns. These contingency tables (Figure 12) show the duration in each combination 

of posture and vibration for each task and describe the findings for the neck separately 

than the trunk. Our results show that the posture/vibration risks vary between tasks, and 

also between the neck and trunk. 

Since the purpose of this thesis was to develop a method for evaluating the 

combination of two known risk factors for musculoskeletal injuries in heavy machine 

operators, the specific findings are less important than the overall process. Nevertheless, 

the specific findings illustrate the power of this approach for gaining insight into the risks 

of combined posture and vibration exposures.  

The majority of the time in many of the tasks was always spent in either a neutral or 

an awkward posture with low risk vibration (column one). Hermanns and 

colleagues (Hermanns et al., 2008) also investigated the amount of time spent in 

combined postures and vibration; however their posture measuring methods were 

different and they tested other vehicles and surfaces. They did not show data for forklifts, 

but the majority of their tables show the highest time percentages for neutral postures 

with low, medium or high vibration; this is the equivalent to the bottom row in our study. 
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An explanation for this discrepancy may be the fact that the, axial rotations were 

not measured in their study. Axial rotations of the neck and the trunk were adopted 

frequently during forklift driving; therefore, we believe that our higher percentage of time 

in awkward postures is likely due to neck and trunk twisting.  

In some tasks, such as driving backward in the warehouse without a load (for the 

trunk), and in driving forward in the warehouse without a load (for the neck), there was a 

rather even distribution of the time spent in various posture/vibration combinations; 

however, this was not always the case. The task of driving backward with a load in the 

truck involved 52% of the time with the neck in an awkward posture with low vibration, 

24% in awkward posture with medium vibration, and 11% in awkward posture with high 

vibration. This adds up to 87% of the time spent with the neck in an awkward posture 

with low to high vibration; all in the first row. Meanwhile, the findings are similar for the 

trunk during this task, although to a lesser degree; here there is 72% in row one. The 

second task with a similar situation is driving backward without a load in the truck. This 

task involves an awkward neck posture for 81% of the time, and an awkward trunk 

posture for the same percentage of time.  

Driving forward without a load in the truck shows a different pattern; presumably 

LOS is less restricted at this point so the majority of the time is spent in row three (neutral 

posture with low, medium and high vibration), and in column three. The posture/vibration 

combinations in column three (high vibration) account for 37% of the total task time; 

15% of the total task is spent in high-risk vibration and awkward neck posture. This 

pattern is also observed in the equivalent task but driving in the warehouse.  
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 The highest amount of time was spent with the neck in awkward postures 

combined with low to medium vibration, while the trunk was exposed to low to medium 

vibration, combined with neutral postures. This suggests that the neck is at more risk of 

injury during this task than the trunk. Our method for evaluating risk of injury by 

combining posture and vibration exposures is a powerful tool for identifying trends; this 

trend can be clearly seen in the contingency tables where the percentage of time spent in 

specific combinations of vibration and posture are noticeably higher than the rest. For 

example, in tasks like driving with a load backward in the truck (52% in awkward 

posture/low vibration combination for the neck, and 41% for the trunk), and driving 

backward unloaded in the truck (42% for neck and trunk in awkward posture/low 

vibration combination). 

Driving mining haul trucks without a load involved the highest vibration exposure, 

followed by traveling with a load, loading, and dumping respectively (Kumar, 2004). The 

vibration data in our study does not show clear patterns in the differences between tasks; 

they are all similarly high values (Table 2), yet we can see clear trends between tasks 

when we look at vibration and posture together. For example, driving unloaded in the 

warehouse forward compared to backward; going backward appears to have more 

dangerous levels of vibration, than going forward, as well as posture (Figure 12). This is 

evidence that the risk of injury associated with different tasks should not be analyzed 

solely in terms of vibration.  

The vibration exposure limits for low, medium, and high risk regions used in this 

study were set to r.m.s accelerations of 0.45 m/s 2 at the low end and 0.9 m/s 2 at the high 

end, similarly to WBV research in other heavy machinery vehicles (Eger et al., 2008a; 
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Kumar, 2004). According to ISO 2631-1, these are the r.m.s limits for 8-hour daily 

exposures (A (8)). By these limits, r.m.s accelerations in the vertical direction suggest that 

the health risk of the majority of the tasks, and the overall period of time, is likely (as 

illustrated in Table 2). The highest dominant frequency is found in task 1, which 

corresponds to engaging the forks. This high frequency can be attributed to the vibration 

of the vehicle’s engine. The other frequencies are consistent with the literature, which 

indicates a range between 2 – 6 Hz in the vertical direction for seated subjects (Griffin, 

1996). 

A limitation of our study was the use of one participant to develop our method for 

comparison of vibration and posture; however, our vibration measurements are in the 

range of previous forklift vibration measurements (Hoy et al., 2005; Mansfield et al., 

2006) and our subject was an experienced forklift operator. Accordingly, we believe that 

our data is representative of routine forklift operations. Other studies have observed 

similar magnitudes for forklift vibration. Mansfield and colleagues (Mansfield et al., 

2006) reported 25th and 75th percentiles of 0.6 and 1 m/s 2, while Hoy and 

colleagues (Hoy et al., 2005) reported ranges of r.m.s acceleration between 0.32 and 

0.73 m/s 2 in the vertical z-axis (dominant). Our r.m.s acceleration for the total duration 

was 0.98 m/s 2 and was as low as 0.56 m/s 2 in one of the tasks (Table 2).  

Research involving vibration exposure in forwarders (Rehn et al., 2005) found that the 

magnitude of vibration exposure was different under various circumstances (loaded 

versus unloaded, with different operators, terrain, and forwarder model). They concluded 

that more data should be collected for several conditions involving a given operator and 

forwarder model. Further studies investigating different conditions experienced by forklift 
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operators should also be performed in the future using approaches such as the one 

used in this study. This would help to evaluate whether the approach that is developed in 

this thesis is generalizable to other workplaces, and perhaps other vehicles.  

The goal of this study was to describe an approach for comparing posture and 

vibration in combination during different tasks performed by forklift operators. This 

method suggests that there are certain tasks that produce different levels of exposure for 

the neck and for the trunk. Once these tasks have been identified, the specific neck and 

trunk postures within these tasks can be determined, similarly to Raffler and colleagues 

(2010) to guide appropriate ergonomic modifications. Possible modifications to tasks 

involved in operating forklift trucks can involve the use of cameras to improve LOS and 

minimize awkward postures. Some forklift trucks have been modified to carry the load to 

the side of the operator, rather than in front. The use of seats that are able to rotate might 

be a useful ergonomic modification to the current forklift truck.  Lastly, operating 

forklifts remotely may be another option for the prevention of injury resulting from the 

combination of awkward postures and vibration, which place the driver and those in the 

surrounding at risk.  

A future goal of the research program is to bring the obtained measurements (i.e., 

vibration, eye-gaze, and auditory) to the laboratory where it will be incorporated in an 

immersive 3D virtual reality simulator for a safe and realistic experience. This would 

allow for testing of a larger population and for more controlled tasks and trials. The 

methods outlined in this thesis represent an important step in this line of research. 
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Appendix A – Ethics approval, Letter of Information & Consent 

Form. 

Appendix A.1 – Ethics of approval 
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Appendix A.2 – Letter of Information and Consent 
Letter of Information and Consent: 

Assessment of the effectiveness of heavy machinery seats for multi-axis vibration 

environments 

You are being invited to participate in a study on the response of human subjects to 

multi-axis vibrations. We will be testing 10 participants. Long-term exposure to whole-

body vibration is associated with low-back pain and injury, and is a major industrial 

and societal concern. This research project is the first phase of a project that will study 

whole-body vibration in a laboratory setting. This study is conducted under the 

supervision of Dr Jim Dickey, and is sponsored by the Natural Sciences and 

Engineering Research Council of Canada (NSERC).  

If you agree to participate, we will make measurements of the vehicle and seatpan 

vibration and will record the vehicle environment and your posture while you perform 

your normal routine job operating the lift truck. We will be using video cameras 

mounted to the cab structure using magnetic mounts in unobtrusive locations and small 

devices to measure acceleration mounted under the seat and on the seatpan.  

Your participation is strictly voluntary and you are free to withdraw from the study 

at any time or refuse to participate without any penalty.  We hope to learn more about 

how vibration affects spines, but you will not get any benefit from participating in this 

research. 

Data will remain strictly confidential. Individual results will not be reported. 

Completed study documentation will be stored in a secure cabinet within the principal 

investigator's office.  Vibration data will be stored on an external hard drive and will be 

stored in a locked file cabinet the Joint Biomechanics Laboratory at the University of 

Western Ontario. The video data will be transferred from the cameras to the external 

hard drive and will be stored in a locked file cabinet the Joint Biomechanics Laboratory 

at the University of Western Ontario. These data will be retained indefinitely so that we 

can use it for future analyses as well as for illustrations in scientific meetings, scientific 

manuscripts and potential teaching opportunities. We will obscure your face in these 

images in order to protect your confidentiality. 

Representatives of The University of Western Ontario Health Sciences Research 

Ethics Board may contact you or require access to your study-related records to 
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monitor the conduct of the research. There are two copies of this consent form; one 

which the researcher keeps and one that you keep. 

If you have any questions or concerns about the study or about being a subject, you 

should contact the principal investigator, Dr Jim Dickey, Assistant Professor, School of 

Kinesiology, The University of Western Ontario, (519) 661-2111 x 87834. If you have 

any questions about your rights as a research participant or the conduct of the study you 

may contact the Office of Research Ethics (519) 661-3036, email ethics@uwo.ca. 

I have read the letter of information, have had the nature of the study 

explained to me and I agree to participate. All questions have been answered to 

my satisfaction.  

Participant’s Signature:  

________________________  Date: ________________ 

Printed name   Signature 

Person Obtaining Informed Consent:  

________________________   Date: ________________ 

Printed name   Signature 

____________________________________________________________ 

Do you consent to using your data for future research projects? 

� No � Yes 

If Yes, you may change your mind and withdraw your data at a future time by 

contacting Dr Jim Dickey at the above address. 

___________________________________________________________________

_________ 

Do you consent to us using images from the video for scientific presentations, 

scientific manuscripts or for purposes of teaching. 

� No � Yes 

If Yes, you may change your mind and withdraw your data at a future time by 

contacting Dr Jim Dickey at the above address. 

 



	
  

	
  

42	
  

Appendix B- Forklift truck specifications 
	
  

Toyota forklift truck (Model: 7FGCU25, Serial No: 75034) 

Mast: QFV Front Tread: 1 m 

Type:  LP Tire Size: FR 21 x 7 x 15/ Solid 

RR 16 x 5 10-1 /2 / Solid 

Attach:  Forks Truck Weight: 4180 kg 

 Mast QFV – 4-Stage Full Free View 

 Type LP – Liquefied Petroleum gas 
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Appendix C – Posture categories and bin sizes from 3D Match  
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